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Abstract

We propose a new memetic strategy that can solve the multi-physics, com-
plex inverse problems, formulated as the multi-objective optimization ones,
in which objectives are misfits between the measured and simulated states
of various governing processes. The multi-deme structure of the strategy
allow for both, intensive, relatively cheap exploration with a moderate accu-
racy and more accurate search many regions of Pareto set in parallel. The
special type of selection operator prefers the coherent alternative solutions,
eliminating artifacts appearing in the particular processes. The additional
accuracy increment is obtained by the parallel convex searches applied to
the local scalarizations of the misfit vector. The strategy is dedicated for
solving ill-conditioned problems, for which inverting the single physical pro-
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11.11.230.124; Ewa Gajda-Zagórska was funded by Polish National Science Centre grant
no. DEC-2012/05/N/ST6/03433; D. Pardo and J. Álvarez-Aramberri were partially
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cess can lead to the ambiguous results. The skill of the selection in artifact
elimination is shown on the benchmark problem, while the whole strategy
was applied for identification of oil deposits, where the misfits are related to
various frequencies of the magnetic and electric waves of the magnetotelluric
measurements.

Keywords: inverse problems, multi-objective optimization methods,
memetic algorithms

1. Introduction

1.1. Motivation

Parametric inverse problems (IPs) for partial differential equations (PDEs)
consist of restoring the values of PDE parameters (inverse solutions) from
the known observation of their solution called forward solution over certain
subdomains. IPs are fundamental in several applications, such as in oil and
gas exploration, structure health monitoring, and cancer tissue diagnosis
(see e.g. [1]).

The most popular mathematical formulation of IPs is in terms of global
optimization problems (GOPs), where the decision variables belong to the
admissible set of parameter functions representations, and the objective
functionals to be minimized express the misfit between measured and sim-
ulated PDE forward solutions.

Solving IPs meets many obstacles caused by their ill-conditioning. If
the ill-conditioning involves the lack of the global misfit convexity only, but
still there exists a unique global minimizer, the misfit regularization (see
e.g. [2]) can be the effective way to obtain its numerical solution. If the
problem possesses more than one solution (i.e. the misfit is multimodal and
has many global minimizers) and/or the misfit is insensitive with respect
to several decision variables in the neighborhood of the global minimizer,
the complex stochastic searches (see e.g. [3]) allow to overcome the above
difficulties when solving them.

The misfit multimodality and insensitivity are generally caused by the
lack of information about the phenomenon to be analyzed. It may result in
a mathematical formulation of the problem that allows multiple solutions
(see e.g. [4]) or the uncertain misfit representation due to the irreducible
measurement errors (see e.g. [5, 6, 7]). The other obstacles are caused by
artifacts that might be produced by deterministic and stochastic global op-
timization strategies (see e.g. [8]).

2



The most straightforward way to improve the IPs conditioning is by in-
creasing the amount of information about the studied phenomenon. If the
phenomenon is composed of multiple physical processes, then it is possible
to consider many misfits simultaneously, each one associated with a sepa-
rate physics. This approach leads to the multiobjective global optimization
problem defined and discussed in Section 1.2.

The idea of solving ill conditioned IPs by finding Pareto solutions for
misfits imposed by multiple physics is rarely described in the literature. The
authors of [9] apply the inverse quantitative structure-property relationship
for designing new chemical compounds. Optimal design of a magnetic pole is
considered in [10]. In both cases, different objective functions are associated
with two independent methods of solving the considered forward problem.

Some existing methods for the inversion of multi-physics measurements
in the area of oil exploration are based on requesting that geometrical struc-
tures identified by single-physics measurements are correlated (see e.g. [11]).
Other methods employ experimental laws such as Archie’s and Gassman’s
equations to relate different physical measurements among each other (see
e.g. [12, 13]). Unfortunately, the aforementioned experimental laws contain
various parameters that need to be properly adjusted, which is not always
possible.

The more common idea of applying multi-objective optimization for solv-
ing IPs leads only to improving the method utilized for minimizing single
ill conditioned misfit. A two-objective parameter identification by genetic
algorithms can be found in [14]. The second additional criterion penalizes
the small diversity in the populations of candidate solutions. Another ap-
proach used in [15] consists in combining two objective functions with an
immunological algorithm. These objectives become fitnesses of individuals
and T-cells, respectively.

1.2. Inverse parametric problem associated with multiple physics

Te first approach intensively utilized in the sequel of this paper is related
to the set of n physical processes ui(ω) ∈ V i, i = 1, . . . , n, which depend on
the same, unknown parameter ω ∈ D. Typically, ω is a discrete represen-
tation of a distribution of some physical quantity (e.g. heat conductivity)
on the dense domain of the forward problem. V i are proper Sobolev spaces
and Ai(ui(ω)) = 0 the relevant equations representing forward problems,
where Ai : V i −→ (V i)′ is a family of differential operators from V i to their
conjugate spaces.

We are able to measure the state of all processes, which results in the
vector d; di ∈ Oi, where Oi are the sets of observations specific to each
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physic. Next, we introduce the misfit functionals f(d, u(ω)), such that Oi×
D ∋ (di, ui(ω)) → f i(di, ui(ω)) ∈ R+. Each coordinate f i represents the
particular physics i = 1, . . . , n.

The first multi-objective problem that represents the IPs associated with
multiple physical processes dependent on the same parameter function con-
sists of finding ω such that it minimizes all misfit functionals in the Pareto
sense (see e.g. [16])

min
ω∈D

{f(d, u(ω)) : A(u(ω)) = 0} . (1)

The above approach might be generalized to the case of many physi-
cal processes that depend on different parametric functions. Let us assume
similarly that we have n physical processes ui(ωi) ∈ V i, i = 1, . . . , n, which
depend on a different, unknown parameter ωi ∈ Di where Di is the ad-
missible set. Their states can be measured and their measurements can
be denoted as previously by d; di ∈ Oi. Now, we introduce the separate,
metric space of features F that represents the phenomenon to be recog-
nized, (e.g. oil deposit, tumor tissue) and the operators extracting features

Ci : Di → F . The value Ci(ωi) represents the information upon the phe-
nomenon under interest obtained from the i-th physics. Their values may
represent the characteristic function of the deposit region (e.g. the region
of the oil occurrence).

In the sequel, we introduce a new incidence criterion

fn+1 : Fn → R+ (2)

that penalizes the incoherency between the parameters assigned to the par-
ticular physics. In other words, the quantity fn+1(C1(ω1), . . . , Cn(ωn))
takes a small value if the parameters ω1, . . . , ωn represent a ”similar” phe-
nomenon to be searched. As the misfit operators f i, i = 1, . . . , n, the in-
cidence criterion is strongly related to the particular IPs. In the simplest
case n = 2, we may set f3(C1(ω1), C2(ω2)) = ρF (C1(ω1), C2(ω2)), where
ρF stands for the metric function in the space of features.

The generalized multi-objective problem that represents the IPs associ-
ated with many physical processes that depend on the different parametric
functions is formulated in a way similar to the problem (1):

minω1∈D1,...,ωn∈Dn{f1(d1, u1(ω1)), . . . , fn(dn, un(ωn)),

fn+1(C1(ω1), . . . , Cn(ωn)) : Ai(ui(ωi)) = 0, i = 1, . . . , n}.
(3)

We foresee that, due to the last objective fn+1, we will be able to seamlessly
discriminate against those solutions obtained for the physical models that
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are too distant. More specifically, an artifact appearing in the particular
ωi would be considered only if the other processes would yield enough evi-
dence that the particular candidate solution is indeed promising. Thus, we
expect tremendous reduction of generated artifacts and, in consequence, we
expect severe reduction of multimodality of the problem (as many apparent
extrema arise from interactions between artifacts and true extrema). Gen-
erally, we expect that solving many models jointly would yield information
about inverse solutions that would be much broader and useful than that
obtained if we considered each model separately. We hope that because
of this additional information, the computational cost of solving (1) or (3)
would not be larger (or, in fact, would even be possibly smaller than) the
cost of minimizing each misfit separately.

Our proposed approach provides a rigorous mathematical framework
that complements and generalizes existing methods for the joint inversion
of multi-physical measurements. In particular, functions Ci defined above
can be selected: (a) to impose some geometrical correlation, (b) to repro-
duce the behaviour of certain experimental laws, or (c) to impose any other
interrelationship of interest between different physical phenomena.

The generalized IP formulation (3) might be considered for solving oil
deposit investigations on the base of the common inverting electrical resis-
tivity and sound speed using independent measurements obtained by the
electromagnetic and ultrasonic antennas.

1.3. Paper outline

The approach presented in Section 1.2 was briefly introduced in [17].
The current paper extends the first computational experiments contained
in [18] and published in [19].

We apply the complex, multi-deme Hierarchic Memetic Strategy (HMS)
[20] well suited for solving IPs for finding Pareto compromise solutions of
the problem (1) (see Section 2) for the case of twin physics (n = 2). In
Section 2.2, the special kind of the selection operator, a particular type of
rank selection (cf. MOGA [21]) that prefers the coherent Pareto solutions
is discussed.

In the sequel of the paper we perform the benchmark analysis (see Sec-
tion 3) showing the exploratory power of the proposed strategy and the
effective elimination of incoherent compromise solutions.

The last part of the paper (see Section 4) contains the solution of a real-
world engineering problem of inverting magnetotelluric (MT) measurements
(see [22]) in order to find oil deposits located under the Earth’s surface.
Two misfit functions are related to distinct frequencies of the electric and
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magnetic waves, for which the maximum sensitivity with respect to the
impedance to be searched is expected. In this example, we hybridize for the
first time HMS with a special kind of the local, convex optimization [23, 16]
in order to increase the search accuracy.

2. Multi-Objective Hierarchic Memetic Search (HMS)

2.1. Hierarchic Memetic Search

This section contains a short description of HMS, concentrating on its
computational aspects. For the details on the system architecture and algo-
rithms, we refer the reader to papers [20] and [22].

As a whole, HMS can be seen as a composition of a global optimization
tool and an external direct problem solver. The latter is necessary for the
evaluation of the objectives, the former seeks the global minima of the ob-
jectives. Naturally, an integration tier must be provided for an appropriate
encoding of problem parameters and the interpretation of the external solver
output. The global optimization module implements a complex memetic
search strategy combining a global search with high-level exploratory ca-
pabilities and an accurate as well as efficient gradient-based local search.
The global part exploits ideas taken from the Hierarchic Genetic Search
(HGS) [24]. Namely, the search performed in parallel by a collection of
evolutionary populations. The populations, however, are not mutually in-
dependent. Instead, they form a tree-like hierarchy (see Figure 1) with a
restricted number of levels. In the HGS case, such a structure proved to

Level 1

Level 2

Level 3

root deme

branch demes

leaf demes

U1

U2

U3

genetic spaces

low accuracy

high accuracy

Figure 1: HMS evolutionary population tree

have considerable exploratory capabilities combined with a good search ac-
curacy [25]. Retaining these abilities, HMS further increases the accuracy
and reduces the execution time. The first goal is achieved through the ap-
plication of a local optimization methods. The execution time reduction is
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increases (see Figure 1). The variability of the search accuracy results from
the diversity of the genotype encoding precision used at different tree levels.
In HMS, a real-number encoding as in [25, 27] is used (see [22]).

The variable-accuracy approach of HMS allows us to take advantage
of one more solved inverse problem feature. When the dependency of the
forward problem solution upon the parameters is Lipschitz-continuous and
the objectives are computed by means of an adaptive Finite Element solver
(hp-FEM) (see [28] for details), we can adapt the solver accuracy to the
assumed accuracy of HMS tree demes. Each objective f i

j(x), i = 1, . . . , n
can be computed at the particular level j of the HMS tree as shown in
Algorithm 1. Parameter Ratio i(j) depends on the Lipschitz constant of

Algorithm 1 Computing objective f i using hp-FEM

1: solve a forward problem Ai(u(code−1
j (x))) = 0 by hp-FEM for coarse

and fine meshes
2: compute relative hp-FEM error erel
3: while erel is below a level-dependent Ratio i(j) do
4: perform one step of hp adaptation
5: solve Ai(u(code−1

j (x))) = 0 by hp-FEM for a new fine mesh and
compute a new erel

6: end while
7: return approximate objective f i

j(x) computed using the final mesh

the functional f i, and the encoding accuracy at the j-th level of the hp-
HMS tree. erel is a measure of the relative FEM error between subsequent
steps of hp adaptation. Note that the aforementioned Lipschitz continuity
is not obvious and it has to be proved for each particular case. For the
MT problem it was proven in [22, Remark 1]. Appropriate versions for
other inverse problems can be found in papers [29, 3, 30]. Furthermore,
in a few important cases, we can determine the dependency between the
solver accuracy and the computational cost of the forward problem solution
(cf. [29, 3]), which is the main unit term of the overall HMS computational
cost. Hence, by modulating the deme accuracy, we can optimize this overall
cost.

2.2. Multi-objective selection and rank modification

Hierarchic Memetic Strategy for multi-objective optimization (MO-HMS)
generalizes HMS by applying a multi-objective genetic algorithm in each
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deme of the HMS tree (see Fig. 1). In this paper, we propose a multi-
objective selection operator that builds on the Pareto-dominance ranking
procedure introduced in MOGA [21] and on the rank modification idea which
was originally presented in [18, 19].

In the proposed selection scheme, the rank of an individual is given as
the number of solutions by which it is dominated in a particular deme. The
normalized ranks are modified by applying a rank modification (RM) func-
tion hj : Uj → R+∪{0}. Thus, the modified fitness function mod fitnessj :
Uj → R+∪{0} for an individual x ∈ Uj in a particular epoch is of the form:

mod fitnessj(x) =
rank(x)

µj
+ hj(x), (4)

where µj < +∞ stands for the population cardinality on the j-th level of
the HMS tree.

Such formulation allows for penalizing or rewarding individuals depend-
ing upon the incidence between the objectives for the solutions they repre-
sent. In this paper, we use the following two-criteria penalizing RM function:

hj(x) = c

[

f1
j (x)

f̄1
j

−
f2
j (x)

f̄2
j

]2

, (5)

where f i
j , i = 1, 2 are the objective functions induced by two physical models,

f̄ i
j , i = 1, 2 are the maximum observed values of objectives on the j-th level

of the HMS tree, and c ∈ R+ is a constant scaling parameter.
The fitness function for incidence-based rank modification is defined as

the following:

fitnessj(x) =

{

mod fitnessj(x) if 0 ≤ mod fitnessj(x) ≤ 1

1 otherwise.
(6)

The main consequence of applying RM is reduction of the quantity of
sprouted demes in regions with low incidence between objective functions.
The number of objectives does not change, but solutions resulting from ar-
tifacts and model inaccuracies are filtered out. Therefore, better quality
results can be obtained in reduced computational time. Moreover, the in-
fluence of objective incidence can be steered by parameter c in (5) or by
defining a new RM function hj .

We utilize a proportional selection, where the probability of selecting
an individual is obtained from its fitness by using a validating function
g(ζ) = 1 − ζ. In general, any decreasing function g ∈ C([0, 1] → [0, 1]) can
be used, depending on the desired selection pressure (see [31]).
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2.3. Local search reinforcement by a gradient-based method

In paper [19] we used MO-HMS strategy exploiting only evolutionary
searches. In the current paper we advance the local search abilities through
the use of a gradient-based local optimization method. This is performed ac-
cording to the overall HMS memetic approach, cf. [22], but we also take into
account the multi-objective context. Probably the most common technique
employed in solving multi-objective problems by means of local optimiza-
tion methods is the objective scalarization (see, e.g., [23]). In experiments
described in Section 4.2 we use the simple weighted-sum version of the tech-
nique, i.e. having selected positive numbers wi > 0, we construct a new
objective function

f =

n
∑

i=1

wi · f i. (7)

It is well-known (cf. [23]) that the minimum of (7) is always a Pareto
solution of problem (1). Moreover, if the considered problem is convex,
we can obtain all Pareto solutions through the minimization of problems (7)
with an appropriate variation of weights wi (cf. [16]). Probably, it is not our
case, but we do not apply any scalarization in the global search. Instead, the
scalarization is used to increase the accuracy of the final solutions. Namely,
we use EA-EA-LA three-level deme tree layout with Evolutionary Agents
equipped with the selection operator described in Section 2.2 on the root
and intermediate levels of the tree. On the other hand, on the leaf level
we run active Computational Agent populations managed by Local Agents.
Each of those populations receives its own separate set of weights: the same
for all individuals. The problem of weight selection has been thoroughly
studied (cf. [23] and the references therein). A common approach is to
select something similar to

wi =
1

f̂ i
,

where f̂ i is a quantity related to objective f i. It can be, e.g., either a
lower bound (cf. [32]) or an upper bound (cf. [33]). Of course, in general,
the determination of the bounds of the objectives is highly problematic.
Therefore, we rather use the objective values computed in the seed point of
a particular leaf deme. This choice is justified by the fact that the leaf-level
search is very focused and the probability that individuals diverge far from
the initial deme center is small. Let us note that in this manner we fix a
local scalarization for all the actions performed within a leaf deme: both
evolutionary (hence we can use here standard HMS operators) and, more
importantly, those related to the local gradient-based optimization.
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Figure 4: MO-HMS benchmark simulations. The best numerically calculated sample
points for the original problem (gray dots) and for the problem incorporating incidence
between objectives (black dots).

on ranks calculated numerically for a mesh of 2l×2l sample points with l = 8.
Figure 3b shows ranks after incorporating incidence between objectives for
the same mesh of sample points. In both figures, the neighbourhoods of the
Pareto set are denoted with the black color. A comparison of these sets is
presented in Figure 4. The number of connected components of the Pareto
set is about 30 in the original problem and 11 in the problem incorporating
incidence. There are 6 minima with very good incidence (in nearly the same
place for both objective functions), from which 1 is close to the boundary,
and there are additional 5 minima with good incidence (with overlapping
basins of attraction, but slightly shifted optimal points).

3.2. Noise

In the considered real-world inverse problem (see Section 4), the accuracy
of the forward problem hp-FEM solver depends on the level of the HMS tree
– it is the lowest in the root and the highest in leaves. In benchmark studies,
we include noise to simulate the error of the forward problem solver. Such
noise is obtained by generating normally distributed random numbers based
on Box-Muller transform, Z = var

√
−2 ln U1 cos(2πU2) where mean = 0,

variance var = 0.2, and U1 and U2 are independent random variables [34].
Thus, final calculated fitnesses f̄i for i = 1, 2 are f̄i(x, y) = |fi(x, y) + α Zi|,
where Zi are independent random variables with standard normal distribu-
tion generated as above, and α is a scaling parameter. The parameter α
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Table 1: Parameters of MO-HMS benchmark simulations.

Level 1 Level 2 Level 3

Population size 50 10 5
Scaling coefficients ηj 4096 128.0 1.0
Crossing rate 0.5 0.5 0.5
Mutation rate 0.1 0.02 0.004
Mutation standard deviation 0.2 0.05 0.01
Sprout distance 0.1 0.05
Sprout standard deviation 0.05 0.005
Sprout maximum rank 0.08 0.1
Noise parameter α 0.5 0.2 0.0

changes depending on the level in the HMS tree: it is equal to 0.5 for the
root (the biggest noise reflecting the lowest accuracy and the highest error
in hp-FEM), 0.2 for the branches, and 0 for the leaves (no noise).

3.3. Simulations

The problem is solved with MO-HMS with 3 levels. The stopping condi-
tion is set to 50 metaepochs. Parameters of the simulations are summarized
in Table 1. The sprout maximum rank parameter is a threshold preventing
from sprouting around individuals that are not close to the Pareto front. We
show four groups of experiments: without RM, and with RM (5) for c = 1,
c = 10, and c = 100 (Figure 5). For each of these cases there were 100 runs
of simulations.

3.4. Discussion on benchmark results

Figure 6 presents a comparison of the number of branches an leaves
created during simulation. The values for RM cases are smaller, meaning
that the number of sprouted demes was significantly reduced. With c = 1,
there were about 35% less branches and 55% less leaves, and with c =
100 about 65% less branches and 85% less leaves. In other words, in the
computed example, RM dramatically reduces the number of created leaves.
This effect has a great imact in context of real-world applications, where the
most significant factor of computational complexity results from accurate
computations at the leaf level.

Applying RM results in filtering out solutions with low incidence between
the objectives, i.e., reducing the valleys of near Pareto-optimal solutions (see
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Figure 6: Average numbers of branches and leaves for 100 runs of MO-HMS benchmark
simulations.
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e.g. {0.4, 1.0} to {0.0, 0.6} and {0.6, 0.0} in Figure 5a) to several regions (see
Figure 5b), or even removing them completely for large c (cf. Figure 5d).
The only regions with high density of individuals in Figure 5d are the ones
representing actual solutions to the problem (cf. Figures 3b and 4).

4. Twin Objective Magnetotelluric Data Inversion

In this section we present an application of methods described in Section
2 in the solution of a real-world engineering problem of the inversion of mag-
netotelluric measurements. Note that here we use both the multi-objective
selection operator defined in Section 2.2 and the local objective scalarization
from Section 2.3.

4.1. Magnetotelluric inverse problem

The MT method is employed to recover the resistivity distribution of the
Earth’s subsurface, and hence, to provide an image of it. The theoretical
foundations were established by Tikhonov [35] and Cagniard [36] in the
50’s, and has been used in earthquake precursor prediction research [37, 38],
groundwater monitoring [39] or CO2 geological storage [40] among other
applications.

Its main difference with other geophysical measurement acquisition meth-
ods comes from employing a natural source generated at the ionosphere [41].
This particular source produces an electromagnetic field that penetrates into
the subsurface a distance that depends on its frequency and the resistivity
distribution of the formation. Different antennas or receivers are located on
the Earth’s surface or on the oceans’ bed, covering a vast area of study. The
method works in a frequency range of 10−5–103 Hz, which allows to study
depths from few meters to hundreds of kilometers with different resolutions
(see e.g. [42]). It is easier and cheaper to record MT data than other more
invasive measurements such as those obtained from marine controlled source
electromagnetic or borehole logging.

Maxwell’s equations govern the MT phenomena. In particular, when the
formation and the source depend on two spatial variables (x, z), then two
uncoupled modes can be derived, the so called Transverse Electric (TE) (or
E-polarization) and the Transverse Magnetic (TM) (or H-polarization). We
denote the vector electric and magnetic fields by E = (Ex, Ey, Ez) and H =
(Hx, Hy, Hz), respectively. Hence, the TE mode is characterized by Ey, and
the only nonzero components of the electromagnetic fields are (Ey, Hx, Hz),
while the TM mode is characterized by Hy and the corresponding nonzero
components are (Hy, Ex, Ez).

16



We focus here in the TE mode, and therefore in the scalar equation
satisfied by Ey(ρ), which is given by

−∇ · (µ−1
∇Ey) − (ω2ε− jωρ−1)Ey = −jωJ imp

y , (10)

where µ is the magnetic permeability, ω the angular frequency, ε the elec-
trical permittivity, and J imp

y the impressed current source.
Since we deal with natural sources produced at the ionosphere, we have

no control over the intensity of the source. Thus, instead of recording EM
fields, it becomes natural to measure a physical quantity that is independent
of the unknown intensity, for example, the impedance. For the TE mode, it
is defined as ZTE = Zyz = Ey/Hx.

To numerically solve equation (10), we employ the self-adaptive multi-
goal oriented hp-FEM, which have already being successfully employed to
obtain accurate MT measurements [43, 44]. After numerically computing
Ey, we calculate Hx from Maxwell’s equations via postprocessing using the
formula Hx(ρ) = (jωµ)−1(∂Ey(ρ)/∂z). Hence, the impedance at each re-
ceiver i = 1, . . . ,M , is given by the following nonlinear functional

gi(ρ) = jωµ
Li(Ey(ρ))

Li

(

∂Ey(ρ)

∂z

) , (11)

where Li(·) is a linear and continuous functional [45, 46] associated to the
i-th antenna and defined as:

Li(Ey) =
1

|ΩAi |

∫

Ω
Ai

Ey dΩ. (12)

Here, ΩAi corresponds to a small rectangular domain occupied by each an-
tenna i = 1, . . . ,M .

We now define the misfit function as the Euclidean norm of the differ-
ence between the numerically computed and measured impedances at all
receivers:

f(d,Ey(ρ)) =
1

2M

M
∑

i=1

∣

∣gi(ρ) − di
∣

∣

2
, (13)

where di is the impedance measured at the i-th antenna, i = 1, . . . ,M . This
misfit function is associated with the particular frequency for which the
simulated and measured impedances are obtained. For further details into
the dependence between forward and inverse error that allows the effective
application of hp-HMS stochastic inversion, we refer to [22].
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In this work, we assume a regular domain Ω ∈ R
2 with a resistivity

distribution that belongs to the set D, the admissible set of resistivities
on the modelling area. This is defined as D = {ξ ∈ L∞(Ω); ξ(x) =
∑

i=1,...,K ξiχi(x), 0 < ξmin
i ≤ ξi ≤ ξmax

i < +∞}. Here, {χi}i=1,...,n is the in-
dicator functions of a disjoint covering {Ωi}i=1,...,K such that

⋃

i=1,...,K Ωi =
Ω, Ωi ∩ Ωj , i 6= j.

The model problem for our numerical computations is represented in
Figure 7. It consists of a subsurface resistivity area of 2500 km × 40 km
with a 1D underlying media that incorporates a two dimensional inhomo-
geneity embedded in one of the layers. The computational domain Ω is then
decomposed into four subdomains Ωi, i = 1, . . . , 4 with constant resistivities
(ρ1, . . . , ρ4) inside each material, and we place seven receivers i = 1, . . . , 7.
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• Source Antennas
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Figure 7: Geological formation and receivers location.

We employ two different frequencies, namely, ω1 = 10−3 and ω2 = 10−1.2

Hz. With this setting, we guarantee the best measurement conditions for
both: the maximum probe sensitivity and the best penetration for a depth
range 5–30 km (see [47]). Associated to the i-th frequency (i = 1, 2 in our
case), we consider two different misfits f i(di, Ei

y(ρ)), i = 1, 2 of the form of
equation (13). Both misfit functions are defined over the same domain D,
and therefore, the above settings are sufficient to formulate the Pareto prob-
lem (1). This problem intends to apply MO-HMS with rank modification
in order to estimate resistivities ρ1, . . . , ρ4, as described in Sections 2.1 and
2.2.
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4.2. Computational results

Our quantity of interest, i.e. the impedance at the receivers, was com-
puted by means of a goal-oriented hp-FEM solver (see [47] and [28] for
details). In this way, we could take advantage of the ability to compute the
quantity along with its first partial derivatives in a single execution. For
both considered frequencies, we imposed three different solver accuracy lev-
els: 60%, 20% and 3.5%, where the accuracy was measured as the maximal
relative FEM error percentage. The reference impedance vectors d1 and
d2 for both misfit functions were computed by solving the forward problem
with the best available solver accuracy (3.2% for ω1 and 1.2% for ω2), as-
suming that the exact parameter values are ρ1 = 1.0, ρ2 = 2.0, ρ3 = 3.0,
ρ4 = 10.0. As stated before, HMS had three-level deme layout with Evolu-
tionary Agents endowed with rank-modifying MO selection at upper levels,
whereas Local Agents with their active CA populations occupied the leaf
level. We allowed the leaf populations to run the local optimization only
once. To provide a comparison with the computations described in [19], the
simulations were executed five times and the stopping conditions were set to
obtain the same average number of objective calls as in the previous case.
Other HMS execution parameters are summarized in Table 2.

Table 2: HMS execution parameters

Root Middle Leaf

Population (initial) 20 10 5
Metaepoch length 2 2 2
Encoding scale 16384.0 128.0 1.0
Mutation rate 0.2 0.05 0.01
Crossover rate 0.5 0.5 0.5
Mutation std. dev. 3.0 0.6 0.1
Sprout std. dev. - 1.0 0.2
Sprout min. dist. - 1.0 0.2

As in the previous experiment, after the end of the computations, we se-
lected the union of all obtained leaf populations, and evaluated the modified
fitness (4)-(6) in this set of individuals. The comparison of stochastic solvers
is not simple, because the results, especially small-budget ones, can visibly
depend on the initial sampling. In Figure 8, we present the comparison of
the approximate Pareto fronts obtained with (blue triangles) and without
(green squares, results taken from [19]) local method executions. Both cat-
egories comprise points that had the modified fitness below 0.1. The figure
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shows that HMS without local methods found one good solution and several
separate solutions of slightly worse quality, while ’full’ HMS (endowed with
local search ability) found much more good quality solutions.
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Figure 8: MT problem: Central parts of Pareto fronts (objective space)

Tables 3 and 4 show all non-dominated individuals from combined final
populations for both experiments. It follows that ’full’ HMS detected thrice
as much best-quality solutions than any competitor in a final population.

Table 3: Non-dominated individuals (without local method)

ρ1 ρ2 ρ3 ρ4 f1 f2 mod. fitness

1.13084 1.89134 4.95361 3.79417 4.36966e-12 1.3282e-09 3.233923e-10
1.00934 3.35482 7.20712 5.61759 1.72058e-10 1.00846e-11 5.734588e-10

5. Conclusions

We propose a new memetic strategy for solving multi-physics, complex
inverse problems formulated as multi-objective global optimization ones.
The objectives are misfits between the measured and simulated states of
various governing processes. The multi-deme, tree-like structure of the pop-
ulation allows for both, intensive and relatively cheap exploration providing
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Table 4: Non-dominated individuals (with local method)

ρ1 ρ2 ρ3 ρ4 f1 f2 mod. fitness

1.08113 2.14728 743.6827 40424.2498 3.21456e-10 4.88782e-11 5.48761e-12
1.11638 2.26197 20.10138 1415.07494 6.88383e-10 4.87024e-11 7.94687e-12
0.98202 2.91661 0.84512 3.40328 1.43355e-10 1.36404e-10 2.92056e-10
0.974 1.33351 2925.71673 220.47357 3.68612e-11 1.63439e-10 5.00210e-10

1.00529 3.76945 25.75699 249.74075 1.42147e-11 5.24122e-10 5.35503e-9
1.385618 1.75574 1069.06592 24893.41814 8.26232e-09 1.31947e-11 1.29562e-8

moderate accuracy results and a more accurate search of some regions of
Pareto set in parallel. The special type of rank selection operator prefers
the coherent alternative solutions (individuals), eliminating artifacts pro-
duced by the particular processes.

The additional accuracy increment is obtained by the parallel convex
searches applied to the local scalarizations of the misfit vector. The main
idea of the local searches is to bound the Pareto set along the direction close
to the perpendicular to the Pareto set border, so the scalarization weights
are approximated locally coordinates of the normal vector. Such setting
makes the local search most effective.

The strategy is dedicated for solving ill conditioned problems, for which
inverting the single physical process can lead to ambiguous results.

The effect of the selection in artifact elimination is illustrated on a bench-
mark problem, while the whole strategy is applied for identification of oil
deposits, where the misfits are related to various frequencies of the magnetic
and electric waves of the magnetotelluric measurements.

The results confirm that each objective delivers partially independent
information on the solutions, but the proposed rank modification delivers
solutions with well balanced misfits.

Comparison of both versions of Hierarchic Memetic Search (without local
methods and endowed with local search ability) shows clearly the advantage
of the second one. The first strategy found one good solution and several
separate solutions of slightly worse quality, while the second,’full’ HMS ver-
sion found three times more good quality solutions.

The computations also show that the problem is much more sensitive
to shallow and vast ground layer resistivities than to deep or narrow layer
ones, as physically expected.
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EvoApplications 2014, Vol. 8602 of Lecture Notes in Computer Science,
Springer, 2014, pp. 138–149.

[21] C. Fonseca, P. Fleming, Genetic algorithms for multiobjective opti-
mization: Formulation, discussion and generalization, in: Proceedings
of the 5th International Conference on Genetic Algorithms, Vol. 93, San
Mateo, CA, USA, 1993, pp. 416–423.

[22] M. Smo lka, R. Schaefer, M. Paszyński, D. Pardo, J. Álvarez-Aramberri,
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