
A Logic-based Framework for Verifying
Consensus Algorithms?

Cezara Drăgoi1, Thomas A. Henzinger1, Helmut Veith2, Josef Widder2, and
Damien Zufferey3??

1 IST Austria
2 TU Wien, Austria

3 MIT CSAIL

Abstract. Fault-tolerant distributed algorithms play an important role
in ensuring the reliability of many software applications. In this paper
we consider distributed algorithms whose computations are organized in
rounds. To verify the correctness of such algorithms, we reason about (i)
properties (such as invariants) of the state, (ii) the transitions controlled
by the algorithm, and (iii) the communication graph. We introduce a
logic that addresses these points, and contains set comprehensions with
cardinality constraints, function symbols to describe the local states of
each process, and a limited form of quantifier alternation to express the
verification conditions. We show its use in automating the verification of
consensus algorithms. In particular, we give a semi-decision procedure
for the unsatisfiability problem of the logic and identify a decidable frag-
ment.We successfully applied our framework to verify the correctness of
a variety of consensus algorithms tolerant to both benign faults (message
loss, process crashes) and value faults (message corruption).

1 Introduction

Fault-tolerant distributed algorithms play a critical role in many applications
ranging from embedded systems [12] to data center management [8, 14]. The
development of these algorithms has not benefited from the recent progress in
automated reasoning and the vast majority of the correctness proofs of these
algorithms is still written by hand. A central problem that these algorithms solve
is the consensus problem in which distributed agents have initial values and must
eventually decide on some value. Moreover, processes must agree on a common
value from the set of initial values, even in environments that contain faults and
uncertainty in the timing of events. Charron-Bost and Schiper [10] introduced
the heard-of model as a common framework to model different assumptions on
the environment, and to express the most relevant consensus algorithms from
the literature. We introduce a new logic CL tailored for the heard-of model.

? Supported by the National Research Network RiSE of the Austrian Science Fund
(FWF) and by the Vienna Science and Technology Fund (WWTF) through grant
PROSEED and by the ERC Advanced Grant QUAREM.

?? Damien Zufferey was at IST Austria when this work was done.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The heard-of model is a round-based computational model: conceptually,
processes operate in lock-step, and distributed algorithms consist of rules that
determine the new state of a process depending on the state at the beginning of
the round and the messages received by the process in the current round. The
work in [10] introduces the notion of heard-of set HO(p, r), which contains the
processes from which some process p may receive messages in a given round r.
Without restricting the heard-of sets, it could be the case that they are all empty,
i.e., that there is no communication, and it is obvious that no interesting dis-
tributed computing problem can be solved. In [10] a way to describe meaningful
communication is introduced, namely via communication predicates that con-
strain the heard-of sets in the computation. For instance, in a system consisting
of n processes, the communication predicate ∀r∀p. |HO(p, r)| > n/2 states that
in all rounds all processes can receive messages from a majority of processes. As
is the case in this example, the quantification over rounds is typically used in a
way that corresponds to a fragment of linear temporal logic, using only simple
combinations of the “globally” and “finally” operators. We can thus eliminate
the round numbers and rewrite the above example as �(∀p. |HO(p)| > n/2),
and call terms like ∀p. |HO(p)| > n/2 topology predicates, as they restrict the
communication graph in a round. It is demonstrated in [10] that many consen-
sus algorithms from the literature can be expressed in this framework. These
algorithms are correct only for specific communication predicates.

Our goal is to automate Hoare-style reasoning for distributed algorithms in
the heard-of model. To this end, we have to define a logic that has a semi-decision
procedure for satisfiability, and is able to capture properties of the states and the
effect of the transitions. For instance, our logic must be able to capture topology
predicates such as

“each process receives messages from at least n− t processes,”

where n and t are integer variables that model the parameters of the system,
such as the number of processes and faulty processes. Moreover, the logic should
describe the values of the variables manipulated by the processes. For example

“if a process p decides on a value v, then a majority of processes currently
have v stored in their x variable.”

Finally, we have to capture the transitions of the algorithms, for instance

“all processes that receive a value v from more than two thirds of the
processes, set variable x to v.”

We thus need a logic that allows universal quantification over processes,
defining sets of processes depending on the values of their variables, and lin-
ear constraints on the cardinalities of such sets of processes. These constraints
can be expressed in first order logic, but since the satisfiability problem is un-
decidable, we need to find a logic that strikes a balance between expressiveness
and decidability.

2

Contributions. We introduce a multi-sorted first-order logic called Consensus
verification logic CL whose formulas express topology predicates and constrain
the values of the processes’ local variables using: (1) set comprehensions, (2)
cardinality constraints, (3) uninterpreted functions, and (4) universal quantifi-
cation. To automate the check of verification conditions we introduce a semi-
decision procedure for unsatisfiability. This procedure soundly reduces checking
the validity of implications between formulas in CL to checking the satisfiabil-
ity of a set of formulas in Presburger arithmetics and a set of quantifier-free
formulas with uninterpreted function symbols. The latter two have a decidable
satisfiability problem. Furthermore, we have identified a fragment of the logic
for which the satisfiability problem is decidable. The proof is based on a small
model argument. We have successfully applied the semi-decision procedure to
a number of consensus algorithms from the literature. In particular, we have
applied it to all algorithms from [10], which surveys the most relevant (partially
synchronous) consensus algorithms in the presence of benign faults, including
a variant of Paxos. In addition we applied it to the algorithms from [4], which
tolerate value faults, and to a basic synchronous consensus algorithm from [19].

2 Fault-tolerant distributed algorithms in the HO-model

In this section, we present the class of distributed algorithms we want to verify.
These are algorithms in the heard-of model of distributed computations [10].
In the following, we introduce an adaptation of the heard-of model, suitable for
automated verification. Distributed algorithms consist of n processes which in-
teract by message passing, where n is a parameter. The executions are organized
in rounds, and we model each round to consist of two transitions.

In the first transition, called environment transition, processes communicate
by exchanging messages and intuitively an adversary, called environment, de-
termines for each process the set of processes it receives messages from, i.e.,
its heard-of set. In a variant of the heard of model [10], the environment also
assigns to each process a coordinator process. In the second transition, called
computation transition, processes change their local state depending of the mes-
sages received in the previous phase. These transitions update disjoint sets of
variables: the variables updated by the environment, in the first transition of a
round, are called environment variables, the variables updated by the processes,
in the second transition, are called computation variables. In the following we
describe the variables of the distributed algorithm and the semantics of the two
types of transitions.
Variables: The local variables manipulated by the distributed algorithm are of
type process, set of processes or of data types, e.g., integer or boolean.
The variables of type process and sets of processes are the environment variables,
denoted EVars. The heard-of set of a process is represented by a local variable
of type set of processes. Similarly, the coordinator of a process is represented by
a local variable of type process. The variables of data types are called compu-
tation variables, denoted CVars. For some distributed algorithms, we use global

3

Init(int vp){ x := vp; dec := ?; }

Comp :
S: send x to all processes

U: if received more than 2n/3
messages,

then x := the smallest most often
received value;

if more than 2n/3 received values
are equal with x

then dec := x

(a) Algorithm.

EVars ::= HO of type set of processes
CVars ::= x, dec of type integer

(b) Process local variables.

TPs ::= “true”
TP1

t ::= “there is a set A with more
than 2n/3 processes s.t. all
processes receive the messages
sent by the processes in A”

TP2
t ::= “all processes receive the

messages sent by more than
2n/3 processes”

(c) Topology predicates; n represents
the size of the network

“All the executions where:
(1) ∃ an environment transition

satisfying TP1
t , and after that

(2) ∃ an environment transition
satisfying TP2

t

solve Consensus.”

(d) Specification.

Fig. 1: A round based algorithm in the HO-model that solves Consensus

variables, GVars, of integer type to model round numbers. For simplicity of pre-
sentation, although of data type, we consider the global variables as environment
variables that are deterministically incremented in the environment transitions.

Environment transitions: The environment transitions assigns non-
deterministically values to the environment variables of each process.

Computation transition: Computation transitions assign values to the lo-
cal computation variables of processes. These assignments are guarded by
if-then-else statements. The latter contain conditions over the local state
of the process and the messages received. In our view of the heard-of model we
regard messages as values of the local variables of data type of other processes.
The set of messages received by a process is determined by the value of its en-
vironment variables (HO-sets) and the send statements executed by the other
processes. These statements are of the form “send var to destination”, e.g. “send
x to all processes” or “send x to coordinator’; they are parametrized by
the variables sent, x, and the destination processes. More precisely, a process p
receives x from process q, if q is in the heard-of set of p, and q executes “send
x” and p is a destination process of this send statement.

Executions: A state of the distributed algorithm is defined by an n-tuple of
local process states, and a valuation for the global variables, if there are any. The
local state of a process is defined by a valuation of its variables. A computation
starts with an initialization round, Init, followed by a sequence of rounds, Comp.
The executions of a typical distributed algorithm are sequences of the form
[p1.Init(v1)|| . . . ||pn.Init(vn)];

(
Env; [p1.Comp|| . . . ||pn.Comp];

)∗
where Env is

an environment transition, Init and Round are defined in Fig. 1, n is the num-
ber of processes, || is the parallel composition, p.R states that process p is ex-

4

ecuting R, ’∗’ is the Kleene iteration of the sequential composition, and vi, for
1 ≤ i ≤ n, are integers different from a distinguished integer denoted by ’?’.

Example 1. The distributed algorithm in Fig. 1 consists of n processes, each of
them having two local variables x and dec of integer type, and one environment
variable, the HO-set. The computation transitions are given in Fig. 1a. For each
process, the Init transition initializes dec to a special value ’?’ and x to an
input value. In the other rounds, all processes execute Comp. Given a process p,
the values of the x variables of each process q in HO(p) defines a multiset. It
corresponds to the messages received by p.

The first if statement means that if p receives messages from more than two
thirds of the processes, it updates its local variable x to the minimal most often
received value. If the condition does not hold, the value of x stays unchanged. As
the HO-set at different processes may differ, it can be that only some processes
update x. In the second if statement, a process p updates the value of the
variable dec if it received the same value from more then two thirds of the
processes. As two thirds of the processes have the same value, there is a majority
around this value.

3 Verification of distributed algorithms

Specifying consensus. Intuitively, a distributed algorithm solves consensus
if starting from an initial state where each process p has a value, it reaches a
state where all the processes agree on one of the initial values. More precisely,
consensus is the conjunction of four properties: agreement, no two process de-
cide differently, validity, if all processes start with v then v is the only possible
decision, irrevocability, any decision is irrevocable, and termination, eventually
all processes decide. It is well-known from literature [22] that consensus cannot
be solved if the environment transitions are not restricted. Hence, the specifi-
cations we consider are actually conditional. In the literature, the conditions
are given in natural language and we express them with topology predicates and
temporal logic formulas over these predicates. More precisely, topology predi-
cates are conditions on the environment variables. We use topology predicates
to restrict the effect of an environment transition, i.e., they restrict the domain
of the non-deterministic assignments. To restrict the environment transitions
in an execution, we use very simple LTL formulas: we consider conjunctions,
where the first conjunct has the form �φ, and the second conjunct is of the form
♦(φ1 ∧ ♦(φ2 ∧ ♦(. . . ∧ ♦(φ`))), where φ, φ1, . . .φ` are topology predicates.

Example 2. The system in Fig. 1 solves Consensus by making all processes agree
on the valuation of dec. Its specification is given in Fig. 1d. It uses three topology
predicates, TPs, TP1

t and TP2
t , given in Fig. 1c. In temporal logic parlance,

agreement can be stated as �Agrm, where Agrm says that

“for any two processes p, q, either one of them has not decided, i.e., dec = ?
or they decide the same value, i.e., dec(p) = dec(q) 6= ?”

(1)

5

Termination can be stated as ♦Term, where Term says that “for all processes p,
dec(p) 6= ?”. To ensure termination, the distributed algorithm in Fig. 1 re-
quires the existence of two specific rounds satisfying the topology predates TP1

t

and TP2
t . The specification is then given by �TPs ⇒ �Agrm and(

�TPs ∧
(
♦ (TP1

t ∧ ♦TP2
t)
))
⇒ ♦Term.

Invariant checking for distributed algorithms. We consider a logic-based
framework to verify that a distributed algorithm satisfies its specification, where
formulas represent sets of states or binary relations between states.

To prove the safety properties, i.e., agreement, validity, and irrevocability4,
we use the invariant checking approach, i.e., given a formula Invs that describes
a set of states of the system, we check that Invs is an inductive invariant for
the set of computations where all states satisfy the topology predicate TPs and
that Invs implies the three safety properties of consensus. The proof that Invs
is an inductive invariant reduces to checking that the initial states of the system
satisfy Invs and checking that the following holds:(

Invs(p, e,a) ∧ TPs(p, e) ∧ TR(p, e, e′,a,a′)
)
⇒ Invs(p, e

′,a′)

where p is the vector of processes, e is the vector of environment variables,
a is the vector of computation variables, TPs(p, e) is a topology predicate,
and TR(p, e, e′,a,a′) is the transition relation associated with an environment
transition or a computation transition (unprimed and primed variables represent
the value of the variables before and after a transition, respectively).

In our example, the invariant Invs states that

“no process has decided or there is a value v such that a
majority of processes store the value v in their local variable x and

all processes that have decided chose v as their decision value”.
(2)

To prove termination, our technique targets specifications that require a
bounded number of constrained environment transitions. W.l.o.g. let r1 and r2 be
the special rounds required for termination such that r1 happens before r2. For
simplicity of presentation, we assume that both rounds satisfy the same topol-
ogy predicate TP t. To prove termination, the user must provide an inductive
invariant, denoted Inv t, that holds between the two special rounds, that is:(

Invs(p, e,a) ∧ TP t(p, e) ∧ TPs(p, e) ∧ TR(p, e, e′,a,a′)
)
⇒ Inv t(p, e

′,a′)(
Inv t(p, e,a) ∧ TPs(p, e) ∧ TR(p, e, e′,a,a′)

)
⇒ Inv t(p, e

′,a′)

Moreover, this invariant has to be strong enough to achieve termination when
the second special round happens, that is:(

Inv t(p, e,a) ∧ TP t(p, e) ∧ TPs(p, e) ∧ TR(p, e, e′,a,a′)
)
⇒ Term(p, e′,a′).

4 Irrevocability can be stated as a property of the transition relation. It requires the
use of a relational semantics for the round computations.

6

In our running example, the invariant for termination Inv t is a stronger
version of the safety invariant, and states that “there exists a value v such that
the local variable x of any process equals v”.

4 Consensus verification logic CL

In this section, we introduce our logic CL that formalizes topology predicates,
state properties, and the transition relation. We first introduce a graph-based
representation for the states of the distributed algorithms we consider. Then,
we define the syntax and semantics of our logic, whose formulas are interpreted
over the graph-based representation.

4.1 Graph-based representation of states

We model states by network graphs, where each node represents a process.
Node and link labels correspond to the values of the computation variables
and environment variables, respectively. Formally, network graphs are tuples
G = (N,E,LN , LE), where N is a finite set of nodes, LN : N × CVars → D
defines a labeling of nodes with values from a potentially unbounded domain
D, E is a set of edges, and LE : E ⇀ 2EVars defines a labeling of the edges.
For any environment variable ev ∈ EVars of process type, the edges labeled
by ev define a total function over the nodes in the graph (i.e., each node has
exactly one successor defined by an edge labeled by ev). The heard-of sets are
represented by variables of type set of processes; they do not define a total
function because a node can have multiple or no successors w.r.t. the label HO.

A state of a distributed algorithm is a pair C = (G, ν), where G is a net-
work graph and ν : GVars → D is a valuation of the global variables. Relations
between two network states of the same system are represented by pairs (G, ν),
where the vocabulary of the labels is doubled by introducing their primed ver-
sions. As we are interested in relations between states that belong to the same
execution, the two states contain exactly the same set of processes.

Fig. 2a shows a state with three processes of the algorithm in Fig. 1, and
Fig. 2b shows a relation between two states of the same algorithm. For simplicity,
we draw only the labeled edges and omit the dec variable.

4.2 Syntax and semantics

We define a multi-sorted first-order logic, called Consensus verification logic CL,
to express properties of sets of states (e.g., invariants) or relations between states
(transition relations). The syntax of the logic is given in Fig. 3. The logic has
four sorts: process, denoted P , sets of processes, denoted 2P , integers, denoted Z,
and data, denoted D. We write F [ϕ(∗)](p) instead of F (p) ∩ {q | ϕ(q)}.

The models of a formula in CL are pairs (G,µ), where G = (N,E,LN , LE)
is a network graph and µ is a valuation of the free variables. In the following, we
describe the semantics of CL formulas and their use. We use the convention that

7

x : 1 x : 3

x : 5

HO

HO
HO

HO

(a)

x : 1
x′ : 1

x : 3
x′ : 1

x : 5
x′ : 1

HO

HO
HO,HO′

HO,HO′

HO′

(b)

Fig. 2: Sample state (a) and relation between states (b)

Sort P Sort 2P Sort D Sort Z

Function f : P → P F : P → 2P x : P → D | · | : 2P → Z
symbols

Variables p, q S, A v, Θ N , n

Terms tP ::= p, q, f(p) tS ::= S, F (p), tS ∩ tS tD ::= v, x(p) tZ ::= |tS |, N , n

Atomic ϕP ::= t1P = t2P ϕS ::= t1S ⊆ t
2
S ϕD ::= t1D ≤ t

2
D ϕZ ::= linear

formulas tP ∈ tS , constraint over tZ

Set comprehensions {q | ∀t. ϕ(q, t,p)}, where ϕ ::= ϕP | ϕD | ϕZ | ¬ϕ | ϕ ∧ ϕ

Universally quantified formulas ψ∀(S) :: = ∀p.B({p ∈ S | p ∈ p, S ∈ S})⇒ B+(ϕD), where

p is a set of process variables, S is a set of set variables and given a set of formulas Γ , B(Γ),

resp. B+(Γ), is a boolean combination, resp., positive boolean combination, of formulas in Γ

ψ ::= ϕP | ϕS | ϕZ | ϕD | ψ∀ | ψ ∧ ψ | ¬ψ, ψCL ::= ψ | ∃p. ψCL | ∃v. ψCL

where set comprehensions can be used as set terms

Fig. 3: Syntax of CL formulas, defined by ψCL.

the global variables correspond to free variables of formulas. The satisfaction
relation is denoted by G |=µ ϕ. The interpretation of a term t w.r.t. (G,µ) is
denoted by [[t]](G,µ).

Atomic formulas over terms of sort process: The terms of sort P are built
using a set of function symbols Σpr of type P → P . They are interpreted as
nodes in the graph, e.g., for any variable p ∈ P , [[p]](G,µ) is a node in the graph
G. The interpretation of the function symbols is defined by the labeled edges,
i.e., [[f(p)]](G,µ) = u iff the graph G contains an edge ([[p]](G,µ), u) labeled by f .
The only predicate over terms of type P is equality.

We use the function symbols in Σpr for two purposes. First, they represent
the values of local environment variables of type process, such as the coordinator

8

of a process. Second, we use them to model processes in the heard-of sets with
distinguished local states, such as the processes storing the minimal value, or
the value with the most occurrences in the considered set.
Atomic formulas over terms of sort data: The terms of sort D are in-
terpreted as values of the data domain D. The node labels in G, i.e., the
values of the computation variables, are represented in the logic by a set of
function symbols x : P → D, one for each node label/computation variable.
That is, [[x(p)]](G,µ) = d iff d ∈ D is the label x of the node [[p]](G,µ), i.e.,
LN ([[p]](G,µ), x) = d. We assume that the domain D is totally ordered. The
predicates over data terms are non-strict comparison and equality.
Atomic formulas over terms of sort set: The terms of sort 2P are interpreted
as sets of processes, i.e., sets of nodes in the graph. They are built using a set of
function symbols Σset of type P → 2P . For any function symbol F : P → 2P in
Σset, [[F (p)]](G,µ) is a set of nodes from N such that u ∈ [[F (p)]](G,µ) iff F is one
of the labels of the edge (u, [[p]](G,µ)) ∈ E. The heard-of sets are modeled using a
function symbol HO ∈ Σset, where [[HO(p)]](G,µ) is the set of nodes representing
the processes [[p]](G,µ) hears from. The logic contains the inclusion predicate over
set terms and the membership predicate over process and set terms.
Atomic formulas over terms of sort integer: The atomic formulas over Z-
terms are linear inequalities and they constrain the cardinality of the set terms.
We consider a distinguished integer variable n, which is interpreted as the num-
ber of processes in the network. For example, |HO(p)| > 2n/3 states that the
process p receives messages sent by more than two thirds of the processes, and∣∣HO[x(∗) = x(p)

]
(p)
∣∣ > 2n/3 states that the value x(p) is received more than

2n/3 times by process p.

One of the key features of the logic are the set comprehensions. They are
used in the invariants to state that a majority is formed around one value, in
the topology predicates to identify the set of processes that every one hears
from, and in the transition relation to identify the processes that will update
their local state. A set comprehension is defined by {q | ρ(q)}, where ρ is a
(universally quantified) formula that contains at least one occurrence of the
variable q (representing processes in the set). For ease of notation, we associate
with each set comprehension a unique set variable used in a formula as a macro
for its definition. The interpretation of a set comprehension is [[{q | ρ(q)}]](G,µ) =
{u ∈ N | G |=µ[q←u] ρ(q)}.
Set comprehensions with quantifier-free formulas: Typically, invariants
identify sets of processes whose local variables have the same value. For example,
the invariant Invs in (2) is defined using the set of processes whose local variable
x equals v, i.e., SV = {q | x(q) = v}. Topology predicates are also expressed using
set comprehension: the two topology predicates from Fig. 1c are expressed in CL
by:

TP1
t ::= |A| > 2n/3 ∧ |SA| = n, with SA = {q | HO(q) = A}
TP2

t ::= |SHO| = n, with SHO = {q | |HO(q)| > 2n/3},
where A is a set variable, SA is the set of processes whose heard-of set equals A,
and SHO is the set of processes that receive from more than 2n/3 processes.

9

Set comprehensions with universally quantified formulas: Typical ex-
amples of such set comprehensions used in topology predicates are: the kernel
K = {q | ∀t. q ∈ HO(t)}, i.e., the set of processes every one hears from and
Sno split = {q | ∀t. |HO(t) ∩ HO(q)| ≥ 1}, which is the set of processes that
share some received message with any other process in the network.

Set comprehensions are also used to select the processes that update their
local state. Typically, the value assigned to some local variable is chosen from
the received ones, e.g., the minimal received value, or the minimal most often re-
ceived value. To express such updates, the process in the HO-set that holds such
a value is represented as the value of a function symbol in Σpr. For example, the
first update from the algorithm in Fig. 1a can be written as x′(p) = x(mMoR(p)),
where mMoR(p) is interpreted as a process q s.t. x(q) is the minimal most often
received value by p. This constraint over the interpretation of mMoR can be
expressed by |S| = n (we assume that all processes have sent the value of their
x variable), where

S =


q | ∀t. t ∈ HO(q)⇒ |HO[x(∗) = x(mMoR(q))](q)| = |HO[x(∗) = x(t)](q)| ⇒

x(mMoR(q)) ≤ x(t)
∧|HO[x(∗) = x(mMoR(q))](q)| ≥ |HO[x(∗) = x(t)](q)|


 (3)

Above, S represents the set of processes q s.t. x(mMoR(q)) is interpreted as
the minimal most often received value by q. If |S| = n, i.e., S contains all the
processes in the network, then for all processes q, the x variable of mMoR(q)
equals the minimal most often received value by q.
Universally quantified formulas: The universally quantified formulas in CL
are implications, where (1) quantification is applied only over process variables,
(2) the left hand side of the implication is a boolean combination of membership
constraints, and (3) the right hand side of the implication is a positive boolean
combination (without negation) of atomic formulas over data. For example, the
transition relation for the algorithm in Fig. 1 is expressed by

TR = ∀p. p ∈ SHO ⇒ x′(p) = mMoR(p) ∧ ∀p. p ∈ SHV ⇒ dec′(p) = x′(p) ∧
∀p. p 6∈ SHO ⇒ x′(p) = x(p) ∧ ∀p. p 6∈ SHV ⇒ dec′(p) = dec(p),

(4)

where SHV = {q | |HO[x(∗) = x′(q)](q)| > 2n/3} and SHO is defined above.
The state properties in the definition of consensus, e.g., Agrm given by (1)

in Sec. 3, are expressed using universally quantified formulas:

Agrm = |S| = n ∧ ∀p, q. p, q ∈ S ⇒ dec(p) = dec(q). (5)

Remark 1. The formulas that express the guarded assignments, the inductive in-
variants, and the properties that define consensus, are in the form of universally-
quantified implications. The left-hand side of these implications is typically more
involved. To express these formulas, CL restricts the syntax of universally-
quantified implications in a way that is sufficient to express the formulas we

10

encountered. Note that these constraints on the use of universal variables can
be overpassed using set comprehensions, e.g., ∀t, q. x(t) 6= x(q) is equivalent to
S = {q | ∀t. x(t) 6= x(q)} ∧ |S| = n.

Finally, CL formulas are existentially-quantified boolean combinations of
atomic formulas and universally quantified formulas.

To conclude let us formalize the definition of the invariants, Invs and Inv t
given in Sec. 3, required to prove the correctness of the system in Fig. 1.

Invs = Inv1
s ∨ ∃v. Inv2

s(v),where

Inv1
s = ∀q. dec[q] = ? and

Inv2
s(v) = |SV | > 2n/3 ∧ ∀q. dec(q) = ? ∨ dec(q) = v = x(q)

Inv t = ∃v ∀q. x(p) = v ∧
(
dec(q) = ? ∨ dec(q) = v = x(q)

) (6)

Verification condition for distributed algorithms are implications between CL
formulas, such as the ones in Sect. 3, where the invariants, transition relations,
and properties are expressed in CL.

5 A semi-decision procedure for implications

Classically, checking the validity of a formula is reduced to checking the unsatis-
fiability of its negation. Since CL is not closed under negation, the negation of an
implication between CL formulas is not necessarily in CL. In this section, we will
present (1) a sound reduction from the validity of an entailment between two
formulas in CL to the unsatisfiability of a formula in CL, (2) a semi-decision
procedure for the unsatisfiability problem in CL, and (3) identify a fragment
CLdec of CL which is decidable.

5.1 Reducing entailment checking in CL to unsatisfiability

Let us consider the following entailment ϕ⇒ ψ between CL formulas ϕ and ψ.
There are two reasons why ϕ ∧ ¬ψ might not belong to CL. First, if ψ has a
sub-formula of the form ∃∗∀∗, then by negation, the quantifier alternation be-
comes ∀∗∃∗, which is not allowed in CL. Second, the restricted use of universally
quantified variables in CL is not preserved by negating the constraints on the
existential variables of ψ, e.g., if ψ = ∃p1, p2. p1 = p2, then its negation is not
in CL because difference constraints between universally quantified variables
are not allowed. We define a procedure, which receives as input an implication
ϕ ⇒ ψ between two formulas in CL. The algorithm we define hereafter builds
a new formula φ from ϕ ∧ ¬ψ. It restricts the interpretation of the universally
quantified variables that do not satisfy the syntactical requirements of CL to
terms built over the existentially quantified variables.

Reduction procedure: The formula φ is built in three steps. In the first step,
the formula ϕ⇒ ψ is transformed into an equivalent formula φ1 = ∃ξ. (ϕ1 ∧ψ1)

11

where all the existential quantifiers appear at the beginning (ϕ1 and ψ1 are
equivalent to ϕ and ¬ψ, respectively, modulo some renaming of existentially-
quantified variables; also, ψ1 is transformed such that no universal quantifier
appears under the scope of a negation). The second step consists of identifying
the set of universally quantified variables β in ψ1 that appear in sub-formulas
not obeying the syntactic restrictions of CL.

In the last step, let T (ξ) be the set of terms over the variables in ξ that
contain at most k occurrences of the function symbols from CL, where k is
the maximum number of function symbols from a term of the formula ϕ ∧ ¬ψ.
Then, φ is obtained by restricting the interpretation of the universally quantified
variables in β to the domain defined by the interpretation of the terms in T (ξ):

φ = ∃ξ.
∧

γ∈[β→T (ξ)]

(
ϕ1 ∧ ψ1

[
β ← γ(β)

for every β ∈ β

])
(7)

Lemma 1. Let ϕ ⇒ ψ be an implication between two formulas in CL, and φ
the formula in (7). The unsatisfiability of φ implies the validity of ϕ⇒ ψ.

Note that if ψ has no existentially quantified variables, then the unsatisfia-
bility of φ is equivalent to the validity of ϕ⇒ ψ.

Rationale: All the state properties used to define consensus, e.g., Agrm in (5)
from Sec. 4, are expressible using universally-quantified formulas in CL. Thus,
for checking that an invariant implies these properties, the reduction procedure
is sound and complete. This is not necessarily true for the verification conditions
needed to prove the inductiveness of an invariant, that is, verification conditions
of the form ϕ⇒ ψ, where ψ is an inductive invariant. In the following, we give
evidences for the precision of the reduction procedure in these cases.

In systems that solve consensus, all the computations contain a transition
after which only one decision value is possible [11]. Therefore, the set of reachable
states can be partitioned into two: the states where any value held by a process
may become the decision, and the states where there is a unique value v that
can be decided; often this corresponds to a majority formed around v. This
implies that the inductive invariants are usually a disjunction of two formulas,
one for each set of states described above. In the negation of the invariant, the
universally quantified variables that do not obey to the restrictions in CL are
those used to express that there is no value on which all processes agree.

In all our examples, the two sets of states are demarcated by the existence
of at least one process that has decided.5 Given invariants in this disjunctive
form, to prove them inductive w.r.t. a transition TR, two situations have to be
considered: (1) no process has decided before applying TR and at least one pro-
cess has decided after TR, and (2) some processes decided before applying TR.
In (1), to prove the unsatisfiability of ϕ∧¬ψ it is sufficient to map the universally
quantified variables in ¬ψ on terms denoting the value of one of the processes

5 The only exception is the LastVoting algorithm, where the demarcation includes also
the existence of a process having a local variable (not the decision one) set to true.

12

that have decided, and in (2), it is sufficient to map them on the terms denoting
the values around which a majority was formed before applying TR.

Example 3. To prove that Invs, given in (6), is an invariant w.r.t. the transition
relation TR given in (4), more precisely the case where no process decided before
applying TR, one needs to prove the validity of (Inv1

s∧TR)⇒ Invs[dec← dec′],
where Invs[dec ← dec′] is the obtained from Invs by substituting the function
symbol dec with the function symbol dec′. This is equivalent with proving the
unsatisfiability of the following formula, where we have expanded the definition
of Invs[dec← dec′]:

Inv1
s ∧ TR ∧ ∃p. dec′(p) 6= ? ∧ ∀v. ¬Inv2

s(v)[dec← dec′]︸ ︷︷ ︸
ρ(v)

.
(8)

Notice that ∀v.¬Inv2
s(v)[dec ← dec′] does not belong to CL because it

contains a ∀ ∃ quantifier alternation. In this case, we soundly reduce the unsat-
isfiability of (8) to the unsatisfiability of

Inv1
s ∧ TR ∧ ∃p. dec′(p) 6= ? ∧ ρ(v)[v ← dec′(p)]. (9)

by restricting the interpretation of universally quantified variable v to the value
decided by process p, i.e., dec′(p).

If some processes decided, the term denoting the value around which a ma-
jority was formed before applying TR is the existentially quantified v in Invs.

5.2 Semi-decision procedure for unsatisfiability

In this section, we present the semi-decision procedure for the unsatisfiability
problem in CL. This procedure soundly reduces the unsatisfiability of a CL
formula to the unsatisfiability of a quantifier-free Presburger formula (cardinality
constraints) or the unsatisfiability of a formula with uninterpreted functions and
order constraints (constraints on data). The satisfiability of these formulas is
decidable and checkable using an SMT solver.

We give an overview on the main steps, Step 1 to Step 5, of the semi-decision
procedure on an example, before we formalize them.
Overview: Let us consider the formula in (9), stating that no process decided
before applying the transition relation TR given in (4), and afterwards two
processes decide on different values:

ϕ = ∀t. dec(t) = ? ∧ TR ∧ dec′(p) 6= ? ∧ dec′(q) 6= ? ∧ dec′(p) 6= dec′(q)

The semi-decision procedure starts by instantiating universal quantifiers and
set comprehension over the free variables of ϕ. This strengthens the data and
cardinality constraints over terms with free variables (see Step 3).

In our example, the cardinality constraints are strengthened by instantiat-
ing the universal quantification in TR and the definition of the set comprehen-
sion SHV , over the free variables p and q. The processes denoted by p and q

13

decide in the round described by TR, therefore these variables belong to the set
SHV ; from the definition of SHV , the value decided by each of them, i.e., x′(p),
resp., x′(q), was received from at least two thirds of the processes in the network,
i.e., |HO[x(∗) = x′(p)](p)| > 2n/3 and |HO[x(∗) = x′(q)](q)| > 2n/3. The semi-
decision procedure builds a Presburger formula from the cardinality constrains
that use set terms over p and q; the definitions of the sets are abstracted. The
obtained formula is kp > 2n/3 ∧ kq > 2n/3, where kp = |HO[x(∗) = x′(p)](p)|
and kq = |HO[x(∗) = x′(q)](q)| (see Step 4). This formula is a satisfiable.

Then, the semi-decision procedure checks the satisfiability of the quantifier-
free formula with uninterpreted function symbols defined by the data constraints
over terms with free variables (Step 5). In our example this formula is dec′(p) =
x′(p) ∧ dec′(q) = x′(q) ∧ dec′(p) 6= dec′(q), and is also satisfiable.

Therefore, for CL formulas, restricting the interpretation of universal quan-
tifiers to free variables is not sufficient to derive contradictions. The reason is
that cardinality constraints induce relations between set comprehentions, which
are neither captured by the Presburger formula nor the quantifier-free data for-
mula. Notice that due to cardinality constraints, which state that each of the
sets HO[x(∗) = x′(p)](p), resp. HO[x(∗) = x′(q)](q), contains more then two
thirds of the processes in the network, their intersection is non-empty. Therefore
there exists a process, r, which belongs to both sets. Instantiating the definitions
of these sets over r reveals that x(r) = x′(p) and x(r) = x′(q), which contradicts
the hypothesis that p and q decided on different values.

Thus, if the Presburger formula is satisfiable, it is used to discover relations
between set comprehension. This formula is used to check which intersections or
differences of set variables are non-empty; for each non-empty region, ϕ is ex-
tended with a free variable representing a process of this region (see Step 4). The
semi-decision procedure is restarted using the new formula constructed from ϕ.

Semi-decision procedure: Let ϕ = ∀y. ψ be a CL formula in prenex normal
form, where y is a tuple of process variables. W.l.o.g., we assume that the for-
mula does not contain existential quantifiers, only free variables. Formally, the
procedure to check the unsatisfiability of ϕ iterates over the following sequence
of steps:

Step 1: introduce fresh process variables for the application of function symbols
over free variables. Let ϕ1 = ∀y. ψ1, be the formula obtained after this step.

Step 2: enumerate truth valuations for set membership over free variables and
instantiate set comprehensions. Let ϕ2 =

∨
∀y2ψ2, where each disjoint corre-

sponds to a truth valuation. Notice that new quantified formulas are introduced
in this step. Let S = {q | ρ(q)} be a set comprehension, where ρ is universally
quantified and p a free variable of ϕ1. Then, p ∈ S introduces a new universally
quantified formula, i.e., ρ(p), while p 6∈ S introduces a new existentially quan-
tified formula, i.e., ¬ρ(p). W.l.o.g the existential quantified variables introduces
at this step are transformed into free variables, modulo a renaming.

Step 3: instantiate universal quantifiers over the free variables of ϕ1. Let p de-
note the set of free process variables of ϕ1 (note that the free variables introduced

14

in Step 2 are not in p). Each disjunct ∀y2. ψ2 of ϕ2 is equivalently rewritten as
ψ2,∃ ∧ ∀y2. ψ2, where ψ2,∃ =

∧
γe∈[y2→p] ψ2 [γe] and ψ2 [γe] is obtained from ψ2

by substituting each y ∈ y2 with γe(y). Let ϕ3 denote the obtained formula.

Step 4: enumerate truth valuations for set and cardinality constraints over free
variables in ϕ3. Let As(ϕ3) denote the set of atoms that contain the inclusion or
the cardinality operator; each disjunct ψ2,∃ ∧ ∀y2. ψ2 of ϕ3 is transformed into
the equivalent formula∨

γs∈[As(ϕ3)→{0,1}]

(∧
γs(a)=1

a ∧
∧

γs(a)=0

¬a ∧ ψ2,∃[γs] ∧ ∀y2. ψ2

)
, (10)

where ψ2,∃[γs] is obtained from ψ2,∃ by substituting every a ∈ As(ϕ3) with γs(a).
For each disjunct of the formula in (10), let C[γs] be a quantifier-free Pres-

burger formula defined as follows:
• let Ts(ϕ3) be the set of terms S1 ∩ S2 or S1 \ S2, where S1 and S2 are set

variables or applications of function symbols of type P → 2P in ϕ3 (i.e., they do
not contain ∩);
• let Ks be a set of integer variables, one variable k[t] for each term t ∈ Ts(ϕ3).

Each variable k[t] represents the cardinality of the set denoted by t;
• transform each literal a or ¬a with a ∈ As(ϕ3) into a linear constraint over

the integer variables Ks:
− if a is a cardinality constraint, then replace every term |S| by the sum

of all variables k[t] with t ∈ Ts(ϕ3) of the form S ∩ S′ or S \ S′;
− transform set inclusions into cardinality constraints: for every atom a of

the form S1 ⊆ S2, if γs(a) = 1 (resp., γs(a) = 0), a is rewritten as k[S2 \S1] = 0
(resp., k[S1\S2] ≥ 1). The extension to more general atoms that use the inclusion
operator is straightforward;
• for any atom p ∈ S from (10) (chosen in Step 2), add |S| ≥ 1 to C[γs]; similar

constraints can be added for more general constraints of the form p ∈ tS .
If all Presburger formulas associated with the disjuncts of (10) are unsatisfi-

able, then ϕ is unsatisfiable. Otherwise, the formula in (10) is transformed into
an equivalent formula of the form∨

γs ∈ [As(ϕ3)→ {0, 1}],
C[γs] satisfiable

(
ψ2,∃[γs] ∧

(∧
C[γs]⇒k[t]>0

∃pt. pt ∈ t
)
∧ ∀y2. ψ2

)
(11)

Step 5: Note that all ψ2,∃[γs] are quantifier-free formulas with uninterpreted
functions and order constraints, for which the satisfiability problem is decidable.
If all ψ2,∃[γs] are unsatisfiable then ϕ is unsatisfiable, otherwise the procedure
returns to Step 1 by letting ϕ be the disjunction of all formulas in (11) that have
a satisfiable ψ2,∃[γs] sub-formula.

5.3 Completeness

We identify a fragment of CL, denoted CLdec, whose satisfiability problem is
decidable. The proof is based on a small model argument. The syntactical re-
strictions in CLdec are: (1) function symbols of type P → P are used only in

15

constraints on data, i.e., they occur only in data terms of the form x(f (p)), (2)
there exists no atomic formula that contains two different function symbols of
type P → 2P , (3) cardinality constraints are restricted to atomic formulas of the
form ϕZ ::= c ∗ |ts| ≥ exp | |t1s| ≥ |t2s| | exp = c ∗ n + b, with b, c ∈ Z, and
(4) set comprehensions are defined using conjunctions of quantifier-free atomic
formulas or universally quantified formulas of the form:

S = {q | ∀t. ϕP (q, t)} | S = {q | ∀t. ϕZ(q, t)} | S = {q | ∀t. t ∈ F (q)⇒ ϕloc(q, t)}

with ϕloc(q, t) ::= ϕD(q, t) | ϕZ(q, t) | ϕloc(q, t) ∧ ϕloc(q, t) | ¬ϕloc(q, t)

where the t, q appear only in terms of the form F [Π](q), x(q), x(f (q)), x(t) with
Π an atomic data formula over t of q.

Let S be a set comprehension whose definition uses universal quantification
and terms of the form F (t), with t universally quantified. The set S defines a
relation between its elements and a potentially unbounded number of processes
in the network. They are called relational set comprehensions. An example is the
kernel of a network, i.e., K = {q | ∀t. q ∈ HO(t)}. In CLdec, the only constraints
allowed on relational set comprehensions are lower bounds on their cardinality,
i.e., given such a set S, it occurs only in atomic formulas |S| ≥ exp or |S| ≥ |tS |
under an even number of negations.

The uncoordinated algorithms in [10] are captured by CLdec, including our
running example.

Theorem 1. The satisfiability problem for formulas in CLdec is decidable.

Proof (Sketch): The small model property for this fragment of CL can be
stated as follows: for any formula ϕ, if ϕ is satisfiable then ϕ has a model whose
size is bounded by a minimal solution of a quantifier-free Presburger formula
constructed from ϕ; the order relation on solutions, i.e., on tuples of integers,
is defined component-wise. Note that, in general, there are exponentially-many
minimal solutions for a quantifier-free Presburger formula.

The Presburger formula is constructed from ϕ by applying a modified version
of Step 4 from the semi-decision procedure in Sec. 5.2. One starts by consider-
ing the Venn diagram induced by the set/process variables used in the formula
(process variables are considered singleton sets) and enumerating all possibilities
of a region to be empty or not. For each non-empty region and each function
symbol of type P → P (resp., P → 2P), we introduce a fresh process variable
(resp., set variable) representing the value of this function for all the elements
in this region. This is possible because it can be proven that if ϕ has a model
of size n then it has also a model of the same size, where all the nodes in the
same Venn region share the same value for their function symbols. Then, one
enumerates all truth valuations for the cardinality constraints and constructs a
Presburger formula encoding these constraints over a larger (exponential) set of
integer variables, one for each region of the Venn diagram (this diagram includes
also the set/process variables introduced to denote values of function symbols).

Given a bound on the small models, one can enumerate all network graphs of
size smaller than this bound, and compute a quantifier-free formula with uninter-

16

preted functions and order constraints for each one of them. The original formula
is satisfiable iff there exists such a quantifier-free formula which is satisfiable.

5.4 Discussion

The semi-decision procedure introduced in Sec. 5.2 is targeting the specific class
of verification conditions for consensus. Intuitively, when designing consensus
algorithms one wants to avoid that two disjunct sets of processes decide inde-
pendently of each other, as this may lead to a violation of agreement. There are
two ways to avoid it. First, the algorithm can use a topology predicate to en-
force that any two HO-sets intersect (no-split). Second, the algorithm can ensure
that a decision is made only if “supported” by a majority of processes. When we
apply the semi-decision procedure on formulas expressing the negation of these
two statements, typically it proves them unsatisfiable. It derives a contradiction
starting from the assumption that two sets are disjoint due to their definition (by
comprehension). In the first case, the contradiction is obtained by exploiting an
explicit cardinality constraint on the intersection, i.e., that the cardinality of the
intersection is greater than or equal to 1. In the second case, the contradiction
is derived from the fact that each of the two sets have cardinality greater than
n/2 (majority). For this, one needs to enumerate all pairs of sets and check that
their cardinality constraints imply non-empty intersection.

For arbitrary formulas in CL our semi-decision procedure may fail to derive a
contradiction, because one may need to explore the exponentially many regions
of the Venn diagram that are induced by the sets represented in the formula. For
the decidable fragment CLdec, this is done by the decision procedure in Sec. 5.3.

To conclude, our semi-decision procedure targets the specific class of ver-
ification conditions needed for consensus. The semi-decision procedure proves
the unsatisfiability of formulas that are not in CLdec. Compared to the decision
procedure for CLdec, the semi-decision procedure avoids deciding quantifier-free
Presburger formulas over an exponential number of variables and computing all
minimal solutions of such formulas (which are exponentially many).

6 Evaluation

We have evaluated our framework on several fault-tolerant consensus algorithms
taken from [10], [4], and [19]. All algorithms in [10] and [4] fit into our frame-
work. We tested our semi-decision procedure by manually encoding the algo-
rithms, invariants, and properties in the SMT-LIB 2 format and used the Z3 [21]
SMT-solver to check satisfiability of the formulas produced by the semi-decision
procedure. In the reduction, we inline the minimization problem along the rest of
the formula and let Z3 instantiate the universal quantifiers. The results are sum-
marized in Table 1. The files containing the verification conditions are available
at http://pub.ist.ac.at/~zufferey/consensus/. We give a short description
of each algorithm and how it is proven correct in our framework. The consensus
algorithms we considered are presented in a way such that several consecutive

17

Algorithm coord. rounds invariants VCs solving
(1) (2) (3) (4) (5)

Uniform Voting [10] × 2 2+2 13 < 0.1s
Coordinated Uniform Voting [10] X 3 2+2 10 < 0.1s
Simplified Coordinated Uniform Voting [10] X 2 2+2 8 < 0.1s
One Third Rule [10] × 1 1+1 8 < 0.1s
Last Voting [10] X 4 1+3 15 1s
AT,E [4] × 1 1+2 10 < 0.1s
UT,E [4] × 2 2+2 9 < 0.1s
FloodMin [19, Chapter 6.2.1] × 1 1 5 < 0.1s

Table 1: Experimental results. (1) coordinated, (2) number of rounds per phase,
(3) number of invariants provided by the user (safety + termination), (4) number
of verification conditions, (5) total solving time.

rounds are grouped together into a phase. This is done, because the computa-
tion transition is different for each round within a phase. We verified agreement,
validity, irrevocability, and termination.

The Uniform Voting algorithm is a deterministic version of the Ben-Or ran-
domized algorithm [3]. The condition for safety is that all environment transi-
tions satisfy the topology predicate ∀i, j. |HO(i) ∩ HO(j)| ≥ 1, called no-split.
Intuitively, a process decides a value v if all the messages it has received in a
specific round are v. Thus two processes decide on different values only if their
HO-sets are disjoint. Roughly, the semi-decision procedure succeeds in finding
a contradiction, by exploring the explicit non-empty intersection of HO-sets de-
fined by the topology predicate; more specifically the non-empty intersection of
HO-sets of two processes that are supposed to decide differently.

Coordinated Uniform Voting and simplified Coordinated Uniform Voting [10]
are coordinated algorithms. Reasoning about topology predicates similar to Uni-
form Voting leads to safety of these two algorithms. In fact simplified Coordinated
Uniform Voting is based on an even stronger topology predicate than no-split.

The One Third Rule algorithm is our running example. It is designed to be
safe without any topology predicate. In this case, the computation transitions
enforce that if a processes decides, a majority of processes are in a specific state.
In Sec. 5.2, the overview explains how the semi-decision procedure derives a
contradiction to prove one of the verification conditions for safety using the ma-
jority argument. Our proof of termination is based on a stronger communication
predicate than the one provided in [10], namely, it requires two uniform rounds
where more that 2/3 of the messages are received by each process.

The Last Voting algorithm is an encoding of Paxos [17] in the HO-model.
This algorithm is coordinated. Similar to One Third Rule it is safe without
any topology predicate, and the algorithm imposes cardinality constraints that
create majority sets: Before voting or deciding, the coordinator makes sure that a
majority of process acknowledged its messages, such that a decision on v implies
|{p | x(p) = v}| > n/2.

18

The AT,E algorithm [4] is a generalization of the One Third Rule to value
faults that uses different thresholds. It tolerates less than n/4 corrupted messages
per process. Safety and termination of the algorithm follows the same type of
reasoning as the One Third Rule algorithm but require more complex reasoning
about the messages. To model value faults, the HO-sets are partitioned into
a safe part (SHO) and an altered part (AHO). A message from process p to
process q is discarded if p 6∈ HO(q), delivered as expected if p ∈ SHO(q), and
if p ∈ AHO(q) an arbitrary message is delivered instead of the original one.
The UT,E algorithm [4] is an consensus algorithm with value faults designed for
communication which is live but not safe. For AT,E and UT,E , to simplify the
manually encoding, we have considered the intersection of up to three sets rather
than two as presented in the semi-decision procedure.

The FloodMin algorithm is a synchronous consensus algorithm tolerating at
most f crash fault [19, Chapter 6.2.1]. In each round the processes sends their
value to all the processes and keep the smallest received value. Executing f + 1
rounds guarantees that there is at least one round where no process crashes.
Agreement is reached in this (special) round. The invariant captures that fact
by counting the number of crashed process and relating it to the number of
processes with different values, i.e. |C| < r ⇒ ∃v. |{p | x(p) = v}| = n. Proving
termination requires a ranking function.

7 Related Work

The verification of distributed algorithms is a very challenging task. Indeed, most
of the verification problems are undecidable for parameterized systems [2, 23].
Infinite-state model-checking techniques may be applied if one restricts the type
of actions performed by the processes. Particular classes of systems which are
monotonic enjoy good decidability properties [1, 13]. Fault-tolerant distributed
algorithms cannot be modeled as such restricted systems. Recently, John et
al. [15] developed abstractions suitable for model-checking threshold-based fault-
tolerant distributed algorithms.

Orthogonally to the model-checking approach and closer to our approach
is the formalization of programs and their specifications in logics where the
satisfiability question is decidable. Very expressive logics have been explored for
the verification of data structures and CL is a new combination of the constructs
present in those logics. The array property fragment [6] admits a limited form of
quantifier alternation which is close to ours. Reasoning about sets and cardinality
constraints is present in BAPA [16]. However, BAPA does not combine well with
function symbols over sets [24]. Logics for linked heap structures such as lists
are similar to CL if we encode sets as lists and cardinality constraints as length
constraints. STRAND [20] and CSL [5] offer more quantifier alternations and
richer constraints on data but have more limited cardinality constraints. Both
logics have decision procedures based on a small model property.

If one accepts less automation, distributed algorithms can be formalized and
verified in interactive proof assistants. For instance, Isabelle has been used to

19

verify algorithms in the heard-of model [9]. The verification of distributed sys-
tems has also been tackled using the TLA+ specification language [18].

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems (1996)

2. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 15, 307–309 (1986)

3. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In: PODC. pp. 27–30. ACM (1983)

4. Biely, M., Charron-Bost, B., Gaillard, A., Hutle, M., Schiper, A., Widder, J.: Tol-
erating corrupted communication. In: PODC. pp. 244–253 (2007)

5. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: A logic-based framework for
reasoning about composite data structures. In: CONCUR. Springer (2009)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: VM-
CAI. pp. 427–442 (2006)

7. Brasileiro, F., Greve, F., Mostefaoui, A., Raynal, M.: Consensus in one communi-
cation step. In: Parallel Computing Technologies. Springer (2001)

8. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
OSDI. USENIX Association, Berkeley, CA, USA (2006)

9. Charron-Bost, B., Merz, S.: Formal verification of a consensus algorithm in the
heard-of model. Int. J. Software and Informatics 3(2-3), 273–303 (2009)

10. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distributed Computing 22(1), 49–71 (2009)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (Apr 1985)

12. Függer, M., Schmid, U.: Reconciling fault-tolerant distributed computing and
systems-on-chip. Dist. Comp. 24(6), 323–355 (2012)

13. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39, 675–735 (1992)

14. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination
for internet-scale systems. In: USENIXATC. USENIX Association (2010)

15. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD. pp.
201–209 (2013)

16. Kuncak, V., Nguyen, H.H., Rinard, M.C.: An algorithm for deciding BAPA:
Boolean algebra with presburger arithmetic. In: CADE. pp. 260–277 (2005)

17. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (1998)
18. Lamport, L.: Distributed algorithms in TLA (abstract). In: PODC (2000)
19. Lynch, N.: Distributed Algorithms. Morgan Kaufman (1996)
20. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures

and data. In: POPL. pp. 611–622. ACM (2011)
21. Moura, L., Bjorner, N.: Z3: An efficient SMT solver. In: TACAS, pp. 337–340.

Springer Berlin Heidelberg (2008)
22. Santoro, N., Widmayer, P.: Time is not a healer. In: STACS. LNCS, vol. 349, pp.

304–313 (1989)
23. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.

28(4), 213–214 (Jul 1988)
24. Yessenov, K., Piskac, R., Kuncak, V.: Collections, cardinalities, and relations. In:

VMCAI. pp. 380–395 (2010)

20

