
Testing the Complexity of a Valued CSP Language
Vladimir Kolmogorov
Institute of Science and Technology Austria, Klosterneuburg, Austria
vnk@ist.ac.at

Abstract
A Valued Constraint Satisfaction Problem (VCSP) provides a common framework that can express a
wide range of discrete optimization problems. A VCSP instance is given by a finite set of variables,
a finite domain of labels, and an objective function to be minimized. This function is represented as
a sum of terms where each term depends on a subset of the variables. To obtain different classes
of optimization problems, one can restrict all terms to come from a fixed set Γ of cost functions,
called a language.

Recent breakthrough results have established a complete complexity classification of such classes
with respect to language Γ: if all cost functions in Γ satisfy a certain algebraic condition then all
Γ-instances can be solved in polynomial time, otherwise the problem is NP-hard. Unfortunately,
testing this condition for a given language Γ is known to be NP-hard. We thus study exponential
algorithms for this meta-problem. We show that the tractability condition of a finite-valued language
Γ can be tested in O(3√3 |D| · poly(size(Γ))) time, where D is the domain of Γ and poly(·) is some
fixed polynomial. We also obtain a matching lower bound under the Strong Exponential Time
Hypothesis (SETH). More precisely, we prove that for any constant δ < 1 there is no O(3√3 δ|D|)
algorithm, assuming that SETH holds.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Valued Constraint Satisfaction Problems, Exponential time algorithms,
Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.77

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/1803.02289.

Funding Vladimir Kolmogorov: supported by the European Research Council under the European
Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 616160.

1 Introduction

Minimizing functions of discrete variables represented as a sum of low-order terms is a
ubiquitous problem occurring in many real-world applications. Understanding complexity of
different classes of such optimization problems is thus an important task. In a prominent
VCSP framework (which stands for Valued Constraint Satisfaction Problem) a class is
parameterized by a set Γ of cost functions of the form f : Dn → Q ∪ {∞} that are allowed
to appear as terms in the objective. Set Γ is usually called a language.

Different types of languages give rise to many interesting classes. A widely studied
type is crisp languages Γ, in which all functions f are {0,∞}-valued. They correspond to
Constraint Satisfaction Problems (CSPs), whose goal is to decide whether a given instance
has a feasible solution. Feder and Vardi conjectured in [11] that there exists a dichotomy
for CSPs, i.e. every crisp language Γ is either tractable or NP-hard. This conjecture was
refined by Bulatov, Krokhin and Jeavons [7], who proposed a specific algebraic condition

EA
T

C
S

© Vladimir Kolmogorov;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 77; pp. 77:1–77:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:vnk@ist.ac.at
https://doi.org/10.4230/LIPIcs.ICALP.2019.77
https://arxiv.org/abs/1803.02289
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

77:2 Testing the Complexity of a Valued CSP Language

that should separate tractable languages from NP-hard ones. The conjecture was verified for
many special cases [27, 5, 3, 2, 8], and was finally proved in full generality by Bulatov [6]
and Zhuk [31].

At the opposite end of the VCSP spectrum are the finite-valued CSPs, in which functions
do not take infinite values. In such VCSPs, the feasibility aspect is trivial, and one has to
deal only with the optimization issue. One polynomial-time algorithm that solves tractable
finite-valued CSPs is based on the so-called basic linear programming (BLP) relaxation, and
its applicability (also for the general-valued case) was fully characterized by Kolmogorov,
Thapper and Živný [22]. The complexity of finite-valued CSPs was completely classified by
Thapper and Živný [29], where it is shown that all finite-valued CSPs not solvable by BLP
are NP-hard.

A dichotomy is also known to hold for general-valued CSPs, i.e. when cost functions in Γ
are allowed to take arbitrary values in Q ∪ {∞}. First, Kozik and Ochremiak showed [23]
that languages that do not satisfy a certain algebraic condition are NP-hard. Kolmogorov,
Krokhin and Rolínek then proved [21] that all other languages are tractable, assuming the
(now established) dichotomy for crisp languages conjectured in [7].

In this paper languages Γ that satisfy the condition in [23] are called solvable. Since
optimization problems encountered in practice often come without any guarantees, it is
natural to ask what is the complexity of checking solvability of a given language Γ. We
envisage that an efficient algorithm for this problem could help in theoretical investigations,
and could also facilitate designing optimization approaches for tackling specific tasks.

Checking solvability of a given language is known as a meta-problem or a meta-question in
the literature. Note that it can be solved in polynomial time for languages on a fixed domain
D (since the solvability condition can be expressed by a linear program with O(|D||D|m)
variables and polynomial number of constraints, where m = 2 if the language is finite-valued
and m = 4 otherwise). This naive solution, however, becomes very inefficient if D is a part
of the input (which is what we assume in this paper).

The meta-problem above was studied by Thapper and Živný for finite-valued lan-
guages [29], and by Chen and Larose for crisp languages [10]. In both cases it was shown to
be NP-complete. We therefore focus on exponential-time algorithms. We obtain the following
results for the problem of checking solvability of a given finite-valued language Γ:

An algorithm with complexity O(3
√

3 |D| · poly(size(Γ))), where D is the domain of Γ
and poly(·) is some fixed polynomial.
Assuming the Strong Exponential Time Hypothesis (SETH), we prove that for any constant
δ < 1 the problem cannot be solved in O(3

√
3 δ|D| · poly(size(Γ))) time.

We also present a few weaker results for general-valued languages (see Section 3).

Other related work. There is a vast literature devoted to exponential-time algorithms for
various problems, both on the algorithmic side and on the hardness side. Hardness results
usually assume one of the following two hypotheses [15, 16, 9].

I Conjecture 1 (Exponential Time Hypothesis (ETH)). Deciding satisfiability of a 3-CNF-SAT
formula on n variables cannot be solved in O(2o(n)) time.

I Conjecture 2 (Strong Exponential Time Hypothesis (SETH)). For any δ < 1 there exists
integer k such that deciding satisfiability of a k-CNF-SAT formula on n variables cannot be
solved in O(2δn) time.

Below we discuss some results specific to CSPs. Let (k, d)-CSP be the class of CSP
problems on a d-element domain where each constraint involves at most k variables. The
number of variables in an instance will be denoted as n. A trivial exhaustive search for

V. Kolmogorov 77:3

a (k, d)-CSP instance runs in O∗(dn) time, where notation O∗(·) hides factors polynomial
in the size of the input. For (2, d)-CSP instances the complexity can be improved to
O∗((d− 1)n) [26]. Some important subclasses of (2, d)-CSP can even be solved in O∗(2O(n))
time. For example, [25] and [4] developed respectively O(2.45n) and O∗(2n) algorithms for
solving the d-coloring problem. On the negative side, ETH is known to have the following
implications:

The (2, d)-CSP problem cannot be solved in do(n) = 2o(n log d) time [30].
The Graph Homomorphism problem cannot be solved in 2o(

n log d
log log d) time [12]. (This

problem can be viewed as a special case of (2, d)-CSP, in which a single binary relation is
applied to different pairs of variables).

Recently, exponential-time algorithms for crisp NP-hard languages have been studied using
algebraic techniques [17, 18, 24]. For example, [18] showed that the following conditions are
equivalent, assuming the (now proved) algebraic CSP dichotomy conjecture: (a) ETH fails;
(b) there exists a finite crisp NP-hard language Γ that can be solved in subexponential time
(i.e. all Γ-instances on n variables can be solved in O(2o(n)) time); (c) all finite crisp NP-hard
languages Γ can be solved in subexponential time.

The rest of the paper is organized as follows: Section 2 gives a background on the VCSP
framework, and Section 3 presents our results. All proofs are given in the full version of
this paper [20].

2 Background

We denote Q = Q∪{∞}, where∞ is the positive infinity. A function of the form f : Dn → Q
will be called a cost function over D of arity n. We will always assume that the set D is
finite. The effective domain of f is the set dom f = {x | f(x) < ∞}. Note that dom f can
be viewed both as an n-ary relation over D and as a function Dn → {0,∞}. We assume
that f is represented as a list of pairs {(x, f(x)) : x ∈ dom f}. Accordingly, we define
size(f) =

∑
x∈dom f [n log |D| + size(f(x))], where the size of a rational number p/q (for

integers p, q) is log(|p|+ 1) + log |q|.

I Definition 1. A valued constraint satisfaction language Γ over domain D is a set of
cost functions f : Dn → Q, where the arity n depends on f and may be different for
different functions in Γ. The domain of Γ will be denoted as DΓ. For a finite Γ we define
size(Γ) = |D|+

∑
f∈Γ size(f).

A language Γ is called finite-valued if all functions f ∈ Γ take finite (rational) values.
It is called crisp if all functions f ∈ Γ take only values in {0,∞}. We denote Feas(Γ) =
{dom f | f ∈ Γ} to be the crisp language obtained from Γ in a natural way. Throughout
the paper, for a subset A ⊆ D we use uA to denote the unary function D → {0,∞} with
arg min uA = A. (Domain D should always be clear from the context). For a label a ∈ D we
also write ua = u{a} for brevity.

I Definition 2. An instance I of the valued constraint satisfaction problem (VCSP) is a
function DV → Q given by

fI(x) =
∑
t∈T

ft(xv(t,1), . . . , xv(t,nt)) (1)

It is specified by a finite set of variables V , finite set of terms T , cost functions ft : Dnt → Q of
arity nt and indices v(t, k) ∈ V for t ∈ T, k = 1, . . . , nt. A solution to I is a labeling x ∈ DV

with the minimum total value. The size of I is defined as size(I) = |V |+|D|+
∑
t∈T size(ft).

The instance I is called a Γ-instance if all terms ft belong to Γ.

ICALP 2019

77:4 Testing the Complexity of a Valued CSP Language

The set of all Γ-instances will be denoted as VCSP(Γ). A finite language Γ is called tractable
if all instances I ∈ VCSP(Γ) can be solved in polynomial time, and it is NP-hard if the
corresponding optimization problem is NP-hard. A long sequence of works culminating with
recent breakthrough papers [6, 31] has established that every finite language Γ is either
tractable or NP-hard.

2.1 Polymorphisms and cores
Let O(m)

D denote the set of all operations g : Dm → D and let OD =
⋃
m≥1O

(m)
D . When D

is clear from the context, we will sometimes write simply O(m) and O.
Any language Γ defined on D can be associated with a set of operations on D, known as

the polymorphisms of Γ, which allow one to combine (often in a useful way) several feasible
assignments into a new one.

I Definition 3. An operation g ∈ O(m)
D is a polymorphism of a cost function f : Dn → Q

if, for any x1, x2, . . . , xm ∈ dom f , we have that g(x1, x2, . . . , xm) ∈ dom f where g is applied
component-wise.

For any valued constraint language Γ over a set D, we denote by Pol(m)(Γ) the set of
all operations on O(m)

D which are polymorphisms of every f ∈ Γ. We also let Pol(Γ) =⋃
m≥1 Pol(m)(Γ).

Clearly, if g is a polymorphism of a cost function f , then g is also a polymorphism of dom f .
For {0,∞}-valued functions, which naturally correspond to relations, the notion of a poly-
morphism defined above coincides with the standard notion of a polymorphism for relations.
Note that the projections (aka dictators), i.e. operations of the form ein(x1, . . . , xn) = xi,
are polymorphisms of all valued constraint languages. Polymorphisms play the key role in
the algebraic approach to the CSP, but, for VCSPs, more general constructs are necessary,
which we now define.

I Definition 4. An m-ary fractional operation ω on D is a probability distribution on O(m)
D .

The support of ω is defined as supp(ω) = {g ∈ O(m)
D | ω(g) > 0}.

For an operation g ∈ O(m) we will denote χg to be characteristic vector of g, i.e. the fractional
operation with χg(g) = 1 and χg(h) = 0 for h 6= g.

I Definition 5. A m-ary fractional operation ω on D is said to be a fractional polymorphism
of a cost function f : Dn → Q if, for any x1, x2, . . . , xm ∈ dom f , we have∑

g∈supp(ω)

ω(g)f(g(x1, . . . , xm)) ≤ 1
m

(f(x1) + . . .+ f(xm)). (2)

For a constraint language Γ, fPol(m)(Γ) will denote the set of all m-ary fractional
operations that are fractional polymorphisms of each function in Γ. Also, let fPol(Γ) =⋃
m≥1 fPol(m)(Γ), supp(m)(Γ) =

⋃
ω∈fPol(m)(Γ) supp(ω) and supp(Γ) =

⋃
m≥1 supp(m)(Γ).

(It is easy to check that supp(Γ) ⊆ Pol(Γ), and supp(Γ) = Pol(Γ) if Γ is crisp).

Next, we will need the notion of cores.

I Definition 6. Language Γ on domain D is called a core if all operations g ∈ supp(1)(Γ) are
bijections. Subset B ⊆ D is called a core of Γ if B = g(D) for some operation g ∈ supp(1)(Γ)
and the language Γ[B] is a core, where Γ[B] is the language on domain B obtained by
restricting each function f : Dn → Q in Γ to Bn.

V. Kolmogorov 77:5

The following facts are folklore knowledge. We do not know an explicit reference (at least in
the case of general-valued languages), so we prove them in [20] for completeness.

I Lemma 7. Let B be a subset of D = DΓ such that B = g(D) for some g ∈ supp(1)(Γ).
(a) Set B is a core of Γ if and only if |B| = core-size(Γ) def= min {|g(D)| : g ∈ supp(1)(Γ)}.
(b) There exists vector ω ∈ fPol(1)(Γ) such that g(D) ⊆ B for all g ∈ supp(ω). Furthermore,

if B is a core of Γ then such ω can be chosen so that g(a) = a for all g ∈ supp(ω) and
a ∈ B.

(c) Let I be a Γ-instance on variables V . Then minx∈BV fI(x) = minx∈DV fI(x).
For a language Γ we denote Bcore

Γ to be the set of subsets B ⊆ D which are cores of Γ, and
Ocore

Γ to be set of operations g ∈ supp(1)(Γ) such that g(D) ∈ Bcore
Γ (or equivalently such

that |g(D)| = core-size(Γ)).

2.2 Dichotomy theorem
Several types of operations play a special role in the algebraic approach to (V)CSP.

I Definition 8. An operation g ∈ O(m)
D is called

idempotent if g(x, . . . , x) = x for all x ∈ D;
cyclic if m ≥ 2 and g(x1, x2, . . . , xm) = g(x2, . . . , xm, x1) for all x1, . . . , xm ∈ D;
symmetric if m ≥ 2 and g(x1, x2, . . . , xm) = g(xπ(1), xπ(2), . . . , xπ(m)) for all x1, . . . , xm ∈
D, and any permutation π on [m];
Siggers if m = 4 and g(r, a, r, e) = g(a, r, e, a) for all a, e, r ∈ D.

A fractional operation ω is said to be idempotent/cyclic/symmetric if all operations in supp(ω)
have the corresponding property.

Note, the Siggers operation is traditionally defined in the literature as an idempotent
operation g satisfying g(r, a, r, e) = g(a, r, e, a). Here we follow the terminology in [1] that
does not require idempotency. (In [10] such an operation was called quasi-Siggers).

We can now formulate the dichotomy theorem.

I Theorem 9. Let Γ be a language. If the core of Γ admits a cyclic fractional polymorphism
then Γ is tractable [21, 6, 31]. Otherwise Γ is NP-hard [23].

We will call languages Γ satisfying the condition of Theorem 9 solvable. The following
equivalent characterizations of solvability are either known or can be easily be derived from
previous work [28, 19, 22, 23] (see [20]):

I Lemma 10. Let Γ be a language and g ∈ supp(1)(Γ). The following conditions are
equivalent:
(a) Γ is solvable.
(b) Γ admits a cyclic fractional polymorphism of some arity m ≥ 2.
(c) supp(Γ) contains a Siggers operation.
(d) Γ ∪ {ua | a ∈ B} is solvable for any core B of Γ.
(e) Γ[g(DΓ)] is solvable.
Furthermore, a finite-valued language Γ is solvable if and only if it admits a symmetric
fractional polymorphism of arity 2.

Note that checking solvability of a given language Γ is a decidable problem. Indeed, con-
dition (c) can be tested by solving a linear program with |O(4)

D | = |D||D|4 variables and
O(poly(size(Γ))) constraints, where we maximize the total weight of Siggers operations
subject to linear constraints expressing that ω ∈ RO

(4)
D is a fractional polymorphism of Γ

of arity 4.

ICALP 2019

77:6 Testing the Complexity of a Valued CSP Language

2.3 Basic LP relaxation
Symmetric operations are known to be closely related to LP-based algorithms for CSP-related
problems. One algorithm in particular has been known to solve many VCSPs to optimality.
This algorithm is based on the so-called basic LP relaxation, or BLP, defined as follows.

Let Mn = {µ ≥ 0 |
∑
x∈Dn µ(x) = 1} be the set of probability distributions over labelings

in Dn. We also denote ∆ = M1; thus, ∆ is the standard (|D| − 1)-dimensional simplex. The
corners of ∆ can be identified with elements in D. For a distribution µ ∈Mn and a variable
v ∈ {1, . . . , n}, let µ[v] ∈ ∆ be the marginal probability of distribution µ for v:

µ[v](a) =
∑

x∈Dn:xv=a
µ(x) ∀a ∈ D.

Given a VCSP instance I in the form (1), we define the value BLP(I) as follows:

BLP(I) = min
µ,α

∑
t∈T

∑
x∈dom ft

µt(x)ft(x) (3)

s.t. (µt)[k] = αv(t,k) ∀t ∈ T, k ∈ {1, . . . , nt}
µt ∈ Mnt

∀t ∈ T
µt(x) = 0 ∀t ∈ T, x /∈ dom ft
αv ∈ ∆ ∀v ∈ V

If there are no feasible solutions then BLP(I) =∞. The objective function and all constraints
in this system are linear, therefore this is a linear program. Its size is polynomial in size(I),
so BLP(I) can be found in time polynomial in size(I).

We say that BLP solves I if BLP(I) = minx∈Dn fI(x), and BLP solves VCSP(Γ) if it
solves all instances I of VCSP(Γ). The following results are known.

I Theorem 11 ([22]). (a) BLP solves VCSP(Γ) if and only if Γ admits a symmetric fractional
polymorphism of every arity m ≥ 2. (b) If Γ is finite-valued then BLP solves VCSP(Γ) if
and only if Γ admits a symmetric fractional polymorphism of arity 2 (i.e. if it is solvable).

BLP relaxation also plays a key role for general-valued languages, as the following result
shows. Recall that uA for a subset A ⊆ D is the unary function D → {0,∞} with domuA = A.

I Definition 12. Consider instance I with the set of variables V and domain D. For node
v ∈ V denote Dv = {a ∈ D | ∃x ∈ DV s.t. fI(x) < ∞, xv = a}. We define Feas(I) and
I + Feas(I) to be the instances with variables V and the following objective functions:

fFeas(I)(x) =
∑
v∈V

uDv
(xv) fI+Feas(I)(x) = fI(x) + fFeas(I)(x)

It is easy to see that fI(x) = fI+Feas(I)(x) for any x ∈ DV . However, the BLP relaxations
of these two instances may differ.

I Theorem 13 ([21]). If Γ is solvable and I is a Γ-instance then BLP solves I + Feas(I).

If Γ is solvable and we know a core B of Γ, then an optimal solution for every Γ-instance
can be found by using the standard self-reducibility method, in which we repeatedly add
unary terms of the form ua(xv) to the instance for different v ∈ V and a ∈ B and check
whether this changes the optimal value of the BLP relaxation. A formal description of
the method is given below. (Notations I[B] and I + ua(xv) should be self-explanatory; in
particular, the former is the instance obtained from I by restricting each term to domain B).

V. Kolmogorov 77:7

Algorithm 1: LP-Probe(I, B). Input: instance I with variables V and domain D,
set B ⊆ D. Output: either a labeling x∗ ∈ arg minx∈DV fI(x) with x∗ ∈ BV or a
flag in {∅, FAIL}.

1 compute value LP ∗=BLP (I+Feas(I)), then update I ← I[B] (or return ∅ if
LP ∗ =∞)

2 for each variable v ∈ V in some order do
3 for each label a ∈ B in some order do
4 let I ′ = I + ua(xv), and compute LP ′ = BLP (I ′ + Feas(I ′))
5 if LP ′=LP ∗ then update I←I ′ and go to line 2 (i.e. proceed with the next

variable v)
6 return FAIL

7 return labeling x∗ ∈ BV where x∗v equals the label a for which term ua(xv) has been
added

I Lemma 14.
(a) If LP-Probe(I, B) returns a labeling x∗ then x∗ ∈ arg minx∈DV fI(x).
(b) If LP-Probe(I, B) returns ∅ then instance I is infeasible.
(c) Suppose that I is a Γ-instance where Γ is solvable and B ∈ Bcore

Γ . Then LP-Probe(I, B) 6=
FAIL.

Proof. Part (a) holds by construction, and part (b) can be derived from the following two
facts (which hold under the preconditions of part (b)):

minx∈BV fI(x) = minx∈DV fI(x) by Lemma 7(c).
BLP solves all instances to which it is applied during the algorithm. Indeed, by Lemma 10
the language Γ′ = Γ[B] ∪ {ua | a ∈ B} is solvable. The initial instance is a Γ-instance,
and all instances in line 4 are Γ′-instances. The claim now follows from Theorem 13. J

2.4 Meta-questions and uniform algorithms
In the light of the previous discussion, it is natural to ask the following questions about a given
language Γ: (i) Is Γ solvable? (ii) Is Γ a core? (iii) What is a core of Γ? Such questions are
usually called meta-questions or meta-problems in the literature. For finite-valued languages
their computational complexity has been studied in [29].

I Theorem 15 ([29]). Problems (i) and (ii) for {0, 1}-valued languages are NP-complete
and co-NP-complete, respectively.

I Theorem 16 ([29]). There is a polynomial-time algorithm that, given a core finite-valued
language Γ, either finds a binary idempotent symmetric fractional polymorphism ω of Γ with
| supp(ω)| = O(poly(size(Γ))), or asserts that none exists.

For crisp languages the following hardness results are known.

I Theorem 17 ([14]). Deciding whether a given crisp language Γ with a single binary relation
is a core is a co-NP-complete problem. (Equivalently, testing whether a given directed graph
has a non-bijective homomorphism onto itself is an NP-complete problem).

I Theorem 18 ([10]). Deciding whether a given crisp language Γ with binary relations is
solvable is an NP-complete problem.

ICALP 2019

77:8 Testing the Complexity of a Valued CSP Language

It is still an open question whether an analogue of Theorem 16 holds for crisp languages,
i.e. whether solvability of a given core crisp language Γ can be tested in polynomial time.
However, it is known [10] that the answer would be positive assuming the existence of a
certain uniform polynomial-time algorithm for CSPs.

I Definition 19. Let F be a class of languages. A uniform polynomial-time algorithm for
F is a polynomial-time algorithm that, for each input (Γ, I) with Γ ∈ F and I ∈ VCSP(Γ),
computes minx fI(x).

I Theorem 20 ([10]). Suppose that there exists a uniform polynomial-time algorithm for
the class of solvable core crisp languages. Then there exists a polynomial-time algorithm
that decides whether a given core crisp language is solvable (or equivalently admits a Siggers
polymorphism).

Currently it is not known whether a uniform polynomial-time algorithm for core crisp
languages exists. (Algorithms in [6, 31] assume that needed polymorphisms of the language
are part of the input; furthermore, the worst-case bound on the runtime is exponential in |D|).

We remark that [10] considered a wider range of meta-questions for crisp languages. In
particular, they studied the complexity of deciding whether a given Γ admits polymorphism
g ∈ O

(m)
D satisfying a given strong linear Maltsev condition specified by a set of linear

identities. Examples of such identities are g(x, . . . , x) ≈ x (meaning that g is idempotent),
g(x1, x2, . . . , xm) ≈ g(x2, . . . , xm, x1) (meaning that g is cyclic), and g(r, a, r, e) ≈ g(a, r, e, a)
(meaning that g is Siggers). We refer to [10] for further details.

3 Our results

In this section the domain of language Γ is always denoted as D, and its size as d = |D|.
Our algorithms will construct Γ-instances I on n = dm variables (where m ≤ 4) with

size(I) = O(poly(size(Γ))) for some fixed polynomial. We denote Tn,Γ to be the running
time of a procedure that computes Feas(I) for such I’s. Also, let T ∗n,Γ be the combined
running times of computing Feas(J) for instances J during a call to LP-Probe(I, B) for
such I and some subset B. Note, if Γ is finite-valued then computing Feas(I) is a trivial
problem, so Tn,Γ and T ∗n,Γ would be polynomial in n+ size(Γ).

Conditional cores. First, we consider the problem of computing a core B ∈ Bcore
Γ of a given

language Γ. A naive solution is to solve a linear program with |O(1)| = dd variables. We
will present an alternative technique that runs more efficiently (in the case of finite-valued
languages) but is allowed to output an incorrect result if Γ is not solvable. It will be
convenient to introduce the following terminology: language Γ is a conditional core if either
Γ is a core or Γ is not solvable. Similarly, set B is a conditional core of Γ if either B ∈ Bcore

Γ
or Γ is not solvable. Note, B = ∅ is a conditional core of Γ if and only if Γ is not solvable.

To compute a conditional core of Γ, we will use the following approach. Consider a
pair (Γ, σ) where σ is a string of size O(poly(Γ)) that specifies set Bσ of candidate cores
of Γ. Formally, Bσ = {B1, . . . , BN} where ∅ 6= Bi ⊆ D for each i ∈ [N]. We assume that
elements of Bσ can be efficiently enumerated, i.e. there exists a polynomial-time procedure
for computing B1 from σ and Bi+1 from (σ,Bi). If B is a set of subsets B ⊆ D, we will
denote

O[B] = {g ∈ O(1) | g(D) = B for some B ∈ B}
Ô[B] = {g ∈ O(1) | g(D) ⊆ B for some B ∈ B}

V. Kolmogorov 77:9

I Theorem 21. There exists an algorithm that for a given input (Γ, σ) does one of the
following:
(a) Produces a fractional polymorphism ω ∈ fPol(1)(Γ) with supp(ω) ⊆ Ô[Bσ] and
| supp(ω)| ≤ 1 +

∑
f∈Γ | dom f |.

(b) Asserts that there exists no vector ω ∈ fPol(1)(Γ) with supp(ω) ⊆ Ô[Bσ].
(c) Asserts that one of the following holds: (i) Γ is not solvable; (ii) Bσ ∩ Bcore

Γ = ∅.
It runs in (|Bσ|+O(poly(size(Γ))))·(T ∗d,Γ+O(poly(size(Γ)))) time and uses O(poly(size(Γ)))
space.

The algorithm in the theorem above is based on the ellipsoid method [13], which tests
feasibility of a polytope using a polynomial number of calls to the separation oracle. In
our case this oracle is implemented via one or more calls to LP-Probe(I, B) for appropriate
I and B.

One possibility would be to use Theorem 21 with the set Bσ = {B ⊆ D |B 6= ∅, B 6= D}.
If the algorithm returns result (a) then we can take operation g ∈ supp(ω) and call the
algorithm recursively for the language Γ[g(D)] on a smaller domain. If we get result (b) or (c)
then one can show that Γ is a conditional core, so we can stop. For finite-valued languages this
approach would run in O(2d · poly(size(Γ))) time. We will pursue an alternative approach
with an improved complexity O(3

√
3 d · poly(size(Γ))).

This approach will use partitions Π = {D1, . . . , Dk} of domain D. For such Π we denote

OΠ = {g ∈ O(1)
D : g(a) = g(b) ∀a, b ∈ A ∈ Π}

Π⊥ = {B ⊆ D : |B ∩A| = 1 ∀A ∈ Π}

We say that Π is a partition of Γ if the set OΠ ∩ supp(Γ) is non-empty. In particular, the
partition Π = {{a} | a ∈ D} of D into singletons is a partition of Γ, since supp(Γ) contains
the identity mapping D → D. We say that Π is a maximal partition of Γ if Π is a partition
of Γ and no coarser partition Π′ � Π (i.e. Π′ with OΠ′ ⊂ OΠ) has this property. Clearly, for
any Γ there exists at least one Π which is a maximal partition of Γ. By analogy with cores,
we say that Π is a conditional (maximal) partition of Γ if either Π is a (maximal) partition
of Γ or Γ is not solvable.

In the results below Π is always assumed to be a partition of D.

I Lemma 22.
(a) If Π is a maximal partition of Γ then Bcore

Γ ⊆ Π⊥ and Ocore
Γ = O[Π⊥] ∩ supp(Γ).

(b) If Π is a partition of D then |Π⊥| ≤ 3
√

3 d.

I Theorem 23. There exists an algorithm with runtime Td,Γ + T|Π|,Γ + O(poly(size(Γ)))
that for a given input (Γ,Π) does one of the following:
(a) Asserts that Π is a conditional partition of Γ.
(b) Asserts that Π is not a partition of Γ.
As before, the algorithm in Theorem 23 is based on the ellipsoid method. However, now we
cannot use procedure LP-Probe(I, B) to implement the separation oracle, since a candidate
core B is not available. Instead, we solve the BLP relaxation of instance I and derive a
separating hyperplane from a (fractional) optimal solution of the relaxation.

I Corollary 24. (1) A conditional maximal partition Π of Γ can be computed in O(d2) ·Td,Γ +
O(poly(size(Γ)) time. (2) Once such Π is found, a conditional core B of Γ can be computed
using (|Π⊥|+O(poly(size(Γ))) · (T ∗d,Γ +O(poly(size(Γ)))) time and O(poly(size(Γ))) space.
If B 6= ∅ then the algorithm also produces a fractional polymorphism ω ∈ fPol(Γ) such
that supp(ω) ⊆ O[Π⊥], | supp(ω)| ≤ 1 +

∑
f∈Γ | dom f | and supp(ω) contains an operation g

with g(D) = B.

ICALP 2019

77:10 Testing the Complexity of a Valued CSP Language

In part (1) we use a greedy search that starts with Π = {{a} | a ∈ D} and then repeatedly
calls the algorithm in Theorem 23 for coarser partitions Π. In part (2) we call the algorithm
from Theorem 21 with σ = Π and Bσ = Π⊥. For further details we refer to [20].

Testing solvability of a conditional core. Once we have found a conditional core B of Γ,
we need to test whether language Γ[B] is solvable. This problem is known to be solvable
in polynomial-time for finite-valued languages [29], see Theorem 16. Their result can be
extended as follows.

I Theorem 25. There exists an algorithm that for a given language Γ does one of the
following:
(a) Produces an idempotent fractional polymorphism ω ∈ fPol(Γ) certifying solvability of Γ:

ω has arity m = 2 and is symmetric, if Γ is finite-valued;
ω has arity m = 4 and contains a Siggers operation in the support, if Γ is not finite-
valued. Furthermore, in each case vector ω satisfies | supp(ω)| ≤ 1 +

∑
f∈Γ

(| dom f |
m

)
.

(b) Asserts that one of the following holds: (i) Γ is not solvable; (ii) Γ is not a core.

Its runtime is O(poly(size(Γ))) if Γ is finite-valued, and O(T ∗d4,Γ · poly(size(Γ))) otherwise.

Combining procedures in Corollary 24 and the algorithm in Theorem 25 yields our main
algorithmic result.

I Corollary 26. Solvability of a given finite-valued language Γ can be tested in O(3
√

3 d ·
poly(size(Γ))) time. If the answer is positive, the algorithm also returns a fractional
polymorphism ω1 ∈ fPol(1)(Γ) with supp(ω1) ⊆ Ocore

Γ and a symmetric idempotent fractional
polymorphism ω2 ∈ fPol(2)(Γ[B]) where B = g(D) for some g ∈ supp(ω1); furthermore,
| supp(ωm)|≤1+

∑
f∈Γ

(| dom f |
m

)
for m∈{1, 2}.

Hardness results. Let us fix a constant L ∈ {1,∞}. As Theorems 15, 17 and 18 state,
testing whether Γ is (i) solvable and (ii) is a core are both NP-hard problems for {0, L}-
valued languages. We now present additional hardness results under the Exponential Time
Hypothesis (ETH) and the Strong Exponential Time Hypothesis (SETH) (see Conjectures 1
and 2). Note that for Theorem 27 we simply reuse the reductions from [10]. We say that a
family of languages F is k-bounded if each Γ ∈ F satisfies size(Γ) = O(poly(d)) for some
fixed polynomial, and arity(f) ≤ k for all f ∈ Γ.

I Theorem 27. Suppose that ETH holds. Then there exists a 2-bounded family F of
{0, L}-valued languages such that the following problems cannot be solved in O(2o(d)) time:
(a) Deciding whether language Γ ∈ F is solvable.
(b) Deciding whether language Γ ∈ F is a core.

I Theorem 28. Suppose that SETH holds. Then for any δ < 1 there exists an O(1)-bounded
family F of {0, L}-valued languages such that the following problems cannot be solved in
O(3
√

3 δd) time:
(a) Deciding whether language Γ ∈ F is solvable (assuming the existence of a uniform

polynomial-time algorithm for core crisp languages, in the case when L =∞).
(b) Deciding whether language Γ ∈ F satisfies core-size(Γ) ≤ d/3.

V. Kolmogorov 77:11

References
1 L. Barto, A. Krokhin, and R. Willard. Polymorphisms, and how to use them. In A. Krokhin

and S. Živný, editors, The Constraint Satisfaction Problem: Complexity and Approximability.
Dagstuhl Follow-Ups series, Volume 7, 2017.

2 Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited. In
Proceedings of the 26th IEEE Symposium on Logic in Computer Science (LICS’11), pages
301–310. IEEE Computer Society, 2011. doi:10.1109/LICS.2011.25.

3 Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
Journal on Computing, 38(5):1782–1802, 2009. doi:10.1137/070708093.

4 A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion–exclusion. SIAM J.
Computing, 39(2):546–563, 2009.

5 Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
Journal of the ACM, 53(1):66–120, 2006. doi:10.1145/1120582.1120584.

6 Andrei Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceedings of the 58th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’17). IEEE Computer
Society, 2017. doi:10.1109/FOCS.2017.37.

7 Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. Classifying the Complexity of Constraints
using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005. doi:10.1137/
S0097539700376676.

8 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Transactions on Computational Logic, 12(4), 2011. Article 24. doi:10.1145/1970398.1970400.

9 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability
of small depth circuits. In Proceedings of the 4th International Workshop on Parameterized
and Exact Computation (IWPEC), volume 5917 of LNCS, pages 75–85, 2009.

10 Hubie Chen and Benoit Larose. Asking the Metaquestions in Constraint Tractability. ACM
Transactions on Computation Theory (TOCT), 9(3), October 2017. doi:10.1145/3134757.

11 Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on
Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

12 Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin. Lower Bounds
for the Graph Homomorphism Problem. In Proceedings of the 36th International Colloquium
on Automata, Languages and Programming (ICALP), volume 9134 of LNCS. Springer, 2015.

13 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combin-
atorial optimization. Springer, 1988.

14 P. Hell and J. Nešetřil. The core of a graph. Discrete Mathematics, 109(1-3):117–126, 1992.
15 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of

Computer and System Sciences, 62(2):367–375, 2001.
16 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
17 P. Jonsson, V. Lagerkvist, G. Nordh, , and B. Zanuttini. Strong partial clones and the time

complexity of SAT problems. Journal of Computer and System Sciences, 84:52–78, 2017.
18 Peter Jonsson, Victor Lagerkvist, and Biman Roy. Time Complexity of Constraint Satisfaction

via Universal Algebra. In Proceedings of the 42nd International Symposium on Mathematical
Foundations of Computer Science (MFCS), 2017.

19 Keith Kearnes, Petar Marković, and Ralph McKenzie. Optimal strong Mal’cev conditions for
omitting type 1 in locally finite varieties. Algebra Universalis, 72(1):91–100, 2014.

20 Vladimir Kolmogorov. Testing the complexity of a valued CSP language. arXiv, 2019.
arXiv:1803.02289v3.

21 Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolínek. The Complexity of General-Valued
CSPs. SIAM Journal on Computing (SICOMP), 46(3):1087–1110, 2017.

ICALP 2019

http://dx.doi.org/10.1109/LICS.2011.25
http://dx.doi.org/10.1137/070708093
http://dx.doi.org/10.1145/1120582.1120584
http://dx.doi.org/10.1109/FOCS.2017.37
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1145/1970398.1970400
http://dx.doi.org/10.1145/3134757
http://dx.doi.org/10.1137/S0097539794266766
http://arxiv.org/abs/1803.02289v3

77:12 Testing the Complexity of a Valued CSP Language

22 Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear programming
for general-valued CSPs. SIAM Journal on Computing, 44(1):1—-36, 2015.

23 Marcin Kozik and Joanna Ochremiak. Algebraic Properties of Valued Constraint Satisfaction
Problem. arXiv, 2015. Extended abstract published in ICALP’15. arXiv:1403.0476.

24 Victor Lagerkvist and Magnus Wahlström. Which NP-Hard SAT and CSP Problems Admit
Exponentially Improved Algorithms? arXiv, 2018. arXiv:1801.09488.

25 E.L. Lawler. A note on the complexity of the chromatic number problem. Inf. Process. Lett.,
5(3):66–67, 1976.

26 Igor Razgon. Complexity Analysis of Heuristic CSP Search Algorithms. In International
Workshop on Constraint Solving and Constraint Logic Programming (CSCLP), volume 3978 of
LNCS, pages 88–99, 2005.

27 Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), pages 216–226. ACM, 1978.
doi:10.1145/800133.804350.

28 Mark H. Siggers. A strong Mal’cev condition for locally finite varieties omitting the unary
type. Algebra Universalis, 64(1-2):15–20, 2010.

29 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. Journal of the
ACM (JACM), 63(4), 2016.

30 Patrick Traxler. The time complexity of constraint satisfaction. In Proceedings of the 3rd
International Workshop on Parameterized and Exact Computation (IWPEC), pages 190–201,
2008.

31 Dmitriy Zhuk. A Proof of CSP Dichotomy Conjecture. In Proceedings of the 58th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’17). IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.38.

http://arxiv.org/abs/1403.0476
http://arxiv.org/abs/1801.09488
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1109/FOCS.2017.38

	Introduction
	Background
	Polymorphisms and cores
	Dichotomy theorem
	Basic LP relaxation
	Meta-questions and uniform algorithms

	Our results

