View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by IST Austria: PubRep (Institute of Science and Technology)

Quantitative Relaxation of Concurrent Data Structures

Thomas A. Henzinger* Christoph M. Kirsch™

*IST Austria
{tah,asezgin }@ist.ac.at

Abstract

There is a trade-off between performance and correctness in im-
plementing concurrent data structures. Better performance may be
achieved at the expense of relaxing correctness, by redefining the
semantics of data structures. We address such a redefinition of data
structure semantics and present a systematic and formal frame-
work for obtaining new data structures by quantitatively relaxing
existing ones. We view a data structure as a sequential specifica-
tion containing all “legal” sequences over an alphabet of method
calls. Relaxing the data structure corresponds to defining a distance
from any sequence over the alphabet to the sequential specifica-
tion: the k-relaxed sequential specification contains all sequences
over the alphabet within distance k from the original specifica-
tion. In contrast to other existing work, our relaxations are seman-
tic (distance in terms of data structure states). As an instantiation
of our framework, we present two simple yet generic relaxation
schemes, called out-of-order and stuttering relaxation, along with
several ways of computing distances. We show that the out-of-order
relaxation, when further instantiated to stacks, queues, and prior-
ity queues, amounts to tolerating bounded out-of-order behavior,
which cannot be captured by a purely syntactic relaxation (distance
in terms of sequence manipulation, e.g. edit distance). We give con-
current implementations of relaxed data structures and demonstrate
that bounded relaxations provide the means for trading correctness
for performance in a controlled way. The relaxations are mono-
tonic, which further highlights the trade-off: increasing k increases
the number of permitted sequences, which as we demonstrate can
lead to better performance. Finally, since a relaxed stack or queue
also implements a pool, we obtain new concurrent pool implemen-
tations that outperform the state-of-the-art ones.

Categories and Subject Descriptors D.3.1 [Programming lan-
guages]: Formal definitions and theory—semantics; E.l1 [Data
Structures]: Lists, stacks, and queues; D.1.3 [Programming lan-
guages]: Programming techniques—concurrent programing

General Terms Theory, Algorithms, Design, Performance

Keywords (concurrent) data structures, relaxed semantics, quan-
titative models, costs

1. Introduction

Concurrent data structures may be a performance and scalabil-
ity bottleneck and thus prevent effective use of increasingly par-
allel hardware [18]. There is a trade-off between scalability (per-
formance) and correctness in implementing concurrent data struc-
tures. A remedy to the scalability problem is to relax the semantics
of concurrent data structures. The semantics is given by some no-
tion of equivalence with sequential behavior. The equivalence is
determined by a consistency condition, most commonly lineariza-
bility [7], and the sequential behavior is inherited from the sequen-
tial version of the data structure (e.g., the sequential behavior of a

Hannes Payer™

Ali Sezgin* Ana Sokolova™

*University of Salzburg
firstname.lastname@cs.uni-salzburg.at

concurrent stack is a regular stack). Therefore, relaxing the seman-
tics of a concurrent data structure amounts to either weakening the
consistency condition (linearizability being replaced with sequen-
tial consistency or quiescent consistency) or redefining (relaxing)
its sequential specification. In this paper, we present a framework
for relaxing sequential specifications in a quantitative manner.

For an example of a relaxation, imagine a k-stack in which each
pop removes one of the most recent k elements and an operation
size which returns a value that is at most k away from the correct
size. It is intuitively clear that such a k-stack relaxes a regular
stack, but current theory does not provide means to quantify the
relaxation. Our framework does, it provides a way to formally
describe and quantitatively assess such relaxations.

We view a data structure as a sequential specification S consist-
ing of all semantically correct sequences of method calls. We iden-
tify the sequential specification with a particular labeled transition
system (LTS) whose states are sets of sequences in S with indis-
tinguishable future behavior and transitions are labeled by method
calls. A sequence is in the sequential specification if and only if it
is a finite trace of this LTS.

Our framework for quantitative relaxation of concurrent data
structures amounts to specifying costs of transitions and paths.
In the LTS, only correct transitions are allowed, e.g., a transition
labeled by pop(a) is only possible in a state of a stack with a as top
element. In a relaxation, we are exactly interested in allowing the
wrong transitions, but they will have to incur cost. Our framework
makes this possible in a controlled quantitative way.

The framework is instantiated through specifying two cost func-
tions: A local function, transition cost, that assigns a penalty to
each wrong transition, and a global function, path cost, that accu-
mulates the local costs (using, e.g., maximum, sum, or average)
to obtain the overall distance of a sequence. Via this local-global
dichotomy, we are able to achieve a separation of concerns, mod-
ularity and flexibility: Different transition costs can be used with
the same path cost, or vice versa, leading to different relaxations.
Once the distance of a sequence from the original sequential speci-
fication S is defined in this way, a k-relaxation of the data structure
becomes the set of all sequences within distance k from S.

Returning to the stack example above, we can set the transition
cost of a pop transition at a state to be the number of elements that
are between the popped element and the top of the stack. We can
define the path cost to be the maximum transition cost that occurs
along a sequence. Then, the corresponding k-relaxation precisely
captures what we intuitively described.

We instantiate the framework on two levels. On the abstract
level, we present two generic relaxations called out-of-order and
stuttering relaxation, which provide a way to assign transition costs,
together with several different path cost functions for any data
structure. On the concrete level, we instantiate the out-of-order
relaxation to stacks, queues, and priority queues. We spell out the
effects of the relaxation in these concrete cases and prove that they
indeed correspond to the intuitive idea of bounded relaxed out-of-

https://core.ac.uk/display/268225671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

order behavior. We also instantiate the stuttering relaxation to a
Compare-And-Swap (CAS) object and a shared counter and prove
correspondence results as well.

We show that the relaxation framework is indeed of practi-
cal value: we give an efficient new implementation of an out-of-
order stack and fit an existing efficient implementation of an out-
of-order queue [11] in our framework as well. The experimental
results demonstrate ideal behavior: linear scalability and perfor-
mance. In particular, the relaxed stack implementation we present
outperforms and outscales state-of-the-art stack, queue, and pool
algorithms on various workloads. We also present implementations
for a stuttering CAS, a stuttering shared counter using this stut-
tering CAS and a different stuttering shared counter, all of which
further demonstrate increased scalability and performance.

The main contributions of this paper are: (1) the framework for
quantitative relaxation of data structures, and (2) efficient concur-
rent implementations. The way to the framework is paved by for-
mally capturing the semantics of a data structure. Other contribu-
tions made possible by the framework are: the generic out-of-order
and stuttering relaxations of data structures; characterizations of the
out-of-order relaxation in concrete terms for stacks, queues, and
priority queues; characterization of the stuttering relaxation in con-
crete terms for CAS and shared counters.

The structure of the paper is as follows. In the remainder of this
section, we provide motivation for the main features of our work.
We present the formal view on data structures in Section 2, fol-
lowed by the framework for quantitative relaxation in Section 3.
Throughout the formal part we use a stack as running example. We
present the two generic instances, out-of-order and stuttering relax-
ations, in Section 4 and instantiate them further to concrete data
structures in Section 5 and Section 6, respectively. We discuss re-
lated work in Section 7. In Section 8 we present implementation
details and in Section 9 experimental results confirming our origi-
nal scalability and performance goal. We wrap up with concluding
remarks in Section 10.

In the related work survey, we put special emphasis on quasi-
linearizability [2], the only other work we are aware of that also
tackled the problem of quantitatively relaxing sequential data struc-
tures for better performance in the concurrent setting. As opposed
to our semantic (state-based) approach in assigning distances to se-
quences, the relaxation of [2] is syntactic (permutation-based). We
argue that (1) the semantic approach is more expressive than the
syntactic one, and (2) it allows the designer of a data structure to
formally capture the intent of a specific relaxation more easily and
naturally.

Highlights

Relaxation improves performance. A relaxation of the sequen-
tial specification of a data structure can lead to a distribution of
contention points, diminishing the need for, and thus, the cost of
synchronization. For instance, instead of requiring that each pop
operation updates the top pointer of a concurrent stack, allowing
a relaxation which sets the size of the window from which a re-
moval is deemed acceptable to some k> 1 (most recent elements)
effectively reduces contention for the top pointer. In Section 9, we
show that even such a simple relaxation for stacks with £ = 80 on
a 40-core (2 hyperthreads per core) server machine can lead to an
eight-fold increase in performance compared to the existing state-
of-the-art implementations of strict stacks.

Note that a larger sequential specification increases the poten-
tial for better performance. Since our relaxations are monotonic,
increasing k increases the performance potential. However, the ex-
tent to which this potential can be utilized in practice depends on
many factors among which is the choice of hardware.

1
2
3
4

while (true): 1 while (true):

X = C; 2 x,v = getMaxAndValueAt (c, f(t));
if (CAS(sc,x,x+1)): 3 if (CAS(&c[f(t)],v,x+1)):
return x+1; 4 return x+1;

(a) Single counter. (b) Distributed counter.

Figure 1. Shared counters

Generality. Consider three different sequences belonging to three
different data structures, stack, queue, and priority queue, respec-
tively:
push(a)push(b)push(c)push(d)
enq(a)enq(c)enq(b)enq(d)
ins(a)ins(b)ins(d)ins(c)
where for the priority queue b has top priority, followed by a and c
that have the same medium priotity, and d has low priority.

If these sequences are extended with a removal operation (pop,
deq, rem, respectively), the expected return values are d (element
at the top of the stack), a (element at the head of the queue), and b
(element with the highest priority).

Imagine instead, that the removal operation returns c for all of
these three sequences. At first sight, that c is returned seems to be
arbitrary. However, a careful examination reveals a common pat-
tern: In each sequence, c is not the current, but next (possible) value
to be removed. That is, in the stack it is the element immediately
below the top element; in the queue it is the element immediately
after the head element; in the priority queue it is an element with
the second highest priority. It then seems natural to view all these
relaxations as an instantiation of a common relaxation scheme.

Our framework allows one to precisely express this and other
common types of relaxations. For instance, our generic out-of-
order relaxation provides exactly this for data structures in which
information is retrieved according to some order, temporal in the
case of queue and stack, logical in the case of a priority queue. The
generic relaxation removes the need of relaxing each data structure
separately.

Modularity. Let us now consider the situation immediately fol-
lowing the removal of ¢ from the stack as was depicted above. We
have the following sequence:

push(a)push(b)push(c)push(d)pop(c)

The stack now contains the elements a, b, and d, the last of which
is on top. One might desire a particular relaxation where two
consecutive out-of-order removals are not allowed, and hence, the
next removal has to return d. Yet another might find it acceptable
that at all times one of the top two elements are removed; it does
not matter how long the top element remains on the stack. Our
framework allows one to express both. Each transition incurs a
transition cost. Observe that in both relaxations the same cost (out-
of-order removal cost) is assigned to each transition. Each sequence
of transition costs incurs a path cost, and this is what distinguishes
the two relaxations. The first will require that there are no two
consecutive transitions with non-zero cost; the second will require
that the maximum of any transition cost is at most 1. We thus obtain
a modular framework in which existing relaxations can be tailored
by modifying transition costs, path costs, or both.

Measurability. The code given in Figure 1(a) represents a CAS-
based strict shared counter. The shared variable c is a counter, and
each thread tries to increment the value of the counter. Represen-
tative of many concurrent implementations, this code leads to poor
scalability as all threads trying to increment the counter will com-
pete for access to c.

Next, consider a modified version of this shared counter, given
in Figure 1(b). Unlike the strict implementation, here we use an

array c of k counters and the logical value of the shared counter is
taken to be the maximum value among all the counters in c. Each
thread t can write only to the slot with index £ (t). Each attempt
of t incrementing the counter starts by reading the value contained
in f (t) (stored in v) and the maximum value of all the counters in
c (stored in x). Then, it tries to update its counter to x + 1 provided
that £ (t) is not updated by a concurrent thread.

The behavior of this code depends crucially on the value chosen
for the size k of the array. For instance, if k = 1, then this implemen-
tation will be behaviorally equivalent to the single counter code.
For other values of k, it is evident that there will be a discrepancy
between the behaviors of the two codes.

We go beyond this qualitative notion (existence vs. absence of
relaxation) and provide a measure for any relaxation defined in our
framework. The distributed counter given in Figure 1(b) is in fact
a k-stuttering relaxation of the shared counter of Figure 1(a). This
way an application developer using a quantitatively relaxed data
structure can evaluate the gain in performance for k-relaxation vs.
the effort of modifying an application that uses it, and try to op-
timize k. For instance, if the relaxed shared counter is used as a
performance counter counting the occurrence of a given event, e.g.
context switches in a multi-processor scheduler, not all occurrences
of events will be registered. Knowing that the number of unregis-
tered event occurrences within one counter increment can not ex-
ceed k (the size of c) is a crucial information for the application
designer.

Transparency. Now consider the code given in Figure 2. This
code is very similar to the strict shared counter code of Figure 1(a)
except for the call to the method kCAS instead of CAS. The kCAS is
arelaxed version of CAS such that up to at most Kk many concurrent
threads trying to update the value of the CAS object can complete
with false positive (see Section 6 and Section 8 for details).

Although the kCAS and the dis-
tributed counter of Figure 1(b) take
fundamentally different approaches
in relaxing the strict semantics of a
counter, they both implement a k-
stuttering relaxation. This illustrates
another use of our framework: It can
be used as a simpler way to establish abstract equivalence, thus
providing transparency for a higher-level application. If one shows
that two implementations implement the same relaxation, then a
client application using either implementation will observe the
same behavior, regardless of the differences in actual implemen-
tation details.

1 while (true):

2 X =c¢;

3 if (kCAS(&c,x,x+1l)):
4 return x+1;

Figure 2. kCAS counter.

2. Data structures, specifications, states

Let X be a set of methods including input and output values. We
will refer to X as the sequential alphabet. A sequential history s
is an element of X*, i.e., a sequence over X. As usual, by € we
denote the empty sequence in £*. A data structure is a sequential
specification S which is a prefix-closed set of sequential histories,
Scr*

EXAMPLE 2.1. The set of methods of a stack, with data in a set D,
is

Yg = {push(d) | de D} U {pop(d) | d€ DU {null}}.

The sequential specification Sg consists of all stack-valid se-
quences, i.e., sequences in which each pop pops the top of the
stack and each push pushes an element at the top. For instance, the
sequence sg = push(a)pop(a)push(b) is in the sequential speci-
fication Sg, whereas the sequence tg = push(a)push(b)pop(a) is
not.

The following definition is the core of our way of capturing
semantics. Let S be a sequential specification.

DEFINITION 2.2. Two sequential histories s,t € S are S-equivalent,
written s =g t, if for any sequence u € ¥, su € S ifand only iftu € S.

It is clear that =g is an equivalence relation. By [s]s we de-
note the S-equivalence class of s. Intuitively, two sequences in the
sequential specification are S-equivalent if they lead to the same
“state”. The following simple property follows directly from the
definition of S-equivalence.

LEMMA 2.3. If s =g tand su € S, then su =g tu.

The intuition about states is made explicit in the next definition.
In addition, we point out particular “minimal” representatives of a
state.

DEFINITION 2.4. A state of a data structure with sequential spec-
ification S is an equivalence class [s]s with respect to =g. For a
state g = [s]s, the kernel of q is the set

ker(q) = {te [s]s | t has minimal length }.

A sequence s € S is a kernel sequence if s € ker([s]s).

EXAMPLE 2.5. One can easily show that kernel sequences of a
stack are all sequences in {push(d) | d € D}*. Moreover, for any
state ¢ = [s]s, of a stack, there is a unique sequence in ker(g), i.e.,
|ker(g)| = 1. This implies that different sequences in s € {push(d) |
d € D}* represent different states.

Having identified states, a data structure corresponds to a la-
beled transition system (LTS) that we define next.

DEFINITION 2.6. Let S be a (sequential specification of a) data
structure. Its corresponding LTS is LTS(S) = (Q,X, —,qo) with

e set of states Q =S/ =g = {[s]s | s€ S},
e set of labels ¥,
e transition relation — < Q x X x Q given by

[s]s = [sm]s if and only if sm € S, and
® initial state gy = [€]s.

Note that the transition relation is well defined (independent
of the choice of a representative) due to Lemma 2.3. Also g is
well defined since S is prefix closed. We write ¢ = if there is
an m-labeled transition from ¢ to some state; g > if there is no
m-labeled transition from g. We also write ¢ L if there is a u-
labeled path of transitions starting from g, and ¢ — if it is not the
case that ¢ >. The following immediate observation provides the
exact correspondence between the sequential specification of a data

structure and its LTS: S is the set of finite traces of the initial state
of LTS(S).

LEMMA 2.7. Let S be a sequential specification with LTS(S) =
(0,Z,—,q0). Then for any u € L* we have u € S if and only if
q0 .

EXAMPLE 2.8. Since different stack-kernel sequences represent

different states, cf. Example 2.5, the transitions of LTS(Sg) are
fully described by

[slss "5 [s- push(a)]s,

[sss P25 [8/]s,

[s]s, PP [els, ifs =

ifs =¢'-push(a), and

where s is a kernel sequence in {push(d) | d € D}*. Note that if
s =’ -push(a), then [s- pop(a)]ss = [s']ss-

3. Framework for quantitative relaxations

We are now ready to present the framework for quantitatively relax-
ing data structures. Let S € X* be a data structure with LTS(S) =
(Q,X,—,qo). Our goal is to relax S to a so-called k-relaxed speci-
fication S; < £* in a bounded way, with k providing the bound.

Giving a relaxation for a data structure S amounts to the follow-
ing three steps:

1. Completion. From LTS(S) = (Q,X,—,q0) we construct the
completed labeled transition system

LTSC(S) = (szvQ X X x quO)
with transitions from any state to any other state by any method.

2. Transition costs. From LTS (S) a quantitative labeled transi-
tion system QLTS(S) = (Q,%,0 x X x 0,4o,C,cost) is con-
structed. Here C is a well-ordered cost domain, hence it has
a minimum that we denote by 0, and cost: O x X x Q — C'is
the transition cost function satisfying

cost(q,m,q’) =0 ifandonlyif ¢-=5>¢ in LTS(S).
We write ¢ oy ¢ for the quantitative transition with
cost(q,m,q') = k. A quantitative path of QLTS(S) is a sequence
myki mpko My kn
K=q1 = 92 — q3---9n = qn+1-

The sequence T = (my,ki)(my,kz)...(my,ky) € (£ x C)* is
the quantitative trace of K, notation qtr(k), and the sequence
u = my...my, is the trace of the quantitative path K and of the
quantitative trace qtr(x), notation tr(k) = tr(qtr(x)) = u. By
qtr(u) we denote the set of all quantitative traces of quantitative
paths starting in the initial state with trace u and by qtr(S) the
set of all quantitative traces of quantitative paths starting in the
initial state.

3. Path cost function. We choose a monotone path cost function
peost: qtr(S) — C. Monotonicity here is with respect to prefix
order: if a quantitative trace T is a prefix of a quantitative trace
7, then peost(t) < peost(t').

Having performed these three steps, we can define the k-relaxed
specification.

DEFINITION 3.1. The k-relaxed specification Sy, for k € C contains
all sequences that have a distance at most k from S,

Sy = {ueZ* ‘ ds(ll) < k}

where dg(u) is the distance of u to the sequential specification S
given by
dg(u) = min{pcost(t)|t € qtr(u)}.

REMARK 3.2. Both the distance dg and the relaxed specification
Sy are actually parametric in the transition cost function as well as
in the path cost function. For simplicity, we prefer a light, over-
loaded notation that does not explicitly mention these parameters.
Also, for some applications one may wish for two different cost
domains, one for the transition, one for the path cost, of which only
the second one needs to be well ordered. Again for simplicity, we
restrict the presentation to a single cost domain.

Some obvious properties of the quantified relaxations resulting
from our framework are:

e 5o = S, ensured by the condition on the transition cost function.

¢ Every relaxation Sy is prefix closed, ensured by the monotonic-
ity of the path cost function.

¢ The relaxations are monotone, i.e., if k < m, then S;, C S,,,.

To conclude, in order to relax a data structure all that one needs
is a cost domain C, a transition cost for each transition in the
completed LTS (item 2. above), and a path cost function (item
3. above).

REMARK 3.3. The current framework does not allow for relax-
ations that leave the original state space of LT'S(S). An example of
such is a prophetic relaxation of e.g. stack, where sequences with
pop(a) preceding push(a) need to be assigned finite distance. This
can be done by slightly changing the definition of LT'S.(S): Instead
of keeping the original states S/ =g, one can take as set of states the
quotient £* / ~ where ~ is an equivalence that coincides with =g
when restricted to S. For simplicity and since we do not use such
relaxations in this paper, our current definition of LTS.(S) keeps
the states unchanged.

4. Generic relaxations

In this section we illustrate the relaxation framework on two
generic examples. The value and generality of these particular
examples become evident in Section 5 and Section 6 when we
instantiate them to concrete data structures. Let S © X* be a data
structure with LTS(S) = (Q, X, —,qo). We first fix the cost domain
to C = Nu {o0}.

4.1 Out-of-order relaxation

For the out-of-order generic relaxation we define a transition cost
function scost: Q x £ x Q — C, called segment cost, and mention
two other related transition cost functions.

DEFINITION 4.1. Lett = (q,m,q’) be a transition in LTS.(S). Let
v be a sequence with minimal length satisfying one of the following
two conditions:

(1) There exist sequences u, w such that uvw € ker(q) and uw is a
kernel sequence and either

(i) [uw]s 5 [w'w]s and ¢’ = [u'vw]s, or
(ii) [aw]s 25> [uw']s and ¢’ = [uvw']s.

(2) There exist sequences u, w such that uw € ker(q) and uvw is a
kernel sequence and either

(i) [uvw]s 5 [0'vw]s and ¢’ = [0'w]s, or
(ii) [uvw]s 5 [uvw’]s and ¢’ = [uw']s.

Then the segment cost is given by the length of v, scost(t) = |v|. If
such a sequence Vv does not exist for t, then scost(t) = o0.

Intuitively, segment cost of a relaxed transition is the length of
the shortest subword (v) whose removal (1) or insertion (2) into the
kernel sequence enables a transition. Observe that the transition can
be taken in LTS(S) if and only if its segment cost is 0, obtained by
setting v = €. We will see in the next section that this cost quantifies
out-of-order updates or observations, such as returning an element
other than the top element in a stack or removing an element other
than the head of a queue. We note that segment cost just as any
transition cost can also be used per method, i.e., some methods may
be relaxed, some not.

4.2 Stuttering relaxation

For the stuttering generic relaxation, we define the so-called stut-
tering cost.

DEFINITION 4.2. Let t = (q,m,q’) be a transition in LTS.(S).
Then, the stuttering cost, stcost is defined as

0 ifg5q
stcost(q,m,q') =<1 ifg=q rng">q ng™
o0 otherwise

where — is the transition relation of LT S(S).

Intuitively, the stuttering relaxation allows for (already enabled)
transitions to have no effect on the state. If, in the specification
S, g goes to ¢ with method m and g # 4, then the stuttering cost of
applying m at ¢ and staying at ¢ after the transition is 1. All other
transitions which are not part of the original specification are set to
have infinite cost.

An example of an unbounded (except in the maximal size of the
queue) stuttering relaxation is presented in [15], where workers are
allowed to work on the same task by a relaxed queue semantics and
an element in the queue can be dequeued a number of times (up
to the maximal size of the queue). In favor of bounded stuttering
we note that, typically, implementations can benefit from retiring
(completing rather than retrying) mutator method calls when there
is too much contention and have the client handle false positives.

4.3 Path cost functions

Let S € X* be a data structure and © = (my,k;)(m2,k2) ... (my, kn)
a quantitative trace in qtr(S). We define the following generic path
cost functions (to be used with any transition cost):

e The maximal cost, pcost,,,,: qtr(S) — Nu {co}, maps 7T to the
maximal transition cost along it. Formally,

peost,,,.(T) = max{k; | 1 <i<n}.

* The @-interval cost, pcostyq) : qtr(S) — Nu {co}, for ¢ a binary
predicate (first order formula with two free variables making
statements about positions in the quantitative trace), maps T to
the length of a maximal consecutive quantitative subtrace that
satisfies @. Hence, we have

peost(e] (t) = max{j—i+ 1] j)and 1 <i<j<n}.

* The @-interval restricted maximal cost, pcost,,[] : qtr(S) —
Nu {oo}, for ¢ as in the @-interval cost, is given by

PCOStq(o] (T) = max{li; | @(i,j) and 1 <i< j<n},

where
li,j =max{kr+(r—i+1) | l<r<j}

We instantiate the out-of-order relaxation along with the max-
imal, @-interval, and @-interval restricted maximal cost on stacks,
queues, and priority queues in Section 5. The @-interval restricted
maximal cost is more complex and less intuitive than the other path
cost functions, but when instantiated it provides valuable relaxation
examples that are efficiently implementable. In Section 6 we apply
the stuttering relaxation along with the @-interval cost on a CAS
object and on a shared counter. Note that the other two cost func-
tions do not make much sense together with the stuttering cost (the
maximal cost is two-valued and the @-interval restricted maximal
cost amounts to the @-interval cost plus one).

5. Out-of-order stacks, queues, and priority
queues

In this section we apply the relaxation of Section 4.1 to stacks,

FIFO queues, and priority queues. Due to lack of space, here we

leave out some common methods, e.g., top (for stack), head (for
queue), size (for all). Inclusion of these methods does not change

Top

out-of-order k=3
22 2

restricted out-of-order k=3

Figure 3. The ranges of elements which may be returned by a pop
operation of a k-stack with restricted out-of-order, out-of-order, and
lateness relaxation with £ = 3. The element a5 is already removed.

the results, in particular Propositions 5.1-5.3, presented in this
section.

Stack. We have already given the set of methods of a stack, its
states, and its LTS in Example 2.1, Example 2.5, and Example 2.8.
Let us recall that the sequential specification Sg consists of all
stack-valid sequences, i.e., sequences in which each pop pops the
top of the stack, and each push pushes an element at the top.

Let s be a kernel sequence. A kernel sequence s’ is

e push(a)-out-of-order-k from s if s’ = u-push(a)-v where
s = uv, v is minimal, and |v| = k;

¢ pop(a)-out-of-order-k from s if s’ = uv where s = u-push(a) -
Vv, v is minimal, and |v| = k;

¢ pop(null)-out-of-order-k from s if s = s’ and |s| = k;
By inspecting all cases, we can show the following proposition.

PROPOSITION 5.1. Let s and s’ be two kernel sequences of a stack.

&) .)
Then [s]sq i [s']ss in the out-of-order relaxation with segment
cost if and only if s’ is m-out-of-order-k from s.

As mentioned in Section 4.1, the relaxations can be applied
method-wise. We implemented k-relaxed stacks with only push
and pop methods, of which only pop is relaxed according to the
segment cost.The interpretation of the path cost functions from
Section 4.3 and the corresponding relaxations are as follows:

e The maximal cost represents the maximal distance from the top
of a popped element, leading to an out-of-order k-stack. Hence,
in an out-of-order k-stack, each pop pops an element that is at
most k away from the top.

Let ¢(i, j) be the following first order formula with free variables i
and j:
Vreli,jl.ke #0

e The @-interval cost represents lateness, i.e., the maximal num-
ber of consecutive pops needed to pop the top, leading to a
lateness k-stack. Hence, in a lateness k-stack at most the k-th
consecutive pop pops the top.

e The @-interval restricted maximal cost represents the maximal
size of a “shrinking window” starting from the top from which
elements can be popped, leading to a restricted out-of-order k-
stack. In a restricted out-of-order k-stack, each pop removes an
element at most k — [away from the top, where [is the current
lateness of the top.

Figure 3 presents a snapshot of a relaxed stack in each of the
three out-of-order relaxations. It shows a state of a stack in which
the element ap, marked in grey, has been removed after the last
removal of the top or the last push had happened. The ranges show
which elements may be returned by a pop operation applied to this
state in each out-of-order relaxed version for k = 3.

FIFO queue. We now briefly describe the out-of-order relaxation
of a queue.The set of methods for a FIFO queue, with data set D, is

Yo ={enq(d) |de D} u{deq(d) |de Du {null}}.

The sequential specification Sq consists of all queue-valid se-
quences, i.e., sequences in which each deq deques the head of
the queue and each enq enqueues at the tail of the queue. For
instance, the following sequence sg = enqg(a)eng(b)deq(a) is
in the sequential specification Sq, whereas the sequence tg =
enqg(a)enqg(b)deq(b) is not.

One can easily show that kernel sequences of a FIFO queue
are all sequences in {enq(d) | d € D}*. Moreover, also here, for
any state ¢ = [s]g, of the FIFO queue, there is a unique se-
quence in ker(q), i.e., |ker(¢)| = 1. Hence different sequences in
s € {enq(d) | d € D}* represent different states. As a consequence,
the transition relation of LTS(Sq) can be described in a concise
way. Let s be a kernel sequence of a queue. We have,

[slso "% [s- enq(a)]s.
[sls “%* [s']s, if's = enq(a)-s', and

[s]sq deqlzpil) [e]s, if s =&

In a similar way as for stack, we can define when a queue ker-
nel sequence is m-out-of-order-k from another kernel sequence, for
m being a queue method. Furthermore, the analogue of Proposi-
tion 5.1 (obtained by replacing “stack” by "FIFO queue”) holds for
queues as well which we state below.

PROPOSITION 5.2. Let s and s' be two kernel sequences of a

k . , .
queue. Then [s]s, = [§']s, in the out-of-order relaxation with
segment cost if and only if ' is m-out-of-order-k from s.

The maximal path cost function leads to analogous out-of-order
k-queue. For lateness and restricted out-of-order k-queues we need
to employ slightly different path cost functions.

Priority queue. The data set of a priority queue needs to be well-
ordered, since data items carry priority as well. We take the data set
to be N. The smaller the number, the higher the priority. The set of
methods is

Yp ={ins(n) |[ne N} U {rem(n) |[ne Nu {null}}.

The sequential specification S consists of all priority-queue-
valid sequences, i.e., sequences in which each rem removes an
element with highest available priority.

Kernel sequences of a priority queue are all sequences in
{ins(n) | n € N}*. Unlike for stack and queue, there may be
more than one sequence representing a state of a priority queue.
For a state g, if s € ker(gq), then also any permutation of s is in
ker(g). Nevertheless, the order provides a canonical representative
of a state: the unique kernel sequence ordered in non-increasing
priority!. Let s be a canonical kernel sequence. The transitions of
LT S(Sp) are fully described by

[slsy "= [s- ins(n)]s,,
s, reg(}n) [S/]S:y

sls, ~" ™ el

—
—_

ifs=ins(n)-s’, and
S ifs=e.
Again, we define when a canonical kernel sequence is m-out-of-

order-k from another canonical kernel sequence, where m is a
priority queue method. We have the following result.

' The canonical representative is a matter of choice. Equally justified is
using the unique kernel sequence ordered in non-decreasing priority, in
which case the transitions of a priority queue resemble more the transitions
of a stack, highlighting the duality between FIFO queues and stacks.

PROPOSITION 5.3. Let s and s’ be two kernel sequences of a prior-

. k . . .
ity queue. Then [s]s,, s [s']s, in the out-of-order relaxation with
segment cost if and only if s’ is m-out-of-order-k from s.

Analogous relaxations are again possible, only the path cost func-
tions are more complex since they need to capture when an element
with higher priority than all existing elements in the priority queue
is inserted.

6. Stuttering relaxed CAS and shared counter

In this section, we instantiate the relaxation from Section 4.2 to two
concrete examples.

CAS. The set of methods for a Compare-And-Swap (CAS) object
with a data set D and an initial data value init € D can, for our
purposes, be modeled as

Ycas = {cas(d,d’,b) |d,d’ € D, b e {T,F}}.

The sequential specification Sc4s is defined inductively as follows:
The empty sequence € is in Scys and any sequence of length one
and shape cas(init,d,T) is in Scas for d € D. If s € Scys, let t be
the maximal prefix of s such that s = t-m - for m = cas(d,d’,T).
Then s-m’ € Scas if either

(1) m’ = cas(d’,d”,T), or
(2) m' = cas(d”,d” ,F) andd” # d'.

Let s € Scas and let as before t be the maximal prefix of s such
that s = t-m-u for m = cas(d,d’,T). Then, it is not difficult to
show that, s = cas(init,d’,T). Hence, there is a unique kernel
sequence in each equivalence class and it has length one. The
transitions of LT'S(Scas) are given by

cas(init,d,T)

[E]SCAS - [Cas(init7d7T)]SCAS’

’
[cas(init,d, T)]sq ces(dd’T) [cas(init,d’,T)]s,,,» and
[cas(init,d, T)]s, st ™ [cas(init,d, T)]s,, if d # d.

Intuitively, the state of the CAS object is given by one data value
d, initially set to init. In such a state, a transition by method
cas(d,d’,T) is enabled since the comparison of the first argument
and the current value succeeds (returns T, true) leading to the
new state value d’, that is, a successful comparison results in a
swapped value. A transition by method cas(d’,d”,F) in which the
comparison fails (returns F, false) is enabled if indeed d # d after
which no swap happens and the state value remains d. The state
with data value d is formally represented by the equivalence class
of a sequence with a single method cas(init,d,T).

Now let us formalize the notion of allowing invisible failures
for CAS object updates. For this purpose we define another object
called failCAS over the same set of methods, with a somewhat
different set of legal sequences. We call a sequence

cas(d,d’,T) -y-cas(d,d”,T)

over Ycas a false positive sequence if cas(d,d’,T) -y € Scas, ¥ is
a sequence of symbols of the form cas(d”,—,F) with d” # d,
and d # d’. Then, s = s9...5, € Syicas if there exists a set of
positions 0 = ip <i; <...<i, = n for s such that each sequence
Si;_ ---5i;, for 1 < j < r, is either a false positive sequence or is in
Scas- Let the failure count of X € S ¢4iicas be the maximum number
of consecutive false positive sequences X contains.

The corresponding relaxation in our framework is obtained by
using stuttering cost on the CAS object and @-interval cost for the

predicate ¢(i, j) given by
vre i, jl.(k, #0v3d,d’ € D.(m, = cas(d,d’,F))),

leads to a k-CAS in which up to k methods may stutter at the same
state (fail to perform a swap even though the data values match). It
is then easy to show the following correspondence result.

PROPOSITION 6.1. A sequence X € Syyjcas has failure count k if
and only if X is in the specification of k-CAS.

Shared counter. The set of methods of a shared counter is
Ysc = {get&Inc(n) |[ne N}.

The sequential specification Sg¢ of a shared counter contains the
empty sequence € and a sequence s of length n >0 is in Sgc if and
only if (i) = get&Inc(i), forall 1 <i < n.

One can easily show that each state of a shared counter is a
singleton, i.e., for s,t € Sgc we have s =t if and only if s = t.
The unique sequence representing a state is automatically a kernel
sequence. The transitions of LTS(Ssc) are obviously given by

get&Inc(1)

[S]Ssc - [get&lnc(l)]SsC’ and

get&Inc(n+1)
—

[S]SSC [S : get&Inc(n + 1)]SSC’

ifs(i) = get&Inc(i), forall 1 <i<n.

We define a failing shared counter analogously to a failing
CAS object. A sequence s is a behavior of failSC if either s €
{€,get&Inc(1)}, or t = u- get&Inc(n) is a behavior of failSC
and s = t- get&Inc(n+ a), for a € {0,1}. The failure count of
S € Syqiisc is one less than the length of a maximal subsequence of
identical symbols in s.

The corresponding relaxation of the shared counter is obtained
by the stuttering cost and the @-interval cost, for @(i,j) = Vr €
[£, j]-k # 0. Thus, we get the k-stuttering shared counter, k-SC,
in which a method can stutter (fail to produce a new, incremented
by one, value) at most k times. For instance, the sequence

get&Inc(1l)get&Inc(2)get&Inc(2)get&Inc(2)get&Inc(3)

is in the sequential specification of the 2-stuttering shared counter,
2-SC. We again have the following correspondence result.

PROPOSITION 6.2. A sequence X € Syqisc has failure count k if
and only if X is in the specification of k-SC.

7. Related work

The general topic of this paper is part of a recent trend towards
scalable but semantically weaker concurrent data structures [18].
We first discuss work related to our framework and then focus on
work related to our implementations.

Framework. The relaxation framework generalizes previous
work on so-called semantical deviation and k-FIFO queues [10, 12]
which correspond to restricted out-of-order k-FIFO queues here.

Our work is closely related to relaxing the semantics of con-
current data structures through quasi-linearizability [2]. Just like
quasi-linearizability, we provide quantitative relaxations of concur-
rent data structures. Unlike quasi-linearizability which uses syn-
tactic distances, our relaxations are based on semantical distances
from a sequence to the sequential specification. We briefly present
the quasi-linearizability approach, identify two main issues, and
how our method overcomes these.

We call two sequences X, X', both of length n, permutation
equivalent, written x ~ x/, if there exists a permutation p on
{1,...,n} such that for all 1 <i < n, x(i) = x'(p(i)). We write

X ~p X to emphasize the permutation witnessing x ~ x’. In such
a case, the permutation distance between x and x’ is given as
max{|i — p(i)||1 <i<n}.

Let S be a sequential specification over X. In [2], the distance
of a sequence x € Z* to S is defined via a collection D of subsets
of . Let y € Z* be a sequence such that z = Xy has a permutation
equivalent z' € S. Then, for A € D, the A-cost of obtaining 2’ from z
is the permutation distance between z|A and z’|A, where | denotes
restriction. Let k4 denote the minimal A-cost over all y. Then, x is
quasi-linearizable with quasi-linearization factor Q: D — N, if for
allAe D, ks < Q(A). Observe that the distance for x is obtained by
quantifying over all possible extensions of X whose permutations
are in S. We now show that this definition fails to capture desired
relaxation distances.

1. Not precise. Consider the following sequence:

enqg(1)enq(2)enqg(3)deq(1)deq(2)enq(4)deq(4)

In order to assign a relaxation cost of 1 to this sequence belonging
to an out-of-order queue, quasi-linearizability employs a scheme
where only enqueue operations are allowed to commute. Formally,
quasi-linearizability uses D = {Eng,Deq} with Q(Enqg) = k and
Q(Deq) = 0, where Eng (resp., Deq) contains all enqg (resp., deq)
symbols. However, with this scheme the sequence deq(i)" which
removes elements from an empty queue will always be in any k-
relaxation of the queue because setting

z=deq(i)"enq(i)", 2z’ =enq(i)"deq(i)"

will give kgng = kpeq = 0, independent of the value n. This means
that the following implementation is a O-relaxation of queue.

eng(x): { while(true);} deq(): { return random();}

This implementation is clearly not implementing a queue, nor
any intended bounded relaxation of a queue, but all the sequences
it generates will have zero distance relative to D as given above.
Thus, quasi-linearizability cannot exactly capture intended relax-
ations and might allow wrong behaviors. Observe that we have
already shown in Proposition 5.2 that out-of-order k-queues can
never generate such erroneous behavior.

2. Not general. For a stack, consider the sequence

(a)[push(i)pop(1)]"
(b)[push(j)pop(3)]"
pop(a)[push(1)pop(1)]"

where all symbols, a,b,... have distinct values. Prior to the re-
moval of a, the stack contains a and b, with the latter at the top po-
sition. The distance in the out-of-order relaxation induced by max-
imal path cost and segment cost in this case is 1 since the element
popped is immediately after the top entry. However, with quasi-
linearization factor Q, it is impossible to precisely capture out-of-
order penalty for data structures like stacks. First, consider the case
where we pick z = x, which we can do since x has a permutation
equivalent valid stack sequence. In order to get a permutation x’ of
x such that x’ is a valid sequence of a stack, either one of pop(a) or
push(b) has to move over m copies of push and pop operations, or
one of push(a) or push(b) has to move over n copies of push and
pop operations. So either D is empty which allows for any sequence
to be in the relaxation or it is always possible to pick the values for
n and m such that the penalty is arbitrarily large. Second, consider
the case where we extend x with y such that Xy has a permutation
equivalent valid stack behavior. But because of the 2r-long suffix
of x, a similar reasoning as in the previous case applies to this case
as well.

X = push

push

Similarly, a stuttering relaxation will not have a finite quasi-
linearizability distance, since no permutation of (an extension of) a
stuttering sequence is in the original sequential specification.

Consistency conditions. As opposed to relaxing the sequential
specification of a concurrent data structure, one may also relax
the consistency condition, e.g., quiescent consistency [4] instead
of linearizability. We note that linearizable out-of-order relaxation
of a stack is incomparable to a quiescently consistent stack. To
see this, first, consider a concurrent history ¢ with two threads #;
and 7. The history ¢ starts with the invocation of push(a) by ¢,
followed by a sequence pop(i)"push(i)” all executed by #,. This
history is quiescently consistent for stack because the reordering
of methods (even those that do not overlap in time) is allowed as
long as they are not separated by a quiescent state. On the other
hand, any linearization of ¢ will have to observe out-of-order pop
operations since the operations of #, do not overlap. So, for each &,
there exists a history which is quiescently consistent for stack but is
not in the specification of an out-of-order k-stack. Second, consider
the sequential history push(a)push(b)pop(a) which has an out-
of-order relaxation distance of 1. Since the history is sequential,
quiescent consistency will not allow any reordering. Thus, for any
k, there exists a history which is in the specification of an out-
of-order k-stack but not quiescently consistent. A comprehensive
overview of variants of weaker and stronger consistency conditions
than linearizability can be found in [6].

Implementations. Work related to our implementations and ex-
periments is discussed in more detail in Section 8 and Section 9.
Here we briefly refer to all the work considered. Our relaxed stack
implementation is closely related to the very recent efficient lock-
free implementation of a relaxed k-FIFO queue [11] (by some of us
and a third coauthor), but the change from queue to stack seman-
tics imposes a significant difference as well. The k-FIFO queue [11]
is in turn related to implementations of relaxed FIFO queues such
as the Random Dequeue and Segment Queue [2] as well as Scal
queues [10, 12]. Both the Random Dequeue Queue and the Seg-
ment Queue implement the restricted out-of-order relaxation. The
Segment Queue [2] and the k-FIFO queue [11] implement a queue
of segments. However, the implementations are quite different with
significant impact on performance, see Section 9. Our relaxed stack
implementation implements a stack of segments. Scal queues are
relaxed queues with, in general, unbounded relaxation. Since any
relaxed stack or queue implementation also implements a pool,
we compare our work also to state-of-the-art pool implementa-
tions [1, 3, 19].

In [5], the authors show that implementing deterministic data
structure semantics requires expensive synchronization mecha-
nisms which may prohibit scalability in high contention scenar-
ios. We agree with that and show in our implementations and ex-
periments that the non-determinism introduced in the sequential
specification provides scalability and performance benefits. In [15],
the authors present a work-stealing queue with relaxed semantics
where queue elements may be returned any number of times instead
of just once. In comparison to other state-of-the-art work-stealing
queues with non-relaxed semantics this may provide better perfor-
mance and scalability. Again the introduced non-determinism pays
off. Overview of different relaxations on hardware and software
level is presented in [9, 18].

8. Implementations of relaxed data structures

In this section we present the new implementation of a restricted
out-of-order stack (k-stack, for short) and present the two new
implementations of a stuttering shared counter. It is interesting

to note that the “restricted” relaxation seems to be crucial for
obtaining performance?, which is why we focus on it.

8.1 k-Stack

The top pointer of a concurrent stack may become a scalability
bottleneck under high contention [20]. The main idea behind our
k-stack implementation is to reduce contention on the top pointer
by maintaining a stack of so-called k-segments>. We implemented
the stack that holds the k-segments similarly to the lock-free stack
of [20] with the difference that there is always at least one k-
segment, even if it is empty, on the stack. This avoids unnecessary
removal and adding of a k-segment, e.g. in the empty state. A k-
segment (or just segment, when no confusion arises) contains k
“atomic values” (see next paragraph) which may either point to
null indicating an empty slot or may hold a so-called item. Both
push and pop operations are served by the top segment. Hence,
up to k stack operations may be performed in parallel. A push
operation tries to insert an element in the top segment. It adds a
new segment to the stack if the top segment is full. A pop operation
tries to remove an element from the top segment. It removes the top
segment from the stack if it is empty and is not the only segment on
the stack. Additionally, each segment contains an atomic counter
remove that counts how many threads are trying to remove it from
the stack. The counter is initially set to zero.

The pseudo code of the lock-free k-stack algorithm with k>0 is
depicted in Figure 4. The occurrence of the ABA problem is made
unlikely through version numbers. We refer to values enhanced
with version numbers as atomic values. Hence an atomic value has
two fields, the actual value val and its version number ver.

The methods init, try_add.new_ksegment, and
try_remove_ksegment implement the stack of segments. In
the latter, the atomic counter remove is updated and the method
empty that performs an empty check is called. We discuss the
method empty within the pop method, as it is also called there.

Let item represent an element to be pushed on the k-stack. The
push method first tries to find an empty slot for the item using
the find_empty_slot method (line 45). The find_empty_slot
method randomly selects an index in the top k-segment and then
linearly searches for an empty slot starting with the selected index
and wrapping around at index k. Then the push method checks if
the k-stack state has been consistently observed by testing whether
top changed in the meantime (line 46) which would trigger a retry.
If an empty slot is found (line 47) the method tries to insert the item
at the location of the empty slot using a compare-and-swap (CAS)
operation (line 49). If the insertion is successful the method verifies
whether the insertion is also valid by calling the committed method
(line 50), as discussed below. If any of these steps fails, a retry is
performed. If no empty slot is found in the current top segment, the
push method tries to add a new segment to the stack of segments
(line 53) and then retries.

The committed method (line 24) validates an insertion, it en-
sures that the inserted element is really inserted on the stack. This
method is the core and the main novelty of the algorithm. It re-
turns true when the insertion is valid and false when it is not
valid. An insertion is invalidated if a concurrent thread removes the
segment to which the element was inserted before the effect of the
insertion took place. Therefore, an insertion is valid if the inserted
item already got popped at validation time by a concurrent thread
(line 25, 32, 38) or the segment where the item was inserted was
not removed by a concurrent thread (line 27). A remove counter

2 For an efficient implementation one needs a sequential specification that
fits the properties of the hardware that it will run on.

3 The same high-level idea is used in the Segment Queue [2] and the k-FIFO
queue [11] discussed in the next subsection.

1 global top;

2

3void init ():

4 new_ksegment = calloc(sizeof (ksegment));
5 top = atomic_value (new_ksegment, 0);

6
7void try_add_new_ksegment (top_old):

s if top_old == top:

9 new_ksegment = calloc(sizeof (ksegment));

10 new_ksegment ->next = top_old;

11 top_new = atomic_value (new_ksegment, top_old.ver+l);
12 CAS (&top, top_old, top_new);

13
14 void try_remove_ksegment (top_old):

15 if top_old == top:

16 if top_old->next != null:

17 atomic_increment (&top_old->remove);

18 if empty(top_old):

19 top_new = atomic_value (top_old->next,
top_old.ver+l);

20 if CAS(s&top, top_old, top_new):

21 return;

22 atomic_decrement (&top_old->remove);

23
24 bool committed (top_old, item_new, index):

25 if top_old->s[index] !'= item_new:

26 return true;

27 else if top_old->remove == 0:

28 return true;

29 else: //top_old->remove >= 1

30 item_empty = atomic_value (EMPTY, item_new.ver+l);

31 if top_old != top:

32 if !CAS(&top_old->s[index], item_new, item_empty):
33 return true;

34 else:

35 top_new = atomic_value (top_old.val, top_old.ver+l);
36 if CAS(s&top, top_old, top_new):

37 return true;

38 if !CAS(stop_old->s[index], item_new, item_empty):
39 return true;

40 return false;

42 void push (item) :
43 while true:

44 top_old = top;

45 item_old, index = find_empty_slot (top_old);

46 if top_old == top:

47 if item_old.val == EMPTY:

48 item_new = atomic_value (item, item_old.ver+l);
49 if CAS(stop_old->s[index], item_old, item_new):
50 if committed(top_old, item_new, index):

51 return true;

52 else:

53 try_add_new_ksegment (top_old);

55 item pop () :
s6 while true:

57 top_old = top;

58 item_old, index = find_item(top_old);

59 if top_old == top:

60 if item_old.val != EMPTY:

61 item_empty = atomic_value (EMPTY, item_old.ver+l);
62 if CAS(&top_old->s[index], item_old, item_empty):
63 return item_old.val;

64 else:

65 if only_ksegment (top_old):

66 if empty(top_old):

67 if top_old == top:

68 return null;

69 else:

70 try_remove_ksegment (top_old);

Figure 4. Lock-free k-stack algorithm

larger than zero indicates that the segment has been removed or
concurrent threads are trying to remove the segment from the stack
(line 29). If the current top segment is not equal to the segment
where the item was inserted we have to conservatively assume that
the segment was removed from the stack (line 31) and undo the

insertion (line 32). If the current top segment is equal to the seg-
ment where the item was inserted, a race with concurrent popping
threads may occur which may not have observed the insertion of
the item and may try to remove the k-segment from the stack in the
meantime. This would result in loss of the inserted item. To prevent
that, the method tries to increment the version number in the top
atomic value using CAS (line 36) forcing threads that concurrently
try to remove that k-segment to retry. If this fails, a concurrent pop
operation may have changed top (line 20) which would make the
insertion potentially invalid. Hence, in case of losing the race, the
method tries to undo the insertion using CAS (line 38).

The pop method returns an item if the k-stack is not empty.
Otherwise it returns null. Similar to the push method, the pop
method first tries to find an item in the top segment using the
find_item method (line 58). The find-item method randomly
selects an index in the top k-segment and then linearly searches
for an item starting with the selected index and wrapping around
at index k. Then, the pop method checks if the k-stack state has
been consistently observed by checking whether top changed in
the meantime (line 59) which would trigger a retry. If an item was
found (line 60) the method tries to remove it using CAS (line 62) and
returns it if the removal was successful (line 63). Otherwise a retry
is performed. If no item is found and the current segment is the
only segment on the stack (line 65) an empty check is performed
using the method empty (line 66). This method stores the values of
the & slots of the segment in a local array (if they are empty) and
subsequently checks in another pass over the segment slots whether
the values in the slots changed in the meantime. If a non-empty slot
was found, the empty method immediately returns false. If the
empty check succeeded and the top did not change in the meantime
(line 67), null is returned (line 68). Otherwise, if no item is found
in the current segment and there is more than one segment in
the stack, the method tries to remove the segment (line 70) and
performs a retry.

Correctness: k-Stack

We now prove that the k-stack implementation is correct for the
relaxed stack semantics.

PROPOSITION 8.1. The k-stack algorithm is linearizable with re-
spect to restricted out-of-order k-stack.

Proof. Without loss of generality, we assume that each item
pushed on the stack is unique. A segment s’ is reachable from a
segment s if either s’ =s or s’ is reachable from s->next. An item
i is on the stack, if push (1) has already committed and there exists
a segment reachable from the top segment containing a slot whose
value is i. Note that reachability is important, i.e., only having a
slot containing the item is not enough to guarantee that the item is
logically on the stack, because the slot could be in a segment (to
be) removed by a concurrent pop operation.

We begin by identifying a linearization point of each method
call. The goal is to show that the sequential history obtained from
a concurrent history by ordering methods according to their lin-
earization points is in the specification of a restricted out-of-order
k-stack. The linearization point of push is the reading of the empty
slot (line 45) in the last iteration (successful insertion) of the main
loop. The linearization point of pop that does not return null is the
reading of a non-empty slot (line 58) in the last iteration (success-
ful removal) of the main loop. The linearization point of a null-
returning pop is the point after the first pass of the segment in the
call to empty method (line 66) which returns true.

The correctness argument is based on the following facts.

1. An item is pushed on the stack exactly once. This is a con-
sequence of our unique-items assumption and the control flow of
push (1), the only method that can modify a slot to contain i.

2. An item is popped at most once. If an item i is on the stack,
then it can only be removed once, because of 1. and the existence of
a unique statement which replaces i with empty. If i is in some slot
but not on the stack, then push (i) will erase i and retry insertion
before committing. We have to show that while i is in some slot
but not on the stack, no pop operation can return i. Clearly, the
call to method committed by push (i) must return false. This
implies that until committed completes, the slot where i resides is
not modified by any other thread. Otherwise, either after the first
if statement (line 25) or following failed CAS attempts (lines 32
and 38) of replacing i with empty will lead to returning true.
Furthermore, when control reaches the only exit point for returning
false, it is guaranteed that there is no slot containing i. Thus, if
i is not on the stack, no pop operation could have replaced it with
empty.

3. If a pop operation returns null, then during its execution,
there must be a state at which there are no items on the stack. Since
returning null is without any side-effect, it suffices to prove the
existence of a state which corresponds to a logically empty stack.
The call to empty is only done when the top segment is the only
segment in the stack. In the empty method, the value of top is
checked at the beginning and after the first pass to ensure that the
pointer is not updated by concurrent operations. Hence, the stack
is indeed logically empty at the linearization point since the second
pass succeeds.

4. An item j cannot be popped before an item 1, if they are both
on the stack, and 1, j are in segments s, s’, respectively, with s’
reachable from s and s’ # s. The segment s’ can become a top
segment only after the segment s has been removed by some pop
operation. Moreover, if a segment becomes unreachable from the
top segment, it remains unreachable. These two observations imply
that the linearization point of pop (1) must precede the linearization
point of pop (j) which can only happen when s’ is a top segment.

5. An item i on the stack is popped only if it is one of the
k — [youngest items on the stack, where 1 is the current lateness
of the youngest item. By youngest we mean most recently pushed.
Recall that lateness is the number of pops that were performed after
the pop of the previous youngest item or the push of the current
youngest one. Assume i is popped from the stack at the current
moment in time and at that point the youngest item is t with current
lateness /. This means that ever since t is the youngest item on the
stack, no push operation was performed and there have been [pop
operations performed none of which removed t. Let j be any of
these / popped items. Since t is the last item pushed and it is still
on the stack, t is in the top segment. Since j is removed before t,
by 4. it must have also resided in the top segment. For the same
reason, also 1 is in the top segment prior to its removal. Hence, at
the moment in which pop (i) happens, there are at most k —/ items
in the top segment.

Now, 5. shows that the sequential behavior obtained by order-
ing methods according to their linearization points satisfies the
restricted-out-of-order k-stack. Moreover, 3. shows an even stricter
behavior, a linearizable empty check.* Thus, any concurrent execu-
tion generated by the given algorithm is linearizable for restricted
out-of-order k-stack. Observe that already 1. and 2. show that the
k-stack has pool semantics. O

Without any particular difficulty, but with a somewhat lengthy
argument, one can show that the k-stack algorithm is lock-free by
showing that whenever a thread retries an operation, another thread
completes its operation ensuring progress of at least one thread.

4We could easily relax the linearizable empty check to fit the restricted
out-of-order specification, by removing line 66 in the code. However, a lin-
earizable empty check is a valuable feature of a concurrent implementation.

1
2
3
4
5

6
7

struct blk_original { 1 struct blk_modified {

pidtype X; 2 pidtype X[k];
bool Y; 3 bool Y[k];
val_t V; 4 val_t V;
bool C; 5 bool CI[k];
val_t D; 6 val_t D;
bi 7}
(a) CAS. (b) k-CAS.

Figure 5. Wait-free CAS and k-CAS state structures.

8.2 k-Stuttering shared counters

We implemented the two versions of a stuttering k-shared counter,
as discussed in the introduction. The first version is based on a
k-relaxed stuttering version of a wait-free software CAS opera-
tion [13] (k-CAS for short). It uses a structure blk_original,
shown in Figure 5(a), to keep track of the state of concurrent CAS
operations. The atomic value is located in field V and the CAS oper-
ation uses the decision fields X, Y, and C to determine which thread
gets permission to change V. We modified the b1k _original struc-
ture so that the fields X, Y, and C are arrays of size k depicted in
structure b1k _modified in Figure 5(b). We keep the main CAS op-
eration unmodified but use a balancing function that maps threads
to array indices i smaller than k (the thread ID modulo k). A thread
determines the state of its CAS operation by just accessing posi-
tion i in the arrays X, Y, and C. On success, a thread writes the new
value into V. Hence, up to k concurrent threads may perform the
k-CAS operation in parallel and change V resulting in a loss of at
most kK — 1 state changes, which further results in at most k — 1 lost
shared counter updates.

The second version of the k-shared counter is the k-distributed
counter depicted in Figure 1(b).

It is not difficult to show that both implementations are lineariz-
able with respect to the k-stuttering shared counter and they are
lock-free.

9. Experiments

We evaluate the performance and scalability of the k-stack, several
existing quantitatively relaxed FIFO queues, and the k-stuttering
shared counter implementations. All experiments ran on an Intel-
based server machine with four 10-core 2.0GHz Intel Xeon proces-
sors (40 cores, 2 hyperthreads per core), 24MB shared L3-cache,
and 128GB of memory running Linux 2.6.39. We implemented
a benchmarking framework to analyze our k-stack and k-shared
counter implementations, as well as the implementations of relaxed
queues. The benchmarking framework can be configured for a dif-
ferent number of threads (), number of operations each thread per-
forms (0), and the computational load performed between each op-
eration (c¢). The computational load between two consecutive op-
erations is created by iteratively calculating © and c is the number
of iterations performed. We use ¢ = 2000 which takes a total of
4600ns on average in our experiments. The framework uses static
preallocation for memory used at runtime with touching each page
before running the benchmark to avoid paging issues.

9.1 k-Stack

We compare our k-stack implementation with a standard lock-
based stack (LS), which acquires a global lock for each stack op-
eration, and a non-blocking stack (NS) [20], which uses a CAS
operation to manipulate the top pointer of the stack. Moreover, we
compare our k-stack with different pools. The lock-free (BAG) [19]
pool is based on thread-local lists of elements. Threads put ele-
ments on their local list and take elements from their local list if
it is not empty. If it is empty they take elements from the lists of
other threads. The lock-free elimination-diffraction pool (ED) [1]

9000 T T T T T T T 7000

000 |
8000 6000
7000 [
5000 -
6000

4000
5000 -

's (more is better)
]

4000 - 3000 -

o7

operations/ms (more is better)

3000 -

2000

[- 5
L -] g %
/)S*\:; ool A® \
L K *- *- *- e r o el
1000 ,.//E) S £ S B #

2

S AR . 4;777:

operations/ms (more is better)

N

0 2 10 20 30

2 10 20 30 40 50 60 70 80
number of threads

40

number of threads

50 60 70 80 2 10 20 30 40 50 60 70 80

B ——
S —— BAG ¥ RP MS
NS ED -0 k-stack (k=80) --@-

FC -

RD (1=40) — O
SQ (s=40)
BAG

threads
ED --® CAS ——
RP —a- K-CAS (k=80)

K-FIFO (k=40) - & Kk distributed counters (k=80) -~

(a) Stack

(b) FIFO queue

(c) Shared counter

Figure 6. Benchmarks on a 40-core (2 hyperthreads per core) server with an increasing number of threads

9000 T T T T T T T T T T T 7000 T T T T T T T T T T 4500 T T T T T T T
x
8000 - 4000 - x
6000 - x

7000 - 3500 « ><
5 < B— § 5000 5
g 6000 | B H F 3000 |-

o 3 *- * H : x

® © 4000 | [® i !
§ 5000 - o 5 § 2500
g al E E " E
a R L -, 2 E 3 2 ;
; 4000 - - e % i ; 3000 1 * & ; 2000 - X
£ . * £ “n 4 £
£ 3000 - * g . £ 1500 -
g e g 2000 | ¥ L g

2000 - . Bl gl o] 1000 |-

¥ *) n
- 1000 < F|
1000 T g 8 o) *. 500 |
g
3 —_—
0 t t t t t -, 0 . . H H R S T e S 0
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 12 4 8 16 64 128 256 512 1024 2043 409 1 10 20 30 40 50 60 70 80
k (logscale) k (logscale) K
Tihead —— 40 Teads %~ 80 thieads Theads —— 40Tweads % B0Teads ‘ K-CAS 80 Threads
20 threads 60 threads &1 20 threads 60 threads &1 K distributed counters 80 threads ¢
(a) Stack (b) FIFO queue (c) Shared counter

Figure 7. Benchmarks on a 40-core (2 hyperthreads per core) server with increasing k

uses a set of FIFO queues to store elements. Access to these queues
is balanced using elimination arrays and a diffraction tree. The syn-
chronous rendezvousing pool (RP) [3] implements a single elimina-
tion array using a ring buffer. A get operation marks a slot identified
by its thread id and waits for a take operation to insert an element.
Take operations scan the array for pending get operations.

Figure 6(a) depicts the performance analysis of our k-stack. We
configure k = 80, which is a good k (on average) for a broad range
of thread combinations and workloads on our server machine. This
is no surprise since the server machine has (logically) 80 cores.
The analysis is done on a producer-consumer workload where half
of the threads are producers and half are consumers. The k-stack
outscales and outperforms all considered stack and pool implemen-
tations. Figure 7(a) shows the effect of k£ on performance and scala-
bility. There exists an optimal k with respect to performance, which
is also robust in the sense that there exists only a single range of
close-to-optimal k. For large k performance decreases due to higher
sequential overhead, e.g. scanning for elements in almost empty k-
segments. Note that an increase in performance above k£ = 80 is not
to be expected on the given architecture.

9.2 Quantitatively relaxed FIFO queues

We also evaluate the existing implementations of a k-FIFO
queue [11] and different FIFO queues, quasi-linearizable FIFO
queues, and the pools introduced in the previous section. The k-
FIFO queue [11] implements a restricted out-of-order k-queue as a
lock-free linked list of k-segments. An enqueue operation is served
by the tail k-segment and a dequeue operation is served by the head
k-segment. Hence, up to k enqueue and k dequeue operations may
be performed in parallel. The k-FIFO queue is empty if head and
tail point to the same k-segment which does not contain any el-
ements. The lock-based (strict) FIFO queue (LB) locks a global
lock for each queue operation. The lock-free Michael-Scott (strict)

FIFO queue (MS) [14] uses CAS operations to change head, tail, and
next pointer in a linked list of elements. The flat-combining (strict)
FIFO queue (FC) [8] is based on the approach that a single thread
performs the queue operations of multiple threads by locking the
whole queue, collecting pending queue operations, and applying
them to the queue. The Random Dequeue Queue (RD) [2] imple-
ments a quasi-linearizable FIFO with quasi-factor r where r defines
the range [0,7 — 1] of a random number. It actually implements a
restricted out-of-order r-FIFO queue. RD is based on MS where the
dequeue operation was modified in a way that the random number
determines which element is returned starting from the oldest el-
ement. The Segment Queue (SQ) [2] is a quasi-linearizable FIFO
queue with quasi-factor s. It is logically similar (both implement a
queue of segments and hence a restricted out-of-order queue) to the
k-FIFO queue but does not provide a linearizable empty check, i.e.,
it may return null in the not-empty state. Also, SQ comes with
a different segment management strategy than the k-FIFO queue,
which results on average in significantly more CAS operations.
Figure 6(b) depicts the performance analysis of the queues.
We configure k = r = s = 40, which turns out be a good k (on
average) for a broad range of thread combinations and workloads
on our server machine. This is no surprise since then the level of
possible parallelism is 2k = 80, the number of (logical) cores. We
use a producer-consumer workload where half of the threads are
producers and half consumers. The £-FIFO queue outscales and
outperforms all considered FIFO queue, quasi-linearizable FIFO
queue, and pool implementations. Figure 7(b) shows the effect
of k on performance and scalability. Again, there exists a robust
and optimal k with respect to performance. Also here, for large k
performance decreases due to larger sequential overhead.

9.3 k-Shared counter

We compare our k-CAS-based shared counter and distributed
shared counter implementations with a shared counter implemen-
tation based on a regular CAS operation depicted in Figure 6(c).
The threads perform in total one million counter increment opera-
tions in each benchmark run. The CAS version performs best until
30 threads. After that the k-CAS-based shared counter and the dis-
tributed shared counter version outperform it. Figure 7(c) shows
the effect of k on performance and scalability. In the k-CAS ver-
sion performance monotonically increases with larger k, whereas
in the distributed shared counter version performances decreases
until £ = 10, but monotonically increases after that. Our educated
guess is that this is caused by the trade-off between two possible
sources of contention: (1) CAS on the same memory location, and
(2) bad caching, i.e., accessing many different locations in mem-
ory. The distributed shared counter decreases (1) but increases (2).
However, except for small values of k, we observe that the gain is
larger than the loss.

10. Final remarks

We have presented a framework for quantitative relaxation of con-
current data structures together with generic as well as further con-
crete instances of it. Our main motivation is the belief that relaxed
data structures may decrease contention and thus provide the po-
tential for scalable and well-performing implementations. Indeed,
the potential advantage which we demonstrate utilizable is striking.
The lessons learned can be summarized as follows: The way from
a sequential implementation to efficient concurrent implementation
is always hard. Just because a sequential specification is relaxed, it
does not necessarily mean that an efficient implementation immedi-
ately follows. However, efficient implementations that benefit from
quantitative relaxations are possible, as we demonstrate in this pa-
per. In our opinion, the framework provides a firm formal ground
for quantitative relaxation of concurrent data structures and paves
the road to designing efficient concurrent implementations.

Our current results open up several directions for future work.
One important issue is the applicability of relaxed data structures.
Demonstrating applicability can either be achieved by exploring
applications that tolerate a relaxation, e.g. provide less accurate but
nevertheless acceptable results, or showing that end-to-end quality
may remain the same despite the actual relaxation of semantics.
In the latter case, relaxations do not influence correctness in the
sense of [16, 17]. Another evident but difficult goal would be to
synthesize well-performing implementations from relaxations. As
a first step we believe it is important to study the main principles
that lead to good performance. This is another line of future work
that we plan to undertake in small steps.

Acknowledgements

This work has been supported by the European Research Council
advanced grant QUAREM, the National Research Network RiSE
on Rigorous Systems Engineering (Austrian Science Fund S11404-
N23), and an Elise Richter Fellowship (Austrian Science Fund
V00125). We thank the anonymous referees for their constructive
and inspiring comments and suggestions. Ana Sokolova wishes to
thank Dexter Kozen and in particular Joel Ouaknine: had they not
saved her life, she would have missed a lot of the fun involved in
working on this paper and seeing it finished.

References

[1] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-
consumer pools based on elimination-diffraction trees. In Proc. Euro-
pean Conference on Parallel Processing (Euro-Par), pages 151-162.
Springer, 2010.

[2] Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability: Relaxed
consistency for improved concurrency. In Proc. Conference on Prin-
ciples of Distributed Systems (OPODIS), pages 395-410. Springer,
2010.

[3] Y. Afek, M. Hakimi, and A. Morrison. Fast and scalable rendezvous-
ing. In Proc. International Conference on Distributed Computing
(DISC), pages 16-31, Berlin, Heidelberg, 2011. Springer-Verlag.

[4] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of
the ACM, 41:1020-1048, 1994.

[5] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. Michael, and
M. Vechev. Laws of order: expensive synchronization in concurrent
algorithms cannot be eliminated. In Proc. of Principles of Program-
ming Languages (POPL), pages 487-498. ACM, 2011.

[6] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., 2008.

[7]1 M. Herlihy and J. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463-492, 1990.

D. H. I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proc. Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 355-364. ACM,
2010.

C. Kirsch and H. Payer. Incorrect systems: It’s not the problem, it’s
the solution. In Proc. Design Automation Conference (DAC). ACM,
2012.

[10] C. Kirsch, H. Payer, H. Rock, and A. Sokolova. Brief announcement:
Scalability versus semantics of concurrent FIFO queues. In Proc.
Symposium on Principles of Distributed Computing (PODC). ACM,
2011.

[11] C. Kirsch, M. Lippautz, and H. Payer. Fast and scalable k-fifo queues.
Technical Report 2012-04, Department of Computer Sciences, Uni-
versity of Salzburg, June 2012.

[12] C.Kirsch, H. Payer, H. Rock, and A. Sokolova. Performance, scalabil-
ity, and semantics of concurrent FIFO queues. In Proc. International
Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP), pages 273-287. LNCS 7439, 2012.

[13] V. Luchangco, M. M., and N. Shavit. On the uncontended complex-
ity of consensus. In Proc. International Symposium on Distributed
Computing (DISC), pages 45-59. Springer-Verlag, 2003.

[14] M. Michael and M. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proc. Symposium on
Principles of Distributed Computing (PODC), pages 267-275. ACM,
1996.

[15] M. Michael, M. Vechev, and V. Saraswat. Idempotent work stealing.
In Proc. Principles and Practice of Parallel Programming (PPoPP),
pages 45-54. ACM, 2009.

[16] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. C. Rinard. Quality
of service profiling. In Proc. 32nd ACM/IEEE International Confer-
ence on Software Engineering (ICSE) - Volume 1, pages 25-34. ACM,
2010.

[17] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: approximate data types for safe and general low-
power computation. In Proc. 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages
164-174. ACM, 2011.

[18] N. Shavit. Data structures in the multicore age. Communications
ACM, 54:76-84, March 2011.

[19] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas. A lock-
free algorithm for concurrent bags. In Proc. Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 335-344, New York,
NY, USA, 2011. ACM.

[20] R. Treiber. Systems programming: Coping with parallelism. Technical
Report RJ5118, IBM Almaden Research Center, April 1986.

[8

—

[9

—

