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Abstract

The eigenvalue density of many large random matrices is well approximated by a
deterministic measure, the self-consistent density of states. In the present work, we show
this behaviour for several classes of random matrices. In fact, we establish that, in each
of these classes, the self-consistent density of states approximates the eigenvalue density
of the random matrix on all scales slightly above the typical eigenvalue spacing.

For large classes of random matrices, the self-consistent density of states exhibits
several universal features. We prove that, under suitable assumptions, random Gram
matrices and Hermitian random matrices with decaying correlations have a 1/3-Hélder
continuous self-consistent density of states p on R, which is analytic, where it is positive,
and has either a square root edge or a cubic root cusp, where it vanishes. We, thus,
extend the validity of the corresponding result for Wigner-type matrices from [4, |5, |7].

We show that p is determined as the inverse Stieltjes transform of the normalized

trace of the unique solution m(z) to the Dyson equation
—m(z)' =z —a+ S[m(2)]

on CN*N with the constraint Imm(z) > 0. Here, 2 lies in the complex upper half-plane,

(CNXN CNXN

a is a self-adjoint element of and S is a positivity-preserving operator on
encoding the first two moments of the random matrix. In order to analyze a possible
limit of p for N — oo and address some applications in free probability theory, we also
consider the Dyson equation on infinite dimensional von Neumann algebras.

We present two applications to random matrices. We first establish that, under cer-
tain assumptions, large random matrices with independent entries have a rotationally
symmetric self-consistent density of states which is supported on a centered disk in C.
Moreover, it is infinitely often differentiable apart from a jump on the boundary of this

disk. Second, we show edge universality at all regular (not necessarily extreme) spectral

edges for Hermitian random matrices with decaying correlations.
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Set of first n positive integer, n € N
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CHAPTER 1

Introduction

The study of eigenvalue densities of large random matrices has a long history. In
a seminal work, it was initiated by Wigner in the 1950’s [157]. He proved that the
eigenvalue density of an N x N Hermitian matrix with independent (up to the symmetry
constraint) and centered entries of variance 1/N converges to a semicircular distribution
when N tends to infinity [158]. Such matrices are now called Wigner matrices and the
convergence result is referred to as Wigner’s semicircle law. Figure shows Wigner’s
semicircle law, pgc(z) == 5=1/(4 — 22)4, and the eigenvalue density of a sampled Wigner

matrix.

Wigner’s semicircle law is the first instance

of the wniversality phenomenon in random 0.3 p ol ™~ |

matrix theory (RMT) since he showed that o 0.2 8

the limit of the eigenvalue density is indepen- h 01!l |

dent of the precise distribution of the ma- 0 | |

trix entries. Moreover, Wigner conjectured —2 —1 0 1 2
E

that the distribution of the gaps of consec-

utive eigenvalues of Wigner matrices follows a ~ FIGURE 1.1. Wigner’s semicircle law
pse and eigenvalue density of a 1000 x

universal law which only depends on the ba- 1000 Gaussian Wigner matrix

sic symmetry type of the random matrix, i.e.,

whether it is a real symmetric or a complex Hermitian matrix. Nowadays, it is a common
belief in RMT that many features of the eigenvalue statistics of large random matrices
are universal in the sense that they do not depend on fine details of the random matrix

ensembleﬂ but hold true for large classes of random matrices with the same “symmetry”

type.

t By a slight abuse of terminology, we use the terms “random matrix” and “random matrix ensemble”
interchangeably. Strictly speaking, the latter usually denotes the induced probability measure on the
space of Hermitian matrices but we do not make this distinction here.
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Since Wigner’s ground-breaking ideas, verifying this belief is one of the main objectives
in RMT and many works have been devoted to this goal.

The present work contributes to this goal for five classes of random matrices:

e Hermitian random matrices with a special fourfold symmetry,

e Random Gram matrices,

e Random matrices with independent entries,

e Kronecker random matrices,

e Hermitian random matrices with general, decaying correlations among their en-

tries.

In the remainder of this introduction, we describe the questions about the eigenvalue
statistics studied in the present work. In Chapter 2, we then explain the results presented
in the final seven chapters, Chapter [3] to Chapter [0} Each of these chapters has been
published (or submitted for publication) as a separate paper. Hence, it can be read
independently.

When analyzing the eigenvalue density of a large random matrix, the first question
one asks is whether there is a deterministic measure that approximates the eigenvalue
density of this ensemble. A theorem that answers this question affirmatively is called
global law and the deterministic measure is referred to as the self-consistent density of
states.

This deterministic measure is typically determined solely by the first two moments of

the random matrix ensemble and it can be computed by solving the Dyson equation

—m(2)™t =21 —a+ S[m(2)] (1)

on CV*N under the constraint that Imm(z) := - (m(z)—m(z)*) is positive definite. Here,

2 lies in the complex upper half-plane, 1 is the identity matrix in CV*¥, a is a self-adjoint

CN*N and S is a positivity-preserving operator on CV*¥. The matrix a and

element of
the operator S encode the first and the second moment of the random matrix ensemble,
respectively.

In many cases, the global law can be strengthened to a local law which asserts that

the eigenvalue density is well approximated by the self-consistent density of states not
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only globally but also on smaller mecoscopic scales. A local law is called optimal if it
holds on all scales slightly above the typical eigenvalue spacing. We remark that local
laws have played a pivotal role in the proof of the so-called Wigner-Dyson-Mehta (WDM)
universality conjecture via the three-step strategy [67], see also the recent developments
in |66} |[105]. The WDM universality conjecture, which is due to Dyson and Mehta [114],
formalizes Wigner’s conjecture on the eigenvalue gap distribution mentioned above. It
predicts that the eigenvalue statistics on the microscopic scale, the scale of the typical
eigenvalue spacing, in the bulk, i.e., where the self-consistent density of states is strictly
positive, is given by a universal distribution for all random matrices of the same basic
symmetry type. Similarly, for each basic symmetry type, there is a universal (Tracy-
Widom) distribution that governs the eigenvalue statistics on the microscopic scale at
the edge, i.e., at the boundary of the support of the self-consistent density of states. This
phenomenon is called edge universality.

Thus, there are three strongly connected but mathematically distinct questions, we

will study

(a) Analysis of the solution to the Dyson equation, (|1)),
(b) Proof of the optimal local laws,

(¢) Proof of universality of local spectral statistics.

Previously, in [4, 5], some remarkable universal regularity properties of the self-
consistent density of states p of Wigner-type matrices have been proven. Wigner-type
matrices are Hermitian random matrices with centered, independent entries (up to the
symmetry constraint). They naturally generalize Wigner matrices. Indeed, p is shown
to be 1/3-Holder continuous, analytic, where it is positive, and have a square root edge
or an internal cubic root cusp, where it vanishes. It is remarkable that despite the high
dimensionality and nonlinearity of the Dyson equation, the singularity structure of p can
be described in such a simple universal form. Such detailed information about p is also
necessary to establish a local law not only in the bulk but also in the vicinity of the
singularities of p. For a certain class of Wigner-type matrices, this has been achieved

in [7].
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We stress that independence of the matrix elements leads to a structurally much
simpler Dyson equation. In fact, m in is always a diagonal matrix in this case and,
thus, the Dyson equation can be studied in a commutative setup.

In the current thesis, we substantially generalize the results of [4, 5| [7] by dropping
the independence condition on the matrix elements. This leads to a conceptually much
more involved genuinely noncommutative Dyson equation, in fact, the analysis of the
Dyson equation can go beyond matrices and we present it in the more general setup of
von Neumann algebras.

The optimal local law and local spectral statistics in the bulk have been proven in
the noncommutative matrix setup in [6, 56]. In this thesis, we perform the detailed
edge analysis, culminating in the proof of the Tracy-Widom universality for the edge
eigenvalues (including all internal edges) for very general random matrices with correlated
entries.

We also analyze the corresponding questions, regularity of self-consistent density of
states and local law, for random matrices with independent entries. For these non-
Hermitian matrices, the eigenvalues concentrate on a domain in the complex plane.
Studying whether the eigenvalues of a random matrix concentrate on a deterministic
set is an even more elementary question than a global law. Indeed, the latter implies the

former and the deterministic set is the support of the self-consistent density of states.



CHAPTER 2

Overview of the results

We now explain the contents of each individual chapter of the thesis in a short,
informal way. We also put these results into the historical context and give the most
important motivations. For more detailed information about previous results, we refer
to the introductions of the individual chapters. Each section in the present chapter is

numbered and titled according to the number and title of the chapter summarized in it.

CHAPTER [B LOCAL SEMICIRCLE LAW FOR RANDOM MATRICES WITH A FOURFOLD
SYMMETRY. Wigner introduced Wigner matrices as a model for the Hamiltonian of large
atomic nuclei |[159]. In this analogy, the eigenvalues of the Wigner matrix correspond
to the energy levels of the atomic nucleus. Since then, random matrix theory has found
many further applications in physics. In [32], it was argued that a good approximation
to the two-dimensional Anderson model is given by a random matrix H = (hy;); jez/nz

which satisfies the fourfold symmetry
hij = hji=h_i—j=h_j_i (2)

for all ¢,j € Z/NZ and possesses a constant diagonal.

Motivated by this application, we study a class of random matrices with the four-
fold symmetry, (2)), in Chapter Eﬂ below. For these matrices, we establish a local law
with Wigner’s semicircle law as self-consistent density of states, i.e., the local semicircle
law. Compared to all previous proofs of local semicircle laws, the main difficulty is that
the fourfold symmetry requires the simultaneous analysis of two vector self-consistent
equations for the diagonal and the counterdiagonal of the resolvent instead of only one
equation for the diagonal of the resolvent. In fact, our argument follows the strategy

in [60], where the local semicircle law for generalized Wigner matrices was shown. A

T Chapter 3| is based on the publication [12].
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Hermitian matrix H = (hy;)};_, is a generalized Wigner matrix if {h;: i < j} are in-

dependent and centered random variables such that all variances s;; := E|h;;|? scale like

1/N with upper and lower bounds and the variance matrix S = (s;;)},—

, 1s stochastic,
i.e., the entries in each row sum up to 1.

In fact, in Chapter , we consider random matrices H = (h;;); jez/nz Whose entries
are centered and independent up to the fourfold symmetry for all 4,j € Z/NZ.
Moreover, we assume that all variances s;; := E|h;;|? scale like 1/N and the variance
matrix S = (s;;);jez/nz s stochastic. We denote by ms.(2) the Stieltjes transform of the
semicircle law pg on [—2,2] and by G(z) := (H — z)~! the resolvent of H with entries

Gij(#). In this situation, we show that, for any v > 0, we have

e [Giy(2) — Gyme2)| S < )
with very high probabilityf| for all z € C such that Imz > N7'*7 and ||[Rez| — 2| > v
(see Theorem below). We remark that is prototypical for local laws of Hermitian
matrices, which are most conveniently formulated as a high probability estimate on the
difference between the resolvent and a deterministic matrix. The estimate is an
optimal local law since it implies the convergence of the eigenvalue density of H to the
semicircle law on all mesoscopic scales. Here, owing to the normalization s;; < 1/N, the

typical eigenvalue spacing is 1/N and Im z selects the mesoscopic scale > N~1*7. The

local law, (3)), also implies eigenvalue rigidity, i.e.,
A —ul SN (4)

with very high probabﬂityElfor 0 < j/N <1-—90. Here, \; < ... < Ay are the eigenvalues
of H and 71, ...,y are the 1/N-quantiles of the semicircle distribution ps..
The local semicircle law, solely with the Hermitian symmetry, in [60] was obtained

by analyzing a self-consistent equation for the vector (Gj; — my.)Y ;. Compared to the

i=1-
Hermitian symmetry, the fourfold symmetry imposes additional correlations among the

entries. Therefore, the proof of in Chapter [3| below requires analyzing an additional

IThe notation <in and indicates that the estimates hold true up to an N¢-factor with arbitrary
€ > 0. The probability of the associated event depends on . The precise statement is obtained by
replacing < by the stochastic domination < (see Definition below).
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self-consistent equation for the vector (G _;)icz/nz simultaneously to the one for (G —

msc)iGZ/NZ'

CHAPTER [4} LOCAL LAW FOR RANDOM GRAM MATRICES. Prior to Wigner matrices,

Wishart had introduced another special class of random matrices in 1928 [160]. In appli-

cations to mathematical statistics, he used random matrices of the form X X*, where X

is a p X n matrix with independent, centered Gaussian entries of identical variance. In

this situation, X X* is called a Wishart matrix.

Sample covariance matrices are the
generalization of Wishart matrices when
the assumption of Gaussian distribution
of the entries is dropped. Sample covari-
ance matrices play an important role in
mathematical statistics. This is because
the covariance matrix of n repeated (in-
dependent) measurements of a vector x €
CP with independent components is usu-
ally modeled by a sample covariance ma-
trix XX* with a p x n matrix X. In
1967, Marchenko and Pastur obtained the
counterpart of Wigner’s semicircle law for
sample covariance matrices [112]. The
Marchenko-Pastur law asserts that if n
tends to infinity and simultaneously p/n
tends to a strictly positive, finite constant
v € (0,00) then the eigenvalue density of
X X* converges to a deterministic proba-

bility density p, on R. In Figure 2.1} this

result is demonstrated in two cases, in Fig-

1.5
"\
1 [ |
-
SY
0.5 | 8
0 | | | |
0 0.5 1 1.5 2
E
(A) p = 1000, n = 2000, v = 1/2
2 \
1.5} 8
< o1 |
0.5 8
00 0.5 1 1.5 2
E
(B) p = 1000, n = 1000, v = 1
FIGURE 2.1. Comparison between

Marchenko-Pastur law p, and the eigen-
value density of XX*, where X is a
p X n matrix with independent, centered
Gaussian entries of variance 1/(p + n).

ure 2.1] () for p/n — v = 1/2 and in Figure 2.1] (B) for p/n — v = 1.
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By dropping the assumption of identical variances in the definition of sample covari-
ance matrices, we obtain random Gram matrices X X*, where X is a p X n matrix with
independent, centered entries. In the theory of wireless communication, they are used to
model systems with multiple transmitting and receiving antennas [90, [150]. The channel
capacity of such system is given by an integral with respect to the eigenvalue density of
X X*. Assuming a global or local law for X X*, this can be approximated by an integral
with respect to the self-consistent density of states.

In Chapter @ below, we therefore prove a bulk local law for random Gram matrices
and analyze their self-consistent density of states p. The main challenge compared to
previous works is an additional unstable direction in the defining equation for p close to
zero. Therefore, the proof of the local law requires very precise information about the
behaviour of p in the vicinity of zero. In order to obtain this information, we distinguish
the cases (i) p = n and (ii) p/n is away from zero, one and infinity. The other main
assumption in Chapter [ is that the variances of the entries of X scale like p with upper
and lower bounds. Denoting the variances of the entries of X by s;; and the variance
matrix by S = (s;;):;, the self-consistent density of states p can be obtained from the

unique solution (mq, my) € CP™™ of the vector Dyson equation

1
_(ml):z+(Sm2)Z7 fOI‘?::]_,...,p,
' (5)
1
_(m )kzz+(5tml)k, fork=1,...,n,
2

satisfying Im m;(2) > 0 and Immy(z) > 0 for all z € C with Im z > 0. In fact, Imm,(E+
in) in the limit 1 | 0 determines p at E for any E € R. For a sample covariance matrix, the
system (j5)) reduces to a single scalar quadratic equation that can be solved explicitly [112].
For general S, no explicit solution exists.

For Wigner-type random matrices, the quadratic vector equation (QVE), which is
similar to , has been analyzed in [4], 7). One key element in the regularity analysis of
the self-consistent density of states and the proof of the local law for Wigner-type matrices

and random Gram matrices is to understand the stability properties of the QVE and ,

t Chapter 4] below essentially agrees with the publication [14] which is a joint work with Lé&szlé6 Erdds
and Torben Kriiger.
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respectively, against small pertubations. The linear stability operator of the QVE has
precisely one unstable direction. This instability is directly regularized by the positivity
of the self-consistent density of states in the bulk. In contrast to this simpler case, the
linear stability operator of has two unstable directions. The first unstable direction
is again controlled by the positivity of the self-consistent density of states p in the bulk.
For the second one, m; and ms have to be analyzed in detail for Re z = 0. Indeed, we
show that (ms,ms) avoids this unstable direction for p = n due to an extra symmetry.
In Theorem below, we then conclude that p has an inverse square-root blow-up at
E = 0 in this case. For |p/n — 1| > ¢, the support of p has a gap around zero and p
has a point mass at zero if p > n (see Theorem below). This is used to conclude

regularity of the absolutely continuous part of p and the local law close to £ = 0.

CHAPTER [B SINGULARITIES OF THE DENSITY OF STATES OF RANDOM GRAM MA-
TRICES. In Chapter @ below, we extend the bulk analysis of p in Chapter [4]to the vicinity
of the singularities of p and the local law to the whole real line. In the vicinity of the
singularities, the stability is more critical and, owing to the additional unstable direction
of the stability operator, the stability analysis has to be adjusted even for Re z # 0. More
precisely, we prove under some additional assumptions on the variances s;; and away from
zero that p is 1/3-Hoélder continuous, analytic, where it is positive, and has a square root
or a cubic root singularity, where it vanishes. Thus, the self-consistent density of states of
random Gram matrices has the same regularity properties as the self-consistent density
of states of Wigner-type matrices.

In fact, the precise behaviour of p close to its singularities is obtained by carefully
expanding p(7p + w) for small w around 7y € supp p satisfying p(79) = 0. In [4, [5], it
was shown for the Wigner-type setup that this expansion is stable in the sense that the
coefficients of the cubic and quadratic terms do not vanish at the same time. Owing to this
essential property, the expansion is dominated by the cubic or the quadratic term as the
coefficient of the linear term vanishes. Hence, we obtain an approximately cubic equation
for p(70 + w) and only square root or cubic root singularities can occur. We remark that

the coefficients in this expansion are basically determined by the linear stability operator

T Chapter |5|is based on the publication [11].
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of the QVE at z = 79, i.e., the analogue of at z = 19. Therefore, in the setup of Gram
matrices, the stability of this expansion requires a new proof compared to [4, 5] due to

the presence of two unstable directions of the stability operator.

CHAPTER [6} LOCAL INHOMOGENEOUS CIRCULAR LAW. Chapter [§f] below deals with
random matrices with independent entries, i.e., without any symmetry. We show the
optimal local law for such matrices and analyze the regularity of their self-consistent
density of states. The unstable nature of the spectrum of these non-Hermitian and
even non-normal matrices requires a much harder simultaneous analysis of a family of
Wigner-type matrices with noncentered entries of non-identical variances. This is the
main novelty compared to previous works.

We now explain our results in Chapter [6] and

the difficulties in more detail. Let X = (zi;)},_;
be a random matrix with independent and cen-
tered entries. We again denote its variance ma-
trix by S = (s45)¥

Yo, sij = E|zy]?, and assume
that all variances s;; scale like 1/N. In Theo-
rem [6.2.6] below, we prove, under additional tech-

nical assumptions, that there exists a determin-

istic function o: C — [0, 00) such that the eigen-
FIGURE 2.2. Eigenvalues of a value density of X is well approximated by ¢ on all
300 x 300 matrix with centered, in-  scales above the typical eigenvalue spacing. The

dependent Gaussian entries of vari- proof holds true inside the disk D(0, R) of radius
ance 1/300. Almost all eigenvalues
are contained in a disk of radius 1. R := 1/p(5), where p(S) is the spectral radius of

S. Analogously to the case of identical variances,
where o is the uniform measure on the unit disk (see Figure , o is radially symmetric
and supported on D(0, R). Moreover, o is infinitely often differentiable on D(0, R) and

has positive upper and lower bounds on D(0, R), i.e., it has a jump discontinuity on

the boundary of D(0, R) (see Proposition below). Furthermore, for every € > 0,

t Chapter |§| below presents the publication [13] which is a joint work with L&szlé Erdés and Torben
Kriiger.
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all eigenvalues of X are contained in D(0, R + €) with very high probability (see Theo-
rem below).

Prior to our work, the local law has only been established in the case of identical
variances s;; = 1/N |44, 45, |146, 162], which requires a linear stability analysis of a scalar
cubic equation. For non-identical variances, a much more challenging linear stability

analysis of a 2/N-dimensional vector Dyson equation for the Hermitian random matrix

e P )
(X -0 0

where ¢ € C is an additional parameter, is necessary. This Hermitization trick is due to
Girko [81]. The global law has been proven in [51]. The proof of a local law necessitates
the analysis on much finer scales compared to the one of a global law. Therefore, to obtain
our result, the linear stability analysis of the full vector Dyson equation is performed on
all scales. The main difficulty is the additional complex parameter ( in @, which is
not present in the general Hermitian problems studied in [4, |5, 6], 7]. The bounds in the
linear stability analysis, also for derivatives with respect to (, have to be uniform in (.
This uniformity is also necessary to obtain the detailed information about ¢ mentioned
above. In particular, the positive lower bound on ¢ and its smoothness are new results

compared to [51].

CHAPTER mi LOCATION OF THE SPECTRUM OF KRONECKER RANDOM MATRICES.
In Chapter Eﬂ below, we prove that, for a very big class of Hermitian and non-Hermitian
random matrices, the eigenvalues concentrate on deterministic sets. The main difficulty
is the lack of a priori control on the self-consistent density of states as we do not impose
any irreducibility condition on the variance matrix. Such condition has been present in
all previous works. More precisely, we study Kronecker random matrices. These are block
matrices that consist of a K x K block structure with blocks of size N x N. Each of

these blocks is a linear combination of finitely many Wigner-type matrices and random

t Chapter [7| below is a slightly modified version of the publication [16] which was obtained in joint work
with Laszl6 Erdds, Torben Kriiger and Yuriy Nemish.
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matrices with independent entries. These matrices are assumed to be independent but
each matrix is allowed to appear in multiple blocks.

For any Kronecker random matrix X, we provide a monotonically increasing family of
deterministic subsets D., € > 0, of the complex plane and prove, under some normalization

and moment conditions, that for each € > 0, the spectrum of X is contained in D,
Spec(X) C D, (7)

with very high probability for N — oo and fixed K (see Theorem below). In
some situations, it is known that N.-oD. actually coincides with the support of the self-
consistent density of states obtained from the Dyson equation (cf. Chapters |§| and |§|
below). We expect this to be true in much greater generality. Furthermore, we show
a global law for any Hermitian Kronecker random matrix in the limit N — oo and for
fixed K in Theorem below. Here, we assume that the Hermitian Kronecker matrix
satisfies the same normalization and moment conditions as required for the proof of @

Owing to the lack of any irreducibility condition for the variance matrix, e.g. a lower
bound on the individual variances, and the presence of correlations among the blocks,
the self-consistent density of states p will not behave nicely in general. However, a
sufficient a priori understanding of p was essential in all previous arguments. This can be
circumvented by a careful analysis of the corresponding Dyson equation (see below)
for z ¢ supp p. On this set, the Dyson equation can still be analyzed and yields enough

information to prove and the global law for Hermitian Kronecker matrices.

CHAPTER@Z THE DYSON EQUATION WITH LINEAR SELF-ENERGY: SPECTRAL BANDS,
EDGES AND CUSPS. In Chapter @ﬂ below, we study the solution to the Dyson equation
with linear self-energy (see below) which generalizes the QVE as well as the (vector
and matrix) Dyson equations mentioned previously or studied in [4} [5, 6]. We show de-
tailed regularity properties of a measure induced by this solution. This measure is the
analogue of the self-consistent density of states. Compared to previous works, the non-

commutativity of the underlying algebra requires a novel perturbation expansion around

t Chapter |8 essentially agrees with the preprint |[15] which is joint work with Laszlé Erdés and Torben
Kriiger.
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a non-self-adjoint operator. Indeed, we consider a von Neumann algebra A with unit 1
and a faithful, normal, tracial state (-): A — C. Moreover, let a« = a* € A be a self-
adjoint element and S: A — A a positivity-preserving linear map which is symmetric
with respect to the scalar product (z,y) — (z*y) on A. Here, S is called the self-energy.

The Dyson equation (with linear self-energy)
—m(z)' =21 —a + S[m(2)] (8)

has a unique solution m: H — A, H = {2z € C: Imz > 0}, such that Imm(z) :=
(m(z) — m(2)*)/(2i) is positive definite for all z € H [96]. In fact, m is the Stieltjes
transform of a measure on R with values in the positive semidefinite elements of A (see
Proposition[8.2.1below). Under suitable assumptions, we show that there is a 1/3-Hélder
continuous function v: R — A such that

m(z) :/]R v(7) dr

T —Z

for all z € H. Furthermore, the function v is real-analytic, where it is positive, and has
either a square root edge or a cubic root cusp, where it vanishes (cf. Theorembelow).
In Theorem below, we also obtain precise expansions of v close to all small local
minima. The main difficulty compared to the singularity analysis of the QVE in [4] is the
noncommutativity of the multiplication in A. This leads to considerably more involved
computations compared to [4] but also necessitates a perturbation expansion around a
non-self-adjoint operator in place of the self-adjoint unperturbed operator from [4]. We
also prove a novel band mass formula which relates the mass of (—oo, E] with respect to
the probability density p = (v) for any E € R\ supp p to the limit m(E + in) for n | 0
(cf. below). In many cases, the band mass formula yields quantization results
for the mass p(U) of a band U C R, ie., U is a connected component of suppp (see
Proposition [8.2.6] (ii) and Corollary [8.9.4).

The Dyson equation, , plays an important role in the analysis of large Hermitian
random matrices. Let H be an N x N Hermitian random matrix with possibly non-
centered and correlated entries. In this setup, bulk local laws have been obtained in

[6, [56] under general conditions on the correlation decay of the entries of H. In fact,
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CN*N g := EH the expectation

if we choose A = CV*N (.} the normalized trace on
of H and S[z] := E[(H — a)z(H — a)] for x € CN*¥ in () then the local laws in [6)
56| assert that the resolvent of H at z € H is close to m(z) as long as z is away from
the spectral edges of the spectrum of H. In particular, the eigenvalue density of H is
well approximated by the inverse Stieltjes transform p of z — (m(z)). Hence, p is the
self-consistent density of states of H and the main results of Chapter [§| show that, under

certain assumptions, p = (v) has the same regularity properties as the self-consistent

density of states of Wigner-type matrices.

CHAPTER [ CORRELATED RANDOM MATRICES: BAND RIGIDITY AND EDGE UNI-
VERSALITY. In Chapter @ﬂ below, we consider Hermitian random matrices with decaying
correlations and general expectation, which generalize Wigner-type matrices. For these
random matrices, we prove edge universality at all (possibly internal) regular edges. The
edge universality at internal edges requires band rigidity, i.e., the absence of whatso-
ever discrepancy between the number of eigenvalues in a band and its mass, which is
the key novelty for these general random matrix models. Even for Wigner-type matri-
ces, self-consistent densities of states with multiple support intervals become ubiquitous.
Therefore, band rigidity is necessary to obtain edge universality at all regular edges.

More precisely, we first extend the bulk local laws from [6, 56] to regular spectral
edges by applying the results of Chapter [§f Then we use the band mass formula from
Chapter |8, the local law and an interpolation argument to establish band rigidity for
Hermitian random matrices with decaying correlations (compare Corollary below).
The band rigidity crucially strengthens the customary eigenvalue rigidity (cf. )

In the mid 1990’s, Tracy and Widom computed the distribution of the (appropriately
rescaled) fluctuation of the largest eigenvalue of the Gaussian unitary ensemble around 2
in the limit when the matrix size tends to infinity [148]. The Gaussian unitary ensemble
refers to a complex Hermitian Wigner matrix with Gaussian distributed entries. Since
then, for many complex Hermitian random matrix ensembles, the eigenvalues at regular
spectral edges have been shown to follow this Tracy-Widom distribution. This phenome-
non is called edge universality. For the symmetry class of real symmetric random matrices,

t Chapter |§| presents the preprint [17] which was written in joint work with L&szl6 Erdés, Torben Kriiger
and Dominik Schroder.
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there is a similar development originating from the work of Tracy and Widom in [149].
Combining the edge local law and the band rigidity in Chapter [J] as well as the recent
results on the edge statistics of Dyson Brownian motion in [103] implies Tracy-Widom

statistics of the extreme eigenvalue at each regular edge (compare Theorem below).

2.1. Outlook

We complete these introductory chapters with an outlook on two long standing open
problems in random matrix theory, the universality for non-Hermitian random matrices

and the metal-insulator phase transition for random band matrices.

2.1.1. Universality of local spectral statistics of non-Hermitian random
matrices. For Hermitian random matrices with independent entries, the universality of
the local spectral statistics is rather well understood. The distributions of various local
observables of eigenvalues, e.g. k-point correlation functions and gap statistics of bulk
eigenvalues, fluctuations of extreme eigenvalues etc. have been identified for a rich class of
these Wigner-type matrices. The common approach to these questions has two part: (i)
the eigenvalue distribution is explicitly computed for a model with Gaussian distributed
entries, (ii) more general models are shown to exhibit the same eigenvalue distribution
as the Gaussian model, i.e., the distribution is universal.

Surprisingly, the corresponding questions for random matrices with independent en-
tries without Hermitian symmetry are much harder to answer rigorously. Whereas part
(i) of the strategy outlined before for Hermitian matrices can still be completed for many
observables, part (ii) has only been obtained rigorously for rather restricted classes of
models. For example, even for matrices with i.i.d. entries the universality of the k-point
correlation functions has solely been proven under a strong condition of four matching
moment with the corresponding Gaussian model [146]. The above mentioned statements
for Wigner-type matrices do not need any moment matching conditions; exclusively the
correct rescaling is required to obtain a universal distribution for very rich classes of Her-
mitian random matrices in the large matrix limit. A similar behaviour for non-Hermitian

random matrices is also expected but has not been established rigorously yet.
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2.1.2. Spectral statistics of random band matrices. A Hermitian N x N ran-
dom matrix H = (hz-j)ﬁ[j:l is a random band matriz of width W, 1 <W < N, if h;; =0
for all 4, j € [N] satisfying |i — j| > W. There is a dichotomy for the spectral statistics of
H depending on the band width W. For large W, the spectral statistics of H agree with
the random matrix statistics, e.g. eigenvector delocalization and strong correlations be-
tween nearby eigenvalues. This is called the metal or conductor phase. For small W, the
eigenvectors of H are exponentially localized and the eigenvalues are essentially indepen-
dent of each other. This is the insulator phase. Owing to a non-rigorous supersymmetric
analysis, a sharp phase transition between these two regimes is expected at W ~ v/ N
[78].

We refrain from providing an exhaustive overview of the literature here and only list
the strongest results towards this conjecture; we refer to [42] for a recent more detailed
overview. In case the band matrix has Gaussian entries with a special variance and block
structure a sharp phase transition on the level of two point correlation function of the
characteristic polynomial can be seen at W ~ v/ N [128,]130]. In the general case, random
matrix statistics including eigenvector delocalization has been established for W > N3/4
in [cite Bourgade Yau Yin]. This is the strongest upper bound on the critical band width.
The strongest lower bound has been verified in [126], where eigenvector localization for
W < N'/® has been proven. For a Gaussian model, this has been improved to W < N'/7
in [121]. Prior to these results, numerous works have been devoted to upper and lower
bounds on the critical band width, which shows that precisely localizing this band width

is an intriguing and attractive problem in random matrix theory.



CHAPTER 3

The local semicircle law for random matrices with a fourfold

symmetry

In this chapter, we present a slightly modified version of [12]. We consider real
symmetric and complex Hermitian random matrices with the additional symmetry h,, =
hn—_y N—z. The matrix elements are independent (up to the fourfold symmetry) and not
necessarily identically distributed. This ensemble naturally arises as the Fourier transform
of a Gaussian orthogonal ensemble (GOE). It also occurs as the flip matrix model — an
approximation of the two-dimensional Anderson model at small disorder. We show that
the density of states converges to the Wigner semicircle law despite the new symmetry

type. We also prove the local version of the semicircle law on the optimal scale.

3.1. Introduction

In 1955, Wigner conjectured that the eigenvalues of large random matrices describe
the energy levels of large atoms [157]. Therefore, the distribution of the eigenvalues of a
random matrix is an interesting and often studied object in random matrix theory. For an
N x N random matrix with eigenvalues (\;)Y,, let uy == N~* SN 8, be the empirical
spectral measure. The celebrated Wigner semicircle law [157] asserts that puy converges
to the semicircle law given by the density \/m /(27) in the limit that the matrix
size N goes to infinity.

The Wigner-Dyson-Mehta conjecture in [114] asserts that the distribution of the dif-
ference between consecutive eigenvalues of a large random matrix only depends on the
symmetry type of the matrix and not on the distribution of the entries. This indepen-
dence of the actual distribution is called universality. The proof of this conjecture by
Erdés, Schlein, Yau and Yin in |64} 65] is built upon establishing a local semicircle law
in the first step (see [69] for a review). An alternative approach was pursued by Tao and

Vu in [144].

17
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Wigner’s semicircle law can be used to compute the number of eigenvalues contained
in a fixed interval for a large random matrix. With the help of a local semicircle law
such prediction can also be made in the case of a variable interval size as long as it is
considerably bigger than N~! which is the typical distance of neighbouring eigenvalues.
A local semicircle law is most commonly proven by establishing a convergence of the
Stieltjes transform mpy(z) == N'SN (A — 2)7! of uy to the Stieltjes transform m
of Wigner’s semicircle law. Then an interval size of N~! corresponds to showing the
convergence when 1 = Im z is of this order.

One of the most general versions of a local semicircle law is presented in [60]. They
suppose that the random matrix H = (hyy)s, is complex Hermitian (or real symmetric),
ie., hyy = Bym for all x and y with real-valued random variables h,, for all x such that

(hay)z<y forms an independent family of centered random variables. Besides assuming

that the variances s,, := E|hy,|? of a row sum up to one, i.e,

S say = 1 (3.1.1)

for all  which ensures that the eigenvalues stay of order 1, the most important require-
ment is the independence of the entries (up to the symmetry constraint).

Many works in random matrix theory start with this independence assumption. How-
ever, some naturally arising random matrix models do not fulfill it. An example is the
Fourier transform of a Gaussian Orthogonal Ensemble (GOE). For an N x N matrix

H = (hgy)y,—1 the Fourier transform H = (hpg)pqez /nz is defined through

5 1 X on
hpq = N Z hxy €exXp (_1 N(px - qy))

z,y=1

for p,q € Z/NZ. If H = (hay)Y,—, is a real symmetric matrix then H = (inq>p,q€Z/NZ
fulfills the relations

A

hpq = hqp = hfq,fp = hfp,fq

for p,q € Z/NZ. 1f the entries of H are, in addition, centered Gaussian distributed
random variables such that {h,,;2 < y} are independent with Eh2, = 2ER2, for z # y
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then the entries of H will be independent up to this symmetry which we call fourfold
symmetry.

Interestingly, this symmetry also arises in random matrix approximations of the An-
derson model. In [32], it is argued that the fourfold symmetry with a constant diagonal
— called the flip symmetry — is a good approximation of the two-dimensional Anderson
model in the regime of small disorder (see [54] for a review on random matrix models of
the Anderson model).

The first local law for Wigner matrices on the optimal scale n &~ N~! (with logarithmic
corrections) in the bulk has been proven by Erdés, Schlein and Yau in [63]. In [72], Erdés,
Yau and Yin proved that my — m is of the optimal order (Nn)~! in the bulk and they
could extend this result to the edges in [71]. In the more general case with non-identical
variances and the assumption , a local semicircle law on the scale n ~ M~! with
M := (max,, S;;) " has been established by Erdés, Yau and Yin in [70]. For this case,
Erdés, Knowles, Yau and Yin obtained the optimal order (Mn)~! of my — m in [60]
even at the edge. A more detailed overview of the historical development of the local
semicircle law can be found in Section 2.1 of [57].

Our main result is a proof of the local semicircle law for random matrices possessing
the fourfold symmetry. Despite the different symmetry type compared to the case in
[60] the limiting distribution of the empirical spectral measure will still be Wigner’s
semicircle law. The basic structure of the proof follows [60]. The main novelty is that not
only the diagonal elements of the Green function have to be treated separately from the
offdiagonal ones, but elements on the counterdiagonal need to be estimated separately
via a new self-consistent equation.

We conclude this introduction with an outline of the structure of the present article. In
the following section, we introduce our model and some notation and state our main result.
In Section [3.3] we prove that the Fourier transform of a GOE satisfies the assumptions of
Theorem |3.2.3] The remaining part is devoted to the proof of our main result. Section
contains a collection of the tools used in the proof which is given in the subsequent section.
In Section 3.6, we show that the fluctuation averaging holds true for the fourfold symmetry

as well.
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3.2. Main Result

For N € N and z,y € Z/NZ, let CQ%V ) be real or complex valued random variables
(in the following we drop the N-dependence in our notation) such that (., is real valued,
E., = 0 and E|(,,[* = 1 for all z,y. Moreover, we assume that for every p € N there is

a constant f, such that

E|ny|p < iy (3.2.1)

for all x,y € Z/NZ and N € N. For fixed N € N, the entries are supposed to be
independent up to the fourfold symmetry ¢, = Q_"yx =( y-z = Q_‘;x’,y for all x,y € Z/
NZ.

For N € N, let S = (84y)a,yecz/nz be an N x N-matrix of nonnegative real numbers
such that s, = sy, = s 5 = s_, _, for all z,y and S is stochastic, i.e., for every x we

have
sty =1. (3.2.2)
y

Furthermore, we assume that the N-dependent parameter M := (max, , s,,) " satisfies
N <M<N (3.2.3)

for some § > 0. Note that the first estimate is an assumption on S whereas the second
bound follows from the definition of M and (3.2.2)).
Defining hy,, = S}U{f@y we obtain the Hermitian random matrix H) = (hay)eyez/Nz

which fulfills the following fourfold symmetry
Poy=hye =h_y w=h_n_, (3.2.4)

because of the definition of (;, and the conditions on S. By definition, S describes the

variances of HWV),
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Let p denote Wigner’s semicircle law and m its Stieltjes transform, i.e.,

V4 — 2
—dz

r—z

1

oo) =g fd—at),  mz)=o- [ (3.2.5)

for z € R and z € C\R. For the real and imaginary part of z € C, we will use the
abbreviations E and 7, respectively, i.e., z = E 4+ in with E,n € R.

With this definition the complex valued function m(z) is the unique solution of

1
m(z) + e e 0 (3.2.6)

such that Imm(z) > 0 for n > 0. Denoting the resolvent or Green function of H by

and its entries by G;;(z) for z € C\R we obtain for the Stieltjes transform my of the
empirical spectral measure

my(z) = ]1[ TrG(2).

We use the definitions of stochastic domination and spectral domain given in [60].

Definition 3.2.1 (Stochastic Domination). Let X = (X™)(u);u € U™ N € N) and
Y = (Y™ (u);u € UN) N € N) be two families of nonnegative random variables for a
possibly N-dependent parameter set UN). We say that X is stochastically dominated by
Y, uniformly in w, if for all € > 0 and D > 0 there is a Ny(e, D) € N such that

usg(yj)v) P [X(N)(u) > NSY(N)(U)} < NP
for all N > Ny. In this case, we use the notation X < Y. If X is a family consisting of

complex valued random variables and | X| <Y then we write X € OL(Y).

The definition of stochastic domination implies the following estimate which is im-
portant for our arguments

|hay| < sb? < M7V, (3.2.7)

Definition 3.2.2. An N-dependent family D = (D®™))yey of subsets of the complex
plane with
DM c{z=FE+ineC;E € [-10,10, M~! <5 < 10}
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for every N € N is called a spectral domain.

In analogy to the matrix S, we define R = (ry,) = (Ehiy)ﬁ:; If N is odd then R is
an (N —1) x (N — 1) matrix, otherwise it is an (N —2) x (N — 2) matrix. For n > 0, we

introduce the corresponding two control parameters
Ps(2) = (1 =m*(2)8) Hleesew,  Tr(z):=[I(1=m*(2)R) e (3.2.8)

and their maximum I'(2) := max{I's(z),r(z)} (Note that I'g is denoted by I' in [60]).

For the definition of the spectral domain underlying our estimates, we define

1 M= M2
min {

A < F(z)3’I‘(z)4Imm(z)} for all z € [E—i—in,E—f—ilO]} (3.2.9)

NE = Mmin {n;
for v € (0,1/2) and E € R. Then, for v € (0,1/2) the spectral domain S = S(y) =
(S™)) yen is defined as

SN .= {E+in;|E| < 10,75 <n < 10} . (3.2.10)

Note that the spectral domain S differs from the spectral domain S in [60] due to the
new definition of I'(z). Besides this difference the following main result of this article has

the same form as Theorem 5.1 in [60].

Theorem 3.2.3 (Local Semicircle Law). Let H be a random matriz with the fourfold sym-

metry (3.2.4) such that the conditions (3.2.1)) and (3.2.2)) are fulfilled. For v € (0,1/2),

we have
Imm(z) 1
G (2) = Beym()] <[ 502 B2.11)
uniformly in x,y and z € S, as well as
ma(z) — m(2)] < —— (3.2.12)
N MT] 2.

uniformly in z € S.

The proof of our main result is based on studying self-consistent equations in the same
way as the proof of Theorem 5.1 in |[60] which uses one self-consistent equation for G, —m.
However, due to the fourfold symmetry it is no longer possible to directly show that the

entries G, _, are small as in [60]. Therefore, we introduce a second, new self-consistent
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equation for G, _,. While deriving these self-consistent equations we will see that the

expressions G, —m for ¢ € Z/NZ and G, _, for v # —x are connected among each other

via E|hy,|? and EA?

-, Tespectively. Therefore, we introduce the matrix R in an analogous

fashion as S is introduced in [60]. The corresponding control parameters I'g and I'g will
appear in our estimates in Section [3.5.3] Whereas the latter control parameter is present
in [60] and denoted by I' in there, the matrix R and the corresponding parameter I'g are
new in our work. The role of I' in [60] is filled by the maximum I'(z) = max{I's(z),'r(2)}.
Estimates on I' similar to the ones in [60] are collected in Lemma and Remark [3.4.9]

Remark 3.2.4. If the random variables h,, are complex valued with Ehgy = 0 for all
x # y then I'g(z) < CTg(z) for z € {E+in £ € [—10,10],n € (0,10]} and therefore
we can replace I' by I'g in (3.2.9)). Thus, in this case, our estimates hold on the spectral

domain used in Theorem 5.1 in [60].

To have a shorter notation in the following arguments, we introduce the z-dependent

stochastic control parameters

M) =gl Ganls) ~m, A(2) = max [Gy(2)]
A—(2) = max|Go, -4 (2)], (3.2.13)
Ao(z) =max{Ay(z),A_(2)}, A(2) :==max{A4(2),Ao(2)}.

Compared to [60] we added the control parameter A_ since the off-diagonal terms G, _,

will be estimated differently than the generic off-diagonal terms.

3.3. Fourier Transform of Random Matrices

In this section, we give an example of a random matrix satisfying the conditions
of Theorem [3.2.3] namely the Fourier transform (in the following sense) of a Gaussian

orthogonal ensemble.

Definition 3.3.1 (Fourier Transform). Let H = (hgy)Y,—; be an N x N matrix. The

Fourier transform H = (ﬁpq)pvqez /nz is the N x N matrix whose entries are given by

A 1 X 27
hpq = N Z hxy exp (_1 W(px - qy))

z,y=1
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for p,q € Z/NZ.

In the next Lemma we collect the basic properties of the Fourier transform of a

Gaussian orthogonal ensemble which will imply the conditions of Theorem [3.2.3|

Lemma 3.3.2. Let H be a GOE and H its Fourier transform. Then the entries hy, and

~

h.s are independent if and only if

(P, q) & {(r,8), (s,7), (=7, =), (=8, —7)}.
Moreover, H satisfies the fourfold symmetry for all p,q € Z/NZ. We have
E|hy|* =N~ ER% =0 (3.3.1)
for all g and p # r.

PROOF. To prove the if-part it suffices to show that H satisfies which is a
direct consequence of the fact that H is symmetric.

Since ﬁpq and ﬁrs are jointly normally distributed and ]Einq = EiLrs = 0, it suffices to
prove that ]Eﬁpqﬁjs = 0 and Eﬁpqﬁrs = 0 in order to show that these random variables

are independent. The formula Ehy,y, Pugyy = N7 (0012505155 + 01y Opnas) together with

N ,271' ) N7 TTLIO,

z=1 0, otherwise

for m € Z/NZ yields Ehpghes = N~ for (p,q) € {(s,r),(=r,—s)} and Ehygh,s = 0
otherwise. Thus, E}Azpqﬁm # 0 if and only if (p,q) € {(s,7),(—r,—s)}. In particular,
Ehf,q:()forp#i

The relation h,s = hs, implies the first part of (3.3.1) and concludes the proof of the
only-if part. O

Therefore, the Fourier transform of a Gaussian orthogonal ensemble fulfills all require-

ments of Theorem with s,, == N~' and ¢,y == N~/2h,,. Because of the first result
in (3.3.1)) the condition (3.2.2)) is fulfilled. By the second part of (3.3.1)) Remark is

applicable. Thus, the local semicircle law holds true for these random matrices.
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3.4. Tools

In this section, we collect the tools for the proof of Theorem [3.2.3] We start with listing
some resolvent identities which are the basic tool for all our estimates as they encode the
dependences between diagonal and off-diagonal entries of the resolvents. Computing the
partial expectation of certain terms in expansions of the resolvent entries with respect
to a minor will be an important step to derive the self-consistent equations. Thus, we
introduce some notation in the second subsection. We conclude with the fluctuation
averaging, an important mechanism to improve some bounds, and some estimates on m

and I'" which are frequently used in our proofs.

3.4.1. Minors and Resolvent Identities. Let H = (hyy)s yez/nz be a Hermitian
matrix and T C Z/NZ.

Definition 3.4.1. We define the N x N matrix H™ and its resolvent or Green function
G through

(HD)y =1 ¢ TIL( ¢ Thy, GD(2) = (HD —2)!

for i,j € Z/NZ and for z € C\R. We denote the entries of G (z) by Gg)(z). We set

()
ok

i;3¢T

In both cases, we write (a1, ...,a,,T) for ({ay,...,a,} UT).

Note that H™ is still a Hermitian N x N matrix, in particular G exists. To estimate

the resolvent entries we make essential use of the following relations.

Lemma 3.4.2 (Resolvent Identities). Fori,j,k ¢ T, the following statements hold:

(T,3)

1 i
o = hii — 2 = Z hmGSﬁ’ )hbi- (3.4.1)
X a,b
Ifi,j # k then
Glay 1 1 GG
GD =G 4 Tk ih ki (3.4.2)

G oGP el afeag)

i
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If 1 # j then
. NG . NGO
Gy =GP Y hGGY = =G Y Gl b (3.4.3)

The proof of Schur’s complement formula, (3.4.1]), and the first identity in (3.4.2)) can
be found in Lemma 4.2 in [70] and the second identity follows directly from the first one.
Lemma 6.10 in [59] contains a proof of (3.4.3)).

Moreover, if n > 0 then the spectral theorem for self-adjoint matrices yields

1
2IG () = T G (2). (3.4.4)
I
This identity is sometimes called Ward identity.

The functional calculus implies the following estimates on the entries of the resolvent:
GO <n <M (3.4.5)

forn > 0 and all ¢, j € Z/NZ. The second estimate holds if z € D where D is a spectral

domain.

3.4.2. Partial Expectation. For the partial expectation with respect to the o-

algebra generated by H®~®) we introduce the following notation.

Definition 3.4.3 (Partial Expectation). Let X be an integrable random variable. For
x € Z/NZ we define the random variables E, X and F,X through

E.X :=E[X|H®™] F,X:=X-EX.
The random variable E, X is called the partial expectation of X with respect to x.

The symbols E, and F, are the analogues of P; and @Q; in [60] that were defined by
considering the minor H®. Due to the fourfold symmetry column z, —z and row z, —x
contain the same information, so the conditional expectation is taken with respect to

the minor H®~%). Notice that it may happen that = —z, in which case H®~%) is an

(N —1) x (N — 1) minor.

Definition 3.4.4 (Independence). We say that the integrable random variable X is in-
dependent of T C Z/NZ it X =E,X for all z € T.
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If Y is independent of z then F,(X)Y = XY —E,(XE,Y) = F,(XY) and therefore
EF,(X)Y = EF,(XY) = E(XY) — EE,(XY) = 0. (3.4.6)

3.4.3. Fluctuation Averaging. Let D be a spectral domain, H satisfy the require-
ments of Theorem and U a deterministic (possibly z-dependent) control parameter
which satisfies

MY <U <M (3.4.7)

for all z € D and for some ¢ > 0.

The aim of the fluctuation averaging is to estimate linear combinations of the form
> i tie X with special random variables X}, and a family of complex weights 7' = (%)
that satisfy

0<|tu] <M, D |tu] <1 (3.4.8)
k

Note that the family 7" may be N-dependent. Examples of such weights are given by t;, =
sik = Elhig|?, tix = N1 or tip = ry = EhZ,. Recall that A(z) = max, ,|Guy(2) — duym(2)]
which is the basic quantity we want to estimate (cf. (3.2.13))).

Theorem 3.4.5 (Fluctuation Averaging). Let D be a spectral domain, ¥ a deterministic

control parameter satisfying (3.4.7) and T = (t;x) a weight satisfying (3.4.8)). If A < W
then

< \112, Z tikaGk,—k < U2 (349)

k#—k

1
Ztika| <% D tiwFrGa
k Gk k
uniformly in i and z € D. If A <V and T' commutes with S then we have

< TgW? (3.4.10)

zk: tir(Grer — m)

uniformly in i and z € D. If A <V and T' commutes with R then we have

< Tpv? (3.4.11)

> tuGro—k

k#—k

uniformly in i and z € D.
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A similar result was proven in [60], but due to the fourfold symmetry we need the

third estimate in (3.4.9)) and ((3.4.11f) which were not present there. For the first estimate
in (3.4.9)), there is the following stronger bound assuming that there is a stronger a priori
bound on the off-diagonal terms, i.e., on A,(2) = max, |Gy (2)| (cf. (3.2.13)):

Theorem 3.4.6. Let D be a spectral domain, V and ¥, deterministic control parameters

satisfying (3.4.7) and T = (t;.) a weight satisfying (3.4.8)). If A <V and A, < ¥, then

<2 (3.4.12)

1
tiFy——
Ek: k kak

uniformly in i and z € D.

The proof of Theorem [3.4.5| and [3.4.6] can be found in Section [3.6]

3.4.4. Estimates on m and I'. For convenience, we list some elementary estimates

from [60] which are often used in the following proofs.

Lemma 3.4.7. There is a constant ¢ > 0 such that for z € {E + in; E € [-10,10],n €
(0,10]} we have

c<Im2)|, m@E)|< 1—en, Im)|< n7t Imm(z) > o (3.4.13)

Since I' > I'g it suffices to prove the following lower bounds on I' for I'g.

Lemma 3.4.8. There is a constant ¢ > 0 such that
c<T(2), |1—-m*(z)|"'<TI(z) (3.4.14)
for all z € {E +i; E € [—10,10],n € (0, 10]}.

Remark 3.4.9. Since || R||s=~_¢~ < 1 the proof of Proposition A.2 in [60] yields that

Pa(2) < C'log N C'log N
z .
F - 1—maxi‘—1i2mz‘ - mln{n+E279}

forze {E+in,-10< E< 10,Mt<n< 10} with

k+ ——, if |F| <2,
0=0(z):= VR 1]

VE+mn, i |E| > 2,
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and k= ||E| — 2|.

3.5. Proof of the Main Result

This section contains the proof of our main result, Theorem [3.2.3] First, we establish
the two self-consistent equations which will be the basis of all our estimates. In Sec-
tion [3.5.2] we bound the error terms in these self-consistent equations so that we can
use them to prove a preliminary bound on the central quantity A (cf. ) in Sec-
tion [3.5.3] Finally, we complete the proof of Theorem in Section by iteratively

improving the preliminary bound from the previous section.

3.5.1. Self-consistent Equations. The goal of this section is to establish the two
self-consistent equations for the difference G, —m and for the off-diagonal terms G, _,.
As the matrices are indexed by elements in Z/NZ it might happen that x = —x for z € Z/
NZ, more precisely we have 0 = —0 in Z/NZ and moreover if N is even N/2 = —N/2.
Since the expansion of the diagonal term G, by means of the resolvent identities is a bit
different for x = —x and in this cases the entry G, _, is in fact a diagonal term we have
to distinguish the two cases, * # —x and x = —x, in the sequel.

Recall for the following lemma that s, = E|h?,| and 7., = ERh?,.

Lemma 3.5.1. For v, := G,, — m we have the self-consistent equation

Lood (3.5.1)

Ve +Mm m

- Z SzaVa T Tm =
a
with the error term

hx:c"'Ax_Zam T = —Z,

hew +Ar+ B, —C, =Y, — Z,, x# —x,
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and the abbreviations

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)

GaxGxa $ x) G(G/I) mG—mx) ,a
Ay = Z S0y Z EC
—x) (z,—z)
Cy = (|hz,fm|2 - Sfx,:r> szc —z T hfwx Z hxaGELx zt hx -z Z G hbxa
}/ac = ( —x, a:) Z hmaGa xG(x) bhbacy
Z(x) ]Fm [hxaG((zf;)hbx} ) r = —x,
ZCE =
ST B [haaGl ™ hee|, 1 A
The self-consistent equation for G, _, is given by
Gw,f:p = m2 Z TxaGa,fa + 8:1:7
aF#—a
for x # —x where we defined &, = EL + E2 — E2 — EF with the error terms
ggi = m2 Z rxaGa,fa + m2 Z T2aGaa
ac{z,—z} a=—a
($1_$)
+ (Gaca:G(—xaz,—:c - m2) Z TmaGa,—a - GxacG(—x:Z,—xhx,—:va
() (z,—x)
g Gmchm —x Z Faz [ha:aGa[; h/b,fa:} )
(z,—x) (z,—x)
€ =6 Y rGuGaa, Eli=Guw Y 10aGYLGY)

The self-consistent equation (3.5.1]) has the same form as (5.9) in [60] and it is proven

in a similar way by expanding by means of Schur’s complement formula and computing

the partial expectation of a term in this expansion. However, we had to replace P; by E,

to derive it and the error term Y, contains terms which did not appear in (5.8) from [60].

(If z = —x then T, has the same form as in [60].) The term A, is exactly the same as

A; in (5.8) of [60]. The term Z, is the analogue of Z; in [60] but the terms B,, C, and

Y, are completely new and will require new estimates.
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The self-consistent equation (3.5.6)) is new and does not have a counterpart in [60].
Due to the fourfold symmetry there is the necessity to introduce it since in contrast to
the symmetry studied in [60] proving directly that the off-diagonal elements G, _, are
small is not possible.

As deriving this self-consistent equation follows the same line as the proof of
— expanding and computing the partial expectation of a term in this expansion — it is
not surprising that some error terms in have counterparts in . Namely, &2
is the counterpart of Z,. Moreover, £3 and £} are the error terms corresponding to A,

and B,, respectively.

PrRoOOF. We start with the proof of . For x = —x the derivation of
follows exactly as (5.9) in Section 5.1 of [60] since E, and F, agree with P, and Q.
respectively in this case. Similarly, for z # —z the self-consistent equation will be
obtained from Schur’s complement formula (3.4.1)) with T = (). In this case, its last term

can be written in the form

(z) —)

(w,—:c)
thaGab s —hx mG(—a)c a:h—xac + Z hxaG ) h—xac + Z hm,—mG(—xa);,bhbiU
a,b

(3.5.7)
(z,—z) x—m)
+ Z hzaG(x zhbw"' (G(—xaz,—:v) Z ha:aGa xG(z) bh
ab

by applying the resolvent identity (3.4.2). Since the random variables h,, and h_,; are
independent of H® =% we have E, [hmG - x)hbz] = 520G @75, Thus,

(g)]E [hxaG(x —x hbz} _ ($§:) SxaGg;_x)

a,b a

& GilGl

o G am za
- Z SzalTaa Z Sza — Sz a: —:c - Z Sea™
a

G G¥ _,

b

where we used in the second step the resolvent identity (3.4.2) twice. By splitting the
fourth summand on the right-hand side of (3.5.7)) according to E, + F, = 1, we get

” (3.5.8)

= Z SxaGaa - Ax - S—x,xG(fxgi,fx - B:t + Zx
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Therefore, the results of (3.5.7)) and (3.5.8)) allow us to write (3.4.1)) in the form

1
G:L':E

which implies ({3.5.1]) using (3.2.6)).
We fix © # —z. To derive (3.5.6) we apply the resolvent identity (3.4.3]) twice to get

:_Z_m+Tx_ZSxavau
a

(‘T’_m)
Grw = —GaaGY) iy w4 GuaG) 0 S hpaGS . (3.5.9)
a,b

Since EthGS,i’*x)hb,,x = Gg;;x)rméb,,& splitting up the sum in the second term in
(3.5.9) according to E, + F, = 1 yields

(x»fw)
Goa = —CowGY) iy o4 CuaG) 0 S 140G a+E2—E — & (3.5.10)

where we used the resolvent identity (3.4.2]) twice. We obtain (3.5.6) by adding and
substracting m? 3", 720G a,—a to the right-hand side of (3.5.10)). Il

3.5.2. Auxiliary Estimates. The next lemma contains bounds on the resolvent
entries of minors of H if there exists an a priori bound on A (Recall its definition in

(3.2.13)). We will use a deterministic (possibly z-dependent) parameter W which fulfills
M2 < U< M (3.5.11)

for some ¢ > 0 and all large enough N.

Lemma 3.5.2. Let D be a spectral domain and ¢ the indicator function of a (possibly
z-dependent) event. Let W be a deterministic control parameter satisfying (3.5.11). If
WA < VU and T C N is a fized finite subset then

PG < oA, < O, PGP <1, P2,

e
PlGSY —m| < @A, eIm G < Imm + A

uniformly in z € D and in i,j fori# j andi,j ¢ T.

PROOF. This result follows by induction on the size of T using (3.4.13]) and (3.4.2). O
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Using this result we will establish the first bounds on the error terms in the self-
consistent equations in the next lemma. When applying the first part of the following
lemma the indicator ¢ will be defined precisely in such way that the condition pA < M~¢

holds, i.e., to ensure that @A is small.

Lemma 3.5.3. Let D be a spectral domain.

(i) If ¢ is an indicator function such that A < M~ (for some ¢ > 0) then

I A
Py + |As] Bl 1G] + K]+ |ZaD) < o2 4 |2, (3.5.12)
I A
O(|EX + |E2 + |E3| + |EX) < pA? + anm A 3.5.13
uniformly in x and z € D.
(it) For fized n > 0 we have the estimates
A< A+ 20732 e (3.5.14)
with € < M~Y2 uniformly in z € {w € C;Imw = n}, and
Ay = M2 A (3.5.15)
| Aol + |Bo| + [Col + [Yal + 1 Ze] < M7+ A, (3.5.16)

uniformly in x and in z € {w € C;Imw = n}.

PROOF. In this proof we will occasionally split the index set of a summation into the
parts {a # —a} and {a = —a} and use that the latter set contains at most two elements.
In the following proof of the first part Lemma will be applied several times with
¥ = M~ Note that M~/2 < \/(Imm + A)/(Mn) because of the fourth estimate in

(3.4.13). First, we assume x # —z. Applying the second estimate in (3.2.7]) and ({3.2.2))
to the definition of A, in (3.5.2) yields

@ |GGl

(10|Ax‘ < Sxx‘Ga:x‘ + staspw < M_l + SOA(Q) (3517)

Similarly, using the first estimate in Lemma we get | B,| < pAZ
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The representation

Gy G_
= he—o?GY) = 5 oG = TETER L byt 3.5.18
ool Gozia = 9aaGoaa =g hove ~haa g (3519
which follows from the resolvent identity (3.4.3)), together with (3.2.7)) implies
o|Cy| < M~1/2, (3.5.19)
To estimate Y, we need the following two auxiliary bounds: We have
Z 2.6 < 3 [haalPel GO0+ Z al 20| G2 < A, + M1, (3.5.20)
aFt—a a=—a

where we used (3.2.7)) and (3.2.2)) in last step. Now, we use the quadratic Large Deviation

Bounds from [60] after conditioning on G®~*). By applying (C.4) in [60] with Xz = Cux

and ay = sing;l‘r)sif we get

2 (z,—x) (z,—x) I A
7 (I,*LE) 2 gp , (;3771-) mm +

< Y SasuplGE P < = Y suIm Gy < —— )
k#l Mn Mn

(3.5.21)

where we used the second estimate in (3.2.7)) and (3.4.4) in the second step. Thus, the

(CE,—I)
o1 S haGE Ty

k£l

representation

(z,—) (z,—)
Y, =GY _, ( S B G hk,_m) ( 3 h_x,lczg;“—@hbm) , (3.5.22)
b,l

which follows from the resolvent identity (3.4.3)), yields (after separating the case k = —a)

(¢,~2) 2 (¢,~2) 2
p|Yel < @ Z W2,G50 40| Y hea G b
ark (3.5.23)
Imm+ A Imm+ A
< pAZ T oA
YA + M PAG + Mn

Before estimating Z,., we conclude from its definition in (3.5.5)) that

(2) ()
> (1haal® = $00) G2 + 3 haoGS) B, v = -z,
A a#b

) @) (z,—)
Z (’h:pa|2 - S:Ea) G(x - + Z hxaG )hbza z 7£ —T.

a a#b
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We fix z # —x and apply (C.4) in [60] with X; = (,; and a;; = sl/zG(‘T =) 1/2 to get

(z,—) 2 (z,—x) 1/2 I + A

o mm
ol S haG < YD susippl G < (3.5.24)
i#] i Mn

where the last step follows in the same way as the last step in (3.5.21]). Moreover, (C.2)
in [60] with X; = (|¢.]? — 1)(1@@\4 — )72 and a; = (B|Cul* — 1)/25,G5) implies
(.’L’,*Z)

Z (|hxi|2_5m) zf m)

i

(z,—z)

y = Z (B Gl = DG < M7Y, (3.5.25)

where we used (3.2.1)), the second estimate in and (3.2.2) in the last step. There-

fore, absorbing M ~'/? into the second summand we get
() (z,—z) (@=2) 2 (z,—x) Imm + A
1#] 7

If + = —x then Z, can be bounded by the right-hand side in (3.5.12) similarly to the
previous estimate and for A, in exactly the same way as in (3.5.17)).
To estimate the generic off-diagonal entry G,, under the assumption that all of

x,—x,y, —y are different, we use the expansion

(I,—m,y,—y)
Gy = — Ggﬂ;%—y)G:%—%—y) (hzy _ Z B ka(w .Y, y)hly)
k.l
( (3.5.27)
G ny y , GoaGoay
o0 TG )
—Y:—y T

which follows from applying (3.4.3) twice and afterwards applying the first identity in

(3.4.2) twice. Conditioning on G®~#%~% and applying (C.3) in [60] with X, = Cu,
1/2 (z,—z,y,—y) 1/2

Y, = Gy and ay = s, Gy s, yield
(m,—x,y,—y) ( ) 2 (a:,—a:,y,—y) ) Imm+A
2 Z hka vy hly < (2 Z 3zk|G vy | Sly < T, (3528)
k.l k.l n

where the last step follows exactly as in (3.5.21)), which implies

Imm -+ A
Gyl < M~1/?2 - A2
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If x = —x or y = —y then the proof of the last statement is easier. This finishes the proof
of .

Now, we turn to the proof of (3.5.13). The trivial estimate [Eh2,| < E|hgy|* = 54y <
M~ implies that the first two terms in ¢|E!| are bounded by M~!. By its last
term is bounded by M~'/2. Splitting the summation in the third term of p|E}| into
a # —a and a = —a and using the estimate on [Eh,,|? we obtain ¢|E}| < @AA_ + M~1/2
due to (3.2.2)), (3.4.13)), the fourth estimate in Lemma |3.5.2/and (3.2.7)). Similarly to the

bound on the third term in ¢|EL|, we get p|E3| < @A2 and ¢|EL| < A2, To estimate E2

we calculate the partial expectation in its definition which yields
(:L‘,—CL‘)

(CC,—:C)
£ =GuGY) 0 > (B0 = 70a) G 4 GoaGYl o > 1o
a a#b

Similarly to ([3.5.25)) the first term can be bounded by M~!. Using (3.5.21]) for the second

term implies
Imm+ A

&2 <
©l&, | M

which completes the proof of (3.5.13).
Finally, we prove part (ii) of Lemma [3.5.3] In contrast to part (i), we fix n > 0. Since

constants do not matter in the estimates with respect to the stochastic domination we

will not keep track of n in such estimates. We start the proof of part (ii) of Lemma m

with verifying (3.5.16)). First, we remark that applying (3.2.7)), (3.4.4)) and (3.4.5) yields
1/2 1/2
Tl
< (Shhal?) - (Si6P)

1/2 » . »
< st (77 Imeb) <n

for arbitrary finite subsets T, T C N. The resolvent identity (3.4.3)) and the previous

(T)
T/
> heaGly

(3.5.29)

bound imply

(z)
|A:v| S fsme’ + stalGax‘

(z)

S haGE| < M~' 4 A, (3.5.30)
b
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where we used (3.2.7) and (3.4.5)) in the second step. The estimate

(z,—2)

|B,| < Zsm

(z,—z)

> O

IGY) | < M1/ (3.5.31)

is a consequence of (C.2) in with Xj, = (4, and ax = sk <. ax - (B-4.4), (3:4.5)
and ( m

Applying (3.5.29)) to the second and third term in and (3.2.7] - ) to the first term
yields |C,| < M‘l/Q.

To estimate Y, we start from ([3.5.22)) but (3.5.20) is estimated differently. Using the

resolvent identity (3.4.2)) twice we get

(z,—) (z,—x) (z,—x)
Z h kGif D < > slGrokl + D sk G
kA —k k=—k
+ Z | k,—x —z,—k + Z Szk| kx x7—k| -<AO+M_1/2,

where the last step follows similarly to (3.5.30) and (3.5.31). Combining this with the
usage of ([3.4.5)) instead of Lemma [3.5.2in (3.5.21)) yields |Y,| < M2 + A,. We get
|Z,| < M~'/2 by similar adjustments of ([3.5.26)). This completes the proof of (3.5.16].

Before proving (13.5.14)) we show

Ay <n'A_+¢ (3.5.32)

with some é < M ~'/* uniformly for z € {w € C;Imw = n}. In case all of z, —z, y and —y
are different it will be derived from the representation in 3.5.27. The first summand in

(3-5:27) is bounded by M~'/% due to (3.2.7) and (3.4.5)). Using (3 instead of Lemma
3.5.2/in ([3.5.28) yields that the second term in (3.5.27) is dominated by M~/ as well.

For the third summand in (3.5.27)) we use the estimate

G a:)G (z,—x) (—y,—z)
T_yy = G:(C:U) Z hxaGEf’__yx) Z h—y,aG((;;y’_x) —<M_1/2’
Y=y a ”
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where we used (C.2) in [60] as in the proof of (3.5.31) for the first factor and (3.5.29) for
the second factor. For the fourth term in (3.5.27]) we obtain

(~2) V2 (o) 1/2
<A (Zlhx,a|2) (ZIGELJ”)V)

> heaaGlY

a

. » (3.5.33)

Z (|h—x,a‘2 - S—x,a)

a

<A_p 42

by applying the resolvent identity and inserting s_, ,. In the last step, we applied
and . Note that similarly to (3.5.25) we conclude that the second term is
dominated by M~1/4.

We denote the sum of the absolute values of the first three summands in (3.5.27))
and the second summand in by €, and set € := sup, €. Then the above

considerations show ¢ < M~1/4

easier. Thus, (3.5.32)) follows.
Without inserting s_, , in (3.5.33) and instead using (3.2.7]) we see that the represen-

tation (13.5.27) implies (3.5.15]).
To prove (3.5.14]) we assume x # —z and consider the expansion

in this case. If z = —x or y = —y then estimating G, is

(z,—x) (z,—)
Gx,—x = GxxG(fxx),fz Z 7nxaGa,—a + GmG(Q,fx Z TxaGa,—a - Ga:xG(fng,thx,—x

aFt—a a=—a

e gl gl

Obviously, the absolute value of the first summand on the right-hand side is not bigger
than n™?A_ and €3] < 77*1/\3. We call the sum of the second and the third term on
the right-hand side £2 and obtain |£2] < M=% by (3.2.7). Similarly as before, we get
12| < M~Y/2 by using instead of Lemma [3.5.2] An argument in the fashion of
B531) vields |€1] < M-1/2,

Thus, by setting €, == 2n~'e? + |E2| + |€2| + |€2| and using we get

(Gaal S0 2An 47 AL 1E2] + 1]+ 1EX < A + 207 °A2 e

Since €, < M~'/? uniformly in x the estimate (3.5.14]) follows from the definition € :=
sup,, €. U
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3.5.3. Preliminary Bound on A. In this section, we establish a deterministic

bound on A. The proof will make essential use of the self-consistent equations in Lemma

B5dl
Proposition 3.5.4. We have A < M~/30~" uniformly in S.

Once we have proven the two subsequent lemmas the proof of Proposition follows

exactly as in [60].
Lemma 3.5.5. We have the estimate L(A < M~7/4T=Y)A < M~20~" uniformly in S.

PRrROOF. In this proof, we will use Lemma [3.5.3] (i) several times with ¢ := 1(A <
M=/4T~1). Following the proof of Lemma 5.4 in [60] we get

1 A
oAy < T (A2+ mm+>
Mn

since |T,| < pA? + \/(Imm + A)/Mn by (3.5.12)). Moreover, because of (3.5.12)) and the
first estimate in (3.4.14]) we have

I A
Ny < ¢l <A2 + W) :

Mn
Using (3.5.6) we get
Z (1- mQny)Gyﬁy =&

Y#E=Y

for all x # —x. Inverting (1 — m?R) and using (3.5.13)) yield

I A
pA_ = max ¢|Ge—a| <Tg max ¢l€| < TR <A2 + m;};) : (3.5.34)
In total, we get
Imm+ A
A < @I | A2 —_—
o <o (4242

as in (5.18) of |60]. Employing the definitions of S and ¢ as in the proof of Lemma 5.4
in [60] establishes the claim. O

When estimating the off-diagonal terms G, _, in (3.5.34]) the control parameter I'p
appears naturally as the operator norm of (1 — m?R)™! in the same way as I's (which is

called T" in [60]) is used in [60] to bound the differences G, — m.
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Lemma 3.5.6. We have A < M~'/? uniformly in z € [~10,10] + 2i.

PROOF. We use the bounds ng}”| < 1/n=1/2 from (3.4.5) and |m| < 1/np = 1/2
from the third estimate in (3.4.13). In particular, they imply |v,| = |Gz — m| < 1 and
Im~1 > 2.

By (3.5.14) with n = 2 we have

A< Ze< MV2

ol oo

Thus, (3.5.15) implies A, < M~Y2. Hence, A, < M~Y2 and therefore |Y,| < M~1/2
by (3.5.16|).

Following now the reasoning of the proof of Lemma 5.5 in [60] we get A < M~¥/2. O

PRrROOF OF PROPOSITION [3.5.4l The maximum of the two Lipschitz-continuous func-
tions I'g and I'g is a Lipschitz-continuous function whose Lipschitz-constant is not bigger
than the maximum of the original Lipschitz-constants. Therefore, Proposition can

be proven exactly in the same way as Proposition 5.3 in [60]. U

3.5.4. Proof of the Main Result. In the whole section let ¥ be a deterministic

control parameter satisfying
cM~V2 <o < MR (3.5.35)

The following proposition states that such deterministic bound on A can always be

improved. This self-improving mechanism is also present in Proposition 5.6 of [60].

Proposition 3.5.7. Let V satisfy (3.5.35)) and fire € (0,7/3). If A < ¥ then A < F (V)

with
Imm  M*©
F(U) = MU — .
(V) + Mo +M'rz

Proor. We will apply the results of Lemma [3.5.3] (i) with ¢ = 1. Using (3.5.12) we

Imm+ A Imm + W
A T, A? v r? \ 3.5.36

get
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because of the first estimate in (3.4.14]). The self-consistent equation (3.5.6|) for G, _,

implies the estimate

Imm+ W

|Gw,7m| < |m2|
Mn

> (ER2,)Gaa| + |Ex| < TU? +

at—a

(3.5.37)

which holds uniformly in z. Here, we applied the fluctuation averaging (3.4.11)) for G, _,
with t,, = Eh2, and (3.4.13) to the first summand, [EhZ, | < M~', Lemma and

(3.4.14)) to the second summand and (3.5.13)) to |€,| and employed I'r < T" and (3.4.14))

afterwards.

Starting with these estimates the reasoning in the proof of Proposition 5.6 in [60]

Imm+ A
A < T2 _—
D v

The claim follows from applying Young’s inequality and the condition ¥ < M /3T~ to

yields

the right-hand side of the previous estimate. O

In the following lemma we use the notation [v] for the mean of a vector v = (v;); € CV,

ie.,

[v] = ;ZUZ

Lemma 3.5.8. If U is a deterministic control parameter such that A < ¥ then we have

(Y] € O«(¥?).

PROOF. If © # —z then we obtain from Schur’s complement formula (3.4.1)) and the
definition of Y,

. 1
Yo = Ap+ By — 50 oE,GY)_, —E,Y, + Fom (3.5.38)

The fluctuation averaging (3.4.9) with ¢, = 1/N yields [F,G.l] € O-(¥?). Obviously,
we have |A,| < ¥? and |B,| < ¥? by Lemma [3.5.2, Lemma [3.6.1, Lemma and

(3.2.7) imply |527,IExG(_:27_x| < M~! < ¥? due to the first estimate in (3.5.35)).
Using ((3.5.20) and the first two steps in (3.5.21]) with ¢ = 1 we obtain

v, (3.5.39)

(:E,—J?)
S bk GY
k,l
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Thus, the representation of Y, in (3.5.22) and the application of Lemma m yield
|Y,| < ¥2. Hence, Lemma implies |E,Y,| < ¥2. For x = —z the relation ([3.5.38))
without the second to fourth term on the right-hand side and |A,| < ¥2 hold true and

[T]| < W2 follows from (3.5.38). O

Proposition [3.5.4] Proposition [3.5.7] and Lemma [3.5.8 imply Theorem [3.2.3| along the
same lines as Proposition 5.3, Proposition 5.6 and Lemma 5.7 in [60] complete the proof

of Theorem 5.1 in [60].

3.6. Proof of the Fluctuation Averaging

In this section, we verify the fluctuation averaging, i.e., Theorem and Theo-
rem m To this end, we transfer the proof of the fluctuation averaging given in [60]
to our setting. We only highlight the differences due to the special counterdiagonal
terms Gy _ .

We start with two preparatory lemmas. The following result is the analogue of
Lemma B.1 in [60] whose proof works in the current situation as well. Recall that E, X =
E[X|H®=®)] is the expectation conditioned on the minor H®~®) and F,X = X — E, X
for an integrable random variable X (cf. Definition and Definition [3.4.3)).

Lemma 3.6.1. Let U be a deterministic control parameter satisfying ¥ > N~=C and let

X (u) be nonnegative random variables such that for every p € N there exists a constant

¢, with E[X (u)?] < N for all large N. If X (u) < U uniformly in u then
E, X (u)" < ¥", F,. X (u)" < 0", EX(u)" < ¥"
uniformly in u and in x.

This lemma will be used throughout the following arguments. The trivial condition
E[X (u)P] < N will always be fulfilled. The following lemma which replaces (B.5) in [60]
gives an auxiliary bound for estimating high moments of |, t;xFrGy.| when there are

bounds on A = max, ,|Gyy — 0ym| and A, = max, 4, |Gyl (cf. (3.2.13)).

Lemma 3.6.2. Let D be a spectral domain. Suppose A < ¥ and A, < ¥, for some
deterministic control parameters ¥ and ¥, which satisfy (3.5.11)). Then for fired p € N
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we have

F, (G“T))_l‘ <, (3.6.1)

Tx

uniformly in T CN, |T| <p, 2 ¢ TU-T and z € D.

PROOF. If # = —z then the proof of (3.6.1)) is exactly the same as the proof of (B.5)
in [60]. For z # —z we start with (3.4.1)). Since z, —z ¢ T we obtain as in the proof of

(3.5.7) by using the first resolvent identity (3.4.2)) that

(T,x) T (T,z,—x) T
3 ha GG e = CO 4 ST bW GGy,
a,b a,b

(3.6.2)
+ (a5, Z hwamagwgh

where we used the definition

(T.z,—x) (T,z,—x)
C h —xG(—sz zh—m T + Z hxaG h—x T + Z ha: JJG(_qub)hba:
The assumptions of Lemma are fulfilled for each term of the expansion in ({3.6.2))

by (3.2.7) and the second estimate in (3.4.5]).
Similar to the proof of ([3.5.19) we get |C(D| < M~1/2 < ¥, by (3.5.11). Using the

first step in (3.5.24)) and the argument in (3.5.25)) we get

(T,x,—x) (T,x,—x) (T,x,—x)
Foo Y heaGoy™ “hoe| | 2 haaGoy™ ho| | 3 (Jhwal® = 52a) G
a,b a#b a
<V,

where we used that ¥, fulfills (3.5.11f). The estimate

(T,x,—x)
ST haGy T | <0, (3.6.3)
K,

which follows from adapting ((3.5.20]) and the first step in ((3.5.21)) implies
(@52, Z hmG " e

<¥Z<y, (3.6.4)
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using a similar representation as in (3.5.22) and Lemma [3.5.2] By Lemma these

estimates imply
(T,z)

]Fx Z h:caGgE’x)hbx

a,b
Thus, the claim is obtained by applying Schur’s complement formula (3.4.1) to G{%) and
observing that |F,(hyy — 2)| = |haee| < M~Y2 < W, as h,, is independent of H®~%) and
Eh,, = 0. 0

< U,.

PROOF OF THEOREM [3.4.6l. The proof is similar to the proof of Theorem 4.7 on
pages 48 to 53 in [60] so we only describe the changes needed to transfer this proof to its
version for the fourfold symmetry.

First, we use Lemma 3.6.2]instead of (B.5). Moreover, we have to change some notions
introduced in the proof of Theorem 4.7. In the middle of page 49, an equivalence relation
ontheset {1,...,p} is introduced which has to be substituted by the following equivalence
relation. Starting with k := (ky,...,k,) € (Z/NZ)P and r,s € {1,...,p} we define r ~ s
if and only if k. = ks or k. = —k,. As in [60] the summation over all k is regrouped with
respect to this equivalence relation and the notion of “lone” labels has to be understood
with respect to this equivalence relation. We use the same notation kj for the set of
summation indices corresponding to lone labels. Differing from the definition in [60] we
call a resolvent entry Gg) with z,y ¢ T mazimally expanded if ky U -k, C T U {z,y}.
Correspondingly, we denote by A the set of monomials in the off-diagonal entries G(zg)
with T C ky U —ky, z # y and z,y € k\T (considering k as a subset of Z/NZ) and
the inverses of diagonal entries 1/G(Y) with T C k; U —k; and x € k\T. With these
alterations the algorithm can be applied as in [60]. In the proof of (B.15) the assertion
(*) has to be replaced by

(%) For each s € L there exists r = 7(s) € {1,...,p}\{s} such that the monomial

A7 contains a resolvent entry with lower index kg or —£,.

To prove this claim, we suppose by contradiction that there is s € L such that A7
does not contain ks and —k; as lower index for all » € {1,...,p}\{s}. Without loss of
generality we assume s = 1. This implies that each resolvent entry in A} contains k; and

—Fky as upper index since A, is maximally expanded for all r € {2,...,p}. Therefore,
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A7 is independent of k; as defined in Definition [3.4.4, Using (3.4.6) and proceeding as
in [60] concludes the proof of (x).
Following verbatim the remaining steps in the proof of Theorem 4.7 in establishes

the assertion of Theorem [3.4.6l O
Now, we deduce Theorem from Theorem [3.4.6]

PROOF OF THEOREM [3.4.5]. The first estimate in follows from Theorem [3.4.6]
directly by setting ¥, := ¥ and using A, < A < ¥,.

To verify the second estimate in (3.4.9) we use the fourth estimate in Lemma m
which implies

F.GO)| = |F, (G —m)| < . (3.6.5)

Now, following the proof of Theorem [3.4.6| verbatim with ¥, := ¥ and replacing the
usage of Lemma [3.6.2| by (3.6.5]) yield the second estimate in ((3.4.9)).
Similarly, the third estimate in (3.4.9) is proven by following the proof of Theo-

rem |3.4.6| verbatim with ¥, := ¥ and Lemma |3.6.2| replaced by
F,G L < A, < U

for  # —x which is a consequence of Lemma and Lemma [3.6.1]
Next, we establish (3.4.10). We start from Schur’s complement formula (3.4.1)) with

T = () and use (3.2.6)) to get

1 1 (z) .
G = e (Z ok Gy — m) . (3.6.6)

k.l

Using Lemma with ¢ = 1 and the first estimate in (3.4.13) we get

1 1 Guow —m
_ _‘ —m

‘G G — m| < W.

m Gram

Thus, |hy, — (Z,(fl) ek Gy — m)| < W as well. Therefore, we can expand the inverse
of the right-hand side of (3.6.6) around 1/m which yields

(2)
0y = Gay —m = m? (—hm +3 ha Gy, — m) + g, (3.6.7)
k,l
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with error terms g, such that |g,| < ¥? uniformly in z. By (3.5.7), (3.5.8), (3.5.3), (3.5.4)
and (3.5.5)), we have for © # —z the representation

(x)
Z hasz](i)hlm - Z Sa:aGaa - Ax - BLE - S—z,xG(—zaZ7—x + Z:v +Y;B + O:v + 8—:c,zG(—Iz),—z' (368)
k,l a
Taking the expectation E, of (3.6.7)) we want to prove that
Eyv, =m? Y Spave + fo, (3.6.9)

where |f,| < ¥? uniformly in z. From we get that the sum of the first four
summands on the right-hand side of is H@~*)_measurable. Therefore, it suffices
to show that all summands except the first one on the right-hand side of are
bounded by ¥? uniformly in . For A, and B, this follows directly from their definitions
in . Since Z, = F,X, for some random variable X, we get E,Z, = 0. The
representation for C;, and Lemma yield [Cy] < M~ + M~Y2¥ < U2 by
(3.5.11). The bound with T = @ gives |Y,| < ¥? uniformly in z. If z = —z then
the argumentation in [60] can be applied. This finishes the proof of (3.6.9).

Therefore, since E, + F, = 1 we have

Wy 1= Z toxVs = Z tax]Exe + Z tazIFx'Ux = m2 Z taiﬂsfl?yvy + Fa
T x T z,Y

(3.6.10)
= m2 Z Saxtxyvy + Fa = m2 Z Saz Wz + Fa7
T,y z

where we used with the notation F, := Y, to.(fs + Fyv,) in the third step and
in the fourth step that 7" and S commute. Note that |F,| < ¥? uniformly in a as
130 taaFave| = |24 taxFeGaz| < P2 by the second estimate in . Introducing the
vectors W = (w,)aez/nz and F := (F,)uez/nz and writing in matrix form we get

w =m>Sw + F.
Inverting the last equation yields

w = (1 —-m?9)"'F.
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Recalling the definition we have
[Wllso < Ts[[Floc < TsP?

since |F,| < ¥? uniformly in a is equivalent to ||F|l» < W2. This proves (3.4.10).
In order to prove (3.4.11)) it suffices to verify

E,Gow=m> > (Eh2,)Goa+ fo (3.6.11)
aF#—a

with |f,| < ¥? uniformly in z. Then (3.4.11)) follows from the same reasoning as in the
proof of (3.4.10) with S replaced by R and

= Z tzaGa,fa-

aFt—a
To compute the partial expectation E,G, _, we use the expansion

(z,—)
Goy = m? Z (ER2)GY7 +m? Z haaGY 3 g
a#b
(1771)
+m? Y (2, —BRZ,) G + (m? = GroGY) ) he—w — mPhy s

a

. (3.6.12)
+(GoaGY) = m?) Y hWuGE R

a#b
+ (szG(:Bg’_$ - Z h a - —a 7

which follows from the resolvent identities in a similar way as .

The first summand in is H®~*)_measurable. Using twice and adding
the two missing terms we obtain the first summand on the right-hand side of .
The error terms originating from the usage of the resolvent identities and the added terms
are obviously dominated by W2. The partial expectations with respect to H®~*) of the
second and the fifth term vanish. For the remaining terms we use Lemma [3.6.1} First,

lm? — GmG(_x;,);7_x| < W because of the triangle inequality, Lemma [3.5.2| and the second

estimate in (3.4.13)). Thus, using (3.2.7]) and (3.4.7)) for the fourth term, the first step in
(3.5.21]) for the sixth term and (3.5.20)) for the seventh term we get that these summands

are dominated by W2. Similarly to (3.5.25]) we see that the third summand is dominated by
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U2 using the Large Deviation Bound (C.2) in and the first estimate in Lemma [3.5.2
Lemma establishes (3.6.11]) which finishes the proof of Theorem [3.4.5] d



CHAPTER 4

Local law for random Gram matrices

This chapter consists of a modified version of the publication [14] which was written
jointly with Léaszl6 Erdos and Torben Kriiger. We prove a local law in the bulk of the
spectrum for random Gram matrices X X*, a generalization of sample covariance matrices,
where X is a large matrix with independent, centered entries with arbitrary variances.
The limiting eigenvalue density that generalizes the Marchenko-Pastur law is determined
by solving a system of nonlinear equations. Our entrywise and averaged local laws are
on the optimal scale with the optimal error bounds. They hold both in the square case
(hard edge) and in the properly rectangular case (soft edge). In the latter case we also

establish a macroscopic gap away from zero in the spectrum of X X*.

4.1. Introduction

Random matrices were introduced in pioneering works by Wishart [160] and Wig-
ner |157] for applications in mathematical statistics and nuclear physics, respectively.
Wigner argued that the energy level statistics of large atomic nuclei could be described
by the eigenvalues of a large Wigner matriz, i.e., a hermitian matrix H = (hy;);;_; with
centered, identically distributed and independent entries (up to the symmetry constraint
H = H*). He proved that the empirical spectral measure (or density of states) converges
to the semicircle law as the dimension of the matrix N goes to infinity. Moreover, he
postulated that the statistics of the gaps between consecutive eigenvalues depend only on
the symmetry type of the matrix and are independent of the distribution of the entries
in the large N limit. The precise formulation of this phenomenon is called the Wigner-
Dyson-Mehta universality conjecture, see [114].

Historically, the second main class of random matrices is the one of sample covariance
matrices. These are of the form X X* where X is a p x n matrix with centered, identically

distributed independent entries. In statistics context, its columns contain n samples of a

49
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p-dimensional data vector. In the regime of high dimensional data, i.e., in the limit when
n,p — oo in such a way that the ratio p/n converges to a constant, the empirical spec-
tral measure of X X* was explicitly identified by Marchenko and Pastur [112]. Random
matrices of the form X X* also appear in the theory of wireless communication; the spec-
tral density of these matrices is used to compute the transmission capacity of a Multiple
Input Multiple Output (MIMO) channel. This fundamental connection between random
matrix theory and wireless communication was established by Telatar [147] and Foschini
[76, [77] (see also [150] for a review). In this model, the element z;; of the channel matriz
X represents the transmission coefficient from the j-th transmitter to the i-th receiver
antenna. The received signal is given by the linear relation y = X's 4+ w, where s is the
input signal and w is a Gaussian noise with variance 2. In case of i.i.d. Gaussian input

signals, the channel capacity is given by
1
Cap = —logdet (I + U’QXX*) (4.1.1)
p

The assumption in these models that the matrix elements of H or X have identical dis-
tribution is a simplification that does not hold in many applications. In Wigner’s model,
the matrix elements h;; represent random quantum transition rates between physical
states labelled by ¢ and 7 and their distribution may depend on these states. Analo-
gously, the transmission coefficients in X may have different distributions. This leads
to the natural generalizations of both classes of random matrices by allowing for general
variances, s;; = E|h;;|* and s;; = E|x;;* , respectively. We will still assume the inde-
pendence of the matrix elements and their zero expectation. Under mild conditions on
the variance matrix S = (s;;), the limiting spectral measure depends only on the second
moments, i.e., on S, and otherwise it is independent of the fine details of the distributions
of the matrix elements. However, in general there is no explicit formula for the limiting
spectral measure. In fact, the only known way to find it in the general case is to solve a

system of nonlinear deterministic equations, known as the Dyson (or Schwinger-Dyson)

equation in this context, see [34] 82,99, [156].
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For the generalization of Wigner’s model, the Dyson equation is a system of equations

of the form
1 N
— =z+ > s;m;(z), fori=1,...,N, z € H, (4.1.2)
mz(z) ]Zl VAR
where z is a complex parameter in the upper half plane H := {z € C : Imz > 0}.

The average (m(z)) = ~ 3, m;(z) in the large N limit gives the Stieltjes transform of the
limiting spectral density, which then can be computed by inverting the Stieltjes transform.
In fact, m;(z) approximates individual diagonal matrix elements G;;(z) of the resolvent
G(z) = (H — 2)7 !, thus the solution of gives much more information on H than
merely the spectral density. In the case when S is a stochastic matrix, i.e., >3; s = 1
for every i, the solution m;(z) to is independent of ¢ and the density is still the
semicircle law. The corresponding generalized Wigner matrix was introduced in [70] and
the optimal local law was proven in |71, |72]. For the general case, a detailed analysis of
and the shapes of the possible density profiles was given in |4} [5] with the optimal
local law in [7].

Considering the X X* model with a general variance matrix for X, we note that in
statistical applications the entries of X within the same row still have the same variance,
ie., s; = sy for all ¢ and all k,I. However, beyond statistics, for example modeling
the capacity of MIMO channels, applications require to analyze the spectrum of X X*
with a completely general variance profile for X [52,92]. These are called random Gram
matrices, see e.g. [82, 90]. The corresponding Dyson equation is (see [52, 82, |150] and
references therein)

1 " 1
mi(C) > T > siem;(€)’

k=1

fori=1,...,p, ¢ € H. (4.1.3)

We have m;(¢) ~ (XX* — ();' and the average of m;(¢) yields the Stieltjes transform
of the spectral density exactly as in case of the Wigner-type ensembles. In fact, there is

a direct link between these two models: Girko’s symmetrization trick reduces (4.1.3) to
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studying (4.1.2) on CV with N = n + p, where S and H are replaced by

S = OS, H = ! X, (4.1.4)
St0 X* 0
respectively, and 22 = (.

The limiting spectral density, also called the global law, is typically the first question
one asks about random matrix ensembles. It can be strengthened by considering its local
versions. In most cases, it is expected that the deterministic density computed via the
Dyson equation accurately describes the eigenvalue density down to the smallest possible
scale which is slightly above the typical eigenvalue spacing (we choose the standard nor-
malization such that the spacing in the bulk spectrum is of order 1/N). This requires to
understand the trace of the resolvent G(z) at a spectral parameter very close to the real
axis, down to the scales Im z > 1/N. Additionally, entry-wise local laws and isotropic lo-
cal laws, i.e., controlling individual matrix elements G;;(z) and bilinear forms (v, G(2)w),
carry important information on eigenvectors and allow for perturbation theory. More-
over, effective error bounds on the speed of convergence as N goes to infinity are also of
great interest.

Local laws have also played a crucial role in the recent proofs of the Wigner-Dyson-
Mehta conjecture. The three-step approach, developed in a series of works by Erdds,
Schlein, Yau and Yin [64] 65] (see [69] for a review), was based on establishing the local
law as the first step. Similar input was necessary in the alternative approach by Tao and
Vu in [141] [144].

In this paper, we establish the optimal local law for random Gram matrices with a
general variance matrix S in the bulk spectrum; edge analysis and local spectral univer-
sality is deferred to a forthcoming work. We show that the empirical spectral measure of
X X* can be approximated by a deterministic measure v on R with a continuous density
away from zero and possibly a point mass at zero. The convergence holds locally down to
the smallest possible scale and with an optimal speed of order 1/N. In the special case
when X is a square matrix, n = p, the measure v does not have a point mass but the
density has an inverse square-root singularity at zero (called the hard edge case). In the

soft edge case, n # p, the continuous part of v is supported away from zero and it has
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a point mass of size 1 — n/p at zero if p > n. All these features are well-known for the
classical Marchenko-Pastur setup, but in the general case we need to demonstrate them
without any explicit formula.

We now summarize some previous related results on Gram matrices. If each entry
of X has the same variance, local Marchenko-Pastur laws have first been proven in [65,
122] for the soft edge case; and in [44} 46| for the hard edge case. The isotropic local law
was given in [36]. Relaxing the assumption of identical variances to a doubly stochastic
variance matrix of X, the optimal local Marchenko-Pastur law has been established in [3]
for the hard edge case. Sample correlation matrices in the soft edge case were considered
in [2§].

Motivated by the linear model in multivariate statistics and to depart from the iden-
tical distribution, random matrices of the form T'ZZ*T™* have been extensively studied
where 7' is a deterministic matrix and the entries of Z are independent, centered and have
unit variance. If T"is diagonal, then they are generalizations of sample covariance matrices
as TZZ*T* = X X* and the elements of X = TZ are also independent. With this defini-
tion, all entries within one row of X have the same variance since s;; = E|z;;|* = (TT*)y,
i.e., it is a special case of our random Gram matrix. In this case the Dyson system of
equations can be reduced to a single equation for the average (m(z)), i.e., the
limiting density can still be obtained from a scalar self-consistent equation. This is even
true for matrices of the form X X* with X = TZT, where both T and T are determin-
istic, investigated for example in [53]. For general T' the elements of X = T'Z are not
independent, so general sample covariance matrices are typically not Gram matrices. The
global law for T'ZZ*T™* has been proven by Silverstein and Bai in |[134]. Knowles and Yin
showed optimal local laws for a general deterministic 7" in [101].

Finally, we review some existing results on random Gram matrices with general vari-
ance S, when (4.1.3) cannot be reduced to a simpler scalar equation. The global law, even
with nonzero expectation of X, has been determined by Girko [82] via who also
established the existence and uniqueness of the solution to . More recently, moti-
vated by the theory of wireless communication, Hachem, Loubaton and Najim initiated a

rigorous study of the asympotic behaviour of the channel capacity (4.1.1)) with a general
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variance matrix S [88),92], This required to establish the global law under more general
conditions than Girko; see also [90] for a review from the point of view of applications.
Hachem et al. have also established Gaussian fluctuations of the channel capacity
around a deterministic limit in [91] for the centered case. For a nonzero expectation of
X, a similar result was obtained in [89], where S was restricted to a product form. Very
recently in [33], a special k-fold clustered matrix X X* was considered, where the samples
came from k different clusters with possibly different distributions. The Dyson equation
in this case reduces to a system of k equations. In an information-plus-noise model of
the form (R + X)(R + X)*, the effect of adding a noise matrix to X with identically
distributed entries was studied knowing the limiting density of RR* [55].

In all previous works concerning general Gram matrices, the spectral parameter z
was fixed, in particular Im z had a positive lower bound independent of the dimension of
the matrix. Technically, this positive imaginary part provided the necessary contraction
factor in the fixed point argument that led to the existence, uniqueness and stability of
the solution to the Dyson equation, (4.1.3). For local laws down to the optimal scales
Imz > 1/N, the regularizing effect of Im z is too weak. In the bulk spectrum Im z is
effectively replaced with the local density, i.e., with the average imaginary part Im (m(z)).
The main difficulty with this heuristics is its apparent circularity: the yet unknown
solution itself is necessary for regularizing the equation. This problem is present in all
existing proofs of any local law. This circularity is broken by separating the analysis
into three parts. First, we analyze the behavior of the solution m(z) as Imz — 0.
Second, we show that the solution is stable under small perturbations of the equation
and the stability is provided by Im (m(E + i0)) for any energy E in the bulk spectrum.
Finally, we show that the diagonal elements of the resolvent of the random matrix satisfy
a perturbed version of , where the perturbation is controlled by large deviation
estimates. Stability then provides the local law.

While this program could be completed directly for the Gram matrix and its Dyson
equation, , the argument appears much shorter if we used Girko’s linearization
to reduce the problem to a Wigner-type matrix and use the comprehensive analysis
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of from [4} 5] and the local law from [7]. There are two major obstacles to this
naive approach.

First, the results of [4, 5] are not applicable as S does not satisfy the uniform primi-
tivity assumption imposed in these papers (recall that a matrix A is primitive if there is a
positive integer L such that all entries of A% are strictly positive). This property is crucial
for many proofs in [4, 5] but S in is a typical example of a nonprimitive matrix.
It is not a mere technical subtlety, in fact in the current paper, the stability estimates of
(4.1.2)) require a completely different treatment, culminating in the key technical bound,
the Rotation-Inversion lemma (see Lemma later).

Second, Girko’s transformation is singular around z ~ 0 since it involves a 2% = (
change in the spectral parameter. This accounts for the singular behavior near zero in
the limiting density for Gram matrices, while the corresponding Wigner-type matrix has
no singularity at zero. Thus, we need to perform a more accurate analysis near zero. If
p # n, the soft edge case, we derive and analyze two new equations for the first coefficients
in the expansion of m around zero. Indeed, the solutions to these new equations describe
the point mass at zero and provide information about the gap above zero in the support
of the approximating measure. In the hard edge case, n = p, an additional symmetry

allows us to exclude a point mass at zero.

Acknowledgement. The authors thank Zhigang Bao for helpful discussions.

Notation. For vectors v,w € C'!, the operations product and absolute value are
defined componentwise, i.e., vw = (vaw;)l_, and |v| = (Jv;])}.,. Moreover, for w €
(C\ {0})!, we set 1/w == (1/w;)!_,. For vectors v,w € C!, we define (w) = I7* 3!, w;,
(v, w) = 17 Eiy Tw, [lwllf = 17 i fwil? and [Jwlle = maxi,..|wil, [[v]li = (o).
Note that (w) = (1,w) where we used the convention that 1 also denotes the vector
(1,...,1) € C'. For a matrix A € C*!, we use the short notations ||A]|ec = [|Alco—o0
and ||A|l2 == ||A||2—2 if the domain and the target are equipped with the same norm

whereas we use || A||2— to denote the matrix norm of A when it is understood as a map

(C% 11 ll2) = (€ 1 lloo)-
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4.2. Main results

Let X = (z4):x be a p X n matrix with independent, centered entries and variance
matrix S = (sig)ik, i.€.,

Exgy =0, s = IE1|-’sz|2

fori=1,...,pand k=1,...,n.

Assumptions 4.2.1. (A) The variance matrix S is flat, i.e., there is s, > 0 such
that
Sx
Sik <
p+n

foralli=1,...,pand k=1,...,n.
(B) There are Ly, Ly € N and 11,15 > 0 such that

t\L1] .. U1 t o\ Lo V2
[(SS") ]Z]Zp+n’ [(S°S) ]k12p+n

foralli,7=1,...,pand k,l=1,...,n.
(C) All entries of X have bounded moments in the sense that there are p,, > 0 for
m € N such that

E|zi|™ < pims)y!

foralli=1,...,pand k=1,... n.
(D) The dimensions of X are comparable with each other, i.e., there are constants
r1,79 > 0 such that

ry < = <.

SEIS

In the following, we will assume that s., Ly, L, 1, %o, 71, 9 and the sequence
(tm)m are fixed constants which we will call, together with some constants introduced
later, model parameters. The constants in all our estimates will depend on the model
parameters without further notice. We will use the notation f < g if there is a constant
¢ > 0 that depends on the model parameter only such that f < cg and their counterparts
f2gitgs< fand f ~gif f < gand f 2 g. The model parameters will be kept
fixed whereas the parameters p and n are large numbers which will eventually be sent to

infinity.
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We start with a theorem about the deterministic density.

Theorem 4.2.2. (i) If (A) holds true, then there is a unique holomorphic function
m: H — C? satisfying
1 1
——5—
T+ 5tm(Q)

for all ¢ € H such that Tmm(¢{) > 0 for all { € H. Moreover, there is a probability

(4.2.1)

measure v on R whose support is contained in [0,4s,] such that

1
w=C

m(Q)) = [ —v(dw)

for all ¢ € H.

(ii) Assume (A), (B) and (D). The measure v is absolutely continuous wrt. the
Lebesque measure apart from a possible point mass at zero, i.e., there are a
number m, € [0,1] and a locally Hélder-continuous function m: (0,00) — [0,00)

such that v(dw) = m,0p(dw) + m(w)1(w > 0)dw.

Part (i) of this theorem has already been proven in [92] and we will see that it also
follows directly from [4, 5]. We included this part only for completeness. Part (ii) is a
new result.

For ( € C\ R, we denote the resolvent of X X* at ( by
R(¢) = (XX =)™

and its entries by R;;(¢) for 4,5 =1,...,p.

We state our main result, the local law, i.e., optimal estimates on the resolvent R,
both in entrywise and in averaged form. In both cases, we provide different estimates
when the real part of the spectral parameter ( is in the bulk and when it is away from
the spectrum. As there may be many zero eigenvalues, hence, a point mass at zero in the
density v, our analysis for spectral parameters ¢ in the vicinity of zero requires a special
treatment. We thus first prove the local law under the general assumptions (A) — (D) for
¢ away from zero. Some additional assumptions in the following subsections will allow

us to extend our arguments to all .
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All of our results are uniform in the spectral parameter ¢ which is contained in some
spectral domain

Ds :={¢ € H: 6 <|C| < 10s.} (4.2.2)

for some d > 0. In the first result, we assume 6 > 0. In the next section, under additional
assumptions on S, we will work on the bigger spectral domain Dy that also includes a

neighbourhood of zero.

Theorem 4.2.3 (Local Law for Gram matrices). Let §,e, > 0 and v € (0,1). If X is a
random matriz satisfying (A) — (D) then for every e > 0 and D > 0 there is a constant
C..p > 0 such that

P(3C € Diisj € {1 p}i ImC 2 p7, w(ReQ) 2 e,

. . (4.2.3a)
Ry(Q) = mi(O3y| = ) < 552
IP’(EIC € Ds,i,7 €{1,...,p}: dist(¢,suppv) > e,
Ay c,  (423D)
[ Rij(¢) — mi(€)di;] = \/]—9) S 0

for all p € N. Furthermore, for any sequences of deterministic vectors w € CP satisfying

|w]leo < 1, we have

IP(EIC €Ds: Im¢ >p 17, 7(Re() > &,

p - (4.2.4a)
1 p CE,D
‘p;’wi [Rii(¢) — mz(C)]’ > pImC) < o
]P’(EI( € Ds: dist(¢,suppv) > e,
1 & N\ ¢, (a24b)
’p;wi [Rii(¢) —mi(Q)]| > Z) < p’DD,

for all p € N. In particular, choosing w; = 1 for alli = 1,...,p in (4.2.4)) yields that
p L Tr R(C) is close to (m(C)).
The constant C, p depends, in addition to € and D, only on the model parameters and

on vy, 6 and e,.
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These results are optimal up to the arbitrarily small tolerance exponents v > 0 and
e > 0. We remark that under stronger (e.g. subexponential) moment conditions in (C),
one may replace the p” and p® factors with high powers of log p.

Owing to the symmetry of the assumptions (A) — (D) in X and X*, we can exchange
X and X* in Theorem [£.2.3] and obtain a statement about X*X instead of X X* as well.

For the results in the up-coming subsections, we need the following notion of a se-

quence of high probability events.

Definition 4.2.4 (Overwhelming probability). Let Ny: (0,00) — N be a function that
depends on the model parameters and the tolerance exponent v only. For a sequence
A = (A®), of random events, we say that A holds true asymptotically with overwhelming

probability (a.w.o.p.) if for all D >0
p(A(p)) >1—p”
for all p > Ny(D).

We denote the eigenvalues of XX* by A\; < ... <), and define

i(x) = {p /X V(dw)—‘ ,  for y e R (4.2.5)

For a spectral parameter xy € R in the bulk, the nonnegative integer i(y) is the index of
an eigenvalue expected to be close to y.
Theorem 4.2.5. Let 6,¢, > 0 and X be a random matriz satisfying (A) — (D).

(i) (Bulk rigidity away from zero) For everye > 0 and D > 0, there exists a constant
C..p > 0 such that

P (3 T € (6,10s,] : (7)) > €4, [Ni(r) — 7| = p) < Cen (4.2.6)
p

holds true for all p € N.
The constant Ce,p depends, in addition to € and D, only on the model pa-
rameters as well as on & and e,.

(7i) Away from zero, all eigenvalues lie in the vicinity of the support of v, i.e., a.w.o.p.

Spec(XX™) N {r;|7]| > 0, dist(r,suppv) > e,} = @. (4.2.7)
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In the following two subsections, we distinguish between square Gram matrices, n = p,
and properly rectangular Gram matrices, [p/n — 1| > d, > 0, in order to extend the local
law, Theorem to include zero in the spectral domain . Since the density of states
behaves differently around zero in these two cases, separate statements and proofs are

necessary.

4.2.1. Square Gram matrices. The following concept is well-known in linear al-
gebra. For understanding singularities of the density of states in random matrix theory,

it was introduced in [4].

Definition 4.2.6 (Fully indecomposable matrix). A K x K matrix T' = (t;;)}5_, with
nonegative entries is called fully indecomposable if for any two subsets I,J C {1,..., K}

such that #I + #J > K, the submatrix (¢;;);cr jes contains a nonzero entry.

For square Gram matrices, we add the following assumptions.

(E1) The matrix X is square, i.e., n = p.

(F1) The matrix S is block fully indecomposable, i.e., there are constants ¢ > 0,
K € N, a fully indecomposable matrix Z = (z;)f_, with z; € {0,1} and a
partition (I;)%, of {1,...,p} such that

I, =

p '
—, Spy > —2%4, x€E€landy € [;
K Y=Y y&4

foralli,j=1,... K.

The constants ¢ and K in (F1) are considered model parameters as well.

Remark 4.2.7. Clearly, (E1) yields (D) with 7, = ro = 1. Moreover, adapting the proof
of Theorem 2.2.1 in [29], we see that (F1) implies (B) with Ly, Lo, 11 and 1y explicitly
depending on ¢ and K.

Theorem 4.2.8 (Local law for square Gram matrices). If X satisfies (A), (C), (E1) and
(F1), then

(i) The conclusions of Theorem are valid with the following modifications:
(4.2.3b) and (4.2.4) hold true for 6 = 0 (cf. (4.2.2)) while instead of (4.2.3al),
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we have

P(3C € Do, 30,51 Im¢ 2 p7 7, m(Re) 2 <.,
(4.2.8)

(Im m(C))) Cep

ii(C) — mi(C)di| > p° < —5-

|RJ(O m;(C) J| p plm ¢ iz
(it) T, = 0 and the limit lim,, o m(w)\/w exists and lies in (0, 00).

(iii) (Bulk rigidity down to zero) For every e, > 0 and every ¢ > 0 and D > 0, there

exists a constant C. p > 0 such that

£ 1 -
P (EI 7€ (0,10s,] : 7(7) > €y, [Nigry — 7| > l;) (ﬁ—i— p)) < Cpr (4.2.9)

for all p € N. The constant C. p depends, in addition to ¢ and D, only on the
model parameters and on ¢,.

(iv) There are no eigenvalues away from the support of v, i.e., (4.2.7) holds true with
d=0.

We remark that the bound of the individual resolvent entries (4.2.8]) deteriorates as
¢ gets close to zero since (Imm(¢)) ~ |¢|7/? in this regime while the averaged version,

(4.2.4), with 6 = 0, does not show this behaviour.

4.2.2. Properly rectangular Gram matrices.

(E2) The matrix X is properly rectangular, i.e., there is d, > 0 such that
'p—qzdw
n

(F2) The matrix elements of S are bounded from below, i.e., there is a ¢ > 0 such
that

Sik =

n—+p
foralli=1,...,pand k=1,... n.
The constants d, and ¢ in (E2) and (F2), respectively, are also considered as model
parameters. Note that (F2) is a simpler version of (F1). For properly rectangular Gram
matrices we work under the stronger condition (F2) for simplicity but our analysis could

be adjusted to some weaker condition as well.
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Remark 4.2.9. Note that (F2) immediately implies condition (B) with L = 1.

We introduce the lower edge of the absolutely continuous part of the distribution v

for properly rectangular Gram matrices
0r = inf{w > 0: m(w) > 0}. (4.2.10)

Theorem 4.2.10 (Local law for properly rectangular Gram matrices). Let X be a random

matriz satisfying (A), (C), (D), (E2) and (F2). We have

(i) The gap between zero and the lower edge is macroscopic 6, ~ 1.
(i) (Bulk rigidity down to zero) The estimate holds true with 6 = 0.
(iii) There are no eigenvalues away from the support of v, i.e., holds true with
0=0.
(tv) If p > n, then m, = 1 —n/p and dimker(XX*) =p —n a.w.o.p.
(v) If p < n, then m, = 0 and dimker(XX*) =0 a.w.o.p.
(vi) (Local law around zero) For every e, € (0,0,), every e > 0 and D > 0, there

exists a constant C. p > 0, such that

]P’(ng]HI,z’,je (1, p}: ] < 65— e,

] (4.2.11)
p OaD
Ri;(€) — mi(¢)dis| > )S 5
forallp e N if p>n and
IP’(HC €M, je{l,. .. p}:[c| <6r—en,
. (4.2.12)
b C&,D
|Rij (C) — mi(C)diz| > \/2_9> < P
for all p € N if p < n. Moreover, in both cases
1 p € CE
P(3CEH: || <0 — e | oD (RO -mi(Ol| 2 ) <752 a213)
i=1

for all p € N.
The constant Cep depends, in addition to € and D, only on the model pa-

rameters and on &,.
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If p > n, then the Stieltjes transform of the empirical spectral measure of X X* has

a term proportional to 1/¢ due to the macroscopic kernel of X X*. This is the origin of

the additional factor 1/|¢| in (4.2.11)).

Remark 4.2.11. As a consequence of Theorem [£.2.§ and Theorem [£.2.10] and under the
same conditions, the standard methods in [36] and [7] can be used to prove an anisotropic

law and delocalization of eigenvectors in the bulk.

4.3. Quadratic vector equation

For the rest of the paper, without loss of generality, we will assume that s, = 1in (A),
which can be achieved by a simple rescaling of X. In the whole section, we will assume

that the matrix S satisfies (A), (B) and (D) without further notice.

4.3.1. Self-consistent equation for resolvent entries. We introduce the random

matrix H and the deterministic matrix S defined through

0 X 0o S
H = : S = . (4.3.1)
X* 0 St0
Note that both matrices, H and S have dimensions (p + n) x (p + n). We denote
their entries by H = (hyy)., and S = (04y)sy, respectively, where o,, = E|h,,|* with
z,y=1,...,n+p.

It is easy to see that condition (B) implies

(B’) There are L € N and 1 > 0 such that

> (8%, > nfip (4.3.2)
k=1

forall z,y =1,...,n+p.

In the following, a crucial part of the analysis will be devoted to understanding the

resolvent of H at z € H, i.e., the matrix

G(z)=(H—2)" (4.3.3)
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whose entries are denoted by G,(2) for z,y =1,...,n+p. For V.C {1,...,n+p}, we
use the notation G{Y) to denote the entries of the resolvent GV (z) = (HY) — 2)~! of
the matrix H,%) = hyl(x ¢ V)1(y ¢ V) where z,y = 1,...,n+p.

The Schur complement formula and the resolvent identities applied to G(z) yield the

self-consistent equations

1 n
N =2+ sigan(2) +di(2), (4.3.4a)
91,i(2) =1
1 P
- =2+ siugri(2) + dax(2), (4.3.4D)
92.1(2) =

where ¢1,(2) == Gu(z) for i = 1,...,p and ¢24(2) = Griprip(z) for k = 1,...,n with
the error terms

n

T “ ™ " G n TGT n
diy= Y apGRT+ Y (!l’rk|2 - Srk) Gy hn — 3 sy nkn,

E=1,k#l k=1 k=1 gi,r
P P P G G ,
. = (m-+p) 2 (m+p) i,m+pIm+p,i
d2,m = Z ximGij Tjm + Z |xzm| — Sim Gm - Z Sim
i,=1,i#j i=1 i=1 92,m
forr=1,...,pandm=1,...,n.

We will prove a local law which states that g ;(z) and ga x(z) can be approximated by
(m1(2)); and (ma(z))k, respectively, where my: H — C? and mq: H — C" are the unique

solution of

1
—— =2+ Smay, (4.3.5a)
my
1 ¢
—— =24 8'my, (4.3.5b)
mo

which satisfy Imm;(z) > 0 and Immy(z) > 0 for all z € H.
The system of self-consistent equations for g; and ¢, in (4.3.4) can be seen as a

perturbation of the system (4.3.5). With the help of S, equations (4.3.5a)) and (4.3.5b)

can be combined to a vector equation for m = (my, my)" € HP*" ie.,
1
—— =2z+Sm. (4.3.6)
m

Since S is symmetric, has nonnegative entries and fulfills (A) with s, = 1, Theorem 2.1

in [4] is applicable to (4.3.6). Here, we take a = 0 in Theorem 2.1 of [4]. This theorem
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implies that has a unique solution m with Imm(z) > 0 for any z € H. Moreover,
by this theorem, m, is the Stieltjes transform of a symmetric probability measure on R
whose support is contained in [—2,2] for all x =1,...,n 4 p and we have

()l < (43.7)

for all z € H. The function (m) is the Stieltjes transform of a symmetric probability

measure on R which we denote by p, i.e.,

(m()) = [ el (438)

for z € H. Tts support is contained in [—2, 2].

We combine (4.3.4a]) and (4.3.4b|) to obtain

1
- =:+Sg+d, (4.3.9)

where g = (g1,92)" and d = (dy,d2)". We think of (4.3.9) as a perturbation of (4.3.6))
and most of the subsequent subsection is devoted to the study of (4.3.9) for an arbitrary

perturbation d.

Before we start studying we want to indicate how m and R are related to
m = (my,me)" and G, respectively. The Stieltjes transforms as well as the resolvents
are essentially related via the same transformation of the spectral parameter. If G;(2)
denotes the upper left p x p block of G(z) then R(2?) = (XX* — 2?)"! = G11(2)/z. In
the proof of Theorem in Subsection 4.3.4, we will see that m and m; are related
via m(¢) = m1(v/¢)/v/{. (We always choose the branch of the square root satisfying
Im +/¢ > 0 for Im¢ > 0.) Assuming this relation and introducing m»(¢) = ma(1/¢)/V<,

we obtain

1 _
—m = ((1+ Sma(C)),

1 t
g = L Sm(Q)

from (4.3.5)). Solving the second equation for my and plugging the result into the first one
yields (4.2.1)) immediately. In fact, my is the analogue of m corresponding to X*X, i.e,

(4.3.10)

the Stieltjes transform of the deterministic measure approximating the eigenvalue density

of X*X.
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4.3.2. Structure of the solution. We first notice that the inequality s, < 1/(n+p)

implies

» » 2 /1 1/2
|1S*w|| 0o = nax ZSMUH <  nax <p2512k> (pZ]wiP) < Jw|lzs  (4.3.11)
i=1

o= o i=1

for all w € CP, i.e., ||S*]|2m00 < 1. Now, we establish some preliminary estimates on the

solution of (|4.3.6]).

Lemma 4.3.1. Let z € H and x € {1,...,n+ p}. We have

()] € s (43.12a)
Imm, (z) < — (ZI,T;) e (4.3.12b)
If z € H and |z| < 10 then
2] S Ime(2)] < [[m(2)]|oe S B (4.3.13a)
~ B ~ (Imm(z))
2P (Imm(2)) < Tmm,(2). (4.3.13b)

In particular, the support of the measures representing my, is independent of x away from

ZET0.

The proof essentially follows the same line of arguments as the proof of Lemma 5.4
in [4]. However, instead of using the lower bound on the entries of ST as in [4] we have
to make use of the lower bound on the entries of 3¢ | S*.

To prove another auxiliary estimate on S, we define the vectors S, = (04y)y=1,... ntp €

R™? for x = 1,...,n + p. Since 2|) implies

L n+p L n+p n+p n+p
§ZZ(Sk <N ow max X:S’C Yy <L 04
=1 y=1 —1o=1  Theentpy =1

for any fixed 2 = 1,...,n + p, where we used ||S* || < ||S]|¥-! < 1 by (A), we obtain

4

fo1S,l > 4.3.14
inf | N1Salh = 7 ( )
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In particular, together with (A), this implies
p n
dsig~l, D sy~ i=1,...,p, k=1,...,n. (4.3.15)

In the study of the stability of (4.3.6) when perturbed by a vector d, as in (4.3.9), the
linear operator

F(2)w = |m(2)|S(Im(2)|w) (4.3.16)

for w € C"*P plays an important role. Before we collect some properties of operators
of this type in the next lemma, we first recall the definition of the gap of an operator

from [4].

Definition 4.3.2. Let T be a compact self-adjoint operator on a Hilbert space. The
spectral gap Gap(T) > 0 is the difference between the two largest eigenvalues of |T|
(defined by spectral calculus). If the operator norm ||T’|| is a degenerate eigenvalue of

|T|, then Gap(T) = 0.

In the next lemma, we study matrices of the form /F\(r)xy = 7041, Where r €
(0,00)"" and z,y = 1,...,n + p. If inf,r, > 0 then (4.3.2) implies that all entries
of SF | /F\(T)k are strictly positive. Therefore, by the Perron-Frobenius theorem, the

eigenspace corresponding to the largest eigenvalue X(r) of F( one-dimensional and

) is
spanned by a unique non-negative vector f = }(r) such that (}' })
) € RP*™ such that

The block structure of S implies that there is a matrix F/(r
F(r)= : (4.3.17)

However, for this kind of operator, we obtain Spec (F(r)) = — Spec (F(r)), i.e., Gap(F(r))
— 0 by above definition. Therefore, we will compute Gap(F(r)F(r)"), instead. We will
apply these observations for F(z) where the blocks F'(jm(z)|) will be denoted by F(z).

Lemma 4.3.3. For a vector r € (0,00)"*? which is bounded by constants r, € (0,00)
and r_ € (0,1], i.e

r_ <r, <71y
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for all x = 1,...,n+ p, we define the matric /F\(r) with entries /F\(r)xy ‘= Ty OyTy fOr
2,y = 1,...,n+p. Then the eigenspace corresponding to A(r) == |[F(r)|sm2 is one-

dimensional and \(r) satisfies the estimates
2 <A(r) S (4.3.18)

There is a unique eigenvector ]A” = JA“(T) corresponding to /A\(r) satisfying },x > 0 and
||}||g = 1. Its components satisfy

2L

~

r ~ -
—min {A(r), A(r) "L S f, S = lHe=1,... : 4.3.19
T min {\(r), \(r) "} S F, S Sop [rale=l.mtp (4.3.19)
Moreover, F(r)F(r)" has a spectral gap
8L R
Gap (F(T)F( ) ) 2 TTG min {)\(T)G, /\(T)_SLHO} . (4.3.20)
+

The estimates in (4.3.18) and (4.3.19) can basically be proven following the proof of
Lemma 5.6 in [4] where ST is replaced by Y5, 8% and (F/A)E by S°F_, (F/\)*. Therefore,

we will only show (4.3.20)) assuming the other estimates.
PROOF. We write f = (ﬁ, fg)t for f; € C? and f, € C" and define a linear operator

-1 (%)-

Thus, |T||, = L as T'f; = Lf;. Using (B’) we first estimate the entries ¢;; by

on CP through

>/>‘

Xi: (SSt )”>r4Lm1n{3\ 2,5\%}”1_/;]), fori,j=1,...,p.

Estimating || f1 /|2 and || f1]|e from (£.3.19) and applying Lemma 5.6 in [5] or Lemma 5.7
in [4] yield

Hf1H2 rt 4 Y-8L+8
Gap(T) > pinft;; 2 —mln{/\ A }

TANET T
Here we used (D) and note that the factor inf; ;¢;; in Lemma 5.6 in [5] is replaced by
pinf; ; t;; as t;; are considered as the matrix entries of 7" and not as the kernel of an integral
operator on L*({1,...,p}) where {1,...,p} is equipped with the uniform probability

measure. As ¢(z) = x + 2*> + ... + z¥ is a monotonously increasing, differentiable
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function on [0,1] and Spec(FF'/A2) C [0,1] we obtain Gap(T) ~ Gap(FE")/X2 which
concludes the proof. O

Lemma 4.3.4. The matriz F(z) defined in (4.3.16|) with entries
Foy(2) = [ma(2)|owymy (2)]

has the norm

Im 2(f (z)[m(2)])
(f () Imm(z)|m(z)|71)’

where f(z) is the unique eigenvector of F(z) associated to ||F(z)||2. In particular, we

[1F(2)[la =1 -

(4.3.21)

obtain

1 1 1
e e Lo 4.3.22
A=[FE))" 3 2] mm{Imz’ |z|dist(2,SUppP)2} 522

for z € H satisfying |z| < 10.

ProOOF. The derivation of follows the same steps as the proof of (4.4) in [5]
(compare Lemma 5.5 in [4] as well). We take the imaginary part of (4.3.6]), multiply the
result by |m| and take the scalar product with f. Thus, we obtain

(. 520} — sl + 171 (£, 50, (43.23)
m| m|
where we used the symmetry of F' and Ff = |F|2f. Solving for ||F|2
yields .
Now, is a direct consequence of Lemma and . U

4.3.3. Stability away from the edges and continuity. All estimates of m — g,
when m and g satisfy (4.3.6) and (4.3.9)), respectively, are based on inverting the linear

operator

w— F(z)w

for w € C"*?. The following lemma bounds B~'(2) in terms of (Imm(z)) if z is away
from zero. For 0 > 0, we use the notation f <; ¢ if and only if there is an r > 0 which is

allowed to depend on model parameters such that f < §"g.



70 CHAPTER 4. LOCAL LAW FOR RANDOM GRAM MATRICES

Lemma 4.3.5. There is a universal constant k € N such that for all 6 > 0 we have

1 1 1
B! <s mi 4.3.24
H (2)ll2 S5 min { (Re 2)2(Imm(z))*" Tmz’ dist(z,supp p)? } ’ (4.3.24)
1 1 1
B! <5 mi 4.3.2
| (2)lloc S5 min { (Re 2)2(Imm(2))+t2" (Im2)3’ dist(z,supp p)4} (4.3.25)

for all z € H satisfying 6 < |z| < 10.

For the proof of this result, we will need the two following lemmata. We recall that by
the Perron-Frobenius theorem an irreducible matrix with nonnegative entries has a unique
(?-normalized eigenvector with positive entries corresponding to its largest eigenvalue. By
the definition of the spectral gap, Definition we observe that if AA* is irreducible
then Gap(AA*) = [| AA*[l» — max(Spec(AA*) \ {| AA°[.}).

Lemma 4.3.6 (Rotation-Inversion Lemma). There ezists a positive constant C' such that
for all n,p € N, unitary matrices Uy € CP*P Uy € C™" and A € RP*"™ with nonnegative
entries such that A*A and AA* are irreducible and ||A*A||x € (0, 1], the following bound
holds:

H U, A

A* U,
where vy € CP and vy € C™ are the unique positive, normalized eigenvectors with AA* v, =
| A*Allavy and A*Avy = ||A* Allave. The norm on the left-hand side of (4.3.26)) is infinite

if and only if the right-hand side of (4.3.26|) is infinite, i.e., in this case the inverse does

not exist.

1

C
< )
9 Gap(AA*)]l — HA*A”2<U1 s U1U1><U2,U2U2>‘

(4.3.26)

This lemma is proven in the Section [£.5] below.

Lemma 4.3.7. Let R: C"*? — C"*? be a linear operator and D: C"P — C"*? g diag-

onal operator. If R — D is invertible and D, # 0 for allx =1,...,n+ p then
-1
_1 T.L-HD 1
(= 0) 1 < (D) (14 DRl D) ). (1.3.27)

The proof of (4.3.27)) follows a similar way as the proof of (5.28) in [4].
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PROOF OF LEMMA 3.5 The bound on || B~ ()|, ([#-3.25), follows from
by employing ([£.3.27). We use with R = F(z) and D = |m(z)|>/m(z)? and
observe that || F(2)|l2m00 < ||m|A]|S]|2—c- Therefore, follows from as
Mmoo < min{(Imm)~*, (Im 2)~*, dist(z, supp p) "'} by (4.3.134) and
min{(Im m)~! (Imz) ! dlst(z suppp) '} 25 1 by (4.3.13a) and § < |z| < 10.

Now we prove . Our first goal is the following estimate

-1 1
1B 5 Gap (PO PG Re P mm )

(4.3.28)

for some universal k € N which will be a consequence of Lemma [4.3.6, We apply this

lemma with

0 F(Z) . . ::/\ = :: U1 0 — dia ’m(z)|2
(Fw 0 )F() F(im(2)). (0 Uz) aing (15 )

and vy == fi/| fill2 and vy = fo/|| f2||2 where f = (f1, f2)! € CP™™. Note that A\(z) :=
A(|m(2)]) = [|F(2)|); in Lemma [4.3.3]and F(z) = F(|m(z)|) in the notation of [{3.17).
In Lemma we choose r_ := inf,|m,(2)| and r; = ||m(z)|~ and use the bounds
r_ 2 |z| and ry < |22 /(Imm(z)) by (4.3.13a). Moreover, we have

22 SIF(2)]. <1 (4.3.29)

by (4.3.13a)), (4.3.18) and (4.3.21])).

We write U = diag(e™'?¥), i.e., ¥ = m/|m|, and @ = (11, 1,)" € RPT to obtain

(o1, Urvr) = (vr, (cos by — i singhy)?or) = (v, (1 = 2(singy1)?* — 2i cosyy sinehy )vr)

and a similar relation holds for (ve,Usvy). Thus, we compute

Re (1= [[F(2)'F(2)]|2(v1, (1 = 2(sin¢h1)* — 2i cos by siney )vy)
X (vy, (1 = 2(sint)2)? — 21 cos vy sin )vy))
=1 [[F(2) F(2)[2(1 = 2v1, (sinehr)*v1) — 2(vy, (sinez)*vs)
+4(vr, (sinr)?vr) (v, (sin ¢)*v2))
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Using 2a + 2b — 4ab > (a + b)(2 — a — b) for a,b € R, and estimating the absolute value
by the real part yields

1= [|F(2)' F(2)||2(v1, Urvn) (02, Upva))|
> 1= [|[F(2)'F(2)]la + 1F(2) F(2)l2 (v, (singon) vr) + (03, (singhz)° va))
x ({v1, (cos gn)” v1) + (v2, (cos 1) va) )
2 [2/1(f. (sinwp)” £)(F, (cos )’ f)

2 (e, ) (o)) (o)),

where we used 1 > ||F(2)'F(2)|l2 = [|F3 2 |2|* by (4.3.29) and

(4.3.30)

(f. (sinp)” £)(f, (cosp)” f) < 1

in the second step. In order to estimate the last expression in (4.3.30)), we use r_ 2 |z|

and || F(z)]]2 <1 by (4.3.29) as well as (4.3.13a)), (4.3.18) and (4.3.19) to get for the first

factor

inf 3 > 8810 > 5 (Tmm) 'S (4.3.31)

Tr ~v —

To estimate the last factor in (4.3.30]), we multiply the real part of (4.3.6) with |m| and

obtain

(14 F)5E = ol
m]

if z =7 +1in for 7,n € R. Estimating ||-||o of the last equation yields

Rem
il <2|
im| ||,
by (4.3.29). As |m]lz > ||Imm|> > (Imm) we get
R
H CT S 7| (Tmm). (4.3.32)
im| |,

Finally, we use (4.3.31) for the first factor in (4.3.30) and (4.3.32)) for the last factor
and apply the last estimate in (4.3.13a]) and Jensen’s inequality, ((Imm)?) > (Imm)?
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to estimate the second factor which yields
1= |[F(2)' F(2)2{vr, Uron ) vz, Uyva)| Z5 |72 (Imm)". (4.3.33)

This completes the proof of (4.3.28]).
Next, we bound Gap(F'(z)F(z)") from below by applying Lemma with r_ ==

inf,|m,(2)| and ro = ||m(2)|w. As F(2) = F(lm(2)|) we have

Gap(F(2)F(2)") 25 (Imm(2))",

where we used the estimates in (4.3.13a]) and (4.3.29). Combining this estimate on

Gap(F(z)F(z)") with (4.3.28) and (4.3.22)) and increasing r, we obtain

1 1 1
B! <5 mi
| (2)ll2 S min { (Re 2)2(Imm(z))*" Im 2’ dist(Re z, supp ,0)2}

as | B (2)[l2 < (1 = [|F(2)]]2) ™" and & < [2] < 10. .

Lemma 4.3.8 (Continuity of the solution). If m is the solution of the QVE (4.3.6]) then
2+ (m(2)) can be extended to a locally Hélder-continuous function on H\{0}. Moreover,

for every & > 0 there is a constant ¢ depending on & and the model parameters such that
[(m(z1)) — (m(2))| <z — 2|0 (4.3.34)

for all 2,z € H\{0} such that 6 < |z, |22| < 10 where k is the universal constant of

Lemma[{.3.5

PROOF. In a first step, we prove that z — (Imm(z)) is locally Hélder-continuous.
Taking the derivative of (4.3.6) with respect to z € H yields

(1 — m?(2)8)d.m(2) = m(2)*

By using that 0,¢ = 120.Im ¢ for every analytic function ¢ and taking the average, we
get
120.(Imm) = (jm|, B~'|m|).
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Here, we suppressed the z-dependence of B™'. We apply Cauchy-Schwarz inequality and

use (4.3.7), (4.3.24]) and (4.3.13a)) to obtain

10:(Imm)| < [[mll2 B~ [l2-s2llmllz S5 min{(Re 2)~*(Imm) ™", (Im 2) ™'} <5 (Imm) ™"

for all z € H satisfying 0 < |z| < 10. This implies that z — (Imm(z)) is Holder-
continuous with Holder-exponent 1/(k + 1) on z € H satisfying § < |z| < 10. Moreover,
it has a unique continuous extension to I5 := {7 € R;§/3 < |r| < 10}. Multiplying this
continuous function on I5 by 7! yields a Lebesgue-density of the measure p (cf. )
restricted to I;.

We conclude that the Stieltjes transform (m) has the same regularity by decomposing
p into a measure supported around zero and a measure supported away from zero and

using Lemma A.7 in [4]. O

For estimating the difference between the solution m of the QVE and a solution g of

the perturbed QVE (4.3.9), we introduce the deterministic control parameter
J(2) == (Imm(z)) + dist(z,supp p), =z € H.

Lemma 4.3.9 (Stability of the QVE). Let § 2 1. Suppose there are some functions
d: H — Cr™" and g: H — (C\{0})"*? satisfying (£.3.9). Then there exist universal
constants Ky, ke € N and a function \.: H — (0, 00), independent of n and p, such that
A(101) > 1/5, A(2) 26 9(2)™ and

~d

lg(2) = m(2)ll1(llg(2) = m(2)lloe < A(2)) S5 9(2) "]l d(2) oo (4.3.35)

for all z € H satisfying § < |z| < 10. Moreover, there are a universal constant k3 € N
and a matriz-valued function T: H — CPT*X®+0) - depending only on S and satisfying

1T (2)|loomsoo S 1, such that

(w, g(z) = m(2))] - 1([lg(2) = m(2) ]l < Au(2))

(4.3.36)
S5 9(2) 7" ([wllsolld(2)]% + (T (2)w, d(2))])

for all w € CP*™ and z € H satisfying § < |z| < 10.
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PROOF. Weset ®(2) := max{1, [|[m(2)|/s}, ¥(2) == max{1, | B~*(2)||o } and \.(z) :=
(200)~L. As ®(2) < max{l,(Im2)"'} and | B7'(2)]|ee < (1 = |[F(2)]|0e)™> < (1 —
(Im 2)"%)~! due to ||m(2)]|ec < (Imz)~! we obtain A\,(10i) > 1/5. Since § < |z| we
obtain (Imm(z))~' =5 1 by (4.3.13a). Thus, for z € H satisfying § < |z| < 10 the first

estimate in (4.3.12a), the last estimate in (4.3.13a)) and (4.3.25) yield
O 07 WS 0

where £ is the universal constant from Lemma [4.3.5] Therefore, \.(z) 25 9(2)"* and

Lemma 5.11 in [4] yield the assertion as ||w]|; = (p +n)' T, |w,| < ||[w]so- O

4.3.4. Proof of Theorem [4.2.2.

PROOF OF THEOREM [£.2.2l We start by proving the existence of the solution m

of (4.2.1). Let m = (my,my)" be the solution of (4.3.6) satisfying Imm(z) > 0 for
z € H. For ¢ € H, we set m(¢) := m1(v/¢)/+/C. Then it is straightforward to check

that m satisfies by solving for mo and plugging the result into .
Note that Imm(¢) > 0 for all ¢ € H since my ; is the Stieltjes transform of a symmetric
measure on R (cf. the explanation before for the symmetry of this measure).

Next, we show the uniqueness of the solution m of with Imm({) > 0 for ( € H
which is a consequence of the uniqueness of the solution of . Therefore, we set
(€)= m(C), a(C) = —1/(C(1 + $71(C)) and M(C) = (7 (C), Ma(C))! for ¢ € H.
From (4.2.1)), we see that

1 1 1
| = < . — < (4.3.37)
for all ¢ € H. Since my satisfies
=S () (1339
ma(C) 1+ Sy o

for ¢ € H, a similar argument yields |my| < (Im¢)~!. Combining these two estimates,

we obtain |m(¢)| < (Im¢)~! for all ¢ € H. Therefore, multiplying (4.2.1)) and (4.3.38))
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with m; and ma, respectively, yields

1 S
L=[m(i)fe — -1

[T+ 18m., (18] < [[m(i€)lle 0

for € = oo and # = 1,...,n + p where we used |m(¢)] < (Im¢)~! in the last but
one step. Thus, m, is the Stieltjes transform of a probability measure v, on R for all
r=1,...,n+p. Multiplying by my, taking the imaginary part and averaging at
(=x+i&, for y € R and £ > 0, yields

. . . 1 .
X(Imm1> +5<Rem1> = - <Rem1 s SMWStImm1>
_ 1 _

1
= (Imm;,S———— ) >0
< mm17 ’1—|—Stm1|2> - 9

where we used the definition of the transposed matrix and the symmetry of the scalar
product in the last step. On the other hand, we have
&
(t—x)*+¢
Assuming that there is a x < 0 such that x € suppr we obtain that y(Imm;) +
&(Remy) < 0 for & | 0 which contradicts (4.3.39). Therefore suppr, C [0,00) for
z=1,...,p.

{Im 7 + &(Re i) :/R v(dt).

Together with a similar argument for my, we get that suppr, C [0,00) for all z =
1,...,n 4+ p. In particular, we can assume that m is defined on C \ [0,00). We set
my(2) = zmy(2%), ma(2) = 2my(2?) and m(z) := (my(z), ma(2))! for all z € H. Hence,
we get

t+ 72+

I " in) = (At
m (7 + 1) =7 [0,00) (t—7‘2+772)2+47727-2y( )

as suppv, C [0,00). This implies Imm(z) > 0 for z € H and thus the uniqueness of

solutions of (4.3.6) with positive imaginary part implies the uniqueness of m;.
Finally, we verify the claim about the structure of the probability measure representing
(m). By Lemma and the statements following (4.3.6)), (m1) is the Stieltjes transform

of m.dp + p1(w)dw for some 7, € [0,1] and some symmetric Holder-continuous function
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p1: R\ {0} — [0,00) whose support is contained in [—2,2]. Therefore, m is the Stieltjes
transform of v(dw) = 7,60(dw) +7(w)1(w > 0)dw where 7(w) = w™/2p; (W'/?) for w > 0.

Thus, the support of v is contained in [0, 4]. O

4.3.5. Square Gram matrices. In this subsection, we study the stability of (4.3.6))

for n = p. Here, we assume (A), (E1) and (F1). These assumptions are strictly stronger

than (A), (B) and (D) (cf. Remark [4.2.7)).

For the following arguments, it is important that m is purely imaginary for Rez = 0

as m(—z) = —m/(z) for all z € H. If we set
v(z) = Imm(z) (4.3.40)

for z € H, then v fulfills

() =n+ Sv(in) (4.3.41)

for all n € (0,00) due to (4.3.6). The study of this equation will imply the stability of
the QVE at z = 0. The following proposition is the main result of this subsection.

Proposition 4.3.10. Let n = p, i.e., (E1) holds true, and S satisfies (A) as well as
(F1).

(i) There exists a 6 ~ 1 such that |m(z)| ~ 1 uniformly for all = € H satisfying
2| < 10 and Rez € [—6,6]. Moreover, (Imm(z)) > 1 for all z € H satisfying
2| <10 and Re z € [=8,8] and there is a v(0) = (v1(0), v2(0))" € R? & RP such
that v(0) ~ 1 and

o (0) = I N
iv(0) = lim m(in)

(ii) (Stability of the QVE at z = 0) Suppose that some functions d = (dy,ds)": H —
Cr*P and g = (g1, 92)": H — (C\{0})"*? satisfy (4.3.9) and

(91(2)) = {g2(2)) (4.3.42)

for all z € H. There are numbers \,, 5 2 1, depending only on S, such that

lg() = m() w1 (lg(z) — M)l < A) S )] (4.3.43)
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for all z € H satisfying |z| < 10 and Re z € [=8,8]. Moreover, there is a matriz-
valued function T: H — C?P** depending only on S and satisfying | T(2)|lee <
1, such that
[(w, g(2) = m(2))] - 1(llg(2) = m(2)]l < \.)
S lwllslld(2)lI5 + KT (2)w, d(2))]

(4.3.44)

-~

for all w € C* and z € H satisfying |z| < 10 and Rez € [—g, ].

The remainder of this subsection will be devoted to the proof of this proposition.

Therefore, we will always assume that (A), (E1) and (F1) are satisfied.

Lemma 4.3.11. The function v: i(0,00) — R?! defined in (4.3.40)) satisfies

1< 1(1gf10]v(177) < sup||’v(177)||oo S L (4.3.45)

If we write v = (v1,v9)" for vy, vy: i(0,00) — R, then

{v1(in)) = (va(in)) (4.3.46)

for alln € (0, 00).

The estimate in (4.3.45]), with some minor modifications which we will explain next,

is shown as in the proof of (6.30) of [4].

PRrROOF. From (4.3.41) and the definition of S, we obtain n{vi) — n(vy) = (v1, Sva) —
(vg, S'v1) = 0 for all n € (0,00) which proves (4.3.46). Differing from [4], the discrete

functional J is defined as follows:

J(u) = . > u(i)Ziju(y) Zlogu (4.3.47)
for u € (0,00)%% (we used the notation u(i) to denote the i-th entry of u) where Z is the
2K x 2K matrix with entries in {0, 1} defined by

0 Z
Z = . (4.3.48)

Zt 0
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Decomposing u = (u1,ug)’ for uy,us € (0,00)% and writing u;(i) = u(i) and uy(j) =
u(K + j) for their entries we obtain

o K K . '

=% Z ;(log uy () + log us(i)). (4.3.49)
Lemma 4.3.12. If ¥ < oo is a constant such that u = (u1,us)t € (0,00)% x (0,00)%
satisfies

J(u) <0,

where J is defined in (£.3.47), and (uy) = (ua), then there is a constant ® < oo depending

only on (U, p, K) such that

max u(k) < ®.
k=1

PRrROOF. We define Zij = Zis(;) Where o is a permutation of {1,..., K} such that
Zy = 1foralli=1,..., K where we use the FID property of Z. Moreover, we set
M == uy (i) Zijug(c(4)) and follow the proof of Lemma 6.10 in [4] to obtain

u(d)uz(o(5)) S (M1 <1
forall 7,5 =1,..., K. Averaging over ¢ and j yields
(u1)? = (u2)* S 1

where we used (u;) = (uz). This concludes the proof of Lemma 4.3.12 O

Recalling the function v in Lemma [4.3.11] we set u = ({(v)1, ..., (v)2x) with (v); =
Kp 'Y ,cr, vy, where I; == p+ I;_i for ¢ > K + 1. Then we have (u1) = (u) by
(4.3.46)) and since I3, ..., Irx is an equally sized partition of {1,...,2p}. Therefore, the

assumptions of Lemmal4.3.12|are met which implies (4.3.45)) of Lemma.3.11jasin [4]. O

We recall from Lemma that f = (f1, f2)" is the unique nonnegative, normalized
eigenvector of F' corresponding to the eigenvalue || F||;. Moreover, we define f_ =

(f1,—f2)" which clearly satisfies

Ff =—|Fl.f_. (4.3.50)
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Since the spectrum of F' is symmetric, Spec(F') = — Spec(F') with multiplicities, and
|F||2 is a simple eigenvalue of F', the same is true for the eigenvalue —||F'||y of F' and

f_ spans its associated eigenspace. We introduce

1
e = eCraC?. (4.3.51)
~1

Lemma 4.3.13. For n € (0,00), the derivative of m satisfies

m(in) = Smin) = ~v(in)(1 + F(in)) " v(in). (4.352)

Moreover, |m/(in)| < 1 uniformly for n € (0, 10].

PrROOF. In the whole proof, the quantities v, f, f_ and F are evaluated at z = in
for n > 0. Therefore, we will mostly suppress the z-dependence of all quantities.

Differentiating (4.3.6)) with respect to z and using (|4.3.40)) yields

m’

—(1+ F)7 = .

As ||[Flls < 1 by (4.3.21), the matrix (1 + F') is invertible which yields (4.3.52) for all
n € (0,00),

In order to prove |m/(in)| < 1 uniformly for n € (0, 00), we first prove that

[(f - (in)v(in))| < O(n). (4.3.53)

We define the auxiliary operator A := ||F|s+ F =1+ F — 77<f—f”> where we used
and (4.3.40). Note that

Af_=0, Ae_=e_+Fe_ — 77<<f;;>e_ = O(n), (4.3.54)

where we used Fe_ = —e_ + n(vy, —uvp)" which follows from and the definition

of F.
Defining Qu == u — (f_u)f_ for u € C?* and decomposing

e_ = <ffe_> f_+Qe_
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yield AQe_ = O(n) because of (4.3.54). As |m(in)| ~ 1 by (4.3.45)) for n € (0, 10] the
bound (4.3.20) in Lemma implies that there is an ¢ ~ 1 such that for all n € (0, 10]

we have

Spec(F) C{—[Fll2} U[=[|Flla + &, [[Fll2 — e] U {[|Fl2} (4.3.55)

Since — || F'||2 is a simple eigenvalue of F' and (4.3.50)) the symmetric matrix A = || F||y+F
is invertible on f* and H(Alff)_le =e'~1 As f_ L Qe_ we conclude Qe_ = O(n)

and hence
L= (NA+ () =1 () =1-(f e ) =|Qe[i=00").  (43.56)
Thus, using and (4.3.50), this implies
(£ (imo(in)| = |(ve ) + (v [f_ —e ])| S |f- —e|, = V201 = () = O(),

which concludes the proof of (4.3.53).
In (4.3.52)), we decompose v = (f_v)f_ + Qv and, using Ff_ = —||F|2f_ and
(4.3.21)), we obtain

Y R R IR,
m = o (1+ F)"'Qu.

Using (4.3.55)), we see that ||(1+ F)'Qu||z ~ 1 uniformly for € (0,10]. Together with
(f_(in)v(in)) = O(n) by (4.3.53), this yields |m/(in)| < 1 uniformly for n € (0,10]. O

The previous lemma, (4.3.41]) and Lemma 4.3.11}imply that v(0) := lim, o v(in) exists

and satisfies
v(0)~1, 1=v(0)Sv(0)=F(0)1, (vi(0)) = (v2(0)), (4.3.57)

where v(0) = (v1(0), v2(0))".
In the next lemma, we establish an expansion of m(z) on the upper half-plane around
z = 0. The proof of this result and later the stability estimates on g — m will be a

consequence of the equation

Bu =c YuFu+e¢ Ygd (4.3.58)
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where u = (g — m)/|m| and e¥ = m/|m| with ¥ € R?. This quadratic equation in u

was derived in Lemma 5.8 in [4].

Lemma 4.3.14. For z € H, we have

m(2) = iv(0) — zv(0)(1 + F(0))'v(0) + O(I2"), (43.500)
|ZE3| =i—(Rez)(1+ F(0)) "v(0) + O(|z[). (4.3.59b)

In particular, there is a & ~ 1 such that lm(2)| ~ 1 uniformly for z € H satisfying
Rez € [—6,0] and |2| < 10. Moreover,

1£(2) =1l = O(2]), | f-(2) —e-|_ = O(2]). (4.3.60)

PROOF. In order to prove (4.3.59a)), we consider (4.3.6) at z as a perturbation of
at z = 0 perturbed by d = z in the notation of . The solution of the
unperturbed equation is m = iv(0). Following the notation of (£.3.9), we find that
holds with g = m(z) and u(z) = (m(z) — iv(0))/v(0). We write u(z) =
0(z)e- + w(z) with w L e_. (We will suppress the z-dependence in our notation.)

Plugging this into (4.3.58) and projecting onto e_ yields
6(v(0)) = — (e_v(0)w), (4.3.61)

where we used that F(0)1 = 1, i.e., (F(0)w) = (w), (e_wF(0)w) = 0 and (v1(0)) =
(v2(0)). Thus, we have 0 = O(||w||~) because of (4.3.57)), so that we conclude —(1 +
F(0)w = zv(0) + O(||lw||%, + |2]||w]|e0)- As w, (1 + F(0))w and v(0) are orthogonal to

e_, the error term is also orthogonal to it which implies
w = —z(1+ F(0))'v(0) + O(|z*) (4.3.62)

using that (1 + F(0))~! is bounded on e*.
Observing that (m(z)) = (ms(2)) for z € H by (4.3.6) and differentiating this relation
yields (m/(in)e_) = 0 for all n € (0, 00). Hence,

(e_v(0)(1+ F(0))'v(0)) = — 17%1 (e_m/(in)) =0 (4.3.63)
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by Lemma [4.3.13]
Plugging (4.3.62)) into (4.3.61)), we obtain

0(v(0)) = (e-v(0)(1 + F(0)) v (0)) + O(|z*) = O(|2]*),

where we used (4.3.63). Hence, m(z) = v(0)(w + iv(0)) concludes the proof of (4.3.59al)
which immediately implies (4.3.59b)).

Using the expansion of m in (4.3.59af) in a similar argument as in the proof of

|f_(in) — e_||2 = O(n) in Lemma [4.3.13| yields
1f(z) =12 = | f-(2) —e_[la = O(|2]).
Similarly, using (4.3.27)), we obtain (4.3.60)). U

By a standard argument from perturbation theory and possibly reducing 5 ~ 1, we can
assume that B(z) has a unique eigenvalue §(z) of smallest modulus for z € H satisfying
IRez| < 6 and |z| < 10 such that |3| — |8] = 1 for 8’ € Spec(B(z)) and ' # (. This
follows from |m| ~ 1 and thus Gap(F(2)F(z2)") 2 1 by Lemma|4.3.3| For z € H satisfying
IRez| < 6 and |z| < 10, we therefore find a unique (unnormalized) vector b(z) € C%
such that B(2)b(z) = f(2)b(z) and (f_,b(z)) = 1.

We introduce the spectral projection P onto the spectral subspace associated to the

eigenvalue 3(z) of the operator B(z) acting on (C? || -||o,). We obtain the relation

_ <B7>
P = b

Note that P is not an orthogonal projection in general. Let Q := 1 — P denote the
complementary projection onto the spectral subspace of B(z) not containing 3(z) (this
Q is different from the one in the proof of Lemma4.3.13)). Since B(z) = —1—F(2)+0O(|z|)

we obtain

16(:) — el = II6G) — e, = O(Iz]) (4.3.64)

for z € H satisfying |Re z| < ¢ and |z| < 10.
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Lemma 4.3.15. By possibly reducing ) from Lemma|4.3.14), but still ) 2 1, we have

1B ()l S = 1B ()@l + (B (5)Q) | S 1 (4.3.65)

~Y |Z|,

for z € H satisfying |Re z| <0 and |z| < 10.

PROOF. Due to |[m(z)| ~ 1 and using with R = F(z) and D = |m(z2)|?/m(z2)?,
it is enough to prove the estimates in with [|-||« replaced by ||-|l2. We first
remark that |m(z)| ~ 1 and arguing similarly as in the proof of Lemma imply
IB7'(2)]2 < (Tm2)~*.

Now we prove |[B7'(2)|]x < (Rez)™'. We apply Lemma and recall U; =

Imq|?/m3 and Uy = [mo|?*/m3 to get

_ t f1 fi fa f2
Im (1 | F'(2) F(z)H2<”le2 ’ U1Hf1]|2> <|\sz2 ’ U2Hf2‘|2>>

T, o0 + O
where we used (4.3.59b)), (4.3.60) and || f1]|2, || f2]|2, [|F'(2)'F(2)|l2 ~ 1. Since v(0) ~ 1
and Gap(F(z)F(2)") 2 1 by Lemma and |m(z)| ~ 1, and Lemma [4.3.6]
yield |B7'(2)]|2 £ (Rez)~" and hence || B™(2)||2 < min{(Im 2)~!, (Rez)} < |z|7%.

The estimate | B~ (2)Q||s < 1 in (#.3.65)) follows from Gap(F(z)F(z)!) 2 1 by Lem-

~Y

(4.3.66)

ma [4.3.3, |m(z)| ~ 1 and a standard argument from perturbation theory as presented
in Lemma 8.1 of [4]. Here, it might be necessary to reduce 4. We remark that B* =
im[2/m? — F and similarly P* = (b,-)/(6)b, i.e., B* and P* emerge by the same

constructions where m is replaced by 7. Therefore, we obtain [|[(B™(2)Q)*||ec < 1. O

~Y

PRrOOF OF PROPOSITION [£.3.10l The part (i) follows from the previous lemmata.

The part (ii) has already been proven for |z| > ¢ in Lemma and for any § 2> 1.
Therefore, we restrict ourselves to |z| < § for a sufficiently small 6 2 1. We recall
e = m/im|.

Owing to Lemma and , there are positive constants ¢, P, ® ~ 1 which

only depend on the model parameters such that

Im(2)lloe <@, [B(2) — e allblloc + [ +i|_[IBIZ < @[®)]|2]  (43.67)
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for all z € H satisfying |z| < §. Here, we used ||w|y < ||w| s for all w € C?. Note
that we employed (4.3.64)) for estimating ||b — e_||2 as well as to obtain ||b||o ~ 1 and

|(b%)| ~ 1 for all z € H satisfying |z| < § if § > 1 is small enough.
Lemma [4.3.15 implies the existence of ¥, U ~ 1 such that

IB(2)[lo <Vl B (2)Qe < T (4.3.68)

for all z € H satisfying |z| < Jif 1 <0 < § is sufficiently small. With these definitions,
we set

. = m (4.3.69)
The estimate on h := g(z) —m(z) = u|m/| will be obtained from inverting B in (4.3.58]).
In order to control the right-hand side of , we decompose it, according to 1 =
P+ Q, as

iy By — <be_i¢uFu>

, , e ¥gdb ,
Tb + Qe YuFu, e Wgd = <(l)2>>b + Qe Ygd.
Clearly, as ||S]|co < 1 we have

I(B™'Q)(c ™ uFu)|w < VRl |(B'Q)(egd)|w < ¥gllcld]o
due to (4.3.68). Using (e_hSh) =0 and (4.3.67)), we obtain

H<bei¢uFu> <bb2>

< (I-i(hShe_)| + |-i{(b — e_)hSh)| + |( (7™ + i) bhSh)|)
. 1Bl
[(6%)]
< B|2[| %

Similarly, due to (4.3.67)) and (gde_) = (g1(2)d1(2)) — (g2(2)d2(z)) = 0 by the perturbed
QVE (4.3.9), we get

, b
e ¥ —
(=) 7

< (Itgde )| +[((b— e )gd)| + |( (e + i) b)) ;';;[;7
< B2 glloclldll .
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Thus, inverting B in (4.3.58]), multiplying the result with |m/|, taking its norm and using

([A3.68) vield
1Bl < (TP + )[R, + D(TD + V)||gloo | ]|,

which implies

hlloc(lle < M) < B(1+20(TD + )| ]|

by the definition of A, in . This concludes the proof of .
For the proof of (4.3.44), inverting B in and taking the scalar product with
w yield
w,|m|B'b)
(b%)
+((B™'Q)"(Im|w),e”hd) + (Tw, d),

(w,h) = (w,B (e WhSh)) + < (hd [(e™™ +i)b—i(b—e_)|)

(4.3.70)

where we used (e_gd) = 0 and set

Tw = (b*) " (|m|B~'b, w)m (¥ — )b +i(b— e_)| + *m(B'Q)"(jm|w).

Using (4.3.67)) and (4.3.68)) as well as a similar argument as in the proof of (4.3.43)) for
the first term in the definition of T and ||[(B™'Q)*||o < 1 by (4.3.65)) for the second term,

we obtain ||T||« < 1. Moreover, as above we see that the first term on the right-hand

side of (4.3.70) is < [|Jw]|so|lh||%,. The estimates (4.3.67) and (4.3.68)) imply that the

second term on the right-hand side of (4.3.70)) is < ||w||o||R||col|d||oo- Applying (4.3.43)
to these bounds yields (4.3.44)). O

4.3.6. Properly rectangular Gram matrices. In this subsection, we study the
behaviour of m; and my for z close to zero for p/n different from one. We establish that
the density of the limiting distribution is zero around zero — a well-known feature of the
Marchenko-Pastur distribution for p/n different from one.

We suppose that the assumptions (A), (C) and (D) are fulfilled and we will study the

case p > n. More precisely, we assume that

SES

>1+d, (4.3.71)
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for some d, > 0 which will imply that each component of m; diverges at z = 0 whereas
each component of my stays bounded at z = 0. Later, in the proof of Theorem [£.2.10]
we will see that these properties carry over to m and my defined above . We use
the notation Ds(w) :={z € C: |z —w| < ¢} for 6 > 0 and w € C.

Proposition 4.3.16 (Solution of the QVE close to zero). If (F2) and (4.3.71)) are satisfied
then there exist a vector u € CP, a constant 0, 2 1 and analytic functions a: Ds,(0) — CP,

b: Ds,(0) — C™ such that the unique solution m = (mq,ma)" of (4.3.6) with Imm > 0
fulfills

my(z) = za(z) — g

: ma(z) = 2b(2) (4.3.72)
for all z € Ds,(0) NH. Moreover, we have
(i) P jui=p—nand 1 Su; <1 foralli=1,...,p,
(ii) b(0) = 1/S"u ~ 1,
(77) ||a(2)|loo + [|6(2)]|lc0 S 1 uniformly for all z € Ds,(0),

() lim, o Immy (7 +in) = 0 and lim, o Im mo(7 +1n) = 0 locally uniformly for all
7 € (=6, 6.)\{0}.

The ansatz is motivated by the following heuristics. Considering H as an
operator C? @ C" — C" @ CP, we expect that the first component described by X*: C? —
C" has a nontrivial kernel for dimensional reasons whereas the second component has a
trivial kernel. Since the nonzero eigenvalues of H? correspond to the nonzero eigenvalues
of XX™* and X*X, the Marchenko-Pastur distribution indicates that there is a constant
0. 2 1 such that H has no nonzero eigenvalue in (—d, d,). As the first component m; of
m corresponds to the “first component” of H, the term —u/z in implements the
expected kernel. For dimensional reasons, the kernel should be p — n dimensional which
agrees with part (i) of Proposition [1.3.16] The factor z in the terms za(z) and zb(z) in
(4.3.72)) realizes the expected gap in the eigenvalue distribution around zero.

PROOF OF PROPOSITION [4.3.16l We start with the defining equations for v and b.
We assume that u € (0, 1]7 fulfills

1 1
— =1+ S—u (4.3.73)
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and b: Ds, (0) — CP fulfills
1 1

S S L S — 4.3.74
TR Y0 (43.74)
for some 0, > 0. We then define a: Dj;, (0) — CP through
2a(z) =u— _ (4.3.75)
14 Sb(z)

and set my(2) == za(z) — u/z and may(z) := 2b(z) for z € Ds, (0). Thus, for z € Dy, (0),

we obtain
1 1 1
St/\ e — St = — = —
2HSIn) == S S T T T )
where we used (4.3.75)) in the first step and (4.3.74]) in the second step. Similarly, solving

(4.3.75)) for Sb(z) yields

Y

v 1) _ U
u — 2%a(2)  m(2)’

Thus, (my,my) satisfy (4.3.6]), the defining equation for m = (m;, my) and we will be

2+ Sme(z) =2+ 2 ( z € Ds,(0). (4.3.76)

able to conclude that m; = m; and my = ms.
For the rigorous argument, we first establish the existence and uniqueness of v and b

that follow from the next two lemmata whose proofs are given later.

Lemma 4.3.17. If (F2) and (4.3.71)) are satisfied then there is a unique solution of
(4.3.73) in the set u € (0,1P. Moreover,

foralli=1,....pand k=1,....,n and >¥_,u; = p —n.

Lemma 4.3.18. If (F2) and are satisfied, then there are a 6, ~ 1 and a unique
holomorphic function b: Ds,(0) — C" satisfying with b(0) = 1/(S'u), where u is
the solution of (4.3.73). Moreover, we have ||b(2)|| < 1 and |[(1 + Sb(2)) o < 1/2
for all z € Ds,(0), b(0) ~ 1, b'(0) = 0, Im (2b(2)) > 0 for all z € Ds,(0) with Imz > 0
and Im (2b(z)) = 0 for z € (=04, d4).

Given u and b(z), the formula (4.3.75|) defines a(z) for z # 0. To extend its definition
to z = 0, we observe that the right-hand side of (4.3.75)) is a holomorphic function for all
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z € D;,(0) by Lemma [4.3.18 Since b(0) = 1/(S"u) and the derivative of the right-hand
side of vanishes as 0'(0) = 0, the first two coefficients of the Taylor series of
the right-hand side on Dy, (0) are zero by . Thus, defines a holomorphic
function a: Dy, (0) — CP.

Furthermore, Immsy(2) > 0 for Imz > 0 by Lemma |4.3.18] Taking the imaginary

part of (4.3.76|) yields

Immy (2)

[ (2)?

which implies Imm,(z) > 0 for Im z > 0 as Immy(2) > 0 for z € HN Dy, (0). Since the

solution m of with Imm(z) > 0 for Im z > 0 is unique by Theorem 2.1 in [4], we

have m(z) = m(z) := (Mmy(z), ma(2))" for all z € HN D;,(0). The statements in (i), (ii)
and (iii) follow from Lemma [4.3.17, Lemma [4.3.18 and ([4.3.75).

For the proof of (iv), we note that lim, o Im mo(7+in) = 0 for all 7 € (=4, d,) locally

uniformly by Lemma Because of and the locally uniform convergence of

my(T+in) to Ta(r)—u/7 forn | 0 and 7 € (—ds,0,)\{0}, we have lim, o Imm; (7+in) =0

= Im z + SIm ms(2), (4.3.78)

locally uniformly for all 7 € (—d,,0.)\{0} as well, which concludes the proof of (iv). O

We conclude this subsection with the proofs of Lemma [4.3.17] and Lemma [4.3.1§]

Proor oF LEMMA [4.3.17 We will show that the functional
1 n p 1 p
J: (0,1 = R, uw — Zlog (Zsmuz> + ,Z (u; — logu;)
bis i=1 P4
has a unique minimizer v with u; > 0 for all = 1, ..., p which solves (4.3.73)). Note that

p
=1
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We start with an auxiliary bound on the components of w. Using (F2) and Jensen’s

inequality, we get

> logu; + 2 log (gp> : (4.3.80)
p

where we used (4.3.71]) in the last step. For any u € (0, 1]? with J(u) < J(1,...,1), using
(4.3.79)), we obtain

1>J1 1)>J(u)>—d*zp:10gul+nlog<go>
- ) = - p(1+d*>Z:1 ) p 2

d, 1 ©
SN
p(i+d,) BT 8\
foranyi=1,...,p, i.e., u; > exp(—p(l +d.)(1 —r{  log(¢/2))/d.) > 0.
Therefore, taking a minimizing sequence, using a compactness argument and the

continuity of J, we obtain the existence of v* € (0,1]” such that J(u*) = inf,co» J(u)

1+d, 1
u; > exp (—p —5 (1 — —log (g))) , i=1,...,p. (4.3.81)

Next, we show that uf < 1foralli =1,...,p. Assume that uf = 1 forsomei € {1,...,p}.

and

Consider a vector @ that agrees with u* except that u} is replaced by A € (0,1). An
elementary calculation then shows that J(u) > J(u*) implies s;; =0 forall k =1,...,n
which contradicts .

Therefore, evaluating the derivative J(u* 4 7h) for h € RP at 7 = 0, which vanishes
since u* € (0,1)” is a minimizer, we see that u* satisfies (£.3.73).

To see the uniqueness of the solution of , we suppose that v, v* € (0, 1P
satisfy (4.3.73), ie, uv* = f(u*) and v* = f(v*) where f: (0,1]7 — (0,17, f(u) =
(1+ S((S*u)~1))~t. On (0,1]? we define the distance function

D(u,v) = sup d(uj,v;) (4.3.82)
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where d(a,b) = (a — b)?/(ab) for a,b > 0. This function d defined on (0,00)? is the
analogue of D defined in (A.6) of [5] on H?. Therefore, we can apply Lemma A.2 in [3]

with the natural substitutions which yields

D) = D). 1) = (14 s<si>> 1+ S(gl)) D', v
< Dt "),

for some number ¢. Here we used 1. and 2. of Lemma A.2 in [5] in the second step and 3.

of Lemma A.2 in [5] in the last step. Since we can choose ¢ < 1 by (4.3.81)), we conclude
u* = v*. This argument applies particularly to minimizers of J on (0, 1]P.
In the following, we will denote the unique minimizer of J by u. To compute the sum

of the components of u we multiply (4.3.73) by u and sum over ¢ = 1,...,p and obtain

p P 1 p n 1 P
pP=) Ui+ ) u; (S) = > u;+ Stu); = Uu; +n,
0 ) T 5 T

: P _
lLe, Y ;U =p—n.

Finally, we show that the components of the minimizer u are bounded from below by

a positive constant which only depends on the model parameters. For k € {1,...,n}, we
obtain
RS % % n pd,
Stu)y, > Eui>—u:— 1l—— > 4.3.83
( )k_n+p¢1 z 5w 2( p>—26+dg ( )

where we used (F2) in the first step, n < p in the second step, >7_; u; = p — n in the
third step and (4.3.71)) in the last step. This implies the third bound in (4.3.77)).
Therefore, we obtain for all i = 1,...,p from (4.3.73))

1 n 1 2(1 4 d,)
— =1+ s <142

?
Uj

where we used (A) with s, = 1 in the last step. This shows that u; is bounded from

below by a positive constant which only depends on the model parameters, i.e., the

second bound in (4.3.77)). O

Proor oF LEMMA [4.3.18] Instead of solving (4.3.74)) directly, we solve a differential

equation with the correctly chosen initial condition in order to obtain b. Note that

bo := 1/(S*u) fulfills (4.3.74]) for z = 0 and by ~ 1 by (4.3.77) and (4.3.15]).
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For any b € C" satisfying (Sb); # —1 for i = 1,...,p, we define the linear operator

L(B): C" = C", ves Lo = bS'———S(bv),

(14 Sb)
where bv is understood as componentwise multiplication. Using the definition of L(b),
bo = 1/(S*u) and (4.3.73)), we get

1 t 2 1 1 t t 2
= - =1-
StuSU SStu Sty (SU SU)

for some x ~ 1. Here we used (4.3.15)), u?> > 1 and (4.3.77) in the last step. As

1 1
Lito) = g8 (g7, )

Sty
Sty

L(bo)1 = <1l-x (4.3.84)

is symmetric and positivity-preserving, Lemma 4.6 in [4] implies ||L(bo)[la—2 < 1 — &
because of (£.3.84). Therefore, (1 — L(b)) is invertible and ||(1 — L(bg))!|lame < w71
Moreover, [[(1 — L(by)) oo < 1+ [|L(bo)|l2—00r™ by with R = L(by) and
D = 1. The estimate and the submultiplicativity of the operator norm ||-||5 yield
| L(bo)|l2—00 < 1. Thus, we obtain

11 = L(bo)) loe S L.

We introduce the notation Uy := {b € C";||b — by|lc < ¢'}. If we choose §' <
(2]|S|lco—so0) " then

(1 + 8b)if = [u; ™ + (S(b—bo))il > [ui | = 1S loo-soollb — Bollo > 1/2

1(1+ S0) Y e < 1/2 for all b € Uy, i.e., Uy — C™™ b L(b) will be a holomorphic

for all © = 1,...,p, where we used the definition of by, (4.3.73)) and u; < 1. Therefore,

map. In particular,
[ L(b) = L(bo)[ec S (16— bol|oo- (4.3.85)
If D := L(b)— L(b) and ||(1—L(by)) ' D||co—see < 1/2 then (1—L(b)) will be invertible
and

(1—L®) " = (1- (1 L(by)) D) (1 - L{b)) ™,



4.3. QUADRATIC VECTOR EQUATION 93

as well as [|(1 — L(0)) ™ cosoo < 2|[(1 — L(b)) *|loos0o- Therefore, implies the
existence of &' ~ 1 such that (1 — L(b)) is invertible and ||(1 — L(b)) ™ !||ee S 1 for all
be Us.

Hence, the right-hand side of the differential equation

Vo= aazb =22b(1 — L(b))"'b = f(2,b) (4.3.86)

is holomorphic on Dy (0) x Us. As ¢’ ~ 1 and sup{||f(z,w)||e; 2z € Ds(0),b € Uy} < 1,
the standard theory of holomorphic differential equations yields the existence of §, = 1
and a holomorphic function b: Ds, (0) — C™ which is the unique solution of on
Ds, (0) satisfying b(0) = by.
The solution of the differential equation (4.3.86)) is a solution of since dividing
by b, multiplying by (1 — L(b)) and dividing by b in (4.3.86) yields
b 1 v

This is the derivative of (4.3.74). Since b(0) = b, fulfils for z = 0 the unique
solution of with this initial condition is a solution of for z € Ds,(0).
There is only one holomorphic solution of due to the uniqueness of the solution
of (4.3.86). This proves the existence and uniqueness of b(z) in Lemma

Since b is a holomorphic function on Dy, (0) such that |b(z)| < 1 on Ds, (0) and 0, ~ 1
there is a holomorphic function by : Dj, (0) — C" such that

b(z) = by +bi(2)z

and |b;(2)] < 1. Thus, we can assume that d, 2 1 is small enough such that Im zb(z) >
(bo — |2]|b1(2)|)Im z > 0 for all z € Dy, (0) NH.
Taking the imaginary part of (4.3.74]) for 7 € R, we get

Imb(T)_ . 1 wmb(r
BE Tt Semp i)

or equivalently, introducing

L(z): C" = C", v~ L(2)v:=|b(2)|S*1 + Sb(z)|~25(|b(2)|v)
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for z € D;,(0), we have mb(r)
~ mb(7T

(1= 10) Ty

As [|(1+Sb(2)) e < 1/2 for all 2z € Ds,(0), the linear operator L(z) is well-defined for
all z € Dy, (0). Because L(0) = L(by) and ||L(b) — L(by)||lse < [|b — bollec We can assume
that d, > 1 is small enough such that (1 — L(z)) is invertible for all z € Dy, (0). Thus,
implies that Imb(7) = 0 for all 7 € (—0,, J.) and consequently, Im 7b(7) = 0 for

all 7 € (=6,,0.). 0

= 0. (4.3.87)

4.4. Local laws

4.4.1. Local law for H. In this section, we will follow the approach used in [7]
to prove a local law for the Wigner-type matrix H. We will not give all details but
refer the reader to [7]. Therefore, we consider as a perturbed QVE of the form
(4.3.9) with g == (g1,92)": H — CP*™ and d = (dy,ds)": H — CP™, in particular
9(2) = (G4u(2)) =1, n+p Where G, are the diagonal entries of the resolvent of H defined
in . We recall that p is the probability measure on R whose Stieltjes transform is

(m), cf. (4.3.8)), where m is the solution of (4.3.6)) satisfying Im m(z) > 0 for z € H.

Definition 4.4.1 (Stochastic domination). Let Py: (0,00)> — N be a given function
which depends only on the model parameters and the tolerance exponent . If o = (go(p))p
and ¢ = (@Z)(p))p are two sequences of nonnegative random variables then we will say that

@ is stochastically dominated by 1, ¢ < 1, if for all e > 0 and D > 0 we have
P (o = p ) <p P

for all p > Py(e, D).
In the following, we will use the convention that 7 := Re z and n := Im z for z € C.

Theorem 4.4.2 (Local law for H away from the edges). Fiz any d,e, > 0 and vy € (0,1)
independent of p. If the random matriz X satisfies (A) — (D) then the resolvent entries
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Gay(2) of H defined in (4.3.3)) and (4.3.1), respectively, fulfill

1
max  |Guy(2) — mu(2)0sy| < ——, ifImz>p ' and Imm(z)) > e,, (4.4.1a)
I pn

1
max  |Gay(z) — my(2)0,y| < — if dist(z,supp p) > e, (4.4.1b)

z,y=1,...,n+p \/57
uniformly for z € H satisfying 6 < |z| < 10. For any sequence of deterministic vectors
w € C"P satisfying ||wl|e < 1, we have
1
(w,g(z) —m(z))| < —, if Imz > p~ ' and (Imm(z)) > e, (4.4.2a)
pn

{(w,g(z) —m(2))| < ;, if dist(z,supp p) > €., (4.4.2b)

uniformly for z € H satisfying § < |z| < 10. Here, the threshold function Py in the

definition of the relation < depends on the model parameters as well as 0, €. and 7.

Remark 4.4.3. The proof of Theorem actually shows an explicit dependence of the
estimates and on ¢,. More precisely, if the right-hand sides of and
are multiplied by a universal inverse power of ¢, and the right-hand side of the
condition Im z > p~'*7 is multiplied by the same inverse power of ¢, then Theorem m

holds true where the relation < does not depend on ¢, any more.

Let p11 < ... < pin4p be the eigenvalues of H. We define
I(7) = [(n +) [ p<dw)] , T€R (4.4.3)
Thus, I(7) denotes the index of an eigenvalue expected to be close to the spectral pa-

rameter 7 € R.

Corollary 4.4.4 (Bulk rigidity, Absence of eigenvalues outside of supp p). Let §,¢, > 0.

(i) Uniformly for all T € [—10,—0] U [0, 10] satisfying p(T) > €, or dist(r, supp p) >
€4, we have

T

#iim <h—(n+p) [

—00

p(dw)’ < L (4.4.4)
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(it) Uniformly for all T € [—10, —6] U [0, 10] satisfying p(T) > €., we have

1
— : 4.4.
|hr(r T|<n+p (4.4.5)
(7ii) Asymptotically with overwhelming probability, we have
#(Spec(H) N{r € [—10, 4] U [4, 10]; dist(T, supp p) > 5*}) = 0. (4.4.6)

The estimates (4.4.2a)) and (4.4.2b)) in Theorem imply Corollary in the same

way as the corresponding results, Corollary 1.10 and Corollary 1.11, in [7] were proven.
In fact, inspecting the proofs in [7], rigidity at a particular point 7y in the bulk requires
only (i) the local law, (4.4.2a)), around 7y = Re z, (ii) the local law somewhere outside of

the support of p, (4.4.2b)), and (iii) a uniform global law with optimal convergence rate,

(4.4.2b)), for any z away from supp p.

PROOF OF THEOREM [£.4.2l In the proof, we will use the following shorter notation.

We introduce the spectral domain
Dy :={z€H:6§< |2/ <10, Imz>p ', (Imm(z)) > e, or dist(z,suppp) > .}

for the parameters v > 0,e, > 0 and § > 0. Moreover, we define the random control

parameters

Aa(2) = |g(2) =m(2)lloo,  Ao(2) = max  |Guy(2)], Al2) :=max{A(2), Ao(2)}.

Before proving (4.4.1]) and (4.4.2)), we establish the auxiliary estimates: Uniformly for

all z € Dy, we have

(Imm(z)) 1 1
Ai(2) + [|d(2)]| 0 < + + : 4.4.7a
R N RO r Y e M
(Imm(z)) 1 1
A(2) < + + . 4.4.7b
) (n+p)n — (n+pn  Vn+p 4470)
Moreover, for every sequence of vectors w € CPT" satisfying ||w| < 1, we have
I 1 1
(w,g(z) ~ m(2p] < L) (149

+
(n+pn  (n+p)*n? n+p
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uniformly for z € Dgy.

Now, we show that (4.4.8)) follows from (4.4.7a)) and (4.4.7b)). To that end, we use the

following lemma which is proven as Theorem 3.5 in [7].

Lemma 4.4.5 (Fluctuation Averaging). For any z € Dy and any sequence of deter-
ministic vectors w € C"P with the uniform bound, |lw|s < 1 the following holds
true: If Ao(z) < @ for some deterministic (n and p-dependent) control parameter ®

with ® < (n+p)™/% and A(z) < (n+p)™/? a.w.o.p., then

(w, d(2))] < & + (4.4.9)

n+p
By (4.4.74)), the indicator function in ([4.3.36) is nonzero a.w.o.p. Moreover,
ensures the applicability of the fluctuation averaging, Lemma [£.4.5] which implies that
the last term in (4.3.36) is stochastically dominated by the right-hand side in (4.4.8]).
Using again, we conclude that the first term of the right-hand side of is
dominated by the right-hand side of .
In order to show and we use the following lemma whose proof we

omit, since it follows exactly the same steps as the proof of Lemma 2.1 in [7].

Lemma 4.4.6. Let \.: H — (0,00) be the function from Lemma[§.5.9. We have

Im (g(2)) 1
1d(2) || 1(A(2) < Ai(2)) < (n+ p)n + N (4.4.10a)

Im (g(2)) 1
Ao(2)1(A(2) < A(2)) < (n+p)n + NCE (4.4.10Db)

uniformly for all z € Dy.
By and , we obtain
(Imm) . (n + p)° 1

(8a(2) + 1) ) 1Bal) € M2) = | i+ (0 4PV Bt e
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for any e € (0,v). Here we used Im g = Imm + O(A,;). We absorbe (n + p) A, into the
left-hand side and get

(Imm) 1 1
(M) + 1o 10ule) <0, 0) < | oy L L wa
as € € (0,7) is arbitrary. From (4.4.10D]), we conclude
A(DLAR) < A(2) < | Smm) ! ! (4.4.12)

(nipn itpn Virp

where we used Img = Imm + O(A,) and and the fact that A; < A.
We will conclude the proof by establishing that 1(A(z) < A.(z)) = 1 a.w.o.p. due to an

application of Lemma A.1 in [7]. Combining and and using (Imm(z)) <

(Im z)~!, we obtain

A(2)L(A(2) < \(2) < (n+p)7/? (4.4.13)

for z € Dy by the definition of Dg. We define the function ®(z) := (n +p)~/% and note
that A(z) = [|g(z) — m(z)||« is Holder-continuous since g and m are Holder-continuous
|21 — 2

J— S — 2 j—
m,yzr?,%?fn+p|ny(Zl) Gay(22)] = (Im 21 ) (Im 22) < (ntp)la = 2| (4.4.14)

for 21,20 € Dy and Lemma respectively. We choose zp := 10i. Since |Gy (2)| <
(Im 2)~! and |m,(2)] < (Imz)~! we get A(10i) < 1 and hence 1(A(10i) < A\ (10i)) =1
by Lemma m Therefore, we conclude A(z) < (n + p)™/2 < ®(z) from ({.4.13).
Moreover, implies A-1(A € [P—(n+p)~,?]) < P—(n+p)~! a.w.0.p. uniformly
on Dg. Thus, we get A(2) < (n+p)™/% a.w.o.p. for all z € Dy by applying Lemma A.1
in [7] to A and ® on the connected domain D, ie., 1(A(z) < A(2)) = 1 a.w.o.p.

Therefore, (4.4.11) and (4.4.12)) yield (4.4.7a)) and (4.4.7b)), respectively. As remarked
above this also implies (4.4.1al).
For the proof of (4.4.1b]) and (4.4.2b)), we first notice that

n-+p |2

Guul) = 3. )

a=1 Ma — %=
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for all # = 1,...,n + p, where u,(x) denotes the x-component of a -]z normalized

eigenvector u, corresponding to the eigenvalue u, of H. Therefore, we conclude

o |ug(2)? oL [uq () ]?
Im Gxa: Z) = =< 1 Aa <
=) n;(ua—7)2+n2 n; ( )(ua—7)2+n2 7

for all z € H satisfying § < |z| < 10 and dist(z,suppp) > e.. Here we used that
A, = {dist(pq,supp p) < e./2} occurs a.w.o.p by (4.4.6) and thus 1 — 1(A,) < 0. In
particular, we have (Im g) < 7. Now, (4.4.10a)) and (4.4.10b) yield

1d() [l 1(A2) < Au(2)) < \/nl_p, (4.4.150)
A(2)1(A(2) < Mu(2) < ml—p' (4.4.15b)

Following the previous argument but using (4.4.15al) and (4.4.15b)) instead of (4.4.10a))

and (4.4.10b)), we obtain (4.4.1b) and (4.4.2b) and this completes the proof of Theo-
rem 4.4.2 U

4.4.2. Local law for Gram matrices.

PROOFS OF THEOREM [4.2.3] AND THEOREM [4.2.5] Splitting the resolvent of H at

z € C\ R into blocks
G G
G(z) = 1(2) Ga(2)
Ggl(Z) GQQ(Z)
and computing the product G(z)(H — z) blockwise, we obtain that (X X* — 2%)7! =

G11(2)/z and (X*X — 2%)7! = Ggy(2) /2 for z € C\ R. Therefore, (4.2.3)) follows from
(4.4.1) as well as |z| > ¢ and m(¢) = my(+v/C)/v/ for ¢ € H.

As p ~ n we obtain

[(w, diag(X X" = ()™ —=m(Q))| S

(w0 7 (90 - mi/0)))

for w € CP. Using p ~ n, this implies (4.2.4) by (4.4.2). This concludes the proof of
Theorem [4.2.3

Theorem [4.2.5 is a consequence of the corresponding result for H, namely Corol-

lary O
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ProOOF OF THEOREM 2.8 As m(¢) = my(v/)/v/C for ¢ € H, Proposition 4.3.10
implies |m(¢)| < [¢|7Y/2. Thus, 7, = 0. Recalling 7(w) = w™2p;(w/?)1(w > 0), where
p1 is the bounded density representing (my), yields

lim (W) V@ = ~ (11 (0)) € (0, )

w!0 T

by (4.3.59a) which proves part (ii) of Theorem 4.2.8]
Since n = p, in this case we have Spec(XX*) = Spec(X*X). Thus, (g1) = (¢2), i.e.,

is fulfilled and Proposition is applicable.

Using Proposition [4.3.10] instead of Lemma [4.3.9|and following the argument in Sub-
section [4.4.1] we obtain the same result as Theorem without the restriction |z| > 4.
As in the proof of Theorem [4.2.3] we obtain

VRevC  _ [Imm(Q))
| Rij (€) = dima(Q)] < I/Cl/pIm e S \/I'

Here, we deviated from the proof of Theorem since |z| can be arbitrarily small for
z € Dy and used part (ii) of Theorem in the last step. This concludes the proof of
part (i) of Theorem

Consequently, a version of Corollary for = 0 holds true. Then, part (iii) and

(iv) of the theorem follow immediately. O

4.4.3. Proof of Theorem [4.2.10. In this subsection, we will assume that (A), (C),
(D) and (F2) as well as

SIS

>1+d, (4.4.16)
for some d, > 0 hold true.

Theorem 4.4.7 (Local law for H around z = 0). If (4), (C), (D), (F2) and (4.4.16))
hold true, then

(i) The kernel of H and the kernel of H? have dimension p —n a.w.o.p.
(ii) There is a v, 2 1 such that

~J

1l > (4.4.17)

a.w.o.p. for all p € Spec(H) such that u # 0.
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(iii) For every e, > 0, we have

1
_ 4.4.1
xy_mf.),(Jr |Gy (2) — M (2)0y | < |z|]v/n+p’ ( 8a)
_ = 4.4.18b
[(g) — (m)| n+p ( )

uniformly for z € H satisfying |z| < /0 — €.

We will prove that the kernel of H? has dimension p — n by using a result about
the smallest nonzero eigenvalue of X X* from [73]. Since this result requires the entries
of X to have the same variance and a symmetric distribution, in order to cover the
general case, we employ a continuity argument which replaces x;;, for definiteness, by

centered Gaussians with variance (n + p)~!. This will immediately imply Theorem [4.4.7]

and consequently Theorem [4.2.10]
We recall the definition of ¢, from (4.2.10)) and choose ¢, as in Proposition |4.3.16| for
the whole section. Note that 62 < §.

Lemma 4.4.8. If (4.4.16)) holds true then for all 61,0, > 0 such that §; < §, < §2/2, the

matriz H* has no eigenvalues in [01, 03] a.w.o0.p.
PRroOOF. Part (iii) of Corollary with 0 = §; and e, = min{dy, 6, — d2} implies
# (Spec(H) N [Véy, \/52]> =0

a.w.0.p. because there is a gap in the support of p by part (iii) of Proposition 4.3.16]

Since Spec(H?) = Spec(H)? this concludes the proof. O
For the remainder of the section, let X = (@k)f::l;fl;g consist of independent centered
Gaussians with E|Z;|? = (n +p)~'. We set
_ 0 X
H:=| __
X* 0

Lemma 4.4.9. If (4.4.16|) holds true then the kernel ofj(\)/(\* has dimension p—n a.w.o.p.,
ker(X*X) = {0} a.w.o.p. and there is a 5 ~ 1 such that

A>3 (4.4.19)
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for all X € Spec(X*X).

PROOF. Let 5\1 <...< Xp be the eigenvalues of X X*. The assertion will follow once
we have established that Xp_nﬂ 2 1 a.w.o.p. since X X* and X*X have the same nonzero
eigenvalues and dim ker XX > p — n for dimensional reasons. Corollary V.2.1 in [73]
implies that Ay, > 7-—p~2/3"¢ a.w.0.p. for each e > 0 where y_ := 1-2,/pn/(n+p) 2
1, thus Xp,nﬂ 2 1 a.w.o.p. In fact, our proof only requires that j\p,nﬂ > ~v_ — ¢ for any

e > 0 a.w.o.p, which already follows from the argument in [133]. O

PROOF OF THEOREM A7 We define H, := /1 — tH ++/tH for t € [0,1] and set
Vs = min{d,/2,v/7}, where 7 is chosen as in (4.4.19). By Lemma with §y = ~2
and 0, = 72/2, H? has no eigenvalues in [d;, 8] a.w.o.p. for every ¢ € [0,1]. Clearly,
the eigenvalues of H; depend continuously on t. Therefore, #(Spec(H?) N [0,d;)) =
#(Spec(ﬁz) N 1[0,d1)). Thus, we get the chain of inequalities

p—n < dimker H = dimker H? < # (Spec(HQ) N 1o, 51)) = # (Spec(ﬁ2) N[0, 51))
= dimkerI/f2 =p—n.

Here we used Lemma in the last step. As the left and the right-hand-side are equal
all of the inequalities are equalities which concludes the proof of part (i) and part (ii).
We will omit the proof of part (iii) of Theorem as it is very similar to the
proof of part (vi) of Theorem below which will be independent of part (iii) of
Theorem (4. 4.7 O

PRrROOF OF THEOREM [£.2.10l. Since ¢, is chosen as in Proposition[4.3.16 we conclude
0 > 62 2 1 from part (iv) of this proposition. Part (ii) and (iii) of the theorem follow
immediately from (4.4.17) in Theorem m

If p > n, then dimker X X* = p—n a.w.o.p. as p—n < dimker X X* < dim ker H? =
p —n a.w.o.p by part (i) of Theorem 1.4.7, By Proposition [4.3.16, we obtain 7, = (u) =
1 —n/p, where u is defined as in this proposition. This proves part (iv). If p < n, then
part (v) follows from interchanging the roles of X and X* and following the same steps

as in the proof of part (iv).
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For the proof of part (vi), we first assume p > n. By Proposition we can
uniquely extend (m(¢) = v/¢m1(v/¢) to a holomorphic function on Ds2(0). We fix 7, as
in (£.4.17). On the event {\; > 2 for alli =p—n+1,...,p}, which holds true a.w.o.p.
by , the function (R(() can be uniquely extended to a holomorphic function on
D.2(0). We set § :== min{~2/2,67} and assume without loss of generality that § < 6, —e..
For ¢ € H satisfying § < |(| < d, — ., is immediate from (4.2.3b). We apply
to obtain max; ;|R;;(() — mi({)d;;| < 1/p for ¢ € H satistying |(| = §. By
the symmetry of R(¢) and m(() this estimate holds true for all { € C satisfying || = .
Thus, the maximum principle implies that max; ;|(R;;(¢) —(m;({)d;;| < 1/p which proves
(4.2.11)) since {\; > 26 for all i = p —n + 1,...,p} which holds true a.w.o.p. by 26 < 7?2
and . If p < n then XX* does not have a kernel a.w.o.p. by (v). Therefore, a
similar argument yields .

For the proof of (4.2.13)), we observe that dim ker(X X*) = pm, a.w.o.p. in both cases
by (iv) and (v). Thus,

Z[RM«)—mi(c)]—l( > C—iaxﬁ))

VIR Bt i=1
a.w.o.p. for ¢ € Ds(0), 0 chosen as above, by (4.4.17)), where a is the holomorphic function
on Dy, (0) defined in Proposition 4.3.16, The right-hand side of the previous equation

can therefore be uniquely extended to a holomorphic function on Dj, (0). As before, the

estimate (4.2.3b]) can be extended to ¢ € H with |(| < ¢ by the maximum principle. O

The local law for ¢ around zero needed an extra argument, Theorem [.2.10] due to
the possible singularity at ¢ = 0. We note that this separate treatment is necessary even
if p < n, in which case X X* does not have a kernel and R(() is regular at { = 0, since
we study X X* and X*X simultaneously. Our main stability results are formulated and
proven in terms of H, as defined in (4.3.1)). Therefore, these results are not sensitive to

whether p or n is bigger which means whether X X* has a kernel or X*X.

4.5. Proof of the Rotation-Inversion lemma

In this section, we prove the Rotation-Inversion lemma, Lemma |4.3.6|
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PrROOF OF LEMMA [4.3.6l In this proof, we will write || A|| to denote || Al|5. Moreover,

we introduce a few short hand notations,

e R VI B ) B e PO
0 U, A0 V2| 4o,
In particular, we have Avy, = pe¥v; and A*v; = pe ¥, for some 1 € R. By redefining
v to be e¥v; we may assume that ¢ = 0 and get Aa+ = £pa as well.
Let us check that indeed U + A is not invertible if the right-hand side of is
infinite, i.e., if

|A*Al[{v1, Uyvr){(v2, Usvg) = 1.

In this case we find [|[A*A|| = 1, (v, Uyv1) = €% and (vy, Uyws) = e7¢ for some ¢ € R.
Thus, v; and vy are eigenvectors of U; and U,, respectively. Therefore, both ¢ and A
leave the 2-dimensional subspace spanned by (v, 0) and (0, ve) invariant and in this basis

the restriction of U + A is represented by the 2 x 2-matrix

el 1
1 ey
which is not invertible.
We will now show that in every other case U + A is invertible and its inverse satisfies

(4.3.26). To this end we will derive a lower bound on ||(U + A)w]|| for an arbitrary

normalized vector w € C"*?. Any such vector admits a decomposition,
w = ajay +a_a_ + Bb,

where ay € C, § > 0 and b is a normalized vector in the orthogonal complement of the

2-dimensional space spanned by ay, and a_. The normalization of w implies
o P+ o |* + 5% = 1. (4.5.1)

The case § =1 is trivial because the spectral gap of A*A implies a spectral gap of A in
the sense that

Spec(A/p) € {=1}U[—1+p 2 Gap(AA*),1—p~2 Gap(AAD]U{1}.  (4.5.2)
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Thus, we will from now on assume [ < 1.

We will use the notations P and P, for the orthogonal projection onto the 2-
dimensional subspace spanned by ay and its orthogonal complement, respectively. We
also introduce
_Llaetal o),

2oy P + |a—[? (4.5.3)
ko= (o + o) V2P L+ U A (asay +aca ).

With this notation we will now prove
(U + Awl| > ¢; Gap(AA™)k, (4.5.4)
for some positive numerical constant ¢;. The analysis is split into the following regimes:

Regime 1: x!/2 < 108,

Regime 2: x'/2 > 108 and \ < 1/10,

Regime 3: x'/2 > 108 and A > 9/10,

Regime 4: x'/2 > 108 and 1/10 < X\ < 9/10 and |(vy, Uyv)|? + [{vg, Upva)|? < 2 — K/2,
Regime 5: x'/2 > 108 and 1/10 < A < 9/10 and |(vy, Uyv1) > + [{(va, Usva)|? > 2 — K/2.

These regimes can be chosen more carefully in order to optimize the constant ¢; in (4.5.4)),
but we will not do that here.

Regime 1: In this regime we make use of the spectral gap of A*A by simply using the

triangle inequality,

|@ -+ Al > o] = [ Aw] = 1=/p2lasP + pla_|? + 5] Ab]>

We use the inequality 1 —+/1 — 7 > 7/2 for 7 € [0, 1] as well as the normalization (4.5.1))
and find

2|+ Awl = 1= p* + p*5% = B2 AD|* > pB*(p — | Ab]]) = B Gap(AA").

The last inequality follows from (4.5.2)) and because b is orthogonal to ay. Since 3? >
x/100, we conclude that in the first regime (4.5.4) is satisfied.
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Regime 2: In this regime we project on the second component of (U + A)w.
V2||(U + Awl|| > |[(ar — a_)Usvy + V28Usby — (ay + ) A%y — V23AD, ||

oy — a|[|Usva]| = V28[|Usbo|| = play + a_||vs]l = V25[ A%y |

> V2y/|as ]+ |a-P(VI = X = VA) - 2v25.

Y

Here we used the notation b = (by, by) for the components of b. The last inequality holds
by the normalization of vy and b, by p < 1 and by the definition of A from (4.5.3]), which
also implies

oy —a|* = 2(1 = N)(Jay [* + o).
Since A < 1/4 in this regime and x < 2 by the definition of £ in we find 8 <

k'/2/10 < 1/5 and infer

U+ Awl| > /1-B(VT=X=VA) =28 > 1/10 > #/20.

Regime 3: By the symmetry in a4 and a4 and therefore in A and 1 — A this regime is
treated in the same way as Regime 2 by estimating the norm of the first component of

(U + A)w from below.

Regime 4: Here we project onto the orthogonal complement of the subspace spanned

by a, and a_,
U+ Aw| > ||P.(U+Aw| > |[PU(arar +a_a )| — BPLU+ A)b| . (4.5.5)
We compute the first term in this last expression more explicitly,
1P llarar +a a)|? =llaras +a_a | = [PjU(arar +a—a )|
= o P+ o = Sl + 0 PlGwn, Uy P

1
- §|Of+ — a_[*|(ve, Usva) |?

(4.5.6)

= (1= B%)(1 = Afvr, Urvn) [* = (1 = N){vz, Uzva)]?) .

For the second equality we used that

1Pull® = [{vr,u)* + [(vz, ug)|?, u = (uy,ug) € CPF™,
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With the choice of variables

§ = \<01,U1U1>’27 n = ’<U27U2U2>|27

we are minimizing the last line in (4.5.6) under the restrictions that are satisfied in this

regime,
1
min{l —AX{—(1—=XN)n: {nel0,1], 26+2n<4—kr} > §/imin{1—)\,)\}.

We use the resulting estimate in (4.5.5)) and in this way we arrive at

lil/2 K

1
> kY11= B2min{l — A A}2-28 > — > —
I+ Al = —5rt2y1 = 52 minl =22} 52 00 Z 200

In the second to last inequality we used § < 1/5 which was already established in the

consideration of Regime 2 and in the last inequality we used x < 2.

Regime 5: In this regime we project onto the span of a, and a_,

(U + A)w]]

11+ U A)w]]

> 1Py 14+ U"A)(aray +a_a_ )| — BP(1+ U A)b| (4.5.7)

= lap? +[a? & = B||PyU*Ab]|.

The second term in the last line is estimated by using
[P Abl[* < || Ab]| sup sup [(h, U u)]?,
hl|la+ ulat
where the suprema are taken over normalized vectors h and « in the 2-dimensional sub-
space spanned by a4 and its orthogonal complement, respectively. First we perform the

supremum over h and get

[P Abl[* < sup ([(vr, Uun)[* + [(v2, Usua)[*)

ulat

(4.5.8)
< sup [(vr, Uiun)|* + sup [(va, Usus)|?,
w1 Loy ug v
where the vectors u; € CP and uy € C™ are normalized. Computing
sup [(v1, Ugup)|> = 1= [{vg, Uyur)]?, sup |[(va, Usug)|® = 1 — [{vg, Uswa)|?,

w1 Loy ug Lvo
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we get

[PyU Ab|* < 2 = [(vr, Urv1) [ = [{ve, Do) P < /2,

where we used the choice of Regime 5 in the last step. Plugging this bound into (4.5.7)
and using 8 < k'/2/10 as well as 8 < 1/5 yields

U+ Awl| = /1825 — B2 > /2.

This finishes the proof of (4.5.4)). In order to show (|4.3.26)), and thus the lemma, we

notice that

K > iﬁlf [Py (1+ U A)ul|,
ulla+

where the infimum is taken over normalized vectors « in the span of a; and a_. Thus,
it suffices to estimate the norm of the inverse of Py(1 + U*A)Py, restricted to the 2-
dimensional subspace with orthonormal basis (v1,0) and (0, vy). In this basis this linear

operator takes the form of the simple 2 x 2-matrix,
1 P<U1 U 1U1>
p{v2, Usva) 1

Its inverse is bounded by the right-hand side of (4.3.26)), up to the factor Gap(AA*) that
we encountered in (4.5.4]), and the lemma is proven. d



CHAPTER 5

Singularities of the density of states of random Gram matrices

In this chapter, we present the results from [11]. For large random matrices X with
independent, centered entries but not necessarily identical variances, the eigenvalue den-
sity of X X* is well approximated by a deterministic measure on R. We show that the
density of this measure has only square and cubic-root singularities away from zero. We

also extend the bulk local law in Chapter {4 (cf. [14]) to the vicinity of these singularities.

5.1. Introduction

The empirical eigenvalue density or density of states of many large random matrices
is well approximated by a deterministic probability measure, the self-consistent density
of states. If X is a p x n random matrix with independent, centered entries of identical
variances then the limit of the eigenvalue density of the sample covariance matriz X X*
for large p and n with p/n converging to a constant has been identified by Marchenko
and Pastur in [112]. However, some applications in wireless communication require un-
derstanding the spectrum of X X* without the assumption of identical variances of the
entries of X = (2gq)rq 192, 92, [150]. In this case, the matrix X X* is a random Gram
matrix.

For constant variances, the self-consistent density of states is obtained by solving
a scalar equation for its Stieltjes transform, the scalar Dyson equation. In case the
variances si, = E|zg,|* depend nontrivially on & and ¢, the self-consistent density of
states is obtained from the solution m(¢) = (my(¢), ..., m,(¢)) € H? of the vector Dyson
equation [82]

1 & - -1
_ =C-> skq(l + Zslqml((’)) for all k € [p], (5.1.1)
for all ¢ € H. Here, we introduced H := {¢ € C: Im ¢ > 0} and [p] :== {1,...,p}. Indeed,
the average (m(¢)); = p~ 1 3F_, my(C) is the Stieltjes transform of the self-consistent

109
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density of states denoted by (r);. If the limit of (v); as p,n — oo exists then it can be
studied via an infinite-dimensional version of (see below).

For Wigner-type matrices, i.e., Hermitian random matrices with independent (up to
the Hermiticity constraint), centered entries, the analogue of is a quadratic vector
equation (QVE) in the language of [4, 5]. In these papers, finite and infinite-dimensional
versions of the QVE have been extensively studied to analyze the self-consistent density
of states whose Stieltjes transform is the average of the solution to the QVE. The authors
show that the self-consistent density of states has a 1/3-Holder continuous density. Except
for finitely many square-root and cubic-root singularities this density is real-analytic. The
square-root behaviour emerges solely at the edges of the connected components of the
support of the self-consistent density of states, whereas the cubic-root singularities lie
inside these components. The detailed stability analyis in [4] is then used in [7] to obtain
the local law for Wigner-type matrices. A local law typically refers to a statement about
the convergence of the eigenvalue density to a deterministic measure on a scale slightly
above the typical local eigenvalue spacing.

For the Dyson equation for random Gram matrices, we obtain away from ¢ = 0 the
same results as mentioned above in the QVE setup. Furthermore, we extend our local law
for random Gram matrices in Chapter [4] (cf. [14]) to the vicinity of the singularities of the
self-consistent density of states. This can be seen as another instance of the universality
phenomenon in random matrix theory. Despite the different structure of Gram and
Wigner-type matrices, the densities of states of these Hermitian random matrices have
the same types of singularities. We refer to Chapter [4] and the references therein for
related results about random Gram matrices.

There is a close connection between Gram and Wigner-type matrices. The Dyson
equation, (5.1.1), can be transformed into a QVE in the sense of [4] and the spectrum of
X X* is closely related to that of a Wigner-type matrix in the sense of [7]. This is easiest
explained on the random matrix level through a special case of the linearization tricks:

If X has independent and centered entries then the random matrix

0 X
H = (5.1.2)

X* 0
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is a Wigner-type matrix and the spectra of H? and X X* agree away from zero. Therefore,
instead of trying to analyze and X X* directly, it is more efficient to study the
corresponding QVE and Wigner-type matrix as in Chapter @l However, owing to the
large zero blocks in H, its variance matrix is not uniformly primitive (see A3 in [4]), a
key assumption for the analysis in |4]. Indeed, the stability operator of the QVE possesses
an additional unstable direction f_, which has to be treated separately. In Chapter ,
this study has been conducted in the bulk spectrum and away from the support of (),
where f_ did not play an important role at least away from zero.

In this note, we present a new argument needed in the analysis of the cubic equation
(see below) describing the stability of the QVE close to its singularities in order to
incorporate the additional unstable direction. In fact, the analysis of the cubic equation
in [4] heavily relies on the uniform primitivity of the variance matrix. Adapting this
argument to the current setup cannot exclude that the coefficients of the cubic and the
quadratic term in the cubic equation vanish at the same time due to the presence of f_.
A nonvanishing cubic or quadratic coefficient is however absolutely crucial for the cubic
stability analysis in [4]. Otherwise not only square-root or cubic-root but also higher
order singularities would emerge. Our main novel ingredient, a very detailed analysis
of these coefficients, actually excludes this scenario. With this essential new input, the
regularity and the singularity structure of as well as the local law for X X* follow
by correctly combining the arguments in [4, [7] and Chapter [4]

Acknowledgement. The author is very grateful to Laszlé Erdés for many fruitful
discussions and many valuable suggestions. The author would also like to thank Torben

Kriiger for several helpful conversations.

5.2. Main results

5.2.1. Structure of the solution to the Dyson equation. Let (X;,S;,m) and
(X5, Sy, M) be two finite measure spaces such that 71 (X;) and 75 (Xs) are strictly positive.
Moreover, we denote the spaces of bounded and measurable functions on X; and X, by

B; = {u: X, = C: ||ulloo = suplu(z)| < OO}

reX;
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for i = 1,2. We consider #; and %, equipped with the supremum norm |- ||.. We
denote the induced operator norms by || - ||, %, and || - ||,—2,. For u € %B;, we write
up = u(k) for k € X;. We use the same notation for v € %.

Let s: X1 X Xy — R{, s(k, q) = sgq be a measurable nonnegative function such that

sup [ sgeme(dg) < oo, sup | sggm(dk) < oo. (5.2.1)
kexy /X2 qEXs /X1

We define the bounded linear operators S: %y — %, and S*: B, — %, through

(Sv)p = /3€ SerUrma(dr), k€ Xy, v € By, (Sw), = /3€ s (dl), q € Xa, u € A.

(5.2.2)
We are interested in the solution m: H — %, of the Dyson equation
1 1
—— =-S5, 5.2.3
m@ ¢ T m© (5.2

for ¢ € H, which satisfies Imm(¢) > 0 for all ( € H.

Proposition 5.2.1 (Existence and Uniqueness). If (5.2.1) holds true then there is a
unique function m: H — %, satisfying (5.2.3) and Imm(¢) > 0 for all ¢ € H. Moreover,
m: H — A, is analytic. For each k € X1, there is a unique probability measure v, on R

such that my, is the Stieltjes transform of vy, i.e.,

mi(C) :/OooEl_Cyk(dE) (5.2.4)

for all ¢ € H. The support of vy is contained in [0, %] for each k € X1, where

% = 4max {||S| g, 15| 2,52, } - (5.2.5)

Further assumptions on 7y, m and S will yield a more detailed understanding of the
measures ;. 1o formulate these assumptions, we introduce the averages of u € %4, and

v € By through

1 1
(W = e [ mm(@h), )= s [ wmelda)

Additionally, we set ||ul|; := (\u!t)?[/t and ||v||; == <|v\t>§/t foruw e %, v e HByand t > 1.

Moreover, for k € X; and ¢ € X5, we define the functions Si: Xo — R, Si(r) = spr
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and (S?),: X1 — Ry, (5"),(1) = si;. We call Sy, and (S), the rows and columns of S,

respectively.

Assumptions 5.2.2. [(A1)| The total measures 7 (X;) and my(Xs) are comparable,

i.e., there are constants 0 < m, < 7* such that

1(%1)
Ty < (X2

=

<.

(A2)| The operators S and S* are irreducible in the sense that there are Ly, Ly € N

and K1, ko > 0 such that
((580"u), = mifuhr, ((8'5)"0), = mafv)e.

for all u € %, v € A, satisfying u > 0 and v > 0 and for all k € X1, ¢ € Xs.
(A3)| The rows and columns of S are sufficiently close to each other in the sense that
there is a continuous strictly monotonically decreasing function ~: (0,1] — RJ

such that lim. |y v(e) = oo and for all € € (0, 1], we have

(e) < min{ inf ! / m(dl) inf ! / Ta(dr) }
= ke 1 (X1) Jxi € + [|Sk — Silf7 7 agxz ma(X2) Jxo €+ [[(S7)g — (57)[13)
(A4)| The operators S and S* map square-integrable functions continuously to bounded

functions, i.e., there are constants Wy, W5 > 0 such that

1SN L2(rs s (x2)) 20 < Wi, ||St|’L2(7r1/7r1(x1))~><@2 < W,.

Our estimates will be uniform in all models that satisfy Assumptions [5.2.2] with the
same constants. Therefore, the constants m,, 7* from , L1, Lo, K1, Ko from ,
the function v from and ¥y, Uy from are called model parameters. We refer
to Remark below for an easily checkable sufficient condition for . We now state
our main result about the regularity and the possible singularities of v}, defined in .

Theorem 5.2.3. If we assume|(A1) —|(A4)| then the following statements hold true:

(i) (Regularity of v) There are 1° € %, and v?: X; x (0,00) — [0,00), (k,E) —
vi(E) such that

v (dE) = v)0o(dE) + vi(E)dE (5.2.6)
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forallk € X1. For all § > 0, the function v? is uniformly 1/3-Hélder continuous

on [0,00), i.e.,

dip) — vi(E
wp wp MBI
keX1 Er£Es, Br,Ba>s | B — Fa|l/

For all k € X1, we have
{F € (0,00): (W' (E)) >0} ={F € (0,00): V{(E) > 0}.

We set B = {E € (0,00): (tY(E)) > 0}. For each § > 0, the set BN (5, 00) is a

finite union of open intervals. The map v®: (0,00) \ OB — B, is real-analytic.

There is p, > 0 depending only on the model parameters and & such that the
Lebesgue measure of each connected component of P N (9, 00) is at least 2p,.

(ii) (Singularities of v¢) Fiz 6 > 0. For any Ey € (OR) N (5,00), there are two cases

CUSP: The point Ey is the intersection of the closures of two connected components

of BN (4,00) and v has a cubic root singularity at Ey, i.e., there is ¢ € %,

satisfying infrex, cx > 0 such that
Vi By + ) = A2+ O(INY?), A=

EDGE: The point Ey is the left or right endpoint of a connected component of B N
(6,00) and v? has a square root singularity at Ey, i.e., there is ¢ € %,

satisfying infrex, cx > 0 such that
VI(Ey+0)\) = A2+ 0()), A]0,

where 8 = +1 if Ey is a left endpoint of B and 0 = —1 if Ey is a right

endpoint.

In Figure , we present an example of a self-consistent density of states (v%); for
X, = [ken] and Xy = [n] with k. > 0 and n € N. If m; and 7y are the (unnormalized)
counting measures on X; and X,, respectively, and k. is chosen suitably then we obtain

Figure [5.1 with a cubic cusp at E ~ 8.
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0.2 .

— Kel Kel .
"5: 7N 7
~ 0.1} 1 gt — 6 4

1 3 ] "
(B) Variance profile.
0 6 8 10 12
E

(A) Self-consistent density of states (v9);.

FiGURE 5.1. Example of a self-consistent density of states with variance
profile S. It has square-root edges at the left and right endpoint of its
support and a cubic cusp at £ ~ 8.

Remark 5.2.4 (Piecewise Holder-continuous rows and columns of S imply [(A3)). Let
X, and X5 be two nontrivial compact intervals in R and 7 and 75 the Lebesgue measures.
In this case, holds true if the maps k — Sy, and r — (S*),. are piecewise 1/2-Holder
continuous in the sense that there are two finite partitions (1,)ac4 and (Jg)gep of X7 and

X5, respectively, such that, for all @ € A and g € B, we have
1Sk = Silla < Calk =12, 1(5%)g = (5%l < Dglg —r[*/*

for all k,1 € I, and for all ¢, € Js. There is a similar condition for if X, = [p] and
X, = [n] for some p,n € N and the measures m; and 7 are the (unnormalized) counting

measures on [p] and [n], respectively.

5.2.2. Local law for random Gram matrices. In this subsection, we state our
results on random Gram matrices. We now set X, = [p|, X2 = [n] as well as m; and m, the

(unnormalized) counting measures on [p| and [n], respectively. In particular, m(%;) = p

and m(X2) = n.

Assumptions 5.2.5. Let X = (2,)r, be a p X n random matrix with independent,
centered entries and variance matrix S = (Skg)rg, 1-€., Exg, = 0 and sy, = E|zg,|* for

k € [pl, ¢ € [n]. Moreover, we assume that [(A1)] [(A2)] and [(A3)]in Assumptions [5.2.2)

and the following conditions are satisfied.
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(B1)| The variances are bounded in the sense that there exists s* > 0 such that

*

Sk < for k € [p], ¢ € [n].

p+n
(B2)[ All entries of X have bounded moments in the sense that there are y,, > 0 for
m > 3 such that

Elxg,|™ < umszz/z for all k£ € [p], q € [n].

The sequence (fiy,)m>3 in|(B2)|is also considered a model parameter.

Since [(B1)| implies [(A4)] we can apply Theorem [5.2.3] By its first part, for every
d > 0, there are ay, ..., ak, f1,..., Bk € [0,00) for some K € N such that

K
sSupp <Vd|[a,oo)>1 = Ulei, 81, a; < B <ajn
i=1
and p, > 0 depending only on the model parameters and ¢ such that 5, — a; > 2p, for

all 1 € [K]. For p € [0, p,), we introduce the local gap size A, via

a1 — B, i Bi—p < E < a;yq + p for some i € [K],
Ay(E) =11, if E<ai+por E>Br—p, (5.2.7)
0, otherwise.
For 6,7 > 0, we define the spectral domain D5, := {¢ € H: [¢| > 6, Im( > p~*™7}. We

introduce the resolvent R(() := (X X* — ()~! of X X* at ¢ € H and denote its entries by
Ry (C) for k,1 € [p].

Theorem 5.2.6 (Local law for Gram matrices). Let Assumptions hold true. Fizx
d >0 and vy € (0,1). Then there is p € (0, pi) depending only on the model parameters
and § such that if we define k = kP : H — (0, 00] through

K(C) = (Ap(Re )V + Imm(¢))) ™"



5.3. QUADRATIC VECTOR EQUATION 117

then, for each e > 0 and D > 0, there is a constant C. p > 0 such that

B (T m(0))
2| sup 7| Ru(€) — mu(O)du] < 40
k,l€[p]

1 ’i(g) CE,D
\/pImC’pImC} =1==0

—|—min{

(5.2.8a)

Furthermore, for any € > 0 and D > 0, there is a constant C. p > 0 such that, for any

deterministic vector w € CP satisfying maxyep|wi| < 1, we have
1 & 1 k() Cep
Pl sup |- ) wi(Rre(C) —mp(C ‘Spgmin{ , } >1——=. (5.2.8b
(@m,w p kz::l ( ©) ( )) VpIm ¢ plm ¢ pP ( )
The constant Ce p in (5.2.8) depends only on the model parameters as well as 6 and 7y in
addition to € and D.

Remark 5.2.7. (i) (Corollaries of the local law) In the same way as in [7] and in
Chapter [4] the standard corollaries of a local law — convergence of cumulative
distribution function, rigidity of eigenvalues, anisotropic law and delocalization
of eigenvectors — may be proven.

(ii) (Local law in the bulk and away from suppv) In the bulk, Theorem has
already been proven in Chapter ] Away from supp v, the convergence rate in
and can be improved and thus the condition Im ¢ > p~*" can
be removed there. See Chapter [l for Gram matrices and Chapter [7] for Kronecker
matrices.

(iii) (Local law close to zero) Strengthening the assumption we have proven

the local law close to zero in the cases, n = p and |p — n| > cn, in Chapter .

5.3. Quadratic vector equation

In this section, we translate (5.2.3)) into a quadratic vector equation of [4] (see (5.3.2))
below) and show that Proposition trivially follows from [4]. However, the singularity

analysis in [4] has to be changed essentially due to the violation of the uniform primitivity

condition, A3 in [4], on S (cf. (5.3.1)) below) in our setup.
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Let X := X; LU X5 be the disjoint union of X; and X5 and 7 the probability measure
defined through

7T(A L B) = (71'1(:{1) + 72(:{2))_1(71'1(14) + WQ(B)), for A C %1, B C :{2.

Moreover, we denote the set of bounded measurable functions X — C by £ := {w: X —
C: [[w|lw = supgex|w(z)| < oo} with the supremum norm | -||~. Finally, on & =

B & By, we define the linear operator S: B — ZA through

S = ; i , ie, Sw=S(wly,)+ S (w|y,) forwe B. (5.3.1)
Here, we consider S(w]x,) and S*(w]x,) as functions X — C, extended by zero outside
of X; and X, respectively. Instead of , we study the quadratic vector equation
(QVE)

— r}m =z+Sm (5.3.2)

for € H. Here, we used the change of variables 22 = (. We now explain how m and
m are related. If m is a solution of (5.3.2) then m; := m|y, and ms := m|x, satisfy
—m{' = 2+ Smy and —my ' = z + S'm;. Solving the second equation for ms, plugging

the result into the first relation and choosing z = /¢ € H, we see that m defined through

_ ml(\/@
v

for ¢ € H is a solution of (5.2.3)). If m has positive imaginary part then m as well.

m(()

(5.3.3)

For u € %A, we write u, := u(zr) with x € X. For u,w € %, we denote the scalar

product of w and w and the average of u by

(u,w) = /3E @ w,r(de), (u) = (1,u) = /3€ w7 (dz). (5.3.4)

We also introduce the Hilbert space L?*(1) := {u: X — C: (u,u) < oo}. The operator
S is symmetric on % with respect to (-, -) and positivity preserving, as s, > 0 for all
k € X; and r € X5. Therefore, by Theorem 2.1 in |4], there exists m: H — % which
satisfies for all z € H. This function is unique if we require that the solution of
satisfies Imm(z) > 0 for z € H. Moreover, m: H — £ is analytic and, for all
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z € H, we have

lm(2)]l2 < 2[2] 7"

Furthermore, for all x € X, there are symmetric probability measures p, on R such that

me(2) = [ p,(dr) (5.3.5)

T—2z
for all z € H [4]. That means that m, is the Stieltjes transform of p,. By (2.7) in [4],
the definition of ¥ in (5.2.5) and ||S|| = ||S||z—2 = max{||S||%,—2., |52 —=,}, the
support of p, is contained in [—X1/2 ¥1/2].

ProOF OoF PROPOSITION [£.2.7]. The existence of m directly follows from the trans-

form in (5.3.3) and the existence of m. The uniqueness of m and the existence of vy,

k € X, are obtained as in the proof of Theorem in Chapter [4] O

The special structure of S (cf. ) implies an important symmetry of the solu-
tion m. We multiply by m and take the scalar product of the result with e € £
defined through e_(k) = 1if k € X; and e_(q) = —1 if ¢ € X5. As (e_,m(Sm)) =0,
we have

z(e_,m) =—(e_) = — (5.3.6)

for all z € H.

Assumptions 5.3.1. In the remainder of this section, we assume that (A1)} [(A2)}[(A4)]

and the following condition hold true:

(C2)| There are 6 > 0 and ® > 0 such that for all z € H satisfying |z| > 4, we have
[m(z)]e < @.

Remark 5.3.2 (Relation between [(A3)| and [(C2))). By slightly adapting the proofs of
Theorem 6.1 (ii) and Proposition 6.6 in [4], we see that, by |(A3)| for each § > 0, there
is ®; > 0 such that |(C2)|is satisfied with a constant & = ;.

Since our estimates in this section will be uniform in all models that satisfy [(A1)}

[((A2)} |(A4)|and [(C2)| with the same constants, we introduce the following notion.
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Convention 5.3.3 (Comparison relation). For nonnegative scalars or vectors f and g,

we will use the notation f < g if there is a constant ¢ > 0, depending only on w., 7" in

L1, Lo, Ky, ko z'n vy, Uy m as well as & and ® m such that

f < cg. Moreover, we write f ~ g if both, f < g and f 2 g, hold true.

5.3.1. Holder continuity and analyticity. We recall ¥ from ([5.2.5)) and introduce
the set HY := {z € H: 26 < |z| < 1052} and its closure HZ.

Proposition 5.3.4 (Regularity of m). Assume[(A1)] [(A2)] [(A4)] and[(C2)]

(i) The restriction m: H? — B is uniformly 1/3-Holder continuous, i.e.,
Im(z) = m(2)]lo S |2 — 2'° (5.3.7)

for all z,2" € H?. In particular, m can be uniquely extended to a uniformly
1/3-Hoélder continuous function ﬁ? — B, which we also denote by m.

(ii) The measure p from is absolutely continuous, i.e., there is a function
pl X xR\ (=26,20) = [0,00), (z,7) — pt(r) such that

(pz’R\(_2S’25')) (d7) = p(7)dr, for all x € X. (5.3.8)

The components p? are comparable with each other, i.e., pi(T) ~ pZ(T) for all
z,y € X and 7 € R\ [—25,20]. Moreover, the function p?: R\ [—25,20] — %
is uniformly 1/3-Hdlder continuous, symmetric in 7, p*(1) = p?(—7), and real-
analytic around any T € R\ [=20,20] apart from points T € supp(p®), where
p(t) =0.

A similar result has been obtained in Theorem 2.4 in [4] essentially relying on the
uniform primitivity assumption A3 in [4]. For discrete X; and X, without assuming[(C2)]
Lemma in Chapter |4 shows Holder continuity of (m) instead of m with a smaller
exponent than 1/3. Both conditions, A3 in [4] and the discreteness of X; and X, are
violated in our setup. However, based on the proof of Theorem 2.4 in [4], we now explain

how to extend the arguments of [4] and Chapter 4| to show Proposition [5.3.4}
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Lemma 5.3.5. Uniformly for all z € HY, we have

im(2)] ~ 1, (5.3.9)

Imm(z) ~ (Imm(z)). (5.3.10)

Using the arguments in the proof of Lemma 5.4 in [4], Lemma follows immedi-
ately from , and . Here, as in the proof of Lemma in Chapter ,
the uniform primitivity assumption A3 of [4] has to be replaced by (B’) in Chapter [4]
which is a direct consequence of .

The Hélder continuity and the analyticity of m and hence p? will be consequences of
analyzing the perturbed QVE

—;:z—i-Sg—i—d (5.3.11)

for z € H and d = z — 2’ as well as the stability operator B defined through

mG)P,
m(z)?

where F'(z2): B — A is defined through F(2)u = |m(2)|S (|m(z)|u) for any u € £

(cf. [4] and Chapter [4). Correspondingly, we introduce F(z): By — % via

B(z)u = — F(2)u, (5.3.12)

F(z)w = [ma(2)|S(Jma(2)w)

for w € %y and F'(z): By — By via F'(2)u = |ma(2)|S*(|my(2)|u) for u € %;.

To formulate the key properties of F' and B, we now introduce some notation. The
operator norms for operators on % and L?(7) are denoted by || - || and || - |2, respectively.
If T: L? — L? is a compact self-adjoint operator then the spectral gap Gap(T) is the
difference between the two largest eigenvalues of |T'|. We remark that S and hence FF"*

are compact operators due to [(A4)|

Lemma 5.3.6 (Properties of F'). The eigenspace of F associated to | F||y is one-dimen-
sional and spanned by a unique L*(m)-normalized positive f. € ZB. The eigenspace

associated to —||F||y is one-dimensional and spanned by f_ = f.e_ € . We have

fi~1 (5.3.13)
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uniformly for z € H?. There is € ~ 1 such that
|Fulls < (1F s — &)l (5.3.14)

uniformly for z € HY and for all w € A satisfying (f,u) = 0 and (f_,u) = 0.
Furthermore, we have ||F|y < 1, Gap(F(2)F'(2)) ~ 1 uniformly for z € HZ.

Lemma is a consequence of the proof of Lemma in Chapter 4| with r = |m/|
and (539).

Lemma 5.3.7. Uniformly for z € ]H[SE, we have

157V S T (5315

PrOOF. We describe the modifications in the proof of Lemma in Chapter [4]

necessary to obtain (5.3.15]). We remark that (4.3.11) in Chapter[d|holds true due to[(A4)]
Let z € H?. Taking the real part in (5.3.2)), using (5.3.9) and Lemma , we

obtain the bound ||[Re m|m| ™|, > |Re z||[m|2/2 2 |Re z|. Therefore, using ((Imm)?) >
(Im m)? by Jensen’s inequality, we obtain (4.3.28)) in Chapter 4| with x = 2. Employing

Gap (F(z)Ft(z)) ~1,

we get [|B7(2) ]| S (Re2) *(Imm(2)) 2 As B (2)[2 < (1= [ F(2)[l2) ™ < (Im2)~*
by (.3.22)) in Chapter 4| we conclude from Im m < min{1, (Im z)~'} that

1B (2) ]l < I27*(Imm(2)) >

This concludes the proof of (5.3.15) since |z| > 20. 0

Note that if p has a density p? around a point 7y then, uniformly for 7 in a neigh-
bourhood of 75, we have

pl(r) =711 li&)l Im m(7 + in). (5.3.16)
n

PRrROOF OF PROPOSITION [5.3.4] Following the proof of Proposition 7.1 in [4] yields

the uniform 1/3-Hélder continuity of m and p?. In this proof, the estimate (5.40b) has

to be replaced by (5.3.15)). Furthermore, (5.3.10) substitutes Proposition 5.3 (ii) in [4],
in particular, p¢(7) ~ pf(7). We remark that now the same proofs extend Lemma [5.3.5,



5.3. QUADRATIC VECTOR EQUATION 123

Lemma and Lemma to all z € H¥. Hence, the proof of Corollary 7.6 in [4]
yields the analyticity using (5.3.16)) for 7 € R N H. O

5.3.2. Singularities of p? and the cubic equation. We now study the behaviour
of p? near points 7 € R, where p? is not analytic. Theorem 2.6 in [4] describes the
density near the edges and the cusps as well as the transition between the bulk and the

singularity regimes in a quantitative manner. The same results hold for p? as well:

Proposition 5.3.8. We assume[(A1), [(A2),[(A4) and[(C2). Then all statements of
Theorem 2.6 in [{)] hold true on R\ [~20,20].

For the proof of Proposition we follow Chapter 8 and 9 in [4] which contain the
proof of the analogue of Proposition m Theorem 2.6 in [4], and describe the necessary
changes as well as the main philosophy.

The shape of the singularities of m as well as the stability of the QVE (cf. Chapter 10
in [4]) will be a consequence of the stability of a cubic equation. We note that similar as in
Lemma 8.1 of [4], the following properties of the stability operator B = B(z) defined in
(5.3.12) can be proven. There is ¢, ~ 1 such that for z € ﬁ? satisfying (Imm(z)) < e,,
B has a unique eigenvalue § = [(z) of smallest modulus and || — || 2 1 for all
B' € Spec(B) \ {#}. The eigenspace associated to [ is one-dimensional and there is a
unique vector b = b(z) € £ in this eigenspace such that (b(z), f) = 1.

Let z € H such that (Imm(z)) < e, and g € 4 satisfy the perturbed QVE, (5.3.11)),
at z. We define

/B g-m()
o6 = {5 o) (5:3:17)

By possibly shrinking e, ~ 1, we obtain that if ||g — m(2)[|o < €, then it can be shown

as in Proposition 8.2 in [4] that © satisfies
130° + 1120° + 1O + (jmlb,d) = x ((g — m)/Im|.d), (5.3.18)

where pi1, 2 and 3, which depend only on S and z, as well as k are given in [4].
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The main ingredient that needs to be changed in our setup is the estimate in (8.13)

of [4]. Tt gives a lower bound on the nonnegative quadratic form
D(w) = (Q,w, (|Fl.+F)(1-F)"' Q,w) (5.3.19)

for w € A, where the projection Q, is defined through Q ,w = w — (f,,w)f,. For

some c(z) > 0 and all w € %, this lower bounds reads as follows
D(w) > o(2)]|Q, wl (5.3.20)

However, in our setup, owing to the second unstable direction f_ L f,., Ff_ =

—||F|l2f_, we have D(f_) = 0 which contradicts ((5.3.20). In [4], the estimate (5.3.20)

is only used to obtain

lus(2)] + ()] 2 1 (5.3.21)
(cf. (8.34) in [4]) for all z € H} satisfying (Imm(z)) < e, and [|g — m(2)||s < &, for
. ~ 1 small enough. In fact, it is shown above (8.50) in [4] that

sl 2 ¢+ 0(@) || 2 lo| + Ole). (5.3.22)

Here, we introduced the notations 1) := D(pfi) with p := sign(Rem) as well as a =

(fImm/|m|) and o = (f,,pf>). The proof used in [4] to show (5.3.22) works in

our setup as well. Since a = (f, Imm/lm|) ~ (Imm) < ¢, by (5.3.9) and (5.3.13)),
we conclude that |us| + |pe| 2 ¢ + |o| for e, ~ 1 small enough. Hence, (5.3.21) is a

consequence of

Lemma 5.3.9 (Stability of the cubic equation). There exists €, ~ 1 such that
V(z) +02(2) ~ 1 (5.3.23)

uniformly for all z € HZ satisfying (Imm(z)) < e,.

PRrROOF. We first remark that due to (5.3.9)), (5.3.10) and possibly shrinking ¢, ~ 1

we can assulne

[Rem(z)| ~ 1 (5.3.24)
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for z € HY satisfying (Imm(z)) < e,. Second, owing to (5.3.14)), for all w € 4, we have
the following analogue of (|5.3.20))

D(w) 2 [|Q. w3, (5.3.25)

where Q. is the projection onto the orthogonal complement of f_ and f_,ie, Q. w =

w— (f.,w)f, — (f_,w)f_. Note that (5.3.14)) also yields the upper bound D(w) <
|Q.wl3 and hence the upper bound in (5.3.23) by (5.3.13)). Therefore, it suffices to

prove the lower bound in ([5.3.23)). A straightforward computation starting from ({5.3.25|)
and using f_ = e_f_ yields

Ut ot =D(pfL) + (pFL) 2 IpFh — (F_pFD S I3 = (£2 (pF. — (pe-flle-)").

(5.3.26)
Using (5.3.13), (5.3.24) and |[Rem| = pRem, we conclude
v+’ 2 <(Re m)’ (pf, - <pefi>6)2>
> (£ Reml) (£ [Reml) +2(pe_f)(e )Re) (5.3.27)

Here, we employed Jensen’s inequality and in the second step. Since z € ﬁ?
and (e_) = 0 for m;(X;) = my(X2), there exists ¢, ~ 1 such that the last factor on the
right-hand side of is bounded from below by (f[Reml|)/2 for all z € HZ and
[m1(%X1) — m2(X2)| < ta(mi(X1) +m2(X2)). Since (f,|[Rem|)? > 1 by and (j.3.24)),
this finishes the proof of for |m(%1) — m2(X2)| < tu(m(Xy) + m2(X2)). For the
proof of in the remaining regime, |m(X1) — m2(X2)| > tu(m(X1) + ma(X2)), we
introduce y := e_pf, and use y* = fi ~ 1 and (y + (y3))2 <1 by to obtain
from the bound

V+o’2 <(y — ") (y+ <y3>)2> = <((y2 —1)+(1- <y3>2))2> > <(y2 - 1)2> .
(5.3.28)
Here, we used (y%) = (f2) = 1 and (1 — (g*)?)® > 0. Since 0 = (f_,f,) = (e_y?),

using ([5.3.28)), we conclude

(e2)? = (e_(1 -y < (1 -y S o + 0> (5.3.20)
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This implies (5.3.23) for | (X1) — ma(X2)| > t.(m1(X1) + (X)) as (e_)? > 2 ~ 1. This
completes the proof of Lemma [5.3.9] U

Following the remaining arguments of Chapter 8 and 9 in [4] yields Proposition [5.3.8]

5.4. Proofs of Theorem [5.2.3l and Theorem [5.2.6]

Proor oF THEOREM [£.2.3] By Remark [5.3.2, we can apply Proposition for
each § > 0. Hence, there are p° € Z and p?: X x R\ {0} — [0, 00) such that

p.(d7) = p3do(d7) + p3(7)d7
for all z € X. For k € X4, we set v} := pj) and
vi(E) = E7V2pd(EY*1(E > 0) (5.4.1)

with F € R. Therefore, using , we obtain (cf. the proof of Theoremin
Chapter ). The 1/3-Hélder continuity of p? implies the 1/3-Hélder continuity of . Sim-
ilarly, the analyticity of v is obtained from the analyticity of p?. From Proposition m
with 0 = v/0/2, we conclude that 93 N (8, 00) is a finite union of open intervals and its
connected components have a Lebesgue measure of at least 2p, for some p, depending
only on the model parameters and 6. This completes the proof (i).

For the proof of (ii), we follow the proof of Theorem 2.6 in [5]. We replace the
estimates (4.1), (4.2), (5.3) and (6.7) as well as their proofs in [5] by (5.3.9), (5.3.10)),

(5.3.15)) and (5.3.23)) as well as their proofs in this note, respectively. This proves a result

corresponding to Theorem 2.6 in [5] for p¢ and 75 € (O) N (0, 00) in our setup. Using
the transform ([5.4.1]) completes the proof of Theorem [5.2.3] O

PROOF OF THEOREM [5.2.6l. Note that [(B1)|implies [(A4)| By Remark [5.3.2] [(A3)|
implies [(C2)l Using (5.3.21)) to replace (8.34) in [4], we obtain an analogue of Proposi-

tion 10.1 in [4] in our setup on HY. Therefore, we have proven in our setup analogues
of all the ingredients provided in [4] and used in |7] to prove a local law for Wigner-type
random matrices with a uniform primitive variance matrix. Thus, following the argu-
ments in 7], we obtain a local law for the resolvent of H defined in and spectral
parameters z € HX N {w € H: Imw > (p + n)~'*7}, where 6 =+/6/2 and vy € (0,1).
Proceeding as in the proof of Theorem [4.2.3]in Chapter [4] yields Theorem [5.2.6] O
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Local inhomogeneous circular law

This section is devoted to the article [13] which is joint work with Lészl6 Erdds
and Torben Kriiger. We consider large random matrices X with centered, independent
entries which have comparable but not necessarily identical variances. Girko’s circular
law asserts that the spectrum is supported in a disk and in case of identical variances,
the limiting density is uniform. In this special case, the local circular law by Bourgade
et al. |44, 45] shows that the empirical density converges even locally on scales slightly
above the typical eigenvalue spacing. In the general case, the limiting density is typically
inhomogeneous and it is obtained via solving a system of deterministic equations. Our
main result is the local inhomogeneous circular law in the bulk spectrum on the optimal

scale for a general variance profile of the entries of X.

6.1. Introduction

The density of eigenvalues of large random matrices typically converges to a deter-
ministic limit as the dimension n of the matrix tends to infinity. In the Hermitian case,
the best known examples are the Wigner semicircle law for Wigner ensembles and the
Marchenko-Pastur law for sample covariance matrices. In both cases the spectrum is real,
and these laws state that the empirical eigenvalue distribution converges to an explicit
density on the real line.

The spectra of non-Hermitian random matrices concentrate on a domain of the
complex plane. The most prominent case is the circular law, asserting that for an
n x n matrix X with independent, identically distributed entries, satisfying Ez;; = 0,
E|z;;|* = n~!, the empirical density converges to the uniform distribution on the unit
disk {z : |z| < 1} C C. Despite the apparent similarity in the statements, it is consider-

ably harder to analyze non-Hermitian random matrices than their Hermitian counterparts

127
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since eigenvalues of non-Hermitian matrices may respond very drastically to small pertur-
bations. This instability is one reason why the universality of local eigenvalue statistics
in the bulk spectrum, exactly on the scale of the eigenvalue spacing, is not yet established
for X with independent (even for i.i.d.) entries, while the corresponding statement for
Hermitian Wigner matrices, known as the Wigner-Dyson-Mehta universality conjecture,
has been proven recently, see [69] for an overview.

The circular law for i.i.d. entries has a long history, we refer to the extensive re-
view [40]. The complex Gaussian case (Ginibre ensemble) has been settled in the six-
ties by Mehta using explicit computations. Girko in [81] found a key formula to relate
linear statistics of eigenvalues of X to eigenvalues of the family of Hermitian matrices
(X — 2z1)*(X — 21), where z € C is a complex parameter and 1 is the identity matrix in
C"*". Technical difficulties still remained until Bai [22] presented a complete proof under
two additional assumptions requiring higher moments and bounded density for the single
entry distribution. After a series of further partial results [83,|116] [142] the circular law
for i.i.d. entries under the optimal condition, assuming only the existence of the second
moment, was established by Tao and Vu [143].

Another line of research focused on the local version of the circular law with constant
variances, E|z;;|* = n~!, which asserts that the local density of eigenvalues is still uniform
on scales n~1/%+e

The optimal result was achieved in Bourgade, Yau and Yin [44} 45] and Yin [162] both

, i.e., slightly above the typical spacing between neighboring eigenvalues.

inside the unit disk (“bulk regime”) and at the edge |z| = 1. If the first three moments
match those of a standard complex Gaussian, then a similar result has also been obtained
by Tao and Vu in [146]. In [146], this result was used to prove the universality of local
eigenvalue statistics under the assumption that the first four moments match those of
a complex Gaussian. While there is no proof of universality for general distributions
without moment matching conditions yet, similar to the development in the Hermitian
case, the local law is expected to be one of the key ingredients of such a proof in the
future.

In this paper we study non-Hermitian matrices X with a general matrix of variances

S = (s5)},=1, i.e., we assume that x;; are centered, independent, but s;; = E|z;|* may
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depend nontrivially on the indices 7, 7. We show that the eigenvalue density is close to a
deterministic density ¢ on the smallest possible scale. As a direct application, our local
law implies that the spectral radius p(X) of X is arbitrarily close to 1/p(S), where p(S)

is the spectral radius of S. More precisely, we prove that for every ¢ > 0
p(S) —e < p(X) < \/p(S) +¢

with a very high probability as n tends to infinity. The fact that the spectral radius
of X becomes essentially deterministic is the key mathematical mechanism behind the
sharp “transition to chaos” in a commonly studied mean field model of dynamical neural
networks |135]. This transition is described by the stability /instability of the system of

ordinary differential equations
Gi(t) = ai(t) = AD_ wi;q5(t)
j=1

fori =1,...,n as A varies. Moreover, the number of unstable modes close to the critical
value of the parameter X is determined by the behaviour of ¢ at the spectral edge which
we also analyze. Such systems have originally been studied under the assumption that the
coefficients z;; are independent and identically distributed [113]. More recently, however,
it was argued [9, [10] that for more realistic applications in neuroscience one should allow
x;; to have varying distributions with an arbitrary variance profile S.

After Girko’s Hermitization, understanding the spectrum of X reduces to analyzing

the spectrum of the family

0 X —21
H? — (6.1.1)
X —z1 0
of Hermitian matrices of double dimension, where z € C. The Stieltjes transform of the

spectral density of H® at any spectral parameter ¢ in the upper half plane H := {( €

C : Im( > 0} is approximated via the solution of a system of 2n nonlinear equations,



130 CHAPTER 6. LOCAL INHOMOGENEOUS CIRCULAR LAW

written concisely as

1 Els
=+ Smy—
St
m ¢t S (6.1.2)
_i — C_|_ Stm _ $
mo ! C‘i‘Smg’

z

2(() € H", a = 1,2 are n-vectors with each component in the upper

where m, = m
half plane. The normalized trace of the resolvent, %trace(H # —(1)7!, is approximately
equal to =37:[m5(¢)]; = £ ,[m3(¢)]; in the n — oo limit. The spectral density of
H* at any F € R is then given by setting ( = F + in and taking the limit n — 0+
for the imaginary part of these averages. In fact, for Girko’s formula it is sufficient to
study the resolvent only along the positive imaginary axis ¢ € iR,. Heuristically, the
equations in arise from second order perturbation theory and in physics they are
commonly called Dyson equations. Their analogues for general Hermitian ensembles with
independent or weakly dependent entries play an essential role in random matrix theory.
They have been systematically studied by Girko, for example, in the current
random matrix context appears as the canonical equation of type K5 in Theorem 25.1
in [82]. In particular, under the condition that all s;; variances are comparable, i.e.,
c/n < s;; < C/n with some positive constants ¢, C', Girko identifies the limiting density.
From his formulas it is clear that this density is rotationally symmetric. He also presents a
proof for the weak convergence of the empirical eigenvalue distribution but the argument
was considered incomplete. This deficiency can be resolved in a similar manner as for
the circular law assuming a bounded density of the single entry distribution using the
argument from Section 4.4 of [40]. In a recent preprint [51] Cook et al. substantially relax
the condition on the uniform bound s;; > ¢/n by replacing it with a concept of robust
irreducibility. Moreover, relying on the bound by Cook [50] on the smallest singular value
of X, they also remove any condition on the regularity of the single entry distribution
and prove weak convergence on the global scale.

The matrix H* may be viewed as the sum of a Wigner-type matriz |7] with centered,
independent (up to Hermitian symmetry) entries and a deterministic matrix whose two

off-diagonal blocks are —z1 and —z1, respectively. Disregarding these z terms for the

moment, (6.1.2)) has the structure of the Quadratic Vector Equations that were extensively
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studied in [4, 5]. Including the z-terms, H?* at first sight seems to be a special case of
the random matrix ensembles with nonzero expectations analyzed in [6] and is the
diagonal part of the corresponding Matriz Dyson Equation (MDE). In [6] an optimal local
law was proven for such ensembles. However, the large zero blocks in the diagonal prevent
us from applying these results to H* or even to H*=". In fact, the flatness condition A1
in [6] (see later) prohibit such large zero diagonal blocks. These conditions are
essential for the proofs in [6] since they ensure the stability of the corresponding Dyson
equation against any small perturbation. In this case, there is only one potentially
unstable direction, that is associated to a certain Perron-Frobenius eigenvector, and this
direction is regularized by the positivity of the density of states at least in the bulk regime
of the spectrum.

If the flatness condition A1 is not satisfied, then the MDE can possess further un-
stable directions. In particular, in our setup, the MDE is not stable in the previously
described strong sense; there is at least one additional unstable direction which cannot
be regularized by the positivity of the density of states. Owing to the specific structure of
H?, the matriz Dyson equation decouples and its diagonal parts satisfy a closed system
of vector equations . Compared to the MDE, the reduced vector equations
are rather cubic than quadratic in nature. For this reduced system, however, we can show
that there is only one further unstable direction, at least when S is entrywise bounded
from below by some ¢/n. The system is not stable against an arbitrary perturbation, but
for the perturbation arising in the random matrix problem we reveal a key cancellation
in the leading contribution to the unstable direction. Armed with this new insight we
will perform a detailed stability analysis of (6.1.2).

This delicate stability analysis is the key ingredient for the proof of our main result, the
optimal local law for X with an optimal speed of convergence as n — oo. In this paper
we consider the bulk regime, i.e., spectral parameter z inside the disk with boundary
|2|? = p(9), where p(S) is the spectral radius of S. We defer the analysis of the edge of
the spectrum of X to later works.

In the special case z = 0, we thoroughly studied the system of equations even

for the case when S is a rectangular matrix in Chapter {4 (cf. |[14]); the main motivation
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was to prove the local law for random Gram matrices, i.e., matrices of the form X X*.
Note that in Chapter [d] we needed to tackle a much simpler quadratic system since taking
z =0 1n (6.1.2]) removes the most complicated nonlinearity.

Finally, we list two related recent results. Local circular law on the optimal scale in
the bulk has been proven in [161] for ensembles of the form T'X, where T is a deterministic
N x M matrix and X is a random M x N matrix with independent, centered entries whose
variances are constant and have vanishing third moments. The structure of the product

matrix T'X is very different from our matrices that could be viewed as the Hadamard
1/2

(entrywise) product of the matrix (s;;”) and a random matrix with identical variances.
The approach of [161] is also very different from ours: it relies on first assuming that
X is Gaussian and using its invariance to reduce the problem to the case when T*T is
diagonal. Then the corresponding Dyson equations are much simpler, in fact they consist
of only two scalar equations and they are characterized by a vector of parameters (of
the singular values of T') instead of an entire matrix of parameters S. The vanishing
third moment condition in [161] is necessary to compare the general distribution with
the Gaussian case via a moment matching argument. We also mention the recent proof
of the local single ring theorem on optimal scale in the bulk [27]. This concerns another
prominent non-Hermitian random matrix ensemble that consists of matrices of the form
UXV, where U, V are two independent Haar distributed unitaries and Y is deterministic

(may be assumed to be diagonal). The spectrum lies in a ring about the origin and the

limiting density can be computed via free convolution [85].

Acknowledgement. We are grateful to David Renfrew for discussing some appli-
cations of our results with us and to Dominik Schroder for helping us visualizing our

results.

Notation. For vectors v,w € C!, we write their componentwise product as vw =
(vaw;)!_;. If f: U — C is a function on U C C, then we define f(v) € C' for v € U’
to be the vector with components f(v); = f(v;) for ¢ = 1,...,l. We will in particular
apply this notation with f(z) = 1/z for 2 € C\ {0}. We say that a vector v € C!
is positive, v > 0, if v; > 0 for all « = 1,...,l. Similarly, the notation v < w means

v; < w; for all i = 1,...,1. For vectors v,w € C!, we define (w) = 7' 3!, w;, (v,w) =



6.2. MAIN RESULTS 133

o v, w3 = 17wl and [Jwllee = maxi_y,.glwil, o]l := {|v]). Note that
(w) = (1,w), where we used the convention that 1 also denotes the vector (1,...,1) € C.
In general, we use the notation that if a scalar o appears in a vector-valued relation,
then it denotes the constant vector («,...,a). In most cases we will work in n or 2n
dimensional spaces. Vectors in C?" will usually be denoted by boldface symbols like v,
u or y. Correspondingly, capitalized boldface symbols denote matrices in C?**?"_ for
example R. We use the symbol 1 for the identity matrix in C'*!, where the dimension
| = n or | = 2n is understood from the context. For a matrix A € C™*!, we use the
short notation ||A|ls = ||Al|ccsoo and [|A||2 := ||A||2—2 if the domain and the target are
equipped with the same norm whereas we use ||A|[2_ to denote the matrix norm of A
when it is understood as a map (C', ||-|l2) = (C, ||-]|ls). We define the normalized trace

of an I x [ matrix B = (b;)},_; € C™" as

1 l
tr B = 7ijj. (6.1.3)
j=1

For a vector y € C!, we write diagy or diag(y) for the diagonal [ x [ matrix with y on its

diagonal, i.e., this matrix acts on any vector x € C! as
diag(y)z = yx. (6.1.4)

We write d2z for indicating integration with respect to the Lebesgue measure on C. For
a € C and € > 0, the open disk in the complex plane centered at a with radius ¢ is
denoted by D(a,e) :={b € C | |a —b| < ¢}. Furthermore, we denote the characteristic
function of some event A by 1(A), the positive real numbers by R, := (0,00) and the

nonnegative real numbers by Ry = [0, c0).

6.2. Main results

Let X be a random n X n matrix with centered entries, Ez;; = 0, and s;; := E|z;;|?

the corresponding variances. We introduce its variance matrix S = (s45)7,_;.

Assumptions 6.2.1. (A) The variance matrix S is flat, i.e., there are 0 < s, < s*
such that

Sy s*
n_sj_n ( )
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foralli,j=1,...,n
(B) All entries of X have bounded moments in the sense that there are pu,, > 0 for
m € N such that
El2i;|™ < ptn™? (6.2.2)

foralli,j=1,...,n
(C) Each entry of /n X has a density, i.e., there are probability densities f;;: C —
[0, 00) such that

IP’( nxUEB /fw

for all 2,5 = 1,...,n and B C C a Borel set. There are o, > 0 such that
fij S LH_O‘((C) and
I fijllisa <0 (6.2.3)

foralli,7=1,...,n.

In the following, we will assume that s,, s*

, a, 3 and the sequence (fi,,),, are fixed
constants which we will call model parameters. The constants in all our estimates will

depend on the model parameters without further notice.

Remark 6.2.2. The Assumption (C) is used in our proof solely for controlling the small-
est singular value of X — 21 with very high probability uniformly for z € D(0, 7*) with
some fixed 7* > 0 in Proposition [6.5.9f All our other results do not make use of As-
sumption (C). Provided a version of Proposition that tracks the z-dependence can
effectively be obtained without (C), our main result, the local inhomogeneous circular
law in Theorem [6.2.6] will hold true solely assuming (A) and (B). For example a very
high probability estimate uniform in z in a statement similar to Corollary 1.22 of [50]

would be sufficient.
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The density of states of X will be expressed in terms of v] and v] which are the

positive solutions of the following two coupled vector equations

1 T

— = Svy + ——— 6.2.4
1 T

e i M 6.2.4h
/Ug n 1 77"’5/05 ( )

for all n € R, and 7 € R§. Here, v],v] € R? and recall that the algebraic operations
are understood componentwise, e.g., (1/v); = 1/v; for the i-th component of the vector
1/v. The system is a special case of with w = in, 7 = |z|* and v, = Imm,
for a = 1,2. The existence and uniqueness of solutions to equations of the type (|6.2.4])
are considered standard knowledge in the literature [82]. The equations can be viewed
as a special case of the matrix Dyson equation for which existence and uniqueness was
proven in [96]. We explain this connection in more detail in Section below, where we

give the proof of Lemma for the convenience of the reader.

Lemma 6.2.3 (Existence and uniqueness). For every T € Ry, there exist two uniquely

determined functions vi: Ry — R%, v3: Ry — R% which satisfy .
We denote the spectral radius of S by p(9), i.e.,
p(S) := max|Spec(S)|.
Now, we define the density of states of X through the solution to .

Definition 6.2.4 (Density of states of X). Let v] and v] be the unique positive solutions

of (6.2.4). The density of states o: C — R of X is defined through

o) = =5 [ A (o)

or

sz ) dn (6.2.5)
for |22 < p(S) and o(z) := 0 for |z|> > p(S). The right-hand side of ([6.2.5)) is well-defined

by part (i) of the following proposition.

In the following proposition, we present some key properties of the density of states

o of X. Some of them have previously been known [51} |82]. For an alternative represen-

tation of o, see (6.4.8)) later.
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Proposition 6.2.5 (Properties of o). Let v] and v} be the unique positive solutions of

(6.2.4). Then

) e junction xC— , (0, 2) = (v1(n),v5(N)) |r=|22 28 tnfinitely often dif-

/) Th on R, x C R%r” 1 3 PERCK tel di
ferentiable andn — A, <v{(n) T:|Z‘2> is integrable on R for each z € D(0,/p(5)).

) e function o, defined in ((6.2.9)), 15 a rotationally symmetric probability density

i) The functi defined in (6.2.5), i jonall ic probability densi
on C.

(7ii) The restriction U’D(o ) is infinitely often differentiable such that for every

p(S)
e > 0 each derivative is bounded uniformly in n on D(0,/p(S) —¢€). Moreover,

there exist constants ¢y > co > 0, which depend only on s, and s*, such that
1 >0(z) > e (6.2.6)

for all z € D(0,,/p(S)). In particular, the support of o is the closed disk of
radius \/p(S) around zero. In fact, the jump height imo(z) as |z| T 1/p(S) can
be computed explicitly (see Remark[6.4.9 below).

The next theorem, the main result of the present article, states that the eigenvalue
distribution of X, with a very high probability, can be approximated by ¢ on the meso-
scopic scales n~? for any a € (0,1/2). Note that n~'/2 is the typical eigenvalue spacing
so our result holds down to the optimal local scale. To study the local scale, we shift and

rescale the test functions as follows. Let f € C3(C). For w € C and a > 0, we define
fwa: C—=C,  fuaz)=n"f(n"(z —w)).

We denote the eigenvalues of X by zy,..., z,.

Theorem 6.2.6 (Local inhomogeneous circular law). Let X be a random matriz which

has independent centered entries and satisfies (A), (B) and (C). Furthermore, let a €
(0,1/2), ¢ >0, 7. > 0 and o defined as in (6.2.5)).

(1) (Bulk spectrum) For every e > 0, D > 0, there is a positive constant C. p such
that

C'z-:,D

np

> n—”?“*fHAfHLl) < (6.2.7)

P (’;é fualz) = [ Fual)o(2)%
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holds true for all m € N, for every w € C satisfying |w|*> < p(S) — 7. and for
every [ € C2(C) satisfying supp f C D(0,¢). The point w and the function f
may depend on n.

(ii) (Away from the spectrum) For every D > 0, there exists a positive constant Cp

such that

Cb

P(3ief{l,....n}||af>p(S)+7) < 5 (6.2.8)

holds true for all n € N.

In addition to the model parameters, the constant C. p in (6.2.7)) depends only on a, ¢
and T, (apart from e and D) and the constant Cp in (6.2.8) only on 7. (apart from D).

The key technical input for the proof of Theorem is the local law for H* (see
Theorem . In Figure below, we illustrate how the empirical spectral measure
of X converges to o for an example with a nontrivial variance profile S. We now state
a simple corollary of the local law for H* on the complete delocalization of the bulk

eigenvectors of X.

Corollary 6.2.7 (Eigenvector delocalization). Let 7, > 0. For all e > 0 and D > 0,

there is a positive constant C. p such that

C'z-:,D

P (|lylloc > n1/2*¢) < 5 (6.2.9)

holds true for alln € N and for all eigenvectorsy € C" of X, normalized as 7 |yi|> = 1,

corresponding to an eigenvalue z € Spec X with |z|* < p(S) — 7. The constant C. p in

(6.2.9) depends only on T, and the model parameters (in addition to € and D).

The proof of Corollary will be given after the statement of Theorem [6.5.2l We
remark that eigenvector delocalization for random matrices with independent entries was

first proven by Rudelson and Vershynin in [124].

6.2.1. Short outline of the proof. We start with the Hermitization trick due to
Girko which expresses I fu.a(2) in terms of an integral of the log-determinant of
X — 21 for any z € C. Furthermore, the log-determinant of X — 21 can be rewritten as

the log-determinant of a Hermitian matrix H~.
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Im z;

Re 2 (B) Variance profile S
(A) Eigenvalue locations
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(¢) Eigenvalue histogram and density of states o

FIGURE 6.1. These figures were obtained by sampling 200 matrices of size
2000 x 2000 with centered complex Gaussian entries and the variance profile
S. Figure (ja|) shows the eigenvalue density for the variance profile S given
in Figure (b)) (We rescaled S such that p(S) = 1). The eigenvalue density is
rotationally invariant and almost all eigenvalues are contained in the disk
of radius 1 around zero. Moreover, the eigenvalue density is considerably
higher around 0. Figure compares the histogram of the eigenvalue with

the density of states o obtained from (/6.2.4)) and ([6.2.5]).

Using the log-transform of the empirical spectral measure of X, we obtain

1 1
n )= o Je 2 ! X —21)|d%2. 2.1
n;fw,a(zz) 27m/(C fua(2)log|det(X — 21)|d%» (6.2.10)
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To express the log-determinant of X — z1 in terms of a Hermitian matrix, we introduce

the 2n x 2n matrix
0 X —z1
H? = (6.2.11)
X*—z1 0
for all z € C. Note that the eigenvalues of H* come in opposite pairs and we denote
them by )\Qn S S /\n+1 S 0 S /\n S S )\1 with /\z = _)\2n+1_i for 1 = ]_,...,2’fl.
We remark that the moduli of these real numbers are the singular values of X — z1. The

Stieltjes transform of its empirical spectral measure is denoted by m?, i.e.,

m*(¢) = ;n é )\(Z;—C (6.2.12)

for ( € C satisfying Im ¢ > 0. It will turn out that on the imaginary axis Imm?*(in) is
very well approximated by (v](n)) = (v5(n)), where 7 = |2]? and (v],v3) is the solution
of (6.2.4). This fact is commonly called a local law for H*. With this notation, we have

the following relation between the determinant of X — 21 and the determinant of H~
1
log|det(X — z1)| = 5 log|det H?|. (6.2.13)

We write the log-determinant in terms of the Stieltjes transform (this formula was used

by Tao and Vu [146] in a similar context)

T
log|det H?| = log|det(H* — iT'1)] — 2n / Im m?(in)dn, (6.2.14)
0

for any 7' > 0. Combining (6.2.5)), (6.2.10)), (6.2.13]) and (6.2.14) as well as subtracting
1/(1 4 n) freely and using integration by parts, we obtain

1zn:1fw,a(zi) - -/(wa’a(Z)O'(Z)dQZ =

n . —

o [ Afuale) ogldet (FE* 71|
T
~ 5 [ sl [ [lmm* o)~ (1500

2w Jc

b [ A [ (0

(6.2.15)

T:|z‘2> } dnd?z
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The task is then to prove that each of the terms on the right-hand side of is
dominated by n~'"2¢||Af||; with very high probability. The parameter 7" will be chosen
to be a large power of n, so that the first and the third term will easily satisfy this bound.
Estimating the second term on the right-hand side of is much more involved and
we focus only on this term in this outline.

We split its dn - integral into two parts. For n < n=1*¢ ¢ € (0,1/2), the integral
is controlled by an estimate on the smallest singular value of X — z1. This is the only
step in our proof which uses Assumption (C), i.e., that the entries of X have bounded
densities in the sense of .

For n > n~'™ we use a local law for H?, i.e., an optimal pointwise estimate (up to

negligible n°-factors) on

) (6.2.16)

uniformly in 7 and z (see Theorem for the precise formulation). Note that a local

Tm m*(in) — (v (n)

law for H* is needed only at spectral parameters on the imaginary axis. This will simplify
the proof of the local law we need in this paper.
The proof of the local law is based on a stability estimate of (6.2.4]). To write these

equations in a more concise form, we introduce the 2n x 2n matrices

0 S St
S, = . S, = . (6.2.17)
St 0 0 S

We remark that S, is denoted by S in Chapter [4] and Chapter 5 Moreover, H in these

chapters agrees with H*=° from (6.2.11]) at z = 0. With the notation from (6.2.17), the
system of equations ((6.2.4]) can be written as

—1
.
i in+ Syiv— ——| =0, 6.2.18

where we introduced v = (v, v9) € R?™.

Let G*(n) = (H* —in1)~', n > 0, be the resolvent of H* at spectral parameter
2n

in. We will prove that its diagonal g(n) = ((e;, G*(n)e;));";, where e; denotes the i-th
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standard basis vector in C??, satisfies a perturbed version of (6.2.18)),

-1
.
g (m 9= Sdg> ( )

with 7 = |z|*> and a small random error term d. As m?*(in) = (g(n)) (cf. (6.2.12))
obtaining a local law, i.e., an optimal pointwise estimate on (6.2.16]), reduces to a stability

problem for the Dyson equation, (6.2.18]).
Computing the difference of (6.2.19)) and (6.2.18]), we obtain

L(g—iv)=r (6.2.20)

for some error vector r = O(||d||) (for the precise definition we refer to (6.3.24) below)
and with the matrix L defined through its action on y € C?" via

2

Ly = 2Sy) — T
y =y +v(Sy) "o T S

(Say)- (6.2.21)

¢ requires a uniform bound on the

Therefore, a bound on g — iv uniformly for n > n=!*
inverse of L down to this local spectral scale.

In fact, the mere invertibility of L even for 7 bounded away from zero is a nontrivial

fact that is not easily seen from (|6.2.21)). In Section we will factorize L into the form
L=V '1-TF)V

for some invertible matrix V and self-adjoint matrices T and F' with the properties
|T|l2 =1 and ||F||2 < 1 —¢n for some ¢ > 0. In particular, this representation shows
the a priori bound ||[L ™|y < Cn~* for some C' > 0. The blow-up in the norm of L™ is

potentially caused by the two extremal eigendirections f, and f_ of F', which satisfy

Ffj: = i||FH2fi-

However, it turns out that the positivity of the solutions vy, vy of (6.2.4) implies that
|Tf |2 is strictly smaller than 1, so that ||(1 — TF)f_|2 > c||f,|2 for some constant
¢ > 0. In this sense the solution of the Dyson equation regularizes the potentially unstable

direction f .
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In contrast, the other instability caused by f_ persists since we will find that (1 —
TF)f_ = O(n). This problem can only be resolved by exploiting an extra cancellation
that originates from the special structure of the random matrix H*. The leading contri-
bution of the random error 7 = O(||d||) from pointing in the unstable direction
happens to vanish with a remaining subleading term of order 7||d||. The extra n-factor
cancels the n~'-divergence of ||L™!||; and allows us to invert the stability operator L
in (6.2.20).

From this analysis, we conclude ||g — iv|| < C||d||. This result allows us to follow
the general arguments developed in [6] for verifying the optimal local law for H*. These

steps are presented only briefly in Section [6.5]

6.3. Dyson equation for the inhomogeneous circular law

As explained in Section [6.2.1] a main ingredient in the proof of Theorem is the
local law for the self-adjoint random matrix H*® with noncentered independent entries
above the diagonal. In [6] such a local law was proven for a large class of self-adjoint
random matrices with noncentered entries and general short range correlations. For any
fixed z € C, the matrix H” satisfies the assumptions made for the class of random
matrices covered in [6] with one crucial exception: H? is not flat (cf. (2.28) in [6]), i.e.,

for any constant ¢ > 0, the inequality
1
gE|<a7(H—EH)b>I2 > c|lalf3]bll3, (6.3.1)

is not satisfied for H = H* and vectors a, b that both have support either in {1,... ,n}
or {n+1,...,2n}. Nevertheless we will show that the conclusion from Theorem 2.9 of [6]
remains true for spectral parameters in on the imaginary axis, namely that the resolvent
G?(n) := (H? — inl)~" approaches the solution M?(n) of the Matriz Dyson Equation
(MDE)

—~M*(n)"! = inl — A* + S[M*(n)], n>0, (6.3.2)

as n — oo. In fact, the solution of (6.3.2)) is unique under the constraint that the
imaginary part Im M := (M — M*)/(2i) is positive definite [96]. The data A* € C*"*2"
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and S: C*2" — C?"2" determining (6.3.2)) are given in terms of the first and second

moments of the entries of H?,

0 —z diag(Sws) 0
A* = EH* = . SW] = . (6.3.3)
-z 0 0 diag(S*wy)

for an arbitrary 2n x 2n matrix

" Wi Wia " "
W = ()], = ; wy = (wi)iy wy = (wii)i%y - (6.3.4)
W21 W22

In the following, we will not keep the z-dependence in our notation and just write M,
A and G instead of M*, A* and G*. A simple calculation (cf. the proof of Lemmam
in Section [6.6| below) shows that M : R, — C?*"*?" is given by

M () idiag (v](n)) —zdiag(uf(n))’ (6.3.5)

—zdiag (u7(n))  idiag (v3(n))
where z € C, 7 = |2]?, (v],v]) is the solution of (6.2.4) and u™ := v]/(n + S™w]). In this
section we will therefore analyze the solution and the stability of (6.2.4)).

6.3.1. Analysis of the Dyson equation ([6.2.4)). Combining the equations in (6.2.4)),
recalling v = (v, v) and the definitions of S, and Sy in (6.2.17)), we obtain

1
; =n-+ SO’U + (636)

n+ Sqv
for n > 0 and 7 € R{, where v: Ry — R?". This equation is equivalent to . The
T-dependence of v, v; and vy will mostly be suppressed but sometimes we view v = v"(n)
as a function of both parameters.

Equation has an obvious scaling invariance when S is rescaled to A\S for A > 0.
If v7(n) is the positive solution of (6.3.6), then v} (n) == A~"/20™ " (nA=1/2) is the positive

solution of
-

1
L ASs (6.3.7)

U n—i—)\de,\'

Therefore, without loss of generality, we may assume that the spectral radius of S is one,

p(S) =1,
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in the remainder of the paper.

The following proposition, the first main result of this section, collects some basic
estimates on the solution v of . For the whole section, we fix 7, > 0 and 7" > 7, +1
and except for Proposition , we exclude the small interval [1 — 7,1 + 7] from our
analysis of v™. Because of the definition of ¢ in (6.2.5) — recall 7 = |2|? in the definition
— we will talk about inside and outside regimes for 7 € [0,1 — 7] and 7 € [1 + 7., 7],
respectively.

Recalling s, and s* from we make the following convention in order to suppress

irrelevant constants from the notation.

Convention 6.3.1. For nonnegative scalars or vectors f and g, we will use the notation
f < g if there is a constant ¢ > 0, depending only on T., 7%, s, and s* such that f < cg
and f ~ g if f < g and f 2 g both hold true. If f,g and h are scalars or vectors and
h >0 such that |f — g| < h, then we write f = g+ O(h). Moreover, we define

P i={r, 7" 85"}

because many constants in the following will depend only on P.

Proposition 6.3.2. The solution v™ of satisfies
(v1(n)) = (v3(n))- (6.3.8)
for alln >0 and 7 € Ry as well as the following estimates:
(i) (Large n) Uniformly for n > 1 and 7 € [0,7*], we have
v (n) ~n (6.3.9)
(i1) (Inside regime) Uniformly for n <1 and 7 € [0, 1], we have
v (n) ~ 034+ (1 —1)V2 (6.3.10)

(7ii) (Outside regime) Uniformly for n <1 and 7 € [1,7*], we have

U

7—_17—’_?72/3. (6.3.11)

v'(n) ~
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PROOF OF PROPOSITION [6.3.2] We start with proving (6.3.8]). By multiplying (/6.2.4al)
by (n+ S'v;) and ([6.2.4b]) by (1 + Svs) and realizing that both right-hand sides agree,

we obtain
U1 V2

= . 6.3.12
n—+ Stvl n+ S'UQ ( )

From (6.3.12]), we also get
0 = n(vy — va) + v1Svy — V5.

We take the average on both sides, use (v1Sv2) = (v1,Svy) = (v2S'w1) and divide by
n > 0 to infer (6.3.8)).
From ((6.2.1]), we immediately deduce the following auxiliary bounds

(v1) < Sy S {vy),  (v2) < Svg < (v). (6.3.13)

We start with establishing v ~ (v). Since the entries of S are strictly positive and

p(S) =1 there is a unique vector p € R"} which has strictly positive entries such that
Sp=p, =1 p~1 (6.3.14)

by the Perron-Frobenius Theorem and (6.2.1)). We multiply (6.2.4a) by v as well as
n + Sty and obtain 1 + S*v; = vi(n 4+ Sve)(n 4+ S*vy) + Tv1. Taking the scalar product
with p and using (p) = 1 and p(S) = 1 yield

0+ (por) = (poi(n + S'01)(n + Sve)) + 7(pv2)- (6.3.15)

Therefore, (6.3.13), (v1) = (v9) = (v) by (6.3.8)) and (6.3.14)) imply

0+ (V) ~ [0+ () + 7] (v). (6.3.16)

We use ([6.3.13]) in (6.2.4a]) and (6.2.4b)) to conclude

v~ ! b O (6.3.17)

W)+ O

where we applied (6.3.16)) in the last step. Hence, it suffices to prove all estimates (6.3.9)),
(6.3.10) and (6.3.11)) for v replaced by (v) only.
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We start with an auxiliary upper bound on (v). By multiplying (6.3.6) with v, we
get 1 = nu+vS,v+7v/(n+ Sqv) > vS,v. Hence, 1 > (v1Sv3) 2 (v1)(ve) = (v)?, where
we used ((6.3.13)) in the second step and ([6.3.8) in the last step.

Next, we show (6.3.9). Clearly, (6.3.6) implies v < n~!. Moreover, as 7 < 7* and
n>12 (v) we find n < n*(v) from (6.3.16)). This gives the lower bound on v in ([6.3.9)

when combined with (6.3.17)).
We note that (6.3.16) immediately implies (v) 2 n for n < 1. Now, we show ([6.3.10)).

For 7 € [0, 1], we bring the term 7(pv;) to the left-hand side in (6.3.15)) and use vy ~
vy ~ (v) and (6.3.13)) as well as (v) 2 n to obtain

N+ (1—7){v) ~ (v)°. (6.3.18)

From (/6.3.18]), it is an elementary exercise to conclude ([6.3.10)) for n < 1.
Similarly, for 1 < 7 < 7%, we bring (pv;) to the right-hand side of (6.3.15)), use (v) = n

for n <1 and conclude

N~ {(v)+ (1 —1){v). (6.3.19)

As before it is easy to conclude (6.3.11]) from (6.3.19). We leave this to the reader. This
completes the proof of Proposition [6.3.2] O

Our next goal is a stability result for (6.3.6]) in the regime 7 € [0,1 — .| U [1 + 7, 7¥].
In the following proposition, the second main result of this section, we prove that iv(n)
well approximates g(n) for all n > 0 if g satisfies (6.2.19) and as long as d is small.

However, we will need an additional assumption on g = (g, g2), namely that (g;) = (g2)

(see (6.3.20) below). Note that this is imposed on the solution g of (6.2.19) and not
directly on the perturbation d. Nevertheless, in our applications, the constraint (6.3.20))

will be automatically satisfied owing to the specific block structure of the matrix H~

from (6.2.11]).

Proposition 6.3.3 (Stability). Suppose that some functions d: R, — C?>" and g =

(g1, 92): Ry — H?" satisfy (6.2.19) and

(g1(n)) = (92(n)) (6.3.20)
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for alln > 0. There is a number A\, 2 1, depending only on P, such that

lg(n) = i)l - 1(llg(n) = iv () < A.) S lld(w)]| (6.3.21)

uniformly forn >0 and 7 € [0,1 — 7] U [1 + 7, 7¥].
Moreover, there is a matriz-valued function R: R, — C***" depending only on T

<1, such that

~Y

and S and satisfying || R(1)||

[y, g(n) —iv(m)]-1([lg(n) —iv ()]l < A) S Yllclldm)|% + [(R(M)y, d(n))| (6.3.22)

uniformly for ally € C*", n >0 and 7 € [0,1 — 7] U [1 + 7, T7].

The proof of this result is based on deriving a quadratic equation for the difference

h := g — iv and establishing a quantitative estimate on h in terms of the perturbation

d. Computing the difference of ([6.2.19)) and (6.2.18]), we obtain an equation for g — iv.

A straightforward calculation yields

Lh=r, forh=g-—iv, (6.3.23)

where we used L defined in (6.2.21)) and introduced the vector r through

d—g
=d+iv(h—d)S,h — ——— +u| Syh. 6.3.24
r iv( ) TU [”7 5.9 u} d ( )
The vector w in (6.3.24)) is defined through
ke vz w=(uu) = — (6.3.25)

u = = , -
n+Stvy  n+ Svy n+ Sqv

which is consistent by ((6.3.12)).
Notice that all terms on the right-hand side of (|6.3.24)) are either second order in h

or they are of order d, so (6.3.23) is the linearization of (|6.2.19)) around (6.2.18)).
In the following estimates, we need a bound on u as well. Indeed, Proposition [6.3.2

yields
v 1

:n+deN1+n2

U (6.3.26)

uniformly for n > 0 and 7 € [0, 7*].
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To shorten the upcoming relations, we introduce the vector
V= <U27 Ul)

and the matrices T, F' and V defined by their action on a vector y = (y1,92), 1, y2 € C"

as follows

1 [ —vivey; + Tu?
Ty — - [ TR (6.3.27)

Tu? Y1 — V102Y2

Fy _\/>s (\/> ) (6.3.27h)

Vy =y (6.3.27c)
uv

All these matrices are functions of n and 7. They provide a crucial factorization of the

stability operator L; indeed, a simple calculation shows that
L=V '1-TF)V. (6.3.28)

This factorization reveals many properties of L which are difficult to observe directly.
Owing to , the stability analysis of requires a control on the invertibility
of the matrix L. The matrices V and V! are harmless. A good understanding of the
spectral decompositions of the simpler matrices F' and T will then yield that L has only
one direction, in which its inverse is not bounded. We remark that the factorization
is the diagonal part of the one used in the stability analysis of the matrix Dyson
equation in [6].

Because of , we can study the stability of
(1-TF)(Vh)=Vr (6.3.29)
instead of . From Proposition and , we conclude that
VIV e S (6.3.30)

uniformly for all n > 0 and 7 € [0,1 — 7.] U [1 + 7., 7*]. Hence, it suffices to control the
invertibility of 1 — T'F'.
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For later usage, we derive two relations for w. From ([6.3.25)), recalling v = (vg, v1),

we immediately get

2=+ Sw. (6.3.31)
u

We multiply (6.3.6)) by vu and use ([6.3.31]) to obtain

u=vo+Tud, 1= % +ru. (6.3.32)

The next lemma collects some properties of F'. For this formulation, we introduce
e =(1,-1)eC™

Lemma 6.3.4 (Spectral properties of F'). The eigenspace of F corresponding to its
largest eigenvalue || F||2 is one dimensional. It is spanned by a unique positive normalized

eigenvector f ., i.e., Ff, = |F|2f, and | f, |2 = 1. For everyn > 0, the norm of F

<f+\/v/(77+Sov)>
Fl,=1- ) 6.3.33
IF n<f+\/v(?7+50v)> ( )

is given by

Defining f_ = f,e_, we have
Ff =—|F|2f_. (6.3.34)

(i) (Inside regime) The following estimates hold true uniformly for T € [0,1 — 7,].
We have
1~ |[F|ls ~ 1. (6.3.35)

uniformly for n € (0,1]. Furthermore, uniformly for n > 1, we have
1—||Fls~ 1. (6.3.36)
Moreover, uniformly for n € (0,1], f, satisfies
Fin~1 (6.3.37)
and there is € ~ 1 such that

[Fxllz < (1 —¢)fz|: (6.3.38)
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for all x € C*™ satisfyingx L f, andx L f_.
(it) (Outside regime) Uniformly for allm >0 and T € [1 + 7., 7], we have

1—||F|ls~ 1. (6.3.39)

PRrROOF. The statements about the eigenspace corresponding to || F'||; and f follow

from Lemma in Chapter [4
For the proof of (6.3.33)), we multiply (6.3.6)) by v and take the scalar product of the

resulting relation with f \/m . Using that
(1 o5~ (1 ) (1)
= <\/zFf+ ; U> = ||F\|2<f+ : ﬁ>,

11 (7Y = (£ 1) {12 ),

We conclude ((6.3.33)) from applying (6.3.32) and (6.3.31]) to the last relation.
Since F' from ((6.3.27b)) has the form

0 F
F = :
Ft 0

for some F' € C"*" we have F(e_y) = —e_(Fy) for all y € C**. Thus, we get (6.3.34)
from Ff, = |F|2f,.

this yields

In the regime 7 € [0,1 — 7] and 7 € (0, 1], we have uniform lower and upper bounds
on v from Proposition [6.3.2] Therefore, the estimates in (6.3.37) and (6.3.38) follow from
Lemma in Chapter 4l Combining (6.3.37), (6.3.33) and Proposition yields
. In the large 7 regime, i.e., for n > 1, since v ~ n~! by Proposition we

obtain

v
P n7% v+ Sw) ~ L (6.3.40)
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Hence, as f > 0 we conclude

(Ffo/+S0) (F1 1 6.3.41)

<f+1/v(77+50'v)> (foom
uniformly for all > 1. This shows that (6.3.36]) holds true for alln > 1 and 7 € [0, 1 —7,].
We now turn to the proof of (ii). If 7 € [1 + 7., 7*], then v ~ 1 by (6.3.11)) for n < 1

and therefore

v
77+S'UN1’ v(n + S,v) ~nt

As f. >0, we thus have

el ) gy 63
(Foyfotn s 00 )

For n > 1, we argue as in (6.3.40)) and (6.3.41]) and arrive at the same conclusion (6.3.42]).

Thus, because of (6.3.33)) the estimate (6.3.39) holds true for all n > 0 and 7 € [1 +
Tie, TF]. O

Next, we give an approximation for the eigenvector f_ belonging to the isolated
single eigenvalue —||F'||s of F' by constructing an approximate eigenvector. For n < 1

and 7 € [0,1 — 7,], we define

e_ (Vo)
a=""Y (6.3.43)
IVl
which is normalized as ||e_(Vv)||2 = ||V v||2. We compute
F(Vv)= ,/ENU (S,v) = ,/% (1—nv—7Tu)
(6.3.44)

VU v
VU u

=1\/— —nvy/—= = |[F[2Vv+O(n).
u VU

Here, we used vS,v = —nv+wvv/u by (6.3.31]). For estimating the O(n) term we applied
(6.3.10)), (6.3.26) and (6.3.35)) since 7 € [0,1 — 7] and n < 1. Using the block structure

of F' as in the proof of (6.3.34), we obtain

F(e_(Vv)) = —||F|se_(Vv) + O(n). (6.3.45)

The following lemma states that a approximates the nondegenerate eigenvector f_.
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Lemma 6.3.5. The eigenvector f_ can be approximated by a in the {*°-norm, i.e.,

If- —allc = O) (6.3.46)
uniformly forn <1 and 7 € [0,1 — 7.].

Lemma [6.3.5] is proven at the end of Section below. In the following lemma, we

show some properties of T'.
Lemma 6.3.6 (Spectral properties of T'). The symmetric operator T, defined in (6.3.274)),
satisfies

(i) | T[]z =1, [T = 1.

(ii) The spectrum of T is given by

(’U'INJ)Z

Spec(T') = {—1} U {Tui —

izl,...,n}.

(7ii) For alln > 0, we have T (1 = 0) = —1 and if T > 0, then the eigenspace of T

%

corresponding to the eigenvalue —1 is n-fold degenerate and given by
Eig(—1,T) = {(y,—y)ly € C"}. (6.3.47)

(iv) The spectrum of T is strictly away from one, i.e., there is € > 0, depending only
on P, such that
Spec(T) C [-1,1 — €] (6.3.48)

uniformly for T € [0,1 — 7] and n € (0,1].
ProOF. The second relation in (6.3.32)) implies ||T|| = 1 and T'(r = 0) = —1.

Moreover, it yields that all vectors of the form (y,—y) for y € C™ are contained in
Eig(—1,T). We define the vector y) € C** by y\) := (6, + 8 j+n)?", and observe that
Tyl — (n:,j _ (U’E)J) Y0

U;

for j =1,...,n. Counting dimensions implies that we have found all eigenvalues, hence
(ii) follows. For 7 > 0, we have Tu; — (vv);/u; = 27u; —1 > —1 by and u; > 0
for all j = 1,...,n. This yields the missing inclusion in . Since T is a symmetric
operator, || T||> = 1 follows from (ii) and |t — vo/u| < 1 by (6.3.32).
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For the proof of (iv), we remark that there is € > 0, depending only on P, such that
200/u > e forallp € (0,1] and 7 € [0,1 — 7] by (6.3.10) and (6.3.26)). Thus,

R L CAP R
u u

by (6.3.32)). This concludes the proof of the lemma. O

Now we are ready to give a proof of Proposition based on inverting 1 — T'F'.

PROOF OF PROPOSITION [6.3.3l. We recall that h = g — iv. Throughout the proof
we will omit arguments, but we keep in mind that g, d, h and v depend on 1 and 7. The
proof will be given in three steps.

The first step is to control |7/ from in terms of ||h||%, and ||d|w, i.e., to
show

Illc1([[Rlle < 1) S A5 + lldllo- (6.3.49)

Inverting V' (1 — TF)V in (6.3.29), controlling the norm of the inverse and choosing
A« < 1 small enough, we will conclude Proposition[6.3.3|from (6.3.49). For any n. € (0, 1],
depending only on P, this argument will be done in the second step for 7 € [0,1 — 7] U
1+ 7, 7" and n > 7, as well as for 7 € [1 + 7, 7*] and n € (0,7.]. In the third step, we
consider the most interesting regime 7 € [0, 1 — 7.] and n < 7, for a sufficiently small 7.,
depending on P only. In this regime, we will use an extra cancellation for the contribution

of r in the unstable direction of L.
Step 1: Forallp>0and 7€ (0,1 — 7] U[Ll+ 7,77, (6.3.49) holds true.
From (6.2.19)), we obtain

g—d
Ti
in+ Sqg9

We start from ((6.3.24]), use the previous relation, 7u = 1 + iv(in + S,iv) by (6.3.6) and
v = (vg,v1) = u(n + S,v) by (6.3.32) and get

r=d+iv(h —d)S,h — uliv(in + S,iv) — (g — d)(in + S,g)] Sih

1+ (in+ S,.9)(g — d).

=d +iv(h — d)S,h +u[h(in + S,iv) + gS,h] Ssh — du(in + S,g)Ssh  (6.3.50)

= ivhS,h + ivhS ;h + ugS,hS;h + d — ivdS,h — du(in + S,g)S.h.
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Notice that the first three terms are quadratic in h (the linear terms dropped out), while
the last three terms are controlled by d. Now, we show that all other factors are bounded
and hence irrelevant whenever ||g—iv||, < A, forn > 0and 7 € [0,1 -7, JU[1+ 7., 7*]. In

this case, we conclude ||g|s < 1 uniformly for all » > 0 and 7 € [0, 1 —7,|U[1 + 7., 7¥] by

(6.3.9) and (6.3.10) from Proposition m Therefore, starting from (6.3.50)) and using
|v||ooc <1 by (6.3.9) and (6.3.10]), and [|u||« <1 by (6.3.26]), we obtain (6.3.49)).

Step 2: For any n, € (0, 1], there exists A\, = 1, depending only on P and 1,
such that holds true for n > n, and 7 € [0,1 — 7] U [1 + 7, 77
as well as for n € (0,7, and 7 € [1 + 7, 7%].
Moreover, with this choice of A,, holds true in these (n,7) pa-

rameter regimes as well.

Within Step 2, we redefine the comparison relation to depend both on P and 7,. Later in
Step 3 we will choose an appropriate 7, depending only on P, so eventually the comparison
relations for our choice will depend only on P.

We are now working in the regime, where n > n, and 7 € [0, 1 —7,]U[1 47, 7] or n €
(0,7.] and 7 € [1 4+ 7., 7*]. In this case, to prove (6.3.21]), we invert L = V(1 — TF)V
(cf. (6-2:21)) in Lh = 7, bound ||L™'||s < 1, which is proven below, and conclude

1Rl 1Rl < 1) S IR + lldlls

from (6.3.49) for n > n, and 7 € [0,1 — 7] U [1 4+ 7, 7*] as well as for n € (0,7,] and
7 € (0,1 — 7,]. This means that there are ¥y, Uy ~ 1 such that

[Rllcc1([[hllo < 1) < W lR[12, + Us||d] o
Choosing A, := min{1, (2¥;)"'} this yields
[Rllc1([[Rlloe < M) < 2Ws]|d]| o

Thus, we are left with controlling ||L ™|, i.e., proving || L™ < 1.
In the regime n > n, and 7 € [0,1 — 7] U [1 + 7, 7*], we have v ~ 1/n by Propo-

sition and u ~ 1/n% by (6.3.26). Hence, V. ~ 5 and V™' ~ 1/5. Therefore,
VIslV e S 1 and due to [L7 o S IV ol (T = TF) ™oV, it suffices

~
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to show ||(1 — TF) || < 1. Basic facts on the operator 1 — TF are collected in
Lemma in Section below. In particular, because of , the £*° bound follows
from ||(1 —TF)~'||]s < 1. Using (6.3.35), (6.3.36) and (6.3.39), we get that 1 — || F|l, ~ 1
forallm >mn,and 7 € [0,1 —7,|U [l + 7, 7*]. Hence, 1 — ||T'F||; ~ 1 by Lemma (i),
so the bound ||(1 — TF)™ || < 1 immediately follows. This proves for n > n.
and 7 € [0,1 — 1, JU[1+ 7, 7]

For n < n, and 7 € [1 + 7., 7%], we have v ~ 7 by (6.3.11)), w ~ 1 by (6.3.2).
Thus, V. ~ 1, V7! ~ 1as well as [|[V|o||[V ' leoe < 1. As above it is enough to show
(1 —=TF)7, < 1. By Lemmal6.3.6) (i) and (6.3.39), 1 — |T'F||2 ~ 1 which again leads
to ||[(1 — TF)™ || < 1. We conclude forn <n.and 7 € [1 + 7, 7%].

Next, we verify in these two regimes. Using h-1(]|h]w < i) = O(||d]|«) by

(6.3.21)), v < 1 and u < 1, we see that with the exception of d, all terms in (/6.3.50]) are

second order in d. Therefore,
- 1(|[hlle <A = d-1(]|h]lw < \) + O (|1d]%) (6.3.51)

uniformly for n > n, and 7 € [0,1 — 7] U [1 + 7., 7"] as well as for n € (0,7.] and
TE [+ 7,7

We start from Lh = r and compute

(y.h) = (L )y, r)=(L )y d)+ (L )y,r—d) =(Ry,d)+{(L")y,r—d).

(6.3.52)
Here, we defined the operator R = R(n) on C*" in the last step through its action on
any « € C?" via

Rz — (L—l)* =V '(1-FT)'Vaz. (6.3.53)

Now, we establish that ||[(L™")*||« < 1 in the two regimes considered in Step 2. From
this, we conclude that ||R||. < 1 and that the last term in (6.3.52)) when multiplied
by 1(||h|lw < A.) is bounded by < |lylwlld||% because of (6.3.51). By Lemma [6.3.6]
(i), (6.3.35)), (6.3.36) and we have 1 — ||FT||s ~ 1. Thus, ||(1 — FT) s <1
and hence ||(1 — FT) [ < 1 by Lemma [6.7.1] (ii). As [V]e||V e S 1 we get
I(L")*||oo < 1. Therefore, we conclude that holds true uniformly for n > 7, and
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7€[0,1 =7]U[l+ 7,7 as well as for n € (0,n,] and 7 € [1 + 7,,7*]. Thus, we have
proven the proposition for these combinations of 7 and 7.
Finally, we prove the proposition in the most interesting regime, 7 € [0,1 — 7] and
for small #:
Step 3: There exists 7, > 0, depending only on P, and A, 2 1 such that
holds true for n € (0,7,] and 7 € [0,1 — 7.]. Moreover, with this choice

of Ay, (6.3.22)) holds true for n € (0,7,] and 7 € [0,1 — 7.].
The crucial step for proving (6.3.21)) and (6.3.22) was the order one bound on |[|(1 —

TF)~!|2. However, in the regime 7 € [0, 1 — 7.] and small n such bound is not available

since (1 —TF)f_ = O(n) which can be deduced from ([6.3.62)) below. The simple bound
11 =TF) 2 <" (6.3.54)

which is a consequence of and ||T||; = 1 is not strong enough. In order to
control [[(1 — TF)"'Vr|l; we will need to use a special property of the vector Vr,
namely that it is almost orthogonal to f . This mechanism is formulated in the following
Contraction-Inversion Lemma which is proven in Section below. It is closely related
to the Rotation-Inversion lemmas — Lemma 5.8 in [5] and Lemma in Chapter
— which control the invertibility of 1 — UF, where U is a unitary operator and F' is

symmetric.

Lemma 6.3.7 (Contraction-Inversion Lemma). Let ,1,¢1,¢0,c3 > 0 satisfying n <

ec1/(2¢2) and A, B € C* 2" be two Hermitian matrices such that
[Al: <1, |IBl2<1—an (6.3.55)
Suppose that there are (*-normalized vectors by € C?™ satisfying
Bb, = | Bll2by, Bb_=—[|Bl2b_, |[Bz|<(1-¢)lz|. (6.3.56)

for all x € C* such that 1 span{b,,b_}.

Furthermore, assume that

(by,Ab,) <1—2, [|(1+Ab_|]» < con. (6.3.57)
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Then there is a constant C' > 0, depending only on cy,co,c3 and e, such that for each
p € C? satisfying
[(b—, p)| < canllpllz, (6.3.58)

it holds true that
(1 — AB) 'pll < C|Ipll2- (6.3.59)

We will apply this lemma with the choices A =T, B = F, by = f, andp = Vr. The
resulting bound on ||(1 — TF)~'Vr|, will be lifted to a bound on ||(1 — TF) V7|,
by . All estimates in the remainder of this proof will hold true uniformly for
7 € 0,1 — 7. However, we will not stress this fact for each estimate. Moreover, the
estimates will be uniform for n € (0,7,]. The threshold 7, < 1 will be chosen later such
that it depends on P only and the assumptions of Lemma [6.3.7] are fulfilled. We now
start checking the assumptions of Lemma [6.3.7]

By Proposition there is ®; ~ 1 such that

Pl <v <P (6.3.60)

for all n € (0,1]. We recall from ([6.3.35) that there is a constant ¢; ~ 1 such that
|Flla <1—¢yn for all n € (0,1]. Recalling the definition of @ from (§6.3.43]), we conclude
from (|6.3.46f) the existence of &5 ~ 1 such that

If-—all: < [If- —alle < P (6.3.61)

for all n € (0, 1]. Here, we used that ||y||2 < ||y« for all y € C*" due to the normalization
of the ¢ norm.

Since the first and the second n-component of the vector Vv are the same we have

Ta = —a by (6.3.43) and Lemma [6.3.6] (iii). Hence,

If-+TF 2 < £ —alls+ [Tl - — alls < 202 (6.3.62)

by ||T||s = 1 and (6.3.61)).
Due to (6.3.38)), there exists € ~ 1 such that

[Falls < (1 —¢)ll],
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for all € C*" such that # L f, and L f_ and for all € (0,1]. As T is Hermitian
we can also assume by (|6.3.48]) that

<f+an+>§1_5

for all n € (0, 1] by possibly reducing e but keeping ¢ 2 1.
So far we checked the conditions ([6.3.55))—(6.3.57)), it remains to verify (6.3.58) with
the choice p = Vr. Assuming that (a,Vr) = 0, we deduce from (6.3.61)) that

(o Vr) <la,Vr)|+If- —allVr]s < Panl|Vrl,. (6.3.63)

This is the estimate required in ([6.3.58)). Hence, it suffices to show that Vr is perpen-

dicular to a, i.e.,

v
_(Vv),Vr)=(e_(V?v),Lh)=(L"[e_=|,h)=0 6.3.64
fe- (Vo) Vr) = (e (Vo) zm) = (£ (e 2) m) =0, (0300
where we used the symmetry of V| that V is diagonal and ([6.3.23]) in the first equality,

and the notation © = (vg, v1).

We compute

L* (ev> —e 24 S, <v2ev> — 78} <u260>
u u u u

_ U+Svg—5(vg(%+7u)) e

—n — Stv; + St (vl (% + Tu))

(6.3.65)

Here, we used ((6.3.31)) in the second step and the m-component relations of the second

identity in (6.3.32)) in the last step. Since (e_g) = (e_v) = 0 by (6.3.20) and (6.3.§)),
respectively, this proves ([6.3.64) and therefore (6.3.63)) as well. Thus, we checked all

conditions of Lemma [6.3.7]

By possibly reducing 7, but keeping 1, = 1, we can assume that 7, < ec;/(8P3).

~Y

Now, we can apply Lemma with g, ¢1, ¢ = 2Py, c3 = Oy for any n € (0,7,]. Thus,
applying (6.3.59) in Lemma [6.3.7 to (6.3.29), we obtain |[Vh|s < [|[Vr|2 and hence

~Y

IVh|w < |VP|e because of (6.7.9). Therefore, for any A, > 0, depending only on P,
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we have
1Plloc1([|Plle < A) STV ol Vrllsol([[Bllso < A) S RIZ + lld|s

uniformly for n € (0,7,] and 7 € [0,1 — 7.]. Here, we used (6.3.30) and (6.3.49) in the
second step. Choosing A, > 0 small enough as before, we conclude ((6.3.21]) for n € (0, 7,]

and 7 € [0,1 — 7.]. Since 7, > 0 depends only on P, and 7, was arbitrary in the proof of
Step 2 we proved (6.3.21)) for all p > 0 and 7 € [0,1 — 7] U [1 + 7, 7]
In order to prove (6.3.22)), we remark that because of (6.3.21]) and (6.3.50)) the estimate

(6.3.51)) holds true for n € (0,7.] and 7 € [0,1—7,] as well. Due to the instability (6.3.54)
of (1 — TF)™! and, correspondingly, of its adjoint, the definition of R in (6.3.53)) will

not yield an operator satisfying ||R||oc < 1 in this regime. Therefore, we again employ
that the inverse of 1 — T'F' is bounded on the subspace orthogonal to f_ and the blow-
up in the direction of f_ is compensated by the smallness of (f_, Vr) following from
(@,Vr)=0and |f_ - al. = O(n) by (6.346).

Let Q be the orthogonal projection onto the subspace f*, i.e., Qx == x — (f_,x)f_
for all & € C?*. Recalling the definition of a in , we now define the operator
R = R(n) on C*" as follows:

Re:=V (1-TF)'Q) V'a— (V1 -TF)'f_ «)V(f —a) (63.66)

for every & € C?". Note that this R is different from the one given in that is used
in the other parameter regimes. Now, we estimate | Rx||~. For the first term, we use the
bound whose assumptions we check first. The first condition, ||(1—TF)~'Q||> <
1,in follows from ([6.3.59)) as (6.3.58) with p = Q is trivially satisfied and hence

|(1-TF)'Qz|> < ||Qx||2 < ||z|2. The second condition in (6.7.10)) is met by ([6.3.35))
and the third condition is exactly (6.3.62). Using || f_||c < 1 from (6.3.37)), (6.7.11]) and

~Y

(6.3.30)), we conclude that the first term in (6.3.66) is < ||z|l. In the second term, we

use the trivial bound

ja-TF)7| <! (6.3.67)

which is a consequence of the corresponding bound on ||(1—T'F)~!||5 in ((6.3.54) and (6.7.9).
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The potential blow-up in ([6.3.67)) for small 7 is compensated by the estimate || f_—a||oo =
O(n) from (6.3.46). Altogether this yields |[R(n)||s < 1 for all n € (0, 7).
From the definition of R, we obtain
(y,h)=(y, V(1 -TF)"'Vr)
=(V'y, (1-TF)'QV(r—d)) (6.3.68)
Y. VA -TF)'f )(f —a. V(—d)+(Ry.d).

Notice that we first inserted 1 = Q + | f_)(f_| before V'r, then we inserted the vector a
in the second term for free by using (a, Vr) = 0 from . This brought in the factor
f_ —a ~ O(n) that compensates the (1 — T'F)~! on the unstable subspace parallel to
f_. Finally, we subtracted the term d to r freely and we defined the operator R exactly
to compensate for it. The reason for this counter term d is the formula showing
that » —d is one order better in d than r. Thus, the first two terms in the right-hand side
of are bounded by ||d||%||y|l. The compensating term, (Ry,d) remains first
order in d but only in weak sense, tested against the vector Ry, and not in norm sense.
This is the essential improvement of over . Recalling now h = g — iv,
the identity together with the bounds we just explained concludes the proof of

Proposition [6.3.3] O

6.4. Proof of Proposition [6.2.5

As in the previous section, we assume without loss of generality that p(S) = 1. See

the remark about (6.3.7)).

For 7, > 0 and 7" > 7, + 1, we define
D.={z€C | |z<1-7}, Ds={2z€C | 1+7<|]2z*<7T} (6.4.1)

Via 7 = |z|?, the sets D. and Ds correspond to the regimes [0,1 — 7.] and [1 + 7, 7*],

respectively, which are used in the previous section.

PROOF OF PROPOSITION [6.2.5] Since the defining equations in (6.2.4)) are smooth

functions of n, 7 and (v;);=1..._ 2, and the operator L is invertible for n > 0 the implicit

.....
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function theorem implies that the function v: Ry x Rf — R?" is smooth. Therefore, the
function Ry x C — R%", (n,2) — v7(n)],— .2 is also smooth.

For @ = (a1, az) € N?| we define
0% = 00 v.
For fixed 7, > 0 and 7* > 7, + 1, we first prove that for all & € N?, we have
|0V <1 (6.4.2)

uniformly for all p > 0 and 7 € [0,1 — 7] U [1 + 7, 7%].
Differentiating (6.2.4)) with respect to n and 7, respectively, yields

L(0,v) = —v* +1u’, L(0,v) = —uw. (6.4.3)

By further differentiating with respect to n and 7, we iteratively obtain that for any
multi-index o € N2

Lo“v =r,, (6.4.4)

where 7, only depends on 7, 7 and 9°v for 8 € N2, |3| = B, + 2 < |a|. In fact, for all

a € N2, we have

Lt v) = 0% (o +Tu?) = Y “1@r) (97 +er0), (6.4.5a)

v<a,v#(0,0) \ V

L@ ) =0 (—vu) — Y || @L) (07 ). (6.4.5b)

Vgavl/?é((lo) v
As an example, we compute

27u? 27u3
T4 0,v840.v — T

Lo*v = —2u0,v + 2u?S40,v — 2v0,v8,0,v + (de)2

v
2ru?

(Sa0:v)?, (6.4.6)

— 12] (8,v)* + 2u?S 40,0 —

where we used the second relation in ((6.4.3)) in the second step.

< 1 simultaneously.

~Y

By induction on |a] = a; + ag, we prove ||[7,]|e S 1 and ||0%v]|

From (6.4.5)), we conclude that 7., and 7,4, are bounded in ¢*-norm if ||0" v/, <1

Y
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for all v < « as the first term on the right-hand side of ((6.4.5al) and ((6.4.5b]), respectively,

and 0YL for all v < a are bounded. In order to conclude that 9°T'v and 0**¢2v are
bounded it suffices to prove that [|0°v||s < ||7alls by controlling L~ in (6.4.4)).

As in the proof of Proposition m the norm of L™ is bounded, ||L™!|» < 1, for
T € [147, 7" or 7 € [0,1—7,] and large n as well as 7 € [0, 1 — 7] and small 5 separately.
We thus focus on the most interesting regime where 7 € [0,1 — 7,] and small . As for
the proof of Proposition [6.3.3] we apply Lemma [6.3.7] in this regime. We only check the
condition here since the others are established in the same way as in the proof of
Proposition [6.3.3] Recall the definition of @ in (6.3.43). Using (e_9°v) = 0 from ([.3.8)

for all @ € N2, we obtain
(a,Vr,) = <L*(e_V2'v) : 60"0> = (ne_,0%) =0

for all o € N2. Here, we used L*(e_V?v) = ne_ which is shown in (6.3.65) in the proof
of Proposition [6.3.3] This concludes the proof of (6.4.2).

Next, we show the integrability of A (v]|.—.j2) as a function of  for z € D. for fixed

7. > 0. Note that (v]) = (v") by (6.3.8). Using
Az (UT|T:‘Z|2> =4 (7'872_’07- + 8—,—1)7-) |T=|z\2

together with (6.4.3) and (6.4.6]), we obtain

272U’

v

LA, (vT|T:‘Z|2) =4 (2; (8T'v)2 + 27u%S,0,v — (.S'd@T'U)2 — uv) ) (6.4.7)

From (6.3.9)), (6.3.10]) and (6.3.26)), we conclude that uv ~ (1 +n3)~! and hence |0,v| <
(1 + n3)~! uniformly for z € D. since [|0°v]|oc < ||Pallo- Therefore, the right-hand

side of (6.4.7) is of order (1 + n3)~! for » € D. and hence using the control on L™*
as before, we conclude that |A, (’UT|T:|Z‘2>‘ < (1 + n*)~! uniformly for n > 0. Thus,

AL (V] |7=22) = AL (V7 |-=.12) as a function of 7 is integrable on R, and the integral is a
continuous function of z € D_.. As 7, > 0 was arbitrary, this concludes the proof of part
(i) of Proposition and shows that o is a rotationally invariant function on C which

is continuous on D(0, 1).
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Now, we establish that for 7 < 1, the derivative of the average of w with respect to 7

gives an alternative representation of the density of states as follows
1 2
0‘(2) = ;(97 (T<UO>) |’T:|Z|2 = _;<SOU0 ) a'r'UO>|T:|z\27 (6.4.8)

where ug = lim, o u(n) and vq = lim, o v(n). The first relation in (6.4.8]) will be proven
below and the second one follows immediately using Tug = 1 — voS,v¢ by and
for n ] 0, as well as S! = S,,.

We first give a heuristic derivation of the first equality in (6.4.8]) (see for example

Section 4.6 of [40]). Writing the resolvent G* of H* as

Gll G12
G21 G22

G =

with blocks G171, G2, Go1 and Gas of size n x n, we obtain
tr Gy — tr [((X — (X -2+ (- zﬂ
= —0;trlog ((X —2)(X*—2)+ 772) = —i@; log|det(H* — in)|
for the normalized trace of G5 (see (6.1.3)). Since A, = 40,05, taking the 0,-derivative
of the previous identity, we obtain

1
%AZ log|det(H* — in)| = —0, tr Gya. (6.4.9)

Using (6.2.5), (6.2.14) and Im m* = (v{|,—.2), the left-hand side of (6.4.9) is approx-

imately 7o (z) after taking the n | 0 limit. On the other hand, G* converges to M~
for n — oo. Thus, by (6.3.5) the right-hand side of (6.4.9) can be approximated by
0., (z<u7|T:|Z‘z(77))). Therefore, taking n | 0, we conclude

To(2) & 0:2(uglr=|z2) = (0:7(ug)) |r=zp2-

In fact, this approximation holds not only in the n — oo limit but it is an identity for

any fixed n. This completes the heuristic argument for (6.4.8|).
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We now turn to the rigorous proof of the first relation in (6.4.8). In fact, for 7 < 1,

we prove the following integrated version

/Z% o(2)d2% = T(uf). (6.4.10)

Since o is a continuous function on D(0,1) differentiating (6.4.10) with respect to 7
immediately yields (6.4.8]).

In order to justify the existence of the limits of v and w for | 0 and the computations
in the proof of (6.4.10)), we remark that by (6.4.2), (n,z) — v"(1)|7=|22 can be uniquely
extended to a positive C* function on [0,00) x D(0,1). In the following, v and v] :=
v"|,—o denote this function and its restriction to {0} x [0, 1), respectively. In particular,
the restriction v|,— .2 is a smooth function on D(0, 1) which satisfies

vlg = S,vj + SdTvg (6.4.11)
with 7 = |z]|?. Moreover, derivatives of v in 1 and 7 and limits in 1 and 7 for 7 < 1 can
be freely interchanged.

For the proof of , we use integration by parts to obtain

J | T o () = —7 / T, ((v) + (@) dn. (6.4.12)
22 <r 0 0
We recall © = (v, v1) and get
v — n+ Sgv 5 n+ S,v
(n+8Sqv)(n+ Sv)+7’ (n+ Sqv)(n+ S,v) +7

from (6.3.6)). This implies the identity
Oylog ((n + Sqv)(n+ Sv) +7) =v+ 0+ 085,0,v + vS,0,v.

Using
(0840,v) + (v8,0,v) = (vS,0,v) + (vS,0,v) = 0,(vS,V)

and recalling v, = lim, o v(n), we find for (6.4.12) the expression

/O T 0, (0) + (B)) dy = —(0: 10g ((Sav0)(So0) + 7)) + s (v6S,v0). (6.4.13)
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Hence, due to
(0, 1og ((Sqv0)(Sovo) + 7)) = (u) + (09S40,v0) + (vS,0;v0) = (u) + - (veS,v0).

we obtain (6.4.10)) from (6.4.13)). The formula (6.4.10) was also obtained in [51] with a

different method.

We prove (iii) before (ii). As vy is infinitely often differentiable in 7 and 7 = |2|?, we
conclude from that o is infinitely often differentiable in z. The following lemma
shows ((6.2.6)) which completes the proof of part (iii).

Lemma 6.4.1 (Positivity and boundedness of o). Uniformly for z € D(0,1), we have
o(z) ~ 1, (6.4.14)
where ~ only depends on s, and s*.

Proor oF LEMMA [6.4.7]. We will compute the derivative in (6.4.8) and prove the
estimate first for z € D and arbitrary 7, > 0 depending only on s, and s*. Then
we show that there is 7, > 0 depending only on s, and s* such that holds true
for z € D(0,1) \ D..

In this proof, we write Z(y) := diag(y) for y € C' for brevity. Furthermore, we

introduce the 2n x 2n matrix

1 1
E::
1 1

In the following, v and all related quantities will be evaluated at 7 = |z|2. We start the

proof from ([6.4.8), recall L = V(1 — TF)V and use the second relation in (6.4.3)) as

well as (6.3.31)) to obtain
2
T

o(z) = ——(S,v¢,0,v0)

9 -
= lim = <V—1” (1 — TF)_lV(vu)>
0 7T u

(6.4.15)

= 1%{51721_ <\/ﬁ : \/16(]1 - TF)l\/ﬂ\/%>

= lim 2 < v (11 — .@(u’l/Q)TF.@(ul/Q))71 \/%> :

o T
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Note that the inverses of 1 — T'F and 1 — 72(u"/?)TF 2(u'/?) exist by Lemma m

and Lemma[6.3.4/as 7 > 0 and 7 < 1.
Due to (6.3.27a)) and (6.3.32)), we have T' = —1 + 7uE which implies
1 - 2u VY)HTF2(u'?)
=1+ 2(u"YHF2(u'?) — 72(u'*)EF 2(u'/?)

= (1-72(W'?)EF(1 + F)"'2(u'?) (1+ 2(u ") F2(u'?)).
(6.4.16)

From (6.3.33) and (6.3.44), we deduce vJuFy/vo/u = Vvv + O(n). Hence, due to
(6.4.16)), (6.4.15) yields

o(z) = lim 1 <\/% (1= 72 EF1+ F)*l@(u}/z))*1 \/%> : (6.4.17)

nl0 7

Defining the matrix F' € C™*" through Fy = \/'Ulu/ng\/qu/vl y for y € C", we obtain
0 F B (1 —FF)~™'  —(1 - FF)'F
F= . (1+F) = . (6.4.18)
F' 0 _FY1 - FF)~' (1 - FF)!

Furthermore, we introduce the n x n matrix A by
A=2-1+(F' —1)1 - FF)' +(F - 1)(1 - F'F)~".

From the computation

EF( 1 P = (11 (P = 1)1 — FFY™ 14+ (F—1)(1 - FtF)l)

1+ (Ft—1)(1 - FF’*)_1 1+ (F-1)(1- FtF)_1
we conclude that

(1 —72u*)AD(u'/?)) 1z

(]1 — rP(u?)EF(1 + F)*l.@(um))* ( ) — ((]1 ) T@(ul/Q)A@(ul/2))l$> (6.4.19)

X

for all z € C™. Before applying this relation to (6.4.17), we show that 1—72(u'/?) A2 (u'/?)
is invertible for 7 < 1. The relations in ((6.4.18)) yield

(x,Az) = 2||z||3 — 2 < (z) ,(1+F)7! (i) > (6.4.20)
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for all x € C™ and n > 0. In particular, since || F||2 < 1 by (6.3.33) we conclude A < 1.
Hence, 7u = 1 — vjvp/u < 1 for 7 < 1 by (6.3.32)) implies that 1 — 72(u'/?)A2(u'/?) is
invertible for 7 < 1. Thus, we apply (6.4.19) to (6.4.17)) and obtain for z € D(0,1)

o(z) = 2 éfﬁ‘ <\/m , (]l - T@(UI/Q)A@(u1/2)>_1 \/m> _ (6.4.21)

T

Let 7. > 0 depend only on s, and s*. From (/6.3.10) and (6.4.2)), we conclude that
lo| < 1 uniformly for z € D because of (6.4.8). This proves the upper bound in ((6.4.14])

for z € D..
For the proof of the lower bound, we infer some further properties of A and 1 —

72 (ut?) AP (u?), respectively, from information about F' via (6.4.20)). In the following,
we use versions of Proposition [6.3.2] (6.3.26) and Lemma extended to the limiting

case 7 = 0+. Recalling vy = lim, o v, these results are a simple consequence of the

uniform convergence 0%“v — 0%v, for n | 0 and all o € N? by ([6.4.2)).

Since f_ = (\/vlvg/u, —\/vva/U)—i—O(n) by (6.3.45)) there are 7,,e ~ 1 by Lemmal6.3.4
such that Spec(F|w) C [~1 + &,1] on the subspace W = {(z,z)|]z € C"} C C*" as

f_ L W uniformly for all n € [0,n.]. Therefore, for ||z|ls = 1, the right-hand side of
(6.4.20)) is contained in [2(s — 1) /e, 1]. Since (F'(1 — FF")~')' = F(1 — F'F)~! the ma-
trix A is real symmetric and hence the spectrum of A is contained in [2(e — 1)/e, 1] for
all n € [0, 7, as well.

The real symmetric matrix A has a positive and a negative part, i.e., there are positive

matrices A, and A_ such that A=A, — A_. Hence, we have
1 —72W"*)A2(W"?) =1 —72W*) AL D2(W?) + 71PWVHA_D(W?).  (6.4.22)

The above statements about (6.4.20)) yield Spec A, C [0, 1] and Spec A_ C [0,2(1—¢)/e].
As 0 < ur we conclude from (6.4.22) that the spectrum of 1 — 72(u'/?)AP(u/?) is
contained in (0, 2/¢] for all n € [0,7,]. Therefore, using (6.4.21)), we obtain

o(z) =2

iFOl <\/U12]2 , (]l — T.@(ul/Q)A.@(ulﬂ))il \/vlv2> >
T

uniformly for all z € D.. Here, we used ((6.3.10)) in the last step. This shows ((6.4.14)) for

z € D. for any 7, > 0 depending only on s, and s*.

€
e Vo) > 1
7T(’Uovo> =
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We now show that there is 7, > 0 depending only on s, and s* such that holds
true for € D(0,1)\D.. This is proven by tracking the blowup of (1—72(u'/?) A2 (u'/?))~!
in1—7for 77 1in (6.4.21) and establishing a compensation through v; ~ vy ~
(1 — 7)%2 due to (6.3.10). This yields the upper and lower bound in . Since
1 —72u'?)A2(u"/?) in (6.4.21)) is also invertible for n = 0 we may directly set = 0
in the following argument.

We multiply the first component of the first relation in by 7 and solve for Tu
to obtain

Tu:;(l—k\/m) = 1—Tv1112+(’)((1—7')2>.

1/2

Therefore, using vy ~ vy ~ (1 —7)"/?, we have

DM AD (M) = A — % (2(v102) A+ AD(010)) + O (1 = 7)?) |

Moreover, from (6.4.20)) we conclude that Aa = a for a := \/vlvg/u/H\/vva/uHQ. Here,
we also used (/6.3.44]) and (6.3.33)) with n = 0.

Thus, the smallest eigenvalue of the positive operator 1 — 7 @(ul/ HA _@(ul/Q) satisfies
Amin (]l N T@(UI/Z)A@(UI/Q)) = Amin (1 = A) + 7(a’v109) + O ((1 B 7)2)
= 7(a’viv2) + O ((1 — 7')2) :

Here, we used multiple times that Aa = a. Therefore, as A is symmetric we conclude

from (6.4.21)) that
_ 2
o(z) = 2 <\/v1‘v2 (1= T2 A9(W'?)) ' ,/—01U2> s v (1—1).
m

— 1{a?v1v9)

Since a ~ 1 and v; ~ vy ~ (1 —7)"2 there is 7, ~ 1 such that the lower bound in (6.4.14))
holds true for z € D(0,1) \ D.. Starting from (6.4.21)), we similarly obtain
(viv2)
<——F—+01—-71).
o(z) < 7(a?v1v9) +O1-7)

1/2 and possibly shrinking 7, ~ 1 the upper

Using the positivity of a, v; ~ vg ~ (1 — 7)
bound in (6.4.14)) for z € D(0,1) \ D. follows. This concludes the proof of Lemma m

g
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As o(z) = 0 for |z| > 1 we conclude from (6.2.6) that o is nonnegative on C. We
use ((6.4.10) to compute the total mass of the measure on C defined by o. Clearly,

uog = vo/S4vo and using (6.4.11]) and (6.4.10)), we obtain

li Nd?2 =1-1i S,vo) = 1.
im Iz/IQSTO(Z) z Tlgl('vo, Vo)

Here, we used that lim,+; vo = 0 by (6.3.10). Hence, as o(z) = 0 for |z| > 1 it defines a
probability density on C which concludes the proof of Proposition [6.2.5] U

Remark 6.4.2 (Jump height). In fact, it is possible to compute the jump height of the
density of states o at the edge 7 = |2|? = 1. Let s; and sy be two eigenvectors of S* and
S, respectively, associated to the eigenvalue 1, i.e., S's; = s; and Ss, = sy. Note that s
and s, are unique up to multiplication by a scalar.

With this notation, expanding v™ for 7 < 1 around 7 = 1 yields

R e ACEOICIANE e
Y <<s%s%><sl>> o),
Y AL CIA R e
) =/1 (MS%)M) 2+ O ((1-7)%2).

Therefore, solving (6.3.32)) for 7u and expanding in 1 — 7, we obtain that ¢ has a jump
of height

1 1
I St _ - .
\zllg?la(z) T Tlgll Or (7{uo)) 7 (s3s3)

6.5. Local law

We begin this section with a notion for high probability estimates.

Definition 6.5.1 (Stochastic domination). Let C': RZ — R, be a given function which
depends only on a, ¢, 7., 7* and the model parameters. If ® = (), and ¥ = (™), are
two sequences of nonnegative random variables, then we will say that ® is stochastically

dominated by ¥, ® < U, if for all ¢ > 0 and D > 0 we have

for all n € N.
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As a trivial consequence of Ex;; = 0, (6.2.1]) and (6.2.2) we remark that
|xij‘ =< nfl/Q. (651)

6.5.1. Local law for H*. Let (v],v]) be the positive solution of and u”
defined as in (6.3.25). In the whole section, we will always evaluate v], v and u” at
7 = |z|* and mostly suppress the dependence on 7 and |z|?, respectively, in our notation.
Recall that M* is defined in (|6.3.5). Note that although vy, v, and u are rotationally
invariant in z € C, the dependence of M~* on z is not rotationally symmetric.

For the following theorem, we remark that the sets D. and D. were introduced

in (6.4.1)).

Theorem 6.5.2 (Local law for H?). Let X satisfy (A) and (B) and let G = G* be the
resolvent of H* as defined in (6.2.11]). For fized ¢ € (0,1/2), the entrywise local law

\/% for zeD., ne[n 1],
IGZ00) = ME( o < { 5+ 5 forz €D, me 71,1, (6.52)
\/7;1,72 forze D.UD-, nell o),
holds true. In particular,
\/% forzeD., nen 1],
lgm) —wmlle <\ J+ & forzeDs, nen 1], (6.5.3)
ﬁ forze D UDs, nell, o),

where g = ((e;, Ge;))?", denotes the vector of diagonal entries of the resolvent G*.

For a nonrandom vector y € C*" with ||yl < 1 we have

nn fOTZ € D<7 n € [n_1+871]7

i
(y.g(n) —iv(n))| < it (n717)2 for z€Ds, ne[n1e 1], (6.5.4)
n—i]g forzeD UDs, ne[l,00).

As an easy consequence we can now prove Corollary
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PROOF OF COROLLARY [6.2.7 Let y € C™ be an eigenvector of X corresponding to
the eigenvalue z € Spec X with |2]? < p(S) — 7. Then the 2n-vector (0,y) is contained
in the kernel of H?. Therefore, is an easy consequence of (Compare with
the proof of Corollary 1.14 in [7]). O

We recall our normalization of the trace, tr 1 = 1, from (6.1.3)).

PROOF OF THEOREM [6.5.2 Recall from the beginning of Section [6.3] how our prob-
lem can be cast into the setup of [6]. In the regime z € D. we follow the structure of
the proof of Theorem 2.9 in [6] and in the regime z € D the proof of Proposition 7.1
in |6] until the end of Step 1. In fact, the arguments from these proofs can be taken
over directly with three important adjustments. The flatness assumption is used
heavily in 6] in order to establish bounds (Theorem 2.5 in [6]) on the deterministic limit
of the resolvent and for establishing the stability of the matrix Dyson equation, cf.
below, (Theorem 2.6 in [6]). Since this assumption is violated in our setup we present ap-
propriately adjusted versions of these theorems (Proposition and Proposition m
in [6]). We will also take over the proof of the fluctuation averaging result (Proposi-
tion below) for H* from [6] since the flatness did not play a role in that proof at
all. Note that the n~2-decay in the spectral parameter regime 1 > 1 was not covered in
[6]. But this decay simply follows by using the bounds || M?(n)||max + |G (1)||max < %
instead of just || M?*(n)|lmax + [|G* (1) |lmax < C along the proof.

As in [6] we choose a pseudo-metric d on {1,...,2n}. Here this pseudo-metric is
particularly simple,

0 ifi=jori=j5+norj=i+n,
d(i, ) = ij=1,....2n.
oo otherwise,
With this choice of d the matrix H? satisfies all assumptions in [6] apart from the flatness.
We will now show that as in [6] the resolvent G* satisfies the perturbed matriz Dyson

equation

—1 = (inl — A* + S[G*())))G*(n) + D*(1). (6.5.5)
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Here, A is given by (6.3.3),

D(n) = D*(n) = —(S[G*(n)| + H* — A*)G*(n), (6.5.6)

is a random error matrix and S is a slight modification of the operator S defined in (6.3.3)),

s diag(S TOoW;
SW] = B(H® — AW (H — A7) — | eelSve) a (6.5.7)
T o Wi, diag(S*w;)

Here, ® denotes the Hadamard product, i.e., for matrices A = (ay;)} ;_; and B = (by;)} ;_;,
we define their Hadamard product through (A® B);; == a;;b;; fori,j = 1,..., 1. Moreover,
we used the conventions from (6.3.4) for W and introduced the matrix 7' € C"*" with

entries

Note that in contrast to [6] the matrix M solves (6.3.2), which is given in terms of the
operator S and not S (we remark that S was denoted by S in [6]). As we will see below
this will not affect the proof, since the entries of the matrix T are of order N~! and thus
the off-diagonal terms in (6.5.7) of S are negligible.

We will see that D = D” is small in the entrywise maximum norm
2n
W lmax = %@}f‘w’ij‘a

W = (w;;)?"_,, and use the stability of (6.5.5]) to show that G(n) = G*(n) approaches

ij=1)

M (n) = M?*(n) defined in (6.3.5)) as n — oo, i.e., we will show that

A() = IG(1n) = M()|lmax , (6.5.8)

converges to zero. For simplicity we will only consider the most difficult regime z € D_
and 7 < 1 inside the spectrum. The cases z € Dy and > 1 are similar but simpler
and left to the reader. In a more general setup, these regimes are addressed in Chapter [7]
below. We simply follow the proof in Section 3 of [6] line by line until the flatness
assumption is used. This happens for the first time inside the proof of Lemma 3.3. We

therefore replace this lemma by the following modification.
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Lemma 6.5.3. Let z € D_.. Then

1
D max T 2 1 .
IDO) o < =0
Furthermore, we have
. 1 Clde
D () lmax L(A() <17°) < —= ne el (6.5.9)

Vi
To show Lemma we follow the proof of its analog, Lemma 3.3 in [6], where the
flatness assumption as well as the assumptions that the spectral parameter is in the bulk
of the spectrum (formulated as p(¢) > 0 in [6]) are used only implicitly through the upper
bound on M (Theorem 2.5 in [6]). However, the conclusion of this theorem clearly still

holds in our setup because M has the 2 x 2-diagonal structure ((6.3.5) and the vectors
vy, V9 and u are bounded by Proposition and ((6.3.26)).

We continue following the arguments of Section 3 of [6] using our Lemma above
instead of Lemma 3.3 there. The next step that uses the flatness assumption is the

stability of the MDE (Theorem 2.6 in [6]) which shows that the bound (6.5.9) also implies

A L(A(m) < n7) < jl_n

In our setup this stability result is replaced by the following lemma whose proof is post-

poned until the end of the proof of Theorem [6.5.2]

Lemma 6.5.4 (MDE stability). Suppose that some functions Day, Gap : Ry — C™™ for
a,b = 1,2 satisfy (6.5.5)) with

Dy D G G
D — 11 12 : G — 11 12 7 (6510)
D21 D22 G21 G22

and the additional constraints
1
trGi; = trGog, ImG = 2—(G — G7) is positive definite . (6.5.11)
i

There is a constant A, 2 1, depending only on P, such that

1
IG = Mllmax X S [1Dllmax + 25 X = LG = Mlmax < As), (6.5.12)
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uniformly for all z € Do UD-, where M (n) = M?(n) is defined in (6.3.5)).
Furthermore, there exist eight matriz valued functions Rgz) Ry — C™" with a, b, k =

1,2, depending only on z and S, and satisfying ||Rgz)||oO <1, such that

. . 1
| trldiag(y)(G — M))|x £ max |tr{diag(Ry've) Dasl] + [9lloe (- + 1D )

(6.5.13)

uniformly for all z € Do UDx and y = (y1,y2) € C*.

The important difference between Theorem 2.6 in [6] and Lemma above is the
additional assumption (6.5.11)) imposed on the solution of the perturbed MDE. This

assumption is satisfied for the resolvent of the matrix H* because of the 2 x 2-block

structure (6.2.11)). In fact, we apply the block decomposition in (6.5.10) to G = (H* —
in1)~! and obtain

inl
(X —21)(X — 21)* +n21°

inl

Ga(n) = (X — 21)*(X — 21) + 721~

Goa(n) =

Using Lemma in the remainder of the proof of the entrywise local law in Section 3
of [6] completes the proof of (6.5.2).

To see ((6.5.4]) we use the fluctuation averaging mechanism, which was first established
for generalized Wigner matrices with Bernoulli entries in [72]. The following proposition
is stated and proven as Proposition 3.4 in [6]. Since the flatness condition was not used

in its proof at all, we simply take it over.

Proposition 6.5.5 (Fluctuation averaging). Let 2 € D. UD~, € € (0,1/2), n > n~!
and U a nonrandom control parameter such that n='/? < U < n==. Suppose the local law

holds true in the form

HG<77) _M<77)Hmax < .

Then for any nonrandom vector y € C™ with ||y|js < 1 we have

< U2,

Jmax | trldiag(y) D)
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where Dy, € C™™ a,b = 1,2, are the blocks of the error matrix

Dyy Dy
D21 D22

D(n) =

which was defined in (6.5.6]).

Using this proposition the averaged local law (6.5.4)) follows from (6.5.2)) and (6.5.13)).
This completes the proof of Theorem [6.5.2] O

PRrROOF oF LEMMA [6.5.4l We write ((6.5.5)) in the 2 x 2 - block structure

diag(in + Sgs) 21 G Gio
z1 diag(in + S'q1) ) \Ga1 Gao
(6.5.14)
B 1 0 D + (T © Gél)Gﬂ D1y + (T © GZI)GQQ
0 1 Doy + (T © G4)G11 Dag + (T © GYy) G

where we introduced g = (g1, g2) € C*", the vector of the diagonal elements of G.
We restrict the following calculation to the regime, where ||G () — M (1)||max < A« for

some sufficiently small A\, in accordance with the characteristic function on the left-hand

side of (6.5.12)). In particular,
lg(n) —iv(n)]lee < As. (6.5.15)

Since by (6.2.4) and (6.3.5)) the identity

-1

idiag(n + Sva(n)) 21

) N = —M(n),
=1 idiag(n + S'v1(n))

holds we infer from the smallness of ||g — iv||nax that the inverse of the first matrix factor

on the left-hand side of (6.5.14]) is bounded and satisfies
-1
H diag(in + Sg¢2) 21

+M
z1 diag(in + S*g1)

5 Hg - iv”max . (6516)

max
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Using this in (6.5.14) yields

diag(in + Sg¢2) 21
z1 diag(in + S'g) (6.5.17)

1
= MD "‘ O(Hg - v”maX”DHmax _'_ ||G - MHrznaX + ﬁ)’

where we applied the simple estimate

9 1

1
(T © Gop) Geallmax S N1G = Mg+ ~1G = M x| M sna + —[| M

max max

! (6.5.18)
5 ||G_Ml|fnax+ﬁa

which follows from
1
Tl S =
Thus the diagonal elements g of G satisfy (6.2.19)) with an error term d that is given
by
1
d = (MD))!, + O(||G = M|} + 5) : (6.5.19)

Here we used ||D|/max S |G — M ||max, Which follows directly from (6.5.5) and (6.3.2)).
With (6.3.21)) and (6.3.22)) in Proposition [6.3.3 the stability result on (6.2.19), we con-

clude that
) 1
g —1vloc S [[Dlmax + ||G—M\|ilax+g, (6.5.20)
and that

. . 1
(.9~ iv)| S |trldiag(Ry)MD]| + | DI + |G = M+~ (65:21)

for some bounded R € C*"*?" and any y € C** with ||yl < 1, respectively. Combining

(6.5.16)) with (6.5.17) and (6.5.20)) yields
1

HG - M”max S HD”max + HG - M||12nax + ﬁ .
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By choosing A, sufficiently small we may absorb the quadratic term of the difference

G — M on the right-hand side into the left-hand side and (|6.5.12]) follows. Using ((6.5.12))
in (6.5.21)) to estimate the term |G — M||2,,. proves (6.5.13). O

We use a standard argument to conclude from ([6.5.4]) the following statement about

the number of eigenvalues \;(z) of H* in a small interval centered at zero.

Lemma 6.5.6. Let € > 0. Then

#{i )| <) <, (6.5.22)

uniformly for alln > n='"¢ and z € D_.
Furthermore, we have

1 1
/2
sup < n'e. (6.5.23)
zebs [Ai(2)]

PROOF. For the proof of (6.5.22) we realize that (6.5.2)) implies a uniform bound on

the resolvent elements up to the spectral scale n > n~1*°. Thus we have

#2n U
170 < ———— < 2nlmtrG* <n,
S A NGRS )

where ¥, := {i : |\i(2)| < n}. Here, we used the normalization of the trace (6.1.3).
Before proving (6.5.23)), we first establish that

1 1/2
< nlf?, (6.5.24)
|Ai(2)]

uniformly for z € D~. We use (6.5.4)) and (v(n)) ~ n to estimate

W < 2nImtrG*(n) < nn+ 7;72 , (6.5.25)
with the choice  :== n~/27¢ for any £ > 0. This immediately implies |\;(2)|~! < n'/?*,
hence (6.5.24)). For the stronger bound we use that z — Im tr G*(n) is a Lipschitz
continuous function (with a Lipschitz constant Cn~2 uniformly in 2) and that D is
compact, so the second bound in holds even after taking the supremum over
z € D~. Thus

n 1
sup ———— < 2n sup Imtr G* < nn+ —
ze]D)p> n? + \i(2)? zer> () m nn?
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holds for 7 :== n~'/27¢. From the last inequality we easily conclude (6.5.23)). O

6.5.2. Local inhomogeneous circular law. For the following proof of Theorem
m we recall that without loss of generality, we are assuming that p(S) = 1 which can
be obtained by a simple rescaling of X. Moreover, from (6.4.1)), for 7, > 0 and 7* > 1+7,,

we recall the notation
D.={2€C | |2P<1-7}, Ds={z€C |1+ <2<}

PROOF OF THEOREM [6.2.6l We start with the proof of part (i) of Theorem [6.2.6]
We will estimate each term on the right-hand side of . Let w € D.. We suppress
the 7 dependence of v; in this proof but it will always be evaluated at T = |z|2.

As supp f C D,(0), @ > 0 and w € D, we can assume that the integration domains of
the d%z integrals in are D instead of C. Hence, it suffices to prove every bound
along the proof of (i) uniformly for z € D..

To begin, we estimate the first term in (6.2.15). Since

n 22
log|det(H? —iT1)| = 2nlogT + > log <1 + j)

2
i=1 r

and the integral of Af,, , over C vanishes as f € CZ(C), we obtain

tr ((H*)?)

1 . ) 1 ,
Adrn B < o - 40 . . .
[ Afa()logldet (= T2 < o= [[Afua(o) U5 (6520

Here, we used log(1 + x) < x for > 0. Furthermore, if |z] < 1, then we have

n 2 n
ij=1
where we applied (6.1.3)) in the first and (6.5.1)) in the last step. Therefore, choosing T :=
n'% we conclude from ([6.5.26)) and ([6.5.27)) that the first term in ([6.2.15]) is stochastically
dominated by n=1T2¢||Af]|;.

To control the second term on right-hand side of (6.2.15)), we define

tr((H?)?) =

S|
3

1,j=1

1) = [ fimm(in) — {or ()} dy (6.5.28)

for z € D.. We will conclude below the following lemma.
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Lemma 6.5.7. For every 6 > 0 and p € N, there is a positive constant C, depending
only on 6 and p in addition to the model parameters and 7., such that
nop
sup EI(2)P < C—. (6.5.29)
z€D< nre
We now show that this moment bound on I(z) will yield that the second term in

(6.2.15) is < n=1T22||Af||;. Indeed, for every p € N and § > 0, using Hélder’s inequality,

we estimate

p

B[ A [ o) = () an

< /(C /(C gmfw,a(gng(E[(g)p)l/pd%l...d?gp (6.5.30)

ndp+2ap

< CllAfIR

np
Applying Chebyshev’s inequality to (6.5.30) and using that 6 > 0 and p were arbitrary,

we get
T
A uwale) [ mm () = (o1 () d2) <=2 AF]

Hence, the bound on the second term on the right-hand side of (6.2.15)) follows once we

have proven ((6.5.29)).

For the third term in (6.2.15]), notice that the integrand is bounded by Cn~2 so it is
bounded by n?*T~!||Af]l;. This concludes the proof of (i) of Theorem up to the
proof of Lemma which is given below.

We now turn to the proof of (ii). We will use an interpolation between the random
matrix X and an independent Ginibre matrix X together with the well-known result that
a Ginibre matrix does not have any eigenvalues |A| > 1 + 7, with very high probability.
With the help of we will control the number of eigenvalues outside of the disk of
radius 1 + 7* along the flow. We fix 7% > 1 + 7,.

1

Let (Z5)7,=, be independent centered complex Gaussians of variance n~

0 and E|zZ;;> = n~'. We set X := (Z;;)

yie, Kz =
rie1y e X is a Ginibre matrix. We denote the
eigenvalues of X by Z1,..., 2.

For t € [0,1], we denote the spectral radius of the matrix ¢S + (1 — t)E by p; ==

p(tS + (1 —t)E), where E is the n x n matrix with entries e;; := 1/n, E = (ej;)};=;-
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Furthermore, we define

0 Xt —21

Xt=p, (X +(1-pX), H:=
(Xt —21)" 0

for t € [0,1]. The eigenvalues of X! and H*" are denoted by 2! and A, (), respectively, for
i=1,...,nand k = 1,...,2n. The one-parameter family ¢ — X" interpolates between
X and X by keeping the spectral radius of the variance matrix at constant one.

Note that ||[(X* — 2z1)7!||s = max?™,|\L(2)|7'. We can apply Lemma to the
matrices X' for any ¢ to get

sup H(Xt - z]l)’lH2 < nl'/?
zeDs

uniformly in ¢ from . In fact, the estimate can be strengthened to

til[](-)l,jl] 2861]1D1)> H(Xt - z]l)_IH2 < nt? (6.5.31)
exactly in the same way as was strengthened to (6.5.23)), we only need to observe
that the two-parameter family (z,t) — Imtr G*'(n) is Lipschitz continuous in both
variables, where G*' denotes the resolvent of H*'.

Let 7 be the circle in C centered at zero with radius 1 + 7. For t € [0, 1], we have
N =#{i || <1+7m) =~ / tr ('~ 21) ") dz,
v 27 ol

where tr: C"*" — C denotes the normalized trace, i.e., tr 1 = 1. Due to N(t)isa
continuous function of ¢. Thus, N(t) is constant as a continuous integer-valued function.
Using Corollary 2.3 of [75], we obtain that #{k | |Zx|] > 7} = 0 with very high
probability. Furthermore, #{k | z;, € D>} = 0 with very high probability by (6.5.31)).
Thus,
N1)=N@O)=n—#{k|Z. €D} —#{k||a] =7} =n
with very high probability which concludes the proof of (ii) and hence of Theorem m

g

Remark 6.5.8. In the above proof we showed that || H*|| < C' with very high probability

via an interpolation argument using the norm-boundedness of a Ginibre matrix and the
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local law for the entire interpolating family. Robust upper bounds on the norm of random
matrices are typically proven by a simple moment method. Such approach also applies
here. For example, one may follow the proof of Lemma 7.2 in [70], and estimate every
moment E|x;;|* by its maximum over all 7, j. The final constant estimating || H?| will
not be optimal due to these crude bounds, but it will still only depend on s* and p,, from
and , respectively. This argument is very robust, in particular it does not

use Hermiticity.

In the proof of Lemma[6.5.7 we will need an estimate on the smallest singular value of
X — 21 presented in the following Proposition In fact, it will be used to control the
dn-integral in the second term on the right-hand side of for n < n='*¢. Notice
that Proposition is the only result in our proof of Theorem [6.2.6] which requires the
entries of X to have a bounded density.

Adapting the proof of [40, Lemma 4.12] with the bounded density assumption to our

setting, we obtain the following proposition.

Proposition 6.5.9 (Smallest singular value of X — z1). Under the condition ([6.2.3)),

there is a constant C', depending only on «, such that
2n
P <m1{1|>\2(z)| < u) < CyPo/Ute)pftl (6.5.32)
i= n

for allu >0 and z € C.

ProOF. We follow the proof in [40] and explain the differences. Let Ry, ..., R, denote
the rows of /nX — z1. Proceeding as in [40] but using our normalization conventions,

we are left with estimating

P (vt < )

uniformly for ¢ € {1,...,n} and for arbitrary y € C" satisfying ||y|l2 = 1/+/n and tracking
its dependence on u > 0. We choose j € {1,...,n} such that |y;| > 1/y/n and compute
the conditional probability

g_{_g L
yivn

Py = P(n|(R;,9)| <
Yj

o <
vn N

xil,...,fi\j,...,xm):/1<
C

)fij(()dQQ
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where a is independent of z;;. Using (6.2.3) and |y;| > 1/y/n, we get

2a/(14a)

|Py| < |7 [ fiillida < (ru)?/Fons,

u
yivn
Thus, P (n[{R;,y)| < u/y/n) < (7u)?/1+9nf which concludes the proof of (6.5.32)) as
in [40]. O

PrROOF OF LEMMA [6.5.71 To show ([6.5.29), we use the following estimate which
converts a bound in < into a moment bound. For every nonnegative random variable

satisfying Y < 1/n and Y < n¢ for some ¢ > 0 the p-th moment is bounded by
51 2p) /2 so1\\ 1/2 np°
EY? <EYP1(Y <n’™)+ (EY?) " (P(Y >n'™)) " < c (6.5.33)

for all p € N, 6 > 0 and for some C' > 0, depending on ¢, p and §.
As a first step in the proof of (6.5.29), we choose ¢ € (0,1/2), split the dn integral
in the definition of I(2), (6.5.28), and consider the regimes n < n='*¢ and n > n='*¢

1

separately. For n < n~'*¢ we compute

[

We recall that \q, ..., \s, are the eigenvalues of H*. Therefore, (6.5.28]) yields

—1+4e

1 n72+2€
Imm?*(in)dn = %Zlog (1 + ¥ ) .

/oT [T m* (i) — (vi(n))] dn
_1 3 10g(1+n/\2;25)+1 > 10g<1_|_n)\2;2€>

il <n=! I\il>n~! i
[ utan+ [ T Gn) — Gur(n)]dy
4 [ ) — (s ()]
Here, [ € N is a large fixed integer to be chosen later.

We will estimate each of the terms on the right-hand side of (|6.5.34)) individually. We
will apply (6.5.33)) for estimating the absolute value of the second, fourth and fifth term

(6.5.34)

—1+e

on the right-hand side of (6.5.34). For the first term, we will need a separate argument

based on Proposition [6.5.9, which we present now.
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For the first term in (6.5.34)), we compute

1 n-2+2e\ \©
E - > log<1—|— 12 ) <E

|)\i\§n_l

—242¢

log? (1 + n 2 ) 1\, < nl)]

n

< CE [[log A[P1(An < 7]
for some constant C' > 0 independent of n. We compute the expectation directly
E [Jlog Au"1(X, < n7)] = p / P(A, <o t) e lat
llogn

< Cpft1+2e/(+a) /OO p—1g—2at/(1+a) 34
- llogn

Here, we applied in Proposition with u = e~'n. Choosing [ large enough,
depending on «, § and p, we obtain that the right-hand side is smaller than n™". This
shows the bound for the first term in (6.5.34).

To estimate the second term on the right-hand side of , we decompose the
sum into three regimes, n=' < |\;| < n™1, n71e < |\ < n7Y2 and nV2 < |\

For the first regime, we use with n = =€ and log(1 + n=2"2+) < C'logn
to get

1 —24-2¢ Cl €
e D (1 4+ = ) < Zg”#{z': | < noE) < % (6.5.35)

[Xil€[n—tn=1+e]

As this sum is clearly polynomially bounded in n we can apply to conclude that
the first regime of the second term in fulfills the moment bound in ([6.5.29)).

For the intermediate regime, due to the symmetry Spec(H?) = — Spec(H?), we only
consider the positive eigenvalues. We decompose the interval [n‘1+€,n_1/ %] into dyadic
intervals of the form [ng, nk41], where ny, := 2¥n =1 Thus, we obtain

1 —242¢

n—2t2e 2 N n ne
= 3 og |14+ —5— <=3 > log|l+—5—]=<— (6536

n
|Ail€[n—1+e,n=1/2] k=0 X €[ng,mp41]

where we introduced N = O(logn) in the first step. Moreover, we used the monotonicity

of the logarithm, log(1+z) < z in the last step and the following consequence of ([6.5.22)):

#H{i: N € My M)} < #{0 IN| < g} < ne2k
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The left-hand side of is trivially bounded by log 2. Therefore, applying (6.5.33) to
the left-hand side of , we conclude that it satisfies the moment estimate in (6.5.29)).

For estimating the second term in in the third regime, employing |\;| > n='/2
and log(1 + x) < z, we obtain

1 n—2+2e
- Z 10g<1+ 2 )S

n |/\i‘2n71/2

—142¢ 2n’
> log(14n 1) <= (6.5.37)

IXi|>n—1/2 n

1
n
Here, we used that H” has 2n eigenvalues (counted with multiplicities). This determinis-
tic bound and imply that the moments of this sum are bounded by the right-hand
side in (6.5.29).

Combining the estimates in these three regimes, (6.5.35)) , (6.5.36) and (6.5.37), we
conclude that the second term in (|6.5.34)) satisfies the moment bound in (6.5.29)).

We now estimate the third term on the right-hand side of . Since v ~ 1 for
z€D.and n <1 by , the p-th power of the third term is immediately bounded

by the right-hand side of (6.5.29)).
To bound the fourth and fifth term in (6.5.34)), we note that Im m?(in) = (g(n)) for

0

n > 0 and recalling the choice T' = n'%, we obtain

£

[ ) = uldn <™ [ ) — )y < (6.5.38)

—1+4e

from the first and third regime in with y = 1. As the integrands are bounded by
n? trivially yields that the moments of the fourth and fifth term in are
bounded by the right-hand side in (6.5.29)).

Since € € (0,1/2) was arbitrary this concludes the proof of (6.5.29). i

6.6. Proof of Lemma [6.2.3

The existence and uniqueness of the solution to ((6.2.4]) will be a consequence of the

existence and uniqueness of the solution to the matrix Dyson equation
- M~ () = inl — A+ S[M(n)]. (6.6.1)

Note that A € C**2?" and S: C**?" — C?"*?" were defined in (6.3.3)).
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The matrix Dyson equation, (6.6.1)), has a unique solution under the constraint that
the imaginary part

1
ImM = (M~ M")
1

is positive definite. This was established in [96]. In the context of random matrices,
(6.6.1)) was studied in [6].

In the following proof, for vectors a,b,c,d € C", we will denote the 2n x 2n matrix
having diagonal matrices with diagonals a, b, ¢, d on its top-left, top-right, lower-left and

lower-right n x n blocks, respectively, by

a b _ diaga diagb c Cnxn
c d diagc diagd

PRrROOF OF LEMMA [6.2.3] We show that there is a bijection between the solutions of
(6.6.1]) with positive definite imaginary part Im M and the positive solutions of .

We remark that implies that there are vector-valued functions a, b, c,d: R, —
C" such that for all n > 0 we have

M(n) = : (6.6.2)

First, we show that Im diag M is a solution of (6.3.6]) satisfying Im diag M > 0 if

M satisfies (6.6.1) and Im M is positive definite. Due to (6.6.2), multiplying (6.6.1]) by
M yields that (6.6.1]) is equivalent to
—1 =ina+ aSd+ bz, 0 = inb + za + bS'a,

(6.6.3)
0 =inc+ zd + cS4d, —1 =1ind + dS'a+ zc

Solving the second relation in ((6.6.3)) for b and the third relation in (6.6.3)) for ¢, we obtain

za zd
he _ _ 6.4
in+ Sta’ ¢ in+5d (66.4)

Plugging the first relation in (6.6.4) into the first relation in (6.6.3) and the second
relation in ((6.6.4)) into the fourth relation in (6.6.3) and dividing the results by a and d,



186 CHAPTER 6. LOCAL INHOMOGENEOUS CIRCULAR LAW

respectively, imply

2]

2
1
2 —— =in+ S'a—

1
g sd— .
a in+ 5 in+ Sta’ d in+ Sd

Therefore, if a and d are purely imaginary then (Ima, Imd) = —i(a, d) will fulfill (6.3.6)).

In order to prove that a and d are purely imaginary, we define

— fa(p) b —a b
T ~(77) | s
c(n) d(n) FE
The goal is to conclude M = M, and hence a = —a and d = —d, from the uniqueness of

the solution of (6.6.1]) with positive definite imaginary part. Since the relations (6.6.3)
are fulfilled if a, b, ¢, d are replaced by @, b, ¢, d, respectively, M satisfies (6.6.1]). For

j=1,...,n, we define the 2 x 2 matrices

Note that Im M is positive definite if and only if Im M, is positive definite for all
j =1,...,n. Similarly, the positive definiteness of Im M is equivalent to the positive

definiteness of Im Mj forall 7 =1,...,n. We have

Im a; %(bj — E]) = Im Q; fz(b] — Cj)

ti—b)  Imd; ) \Z@-b) g

2i 2iz

ImMj =

As trImMj = trIm M, and detImMj =detIm M; for all j =1,...,n we get that M is
a solution of with positive definite imaginary part Im M. Thus, the uniqueness
of the solution of implies M = M as well as a = —a and d = —d.

Moreover, since

I M — IIfla (b—2¢)/(2i)
(¢ —b)/(2i) Imd

is positive definite we have that Ima > 0 and Imd > 0. Hence, (Ima,Imd) is a positive
solution of .

Conversely, let v = (v1,v2) € C* be a solution of satisfying v > 0 and u
be defined as in (6.3.25). Because of , we obtain that M = M?, defined as in
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(6.3.5)), is a solution of (6.6.1)). To conclude that Im M is positive definite, it suffices to
show that detIm M; > 0 for all j =1,...,n with

o (1) —#

J _ .
—zu; i(v9);

as trIm M; = (v1); + (v2); > 0. Since zu; —zu; = 0 for all j = 1,...,n by (6.3.25)) we
obtain

1 _
det Im M] = (Ul)j(UQ)j — Z|Zuj - thjl2 — (Ul)j(UQ)j > O

Therefore, there is a bijection between the solutions of (6.6.1)) with positive definite
imaginary part and the positive solutions of (6.3.6). Appealing to the existence and
uniqueness of (6.6.1]) proven in [96] concludes the proof of Lemma [6.2.3] O

6.7. Proof of the Contraction-Inversion Lemma

ProoF oF LEMMA [6.3.7. The bounds ((6.3.55)) imply that 1 — AB is invertible and
1
(1 - AB) |2 < —.
17
The main point of this lemma is to show that (1 —AB)~'p can be bounded independently

of n for p satisfying (6.3.58). We introduce h := (1—AB)~'p. Thus, (6.3.59) is equivalent
to ||k||2 < C||pl|2 for some C' > 0 which depends only on ¢y, ¢, ¢3 and €. Without loss of

generality, we may assume that ||h||s = 1. We decompose
h =ab_ + b, +yz, (6.7.1)

where o = (b_, h), f = (b, ,h) and x L by satisfying ||| = 1, thus |a*+|8]*+ 7> = 1.
Since B = B*, we have b, 1 b_ and Bx L b.. Hence, we obtain

IABR|; < | Bh|j; < [af*|Bll2 + [ Bll2 + 1*Bzll; < 1 — £ +&(jaf* + 8]%),

where we used ||A|2 <1, [|Bll2 <1 and ||Bz|2 < 1 — ¢ in the last step. Therefore, if
la)?+ 8> < 1—§ for some § > 0 to be determined later, then [|ABh||; < v/1 — &d||h]|s <
(1 —€0/2)||h||2 and thus
2
1=|h|: < — . 6.7.2
Ikl < Pl (6.7.2)
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For the rest of the proof, we assume that |a|?> 4+ |8]> > 1 — 4. In the regime,
where |o is relatively large, we compute (b_, (1 — AB)h), capitalize on the positiv-
ity of (b_,(1 — AB)b_) and treat all other terms as errors. In the opposite regime,
where || is relatively large, we use the positivity of (b, (1 — AB)b.).

Using (6.7.1]), we compute

(b_,p) = (b, (1 — AB)h) = a(1+|[Bll2(b-, Ab_)) — 5| Bl|2(b-, Ab,) —7(b_, ABx).

From ||All; <1, the Hermiticity of A, (b_, Bx) = 0, and ([6.3.56), we deduce
(b, Ab_)| < 1,
(b, Ab)| = [(b- + Ab_, by )| < can,
|(b_, ABx)| = |(b_ + Ab_, Bx)| < con(1 — ¢).

Employing these estimates, ||Bllz < 1 — ¢;n and (6.3.58), together with |y|? < §, we
obtain

csllpllz = |aler — [Bles — \/302(1 —¢) (6.7.3)

after dividing through by n > 0. If |a|e; > e|f] + Voca(1 — €) + decs/2 then we

obtain (6.7.2)).
Therefore, it suffices to show (6.7.2)) in the regime

V2 <6, Jale < elB|+ Vie(l — ) + decs /2. (6.7.4)

For this regime, we use ([6.7.1)) and obtain

(bi,p) = (by, (1 — AB)h)

B0 BlLbe b))~ alBlLb b (b AB)
We employ (6.3.56)), (6.3.57)), the Hermiticity of A and (b_,b) = 0 to obtain
by, Aby) <1-—¢,
(b1, Ab_)| = [(by,b_ + Ab_)| < co), (6.7.6)

|(by, ABx)| <1 —¢.
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Applying (6.7.6]) to (6.7.5)), yields

1Pll2 = [(br, P)| = [Ble — |afean — [7[(1 —€) = |Ble — |a|;2 ~Vo(l—¢), (67.7)

where we used the assumption 7 < e¢;/2¢3. Since |ajci/cy < |B] + O(V6) from (6.7-4),
we obtain that ||p|ls > |5|e/3 for any § < do(cy, 2, 3, €) sufficiently small. Furthermore,
|a|? + |B]? > 1 — ¢ and the fact that |3] is large compared with || in the sense
guarantee that 3| > 3[14-(ca/c1)?] 7", if  is sufficiently small. In particular, ||p||s > £6/2
can be achieved with a small 9, i.e., holds true in the regime (6.7.4]) as well. This

concludes the proof of Lemma [6.3. O
Lemma 6.7.1. (i) Uniformly for z € Do UD~ and n > 0, we have
[Fll2o00 1, [TFl2n0 1, [FT2500 S 1. (6.7.8)

(ii) If ¢ & Spec(TF) U {0} and ||(C1 — TF) 'ylls < |lylla for some y € C** then
1
I(C1 = TF) 'yl S mHyHoo- (6.7.9)

A similar statement holds true for (C(1 — FT)~" = [(¢(1 — TF)~']".

(7ii) For every n, > 0, depending only on 7. and the model parameters, such that

(1 -TF)~'Ql. S 1, L—[[F|[z 2,
(6.7.10)
If-+Tf |23, 1f_lloo S 1
uniformly for all n € (0,n.] and z € D, we have
(1 -TF)'Q) [l S 1 (6.7.11)

uniformly for n € (0,n.] and z € D.. Here, Q denotes the orthogonal projection
onto the subspace f-, i.e., Qy =y — (f_,y)f_ for every y € C*".

The estimate (6.7.9)) is proven similarly as (5.28) in [4].
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PROOF. As ||S,]l200 S 1 by (6.2.1)), we obtain from Proposition and ((6.3.26))
the bound

~Y

— _ uv
IFllzooe < 1V ol Sollaooe IVl = [ 1S ullame 5 1
o0

uniformly for all » > 0 and z € D. UD.. This proves the first estimate in (6.7.8). From
Lemma [6.3.6] (i), we conclude the second and the third estimate in (6.7.8).
We set x := ((1 — TF) 'y. By assumption there is C' ~ 1 such that

[z]l2 < Cllyll2 < Cllyll-
Moreover, since (x = T'Fx + y we obtain from the previous estimate

[Cllzlloc < ITFxfo + [[Ylle < ([ TFl2500C + 1) [[y]loo-

Using the second estimate in (6.7.8)), this concludes the proof of (6.7.9)). The statement
about (C1 — FT)~" follows in the same way using the third estimate in (6.7.8) instead

of the second.

For the proof of (|6.7.11)), we remark that the first condition in (6.7.10]) implies that

[(x-Tm) Q)

L= |a-TP)'Q| <1 (6.7.12)
The second assumption in vields
| —TF), <0 (6.7.13)

Take y € C2* arbitrary. We get [T, Qly = (Tf_ + f_.9)f_ — (F_,y)(TF_+ f_),
where [T, Q] = TQ — QT denotes the commutator of T' and Q. Therefore,

T, QI <2[lf-+Tf llasn (6.7.14)

by the third condition in (6.7.10). We set .= Q(1 — FT) 'y = (1 - TF)™'Q)" y and
compute

x=FTx+ Qy— F|T,Q|(1 - FT) 'y,
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where we commuted 1 — FT and Q and used that F' and @ commute. Hence, using

2l S 1yl < 1yl by (6-7.12) . [Qloc < 1+ [[f |0, (6.7.14) and (6.7.13)), we obtain

|2lloo S (IFTN2m00 + 14 1F —lloo + 1Fll200) 1Ylloo S 1y lloo-

Here, we used the fourth assumption in (6.7.10]) and (6.7.8). Notice that the n~! factor
from the trivial estimate (6.7.13|) was compensated by the smallness of the commutator
[T, Q] which was a consequence of the third assumption in (6.7.10)). This concludes the

proof of (6.7.11}). O

PRrROOF OF LEMMA [6.3.5l We first prove that
1f- —all2=0M). (6.7.15)
uniformly for n <1 and 7 € [0,1 — 7.]. To that end, we introduce the auxiliary operator
A:=|F|,1+F.

Therefore, we obtain from Ff_ = —||F||2f_ and (6.3.45))

Let Q be the orthogonal projection onto the subspace f+ orthogonal to f_, i.e., Qy =
y—{(f_,y)f_ for y € C*. We then obtain AQa = O(n) which implies Qa = O(n) as
A is invertible on f* and I(Al;2) " l2 ~ 1 by (6.3.38). We infer (6.7.15).

For the proof of (6.3.46|), we follow the proof of (6.7.11)), replace T by —1 and use
Lemma [6.3.4] (i) instead of the second and fourth condition in (6.7.10). U






CHAPTER 7

Location of the spectrum of Kronecker random matrices

In this chapter, we present the results of the publication [16] which was prepared in
joint work with Laszlé Erdos, Torben Kriiger and Yuriy Nemish. For a general class of
large non-Hermitian random block matrices X we prove that there are no eigenvalues
away from a deterministic set with very high probability. This set is obtained from the
Dyson equation of the Hermitization of X as the self-consistent approximation of the
pseudospectrum. We demonstrate that the analysis of the matrix Dyson equation from

[6] offers a unified treatment of many structured matrix ensembles.

7.1. Introduction

Large random matrices tend to exhibit deterministic patterns due to the cumulative
effects of many independent random degrees of freedom. The Wigner semicircle law
[157] describes the deterministic limit of the empirical density of eigenvalues of Wigner
matrices, i.e., Hermitian random matrices with i.i.d. entries (modulo the Hermitian
symmetry). For non-Hermitian matrices with i.i.d. entries, the limiting density is Girko’s
circular law, i.e., the uniform distribution in a disk centered around zero in the complex
plane, see [40] for a review.

For more complicated ensembles, no simple formula exists for the limiting behavior,
but second order perturbation theory predicts that it may be obtained from the solution
to a nonlinear equation, called the Dyson equation. While simplified forms of the Dyson
equation are present in practically every work on random matrices, its full scope has
only recently been analyzed systematically, see [6]. In fact, the proper Dyson equation
describes not only the density of states but the entire resolvent of the random matrix.
Treating it as a genuine matriz equation unifies many previous works that were specific
to certain structures imposed on the random matrix. These additional structures of-

ten masked a fundamental property of the Dyson equation, its stability against small

193
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perturbations, that plays a key role in proving the expected limit theorems, also called
global laws. Girko’s monograph [82] is the most systematic collection of many possible
ensembles, yet it analyzes them on a case by case basis.

In this paper, using the setup of the matriz Dyson equation (MDE) from [6], we
demonstrate a unified treatment for a large class of random matrix ensembles that contain
or generalize many of Girko’s models. For brevity, we focus only on two basic problems:
(i) obtaining the global law and (ii) locating the spectrum. The global law, typically
formulated as a weak convergence of linear statistics of the eigenvalues, describes only
the overwhelming majority of the eigenvalues. Even local versions of this limit theorem,
commonly called local laws (see e.g. [44] 60], Chapter [6] and references therein) are
typically not sensitive to individual eigenvalues and they do not exclude that a few
eigenvalues are located far away from the support of the density of states.

Extreme eigenvalues have nevertheless been controlled in some simple cases. In par-
ticular, for the i.i.d. cases, it is known that with a very high probability all eigenvalues lie
in an e-neighborhood of the support of the density of states. These results can be proven
with the moment method, see |19, Theorem 2.1.22] for the Hermitian (Wigner) case, and
[80] for the non-Hermitian i.i.d. case; see also [24, 25] for the optimal moment condi-
tion. More generally, norms of polynomials in large independent random matrices can
be computed via free probability; for GUE or GOE Gaussian matrices it was achieved in
[87] and generalized to polynomials of general Wigner and Wishart type matrices in |18,
47]. These results have been extended recently to polynomials that include deterministic
matrices with the goal of studying outliers, see [31] and references therein.

All these works concern Hermitian matrices either directly or indirectly by considering
quantities, such as norms of non-Hermitian polynomials, that can be deduced from related
Hermitian problems. For general Hermitian random matrices, the density of states may
be supported on several intervals. In this situation, excluding eigenvalues outside of the
convex hull of this support is typically easier than excluding possible eigenvalues lying
inside the gaps of the support. This latter problem, however, is especially important for
studying the spectrum of non-Hermitian random matrices X, since the eigenvalues of

X around a complex parameter ¢ can be understood by studying the spectrum of the
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Hermitized matrix
me—| O X (7.1.1)
X - 0
around 0. Note that for ( € C away from the spectrum of X, zero will typically fall
inside a gap of the spectrum of H® by its symmetry.

In this paper, we consider a very general class of structured block matrices X that
we call Kronecker random matrices since their structure is reminiscent to the Kronecker
product of matrices. They have L x L large blocks and each block consists of a linear
combination of random N x N matrices with centered, independent, not necessarily
identically distributed entries; see later for the precise definition. We will keep L
fixed and let N tend to infinity. The matrix X has a correlation structure that stems
from allowing the same N x N matrix to appear in different blocks. This introduces
an arbitrary linear dependence among the blocks, while keeping independence inside the
blocks. The dependence is thus described by L x L deterministic structure matrices.

Kronecker random ensembles occur in many real-world applications of random ma-
trix theory, especially in evolution of ecosystems [93] and neural networks [123]. These
evolutions are described by a large system of ODE’s with random coefficients and the
spectral radius of the coefficient matrix determines the long time stability, see [113] for
the original idea. More recent results are found in |2, |9} |10] and references therein. The
ensemble we study here is even more general as it allows for linear dependence among
the blocks described by arbitrary structure matrices. This level of generality is essential
for another application; to study spectral properties of polynomials of random matrices.
These are often studied via the “linearization trick” and the linearized matrix is exactly
a Kronecker random matrix. This application is presented in [61], where the results of
the current paper are directly used.

We present general results that exclude eigenvalues of Kronecker random matrices
away from a deterministic set D with a very high probability. The set D is determined by
solving the self-consistent Dyson equation. In the Hermitian case, D is the self-consistent
spectrum defined as the support of the self-consistent density of states p which is defined
as the imaginary part of the solution to the Dyson equation when restricted to the real

line. We also address the general non-Hermitian setup, where the eigenvalues are not



196 CHAPTER 7. LOCATION OF THE SPECTRUM OF KRONECKER RANDOM MATRICES

confined to the real line. In this case, the set D = DD, contains an additional cutoff
parameter € and it is the self-consistent e-pseudospectrum, given via the Dyson equation
for the Hermitized problem H®, see later. The ¢ — 0 limit of the sets D, is
expected not only to contain but to coincide with the support of the density of states in
the non-Hermitian case as well, but this has been proven only in some special cases. We
provide numerical examples to support this conjecture.

We point out that the global law and the location of the spectrum for A + X, where
X is an i.i.d. centered random matrix and A is a general deterministic matrix (so-called
deformed ensembles), have been extensively studied, see [26] 38, 39, (139, 140, |143]. For
more references, we refer to the review [40]. In contrast to these papers, the main focus
of our work is to allow for general (not necessarily identical) distributions of the matrix
elements.

In this paper, we first study arbitrary Hermitian Kronecker matrices H; the Her-
mitization H¢ of a general Kronecker matrix is itself a Kronecker matrix and therefore
just a special case. Our first result is the global law, i.e., we show that the empirical
density of states of H is asymptotically given by the self-consistent density of states p
determined by the Dyson equation. We then also prove an optimal local law for spectral
parameters away from the instabilities of the Dyson equation. The Dyson equation for
Kronecker matrices is a system of 2N nonlinear equations for L x L matrices, see
later. In case of identical distribution of the entries within each N x N matrix, the
system reduces to a single equation for a 2L x 2L matrix — a computationally feasible
problem. This analysis provides not only the limiting density of states but also a full
understanding of the resolvent for spectral parameters z very close to the real line, down
to scales Im z > 1/N. Although the optimal local law down to scales Im z > 1/N cannot
capture individual eigenvalues inside the support of p, the key point is that outside of
this support a stronger estimate in the local law may be proven that actually detects
individual eigenvalues, or rather lack thereof. This observation has been used for simpler
models before, in particular [60, Theorem 2.3] already contained this stronger form of the
local semicircle law for generalized Wigner matrices, see also [7] for Wigner-type matrices,

Chapter {4 for Gram matrices (cf. [14]) and [56] for correlated matrices with a uniform
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lower bound on the variances. In particular, by running the stability analysis twice, this
allows for an extension of the local law for any Im z > 0 outside of the support of p.

Finally, applying the local law to the Hermitization H® of a non-Hermitian Kronecker
matrix X, we translate local spectral information on H¢ around 0 into information about
the location of the spectrum of X. This is possible since ¢ € Spec(X) if and only if
0 € Spec(H C). In practice, we give a good approximation to the e-pseudospectrum of X
by considering the set of those ( values in C for which 0 is at least € distance away from
the support of the self-consistent density of states for HC.

In the main part of the paper, we give a short, self-contained proof that directly aims at
locating the Hermitian spectrum under the weakest conditions for the most general setup.
We split the proof into two well-separated parts; a random and a deterministic one. In
Section [7.4 and [7.5] as well as Section[7.8 below we give a model-independent probabilistic
proof of the main technical result, the local law (Theorem and Lemma [7.8.1)),
assuming only two explicit conditions, boundedness and stability, on the solution of the
Dyson equation that can be checked separately for concrete models. In Section [7.3.2]
we prove that these two conditions are satisfied for Kronecker matrices away from the
self-consistent spectrum. The key inputs behind the stability are (i) a matrix version of
the Perron-Frobenius theorem and (ii) a sophisticated symmetrization procedure that is
much more transparent in the matrix formulation. In particular, the global law is an
immediate consequence of this approach. Moreover, the analysis reveals that outside of
the spectrum the stability holds without any lower bound on the variances, in contrast to
local laws inside the bulk spectrum that typically require some non-degeneracy condition
on the matrix of variances.

We stress that only the first part involves randomness and we follow the Schur com-
plement method and concentration estimates for linear and quadratic functionals of in-
dependent random variables. Alternatively, we could have used the cumulant expansion
method that is typically better suited for ensembles with correlation [56]. We opted for
the former path to demonstrate that correlations stemming from the block structure can
still be handled with the more direct Schur complement method as long as the noncom-

mutativity of the L x L structure matrices is properly taken into account. Utilizing a
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powerful tensor matriz structure generated by the correlations between blocks resolves

this issue automatically.

Acknowledgement. The authors are grateful to David Renfrew for several discus-
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7.1.1. Notation. Owing to the tensor product structure of Kronecker random ma-
trices (see Definition below), we need to introduce different spaces of matrices. In
order to make the notation more transparent to the reader, we collect the conventions
used on these spaces in this subsection.

For K, N € N, we will consider the spaces CEXEK (CEXE)N and CE*K @ CM*N e,
we consider K x K matrices, N-vectors of K x K matrices and N x N matrices with
K x K matrices as entries. For brevity, we denote M := CE*XK @ CN*V_ Elements of
CE*K are usually denoted by small roman letters, elements of (CE*X)N by small boldface
roman letters and elements of M by capitalized boldface roman letters.

For a € CE*E we denote by |a| the matrix norm of o induced by the Euclidean

distance on C¥. Moreover, we define two different norms on the N-vectors of K x K

matrices. For any r = (rq,...,ry) € (CE*)N we define ||r|| := max¥,|r;|, and
1 N
7|5 = NK ;Tl“(ﬁkﬁ)- (7.1.2)

These are the analogues of the maximum norm and the Euclidean norm for vectors in
CY which corresponds to K = 1. Note that ||| < |7
For any function f: U — CE*E from U C CK*K to CK*K | we lift f to UYN by defining

f(r) € (CEXEYN entrywise for any r = (r1,...,ry) € UN C (CEXE)WN e,

fr)=(f(r1),.... f(rn)). (7.1.3)

We will in particular apply this definition for f being the matrix inversion map and
the imaginary part. Moreover, for € = (z1,...,2x), ¥ = (y1,...,yn) € (CEXEWN we

introduce their entrywise product zy € (CX*%)N through

zy = (1191, .., enyn) € (CTH)N, (7.1.4)
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Note that for K # 1, in general, xy # yx.

If a € CE*K or A € M are positive semidefinite matrices, then we write a > 0
or A > 0, respectively. Similarly, for a € (CK*X)N | we write @ > 0 to indicate that
all components of a are positive semidefinite matrices in CX*¥. The identity matrix in
CHE*E and M is denoted by 1.

We also use two norms on M. These are the operator norm || - |2 induced by the
Euclidean distance on CKY =~ CK @ CV and the norm ||-|ns induced by the scalar

product (-, -) on M defined through

(R, T) — NlKTr (R'T),  |Rl = /(R.R), (7.1.5)

for R, T € M. In particular, all orthogonality statements on M are understood with
respect to this scalar product. Furthermore, we introduce (R) := (1, R), the normalized
trace for R € M.

We also consider linear maps on (CE*E)N and M, respectively. We follow the con-
vention that the symbols ., % and 7 label linear maps (CK*K)N — (CKXE)N and S,
L or T denote linear maps M — M. The symbol Id refers to the identity map on M.
For any linear map 7 : (CK*K)N — (CE*K)N 'let || 7] denote the operator norm of .7
induced by || - || and let ||.7 ||, denote the operator norm induced by || - ||ns. Similarly, for
a linear map T : M — M, we write || T || for the operator norm induced by || - |2 on M
and ||7||sp for its operator norm induced by || - ||ns on M.

We use the notation [n] := {1,...,n} for n € N. For i,5 € [N], we introduce the

matrix F;; € CV*Y which has a one at its (7, 7) entry and only zeros otherwise, i.e.,
Eij = (5ik5jl)]k\{l:1. (716)
For i, j € [N], the linear map Pj;: M — C¥*¥ is defined through
Pin = Tij, (717)

for any R = ZN Tij (059 Eij € M with Tij € CKXK.

1,j=1
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7.2. Main results

Our main object of study are Kronecker random matrices which we define first. To

that end, we recall the definition of £;; from ((7.1.6).

Definition 7.2.1 (Kronecker random matrix). A random matrix X € C/*F @ CN*N is
called Kronecker random matriz if it is of the form
¢ ¢ N
X=>a,0X,+> 5,0V, +%0Y))+> a;®E;, (€N, (7.2.1)
p=1 v=1 i=1
where X, = X € CN*N are Hermitian random matrices with centered independent
entries (up to the Hermitian symmetry) and Y, € CV*¥ are random matrices with
centered independent entries; furthermore Xi,..., X, Y], ..., Y, are independent. The

2

“coefficient” matrices &,, 3,,7, € CI*F are deterministic and they are called structure

matrices. Finally, ai,...,ay € C¥*L are also deterministic.

We remark that the number of X, and Y, matrices effectively present in X may differ
by choosing some structure matrices zero. Furthermore, note that EX = ZfL a; @ Ey,
i.e., the deterministic matrices a; encode the expectation of X.

Our main result asserts that all eigenvalues of a Kronecker random matrix X are con-
tained in the self-consistent e-pseudospectrum for any € > 0, with a very high probability
if N is sufficiently large. The self-consistent e-pseudospectrum, D., is a deterministic
subset of the complex plane that can be defined and computed via the self-consistent
solution to the Hermitized Dyson equation. Hermitization entails doubling the dimension
and studying the matrix H¢ defined in for any spectral parameter ( € C associated
with X. We introduce an additional spectral parameter z € H := {w € C: Imw > 0}
that will be associated with the Hermitian matrix H°. The Hermitized Dyson equation
is used to study the resolvent (H¢ — 21)~".

We first introduce some notation necessary to write up the Hermitized Dyson equation.

For p,v € [{], we define

01 ~ 00 . 01 ~
Q= ® a, + ® ay, B, = ® (B, + 7). (7.2.2)
00 10 0 0
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We set
sty =B, t =Ely (7.2.3)

where x“ - and y;; are the (scalar) entries of the random matrices X, and Y,,, respectively,
ie., X, = (zf)N_, and Y, = (y;)),_;. We define a linear map .% on (C**? @ CH*F)N

i.e., on N-vectors of (2L) X (2L) matrices as follows. For any r = (rq,...,ry) € (C**? ®
CH*IYN we set

Lr] = (Alr], Alr], ..., In[r]) € (CP2 @ CHHN

where the 7-th component is given by

N
Zlr] - Z (Z ShLourRay, + Z t Bkl + 1B, Tkﬁl,)) € C*>*? g Cl*E, i € [N].
k=1

pn=1
(7.2.4)
For j € [N] and ¢ € C, we define a§ € C?*% @ C*L through
0 1 00 0
a5 = ® a; + ®a;— | JETt (7.2.5)
0 0 10 ¢ 0
The Hermitized Dyson equation is the following system of equations
1
- —— =21 -d5+.%[m(2)], j=12,...N, (7.2.6)
m;(z)

for the vector
m¢(2) = (m§(2),...,my(2)) € (C? @ CL*H)N

Here, 1 denotes the identity matrix in C?>*? @ CI*L and ¢ € C as well as z € H are

spectral parameters associated to X and H®, respectively.

Lemma 7.2.2. For any z € H and ¢ € C there exists a unique solution to (7.2.6)) with
the additional condition that the matrices Im mjc-(z) = %(mg(z) — mg(z)*) are positive
definite for all j € [N]. Moreover, for j € [N], there are measures ng on R with values
in the positive semidefinite matrices in C**? @ Ct*L such that
¢
v (dr)
mjc-(z) - /R A S

T —Z

for all z € H and ¢ € C.
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Lemma is proven after Proposition [7.3.10| below. Throughout the paper mS¢
will always denote the unique solution to the Hermitized Dyson equation defined in

Lemma [7.2.2] The self-consistent density of states p¢ of H® is given by

1

N
Clam) e ¢
po(dr) : 2LNJ.2::1T“}] (d7)

(cf. Definition below). The self-consistent spectrum of H® is the set supp p¢ =
Ué-vzl supp UJC-. Finally, for any € > 0 the self-consistent e-pseudospectrum of X is defined
by

D, == {¢ € C: dist(0,supp p°) < €}. (7.2.7)
The eigenvalues of X will concentrate on the set D, for any fixed € > 0 if V is large. The
motivation for this definiton is that ( is in the e-pseudospectrum of X if and only
if 0 is in the e-vicinity of the spectrum of H¢, i.e., dist(0, Spec(H®)) < e. We recall that
the e-pseudospectrum Spec.(X) of X is defined through

Spec, (X)) == Spec(X) U{¢ € C\ Spec(X): (X — 1) s >} (7.2.8)

In accordance with Subsection [7.1.1], ||-|[2 denotes the operator norm on CF*F @ CN*V
induced by the Euclidean norm on C*®@C¥ and 1 is the identity matrix in Ct*L @ CN*V,

The precise statement is given in Theorem below whose conditions we collect

next.
Assumptions 7.2.3. (i) (Upper bound on variances) There is k1 > 0 such that
K1 v K1
for all 4, j € [N] and p,v € [{].
(ii) (Bounded moments) For each p € N, p > 3, there is ¢, > 0 such that
ElziP < N7 ElyjlP < opN 772 (7.2.10)

for all 4, j € [N] and pu,v € [{].
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(iii) (Upper bound on structure matrices) There is ko > 0 such that

a,| < 3,| < 7.2.11
max|a,| < k2, max|f| < o, (7.2.11)

where |a| denotes the operator norm induced by the Euclidean norm on CE.

(iv) (Bounded expectation) Let k3 > 0 be such that the matrices a; € C**F satisfy
N~
m§1x|ai| < Ks. (7.2.12)

The constants L, ¢, k1, ko, k3 and (¢,)en are called model parameters. Our estimates
will be uniform in all models possessing the same model parameters, in particular the
bounds will be uniform in N, the large parameter in our problem. Now we can formulate

our main result:

Theorem 7.2.4 (All eigenvalues of X are inside self-consistent e-pseudospectrum). Fix

L € N. Let X be a Kronecker random matriz as in (7.2.1)) such that the bounds (7.2.9) —
(7.2.12)) are satisfied.

Then for each e > 0 and D > 0, there is a constant C. p > 0 such that

P(Spec(X) CD.) >1-— (]ng (7.2.13)

The constant Cep in (7.2.13)) only depends on the model parameters in addition to e
and D.

Remark 7.2.5. (i) Theorem follows from the slightly stronger Lemma
below; we show that not only the spectrum of X but also its £ /2-pseudospectrum
lies in the self-consistent e-pseudospectrum.

(ii) By carefully following the proof of Lemma [7.6.1] one can see that ¢ can be
replaced by N~ with a small universal constant § > 0. The constant C in
(7.2.13) will depend only on D and the model parameters.

(iii) (Only finitely many moments) If holds true only for p < P and some
P € N then there is a Dy(P) € N such that the bound is valid for all
D < Dqy(P).

(iv) The self-consistent e-pseudospectrum D, from is defined in terms of the

support of the self-consistent density of states of the Hermitized Dyson equation
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(v)

(vi)

(7.2.6)). In particular, to determine D, one needs to solve the Dyson equation
for spectral parameters z in a neighborhood of z = 0. There is an alternative
definition for a deterministic e-regularized set that is comparable to D. and

requires to solve the Dyson equation solely on the imaginary axis z = in, namely

~ 1 1
D. = {¢: li — max|TmmS(in)| > =}.
{Q ur;isoup p mjax| m m; (in)| > 8} (7.2.14)

Hence, ([7.2.13)) is true if D, is replaced by D.. For more details we refer the
reader to Section [.7 below.

*

(Hermitian matrices) If X is a Hermitian random matrix, X = X", i.e., @, = a;,

and (% = 7, for all 4, v € [(] and @ = G, for all i € [N], then the Hermitization
is superfluous and the Dyson equation may be formulated directly for X. One
may easily show that the support of the self-consistent density of states p is the
intersection of all self-consistent e-pseudospectra:
supp p = ﬂ D..
>0

Theorem as well as its stronger version for the Hermitian case, Theo-
rem [7.4.7) identify a deterministic superset of the spectrum of X. In fact, it
is expected that for a large class of Kronecker matrices the set (..o D. is the
smallest deterministic set that still contains the entire Spec(X') up to a negligible
distance. For L = 1 this has been proven for many Hermitian ensembles and
for the circular ensemble. Example below presents numerics for the L > 2

case.

Example 7.2.6. Fix L € N. Let (;,...,(; € C and a € C'*% denote the diagonal

matrix with (1,...,(y on its diagonal. We set X :=a ® 1 + W, where W has centered

i.i.d. entries with variance 1/(NL). Clearly, X is a Kronecker matrix. In this case the

Dyson equation can be directly solved and one easily finds that

L 1
D, = c:S — > 2.
Qo {( c ; T > L} (7.2.15)
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(To our knowledge, the formula on the r.h.s. first appeared in [100]). Figure shows
the set (7.2.15)) and the actual eigenvalues of X for N = 8000 and different matrices a.

-15 -1 =05 O 0.5 1 1.5 -15 -1 -05 0 0.5 1 1.5
Re( Re(¢
(a) {1, G2} = {+0.97} () {1, 2} = {£1.0}

0.5

-0.5

-1.5

Re(

-1 0 1
(C) {Cl,CQ} = {:|:1.03} Re(

(D) {C1s..., ¢} = {0, +1.4,+0.8 +i1.26}

FiGURE 7.1. Eigenvalues of sample random matrix with N = 8000 and N.~oD:..

The empirical density of states of a Hermitian matrix H € CE*L @ CV*V is defined

through

i (d7) ::ﬁ S Sdr). (7.2.16)

A€Spec(H)

Theorem 7.2.7 (Global law for Hermitian Kronecker matrices). Fiz L € N. For N € N,
let Hy € CH*L @ CN*N be a Hermitian Kronecker random matriz as in (7.2.1)) such that
the bounds (7.2.9) — (7.2.12)) are satisfied. Then there exists a sequence of deterministic

probability measures py on R such that the difference of py and the empirical spectral

measure (g, , defined in (7.2.16)), of H n converges to zero weakly in probability, i.e.,

tim [ F(7)(my — py)(dr) =0 (7.2.17)

N—o0
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for all f € Co(R) in probability. Here, Cy(R) denotes the continuous functions on R
vanishing at infinity.
Furthermore, there is a compact subset of R which contains the supports of all py.

This compact set depends only on the model parameters.

Theorem is proven in Section [7.§] below. The measure py, the self-consistent
density of states, can be obtained by solving the corresponding Dyson equation, see
Definition[7.3.3|later. If the function f is sufficiently regular then our proof combined with
the Helffer-Sjéstrand formula yields an effective convergence rate of order N~ in (7.2.17)).

7.3. Solution and stability of the Dyson equation

The general matrix Dyson equation (MDE) has been extensively studied in [6], but
under conditions that exclude general Kronecker random matrices. Here, we relax these
conditions and show how to extend some key results of [6] to our current setup. Our
analysis of the MDE on the space of n x n matrices, M = C"*", will then be applied
to with n = 2LN = KN. On M = C™" we use the norms as defined in
Subsection and require the pair (A, 8) to have the following properties:

Definition 7.3.1 (Data pair). We call (A,S) a data pair if
e The imaginary part In A = (A — A*) of the matrix A € C™™ is negative
semidefinite.
e The linear operator & : C"*" — C™*" is self-adjoint with respect to the scalar
product
(R,T) — iTr[R*T],
and preserves the cone of positive semidefinite matrices, i.e., it is positivity pre-

serving.
For any data pair (A,S), the MDE then takes the form
~ M '(2)=21-A+S[M(z)], z€cH, (7.3.1)

for a solution matrix M (z) € C™*™. It was shown in this generality that the MDE, (7.3.1)),

has a unique solution under the constraint that the imaginary part Im M (z) := (M (z) —
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M (z)*)/(2i) is positive definite [96]. We remark that Im A being negative semidefinite
is the most general condition for which our analysis is applicable. Furthermore, in [6],
properties of the solution of and the stability of against small perturbations
were studied in the general setup with Hermitian A and under the so-called flatness

assumption,

Tr(R)1 < S|R] < — Tr(R)1, (7.3.2)

c

n
for all positive definite R € C™*" with some constants C' > ¢ > 0. Within Section |7.3| we
will generalize certain results from [6] by dropping the flatness assumption and
the Hermiticity of A. The results in this section, apart from below, follow by
combining and modifying several arguments from [6]. We will only explain the main steps
and refer to [6] for details. At the end of the section we translate these general results

back to the setup of Kronecker matrices with the associated Dyson equation (7.2.6]).
7.3.1. Solution of the Dyson equation. According to Proposition 2.1 in [6] the
solution M to ([7.3.1)) has a Stieltjes transform representation

M(z) = /R‘:(f? ZEH, (7.3.3)

where V' is a compactly supported measure on R with values in positive semidefinite
n x n-matrices such that V(R) = 1, provided A is Hermitian. The following lemma
strengthens the conclusion about the support properties for this measure compared to

Proposition 2.1 in [6].

Lemma 7.3.2. Let (A,8) be a data pair as in Definition and M : H — C™" be
the unique solution to (7.3.1) with positive definite imaginary part. Then

(i) There is a unique measure V' on R with values in positive semidefinite matrices
and V(R) =1 such that (7.3.3)) holds true.
(ii) If A is Hermitian, then
supp V' C Spec A + [-2||S|V/2, 2|8V, (7.3.4a)

Spec A C supp V + [—||S||*2, ]ISV (7.3.4Db)
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PROOF OF LEMMA [1.3.2] The representation follows exactly as in the proof
of Proposition 2.1 in [6] even for A with negative semidefinite imaginary part. We now
prove (7.3.4a) motivated by the same proof in [6]. For a matrix R € C™*"| its smallest
singular value is denoted by oy, (R). Note that oy (21 — A) = dist(z, Spec A) since A
is Hermitian. In the following, we fix z € H such that dist(z, Spec A) = opin (21 — A) >
2|17,

Under the condition || M (2)|l2 < omin(z1 — A)/(2]|S]|), we obtain from

1 1
<
Tmin (21 = A+ S[M(2)]) = omin(z1 — A) — [ S| M (2)]]
2
< .
~ dist(z, Spec A)

IM(2)]l2 =

(7.3.5)

Therefore, using o (21 — A) > 2||S||'/?, we find a gap in the values || M(z)||s can

achieve

2 Omin(z1 — A
1M ()] ¢ (Umm(z]l — Ay é||S|| ))

For large values of n = Im z, || M (z)||s is smaller than the lower bound of this interval.
Thus, since || M (z)||2 is a continuous function of z and the set {w € H: dist(w, Spec A) >
2||S||*/?} is path-connected, we conclude that holds true for all z € H satisfying
dist(z, Spec A) > 2||S||*/2.

We take the imaginary part of and use A = A" to obtain Im M = nM*M +
M*S[Im M|M . Solving this relation for Im M and estimating its norm yields

n| M5 _ 4n
L—[|S[[[[M][3 ~ dist(z, Spec A)* — 4] S]]’

[Tm M ||, <

Here, we employed ||M|3||S|| < 1 by (7.3.5) and dist(z, Spec A) > 2||S||'/?. Hence,
Im M converges to zero locally uniformly on the set {2 € H: dist(z, Spec A) > 2||S||*/?}
for n | 0. Therefore, E ¢ supp V if dist(E, Spec A) > 2||S||*/2. This concludes the proof

of ([73.4).
We now prove (7.3.4b)). From ([7.3.1)), we obtain

A—21 =M1+ MS[M)) (7.3.6)
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for z € H. Since V(R) = 1, we have

M, < . 7.3.7
121> < dist(z,supp V) ( )
Therefore, taking the inverse in (7.3.6) and applying (7.3.7) yield
1
A—z21)7 s < 7.3.8
It )l = dist(z,supp V')(1 — ||S]| dist(z, supp V')~2) ( )

for all z € H satisfying dist(z,supp V)? > ||S||. Taking Imz | 0 in (7.3.8), we see
that the matrix A — F1 is invertible for all £ € R satisfying dist(E, supp V)? > ||S]],

showing ([7.3.4b)). U

In accordance with Definition 2.3 in [6] we define the self-consistent density of states

as the unique measure whose Stieltjes transform is n=* Tr M.

Definition 7.3.3 (Self-consistent density of states). The measure
1
p(dr) = ﬁTr V(dr) = (V(dr)) (7.3.9)

is called the self-consistent density of states. Clearly, supp p = supp V. For the following
lemma, we also define the harmonic extension of the self-consistent density of states
p: H — R, through

1<Im M(z)). (7.3.10)

™

p(z)
In the following we will use the short hand notation
d,(z) == dist(z,supp p) .

Lemma 7.3.4 (Bounds on M and M "). Let (A, S8) be a data pair as in Definition|7.3.1]

(i) For z € H, we have the bounds

1
M|, < —— 3.1
|| ||2 = dp(z)v (73 a)
- Imz
(Im2)|M 521 <Im M < dT(z)]l’ (7.3.11b)
p

1Mo < [2] + (A2 + IS M]]2. (7.3.11c)
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(it) For z € H, we have the bound

Im z

md3(z)

ProOOF. Using (7.3.3) immediately yields ([7.3.11a]) and the upper bound in ([7.3.11b)
since V(R) = 1. With n = Im z and taking the imaginary part of (7.3.1), we obtain

p(z) < (7.3.12)

Im M = nM*M — M*(Im A)M + M*S[Im M|M > nM*M

as Im A < 0, Im M > 0 and 8 is positivity preserving. Since R*R > ||[R™'||5?1 for any

R € C™ ™ the lower bound in ([7.3.11b)) follows. From ((7.3.1)), we obtain (7.3.11¢). Since
p(z) = 7~1{Im M (z)) the upper bound in (7.3.11b)) implies (7.3.12)). O

7.3.2. Stability of the Dyson equation. The goal of studying the stability of the
Dyson equation in matrix form, ([7.3.1]), is to show that if some G satisfies

—1=(z1-A+S[G)G+D (7.3.13)

for some small D, then G is close to M. It turns out that to a large extent this is a

question about the invertibility of the stability operator £ := Id — M S[-|M acting on

C™ ™. From (|7.3.1)) and ([7.3.13)), we obtain the following equation
LIG—M]=MD+ MS[G—- M|(G—- M) (7.3.14)

relating the difference G — M with D. We will call the stability equation. Under
the assumption that G is not too far from M, the question whether G — M is comparable
with D is determined by the invertibility of £ in and the boundedness of the
inverse.

In this subsection, we show that || £7*|| is bounded, provided dist(z, supp V') is bounded
away from zero. In order to prove this bound on £, we follow the symmetrization pro-
cedure for £ introduced in [6]. We introduce the operators Cg: C"*" — C™" and

F: C" — C™™ through

CrlQ] = RQR, F = CwC immrSCmarlw,
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for Q € C™". Furthermore, the matrix T" € C™*", the unitary matrix U € C"*" and

the positive definite matrix W € C"*" are defined through

_ , T
T =ClfylReM] =il U= o We=|T|'”
With these notations, a direct calculation yields
L =1d~CuS = CyimuiCwCu (Cu — F)Ciy C iz (7.3.15)

as in (4.39) of [6].

We remark that Cg for R € C"*" is invertible if and only if R is invertible and
Cr' = Cp—1 in this case. Similarly, C; = Cg-.

Our goal is to verify | F||sp < 1 — ¢ for some positive constant ¢ which yields ||(Cy —
F) s < ¢t as |[Cullsy = 1. Then the boundedness of the other factors in

implies the bound on the inverse of the stability operator L.

Convention 7.3.5 (Comparison relation). For nonnegative scalars or vectors f and g,
we will use the notation f < g if there is a constant ¢ > 0, depending only on ||S||ns— -
such that f < cqg and [ ~ g if f < g and f 2= g both hold true. If the constant c
depends on an additional parameter (e.g. € > 0), then we will indicate this dependence

by a subscript (e.g. <c).
Lemma 7.3.6. Let (A, S) be a data pair as in Definition |7.3.1,.
(i) Uniformly for any z € H, we have
dy(2)|M 7Y% S WH(Im 2)* < [|M 5| M"|21. (7.3.16)

(ii) There is a positive semidefinite F € C"™™ such that |F||ys = 1 and F[F] =
| Fllsp - Moreover,

(F,Cw[Im M])
1= Flly = (2 2 (73.17)
(7ii) Uniformly for z € H, we have
1= [|Fllsp 2 dy(2) M5 (7.3.18)
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The proof of this lemma is motivated by the proofs of Lemma 4.6 and Lemma 4.7 (i)
in [6].

Proor. We set 1 := Im z. We rewrite the definition of W and use the upper bound

in ([7.3.11bf) to obtain
W4 = C:/IlmiM(CImM + CReM) [(Im M)il] Z ﬁfldi(Z)C:/IlmiM[MM* + M*M]

2AM 3P d (=)L

Here, we also applied M M* + M*M > 2||M~*||3?1 and the upper bound in (7.3.11D))
again. This proves the lower bound in . Similarly, using MM* + M*M <
2||M |31 and the lower bound in (7.3.11b])) we obtain the upper bound in (7.3.16)).

For the proof of (ii), we remark that F preserves the cone of positive semidefinite
matrices. Thus, by a version of the Perron-Frobenius theorem of cone preserving operators
there is a positive semidefinite F' such that | F|ps = 1 and FF = ||F||s,F. Following
the proof of (4.24) in [6] and noting that this proof uses neither the uniqueness of F' nor
its positive definiteness, we obtain .

The bound in ([7.3.18]) is obtained by plugging the lower bound in and the
lower bound in into . We start by estimating the numerator in ([7.3.17]).
Using F' > 0, the cyclicity of the trace, and the lower bound in , we get

(F,Cwllm M]) > n{(VEW*VF)|M ;> 2 | M, d3(=)(F). (7.3.19)

Similarly, we have

(F.W2%) = (VFW *VF) < d;gz) M2 F). (7.3.20)

Combining ((7.3.19)) and ([7.3.20]) in (7.3.17)) yields ([7.3.18]) and concludes the proof of the

lemma. O

Lemma 7.3.7 (Bounds on the inverse of the stability operator). Let (A,S) be a data
pair as in Definition |7.5.1].
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(i) The stability operator L is invertible for all z € H. For fited E € R and
uniformly for n > max{1, |E|, || All2}, we have

1LY (E+in)| < 1. (7.3.21)

(7i) Uniformly for z € H, we have

1M (=) [l M (=) 113

L) < 7.3.22
£ @) ot (7322)

(7ii) Uniformly for z € H, we have
L7 I+ L) S L+ [IM )5+ M )L () lsp- (7.3.23)

Proor. We start with the proof of (7.3.22)). From the upper and lower bounds in
(7.3.16|) and ([7.3.11b)), respectively, we obtain

1 - _ n ~
Cwll <= M|yl M2 Catl < Mt 7.3.24
[Cw || NUH 2] 2, ICw || Ndz(z)ll ll2, ( a)
n _ 1 _
ICymatll S IC ezl S = IM. (7.3.24b)
dp(’z) n

Since ||Crllsp < ||Cr|| for Hermitian T' € C**™ we conclude from ([7.3.24)), (7.3.18)) and
(7.3.11af) the bound

HJVIHZHJVT_1H3|
dy(2)

_ MM

127 s < (Co=F) s S
P P dﬁ(Z)

~

Therefore, exactly as in the proof of (4.53) in [6], we obtain the first bound in (7.3.23)).

For the proof of (7.3.23), we remark that ||S||psy. S 1 implies | S|f).jons S 1.

We similarly conclude the second bound from |[(£L™)*|lsp = [|1£7|sp-

We conclude the proof of Lemma by remarking that ([7.3.21)) is a consequence
of (7.3.22)), (7.3.11a)), (7.3.23)) and (7.3.11c)). O

Corollary 7.3.8 (Lipschitz-continuity of M). If (A,S) is a data pair as in Defini-
tion then there ezists ¢ > 0 such that for each (possibly N-dependent) € € (0,1] we

have

IM(21) = M(2)2 < (7 + [[Al[5)]21 — 2| (7.3.25)

for all z1, zo € H such that Im z;,Im z5 > €.
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Proor. We differentiate (7.3.1)) with respect to z and obtain £[0,M] = M?*. We
invert £, use ([7.3.22)), (7.3.11a]) and (7.3.11c|) and follow the proof of ([7.3.23)). This yields
(7.3.25)) and hence concludes the proof of Corollary [7.3.8] d

7.3.3. Translation to results for Kronecker matrices. Here we translate the
results of Subsections [7.3.1] and [7.3.2] into results about (7.2.6). In fact, we study
in a slightly more general setup. Motivated by the identification C**? @ CL*E = C2Lx2L
we consider on CX*X for some K € N instead. The results of Subsections[7.3.1]and

7.3.2| are applied with n = K N. Moreover, the special a§ defined in ([7.2.5)) are replaced
by general a; € CK*X. Therefore, the parameter ¢ will not be present throughout this

subsection. We thus look at the Dyson equation in vector form

m(z) 21— a; + Z5[m(2)], (7.3.26)

where z € H, m;(z) € CE*K for j € [N], m(z) == (my(2),...my(2)) and % is defined
as in (|7.2.4]).

Recall that the definition of .} involves coefficients sj; and t}; as well as matrices
a, and 3,. Next, we formulate assumptions on % in terms of these data as well as

assumptions on aq,...,ay.

Assumptions 7.3.9. (i) For all u,v € [{] and i,57 € [N], we have nonnegative
scalars sj; € R and t; € R satisfying (7.2.9). Furthermore, s}; = s, for all
i,j € [N]and p € [(].

(ii) For p,v € [{], we have a, 8, € C**K and «,, is Hermitian. There is a* > 0

such that
max|a,| < o, max|5,| < a. 7.3.27
naxla,l <o’ maxl] < (7:3:27)
(iii) The matrices ay,...,ay € CE*K have a negative semidefinite imaginary part,
Ima; <0.

The conditions in (i) of Assumptions are motivated by the definition of the
variances in ([7.2.3). In particular, since X, is Hermitian the variances from ([7.2.3)

satisfy sj; = ;.
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In order to apply the results of Subsections|7.3.1{ and [7.3.2| to (7.3.26)), we now relate

it to the matrix Dyson equation (MDE) (7.3.1)). It turns out that (7.3.26) is a special
case when the MDE on M = CK*E @ CVN*N is restricted to the block diagonal matrices

D :=span{a ® D: a € C*** D € C"*V diagonal} c M. (7.3.28)

We recall £y, . and Py from (7.1.6)), (7.2.4) and (7.1.7)), respectively, and define A € M
and §: M — M through

N N
A= Z a; X Ell: S[R] = Z LSﬂlKPH_R, c. 7PNNR)] 0% Ell' (7329)
=1

=1
With these definitions, the Dyson equation in vector form, , can be rewritten in
the matrix form for a solution matrix M € M. In the following, we will refer to
(7.3.1)) with these choices of M, A and § as the Dyson equation in matriz form.
In the remainder of the paper, we will consider the Dyson equation in matrix form,

(7.3.1]), exclusively with the choices of A and & from (7.3.29). We have the following
connection between ((7.3.26) and (7.3.1)). If M is a solution of ([7.3.1) then, since the

range of & is contained in D and A € D, we have M € D, i.e, it can be written as
N
j=1

for some unique my(z),...,my(z) € C¥*X. Moreover, these m; solve (7.3.26). Con-
versely, if m = (mq,...,my) € (CEXE)N golves then M defined via
is a solution of . Furthermore, if M satisfies then Im M is positive defi-
nite if and only if Imm,; is positive definite for all j € [N]. This correspondence yields

the following translation of Lemma [7.3.2] to the setting for Kronecker random matrices,

Proposition below.

For part (ii), we recall ||r| = max¥,|r;| for » = (ry,...,rn) € (CEXE)N and that
||| denotes the operator norm of .#: (CEXK)N — (CEXK)N induced by ||-||. We
also used that [|.7| = ||S]|, which is easy to see since . = 8 on the block diagonal

matrices (CK*5)N =~ D and & = 0 on the orthogonal complement D+. The orthogonal

complement is defined with respect to the scalar product on M introduced in ([7.1.5)).
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Furthermore, we remark that the identity (7.3.30) implies

[M]]5 = [lm]|

Proposition 7.3.10 (Existence, uniqueness of m). Under Assumptions we have
(i) There is a unique function m: H — (CEXX)N sych that the components m(z) =
(m1(2),...,mn(2)) satisfy (7.3.26) for z € H and all j € [N] and Imm;(z) is
positive definite for all z € H and all j € [N]. Furthermore, for each j € [N],
there is a measure v; on R with values in the positive semidefinite matrices of

CEXE such that v;(R) = 1 and for all z € H, we have
v;(dr)

i(2)=[| ——. 7.3.31
mj(z) = [ (7.3.31)
(ii) If a; is Hermitian, i.e., a; = aj for all j € [N] then the union of the supports of

vj is comparable with the union of the spectra of the a; in the following sense

N N
U suppv; € | Speca; + [=2[|.7||*/2, 2|73, (7.3.32a)
Jj=1 Jj=1
N N
| Speca; c | suppv; + [—||7]1M2, |- ||V/2). (7.3.32b)
J=1 Jj=1

Proor orF LEMmMA [7.2.2] Using the identification C?*? @ CI*F =~ CK*K for K = 2L
and the definitions in (7.2.2) and (7.2.5)), the lemma is an immediate consequence of
Proposition [7.3.10| with a; = a]C- for j € [N] since the proof of the proposition only uses

the qualitative conditions in Assumptions [7.3.9] U
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Proposition [7.3.10] asserts that there is a measure Vas on R with values in the positive

semidefinite elements of D C M such that for z € H, we have

T—Z

Vaz(dr) :ﬁ;vj(dr)@Ejj, M(z) = /R L Var(dn). (7.3.33)

Clearly, we have Vjy = V for the unique measure V' with values in positive semidefinite
matrices that satisfies (7.3.3). And we have supp Vas = supp p with the self-consistent
density of states defined in ([7.3.9). Note that in this setup

pdr) = o2 > Troy(dr). (7.3.34)

with the C**X_-matrix valued measures v; defined through (7.3.31]).

In the remainder of the paper, m = (my,...,my) and M always denote the unique

solutions of (|7.3.26)) and ([7.3.1]), respectively, connected via (7.3.30). We now modify

the concept of comparison relation introduced in Convection so that inequalities

are understood up to constants depending only on the model parameters from Assump-

tion [.3.9.

Convention 7.3.11 (Comparison relation). From here on we use the comparison relation

introduced in Convection[7.3.5 so that the constants implicitly hidden in this notation may

depend only on K, £, k1 from (7.2.9) and o from (7.3.27)).

Lemma 7.3.12 (Bounds on .¥). Assumptz'ons imply
s =L [ S 1. (7.3.35)

PROOF. Direct estimates of .#[a] for a € (CE*K)N starting from the definition of .7,

(7.2.4]), and using the assumptions ((7.2.9) and (7.3.27)) yield the bounds in (7.3.35). O

Similarly to £, we now introduce the stability operator of the Dyson equation in

vector form, (7.3.26)). In fact, it is defined through
L (CEWN 5 (CEN - L(ry, . rw) = (ri — T [r]m) . (7.3.36)

We remark that & and thus L leave the set of block diagonal matrices D defined in
(7.3.28) invariant. The operators . and .Z are the restrictions of & and £ to D. In
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particular, we have
127 sp < 1€ s N7 1 S max{L, .27 I}, 127 < L7, (7.3.37)

since L acts as the identity map on the orthogonal complement D+ of the block diagonal
matrices. Here, the orthogonal complement is defined with respect to the scalar product
on M introduced in . Moreover, .Z is invertible if and only if L is invertible. Using
the bounds on £ from Lemma can be translated into bounds on .

7.4. Hermitian Kronecker matrices

The analysis of a non-Hermitian random matrix usually starts with Girko’s Her-
mitization procedure. It provides a technique to extract spectral information about a

non-Hermitian matrix X from a family of Hermitian matrices (H)ccc defined through

) 01 0 0 . [0 ¢
H* = ® X + X*—|_ ® 1, ¢eC. (7.4.1)
0 0 10 ¢ 0

Applying Girko’s Hermitization procedure to a Kronecker random matrix X as in ([7.2.1])
generates a Hermitian Kronecker matrix H® € C*?@CH*t@CN*N. However, similarly to

our analysis in Section [7.3] we study more general Kronecker matrices H € CE*EgCN*N

as in (7.4.2)) below for K, N € N. This is motivated by the identification C**2 © CL*L =
(C2L><2L'

For K, N € N, let the random matrix H € C¥*X @ CN*N be defined through

l l N
H=> ,X,+> 5,oY,+8,Y))+> a® Ey. (7.4.2)
v=1

p=1 i=1
Furthermore, we make the following assumptions. Let ¢ € N. For u € [{], let a,, € CF*E
be a deterministic Hermitian matrix and X, = X} € C"*" a Hermitian random matrix
with centered and independent entries (up to the Hermitian symmetry constraint). For
v € [l], let 3, € CK*K be a deterministic matrix and Y, a random matrix with centered
and independent entries. We also assume that Xy,..., X,, Y;,..., Y, are independent. Let

ai,...,ay € CE*E bhe some deterministic matrices with negative semidefinite imaginary
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part. We recall that E;; was defined in and introduce the expectation A :=EH =
i]il a; @ Ey.

If A is a Hermitian matrix then H as in (7.4.2)) with the above properties is a
Hermitian Kronecker random matrix in the sense of Definition [7.2.1] As in the setup
from ([7.2.1)), the matrices aq,...ayp, B1,..., B¢ are called structure matrices.

Since the imaginary parts of aq, ..., ay are negative semidefinite, the same holds true
for the imaginary part of A and H. Hence, the matrix H — 21 is invertible for all z € H.
For z € H, we therefore introduce the resolvent G(z) of H and its “matrix elements”

Gij(2) = P,;G € CF*K for i, j € [N] defined through
G(Z) = (H — Z]l)il’ G(Z) = Z Gz](z) X EZ]

We recall that P;; has been defined in . Our goal is to show that G; is small for
i # j and Gy is well approximated by the deterministic matrix m;(z) € CE*K in the
regime where K € N is fixed and N € N is large.

Apart from the above listed qualitative assumptions, we will need the following quan-
titative assumptions. To formulate them we use the same notation as before, i.e., the
entries of X, and V), are denoted by X,, = («f;);,_; and Y, = (y%)},_; and their variances

by si; == E|zf5|* and t7; == E|yZ|* (cf. (7.2.3)).

Assumptions 7.4.1. We assume that all variances s}; and t¢; satisfy (7.2.9) and the en-
tries f; and y;; of the random matrices fulfill the moment bounds (7.2.10). Furthermore,

the structure matrices satisfy ((7.3.27)).

In this section, the model parameters are defined to be K, ¢, k1 from , the
sequence (p,)pen from (7.2.10) and o* from (7.3.27), so the relation < indicates an in-
equality up to a multiplicative constant depending on these model parameters. Moreover,
for the real and imaginary part of the spectral parameter z we will write £ = Re z and

n = Im z, respectively.
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7.4.1. Error term in the perturbed Dyson equation. We introduce the notion

of stochastic domination, a high probability bound up to N¢ factors.

Definition 7.4.2 (Stochastic domination). If ® = (®M)y and ¥ = (¥V)y are two
sequences of nonnegative random variables, then we say that ® is stochastically dom-
inated by U, ® < W, if for all ¢ > 0 and D > 0 there is a constant C(e, D) such

that

C(e, D)
ND

for all N € N and the function (g, D) — C(e, D) depends only on the model parameters.

P (™) > NewV) < (7.4.3)

If ® or U depend on some additional parameter 6 and the function (e, D) — C(e, D)
additionally depends on ¢ then we write ® <5 W.

We set h;; = P;H € CF*K. Using Py, A = )0, Exty, = 0, Ey, = 0, (7.2.9),
(7.3.27)) and ([7.2.10) we trivially obtain

| P (H — A)| = |hip — a;6| < N7/, (7.4.4)
For B C [N] we set
N
HB — > hf; ® Eyj, hg = hi;1(i,j ¢ B),
ij=1

-1
and denote the resolvent of H? by GP(z) := (HB - z]l) for € H. Since Im H? =
Im A® <0 for B C [N], the matrix (H” — z1) is invertible for all z € H and

1
B
< —. 4.
IGP ) < (7.45)

In the following, we will use the convention

DS

keA  keA\B

for A,B C [N] and B C A. If A = [N] then we simply write >7.

For i € [N], starting from the Schur complement formula,

{i}
1 .

— =z —hy+ E h,’kG,{J}hl,‘, (746)
Gii k.l
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and using the definition of . in (7.2.4)), we obtain the perturbed Dyson equation

1
o = z1 —a;, + S[g| + d;. (7.4.7)

Here, we introduced
gi = G, g:=1(g1,...,9n) € (CF")N (7.4.8)

and the error term d; € CX*X. We remark that is a perturbed version of the

Dyson equation in vector form, , and recall that m denotes its unique solution

(cf. Proposition [7.3.10]). To represent the error term d; in , we use hjp = a;0;; +
T+ 20, (Yh By + yiiBy) and write d; = dV 4.+ d§8), where

dY == —hi + a;, (7.4.9a)

d?) = Z (Z O‘quk Ay (‘xfk|2 - ka)

(7.4.9b)
+ 3 (il = ) B,GE B + (lwil® — ) BGR BY) ).
(3) & v {i} v o ok i} g
di” = Z Z (yikﬁquk Bvrs + YkilBo G ﬁyyfk;) (7.4.9¢)
vk
{i} {i}
dY = ( DY Z)O‘u G Qs (7.4.9d)
p=p' kAL pFEp k)l
(5) 4 ey it (v Pt
d” = ( +> Z) (B0 + U:85) Gi (b B + i B3 (7.4.9)
v=v kA vkl
(6) i w i} v U Q% v — % {i}
di” =3 > % (au%kal Wby + yiB) + WiBy + viiBy) G xlz’au) ; (7.4.9f)
PRI
{i} ,
d§7) =D (Zausﬁc (GIE’;C} - Gkk) Qp
CRR? (7.4.9g)
+ > (8B, (Gl — Gu) By + 11,85 (Gl — Gu) B) ),
d = — ( > stiauGiiay + ) 1 (B,Galy + B,Guby) ) (7.4.9h)
m v

In the remainder of this section, we consider ¥ = Re z to be fixed and view quantities

like m and G only as a function of n = Im 2. In the following lemma, we will use the
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following random control parameters to bound the error terms introduced in ((7.4.9):

1 e o 1)/2
Mis(n) = 5 | T G(E + i) G(E + in)|
1 N s ) ) . vxp]1/2
Aw(n) = o [ Tr P4[G(E +in)"G(E + in) + G(E + in)G(E +in)"]| ", (7.4.10)
A(n) = grffvgflGij(E +1in) —mi(E +1n) 0ij] -
We remark that due to our conventions, we have
[ml| = max|m|,  [Jm| = maxim; |
Lemma 7.4.3. (i) Uniformly for n > 1 and i # j, we have
Id;| < 1, (7.4.11a)
(eI (7.4.11b)
(7i) Uniformly for n > 0, we have
1
AV 4+ AP x < = 4 A+ [m A2, 74.12a
(Id; | |d;”"1) x Tt [~ [AS ( )
1
(4714 17D x =< [[m 7 IAS + 571Gl (7.4.12b)
where  is the characteristic function x = 1(A < (4|lm~)™1).
Moreover, uniformly for n > 0 and i # j, we have
Gyl x < [lm| Ay (7.4.13)

In the proof of Lemma [7.4.3] we use the following relation between the entries of G*
and GTYF

L TU{k) 1
GL =G+ GZ,;G—TG{j (7.4.14)
kk

for T C [N], k¢ T and 4,5 ¢ T'U{k}. This is an identity of K x K matrices and 1/G},
is understood as the inverse matrix of G¥,. The proof of (7.4.14)) follows from the Schur

complement formula.
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Proor. We will prove the bounds in ([7.4.12)) in parallel with the estimate

1 1/2 {z} 1
AP+ 4 1dP] < —— GL ~ 2 G [+ 721Gl (T4.15)
VN N(Z ) Z N Zk:

that we will use to show .

The trivial estimate implies that |d\"| < 1/v/N.

In the remaining part of the proof, we will often apply the large deviation bounds
with scalar valued random variables from Theorem C.1 in [60]. In our case, they will be
applied to sums or quadratic forms of independent random variables, whose coefficients
are K x K matrices; this generalization clearly follows from the scalar case [60] if applied
to each entry separately.

We first show the following estimate

1 &

) 1 (i} 2 1/2
1d?)| + |d® \< Z|G : (7.4.16)

From the linear large deviation bound (C.2) in [60], we conclude that the first term in

(7.4.9b)) is bounded by
1/2
ZMZG (g2 — st !|au|<*(z|a )",

The second and third term in (7.4.9b)) are estimated similarly with the help of (C.2) in
[60] which yields (7.4.16|) for |d£2)|. We apply the linear large deviation bound (C.2) in
[60] and bound the first term in (7.4.9¢)) as follows:

: 1,1 . 1/2
> (zyzkymmm) < (e
k

The bound on the second term in ((7.4.9¢|) is obtained in the same way. Consequently, we
have proven ([7.4.16)).
Using the quadratic large deviation bounds (C.4) and (C.3) in [60], we obtain

1 & Ao\ 12
V) + 10| + a0 < (NQZ\G,E,U) . (7.4.17)
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Moreover, ((7.4.16|) and ((7.4.17)) also imply that \dZ@)] +...+ |d1(-6)| are bounded by the
second term on the right-hand side of ([7.4.15)).

Using ([7.4.14), (7.2.9) and ([7.3.27)), we conclude

{i} {i}
1d7) < min{ Z|sz l, Z(l GiY |+ G }- (7.4.18)
k
The assumptions ([7.2.9)) and ((7.3.27) imply
7] 5 1Gal /N. (7.4.19)

This concludes the proof of (7.4.15)). Applying ((7.4.5)) to (7.4.15), we obtain ((7.4.11a)).
For all k,1 ¢ {i}, we now show that

af

This immediately ylelds (7.4.12a)) using ) and (7.4.17)). For the proof of (7.4.20),

we conclude from ([7.4.14)) by dividing and multlplymg the second term by m,; that

4
X < |Gl + §||m_1|||Gki||Gil|- (7.4.20)

1 1
G = G — Gri—m;—Gy. 7.4.21
Kl Kl k Giim m; l ( )
From the definition of x in Lemma [7.4.3] we see that
—Gij — 0y

i

X< -,

4.22
3 , (7422)

‘ 1

which proves ([7.4.20) and hence ([7.4.12a)).

Since (7.4.12b)) is established for |d§8)| (cf. (7.4.19)), it suffices to use the second
bound in ((7.4.22)) to finish the proof of (7.4.12b]) by estimating \dzml via the first term

n (74.18).
We now show ([7.4.13) and ([7.4.11b]). The identity

{i}
Gy = =G hyGy,

k

and the linear large deviation bound (C.2) in imply

1 {7}

65l < (5 2I681) 61 (7.4.23)
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Using ([7.4.5)) to estimate ]Gl{,g}] and |Gj;|, we obtain (7.4.11b]). Applying the estimate
(7.4.20) and the definition of x in (7.4.23)) yield |Gi;|x < |Gj;lxAw. Hence, the second
bound in (7.4.22)) implies (7.4.13)) and conclude the proof of Lemma [7.4.3] d

For the following computations, we recall the definition of the product and the imag-

inary part on (CK*5)N from (7.1.3)) and (7.1.4)), respectively.

The proof of the following Lemma [7.4.4] is based on inverting the stability operator
in the difference equation describing g — m in terms of d. We derive this equation first.

Subtracting ([7.3.26|) from ([7.4.7]) and multiplying the result from the left by m; and from
the right by g; yield

gi —m; = mi5lg — mlm; + mgd;g; + miSilg — m(gi —m;)

for i € [N]. Introducing d = (dy,...,dy) € (CEXE)N as well as recalling .7[r] =
(F|r])XY,, the definition of .%; from (7.2.4) and .Z[r] = r — m.%[r|m from (7.3.36)), we

can write

Z(g —m) =mdg+ mS[g —m|(g —m). (7.4.24)

Since .Z is invertible for z € H by Lemma and ([7.3.37)), applying the inverse
of .Z on both sides of ([7.4.24)) and estimating the norm yields

lg —mll < Il Imli(Idllgl + [Illg — m]*) (7.4.25)

We recall the definition of p from ((7.3.10]).

Lemma 7.4.4. (i) Uniformly for n > max{1, |E|, ||A|2}, we have
A=<n2 (7.4.26)

(ii) Uniformly for n > 0, we have

- 1 -
lo = ml (< 0) < 2l (ot A2) ()

where

9 = !
41 Ml 1] + =)

(7.4.28)
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(7ii) Let aq,...,ayn be Hermitian. We define

1
— ||t 2 —1)|_~
V=27 [[m][[lm HNn,

- 1 [p _ 1 m
¢ =L |m]|] <\/N + N +|1£ 1||||m||2]\777 + Tnlllmmll

+1lm IIImmII+|ImII _
Nn Nn

Then for all § > 0 and uniformly for all n > 0 such that ¥(n) < N~° we have

AL(A <) =<5 0. (7.4.29)

Note that the proof of (iii) of Lemma requires H to be Hermitian because of
the use of the Ward identity, G(n)*G(n) = n'Im G(n). The Ward identity implies
P;,G"G = P,GG" = Im G;;/n and hence,

(ImG) Im Tr Gy
A = A = _ 4.
hs Ny w = max Nn (7.4.30)

PrOOF. We start with the proof of (7.4.26). We remark that ||g|| + [|[m]| < 2/n by

(7.4.5) and (7.3.11al). Therefore, for n > max{1,|E|, | Al|2}, we conclude from (7.4.25)
that

1
%.

Here, we also used (7.3.21), (7.3.37) and (7.3.35). Since ||d|| < 1 by (7.4.11a)), we get
lg — m|| < n=% in this n-regime. Hence, combined with the bound for the
offdiagonal terms, we obtain ([7.4.26)).

For the proof of (ii), we also start from (7.4.2F)). Since 2||.Z7|||m||||||¥ < 1 by
definition of ¢ (cf. (7.4.28)) and [|g[|1(A < ¢) < |[[m]||m 'g|1(A < 9) < 4]|m]|/3 by
the second bound in , we conclude that

1
lg —m[ S ?Hdll +

lg —m[l1(A < 9) < 8] Y[|Imlllld][lm]/3. (7.4.31)

Applying (7.4.12)) to the right-hand side and using |G| < v/NAys, we obtain (7.4.27).
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For the proof of (iii), let now H be Hermitian. Therefore, ((7.4.30)) is applicable and

(Im G) p 11
Ape = 1/ < [P _m,

ImTrG; \? _ ||Imm]| ||lg — m]||
A2 — ( N % ) < '
v T \BE Ty =" Ty

Here, we used (ImG) < (Im M) + ||g — m||, (Im M) = 7mp and Young’s inequality as

yields

well as introduced an arbitrary € > 0 in the first estimate. We plug these estimates into
the right-hand side of and choose £ == N~7/(||Z7!||||m]|?) for arbitrary v > 0.
Thus, we can absorb ||g — m/| in the estimate on Ay into the left-hand side of (7.4.27).
Similarly, using 1/(n) < N~° we absorb ||g — m|| in the estimate on A, into the left-hand
side of . This yields for the contribution of the diagonal entries to A.
For the offdiagonal entries, we use the second relation in and get as before
szngx\/lmTan \/||Imm|| LA
€ N n

=1

Using this estimate in ((7.4.13)) and choosing € := N~7/||m|| to absorb A into the left-
hand side, we obtain ([7.4.29) for diagonal and offdiagonal entries of G. This concludes
the proof of Lemma [7.4.4] O

Lemma 7.4.5 (Averaged local law). Suppose for some deterministic control parameter

0<® < N7¢ alocal law holds in the form

A< Hﬂj)lﬂ (7.4.32)
Then for any deterministic ci,...,cn € CEXE with max;|c;| <1 we have
1 1y P 1
[ 266G ma| < I Wl (s max { e

(7.4.33)

] :
A ).

In (7.4.33), the adjoint of #~! is understood with respect to the scalar product

Tr(x-y), where we defined the dot-product -y for & = (z1,...,2n), ¥y = (¥1,...,Yn) €
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(CEXEYN via
1 X . CKxK 7.4.34
:c-y._NélxiyiE . (7.4.34)

It is easy to see that - L'y = (L )'z) - y.

PROOF. We set ¢ := (cy,...,cy) and recall g = (Gyy,...,Gyy) € (CEXEYN Using
(17.4.24}), we compute

Z ¢i(Gii—mi) = c-(g—m) = (m*(L")[c]) - (dg + .7[g — m|(g — m)). (7.4.35)

=1

1
N
We rewrite the term dg next. Indeed, a straightforward computation starting from the

Schur complement formula ([7.4.6)) shows that

d;Gy; = (QzGl)Gm + (dz(’?) + dz('S))Gii
) ] . “ (7.4.36)
= (QZCT)mz + (Q1G7> (Gii —mi) + (d;" + d;7 )G,

where we defined ;7 := Z — E;Z and the conditional expectation
E:Z = E[Z|H"Y = E[Z[{z}y, yiy: k.1 € [N)\ {i}, v € [0}]

for any random variable Z.

The advantage of the representation is that we can apply the following propo-
sition to the first term on the right-hand side. It shows that when Q;(1/G;;) is averaged
in 7, there are certain cancellations taking place such that the average has a smaller or-
der than @Q;(1/Gi;) = O(A). The first statement of this type was proven for generalized
Wigner matrices in [72]. The complete proof in our setup will be presented in Section

(.5l

Proposition 7.4.6 (Fluctuation Averaging). Let ® be a deterministic control parameter

such that 0 < ® < N7°. If

1
—Gij = 0

m;

max
1,J

< 9, (7.4.37)
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then for any deterministic ci, . ..,cy € CEXE satisfying max;|c;| < 1 we have
! i Q| < {1 <I>}cI> (7.4.38)
— CiJi——m,; max y . -
Ni:l Gm \/N

Note that the assumption ([7.4.32)) directly implies (7.4.37)). Moreover, (7.4.37) yields

(@)@

Thus, we obtain from ((7.4.35)) and (|7.4.36|) the relation

< \Qi((;mi —ll)'Hm_lnA < 92

e (g m)l < 12l (] S e@igm| + 0%+
(7.4.39)
rglj«ﬁ(ldm +AODIGal + .714%),
where ¢ = (¢y,...,¢éy) € (CE*E)N is a multiple of m*(Z!)*[c] and |[¢|| < 1. From

this estimate, we now conclude ([7.4.33)). Since ([7.4.37)) is satisfied by (7.4.32]) the bound
(7.4.38]) implies that the first term on the right-hand side of ([7.4.39)) is controlled by

the right-hand side of ([7.4.33)). For the third term, we use (7.4.12b)) and |G| < ||m|| +

®/||lm~ | as well as @ < 1 < ||m||||m~!||. Hence, (7.3.35) concludes the proof of (7.4.33))
and Lemma [7.4.5] O

7.4.2. No eigenvalues away from self-consistent spectrum. We now state and
prove our result for Hermitian Kronecker matrices H, Theorem below. The theorem
has two parts. For simplicity, we state the first part under the condition that A =
> a; ® By is bounded. We relax this condition in the second part for the purpose of our
main 1"esu1t7 Theorem m In this application, A = AS = aC ® FE;;, where aC are
given in , and we need to deal with unbounded ( as well.

We recall that m = (mq,...,my) is the unique solution of with positive
imaginary part. Moreover, the function p: H — R, was defined in , the set supp p
in Definition and d,(z) := dist(z,supp p). We denote F := Rez and 7 := Im z. For

a matrix B, we write oy, (B) to denote its smallest singular value.

Theorem 7.4.7 (No eigenvalues away from supp p). Fiz K € N. Let A =YY a; ® Ey
be a Hermitian matriz and H be a Hermitian Kronecker random matriz as in ((7.4.2))
such that (7.2.9)), (7.2.10) and (7.3.27)) are satisfied.
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(i) Assume that A is bounded, i.e., ||Alls < k4. Then there is a universal constant

0 > 0 such that for each D > 0, there is a constant C'p > 0 such that

Cp

P(Spec(H) C {7 € R: dist(r,suppp) < N“S}) >1-— ND (7.4.40)
(ii) Assume now only the weaker bound
A2 = mﬁl}qaﬂ < N* (7.4.41)
Let Hf,i)t be defined through
|A — wif]

HE = {w € H: dist(w, Spec A) > 2||.7||/? + 1, < mg}. (7.4.42)

Omin(A —wl) —
Then for each D > 0, there is a constant Cp > 0 such that

P( Spec(H) N Hop =0) > 1 - ]CVY’Z (7.4.43)

The constants Cp in (7.4.40) and (7.4.43) only depend on K, k1, (©p)p>3, 04, Ka, K7 and

Ko in addition to D.

We will prove Theorem [7.4.7] as a consequence of the following Lemma [7.4.8] This
lemma is a type of local law. Its general comprehensive version, Lemma below,
is a standard application of Lemma [7.4.4] Lemma and Proposition [7.4.6] For the

convenience of the reader, we will give an outline of the proof in Section below.

We also consider k7, kg, kg from (7.4.41)) and ([7.4.44]) below, respectively, as model

parameters.

Lemma 7.4.8. Fix K € N. Let k7 > 0 and A = Zﬁil a; ® E;; be a Hermitian matrix
such that (7.4.41) holds true. Let H be a Hermitian Kronecker random matriz as in

(7.4.2) such that (7.2.9), (7.2.10) and (7.3.27) are satisfied. We define

H(l) —

out -

{weH: dist(w,Spec A) < 2.7 +1, | Al» < s}, (7.4.44a)

A—wl
|A = will; <,@9}. (7.4.44D)

H(Q) = {w e H: dlSt(/LU, SpeCA) Z 2”y||1/2 + 1, m <

out



7.4. HERMITIAN KRONECKER MATRICES 231

Then there are p € N and P € N independent of N and the model parameters such that

1 1 1 1
‘N izlerIm(Gn‘(z) - mz(z))‘ = max{l, dff(z)}(N + (NU)Q) (7.4.45)

for any z = E +in € H) UHP, such that |E| < N*+! and n > N-*7(1 + d,?(2)).

We remark that since A is Hermitian, if || A||2 is bounded, then the second condition
in (7.4.44b)) is automatically satisfied (perhaps with a larger kg), given the first one. So
for || Al|s < ks, alternatively, we could have defined the sets

Hgyy = {w € H: dist(w, Spec A) < 2|.7['* + 1},
(7.4.46)
HP, = {w € H: dist(w, Spec A) > 2|.7||"/* + 1}.
If ||Al|2 does not have an N-independent bound, then we could have defined HY =0
and Hgi)t as in ([7.4.42)). The estimate (|7.4.45) holds as stated with these alternative
definitions of Hgi)t and H(()Qu)t

Definition 7.4.9. (Overwhelming probability) We say that an event AW) happens asymp-
totically with overwhelming probability, a.w.o.p., if for each D > 0 there is Cp > 0 such
that for all N € N, we have

PrROOF OF THEOREM [T.4.7l. From ([7.4.4]), we conclude the crude bound

N
2 2y _ 2 2
AGIJSnpa(LSC<H|)\| < Tr(H?") i;‘h”l < (1+[|Al3)N. (7.4.47)
Therefore, there are a.w.o.p. no eigenvalues of H outside of [—a,a] with a = (1 +

|A]l2)V'N.

We introduce the set As :== {w € R: dist(w,supp p) > N~°} for § > 0. The previous
argument proves that there are no eigenvalues in As \ [—a,a] for any § > 0. For the
opposite regime, i.e., to show that As N [—a,a] does not contain any eigenvalue of H
a.w.0.p. with some small § > 0, we use the following standard lemma and will include a

proof for the reader’s convenience at the end of this section.
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Lemma 7.4.10. Let H be an arbitrary Hermitian random matriz and G(z) = (H —
21)7! its resolvent at z € H. Let ®: H — R, be a deterministic (possibly N -dependent)

control parameter such that
1 . .
Nlm Tr G(1 +ing) < D(7 + in) (7.4.48)

for some T € R and ny > 0.

(i) If (Nmo)~t > Ne®(1 + ing) for some € > 0 then Spec(H) N [T — 1o, T + 1] = @
a.w.0.p.

(ii) Let & == {1 € [-NY NC]: (Nno)~t > N*®(7 +ing)} for some C >0 and e > 0.
Furthermore, suppose that ng > N~¢ for some ¢ > 0 and holds uniformly
forall ™€ &. Then Spec(H)NE =& a.w.o.p.

We now finish the proof of Theorem In fact, by (7.4.41)) we have a < N*7+1/2,

thus we work in the regime |E| < N*"*1. We choose

B(2) = p(z) + max{1, d;P(z)}(jlv + (Nhlw) and 1 = N2

For small enough ¢ and v, we can assume that 7y > N~'7(1 + dist(7 + ing, supp p) 7)
for dist(r,supp p) > N~9. Consider first the case when || Az < 4, then H) and H)

out out

are complements of each other, see the remark at (7.4.46)), and then (|7.4.48)) is satisfied
by (7.4.45)) for any 7 with |7| < N*"*!. Moreover, owing to (7.3.12)), we have

O(E 4 i <N2<S wro( L 1
(E-+im) S 3z + 8" + 7m)

for all E € As N [—a,a]. Therefore, by possibly reducing § > 0 and introducing a suf-
ficiently small ¢ > 0, we can assume N°®(E +in) < N~Y2 = (Nng)~t. Thus, from
Lemma we infer that H does not have any eigenvalues in As N [—a,a] a.w.o.p.
Combined with the argument preceding Lemma [7.4.10] which excludes a.w.o.p. eigenval-
ues of H in A\ [—a, al, this proves if || A||l2 < k4. Under the weaker assumption
|A|l2 < N*7 the same argument works but only for £ € ]I-]I((fl)t since was proven

only in this regime. U
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ProOOF OF LEMMA [[.4.10l For the proof of part (i), we compute

1 1 n
“Im T G(r +in) = =3
ARt v D v oy

i
Estimating the maximum from above by the sum, we obtain from the previous identity

and the assumption that
—&

N770'

N R

d < (7.4.49)

We conclude that min;|\; — 7| > 1 a.w.o.p. and hence (i) follows.

The part (ii) is an immediate consequence of (i) and a union bound argument using
the Lipschitz-continuity in 7 on & of the left-hand side of with Lipschitz-constant
bounded by N3+ and the boundedness of &, i.e., £ C [-N¢, N¢]. O

7.5. Fluctuation Averaging: Proof of Proposition [7.4.6]

In this section, we prove the Fluctuation Averaging which was stated as Proposi-

tion [7.4.6) in the previous section.

PROOF OF PROPOSITION [7.4.6l. We fix an even p € N and use the abbreviation

1
Zi = ¢ Qi—m; .
ciQ Gn'm
We will estimate the p-th moment of - 3°; Z;. For a p-tuple ¢ = (i1,...,3,) € {1,...,N}?

we call a label 7; a lone label if it appears only once in 2. We denote by J, all tuples

i €{1,..., N}? with exactly L lone labels. Then we have

1 N p 1 p
E ‘N I ESD S 91 VAN W ey A | (7.5.1)
i=1 L=0ieJ,
For © € J;, we estimate
B Ziy ... Ziy ) iy - - - Za| < @PFE (7.5.2)
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Before verifying ((7.5.2]) we show this bound is sufficient to finish the proof. Indeed, using
|Jp| < C(p)NEAP/2 and (7.5.2) in (7.5.1)) yields

]E‘ LS gl < 3 nbrge ( {1 @}@)p
— i =< TV < | max ; .
N L=0 VN

This implies ([7.4.38]).
The rest of the proof is dedicated to showing ([7.5.2)). Since the complex conjugates do

not play any role in the following arguments, we omit them in our notation. Furthermore,
by symmetry we may assume that {iy,...,ir} are the lone labels in <.

We we fix £ € {0,...,L} and [ € {1,...,p}. For any K € Ny we call a pair
(t,T) with t=(t1,....,tx—1), T = (To,Tor, T, Tha, ..., Tx—1, Tk -1k, Tk ) ,

an l-factor (at level £) if for all k € {1,..., K —1} and all ¥’ € {1,..., K — 2} the entries
of the pair satisfy

tk S {7:17 v 7Z.€}7 TkaTk’k’-‘rl g {Z'17 oo 7Z.Z}v

te Ftwrr, €Tk, twtwyr @ Twwsr, tFa,, txa#Fu, 0€ToUTk:.

(7.5.3)
Then we associate to such a pair the expression
1 1 1 1 T 1
A = G, &y GzTOl 112 ce K—1iK7 m;, .
t. T lQ 1 G’Z];O” 1t GZ;ltl ti1ta Gz;Qtz Gz}::lltl(il tr—17 G’Z];I;lv 1 (754)
In particular, for K = 0 we have
1
Z@,(Tg) = Cil Qilell? Z@,(@) = Z’Ll
G,
We also call
d(t,T) = K,
the degree of the I-factor (¢,T).
By induction on ¢ we now prove the identity
EZil e Zip = Z (i)EZtl,Tl PN th,Tp 5 (755)
(tvI)eI[



7.5. FLUCTUATION AVERAGING: PROOF OF PROPOSITION (7.4.6 235

where the sign () indicates that each summand may have a coefficient +1 or —1 and the
sum is over a set Z, that contains pair of p-tuples t = (¢1,...,t,) and T = (T4,...,T),)
such that (¢,T)) for all [ = 1,...,p is an [-factor at level ¢. Furthermore, for all ¢ €
{0, ..., L} the size of Z, and the maximal degree of the [-factors (¢;,T;) are bounded by
a constant depending only on p and

p

> max{1,d(t,T))} > p+¢, t,T)eZ,. (7.5.6)

i=1

The bound ([7.5.2)) follows from ((7.5.5)) and (7.5.6) for ¢ = L because
|Zyr| < @rLAD), (7.5.7)

for any I[-factor (t,T). We postpone the proof of to the very end of the proof of
Proposition [7.4.6]

The start of the induction for the proof of is trivial since for ¢ = 0 we can
chose the set Z, to contain only one element with (¢, T;) = (0, (0)) for all I = 1,...,p.
For the induction step, suppose that and have been proven for some ¢ €
{1,...,L—1}. Then we expand all [-factors (¢;,T;) with [ # ¢+ 1 within each summand
on the right-hand side of in the lone index iy, by using the formulas

1 -
Gg;. = GZ;U{k} + Gﬁ@ng’ i, ¢4{k}uT, (7.5.8a)
1 1 1 1 1

= - —GL_GE i¢g {k}uT, (7.5.8b)

‘~T - ik
Gi Gt GETGR

for k = i441. More precisely, for all [ # ¢ + 1 we use ([7.5.8) on each factor on the
right-hand side of (7.5.4)) with (¢,T") = (¢;,,T); (7.5.8a) for the off-diagonal and ((7.5.8b))

for the inverse diagonal resolvent entries. Multiplying out the resulting factors, we write

IO

EZy T, ... Zs,r, as a sum of

22l¢2+1 2d(tl aTl)+1

summands of the form

EZ =~ ...7: ~ (7.5.9)
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where for all [ = 1,...,p the pair (,T}) is an I-factor at level £ + 1. Note that we did
not expand the ¢ + 1-factor Zy, , r,.,. In particular, the only nontrivial conditions for
(EI,TZ) to be an [-factor at level £ 4+ 1 (cf. )7 namely t # tri1, t1 # igy1 and
tx_1 7 g1, are satisfied because iy, 1 does not appear as a lower index on the right-hand
side of when on the left-hand side (¢, T') = (¢, T)).
Moreover all but one of the summands satisfy
p .
Yo dt,T) > p+L+1,
i=1
because the choice of the second summand in both and increases the
number of off-diagonal resolvent elements in the [-factor that is expanded. The only
exception is the summand for which in the expansion in all factors always the
first summand of and is chosen. However, in this case all Z;l 7 with
l # ¢ + 1 are independent of i,,; because this lone index has been completely removed
from all factors. We conclude that this particular summand vanishes identically. Thus
holds with ¢ replaced by ¢ + 1 and the induction step is proven.
It remains to verify (7.5.7)). For d(¢,T) = 0 we use that

1
G,

1 1 2
< ’Gmlm” _]1’ < ®, ’GTmi’ — < ®. (7.5.10)

i1

1
’Qil Tmi,

i

my,

The first bound in ([7.5.10) simply uses the assumption ([7.4.37|) while the second bound
uses the expansion formulas (7.5.8) and (7.4.37). For K = d(t,T) > 0 we realize that
K encodes the number of off-diagonal resolvent entries G} in (7.5.4). In the factors of
(7.5.4)) we insert the entries of M so that (7.4.37]) becomes usable, i.e., we use

1 Tek+1 1 my 1 Thkt1
T teter1 T k tetry1
Gtktk Gtktk mtk
Then similarly to ([7.5.10)) we use
1 1 1
kk+1 2

‘ Gtktk+1 = ¢7 ‘ Gtktk+1 - Gtkthrl < @ )
mtk tk mtk

where again the first bound follows from ([7.4.37)) and the second bound from ([7.5.8]

and (7.4.37)). O
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7.6. Non-Hermitian Kronecker matrices and proof of Theorem

Since Spec(X) C Spec.(X) (cf. (7.2.8)) for all € > 0, Theorem clearly follows

from the following lemma.

Lemma 7.6.1 (Pseudospectrum of X contained in self-consistent pseudospectrum). Un-
der the assumptions of Theorem|7.2.4, we have that for each e € (0,1], A > 0 and D > 0,

there is a constant C. a.p > 0 such that

CE,A,D

P(Spec.(X) C D.pn) > 1 — ND

(7.6.1)

PROOF. Let H® be defined as in (7.4.1). Note that ¢ € Spec_(X) if and only if
dist (0, Spec(H*®)) < e. We set
N
i=1

We first establish that Spec.(X) is contained in D(0, N) := {w € C: |w| < N} a.w.o.p.
Similarly, as in ((7.4.47)), using an analogue of ([7.4.4)) for X instead of H, we get

max_[(]* < Tr(X*X) = Y Tr((P;X)* ) < Z|P X< (1+|A|}HN
(eSpec X = =1

Thus, all eigenvalues of X have a.w.o.p. moduli smaller than (1 + ||A|s)v/N < N. The
above characterization of Spec_(X) and ¢ < 1 yield Spec.(X) C D(0, N) a.w.o.p.

We now fix an € € (0, 1] and for the remainder of the proof the comparison relation < is
allowed to depend on £ without indicating that in the notation. In order to show that the
complement of Spec,(X) contains D¢, , N D(0, N) a.w.o.p. we will apply Theorem m
to H¢ for ¢ € D¢, , N D(0, N). In particular, here we have

A = 14C = ZGZC@E”,

where a is defined as in (7.2.5).
Now, we conclude that Spec(H®) N [~ — A/2,e + A/2] = @ a.w.o.p. for each

¢ € D¢, o N D(0,N). If ¢ is bounded, hence A° is bounded, we can use (7.4.40) and we
need to show that [—e — A/2,e + A/2] C {7 € R: dist(7,supp p¢) > N°} but this is
straightforward since ¢ € D¢, 1 implies dist(0, supp p¢) > & + A by its definition.
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For large ¢ we use part (ii) of Theorem and we need to show that [—e — A/2, e+
A/2)+in C HE), for any small . Take z € Hwith 2| < e+A/2. If || > || Al|+2]|.7]|"/2+
2, then dist(z, Spec(A°)) > 2||.7||'/? +1, so the first condition in the definition (7.4.44b))
of H((,?J)t is satisfied. The second condition is straightforward since for large ¢ and small z,
both ||AS — 21|, and oy (AS — 21) are comparable with |¢].

Hence, Theorem is applicable and we conclude that Spec(H®) N [~ — A/2, ¢ +
A/2] = @ aw.o.p. forall ( € D¢, 5. If Ai(() < ... < Agpn(¢) denote the ordered eigen-
values of H® then \;(¢) is Lipschitz-continuous in ¢ by the Hoffman-Wielandt inequality.
Therefore, introducing a grid in ¢ and applying a union bound argument yield

sup dist(0, Spec(H®)) <&  a.w.o.p.
¢ebe, ,ND(0,N)

Since ¢ € Spec,.(X) if and only if dist(0, Spec(H*)) < & we obtain Spec,(X) N D, A N
D(0,N) = @ a.w.o.p. As we proved Spec.(X) N D(0, N)* = @ a.w.o.p. before this
concludes the proof of Lemma [7.6.1 O

7.7. An alternative definition of the self-consistent e-pseudospectrum

Instead of the self-consistent e-pseudospectrum D, introduced in one may
work with the deterministic set D, from when formulating our main result, The-
orem The advantage of the set D. is that it only requires solving the Hermitized
Dyson equation for spectral parameters z along the imaginary axis. The follow-
ing lemma shows that D, and D, are comparable in the sense that for any e we have

D,, C @5 C D, for certain £y, £s.

Lemma 7.7.1. Let m be the solution to the Hermitized Dyson equation ([7.2.6) and
suppose Assumptions [7.2.5 are satisfied. There is a positive constant ¢, depending only

on model parameters, such that for any ¢ € (0,1) we have the inclusions
]Ee - ]Dﬁa D0527 - ]Eea

where D, is the self-consistent e-pseudospectrum from (7.2.7)) and D. is defined in (7.2.14).

PROOF. The inclusion ]13)5 C D is trivial because m§ is the Stieltjes transform of UJC-.

So we concentrate on the inclusion D 2 C D.. We fix ( € C\]T)E and suppress it from
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our notation in the following, i.e., m = m¢,v; = v , etc. Recall that by assumption we

have (cf. -

1A < 1.

Since any large enough ( is contained in both sets C\]f))E and C\ D, by (7.3.32a)) and the
upper bound in ((7.3.11b)), we may assume that |(| < 1. We use the representation of m;

as the Stieltjes transform of v; and that v; has bounded support to see

x,v(dr)x y, v (dT)y 1
e mwl < 1 [ Ol < L tmmy(2)a) + (g i 2))).
2 |7' — z| n
for any x,y € C¥, where K = 2L. In particular
Imm;
mie)] 5 2l (7.7.1)
U
Fix an n € (0,1) for which the inequality
1 2
—||T i < - 7.7.2
7]” mm(in)|| < - (7.7.2)

holds true. Since ¢ € C\ D, such an 7 can be chosen arbitrarily small. Then we have

) 1 LN 1 . Ui
Immll S =, ImG) S =, 0 S i) S 2 (77.3)

The first inequality follows from and ( - the second inequality from ([7.3.11c))
and the third from ([7.7.2)) and the bounded support of v;. In particular, by the formula

(7.3.17) for the norm of F we have

)

L= [|F@n)llsp 2 (7.7.4)

To see ([7.7.4)) we simply follow the calculation in the proof of Lemma but instead
of using the bounds (7.3.114)), (7.3.11d) and (7.3.11b)) on ||m|| and ||m~!|| and Im m; we
use ([7.7.3]). Similarly we find

. 1
lewllcwl € =+ ICmmllIC gzl <

3
By ([7.3.15)) we conclude

—_

e’

_ 1
127 S -



240 CHAPTER 7. LOCATION OF THE SPECTRUM OF KRONECKER RANDOM MATRICES

Using ([7.3.23)) and the bound on ||m|| in (7.7.3]) we improve this bound on the || - ||sp-norm

to a bound on the || -||-norm,

1

-1
17 S o5

We are therefore in the linear stability regime of the Dyson equation and from the stability

equation (cf. (7.3.14))) for the difference A = m(z) — m(in), i.e., from
1
ZL[A] = (2 —in)ym(in)® + §(m(in)y[A]A + A [Alm(in)) (7.7.5)

we infer

|z —in|
814 ’

Im(z) = m(in)|| < £ [llm]*]z —inl <

for any z € H with

C
e =il € o S 7
1L m 2 ’

where C' ~ 1 is a constant depending only on model parameters. Note that in ([7.7.5)
we symmetrized the quadratic term in A which can always be done since every other
term of the equation is invariant under taking the Hermitian conjugate. In fact, we see
that m can be extended analytically to an e2"-neighborhood of in. Since 1 can be chosen
arbitrarily small we find an analytic extension of m to all z € C with |z| < ¢&?” for
some constant ¢ ~ 1. We denote this extension by the same symbol m = (my,...,my)
as the solution to the Dyson equation. By definition of D, we have Im m;(0) = 0 and
it is easy to see by the following argument that for any z € R the imaginary part still
vanishes as long as we are in the linear stability regime. Thus p¢([—ce®",ce?™]) = 0:
The stability equation evaluated at n» = 0 and z € R is an equation on the
space {A € (CEXEYVN = A* = A;;i = 1,...,N}, ie., for any A in this space both
sides of the equation remain inside this space. Thus by the implicit function theorem
applied within this subspace of (CE*¥)¥ we conclude that the solution to (7.7.5)) satisfies
A = A* or equivalently ImA = 0, for z € R inside the linear stability regime. Since
0% ([—ce?, ce?™]) = 0 we thus obtain ¢ € C\ D,.2r which yields the missing inclusion. [J
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7.8. Proofs of Theorem and Lemma [T.4.8|

For the reader’s convenience, we now state and prove the local law for H, Lemmal[7.8.]
below. Its first part is designed for all spectral parameters z, where the Dyson equation,
(7.3.26), is stable and its solution m is bounded; here the local law holds down to the
scale n = Im z > N7 that is optimal near the self-consistent spectrum. The second
part is valid away from the self-consistent spectrum; in this regime the Dyson equation
is always stable and the local law holds down to the real line, however the dependence
of our estimate on the distance from the spectrum is not optimized. For the proof of
Lemma|[7.4.8] the second part is sufficient, but we also give the first part for completeness.
For simplicity we state the first part under the condition that A = ", a; ® F;; is bounded,;
in the second part we relax this condition to include the assumptions of Lemma [7.4.8]
From now on, we will also consider ky,...,kq from (7.4.41)), (7.4.444), (7.4.44b)) and
below, respectively, as model parameters.

Lemma 7.8.1 (Local law). Fiz K € N. Let A = Efil a; ® E;; be a deterministic
Hermitian matriz. Let H be a Hermitian random matriz as in (7.4.2)) satisfying As-

sumptions|7.4.1, i.e., (7.2.9), (7.2.10) and (7.3.27) hold true.

(i) (Stable regime) Let v, ky, ks, kg > 0. Assume that || A|l2 < k4 and define

Hya = {w € H: supllm(w +is)]| < s,
s>0

(7.8.1)
sup[|-LH(w +1s)||sp < k6 and Imw > N~ }
s>0
Then, we have
y 1 [imm()] |
max |G (z) — m;(2)0;;] < +
s G 2) — Dol =< e Y
. (7.8.2)
+ -
(L+n*)Nn
uniformly for z € Hgan. Moreover, if c1,...,cx € CE*E are deterministic and

satisfy maxY|c;| <1 then we have

5 2 Gl = | < 1 (5 + ) (783)
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uniformly for z € Hgap-

(it) (Away from the spectrum) Let k7, ks, kg > 0 be fized. Assume that (7.4.41)) holds
true and Hfj}t and Hff}t are defined as in ([7.4.44). Then there are universal
constants 0 > 0 and P € N such that

N 1 1 1
ma>1c|Gij(z) —m;(2)d;] < max{dg(z), dP(z)}\/N (7.8.4)

INES o
uniformly for z € (Hfj}t N{w e H: d,(w) > N—HU H(()Qu)t

Moreover, if ci,...,cn € CEXE qre deterministic and satisfy maxly,|c;] <1

then we have
1 N

[ 2216 (Gule) = mif2))] | < ma { thz), dpl(z) }le (7.8.5)

uniformly for z € (Hfjft N{w e H: d,(w) > N°})U HP),.

The local laws ([7.8.4]) and ((7.8.5)) hold as stated with the alternative definitions of the
sets H'Y. and ]ngl)t given after Lemma [7.4.8|

out

PROOF OF THEOREM [Z.2.7]. Let m be the unique solution of ([7.3.26) with positive

imaginary part, where o, = a,, £, = QBV = 8, + v, and a; = a;. Defining py
as in ([7.3.34)), it is now a standard exercise to obtain ((7.2.17) from (7.8.5)), since z —
(NL)'Tr((Hyx — 21)7") is the Stieltjes transform of pg . O

PRrOOF OF LEMMA [7.87] We start with the proof of part (i). For later use, we will
present the proof for all spectral parameters z in a slightly larger set than Hy,p,, namely

in the set

= {0 € Hi sup (14 |4 = w — is]) [m(w + i9)] < s,
s>0

(7.8.6)
sup||-ZHw +1s)||sp < K and Imw > N‘HV}.
s>0

Under the condition || Alls < Ky, it is easy to see Hgap C HY,, perhaps with somewhat
larger k-parameters. Furthermore, we relax the condition || Alls < k4 to ||Alls < N7 with
some positive constant k7. We also restrict our attention to the regime |E| < N*7! since
the complementary regime will be covered by the regime in part (ii). Let ¢ and
¥ be defined as in part (iii) of Lemma and recall the definition of ¥ from (7.4.28)).
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Proof of (7.8.2): We first show that
AE+in) < ¢ (7.8.7)

uniformly for £ +in € H.,,, and |E| < N*7TL,

sta

We start with some auxiliary estimates. By the definition of Hl,,, in (7.8.6) and

sta

setting a := (aq,...,ay), we have
Im S gy 51 (7.88)
m(z _ : 8.
~ 14 la—z1] ™
uniformly for z € H,,,,. We remark that ||a|| = || A||2-
We now verify that, uniformly for z € H.,,,, we have
Im(2)ll[lm = (2)]| < 1. (7.8.9)
Applying || - || to (7.3.26) as well as using (7.3.35]) and (7.8.8]), we get that
Im™ () < la— 21+ 1S 1+ 2]+ [all (7.8.10)

for z € H,,,,- Thus, combining the first bounds in (7.8.8) and in ([7.8.10)) yields (7.8.9).
From the definition of HL,,, in (7.8.6]), using (7.8.8)), (7.3.23) and ([7.3.37)), we obtain

I <, e IS (7.8.11)

where the adjoint is introduced above (|7.4.34]).
We will now use part (iii) of Lemma to prove ([7.8.7). To check the condition

¥(n) < N9 in that lemma, we use (7.8.8)), (7.8.11]) and (7.8.9)) to obtain v (n) < 1/(Nn).
Hence, ¥(n) < N™/2 for n > N='*7 and we choose § = /2 in (7.4.29).

We now estimate ¢ and 9 in our setting. From (7.8.9)), (7.8.8) and (7.8.11)), we

conclude that ¢ < ||m ||V, where we introduced the control parameter

g Jnm|  fm]  |lm]
Nn VN = Nnp

We note that the factor |[m/|| is kept in the bound ¢ < ||m||¥ and the definition of ¥ to
control |[m~!|| factors via (7.8.9) later and to track the correct dependence of the right-
hand sides of ([7.8.2) and (7.8.3)) on 7. For the second purpose, we will use the following
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estimate. Combined with ([7.3.11a}), the bound (7.8.8]) yields

1

m|| S ——F-
1 +dp(z)

(7.8.12)

For 19, we claim that

02 (142l + lalh™, 92 (Iml. (7.8.13)

Indeed, for the first bound, we apply (7.3.35)), (7.8.8)), (7.8.11]) and the second bound in
to the definition of ¢, (7.4.28)). Using instead of ([7.8.8]) and ((7.8.10)) yields
the second bound.

Now, to prove (7.8.7), we show that 1(A < ¥) = 1 a.w.o.p. for n > N7 on
the left-hand side of . The first step is to establish A < ¢ for large . For

n > max{1, |E|, ||A|2}, we have A < n=2 by (7.4.26). By ([7.8.13), we have ¥ = n~! for
n > max{1l, |E|, ||A||2}. Therefore, there is K > k7 + 1 such that A(n) < J(n) a.w.o.p. for

all n > N*. Together with (7.4.29)), this proves (7.8.7) for n > N*.

The second step is a stochastic continuity argument to reduce 7 for the domain of
validity of ([7.8.7). The estimate ([7.4.29)) asserts that A cannot take on any value between
v and ¥ with very high probability. Since n — A(n) is continuous, A remains bounded

by ¢ for all values of n as long as ¢ is smaller than /. The precise formulation of this
procedure is found e.g. in Lemma A.2 of [7] and we leave the straightforward check of its
conditions to the reader. The bound yields in the regime |E| < N~
Proof of (7.8.3): We apply Lemma [7.4.5with ® := ||m~!¢. The condition is
satisfied by the definition of ¢ and . Since ® < W it is easily checked that all terms
on the right-hand side of are bounded by ||m || max{N~'/2, W}W¥. Therefore,

using ([7.8.11)) and (7.8.12), the averaged local law, ((7.4.33), yields

< ||m|| max {L \IJ}\IJ

1 N
~ Ci(Gii - mi)
gy

1 H\I/F()H R S
Strael v TN T Trem )

for any cy,...,cy € CE*F such that max;|c;| < 1. Owing to ||[Imm|| <1 by (7.8.8), the
bound ([7.8.3) follows.
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We now turn to the proof of (ii) which is divided into two steps. In the first step,
we show Lemma . Therefore, we will follow the proof of with the bounds
(7.8.12) and (7.8.11)) replaced by their weaker analogues ([7.8.15)) and ((7.8.16|) below that
deteriorate as d,(z) becomes small. After having completed Lemma , we immediately
get Theorem via the proof given in Section [7.4.2] Finally, in the second step,
proceeding similarly as in the proof of (i), the bounds and will be obtained
from Theorem [7.4.7

STEP 1: PROOF OF LEMMA [T.4.8. We first give the replacements for the bounds

(7.8.12)) and (7.8.11)) that served as inputs for the previous proof of part (i). The replace-

ment for (7.8.12)) is a direct consequence of ([7.3.11a)):

1
|m] < ) (7.8.15)
4,(2)
The replacement of ((7.8.11)) is the bound
1
7 L1 7.8.16
L7+ < +d/2)6(2), ( )

which is obtained by distinguishing the regimes || M||3]|S|| > 1/2 and ||[M|3]|S| < 1/2.
In the first regime, we conclude from ([7.3.22)) and ((7.3.23)) that

!IM\lgl[lM_ll\‘% <1t
1M [[3d5(2) 43 (2)

p

LM+ L™ S 1+ 1M +

where we used the lower bound on M given by the definition of the regime and ||S|| <1
as well as the bound || M ||o|| M|, < 1/d%(z) that is proven as (7.8.17) below. In the
second case, we use the simple bound ||[£71||+[[(£71)*|| < 2/(1— ||M|3||S||) < 4. Thus,

(7.3.37)) yields (7.8.16]).
Next, we will check that the following weaker version of ([7.8.9)) holds

1

. 1 .
[m(z +is)|[[m ™ (z +is)|| S 1+ m

(7.8.17)

for all z € ]I-]L()t)t U Hgi)t and s > 0. This is straightforward for z € H((,}J)t since in this case

|z], || Al|2 and supp p all remain bounded (see (7.3.32al)), so similarly to ([7.8.10)) we have
|lm=(z+is)|]| S 1+ s+ |m(z+1is)|. For |s|] < C (7.8.17) directly follows from (7.8.15)),
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while for large s we have |m(z +is)|| < s7! and |[m™'(z +is)|| < s, so also
holds.

Suppose now that z € Hgl)t. In this regime z is far away from the spectrum of A, so
by we know that dist(z + is, Spec A) ~ dist(z + is,supp p) > 1. This means
that

1 1 1
1 < Y pummy
Im(= +is)l 5 dist(z + is, supp p) dist(z + is, Spec A) Omin(A — (2 +1is)1)’
(7.8.18)
and hence from the Dyson equation
1
L B . < B .
| oy R | < 1A= (+is)Tla+ 8] S A= (2 +is)L]. (7.8.19)
Since A is Hermitian, we have the bound

Omin(A — (2 +1is)1) = opmin(A — 21) —
for any s > 0, where the first inequality comes from the spectral theorem and the second
bound is from the definition of H'}. Therefore omm(A — (2 +is)1) ~ | A — (z + is)1 |2,
and thus follows from and (7.8.19).

Now we can complete Step 1 by following the proof of part (i) but using ,
(7-8.16) and (7.8.17)) instead of (7.8.12), (7.8.11) and (7.8.9), respectively. It is easy to

see that only these three estimates on ||m||, [[m]/||m ™| and ||£~!|| were used as inputs
in this argument. The resulting estimates are weaker by multiplicative factors involving
certain power of 1+ 1/d,(z). We thus obtain a version of for n > N7 (1 +
d;P(z)) with (1+d,(2))~" replaced by max{1,d;"(z)} for some explicit p, P € N. Thus,
applying to estimate Imm in instead of ||[Imm| < 1 and possibly
increasing P yields . O

Step 2: Continuing the proof of part (ii) of Lemma [7.8.1, we draw two conse-
quences from Theorem [7.4.7] and the fact that G is the Stieltjes transform of a posi-
tive semidefinite matrix-valued measure Vi supported on Spec H with Vg (Spec H) = 1.

Let 6 > 0 be chosen as in Theorem [7.4.7, Since the spectrum of H is contained in
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{w e R: dist(w,supp p) < N} a.w.o.p. by Theorem , we have

1 7
G2 £ ——, ImG < 1
d,(z) d2(z)

a.w.o.p. for all z € H satisfying dp(z) > N—9/2. Therefore, (7.4.30) implies for all z € H
satisfying d,(z) > N~°/? that

Aps + Ay < (7.8.21)

1
dp(z)\/N
Since M is the Stieltjes transform of Vs defined in (7.3.33) and Vs (R) = 1 and G

is the Stieltjes transform of Vg we conclude that there is £ > 0 such that
ASIG =Mz S |2~ (7.8.22)

a.w.o.p. uniformly for all z € H satisfying |z| > N*. Here, we used that supp Vas C supp p

and hence diam(supp Vas) < N* 1 by (7.4.41)) and (7.3.324)) as well as diam(supp Vg) <
diam(Spec H) < N*"*1 a.w.0.p. by Theorem [7.4.7

Hence, owing to and , by possibly increasing x > 0, we can assume
that A < ¢ a.w.o.p. for all z € HY), UH®P, satisfying |z| > N*. Thus, to estimate
llg — m| we start from and use ((7.8.16]), (7.8.15)), (7.8.21]) and to obtain
an explicit P € N such that [|g—m/| < [|m|| max{d,*(z),d,”(z)}N~"/? a.w.0.p. For the
offdiagonal terms of G, we apply (7.8.21)) to (7.4.13). This yields

A < |Jm| max {diz)’ dfl(z) } \/1N (7.8.23)

for z € Hg{}t U H((,?l)t satisfying |z| > N*. Employing the stochastic continuity argument

from Lemma A.2 in as before, we obtain (7.8.23) for all z € Hg{l)t U H(()Qu)t satisfying
—6/2 .

d,(z) > N /2. We use (7.8.15) in (7.8.23), replace P by P + 1 and & by 6/2. Thus,

we have proven ([7.8.4) for all z € Hgt)t U Hgl)t satisfying d,(2) > N ~9. Notice that this

argument covers the case |E| > N*"*! as well that was left open in Step 1.

For the proof of (7.8.5)), we set & := (dp(z)\/ﬁ)*1 and apply Lemma Its
assumption A < ®/||m ™| is satisfied by (7.8.23) and (7.8.9). Using (7.8.16)), (7.8.17),
(7.8.9) and ([7.8.21), this proves ([7.8.5)) and hence concludes the proof of Lemma|7.8.1 [







CHAPTER 8

The Dyson equation with linear self-energy: spectral bands,

edges and cusps

The current chapter contains the preprint [15] which is joint work with Lészlé Erdds

and Torben Kriiger. We study the unique solution m of the Dyson equation
—m(z)' = 21 — a + S[m(2)]

on a von Neumann algebra A with the constraint Imm > 0. Here, z lies in the complex
upper half-plane, a is a self-adjoint element of A and S is a positivity-preserving linear
operator on A. We show that m is the Stieltjes transform of a compactly supported A-
valued measure on R. Under suitable assumptions, we establish that this measure has a
uniformly 1/3-Holder continuous density with respect to the Lebesgue measure, which is
supported on finitely many intervals, called bands. In fact, the density is analytic inside
the bands with a square-root growth at the edges and internal cubic root cusps whenever
the gap between two bands vanishes. The shape of these singularities is universal and
no other singularity may occur. We give a precise asymptotic description of m near the
singular points. These asymptotics play a key role in Chapter [J] below, where the Tracy-
Widom universality for the edge eigenvalue statistics for correlated random matrices is
proven. We also show that the spectral mass of the bands is topologically rigid under

deformations and we conclude that these masses are quantized in some important cases.

8.1. Introduction

An important task in random matrix theory is to determine the eigenvalue distribution
of a random matrix as its size tends to infinity. Similarly, in free probability theory,

the scalar-valued distribution of operator-valued semicircular elements is of particular

249
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interest. In both cases, the distribution can be obtained from a Dyson equation
—m(2)"t = 21 — a+ S[m(2)] (8.1.1)

on some von Neumann algebra A with a unit 1 and a tracial state (-). Here, z €
H:={w e C:Imw > 0}, a =a" € Aand S: A — A is a positivity-preserving linear
operator. There is a unique solution m: H — A of under the assumption that
Imm(z) == (m(z) — m(2)*)/(2i) is a strictly positive element of A for all z € H [96].
For suitably chosen a and S as well as A, this solution characterizes the distributions
in the applications mentioned above. In fact, in both cases, the distribution will be the
measure p on R whose Stieltjes transform is given by z — (m(z)). The measure p is
called the self-consistent density of states and its support is the self-consistent spectrum.
This terminology stems from the physics literature on the Dyson equation, where z is
often called spectral parameter and S is the self-energy operator. The linearity of S is a
distinctive feature of our setup.

We first explain the connection between the eigenvalue density of a large random
matrix and the Dyson equation in more detail. Let H € C™*™ be a C"*"-valued random

variable, n € N, such that H = H*. A central objective is now the analysis of the

empirical spectral measure py = n~t>" | 0y, or its expectation, the density of states,
for large n, where A, ..., )\, are the eigenvalues of H. An easy computation shows

that n=' Tr(H — 2)~! is the Stieltjes transform of py at z € H. Therefore, the resolvent
(H—2z)~" is commonly studied to obtain information about pg. In fact, for many random
matrix ensembles, it turns out that the resolvent (H —z)~! is well approximated for large n
by the solution m(z) of the Dyson equation (8.1.1)). Here, we choose A = C"*" equipped
with the operator norm induced by the Euclidean distance on C" and the normalized

trace (-) = n~!Tr(-) as tracial state as well as
a:=EH, Slz] =E[(H —a)x(H —a)], ze€C"" (8.1.2)

If (H — 2)~! is well approximated by m(z) for large n then ug will be well approximated
by the deterministic measure p, whose Stieltjes transform is given by z — (m(z)). The

importance of the Dyson equation (8.1.1)) for random matrix theory has been realized
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by many authors on various levels of generality [20, 34, 84, |99} 131}, [156], see also the
monographs [82 [119] and the more recent works [6] 7, [56, (94, [101] as well as Chapters [4]
Bl and [1

Secondly, we relate the Dyson equation to free probability theory by noticing that the
Cauchy transform of a shifted operator-valued semicircular element is given by m. More
precisely, let B be a unital C*-algebra, A C B be a C*-subalgebra with the same unit 1
and E: B — A is a conditional expectation (we refer to Chapter 9 in [115] for notions
from free probability theory). Pick an a = a* € A and an operator-valued semicircular
element s = s* € B then G(z) := E[(z — s — a)™'] is the Cauchy-transform of s + a.
In this case, m(z) = —G(z) satisfies with S[z] := E[szs] for all z € A [154].
If A is a von Neumann algebra with a tracial state, then our results yield information
about the scalar-valued distribution p = p,y, of s + a with respect to this state. The
study of qualitative regularity properties for this distribution has a long history in free
probability. For example, the question of whether p has atoms or not is intimately
related to noncommutative identity testing (see |79, [110] and references therein) and the
notions of free entropy and Fischer information (see [151], [152] and the survey [153]).
We also refer to the recent preprint [111], where the distribution of rational functions
in noncommutative random variables is studied with the help of linearization ideas from
(86, 87] and [95]. Under strong assumptions, our results provide extremely detailed
information about the regularity properties of p, thus complementing these more general
insights. In particular, we show that p, is absolutely continuous with respect to the
Lebesgue measure away from zero for any operator-valued semicircular element s. For
other applications of the Dyson equation in free probability theory, we refer to
[96, (137, |154) 155] and the recent monograph [115].

In this paper, we analyze the regularity properties of the self-consistent density of
states p in detail. More precisely, under suitable assumptions on S, we show that the
boundedness of m already implies that p has a 1/3-Holder continuous density p(7) with
respect to the Lebesgue measure. We provide a broad class of models for which the
boundedness of m is ensured. Furthermore, the set where the density is positive, {7 :

p(1) > 0}, splits into finitely many connected components, called bands. The density
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is real-analytic inside the bands with a square root growth behavior at the edges. If
two bands touch, however, a cubic root cusp emerges. These are the only possible types
of singularities. In fact, m(z) is the Stieltjes transform of a positive operator-valued
measure v and we establish the properties mentioned above for v as well. We also provide
a novel formula for the masses that p assigns to the bands. We use it to infer a certain
quantization of the band masses that we call band rigidity, because it is invariant under
small perturbations of the data a and S of the Dyson equation. In particular, we extend
a quantization result from [86] and [132] to cover limits of Kronecker random matrices.
We remark that in the context of random matrices the analogous phenomenon was coined
as “exact separation of eigenvalues” in [23].

In the commutative setup, the band structure and singularity behavior of the density
have been obtained in [4, 5|, where a detailed analysis of the regularity of p was initiated.
In the special noncommutative situation A = C™" and (-) = n~!Tr(-), it has been
shown that p is Holder-continuous and real-analytic wherever it is positive [6]. The main
novelty of the current work is to give an effective regularity analysis for the general
noncommutative case, including a precise description of all singularities, i.e., edges and
cusps. One of the main applications is the proof of the eigenvalue rigidity on optimal
scale and the Tracy-Widom universality of the local spectral statistics near the spectral
edges for random matrices with general correlation structure (cf. Chapter [9] below).

The key strategy behind the current paper as well as its predecessors [4, 5, 6] is a
refined stability analysis of the Dyson equation (8.1.1]) against small perturbations. It
turns out that the equation is stable in the bulk regime, i.e., where p(Re z) is separated
away from zero, but is unstable near the points, where the density vanishes. Even the
stability in the bulk requires an unconventional idea; it relies on rewriting the stability
operator, i.e., the derivative of the Dyson equation with respect to m, through the use
of a positivity-preserving symmetric map, called the saturated self-energy operator, F.
We then extract information on the spectral gap of F' by a Perron-Frobenius argument
using the positivity of Imm [4, 5. In the noncommutative setup this transformation
was based on a novel balanced polar decomposition formula [6]. In the small density

regime, in particular near the edges, the stability deteriorates due to an unstable direction,
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which is related to the Perron-Frobenius eigenvector of F'. The analysis boils down to a
scalar quantity, ©, the overlap between the solution and the unstable direction. For the
commutative case in [4, 5], it is shown that © approximately satisfies a cubic equation.
The structural property of this cubic equation is its stability, i.e., that the coefficients of
the cubic and quadratic terms do not simultaneously vanish. This guarantees that higher
order terms are negligible and the order of any singularity is either cubic root or square
root.

Now we synthesize both analyses in the previous works to study the small density
regime in the most general setup. The major obstacle is the noncommutativity that
already substantially complicated the bulk analysis in [6] but there the saturated self-
energy operator, F', governed all estimates. However, near the edges the unstable di-
rection is identified via the top eigenvector of a non-symmetric operator that coincides
with the symmetric F' only in the commutative case. Thus we need to perform a non-
symmetric perturbation expansion that requires precise control on the resolvent of the
non-self-adjoint stability operator in the entire complex plane. We still work with a cubic
equation for ©, but the analysis of its coefficients is considerably more involved. Along all
estimates, the noncommutativity is a permanent enemy; in some cases it can be treated
perturbatively, but for the most critical parts new non-perturbative proofs are needed.
Most critically, the stability of the cubic equation is proven with a new method.

Another novelty of the current paper, in addition to handling the noncommutativity
and lack of symmetry, is that we present the cubic analysis in a conceptually clean way
that will be used in future works. Our analysis strongly suggests that our cubic equation
for © is the key to any detailed singularity analysis of Dyson-type equations and its
remarkable structure is responsible for the universal behavior of the singularities in the

density.

8.2. Main results

Let A be a finite von Neumann algebra with unit 1 and norm ||-|]. We recall that a
von Neumann algebra A is called finite if there is a state (-): A — C which is (i) tracial,
ie., (zvy) = (yx) forall x,y € A, (ii) faithful, i.e., (x*x) = 0 for some x € A implies z = 0,

and (iii) normal, i.e., continuous with respect to the weak* topology. In the following,
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(-) will always denote such state. The tracial state defines a scalar product A x 4 — C
through

(z,y) = (z7y) (8.2.1)
for z,y € A. The induced norm is denoted by ||z||y == (x,z)'/? for x € A. Clearly,
|z]|2 < ||z|| for all z € A. We follow the convention that small letters are elements of A
while capital letters denote linear operators on A. The spectrum of x € A is denoted by
Specz, i.e., Specx =C\ {z € C: (x — 2)"' € A}

For an operator T: A — A, we will work with three norms. We denoted these norms
by [|T|, |T|l2 and || T||2—. if T" is considered as an operator (A,|-[|) — (A,|-]),
(A I [l2) = (A [ -[l2) or (A, [I-[l2) = (A, [[-[]), respectively.

We denote by A, the self-adjoint elements of A, by A, the cone of positive definite

elements of A, i.e.,
Asa = {I’EA:.T*:ZL'}, A+ = {$6A533$>0},

and by A, the || - ||-closure of A, , the cone of positive semidefinite elements (or positive
elements). We now introduce two classes of linear operators on 4 that preserve the

cone A, . Such operators are called positivity-preserving (or positive maps). We define

Y= {S: A — A: S is linear, symmetric wrt. (8.2.1]) and S[A,] C Z+}, (8.2.2a)

Yhat = {S €X:el < inf Sle] < sup Sl < 71 for some ¢ > 0}. (8.2.2b)

vede (z) 7 peay (T)
Moreover, if S: A — A is a positivity-preserving operator, then S is bounded, i.e., ||.S]|
is finite (see e.g. Proposition 2.1 in [120]).
Let a € As, be a self-adjoint element and S € . For the data pair (a,S), we consider

the associated Dyson equation
—m(z)"' = 21 —a+ Sm(2)], (8.2.3)

with spectral parameter z € H := {w € C: Imw > 0}, for a function m: H — A such

that its imaginary part is positive definite,

Imm(z) — ;i(m(z) _m(z)) € A,
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There always exists a unique solution m to the Dyson equation satisfying Imm(z) €
A, [96]. Moreover, this solution is holomorphic in z [96]. For Dyson equations in the
context of renormalization theory, a is called the bare matriz and S the self-energy (op-
erator). In applications to free probability theory, S is usually denoted by n and called
the covariance mapping or covariance matriz [115].

We now introduce positive operator-valued measures with values in A,. If v maps
Borel sets on R to elements of A, such that (z,v(-)z) is a positive measure for all z € A
then we say that v is a measure on R with values in A, or an A, -valued measure on R.

First, we list a few propositions that are necessary to state our main theorem. They

will be proven in Section Section [8.4.2| and Section [8.4.3 respectively.

Proposition 8.2.1 (Stieltjes transform representation). Let (a,S) € As, X 3 be a data
pair and m the solution to the associated Dyson equation. Then there exists a measure v
on R with values in A, such that v(R) =1 and
d
m(z) = / v(dr) (8.2.4)
R

T—Z

for all z € H. The support of v and the spectrum of a satisfy the following inclusions

suppv C Speca + [—2|S]|*/2, 2|54, (8.2.5a)

Speca C suppv + [—||S||*2, ]|S]V/3]. (8.2.5b)

Furthermore, if a = 0 then, for any z € H, m(z) satisfies the bound

2

[m(2)ll2 < ER

(8.2.6)

Our goal is to obtain regularity results for the measure v. We first present some regu-

larity results on the self-consistent density of states introduced in the following definition.

Definition 8.2.2 (Density of states). Let (a, S) € A x X be a data pair, m the solution
to the associated Dyson equation, (8.2.3), and v the A, -valued measure of Proposi-
tion m The positive measure p = (v) on R is called the self-consistent density of

states or short density of states.
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We have suppp = suppv due to the faithfulness of (-). Moreover, the Stieltjes
transform of p is given by (m) since, by (8.2.3)), for any z € H, we have

m(z)) = [ 29

RT—2
Proposition 8.2.3 (Regularity of density of states). Let (a,S) be a data pair with S €

Yhat and pqg the corresponding density of states. Then p,s has a uniformly Hélder-

continuous, compactly supported density with respect to the Lebesque measure,

Pas(dT) = pas(T)dT.

Furthermore, there exists a universal constant ¢ > 0 such that the function p: A X
Yar X R — [0,00), (a,S,7) — pas(7) is locally Hélder-continuous with Hélder exponent
¢ and analytic whenever it is positive, i.e., for any (a,S,T) € Asx X Lgay X R such that
Pa.s(T) > 0 the function p is analytic in a neighbourhood of (a,S, 7). Here, As. and Xga;
are equipped with the metrics induced by ||| on A and its operator norm on A — A,

respectively.

The following proposition is stated under a boundedness assumption on m (see (8.2.7))
below). In the random matrix context, in Section we provide a sufficient condition
for this assumption to hold purely expressed in terms of a and S for a large class of

random matrix models.

Proposition 8.2.4 (Regularity of m). Let (a,S) be a data pair with S € g, and m
the solution to the associated Dyson equation. Suppose that for a nonempty open interval
I C R we have

lim sup sup |[|m(7 +in)|| < oo. (8.2.7)
nd0 Tel

Then m has a 1/3-Hélder continuous extension (also denoted by m) to any closed interval
I'cl, ie.,
p ImC) = m()]

1/3
21,22€1' xi[0,00) |Zl - 22| /

(8.2.8)

Moreover, m is real-analytic in I wherever p is positive.

The purpose of the interval I in Proposition [8.2.4] (see also Theorem below) is

to demonstrate the local nature of these statements and their proofs; if m is bounded on
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I in the sense of then we will prove regularity of m and later its behaviour close
to singularities on a genuine subinterval I’ C I. At first reading, the reader may ignore
this subtlety and assume I’ = [ = R.

In Proposition m below, we provide a quantitative version of under slightly
weaker conditions than those of Proposition|8.2.4. The bound in this quantitative version
only depends on a few basic parameters of the model.

For the following main theorem, we remark that if m has a continuous extension to
an interval I C R then the restriction of the measure v from to I has a density

with respect to the Lebesgue measure, i.e., for each Borel set A C I, we have
(4) =~ [ Tmm(r)a (829)
v = — [ Imm(7r)dr. 2.
mJA

The existence of a continuous extension can be guaranteed by ({8.2.7)) in Proposition m

Theorem 8.2.5 (Imm close to its singularities). Let (a,S) be a data pair with S €
Yar and m the solution to the associated Dyson equation. Suppose m has a continuous
extension to a nonempty open interval I C R. Then any 1o € supp p N 1 with p(1y) =0

belongs to exactly one of the following cases:

Edge: The point 1y is a left/right edge of the density of states, i.e., there is some e > 0

such that Imm(my Fw) =0 for w € [0,¢] and for some vy € Ay we have
Imm(m + w) = vw’? 4+ O(w), wl0.
Cusp: The point 1y lies in the interior of supp p and for some vy € Ay we have
Imm(1 + w) = v |w|? + O(|lw[¥?), w—0.
Moreover, suppp NI = suppv NI is a finite union of closed intervals with nonempty

interior.

Theorem is a simplified version of our more detailed and quantitative Theo-
rem below. We can treat all small local minima of p on suppp N I — not only
those ones, where p vanishes — and provide precise expansions corresponding to those in
Theorem [8.2.5| which are valid in some neighbourhood of 75. Moreover, the coefficients vg

in Theorem [8.2.5| are bounded from above and below in terms of the basic parameters of
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the model. By applying (-) to the results of Theorem and Theorem [8.7.1] we also
obtain an expansion of the self-consistent density of states p near small local minima in
Theorem [B.7.2] below.

Finally, we present our quantization result.

Proposition 8.2.6 (Band mass formula). Let (a,S) € Ag, X X be a data pair and m the
solution to the associated Dyson equation, (8.2.3)). We assume that there is a constant
C > 0 such that S[z] < C{x)1 for all x € A,. Then we have

(i) For each T € R\supp p, there ism(1) € As, such that lim, o [|m(7+in)—m(7)| =
0. Moreover, m(7) determines the mass of (—oo, T) and (T, 00) with respect to p

in the sense that

p((=00, 7)) = (L—oo0)(m(7))), (8.2.10)

where 1(_ o) denotes the characteristic function of the interval (—o0,0).
(ii) If 7: A — C™ " is a faithful representation such that (x) = n=' Tr(n(z)) for all

x € A and J C supp p is a connected component of supp p then we have

np(J) € {1,...,n}.

In particular, supp p has at most n connected components.

We will prove Proposition in Section below. A result similar to part (ii) has
been obtained by a different method in [86], see also [132]. In fact, we will use the band
mass formula, , in Corollary below to strengthen the quantization result
in (ii) for a large class of random matrices (Kronecker matrices, see Section . In
Section , we study the stability of the Dyson equation, , under small general
pertubations of the data pair (a, S).

8.2.1. Examples. We now present some examples

that show the different types of singularities described by @ 1
Theorem [8.2.5] These examples are obtained by considering '@ T o
the Dyson equation, (8.2.3), on C™*" with (-) = n~! Tr for

FIGURE 8.1. Structure of
ro € C"™,
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large n and choosing a = 0 as well as S = S, where
L. .
Salz] == — diag(r, diag(z))
n

for any x € C"*". Here, for z € C™", diag(x) denotes the vector of diagonal entries,
T € C™" is the symmetric block matrix from Figure[8.1]with a € (0, 00). All elements in

each block are the indicated constants. Moreover, we write diag(v) with v € C" to denote

0.8 0.8 0.8
0.6 [ 1 0.6} 1 06[ .
2 041 1 04} 1 04} 8
0.2 4 0.2} 4 0.2} 8
OO 0.5 1 1.5 OO 0.5 1 1.5 0() 0.5 1 1.5
T T T
(A) a=0.14 (B) a=0.2 (¢) a=0.23

FiGURE 8.2. Examples of the self-consistent density of states p from

(8.2.11)) for 6 = 0.1 and several values of «.

the diagonal matrix in C"*" with v on its diagonal. In fact, this example can also be
realized on C? with entrywise multiplication. Here, we choose ((z1,22)) = dx1+ (1 — )y,
where ¢ is the relative block size of the small block in the definition of r,. In this setup

on C?, the Dyson equation can be written as

mi? 1 my ad 1—90

- — 2| | +R, , R, = (8.2.11)
my? 1 ms b a(l—9)

for (my,ms) € C% We remark that R, is symmetric with respect to the scalar product
induced by (). Figure contains the graphs of some self-consistent densities of
states p obtained from for 6 = 0.1 and different values of a. As the self-consistent
density of states is symmetric around zero in these cases, only the part of the density
on [0,00) is shown. The density in Figure (a) has a small internal gap with square
root edges on both sides of this gap. Figure (b) contains a cusp which is transformed,
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by increasing «, into an internal nonzero local minimum in Figure (¢). This nonzero

local minimum is covered by Theorem (d) below.

8.2.2. Main ideas of the proofs. In this subsection, we informally summarize
several key ideas in the proofs of Proposition and Theorem [8.2.5]

Holder-continuity of m. To simplify the notation, we assume in this outline that
Im(2)]] <1 for all z € H, ie., we assume with [ = R. We first show that
Imm(z) is 1/3-Hélder continuous and then conclude the same regularity for m = m(z).
To that end, we now control 9,Imm(z) by differentiating the Dyson equation, ({8.2.3)),
with respect to z. This yields

2i0,Imm = (Id — C,,S) " [m?).

Here, Id denotes the identity map on A and C,,: A — A is defined by C,[z] := mzm
for any = € A.

In order to control the norm of the stability operator (Id — C,,S)™!, we rewrite it in a
more symmetric form. We find an invertible V with ||[V]|, ||V 7! < 1, a unitary operator

U and a self-adjoint operator T" acting on 4 such that
Id-C,S=V1U-T)V.

The Rotation-Inversion Lemma from [5] (see Lemma below) is designed to control
(U—T)~! for a unitary operator U and a self-adjoint operator T with ||T||» < 1. Applying
this lemma in our setup yields ||(Id — C,,S) 7| < |[Tmm |72

Since ||m|| < 1, we thus obtain
10, Imm|| < [[Tmm| 2. (8.2.12)

This bound implies that (Imm)3: H — A, is uniformly Lipschitz-continuous. Hence, we

can extend Imm to a 1/3-Hélder continuous function on R U H and we obtain

m(z)zl/Rhandf

7 T—Z
This also implies that m is uniformly 1/3-Hélder continuous on R U H. Furthermore,

m(7) and Imm(7) are real-analytic in 7 around 7y € R, wherever p(7) is positive.
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Behaviour of Imm where it is not analytic. Owing to (8.2.12), some unstable
behaviour of the Dyson equation is expected close to points 7 € R, where Imm(7)
is zero or small. In order to analyze this behaviour of Imm(7), we compute A :=
m(7o +w) —m(7o) from the Dyson equation, (8.2.3)). Since m has a continuous extension
to R, holds true for z € R as well. We evaluate (8.2.3) at z = 79 and z = 79 + w

and obtain the quadratic A-valued equation
B[A] = mS[A]A + wmA +wm?,  B:=1d - C,,8S. (8.2.13)

The blow-up of the stability operator B~! close to 7y requires analyzing the contributions
of A in the unstable direction of B! separately. In fact, B possesses precisely one un-
stable direction denoted by b since we will show that ||T'||2 is a non-degenerate eigenvalue
of T. We decompose A into A = ©b + r, where O is the scalar contribution of A in the
direction b and 7 lies in the spectral subspace of B complementary to b.

We view 7y as fixed and consider w < 1 as the main variable. Projecting

onto b and its complement yield the scalar-valued cubic equation
PO(W)? + 00(w)? + mw = O(|w||O(W)| + |O(W)|Y) (8.2.14)

with two parameters ¢ > 0 and o € R. In fact, the 1/3-Holder continuity of m implies
© = O(|w|'/?) and, hence, the right-hand side of is indeed of lower order than
the terms on the left-hand side. Analyzing instead of is a more tractable
problem since we have reduced a quadratic A-valued equation, , to the scalar-
valued cubic equation, (8.2.14]).

The essential feature of the cubic equation (8.2.14)) is its stability. By this, we mean

that there exists a constant ¢ > 0 such that
Y+o?>ec

This bound will follow from the structure of the Dyson equation and prevents any sin-
gularities of higher order than w'/? or w'/3. Obtaining more detailed information about
O from requires applying Cardano’s formula with an error term. Therefore, we
switch to normal coordinates, (w,O(w)) — (A, Q(N)), in (8.2.14). We will study four
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normal forms, one quadratic Q(\)? + A(\) = 0, and three cubics, Q(\)? + A(X\) = 0 and
QN £3Q(\) + 2A(N\) = 0, where A(\) is a perturbation of the identity map A — .
The first case corresponds to the square root singularity of the isolated edge, the second
is the cusp. The last two cases describe the situation of almost cusps, see later.

The correct branches in Cardano’s formula are identified with the help of four selection
principles for the solution Q(\) corresponding to © of the cubic equation in normal form
(see SP1 to SP4’ at the beginning of Section below). These selection principles
are special properties of {2 which originate from the continuity of m, Imm > 0 and the
Stieltjes transform representation, , of m. Once the correct branch is chosen, we
obtain the precise behaviour of Imm around 7y, where 75 € supp p satisfies p(7y) = 0 or

even p(7p) < 1, from Cardano’s formula and careful estimates of 7 in the decomposition

A = ©Ob+ r (see Theorem below).

8.3. The solution of the Dyson equation

In this section, we first introduce some notations used in the proof of Proposition|8.2.1],
then prove the proposition and finally give a few further properties of m.

For z,y € A, we introduce the bounded operator C,,: A — A defined through
Cyylh] == xzhy for h € A. We set C, := C,,. For z,y € A, the operator C, , satisfies the
simple relations

* —1
Cm,y = CI*#/*? Cx,y = 03?7172171’

where C7  is the adjoint with respect to the scalar product defined in (8.2.1). Here, the
second identity holds if x and y are invertible in A. In fact, C, , is invertible if and only
if x and y are invertible in A.

In the following, we will often use the functional calculus for normal elements of A.
As we will explain now, our setup allows for a direct way to represent A as a subalgebra
of the bounded operators on a Hilbert space. Therefore, one can think of the functional
calculus being performed on this Hilbert space. The Hilbert space is the completion of
A equipped with the scalar product defined in and denoted by L?. In order to
represent A as subalgebra of the bounded operators B(L?) on L?, we denote by ¢, for
r € A the left-multiplication on L? by z, i.e., {,: L* — L? (,(y) = zy for y € L?. The
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inclusion A C L? and the Cauchy-Schwarz inequality yield the well-definedness of £, and
{, € B(L?), the bounded linear operators on L?. In fact,

A — B(L?), x s,

defines a faithful representation of A as a von Neumann algebra in B(L?) [138, Theo-
rem 2.22].
We now introduce the balanced polar decomposition of m. If w = w(z) € A, ¢ =

q(z) € Aand u = u(z) € A are defined through

w = (Imm)~Y2(Rem)(Imm) /2 +il, q = |w|"*(Imm)/?, U= |w| (8.3.1)
w

via the spectral calculus of the self-adjoint operator (Imm)~'/2(Rem)(Imm)~%/2 then we
have

m(z) = Rem(z) +ilmm(z) = ¢ ugq. (8.3.2)

Here, u is unitary and commutes with w. The decomposition m = g¢*ug was already
introduced and also called balanced polar decomposition in [6] in the special setting of
matrix algebras. The operators |w|'/2, ¢ and u correspond to W, WVImM and U* in
the notation of [6], respectively. With the definitions in (8.3.1)), reads as

—u* =q(z—a)g" + Flul, (8.3.3)
where we introduced the saturated self-energy operator
F:=CypSCp 4. (8.3.4)

It is positivity-preserving as well as symmetric, F' = F*, and corresponds to the saturated

self-energy operator F in [6].

PRrROOF OF PROPOSITION [8.2.1] The existence of v will be a consequence of the fol-

lowing lemma which will be proven in Section below.

Lemma 8.3.1. Let A be a von Neumann algebra with unit 1 and a tracial, faithful,

normal state ( ): A — C. Ifh: H — A is a holomorphic function satisfying Im h(z) € A,
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for all z € H and
lim inh(in) = -1 (8.3.5)

n—00
then there exists a unique measure v: B — A on the Borel sets B of R with values in A,

such that

h(z) = /R v(dr) (8.3.6)

T—2
for all z € H and v(R) = 1.

In order to apply Lemma [8.3.1 we have to verify (8.3.5) for h = m. To that end, we
take the imaginary part of (8.2.3) and use Imm > 0 as well as S € ¥ to conclude

—Imm *(z) = Im 21 + S[Imm] > Im 21.

Hence, ||m(z)|| < (Imz)~! as for any x € A we have ||z|| < 1 if z is invertible and
Im 2~ > 1. Therefore, evaluating (8.2.3) at z = in, n > 0, and multiplying the result by
m from the left yield

inm(in) = =1 + m(in)a — m(in)S[m(in)] — —1

for n — oo as S is bounded. Hence, Lemma [8.3.1] implies the existence of v, i.e., the
Stieltjes transform representation of m in (8.2.4]).
This representation has the following well-known bounds as a direct consequence

(e.g. [4, 6] or Chapter [7)).

Lemma 8.3.2. Let v be the measure in Proposition and p = (v). Then, for any

z € H, we have

0 p— I m(2) 2

~ dist(z,suppp)’

1. (8.3.7)
O

For the proofs of (8.2.5al) and (8.2.5b)), we refer to the proofs of Proposition 2.1 in [6]
and ([7.3.4)) in Chapter [7|in the matrix setup, the same argument works for our general

<
~ dist(z, supp p)?

setup as well.
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We now prove (8.2.6) and hence assume a = 0. Taking the imaginary part of the
Dyson equation, (8.3.3), yields

Imu = (Imz)q¢" + F[lmu] > max{(Im z)qq", F[Imu|} .

Thus, Imu > (Im 2)|(gg*) || 7'1. We remark that ¢g* is invertible since Im m(z) > 0 for
z € H. Therefore, the following Lemma with h = Imu/||Imul|s implies || F||s < 1.

Lemma 8.3.3. Let T: A — A be a positivity-preserving operator which is symmetric
with respect to (8.2.1). If there are h € A and € > 0 such that h > €1 and Th < h then
T2 < 1.

PRrROOF. The argument in the proof of Lemma 4.6 in [4] also yields this lemma in our

current setup. Il

We rewrite the Dyson equation (8.3.3)) in the form

qq" = —i(u* + Flu]) . (8.3.8)

We take the || - ||2-norm on both sides of (8.3.8) and use that ||u||; = 1 (since it is unitary)

and [|[F||s <1 to find
2
|2l

lgg™ll < (8.3.9)

Then we take the || -||e-norm of m and use the balanced polar decomposition m = ¢*uq
again,

Imll3 = (m*m) = (¢"u"qq"uq) = (aq", Cur ulaq’]) < llag"|3,
where the operator (-, is unitary with respect to the scalar product . With
(8.3.9) we conclude (8.2.6]).

From now on until the end of Section [8.4.2] we will always assume that S is flat, i.e.,

S € Ygag (cf. ) In fact, all of our estimates will be uniform in all data pairs (a, .S)
that satisfy

c1{x)1 < S[z] < ep(x)1, lla]| < c3 (8.3.10)
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for all x € A, with the some fixed constants ci,ce,c3 > 0. Therefore, the constants
1, Co, c3 from (8.3.10)) are called model parameters and we introduce the following con-

vention.

Convention 8.3.4 (Comparison relation). Let z,y € As,. We write x < y if there is
¢ > 0 depending only on the model parameters cq, co, c3 from such that cy — x s
positive definite, i.e., cy —x € A,. We define x 2>y and x ~ y accordingly. We also use
this notation for scalars x,y. Moreover, we write x = y + O(«) for x,y € A and a > 0

if lle =yl < a.

We remark that we will choose a different set of model parameters later and redefine

~ accordingly (cf. Convention |8.4.6)).

Proposition 8.3.5 (Properties of the solution). Let (a,S) be a data pair satisfying
(8.3.10) and m be the solution to the associated Dyson equation, (8.2.3)). We have

Im(z)]2 S 1, (8.3.11)

1
Im@)1 5 (Imm(2)) + dist(z, supp p)’ (8.3.12)
Im(z)7H S 1+, (8.3.13)
(Imm(2))1 <Imm(z) < (14 |2)||m(2))*(Imm(2))1 (8.3.14)

uniformly for z € H.

These bounds are immediate consequences of the flatness of S exactly as in the proof
of Proposition 4.2 in [6] using supp p = suppv by the faithfulness of (-). We omit the
details.

Note that implies a lower bound [|m(z)|| = (1 + |z])~" since ||m]|[jm™!|| > 1.

8.4. Regularity of the solution and the density of states

In this section, we will prove Proposition and Proposition Their proofs are
based on a bound on the stability operator (Id — C,,S)~! of the Dyson equation, (8.2.3)),
which will be given in Proposition below.
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8.4.1. Linear stability of the Dyson equation. For the formulation of the fol-
lowing proposition, we introduce the harmonic extension of the density of states p defined
in Definition to H. The harmonic extension at z € H is denoted by p(z) and given
by

p(2) =~ {Imm(z).

Proposition 8.4.1 (Linear Stability). There is a universal constant C > 0 such that,
for the solution m to (8.2.3)) associated to any a € As, and S € ¥ satisfying (8.3.10), we

have
1

(p(2) + dist(z, supp p))¢

1(Id = Con)S) "l S 1+ (8.4.1)

uniformly for all z € H.

Before proving Proposition [8.4.1] we will explain how the linear stability yields the
Holder-continuity and analyticity of p in Proposition [8.2.3] Indeed, assuming that m
depends differentiably on (z,a, S), we can compute the directional derivative V54 p) at

z,a,S) of both sides in (8.2.3]). The result of this computation is
( p
(Id = C\n8)[V(s.4,0ym] = m(6 —d + D[m])m.

Using the bound in Proposition and p(z) = 7~ {Imm(z)), we conclude from ({8.3.12)
that

1
oC
with a possibly larger C'. Therefore, it is clear that the control on (Id — C,,,S)~! will be

IVsappl < —= (18] + lldll + |D]) (8.4.2)

the key input in the proof of Proposition [8.2.3]

In order to prove Proposition [8.4.1] we will use the representation

Id - C,S = Cp ,C,(C—F)C! (8.4.3)

q*,q’

where ¢, u and I’ were defined in and , respectively. This representation
has the advantage that C is unitary and F' is symmetric. Hence, it is much easier to
obtain some spectral properties for C; — F' compared to Id — C,,,S. Now, we will first
analyze ¢ and F in the following two lemmas and then use this knowledge to verify

Proposition [8.4.1}
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Lemma 8.4.2. If (8.3.10) holds true then we have
laI S A+ D2 ImE, e S @+ [=)llm)[1?

uniformly for z € H.

PROOF. For q = ¢(z), we will show below that

Al/2 Bl/2

S lmE@) T < g% < Splm(z)II (8.4.4)

if A1 <Imm(z) < B1 for some A, B € (0,00) and z € H. Choosing A and B according

to (8.3.14)), using the C*-property of |- ||, [[¢*¢|| = |¢||?, and (8.3.13)), we immediately
obtain Lemma [R.4.2

For the proof of (8.4.4)), we set ¢ := Rem and h := Imm. Using the monotonicity of

the square root, we compute
q'q = B1/2 (]1 4 h71/2gh719h71/2)1/2h1/2
§A_1/2h1/2<h_1/2(h2+gz)h_1/2)1/2h1/2
< ||m| A~ V2RV2,
Here, we employed h™! < A7'1 as well as T < A7'h in the first step and (Rem)? +
(Imm)? = (m*m + mm*)/2 < ||m||? in the second step. Thus, h < B1 yields the upper

bound in (8.4.4). Similar estimates using 1 > B~'h and |m~'||72 < (m*m + mm*)/2

prove the lower bound in (8.4.4) which completes the proof of the lemma. O

Lemma 8.4.3 (Properties of F'). If the bounds in are satisfied then | F||2 is a
simple eigenvalue of F: A — A defined in . Moreover, there is a unique eigenvector
€ Ay such that F[f] = ||F|l2f and || f|l2 = 1. This eigenvector satisfies
(fqq7)

(f ,Imu)

In particular, |F||ls < 1. Furthermore, the following properties hold true uniformly for

z € H satisfying |z| < 3(1+ ||a]| + [|S||*/?) and ||F(2)||2 > 1/2:

1~ ||F|ls = (Im>z) (8.4.5)

(i) The eigenvector f has upper and lower bounds

Im|~*1 < f < Iml*1. (8.4.6)
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(ii) The operator F has a spectral gap 9 € (0, 1] satisfying 9 2 ||m||~2® and

Spec(F/||F|l2) € [-1+9,1— 9] U {1}. (8.4.7)

PROOF. The definition of F' in (8.3.4)), (8.3.10) and Lemma imply

(L + )~ Im()]~*(a)l < Fla] £ (1 +|2])*lm(2)][*(a)1 (8.4.8)

~Y

foralla € A, and all z € H. We will use Lemma[8.12.1] (ii) from Section [8.12|below. The
condition with T" = F is satisfied by with constants depending on ||m]|
and |z|. Hence, Lemma (ii) implies the existence and uniqueness of the eigenvector
f. We compute the scalar product of f with the imaginary part of . Since F' is
symmetric, this immediately yields .

We now assume that z € H satisfies |z| < 3(1 + |la| + ||S]|V/?) and ||F(2)]2 > 1/2.

Then |z| < 1 and, by using this in (8.4.8), we thus obtain (8.4.6) and (8.4.7) from
Lemma [8.12.1] (ii) since [|m]| 2 1 by (8.3.13]). O

The following proof of Proposition [8.4.1] proceeds similarly to the one of Proposi-

tion 4.4 in [6].

PROOF OF PROPOSITION [R8.4. 1]l We will distinguish several cases. If |z| > 3(1 + k)

with & := ||a|| + 2/|S]|'/? then we conclude from (8.2.4) and supp p C [—k, x] by (8.2.53)
that ||m(z)|| < (|z| — x)~!. Thus,

Isl: _lisl

<
[Cmz)Sll2 < (Jz] — k)2 = 4(1 4 k)2

1
< -.
!
Here, we used ||S||z < ||S]| since S is symmetric and x > ||S||*/2. This shows (8.4.1)) for
large |z|.

Next, we assume |z| < 3(1+ k). In this regime, we use the alternative representation

of Id — C,,S in (8.4.3)) and the spectral properties of F' from Lemma [8.4.3] Indeed, from
(8.4.3) and Lemma [8.4.2] we conclude

10d=Cn8) " Hl2 S ImlPI(C=F)7Hl2 S 1(Co=F) 72 (8:4.9)

(p(2) + dist(z, supp p))
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as u € A is unitary. Here, we used (8.3.12)) in the last step. If ||F'(z)||2 < 1/2 then this
immediately yields (8.4.1) as ||Cy|l2 = 1. We now assume [|[F(z)||2 > 1/2. In this case,

we will use the following lemma.

Lemma 8.4.4 (Rotation-Inversion Lemma). Let U be a unitary operator on L* and T a

symmetric operator on L?. We assume that there is a constant 6 > 0 such that
SpecT C [=[|T]l2+ 0, [|Tll2 — 0] U{[|Tl|-}

with a non-degenerate eigenvalue || T||2 < 1. Then there is a universal constant C > 0

such that
C

ITNl2(2, U

where t € L? is the normalized, ||t|]2 = 1, eigenvector of T corresponding to || T2

— T, <
[

The proof of this lemma is identical to the proof of Lemma 5.6 in [5], where a result
of this type was first applied in the context of vector Dyson equations.

We start from the estimate (8.4.9)), use the Rotation-Inversion Lemma, Lemma [8.4.4]
with U = C! and T = F as well as (8.4.7)) and (8.3.12)) and obtain

(p(2) + dist(z,supp p)) ™ _ (p(2) + dist(z, supp p)) ™
L= [IFll{f, ColMDI — max{l —[|Flls, [1 = (fC3 DI}

In order to complete the proof of (8.4.1]), we now show that

1(3d = CS) 2 S

max{l — || Fllz, [1 = (fCI[fDI} Z (p(2) + dist(z, supp p))© (8.4.10)

for some universal constant C' > 0. We first prove auxiliary upper and lower bounds on

Imu = (¢*) "' (Imm)q~*. We have

‘ Im z||m|
dist RSRUTS
pL2)(plz) + dist(z, supp p))"L S Tmu S o=~

For the lower bound, we used the lower bound in (8.3.14]), Lemma and (8.3.12). The
upper bound is a direct consequence of (8.3.7) as well as Lemma Since (f, qq*) >

1(qg*) 17X ) = [lm|[{f) by Lemma [8.4.2} the relation (8.4.5) and the upper bound in
(84.11) yield

1. (8.4.11)

1 —[|F|ls 2 dist(z, supp p)*.
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As 1 — (fCRreu[f]) > 0 and (f?) = 1, we obtain from the lower bound in (8.4.11)) that

1= {fCIUMNI = Re[1 = (FCID] =1 = (fCreulf]) + (f Crmul[])

(8.4.12)
2 p(2)*(p(z) + dist(z, supp p))*.
This completes the proof of (8.4.10)) and hence of Proposition [8.4.1| O

8.4.2. Proof of Proposition The following proof of Proposition [8.2.3] is

similar to the one of Proposition 2.2 in [6].

PROOF OF PROPOSITION [8.2.3l We first show that p: H — (0, 00) has a uniformly
Hoélder-continuous extension to H, which we will also denote by p. This extension re-
stricted to R will be the density of the measure p from Definition [8.2.2] Since Id—C,,,S is
invertible for each z € H by , the implicit function theorem allows us to differentiate
(8.2.3]) with respect to z. This yields

(Id — C,,8)[0.m] = m*. (8.4.13)

Since z — (m(z)) is holomorphic on H as remarked below (8.2.3), we have 27id.p(z) =
2i0,Im (m(z)) = 0.(m(z)). Thus, we obtain from ({8.4.13)) that

10201 S N10:mll2 < [[(1d = CS) |2 llml® < p~ 2 (8.4.14)

Here, we used (8.4.1)), p(z) < [[m(2)|l2 < 1 by (8.3.11)) and (8.3.12)) in the last step. Hence,

s

uniformly 1/(C + 3)-Holder continuous function on R which is a density of the measure

3 is a uniformly Lipschitz-continuous function on H. Therefore, p defines uniquely a

p from Definition [8.2.2f with respect to the Lebesgue measure on R.

Next, we show the Hélder-continuity with respect to a and S. As before in (8.4.2]),

we compute the derivatives and use (8.3.12) and (8.4.1)) to obtain
Il + 1121
IVa,0)p(a.9)(2)| S V@pym)| < BT
Since the constants in (8.4.1)) and (8.3.12)) depend on the constants in (8.3.10]), we con-
clude that p is also a locally 1/(C + 4)-Hélder continuous function of @ and S.
We are left with showing that p is real-analytic in a neighbourhood of (79,a,S) if
Pas(10) > 0. Since p(19) > 0, we can extend m to 7y by (8.4.14). Moreover, m(7) is
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invertible as Imm(7y) > 0 and, thus, solves with z = 79. Since depends
analytically on z = 7, a and S in a small neighbourhood of (79, a, S), the solution m and
thus p will depend analytically on (7, a,S) in this neighbourhood by the implicit function
theorem. This completes the proof of Proposition [8.2.3| O

8.4.3. Proof of Proposition [8.2.4] For I C R and 7, > 0, we define
H;,. ={2 € H: Rez e, Imz e (0,1} (8.4.15)

and its closure Hy,, .

Assumptions 8.4.5. Let m be the solution of (8.2.3) for a = a* € A satisfying ||a|| < k;
with a positive constant k; and S € 3 satisfying ||.S||o— .|| < k2 for some positive constant

ko. For an interval I C R and some 7, € (0, 1], we assume that

(i) There are positive constants ks, ks and ks such that

Im(2)|| < ks, (8.4.16)

ky(Imm(2))1 < Imm(z) < ks(Imm(2))1, (8.4.17)

uniformly for all z € Hy,, .

(ii) The operator F' := C,,SC,, has a simple eigenvalue ||F|s with eigenvector

[ € A; that satisfies (8.4.5) for all z € H;,,. Moreover, (8.4.7) holds true and

there are positive constants kg, k7 and kg such that
kel < f < k;1, ¥ > kg. (8.4.18)

uniformly for all z € Hy,, .

We remark that S € Yg, is not necessarily required in Assumptions [8.4.5 In fact,
we will show in Lemma below that S € X, and (8.4.16) imply all other conditions

in Assumptions [8.4.5]

Convention 8.4.6 (Model parameters, Comparison relation). For the remainder of the
Section as well as Section and Section [8.6, we will only consider ki, ..., ks as
model parameters and understand the comparison relation ~ from Convention|8.3.4| with

respect to this set of model parameters.
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We remark that all of our estimates will be uniform in n, € (0,1]. Therefore, 7, is
not considered a model parameter. At the end of this section, we will directly conclude

Proposition from the following proposition.

Proposition 8.4.7 (Regularity of m). Let Assumptions hold true on an interval
I C R for some n, € (0,1].
Then, for any 0 € (0,1], m can be uniquely extended to I := {7 € I: dist(r,0I) > 0}

such that it is uniformly 1/3-Hélder continuous, indeed,
Im(z1) = m(z2) ]| S 0743|121 — 2| (8.4.19)

for all z1, z9 € Iy x i[0,00). Moreover, if p(19) > 0, 79 € I, then m is real-analytic in a
neighbourhood of 19 and

10-m(mo)ll < p(70) . (8.4.20)

We remark that the bound in (8.4.20)) will be extended to higher derivatives in
Lemma below.

In the following lemma, we establish a very helpful consequence of (i) in Assump-
tions [8.4.5] Moreover, part (ii) of the following lemma shows that all conditions in
Assumptions are satisfied if we assume (8.4.16)) and the flatness of S.

Lemma 8.4.8. Let m be the solution to (8.2.3|) for some data pair (a,S) € As, x 3. We

have

(i) Let ||a|| S 1, [|S|| £ 1 and U C H such that sup{|z|: z € U} < 1. If (8.4.16))
and (8.4.17) hold true uniformly for z € U then, uniformly for z € U, we have

lgll. g™ ~ 1, Imu~ (Imu)T ~ pl. (8.4.21)

(i) Let I C [-C,C] for some C ~ 1 and hold true uniformly for all z €
Hi,, . If S € Xaae and ||a|| S 1 then ||S]lamy. S 1, holds true uniformly
for all z € Hy,, and part (it) of Assumptions is satisfied.

(7ii) If Assumptions hold true then, uniformly for z € Hy,,, we have

11 = CouyS) ™z + 11 = CourS) | S (2) (8.4.22)
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PrROOF OF LEMMA [B.4.8. For the proof of (i), we use ||a|| < 1, ||S]| < 1 and (8.2.3))
to show |[m(z)~!|| £ 1 uniformly for all z € U. Thus, following the proof of Lemma [8.4.2)

immediately yields the estimates on ¢ and ¢~! in (8.4.21]) due to (8.4.16) and (8.4.17).
Thus, as ||q||, |[¢7]] ~ 1, we obtain the missing relations in (8.4.21]) from (8.4.17)) since

Imu = (¢*) *(Imm)g~* ~ Imm ~ (Imm) ~ (Imu).

We now show (ii). By Lemma [8.12.2] (i), the upper bound in the definition of flatness,

(8-3.10), implies ||S|jo—y.; < 1. Owing to (8.4.16) and (8.3.13), we have ||m(z)] ~ 1
for all z € Hy,,. Hence, (8.4.17) follows from (8.3.14)) since |z| < C'+ 1 for z € Hy,,.
Moreover, (ii) in Assumptions is a consequence of Lemma |8.4.3]

To prove (8.4.22)), we follow the proof of Proposition and replace the use of

(8.3.12)) as well as (8.4.6) and (8.4.7)) from Lemma [8.4.3| by (8.4.16]) and (8.4.18)), respec-
tively. This yields

1(0d = CuS) 7 Hl2 S T+ 1= (IF{fCHIDIT S = IFI(FCILMITY (8.4.23)

where we used in the last step that (8.4.16]) implies p(z) <1 on Hy,,. Since Imu ~ p by
(8.4.21)) and ||F||2 <1 by (8.4.5)) that holds under Assumptions [8.4.5] (ii), we conclude

L= IFl{f ORI S L= (FCRDIT S p7°

as in (8.4.12)) in the proof of Proposition This shows ||(Id — C,,S) 2 < p(2)72
Using [|S]|2—. < 1 and Lemma 8.12.2] (ii), we obtain the missing || - ||-bound in (8.4.22)).
This completes the proof of Lemma [8.4.8| ]

PROOF OF PROPOSITION [8.4.7]. Similarly to the proof of Proposition [8.2.3] we ob-

tain

10:Tmm(2)|| < 1|0:m (=) < [1(Id = CrS) [ llm(2)I* < p(2) 7 ~ [Imm(z)[ % (8.4.24)

for = € Hy,, from (8.4.16), (8.4.22) and (8.4.17). By the submultiplicativity of |||,

(Imm(z))*: Hy,, — (A, | -]]) is a uniformly Lipschitz-continuous function. Hence,
Imm(z) is uniformly 1/3-Hélder continuous on Hy,, (see e.g. Theorem X.1.1 in [35])

and, thus, has a uniformly 1/3-Hélder continuous extension to Hy,. . We conclude that
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the measure v restricted to I has a density with respect to the Lebesgue measure on I,

i.e., (8.2.9) holds true for all measurable A C I. Now, (8.11.3) in Lemma [8.11.1] implies

the uniform 1/3-Hélder continuity of m on Iy x (0, 00). In particular, m can be uniquely
extended to a uniformly 1/3-Hélder continuous function on I, x 1[0, 0o) such that
holds true.

To prove the analyticity of m, we refer to the proof of the analyticity of p in Propo-

sition m The bound (8.4.20)) can be read off from (8.4.24)). This completes the proof
of the proposition. O

ProOF OF PROPOSITION [B.2.4 By (8.2.7)), there are Cy > 0 and 7, € (0, 1] such
that [|m(r + in)|| < Cp for all 7 € I and n € (0,7,]. Hence, by Lemma [8.4.8] (ii), the
flatness of S implies Assumptionson IN[-C, 0] for C = 3(1+ ||a|| + ||S]|*/?), i.e.,
C ~ 1. Therefore, Proposition yields Proposition on IN[-C,CI.

Owing to and supp v = supp p, we have dist(r,suppv) > 1 for 7 € [ satisfying
T ¢ [-C + 1,C — 1]. Hence, for these 7, the Holder-continuity follows immediately
from in Lemma [8.11.1} By (8.2.5al), we have Imm(7) = 0 for 7 € I satisfying
T ¢ [-C, C]. Therefore, the statement about the analyticity is trivial outside of [-C, C].
This completes the proof of Proposition O

8.5. Spectral properties of the stability operator for small self-consistent

density of states

In this section, we study the stability operator B~!, where B = B(z) := Id — C},(»)S,
when p = p(z) is small and Assumptions hold true. Note that we do not require S
to be flat, i.e., to satisfy (8.3.10). We will view B as a perturbation of the operator By,

which we introduce now. We define

s = sign Re u, By = Cy o(1d — C,F)C!

qa*,q’

(8.5.1)
-1
E = (Cpsqg— Cn)S = Cpo(Cs — CL)FCL
with v and ¢ defined in (8.3.1). Note By = Id — Cj+4,5, i.e., in the definition of B, u in
m = q*uq is replaced by s. Thus, we have B = By+ E. Under Assumptions|8.4.5, (8.4.21])

holds true which we will often use in the following. Since 1 —|Reu| =1—4/1 — (Imu)? <
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(Imu)? < p?, we also obtain
Reu = s+ O(p?), Imu = O(p), Rem = ¢*sq + O(p?) (8.5.2)
and with Cs — Cy, = O(||s — u||) = O(p) we get
E=0(). (8.5.3)

Here, we use the notation R = T + O(«) for operators T and R on A and a > 0 if
IR —T|| < «. We introduce
fu=p 'Imu. (8.5.4)

By the functional calculus for the normal operator u, Rew, s and f, commute. Hence,

Cs[f.] = fu. From the imaginary part of (8.3.3]) and (8.4.21)), we conclude that
(Id — F)[f.) = p'Im 2q¢* = O(p 'Im 2). (8.5.5)

In the following, for z € C and € > 0, we denote by D.(z) := {w € C: |z — w| < ¢} the

disk in C of radius € around z.

Lemma 8.5.1 (Spectral properties of stability operator). Let T € {Id—F, Id—CF, By,
B, Id — Cyy»mS}. If Assumptions are satisfied on an interval I C R for some
N« € (0,1], then there are p, ~ 1 and e ~ 1 such that

(T = wId) o + (T — wId) | + (T — wId) [ S 1 (8.5.6)

uniformly for all z € Hy,, satisfying p(z) + p(z) "mz < p, and for all w € C with
w & D.(0) U Dy_o.(1). Furthermore, there is a single simple (algebraic multiplicity 1)

eigenvalue \ in the disk around 0, i.e.,

Spec(T) N D.(0) = {A\} and  rankPr =1,

1
where Pr = ——/ ()(T—wld)_ldw.
D (0

2mi

(8.5.7)

If Assumptions are satisfied on I for some 7, € (0, 1] then we have

fu=p 'Imu~ 1. (8.5.8)
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uniformly for z € Hy;,, due to (8.4.21). This fact will often be used in the following

without mentioning it.

PRroOF. First, we introduce the bounded operators V;: A — A for t € [0, 1] interpo-

lating between Id and Cy by

We will perform the proof one by one for the choices T' = 1d — F,1d — V,F, By, B, 1d —
Cpm+mS in that order. The operator Id — F' has a spectral gap above the single eigenvalue
around 0, so for this choice the statements are easy. Then we perform two approximations.
First, we interpolate between Id — F' and Id — C,F via Id — V, F'. This gives Lemma [8.5.1
for T = By. Then we use perturbation theory to get the results for T'= B = By +
O(p) and for T' = Id — Cpp» S = By + O(p). Note that for all these choices of T" the
bound |[Id — T'||o— . < 1 holds due to ||S|la—y. S 1, and (8.4.21). Hence, the

invertibility of T — wld as an operator on A and on L? are therefore closely related by

Lemma [8.12.2] (ii). In particular, it suffices to show (8.5.7) and the || -||e-norm bound
(T —wId) M2 < 1, (8.5.9)

for w & D.(0) U D;y_5.(1) in (8.5.6) to establish the lemma. For 7" = Id — F' both of these
assertion are true due to Lemma In particular, we find

=1 2" fu+ Op ' Im 2), (8.5.10)

where f is the single top eigenvector of F', F'f = ||F||of (see Lemma|8.4.3). The proof of
(8.5.10)) follows from (8.5.5) and [|F|ls =1+ O(p~'Im z) (cf. (8.4.5) by straightforward

perturbation theory of the simple isolated eigenvalue || F||s.

Now we consider the choice T' = T; = Id — V,F. Once , and with it ,
is established for T}, the statement about the single isolated eigenvalue follows.
Indeed, assuming for T' = T}, we obtain that 7, and, hence, the rank of P,
is a continuous function of ¢ on [0,1]. Hence, the rank of Pr, is constant along this
interpolation. On the other hand, rank Py = 1 by Lemma [8.4.3] Therefore, for each

€ [0,1], Spec(T) N D.(0) consists of precisely one simple eigenvalue. We are thus left
with establishing for T. As ||Vi]lo < 1 and ||F|]; < 1 the bound is certainly
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satisfied for |w| > 3. Thus, we now assume |w| < 3. In order to conclude (8.5.9)), we now
show a lower bound on ||((1 — w)Id — V,F)[x]||s for all normalized, ||z||; = 1, elements

x € A. We decompose z € L? as v = af +y, where y L f and o € C. Then
(1 = w)Id = ViF)[2][l3 = [al*|w]* + [[(1 = w)ld = ViF)[y][3 + O(p~' Imz), (8.5.11)

because of ||Fl|l; =14 O(p~'Im z), V;[fu] = fu together with (8.5.10]), and because the

mixed terms are negligible due to
(f ViFly) = (FVif .y) = O(|lyll2p™' Imz).

Using the spectral gap ¥ ~ 1 of F' from (8.4.7) and y L f we infer (8.5.9)) from (8.5.11]

by estimating
1((1 —w)Iid = V,F)[y]ll3 > dist(w, Di—s()[lyll3 > (I =) (1~ |af?),

optimizing in a and choosing § < /2. This shows the lemma for 7' =1d — V; F".

Since By is related by the similarity transform told —ViF =1d — C,F and
lallllg™|| S 1 (cf. (8.4.21)), the operator By inherits the properties listed in the lemma
from Id — CyF. Finally, we can perform analytic perturbation theory for the simple
isolated eigenvalue in D, (0) of By to verify the lemma for 7' = B = By+ E with E = O(p)
(cf. (85.3)) and T = Id — Cyp= S = By + E. with E, = O(p) if p, is sufficiently small.

Here, we introduced
E, = (Cgrsqg = Cmrm) S = Cgr q(Cs — Ou*7u>FOq_*%q

and used Cs — Cyr o, = O(||s — ul]) = O(p) due to (8.5.2)). O

If = € Hy,, satisfies p(z) + p(z) 'Imz < p, for p. ~ 1 from Lemma then
we denote by P;r the spectral projection corresponding to the isolated eigenvalue of
Id—CsF, ie., Ps g equals Ppin (8.5.7) with T = Id — C, F. We also set Qs p :=1d — Ps p.

Moreover, for such z, we define ¢ and o by

U(z) = (sfy, (d+ F)(1d = CF) 7 Quplsfal),  o(2) = (sfi)- (8.5.12)
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Corollary 8.5.2. Let z € H;,. satisfy p(z) + p(z) "Imz < p, for p. ~ 1 from Lem-
ma |8.5.1. Let (Po,bo,lo) and (B,b,1) be the triple of eigenvalue, right and left eigenvec-
tor for the operators By and B corresponding to the isolated eigenvalue in D.(0) from

Lemma|8.5.1), respectively. Then with a properly chosen normalization of the eigenvectors

we have
bo = Cy 4 fu] + O(p~Im 2), lo=Cyy[fu] + O(p'Im z), (8.5.13a)
I
By = —— =+ O(p2(Im=2)?) = O(p ' Tm 2), (8.5.13b)
p (f2)

as well as
b = by +2ipCyp,(Id — C.F) Qs r[sf?] + O(p* + Im 2), (8.5.14a)
I =1y—2ipC . (I1d — FC,)'Q: pFsfl] + O(p* +Im 2), (8.5.14b)

2

B(l,b) = mp'Imz — 2ipo + 2p° (@/} + {;2>) + 0 +Imz+ p ?(Imz)?). (8.5.14c)

Furthermore, let Py and P be the spectral projections corresponding to the isolated eigen-

value of By and B, respectively. Then with Qo :=1d — Fy and ) := 1d — P we have
IB7'QI + 1B7'@Qll2 + [ By ' Qoll < 1. (8.5.15)

Moreover, we have

1ol < 1, 1< 1. (8.5.16)

For later use, we record some identities here. From (8.5.10]) in the proof of Lemma|8.5.1]
with Cg[f.] = fu, we obtain the first relation in

<fu7 > O _1Imz
oy Tt v ) (8.5.17)

P:,F = Pst + O(pillm 2)7 Q:,F - QS,F + O(pfllm Z).

Ps,F:

This first relation together with f, = f; implies the second and third one. Moreover, the
definitions of By and )y yield

By'Qo = Cye 4(1d = C.F) ' Qu rCt,. (8.5.18)
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By a direct computation starting from the definitions of f, in (8.5.4)) and u in (8.3.1)), we

obtain

(fuga™) = p~(Imm) = . (8.5.19)

PRroOF. Using (8.5.5) and Cs[f.] = fu, we see that
ByConlfu] = p M (Im2)1,  BoCy o[fu] = O(p ' Im=z). (8.5.20)

We set by == PyCys 4[fu] and lo := P;C, [ f.] which amounts to a normalization as fy is a
nondegenerate eigenvalue. The representations of by and [y in follow by simple
perturbation theory because (3, is a nondegenerate isolated eigenvalue. The expression
for [y in is seen by taking the scalar product with by in the first identity of
as well as using and .

The expansions follow by analytic perturbation theory. Indeed, b = by +
by +O(p*) and | = Iy + I; + O(p?) with by := —(By — Bold) "' Qo E|[bo] and Iy := — (B} —
Bold) Qi E*[lo] (cf. Lemma with E satisfying (8.5.3))). Here the invertibility of
By — Bpld on the range of () is seen from the second part of Lemma with T' = B,.

In fact,
(Bo - ﬁoId)ilQo - BalQo + O(ﬂo) (8521)

Furthermore, we use (8.5.13al) and obtain the first equalities below:

Elby] = Cp 4(Cs — CL)F[fu] + O(Im 2)
(8.5.22a)
= _2iPCq*,q[5f3] + 2P2Cq*,q[f3] + O(/)3 +Im 2),

E*lo) = Cp 1. F(Cy — C)[fu] + O(Im 2)

(8.5.22b)
= 2ipC, . Flsfi] +20°C . F[f2] + O(p® + Im 2).

For the second equality in (8.5.22al), we used (8.5.9)), || Cs—C.|| = O(p) and (Cs—C,)[fu] =
2(Imu—iReu)(Imu)f, = —2ipsf2+2p%f2+O(p*) due to (8.5.2). For the second equality
in (8.5.22h)), we applied (Cs — C3)[f.] = 2ipsf2+ 2023 + O(p?).

For the proof of (8.5.14d), we start from (8.13.3), use E = O(p) and obtain

B(1,b) = Bollo, bo) + (lo, Elbol) — (lo, EBo(Bo — old)*QuE[bo]) + O(p’).  (8.5.23)
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Each of the terms on the right-hand side is computed individually. For the first term, we

use (ly,bo) = (f2) + O(p~'Im 2) due to (8.5.13a]) and thus obtain from (8.5.13b)) that

Bollg,bo) = mp Im z + O(p~2(Im 2)?).

Using (8.5.13al) and (8.5.22)) yields for the second term

(lo, Elbo]) = =2ip(sfu) +2p*(fy) + O(p* + Im z)

— 9 9 2(‘72 2 2 O +1
p0+ p <f2>+<sfu7QS,F[Sfu]> + (p + mz),

where we used Id = P, p + Qs r and (sf2, Ps r[sf2]) = 02/{f2) + O(p~'Im z) by (8.5.17)
in the last step.

For the third term, we use (8.5.13b)) and F = O(p) which yields

(lo, EBy(By — Bold) *QoE[bo]) = (E*[lo], (Bo — Bold) "' Qo E[bo]) + O(Bol E?)
= (E*[lo], By 'QoElbo]) + O(pIm z)
= —4p*(sf?, F(Id — C,F) Qs r[sf2]) + O(plm z + p*).

Here, we used (8.5.21)) in the second step and (8.5.22) as well as (8.5.18]) in the last
step. Collecting the results for the three terms in (8.5.23)) and using Cs = C? as well as

Cylsf?] = sf? yield (8.5.14d).
The bounds in (8.5.15) and (8.5.16|) follow directly from the analytic functional cal-
culus and Lemma [R.5.1] O

Corollary 8.5.3 (Improved bound on B™'). Let Assumptions hold true on an

interval I C R for some n, € (0,1]. Then, uniformly for all z € Hy,, , we have

1
p(2)(p(2) + lo(2)]) + p(z) m 2
PrOOF. If p > p, for some p, ~ 1 then have been shown in as
lo| < 1. Therefore, we prove for p < p, and a sufficiently small p, ~ 1. By
[|S]l2=) - S 1 and Lemma (i), it suffices to show the bound for || -||;. We follow
the proof of until (8.4.23)). Hence, for the improved bound, we have to show that

1B )l + 1B ()l < (8.5.24)

1= IFll2{fC3 DI 2 plp+ |o]) + p~ ' m 2. (8.5.25)
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We have [1—[|F|l2(fC5[f1)| 2 max{1l —[|F|l2, |1 = (fCi[fDI} Z p~ Im 2+ [1 = (fC3[f])|
by . We continue

1= (fCR LM = N={fu fu)| 2 (fTmufTmu)+[(fImufRew)| 2 p*+plo|+O(p°+1m 2).

Here, we used 1 > (fReufReu) due to || f|2 = 1, (8.4.21)) as well as (fImufReu) =
ol full22(f3s) + O(p® + Im 2) by (8.5.10) and (8.5.2). By possibly shrinking p, ~ 1, we
thus obtain (8.5.25]). This completes the proof of (8.5.24]). U

The remainder of this section is devoted to several results about the behaviour of
p(z), o(z) and ¥(2) close to the real axis. They will be applied in the next section. We

now prepare these results by extending ¢, u, f, and s to the real axis.

Lemma 8.5.4 (Extensions of ¢, u, f, and s). Let I C R be an interval, 8 € (0,1] and
Assumptions|[8.4.5 hold true on I for somen, € (0,1]. We set Iy := {r € I: dist(r,0I) >
0}. Then we have

(i) The functions q, u and f, have unique uniformly 1/3-Hélder continuous exten-
sions to Hy, . .
(ii) The function z — p(z)"'Imz has a unique uniformly 1/3-Hélder continuous

extension to Hy, .. In particular, we have
lim p(z) 'Imz =0 (8.5.26)
Z—T0

for all Ty € supp p N Iy. Moreover, for z € Hy, .., we have

dist(z,suppp) 2 1 = p(z) 'Imz > 1.

(1ii) There is a threshold p. ~ 1 such that s = sign(Rew) has a unique uniformly
1/3-Hélder continuous extension to {w € Hy,,. : p(w) < p,}.

PROOF. For the proof of (i), we will show below that

fm(2) = p(z) ' Imm(2)
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is uniformly 1/3-Holder continuous on Hy, ,,.. Indeed, this suffices to obtain the Holder-
continuity of ¢ and wu since their definitions in (8.3.1)) can be rewritten as

_ _ . _ 1 1/4
g =7 Pgh™ 2 0 PR = (p(2)°1 + £, gt et )

pEhw _ ip()L + [ 20 fm (8.5.27)

p(2)wl  fip(2)1 + fn Pgfm?|)

where ¢ = Rem, h = Imm, w is defined in (8.3.1) and z € H is arbitrary. Since
lp(#)w| ~ 1 and f,, ~ 1 onHy, ,, by as well as (8.4.17) and m, hence p and Rem
are Holder-continuous on I x i[0,00) (Proposition [8.4.7), it thus suffices to show that
fm is uniformly Holder-continuous to conclude from that ¢ and u are Holder-
continuous. As f, = p'Imu = (¢*)"'f,q7 !, the Holder-continuity of f,,, the Holder-
continuity of ¢ and the upper and lower bounds on ¢ from imply that f, can be
extended to a 1/3-Holder continuous function on Hy, . .

Therefore, we now complete the proof of (i) by showing the 1/3-Ho6lder continuity of
fm- To that end, we distinguish three subsets of Hy, ,, .

Case 1: On the set {z € Hy,,. : p(z) > p.} for any p, ~ 1, the uniform 1/3-
Holder continuity of f,, follows from p(z) 2 1 and the 1/3-Holder continuity of m from
Proposition [8.4.7]

Case 2: In order to analyze f,, on the set {z € Hy, ,, : p(2) < p,} for some p, ~ 1 to
be chosen later, we take the imaginary part of the Dyson equation, , at z € H and
obtain

B,[Imm| = (Im z)m*m, B, :=1d — Cpx 1S, (8.5.28)
where m = m(z). We follow the proof of (8.5.24) in Corollary and use
Id — Cope S = Cyr qCr u(Cuvur — F)C,

instead of (8.4.3)) to see the invertibility of B, for each z € Hy,, and

1
p(2)(p(2) + |o(2)]) + p(z)~'m 2

for all z € Hy,,. Since B, is invertible for any z € Hj,, , we conclude from ({8.5.28) that

1B (2)ll2 + 1B () <

(8.5.29)

. Imm(z) . B Ym*m]
) = T (=) = (B, o] (8:5:30)
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for all z € Hy, ,,.

On the set {z € Hy,,. : p(z) 'Imz > p.} for any p. ~ 1, B'[m*m] is uniformly
1/3-Hélder continuous due to (8.5.29) and the 1/3-Hoélder continuity of m. Moreover,
from and Imu ~ pl, we see that 1 — ||Fl|ls ~ 1 if p(z)"'Imz 2> 1. Hence,
by Lemma in Appendix below, (Id — Cy, F)™! is positivity-preserving and
satisfies

(Id — Cys o F) Haa*] > za* (8.5.31)
for any z € A. We conclude that B! = Cy- ,(Id— C,» , F) 7' C;., is positivity-preserving.
Together with (8.4.21)), (8.5.31)) implies (B, '[m*m]) = 1 as ||m(z)7!| < 1 by |la]| £ 1,

ISII £ 1 and (8.2.3). Thus, (8.5.30) yields the uniform 1/3-Hélder continuity of f,, on
{z € Hy,,. : p(2) Hmz > p,} for any p, ~ 1.

Case 3: We now show that f,, is Holder-continuous on {z € Hy, ,,. : p(2)+p(z) 'Im z <
p«} for some sufficiently small p, ~ 1. In fact, Lemma applied to T' = B, yields the
existence of a unique eigenvalue g, of B, of smallest modulus. Inspecting the proof of
Corollary for B reveals that this proof only used B = By + O(p) about B. There-
fore, the same argument works if B is replaced by B, since B, = By + O(p) (compare
the proof of Lemma . We thus find a right eigenvector b, and a left eigenvector L,

of B, associated to f,, i.e.,

which satisfy
b, = by +O(p) = ¢" fuqg + O(p+ p~'Im 2), (8.5.32a)
L=1l+00p) =q¢'fu¢") " +O0(p+p'Imz), (8.5.32b)
Bl b,) = mp mz + O(p + p~%(Im 2)?). (8.5.32¢)
Moreover, we have
1B Qull + 1B Qull2 S 1, (8.5.33)

where (), denotes the spectral projection of B, to the complement of the spectral subspace

of .
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Therefore, as (. # 0 (cf. (8.5.29)) if Im z > 0, we obtain

(I, m*m)

Imm = (Tm 2) B [;m*m] = (Im 2) (6*_ ST

by + B*_lQ*[m*m])

Consequently, as Imm > 0, we have

Imm B <l*’m*m>b* +5*<l*,b*>B*_lQ*[m*m]
() (L, mem) () + Bl ) (BZ1Qumem])’ (8:5.34)

which together with (8.5.30) shows that f,, is uniformly 1/3-Ho6lder continuous on {z €
Hiy, 5. @ p(2) + p(2) MIm z < p,}. Here, we used that B, and, thus, 3., l., b, and B;'Q,
are 1/3-Holder continuous and the denominator in (8.5.34)) is 2 1 due to

(L.,m*m) = (¢ fu(d) g u qq uq) + O(p + p~'Im 2)

= p Mm (¢*uuu*q) + O(p + p ' Imz2) = 7+ O(p + p 'Im 2)

by (8.5.32a)) and (8.5.32b]) as well as (b,) = 7+ O(p+ p 'Im z) by (8.5.19)). Here, we also

used ([8.5.32¢)) and ({8.5.33)). This completes the proof of (i).
For the proof of (ii), we multiply (8.5.28) by p(z)~!(m*m)~! which yields

p(z) ' m z = (m*m) ™' B,[fa].

Owing to m*m > |[[m~!|72 = 1 as well as the 1/3-Holder continuity of m, B, and f,,,
we obtain the same regularity for z — p(z)'Imz. Since lim,op(7 + in)~'n = 0 for
T € supp p N Iy satisfying p(7) > 0, the continuity of p(z)~'Im z directly implies (8.5.26]).
If dist(z,suppp) = 1 then p(z) " 'Imz > 1 as p(z) < Im z/dist(z, supp p)? which can be
seen by applying (-) to the second bound in (8.3.7). Conversely, if dist(z,suppp) < 1
then the Holder-continuity of p(z)~'Im z and imply p(z)'Imz < 1.

We now turn to the proof of (iii). Owing to the first relation in (8.5.2), there is
ps ~ 1 such that |Reu| > 31 if z € Hy,,, satisfies p(z) < p,. Therefore, we find a
smooth function ¢: R — [—1,1] such that ¢(t) = 1 for all £ € [1/2,00), p(t) = —1 for
all ¢t € (—o0,—1/2] and s(z) = sign(Reu(z)) = ¢(Rewu(z)) for all z € Hy,,, satisfying
p(z) < p«. Since ¢ is smooth, we conclude that ¢ is an operator Lipschitz function |8,

Theorem 1.6.1], i.e., ||¢(x) — ¢(y)|| < Cllz — y|| for all self-adjoint =,y € A. Hence, we
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conclude
I5(21) — s(22)|| = lle(Rew(z1)) — p(Reu(z2))]] < [|z1 — 22]|'/?,

where we used that ¢ is operator Lipschitz and w is 1/3-Ho6lder continuous in the last

step. This completes the proof of Lemma O

Lemma 8.5.5 (Properties of ¢ and o). Let I C R be an interval and 0 € (0,1]. If m
satisfies Assumptions on I for some n, € (0,1] then there is a threshold p, ~ 1 such
that, with

Heman = {w € Hy, ., : p(w) + p(w) ' Imw < p,},

we have

(i) The functions o and 1 defined in (8.5.12) have unique uniformly 1/3-Hélder
continuous extensions to {z € Hy, . : p(z) < p.} and Hgman, respectively.

(ii) Uniformly for all z € Hgpan, we have
V(2) +o(2)? ~ 1. (8.5.35)

PRrOOF. For the proof of (i), we choose p, ~ 1 so small that all parts of Lemma[8.5.4]
are applicable. Thus, Lemma and o = (sf3) yield (i) for o. Similarly, since ¢ is
now defined on Hy, ., we can define F via (8.3.4)) on this set as well. Moreover, owing
to the uniform 1/3-Hélder continuity of ¢ from Lemma [8.5.4] F is uniformly 1/3-Hélder
continuous on Hy, ,.. Hence, using Lemma for T'=Id — Cx F, the Holder-continuity
of s and f,, the function v has a unique 1/3-Hélder continuous extension to Hgpay. This
completes the proof of (i) for .

We now turn to the proof of (ii). In fact, we will show (8.5.35) only on {w €
Hy, .. plw) + p(w) ' Imw < p,}, where p, ~ 1 is chosen small enough such that Lem-
ma is applicable. By the continuity of ¢ and v, the bound immediately
extends to D, g. Instead of , we will prove that

(z,(Id + F)(Id = CF) "' Qs pla]) + (fu, x)* ~ |23 (8.5.36)

for all z € A satisfying Cs[z] = x and x = 2*. Since these conditions are satisfied by

r = sf?, (8.5.36) immediately implies (8.5.35). In fact, the upper bound in ([8.5.36))
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follows from ||(Id — C.F) ™' Qs r||2
to (8.5.8).

From Cs[z] = x, we conclude

< 1 by Lemma 8.5.1, ||F|lz < 1 and f, ~ 1 due

~Y

<$> (Id + F)(Id - CSF)_lQS,F[:B:D = <$> (Id + CSF)(Id - CSF)_le,F[xD
— (0, ((CoF — 1d) + 21d)(Id — C,F)'Q, pla])

= (,(~1d + 2(Id — C;F)7")Q, ).
(8.5.37)

Using (8.5.17) and Cy[f,] = fu, we see that
CiP.plr] = P.plz] + O(p~'Imz),  CuQspla] = Qurlz] + O(p~'Imz)  (8.5.38)

for € A satisfying Cs[x] = .
When applied to (8.5.37)), the expansion (8.5.38) and (Id — FCy)~! = Cs(I1d — C, F) 7' C;
yield
(z,Id + F)(Id — C,F) Qs r[z])
= (Qsplz], (-1d + (Id = C.F) ™! + (Id = FC) ™) Qs p[2]) + O(||z(3p™ ' Tm 2)
= (Qsrz], (Id = FCy)~(Id = F*)(Id — C,F) " Qs p[2]) + O(||z]|2p™ ' 2)
= ((Id = CsF) "' Qurlz], Qs (1d — F!)Q¢(Id — C.F) Qs pla]) + O(||z[l2p™ ' Tm 2)
2 1Qs(1d = C.F) 7' Qy pla]ll3 + O(l]3p™ Im 2)

2 1Qs.rlalll; + O(Jl]3p™ Im 2).
(8.5.39)
Here, in the first step, we also used the second and third relation in (8.5.17)). In the third
step, we then defined the orthogonal projections Py := (f,-)f and Q= Id — P, where

Ff =|F|lof (cf. Assumptions [8.4.5 (ii)), and inserted @ using
PiQsr = O(p 'Im z) (8.5.40)

which follows from (8.5.10) and (8.5.17). We also used that Qs r commutes with (Id —
C,F)~'. The fourth step is a consequence of (8.4.7) and (8.4.18). In the last step, we
employed Q Qs r = Qsr + O(p 'Imz) by (8.5.40) and ||Id — CsF[|2 < 2.
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By (8.5.17)), we have || P, p[z]||3 = (fu,z)?+O(||z||3p  Im 2) if z = 2*. Combining this
observation with (8.5.39)) proves (8.5.36) up to terms of order O(||z||3p ' Im z). Hence,
possibly shrinking p, ~ 1 and requiring p(z)"'Imz < p, complete the proof of the

lemma. O

Remark 8.5.6 (Auxiliary quantities as functions of m). Inspecting the proofs of Lemmam
and Lemma [8.5.5| reveals that ¢, u, f, and s as well as ¢ and 1) are Lipschitz-continuous

functions of m. More precisely, we define

M = {m € A: m satisfies (8.2.3)) for some data pair (a, S) and some z € H
such that |z| < ko, Imm € Ay and m,a, S satisfy Assumptions [8.4.5] at z}

for some kg > 0. Then we have

(i) The functions ¢, v and f, are uniformly Lipschitz-continuous functions of m on
M.
(ii) There is p, ~ 1 such that the functions s and o are uniformly Lipschitz-
continuous as functions of m on {m € M: (Imm) < mp.}.
(iii) There is p. ~ 1 such that the function ¢ is uniformly Lipschitz-continuous

as function of m on {m € M: (Imm) + 7*(Imm) 'Imz < mp,, where z €

H is the spectral parameter in (8.2.3])}.

Here, we also consider kg in the definition of M a model parameter in addition to those

introduced in Convention [8.4.6]

The careful analysis of the operator B and its inverse allows for the precise bounds

on the derivatives of m in the following lemma.

Lemma 8.5.7 (Derivatives of m). Let I C R be an open interval and 0 € (0,1]. If
Assumptions hold true on I for some n. € (0, 1] then there is C' ~ 1 such that

Cvk

k < -
LIRS

uniformly for all T € Iy satisfying p(1) > 0 and all k € N satisfying k > 1.
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PROOF. To indicate the mechanism, we first prove that
[0.m(T)I S ()72, M) S p(r)7> [|02m(T)|| S p(r) 7 (8.5.41)

for all 7 € Iy satisfying p(7) > 0.
Since p(7) > 0, m is real analytic around 7 by Proposition and we can differenti-
ate the Dyson equation, (8.2.3), with respect to z and evaluate at z = 7. Differentiating

iteratively yields

B[0,m] = m?, B[0?m] = 2(0.m)m~ " (0.m),

B[0?m] = —6(0,m)m ™ (0,m)m 1 (0,m) + 3(02m)m ™~ (0.m) + 3(0,m)m ™' (0*m)

(8.5.42)

where B = Id — C,,,S and m := m(7). Since p(7) > 0, B is invertible by (8.5.24)), (8.5.26)
and the 1/3-Hélder continuity of m by Proposition m

We set p := p(7). If p > p, for some p, ~ 1 then follows trivially from
B5AD. 1B S 1 by and ||| + 1| S 1.

We now prove for p < p, and some sufficiently small p, ~ 1. Under this
assumption, Lemma [8.5.1] and Corollary are applicable. In the remainder of this

proof, the eigenvalue 3, the eigenvectors [ and b as well as the spectral projections P and
Q are understood to be evaluated at 7. We will now estimate the image of B~! applied
to the right-hand sides of in order to prove .

Inserting P 4+ @ = Id on the right-hand side of the first identity in , inverting

B and using

as well as B~Y[b] = 371b yield

_ (l,m2> ~10[m?2
azm—ﬁ(l,b>b+B Q[m~]. (8.5.43)

We will now estimate (I, m?) and ((I,b). From m = ¢*sq + O(p) by (8.5.2), (8.5.13a]),
(8.5.14b)) and (8.5.26)), we obtain

<l ) m2> = <fu3qq*5> + O(p) =T+ O(ﬂ)) (8544)
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where we used sf,s = f,s? = f, and (8.5.19) in the last step.
From (8.5.14¢) and (8.5.26]), we conclude

B(l,b) = —2ipo + p* (w + &;) + O(p?). (8.5.45)

Here and in the remainder of the proof, o, ¢, f,, ¢ and s are understood to be evaluated
at 7.

Since o and 1) are real, we conclude |3(l,b)| ~ p(p+ |o|) for p, ~ 1 sufficiently small.
As [|B'Q| S 1 and ||b]] £ 1, we thus obtain [|0.m|| < p~2 from (8.5.43).

Using (5.29), 0.m| < p~2 and | B S p~ yield
(I, m*2(l,bm=1b)

(B(1,0))?

Here, in the last step, we used ||b]| < 1 and [{I,bm™'b)| < |o| + p due to the expansion

O*m =2 b+O(p™*) =0(p?).

(L, bm ™oy = (g fuld") " a fuag s(q*) 7 fuq) + O(p) = o+ O(p) (8.5.46)

as well as |3(L,b)| ~ p(p+|o]) and (I, m?) = O(1). The proof of is a consequence
of (8.5.13al), (8.5.14al), (8.5.14h)), (8.5.26), m~ = ¢~ s(q*)~' + O(p) by as well as
q~ 1
Similarly, owing to , we obtain
(I, m?)3(1, bm=1b)?
({1, 6))°

We now estimate 0¥m(z) for k > 3. To that end, we will fix a parameter a > 1 and

97m = 12 b+0O(p™%) = O0(p™).

prove that there are p, ~ 1, C ~, 1 and C5 ~, 1 such that, for £ € N, we have
m® = 0fm = Bib + q, (8.5.47)

where m = m(7) for 7 € Iy satisfying p := p(7) < p. and [y € C and ¢, € ran(@) satisfy

k—1
kIC Gy —3k+1

k!010§_1 —3k+2
o ; P :

<
|Bk| = ko

il < (8.5.48)

Here, ~, indicates that the constants in the definition of the comparison relation ~ will

depend on a.
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Before we prove ([8.5.47) below, we note two auxiliary statements. First, as 9,m™! =

—m ™1 (9,m)m™! it is easy to check the following version of the usual Leibniz-rule:

k
k!
=3 Y A (D m T M Im T ) omT memT (8.5.49)
n:l (l1+...+an:k al e CLn
1<a;<k
for any k € N. Here, in the sum over ay + ...+ a, = k, the order of a4,...,a, has to be

taken into account since m~! and m(® do not commute in general.
We prove (8.5.49) by induction on k: The case k = 1 is trivial. For the induction
step, we obtain

k k+1 k!

k+1,_ -1 __
TS 3D SED DRI
n=1j=1a1+..4anr1=k+1 “1° - Cntl:
1<a; <k
ajzl

(=1)"Fim i) | ey,

+Z DD S | L R LT

n=1aj+...+a,=k j= 1a1
1<a; <k

k1
=Y K= m Wt W

I .
+ E E < E + g )a 'k.a]a '(—1)”m_1m(‘“)...m(“’"‘)m_1
1. .. Ayt

n=2j=1 “ai+..4+an=k+1 a1+..+apn=k+1
1<a;<k+1 1<a;<k+1
a;=1 a;>2

1 '(_1)1m—1m(kz+1)m 1

k+1 k!

=y > ol '(—1)”m_1m(‘“) Comledm L
n=1ai1+...4an=k+1 'an‘
1<a;<k+1
Here, we used the product rule in the first step, where the first summand originates from
differentiating the m~' factors and the second summand from differentiating m(®). In
the last step, we employed a; + ...+ a, = k + 1. This completes the proof of ([8.5.49).
Second, we also have the following auxiliary bound. For all k € N, n € N with n < k

and a > 1, we have

1 2a+1 n—1
D < ) (8.5.50)
al+...+an==k ay - CL?{ ka
1<a; <k

where ((a) = >0°, n~“ is Riemann’s zeta function.
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We now prove (8.5.50) by induction on n and remark that the case n = 1 is trivial
as the left- and right-hand side of (8.5.50)) agree in this case. For the induction step, we

assume n + 1 < k and obtain

>

(0% «
a1tk O O

1 1

a

Q )
M- 1M
= =

> .
ai1+...+tan=k—a ai ...ay

(2*1¢(a))"
a®(k —a)>

for a > 1. Here, we used the induction hypothesis in the second step and a(k —a) > ak/2

for 1 < a < k in the third step. This completes the proof of (8.5.50)).

We now show (8.5.47)) and (8.5.48)) by induction on k. The initial step of the induction

with k£ = 1 has been established in (8.5.43) with 8, = (I,m?)/(8(l,b)), ¢ = B

~'Qm’]

and some sufficiently large C; ~ 1. Next, we establish the induction step by proving

(8.5.47) and (8.5.48]) under the assumption that they hold true for all derivatives of lower

order. From the induction hypothesis, we conclude

k10,091

”m(a) || S kap?)a—l

(ol + p)

for all a € N satisfying 1 <a <k —1.
For k > 2, we differentiate (8.2.3|) k-times and obtain

B[0Fm] = ry == 0"m + m(@?m_l)m.

By separating the contributions for n = 1 and n > 2 in (8.5.49)), we conclude

k
k! o
Tk:Z Z ﬁ(_l) m@) =1 Ly (an)
n=3 a1+..+an—k - An:
1<a;<k—1
k—1
+ ki!m(“)m—lm(k—a)

= al(k —a)!

(8.5.51)

(8.5.52)

(8.5.53)
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Since n is at least 3 in the first sum, we obtain from (8.5.51]) and (8.5.50|) that

k k
k! k!
. (a1),,,—1 L -1, (an) < (b CmMn—lcvk—n
S e < e+ ) Y CRA
1<a;<k—1
(8.5.54)
where M, = 2°T2((a)|[m ™ |(||b]| + p). A similar argument yields
kol k! (@), . —1, (k—a) k! 2 k—2
S g ) < ]+ )CEMLCE

Thus, we choose Cy > 2M,C and conclude

]| < kU (bl + p) ML CECY
U= ko2 C3(1 - Mo C1/Ch)

Therefore, we obtain the bound on ||gx|| in for Cy ~ 1 sufficiently large since
a, = Q[ofm] = B~'Q[ri] and |B7'Q| < 1.

Moreover, B = (L, rx)/(B(l,b)). Hence, by using the decomposition of ry in
and , we obtain

CHOCE! Il (o +CME L K (Ot
= T (BB C3(1— MoCy/Cy) | 2 al(k—a) B b))

a=1

| B

We use (8.5.47) for m® and m®*= in the argument of the last sum, which yields

L m@n ) (8] (Bl (b )
al(k —a)! 16(L,0)] ~oal (k—a)! |B(l,0)]
N cicy pAUlimY
a®(k —a)p3*=1 |B(l,b)|
R e p?
~a%(k —a)*p31|B(L, )|
X (|<l7bﬂ”b_lb>|/f1 + [l It 2l10]) + ﬁ))

2loll + p)

Here, we applied ({8.5.48)) to estimate ¢, and gx_, as well as 3, and fy_,. Since |5(l,b)| =
p* as shown below (8.5.45)) and [{I,bm™'b)| < p due to (8.5.46)), we obtain the bound
on |fBg| in (8.5.48)) by using (8.5.50) to perform the summation over a. This completes

the induction argument, which yields (8.5.47) and (8.5.48)) for all & € N by possibly
increasing Co ~ 1. By choosing, say, a = 2, we immediately conclude Lemma for

7 € Iy satisfying p(7) < p.. If p(7) > p. then ||B7'|| < 1. Hence, a simple induction
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argument using (8.5.52)) and (8.5.53)), which hold true for p(7) > p,. as well, yields some
C ~ 1 such that

loZm()I| < kIC*
for all k£ € N satisfying & > 1. Since p(7) < 1 for all 7 € Iy, we obtain Lemma in

the missing regime. U

8.6. The cubic equation

The following Proposition is the main result of this section. It asserts that m is
determined by the solution to a cubic equation, below, close to points 7y € supp p
of small density p(7p). In Section , this cubic equation will allow for a classification of
the small local minima of 7 — p(7). To have a short notation for the elements of supp p

of small density, we introduce the set
D.p:={r €supppnl: p(r) €0,el], dist(r,0I) > 0}

for e > 0 and 6 > 0.
The leading order terms of the cubic and quadratic coefficients in (8.6.3) are given
by () and o(7y), respectively. For their definitions, we refer to Lemma [8.5.5] (i) and

’5.12).

Proposition 8.6.1 (Cubic equation for shape analysis). Let I C R be an open interval

and 0 € (0,1]. If Assumptions hold true on I for some n, € (0,1] then there are
thresholds p, ~ 1 and 6, ~ 1 such that, for all 7y € D,, 9, the following hold true:

(a) For all w € [—d,, ], we have
m(7y +w) —m(1y) = O(w)b + r(w), (8.6.1)

where ©: [—0,,0.] — C and r: [—0,,0,] — A are defined by

I
Ow) = <<bz> ,m(To+w) — m(70)>, .

r(w) = Qm(1o +w) — m(7)].
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Here, | = l(19), b = b(19) and Q = Q(70) are the eigenvectors and spectral

projection of B(ty) introduced in Corollary[8.5.3. We have b = b* + O(p) and

I=0U+0(p) as well as b+b* ~ 1 and [ +1* ~ 1 with p = p(19) = (Imm(7)) /7.
(b) The function © satisfies the cubic equation

1303 (W) + 120%(w) + 1 O(w) + w=(w) =0 (8.6.3)

for allw € [—04,0.]. The complex coefficients s, ja, 1 and = in (8.6.3)) fulfill

s = v + O(p), (8.6.4a)
fo =0+ ip<3¢ + &;) +O(p?), (8.6.4D)
11 = 2ipo — 2p° (w + &;) + 0>, (8.6.4¢)
Ew) =71+ v(w))+ O(p), (8.6.4d)

where o = o(19) as well as v = P (9). For the error term v(w), we have
()] S 10w)] + lwl| < lw]"2. (8.6.5)
for all w € [=6.,0,]. Uniformly for 7o € D,, 9, we have

Y+o?~ 1. (8.6.6)

(c) Moreover, ©(w) and r(w) are bounded by

Al s
O] < min {5 ]!} (8.6.7a)
@)l S 1O + o, (8.6.7b)

uniformly for all w € [—ds, d,].

(d1) If p > 0 then © and r are differentiable in w at w = 0.
(d2) If p =0 then we have
ImO©(w) >0,

(8.6.8)
Im v(w)] < Im O(w), [Tm r(w)[| < (18(w)] + |w|)Im O(w),
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for allw € [—0.,0.] and Re®© is non-decreasing on the connected components of

{w € [—04,04]: ImO(w) = 0}.

(e) The function o: D, g — R is uniformly 1/3-Holder continuous.

The previous proposition is the analogue of Lemma 9.1 in [4]. The cubic equation for
©, (8.6.3)), will be obtained from an A-valued quadratic equation for A := m(7) + w) —
m(79) and the results of Section [8.5 In fact, we have

(Id = CS)[A] = wm? + g(mA + Am) + ;(mS[A]A + AS[A]m), (8.6.9)

where 79,70 + w € Iy := {7 € I: dist(r,0I) > 0} and m := m(7y) (see the proof of

Proposition in Section below for a derivation of (8.6.9)). Projecting ({8.6.9)

onto the direction b and its complement, where b is the unstable direction of B defined
in Corollary , yields the cubic equation, , for the contribution © of A parallel
with b. In the next subsection, this derivation is presented in a more abstract and
transparent setting of a general A-valued quadratic equation. After that, the coefficients

of the cubic equation are computed in Lemma in the setup of (8.6.9) before we
prove Proposition [8.6.1] in Section [8.6.3]

8.6.1. General cubic equation. Let B,T: A — A be linear maps, A: Ax A — A
a bilinear map and K: A x A — A a map. For A e € A, we consider the quadratic
equation

BIA] — A[A, A] - Tle] — Kle, A] = 0. (8.6.10)

We view this as an equation for A, where e is a (small) error term. This quadratic
equation is a generalization of the stability equation for the Dyson equation,
(8.2.3)) (see and below for the concrete choices of B, T, A and K in the
setting of (8.6.9)).

Suppose that B has a non-degenerate isolated eigenvalue S and a corresponding eigen-
vector b, i.e., B[b] = pb and D,(B) N Spec(B) = {B} for some r > 0. We denote the

spectral projection corresponding to S and its complementary projection by P and @),
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respectively, i.e.,

1 B ({1, -)
Pim oo f  (B-wld)'dw = b =1d—P. 6.11
27 8Dr(,8)( wId)™ dw 1,0y’ @ (8.6.11)
Here, | € A is an eigenvector of B* corresponding to its eigenvalue 3, i.e., B*[]] = Bl. In
the following, we will assume that
1B Q] < llell,  KE0)7 ol + [l £ 1, [ALz, ylll < [l lyll,
ITTe]ll < llell, K e, ylll < Nlellllyll

for all z,y € A and the e € A from (8.6.10)). The guiding idea is that the main contribu-
tion in the decomposition

{l,A)
(L, b)

is given by O, i.e., the coefficient of A in the direction b, under the assumption that A is

A=0b+Qa, ©:= (8.6.13)

small. If A = K = 0 then this would be a simple linear stability analysis of the equation
B[A] = small around an isolated eigenvalue of B. The presence of the quadratic terms
in requires to follow second and third order terms carefully. In the following
lemma, we show that the behaviour of © is governed by a scalar-valued cubic equation
(see below) and that Q[A] is indeed dominated by ©. The implicit constants in
(8.6.12) are the model parameters in Section m

Lemma 8.6.2 (General cubic equation). Let 5 be a non-degenerate isolated eigenvalue of

B. Let A € A and e € A satisfy (8.6.10), © be defined as in (8.6.13)) and the conditions
in (8.6.12) hold true. Then there is € ~ 1 such that if |A|| < e then © satisfies the cubic

equation

130 4 1302 + 1110 + g = €, (8.6.14)
with some é = O(|O]* + |O6|]le|| + ||e||?) and with coefficients
ps = (I, Alb, B QA[b, b]] + A[BT'QA[b, 0], b]),
p2 = (I, Alb,b]),
o= —p(,b),

po = (I, TTe]).

(8.6.15)
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Moreover, we have

Q[A] = B7*QT[e] + O(|6] + |le|?). (8.6.16)

If we additionally assume that ImnA € A, | =1* and b= b* as well as
Blz]* = Blz*], Alx,y]" = Alz",y*|, Tle]* =Tle], Kle,y|" = K[e,y*] (8.6.17)

for all z,y € A then there are e ~ 1 and 6 ~ 1 such that |A|| < e and |le|| < § also imply

M QIA][| < (18] + [lel)Im ©, (8.6.18a)

[Imé| < (|6]° + |le|)Im ©. (8.6.18b)
PROOF. Setting r := Q[A], the quadratic equation (8.6.10]) reads as
©pb+ Br = Tle] + A[A, Al + Kle, Al (8.6.19)

By applying Q and afterwards B~! to the previous relation, we conclude that

r=B"'QT[e] + 6B 'QA[b,b] + ey,
(8.6.20)
e1 =OB'Q(A[b,r] + Alr,b]) + B 'QA[r,r] + B"'QK]e, Al.
We have [le|| < [[7l|©] + [[7[* + [le[ [ Al and [Ir]| < llell + O + [|e ]| From the second
bound in (8.6.12)), we conclude ||P|| + ||Q]] < 1 and, thus, ||r]| < [|A|l. By choosing € ~ 1

small enough, assuming ||A|| < e and using ||| < ||Al|, we obtain
Irll S 1017 +llell, Nl S 1O + llelll©] + Jlell*. (8.6.21)

This proves (8.6.16). Defining ey := ¢; + B™'QT[¢e] yields A = ©b+ ©?B 1QA[b, b] + e,.
By plugging this into (8.6.19) and computing the scalar product with (I, -), we obtain

OB(1,b) =(I,Tle]) + 01, Alb, BT*QA[b, b]] + A[B'QA[b, 1], b])
(8.6.22a)
+O%(1, A[b, b]) — €,

¢ = —(I,K[e, Al + ©*A[B'QA[b, b], B~ 'QA[b, b]]
(8.6.22b)
+ A[A, 62] + A[GQ, A] — A[GQ, 62]>.
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Since |lea]| S 1O + |le]| and [|A|| < O] + |le]| by (8.6.21) and (8.6.16)), we conclude é =
O(|0]*+10|le]|+ ||le]|?). Therefore, O satisfies (8.6.14) with the coefficients from ([8.6.15)).

For the rest of the proof, we additionally assume that the relations in (8.6.17)) hold
true. Taking the imaginary part of (8.6.20) and arguing similarly as after (8.6.20]) yield

Moy || S ([[7]] + (0] + flef)(Im © + [[Tmr[}),  [[Imr]| S |©]Im © + [[Im ey .

Hence, (8.6.18a) and |[Ime;|| < (|O] + |le]|)Im © follow for ||A]| < € and ||e]| < § with

some sufficiently small ¢ ~ 1 and § ~ 1. From this and taking the imaginary part in

(8.6.22b)), we conclude (8.6.18bf) as ||[Im Al < Im © by (8.6.18a) and Im ey = Ime;. This
completes the proof of Lemma [8.6.2 d

8.6.2. Cubic equation associated to Dyson stability equation. Owing to (8.6.15)),
the coefficients us, o and pq are completely determined by the bilinear map A and the

operator B. For analyzing the Dyson equation, (8.2.3]), owing to (8.6.9)), the natural

choices for A and B are
1
B:=1d - C,,S, Alx,y] = i(mS[x]y + ySiz]m) (8.6.23)

with =,y € A. In particular, @ in (8.6.11) has to be understood with respect to B =
Id — C,,S. In the next lemma, we compute us, pe and py with these choices. This
computation involves the inverse of Id — C,F'.

In order to directly ensure its invertibility, we will assume Im z > 0. This assumption

will be removed in the proof of Proposition in Section below.

Lemma 8.6.3 (Coefficients of the cubic for Dyson equation). Let A and B be defined as

in (8.6.23)). If Assumptz'ons hold true on an interval I C R for some n, € (0, 1] then
there is a threshold p. ~ 1 such that, for z € Hy,,, satisfying p(z) + p(z) "m z < p,, the
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coefficients of the cubic (8.6.14) have the expansions

pz =1+ O(p+ p 'm 2), (8.6.24a)
2
pe = 0 + ip(S@/} + <;2>> +O(p* + p~'Im 2), (8.6.24b)

2

p = —mp tIm z + 2ipo — 2p? <1/1 + <;2>> +O(p* +Im 2z + p2(Im 2)?). (8.6.24c¢)
Moreover, we also have
2
(1, mS[Hb) = o + ip(?ﬂ/} 4 <;2>> + O + p ' Im 2). (8.6.25)

PROOF. In this proof, we use the convention that concatenation of maps on A and
evaluation of these maps in elements of A are prioritized before the multiplication in A,

i.e.,

if A and B are maps on A and b,c € A. We will obtain all expansions in (8.6.24]) from
(8.6.15)) by using the special choices for A and B from (8.6.23|). Before starting with the

proof of (8.6.24a)), we establish a few identities. Recalling m = ¢*uq from (8.3.2) and

(8.3.4), we first notice the following alternative expression for A
1 _ _ _ _
Alz,y) = 5 C o [uF CZ 1107 ] + Ol W FC 2l [aul (8.6.26)

with z,y € A. Owing to (8.4.21), the operators Cy« , and qufq are bounded. We choose
px ~ 1 small enough so that Lemma is applicable. By using u = s + ilmu + O(p?)

due to (8.5.2) as well as (8.5.4), (8.5.5) and (8.5.13a]) in (8.6.26)), we obtain

Albo,bol = Coe glisf2 +ip 2]+ O(p* + p~'m 2). (8.6.27)
Combining (8.6.27)) and (8.5.18)) implies
By ' QoAlbo, bo] = Cyrg(Id — CoF) Qs plsfs] + Op + p~'Im ).

We now prove the expansion (8.6.24a)) for us by starting from (8.6.15) and using [ =
lo+O(p), b=by+O(p) by (85.14), B~'Q = By Qo + O(p) due to B = By + O(p) and
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Lemma [8.5.1 and the previous identities. This yields

M3 = <lo , A[BalQoA[bo, b(]], bo] + A[bo, BalQoA[bQ, bo]]> + O(p)
= <fu 5 U,F(Id - CsF>71Qs,F[Sf3]fu + UF[fu](Id — CSF)ilQS,F[ngD + O(p + pflhn Z)

= (sfy, (Id+ F)(Id = C;F) " Qs r[sfi]) + Op + p~'Im 2).

Here, we also used F[f,] = fu+ O(p~'Im z) by (8.5.5) and u = s + O(p) by (8.5.2). This
shows ([8.6.24al).

In order to compute o, we define
by = 2ipCyp ,(Id — C.F) ' Qs r[s £, I = —2ipC, 1. (Id — FC,) 7' Q% p F[sf2].

Then we use (8.5.14a]) as well as (8.5.14b)) and obtain

(L, A[b, b)) = (lo, Albo, bo]) + (L1, A[bo, bo]) + (lo, A[br, bo]) + (lo, Albo, b1]) + O(p* + Im 2)

= (sfu) +ip(fy) +2ip(sfy, (1d + 2F)(1d — CsF) " Qs rp[sfy]) + O(p* + p~'Im 2)

0_2

(f2)
Here, in the second step, we used (8.5.13a)), (8.6.27)) and the definition of /; to compute

the first and second term, (8.5.13a]), the definition of b; and (8.6.26) to compute the third
and fourth term. In the last step, we then employed

:0+ip<3¢+ ) +O(p* + p'Im 2).

(fu) + (sfi,2(1d + 2F)(1d = CoF) 7 Qs p[sfa])

= (sfy,(Id+2(Id + 2F)(Id — O, F) ) Qs p[sfe]) + (sf2 s Porlsfi])
o2
(f2)
Here, we applied (8.5.17), Cs = C: and Cy[sf?] = sfZ. Since ps = (I, Alb,b]) by
, this completes the proof of . A similar computation as the one for
Lo yields .

Since p1 = — (L, b) by (8.6.15)), the expansion in (8.5.14¢) immediately yields (8.6.24d).

This completes the proof of the lemma. O

= 3(sf2, (Id + F)(Id — C.F) "' Q. r[sf?]) + +O(p 'Im 2).
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8.6.3. The cubic equation for the shape analysis. In this subsection, we will
prove Proposition by using Lemma [8.6.2] and Lemma [8.6.3] Therefore, in addition
to the choices of A and B in (8.6.23)), we choose A = m(m9 + w) — m(7), 70,70 +w € I,
e =wl and

1
T[z] = am® Klz,y] = §(xmy + ymz) (8.6.28)
for z,y € A with m = m(7p) in (8.6.10)).

PROOF OF PROPOSITION [8.6.1 We choose p, ~ 1 such that Lemma and Corol-
lary are applicable. We fix 7o € D, g and set m = m(7p). The statements about [
and b in (a) of Proposition follow from Corollary [8.5.2 In particular, [(I,b)| ~ 1.
Thus, the conditions in are a direct consequence of Assumptions ,
Lemma and Corollary B.5.2] Furthermore, if p = 0 then we have m = m* and,
thus, follows. For w € [—d,,0.], 0. := 0/2, we set A = m(19 + w) — m. Since
O(w)b = P[A], r(w) = Q[A] and P + @ = Id, we immediately obtain (8.6.1)). This
proves (a).

Next, we derive for A :=m(zo+w) —m(z0) and m := m(zg) with zy := 79 +1in,
70 € Dy, 0, w € [—64,0,] and n € (0,7,]. We subtract evaluated at z = z from
evaluated at z = zp + w and obtain with A and m defined at zg = 79 + in.
Directly taking the limit n | 0 yields with the original choices of A and m at
29 = 7o by the Holder-continuity of m on Hy ., I' := {7 € I: dist(r,dI) > 6/2}, due to
Proposition [8.4.7]

Lemma is applicable for |w| < J, with some sufficiently small d, ~ 1 since this
guarantees ||A|l < e owing to the Holder-continuity of m. Hence, Lemma yields
a cubic equation for © as defined in (8.6.2)) with [ = I(20), b = b(zp) and zy = 79 + in.
The coefficients of this cubic equation are given in Lemma [8.6.2] Owing to the uniform

1/3-Hoélder continuity of z — m(z) on Hy ., we conclude from the definition of © and

r = Q[A] in (8.6.2)), the boundedness of @ and B~'Q as well as (8.6.16) that |O(w)| <
|w|/3, i.e., the second bound in (8.6.7a]), and (8.6.7b]) uniformly for n € [0, n.].
We now compute the coefficients of the cubic in (8.6.3)) for 7 € D, 4. Set 2y :== 70 +1in.

Note that for n = Im 25 > 0 these coefficients were already given in (8.6.24]), so the only
task is to check their limit behaviour as n | 0. Owing to (8.5.26)), the expansions in
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(8-6.44)), (8.6.4D) and (B.6.4d) follow from (8.6.24a)), (8.6.24b]) and (B8.6.24d), respectively,
using the continuity of o, 1 and f, on Hgyan by Lemma and Lemma respec-
tively. We now show . With the definitions of é and py from Lemma w
(see and (B8.6.17)), respectively), we set Z(w) = w™'(ug — €) for arbitrary

lw| < b, Since I = Cyp[fu] + O(p+ p~'n) due to (8.5.13a) and (8.5.14D)), as well
as m? = (Rem)? + O(p) = Cyp ,Cs[qq*] + O(p) due to Imm ~ pl and (8.5.2)), we have

w g = (I'm?) = (fuqq") + O(p+p 'n) =7+ O(p+p 'n). (8.6.29)

Here, we also used Ci[f,] = f, in the second step and in the last step. We
set v(w) = —(wm)~'e. We recall e = wl. Since é = O(|O(w)|* + |O(w)||w| + |w|?) and
1O(w)| < |w|'/3, we obtain (8.6.5)). This yields by using (8.5.26)) in (8.6.29)). Since
implies , this completes the proof of (b) for 7y € D, » and we assume n = 0
in the following.

If p = p(70) > 0 then yields the missing first bound in completing
the proof of part (c). Moreover, in this case, the definitions of © and r imply their
differentiability at w = 0 due to Proposition [8.4.7 This shows (d1).

We now verify (d2). Since p = 0, we have Imm(7) = 0 and thus Im©O(w) > 0

by the positive semidefiniteness of Im m(my + w). Since py is real as [ and T'[e] are self-

adjoint, we obtain the second bound in (8.6.8) directly from (8.6.18b]) and |©(w)| < |w|'/5.
The third bound in (8.6.8) follows from ({8.6.18al) and e = w1l. Since p = 0 and hence
b= Cy 4| fu] by (8.5.14a) and [ = Cq”(}* [fu] by (8.5.14Db) are positive definite elements of A,

Re O(w)+ (I, m(10))/(l,b) is the real part of the Stieltjes transform of a positive measure
w1 evaluated on the real axis. The real part of a Stieltjes transform is non-decreasing on
the connected components of the complement in R of the support of its defining measure.
Therefore, as the support of p is contained in R\ {w € [—0,,0.]: ImO(w) = 0} due to
Imm(ry) = 0, we conclude that Re ©(w) is non-decreasing on the connected components
of {w € [, d,]: ImO(w) = 0}.

Lemma [8.5.5] (i) directly implies the Hélder-continuity in (e), which completes the
proof of Proposition [8.6.1 U
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8.7. Cubic analysis

The main result of this section, Theorem below, implies Theorem [8.2.5] and gives
even effective error terms. Theorem R.7.1] describes the behaviour of Imm close to local
minima of p inside of supp p. This behaviour is governed by the universal shape functions

Uegge: [0,00) = R and Wi : R — R defined by

(14 M)A
Wogge(N) = - s (8.7.1a)
(L4220 + 21+ 002+ (1220 —2,/1+ )N +1
1 2
Ui () = vitA 1. (8.7.1b)

(VI+ X2+ NP (VTF X -0 -1
For the definition of the comparison relation <, 2 and ~ in the following Theo-

rem [8.7.1] we refer to Convention [8.3.4] and remark that the model parameters in Theo-

rem are given by ¢, ¢o and c3 in (8.3.10]), k3 in (8.4.16]) and € in the definition of Iy
in (8.7.2) below.

Theorem 8.7.1 (Behaviour of Imm close to local minima of p). Let (a,S) be a data pair
such that is satisfied. Let m be the solution to the associated Dyson equation
(8.2.3) and assume that holds true on Hy,, for some interval I C R and some
ns € (0,1]. We write v := 7 'Imm and, for some 0 € (0,1], we set

Iy := {7 € I: dist(r,0I) > 0}. (8.7.2)

Then there are thresholds p, ~ 1 and 6, ~ 1 such that if 79 € suppp N Iy is a local

minimum of p and p(1y) < px then
o +w) = () + () + O p(r)ll 1l S pl(r)?) + W) (873

for w € [=4.,6,]N D with some h = h(ry) € A satisfying h ~ 1. Moreover, the set D and
the function W depend only on the type of 1o in the following way:

(a) Left edge: If 1o € (Osuppp) \ {infsupp p} is the infimum of a connected com-

ponent of suppp and the lower edge of the corresponding gap is in Iy, i.e.,

7 = sup((—o0,79) N suppp) € Iy, then (8.7.3) holds true with v(ty) = 0,
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D =1[0,00) and

U(w) = A1/3xpedge<2)

where A == 19 — 11. If 19 = infsuppp, or more generally p(t) = 0 for all
T € [10 — &, with some € ~ 1, then the same conclusion holds true with
A:=1.

(b) Right edge: If 7o € Osupp p is the supremum of a connected component then a
similar statement as in the case of a left edge holds true.

(¢) Cusp: If 19 ¢ Osuppp and p(m9) = 0 then holds true with D = R and
U(w) = |w|/3.

(d) Internal minimum: If 7o ¢ Osuppp and p(m9) > 0 then there is p ~ p(1y) such
that holds true with D = R and

V() = P 5

If the conditions of Theorem hold true, i.e., the data pair (a, S) satisfies
and m satisfies on Hy,, , then Assumptions are fulfilled on Hy,, (compare
Lemma (ii)). In fact, Theorem holds true under Assumptions which will
become apparent from the proof.

Theorem [8.7.1| contains the most important results of the shape analysis. When con-
sidering p = (v) instead of v the coefficient in front of ¥(w) in can be precisely
identified as demonstrated in part (i) of Theorem below. Moreover, Theorem [8.7.2)
contains additional information on the size of the connected components of supp p and
the distance between local minima; these are collected in part (ii). Note that the same
information were also proven in the commutative setup in Theorem 2.6 of [4] and Theo-
rem shows that they are also available in our general von Neumann algebra setup.

We remark that W, (w) = Wpin(—w) for w € R and, for w > 0, A > 0 and p > 0, we

have
1/2
A1/3\Ifedge (Z) ~ min {Zl/ﬁ , wl/g}, (8.7.4a)
2
Pl (55 )~ min {2 w172}, (8.7.4D)
p p



306 CHAPTER 8. DYSON EQUATION: SPECTRAL BANDS, EDGES AND CUSPS

The comparison relations ~, < and 2 in the following Theorem are understood
with respect to the constants ki, ..., kg from Assumptions [8.4.5] and € in the definition

of Iy in (8.7.2]).

Theorem 8.7.2 (Behaviour of p close to its local minima; Structure of the set of minima
of p). Let I C R be an open interval and 6 € (0,1]. If Assumptions hold true on I
for some n, € (0,1] (in particular, if the data pair (a,S) satisfies (8.3.10) and m satisfies
on Hy,, ) then the following statements hold true

(i) There are thresholds p. ~ 1, o, ~ 1 and 6, ~ 1 such that if 19 € suppp N Iy
is a local minimum of p satisfying p(10) < p« then we set I' := \/277/(2¢) with
Y = (1) defined as in Lemma and have

(a) (Left edge) If 79 € Osuppp \ {infsupp p} is the infimum of a connected
component of supp p, |o(79)| < 0. and the lower edge of the gap lies in Iy,

i.e., 71 = sup((—o0, ) Nsupp p) € Iy, then

p(ro+w) = (4D) 2 U (w) + O (Jo() [ ¥(w) + U(w)?) ,
w

V(w) = A1/3\IJedge(A>
for allw € [0,0,]. Here, T' ~ 1 and ¢ ~ 1.

(8.7.5a)

(b) (Right edge) If 79 € Osuppp is the supremum of a connected component
then a similar statement as in the case of a left edge holds true.
(c) (Cusp) If 19 ¢ Osupp p and p(19) = 0 then
1/3

r
p(To +w) = m|w|l/3 +O(Jw]*?) (8.7.5b)

for allw € [=64,6,]. Here, I' ~1 and ¢ ~ 1.
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(d) (Nonzero local minimum) There is € ~ 1 such that if 79 ¢ Osuppp and
p(10) > 0 then

o0+ ) = pl1o) + /30 (w) El + O(,O(To)l/z 4 p(:;)3>>’ if |w| < ep(ro)?,

P () (1 4+ 0(@(@)), if ep(mo)? < |w| < 6.,

() = Vo (;’3) | 5= 2T
(8.7.5¢)

forallw e R. Here, ' ~1 and ¢ ~ 1.
(i) If supp p N Iy # @ then supp p N Iy consists of K ~ 1 intervals, i.e., there are
Qai,...,ax € dsuppp U dly and By, ...,0k € Osuppp U dly, a; < B; < i1,

such that
K

supp p NIy = J[as, B (8.7.6)

=1

and B; — a; ~ 1 if B; # sup Iy and a; # inf Iy,
For p, > 0, we define the set M, of small local minima 7 of p which are not

edges of supp p, i.e.,

I\\/[[p* = {7- S (suppp\asuppp) Nly: p(T) < P
(8.7.7)

p has a local minimum at T}.

There is a threshold p, ~ 1 such that, for all vi,7v, € M, satisfying v1 # Y2 and

foralli=1,..., K, we have

71— 2| ~ 1, |y — | ~ 1, |Bi = | ~ 1. (8.7.8)

The factors 4'/% and 47'/3 in the cases (a) and (c) of part (i) of Theorem can be
eliminated by redefining I, Wegee and W,,;, to bring the leading term on the right-hand
sides into the uniform I''/3¥(w) form. We have not used these redefined versions of T,
WUeqge and Wy, here in order to be consistent with [4].

We remark that part (i) (a) and (b) of Theorem cover only the case of 7y €
Osupp p with sufficiently small |o(7p)|. We will establish later that the smallness of
|o(70)| corresponds to the smallness of the adjacent gap 79— 71 (see Lemma[8.7.14 below).

If |o(79)| is not so small then p(79 + w) is well approximated by a rescaled version of
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(w1 )'/? (positive and negative part of w for left and right edge, respectively). The precise

statement and scaling are given in Lemma [8.7.16| below.

8.7.1. Shape regular points. In the following definition, we introduce the notion
of a shape reqular point which collects the properties of m necessary for the proof of
Theorem [8.7.1] Proposition [8.7.4] below explains how the statements of Theorem [8.7.]
are transferred to this more general setup. In fact, Lemma m (ii) and Proposition
show that, under the assumptions of Theorem [8.7.1 any point 7y € suppp NI of
sufficiently small density p(7p) is a shape regular point for m in the sense of Definition
below. By explicitly spelling out the properties of m really used in the proof of
Theorem we made our argument modular because a similar analysis around shape
regular points will be applied in later works as well.

This modularity, however, requires to reinterpret the concept of comparison relations.
In earlier sections we used the comparison relation ~, < and the O-notation introduced
in Convention to hide irrelevant constants in various estimates that depended only
on the model parameters ci, ¢o, c3 from , k3 from ([8.4.16]) and @ from , these
are also the model parameters in Theorem [8.7.1] The model parameters in Theorem [8.7.2]
are given by ki, ..., kg in Assumptions [8.4.5|and # in the definition of Ij.

The formulation of Definition [8.7.3|also involves comparison relations instead of carry-
ing constants; in the application these constants depend on the original model parameters.
When Proposition 8.7.4] is proven, the corresponding constants directly depend on the
constants in Definition 8.7.3 hence they also indirectly depend on the original model
parameters when we apply it to the proof of Theorem [8.7.1] Since these dependences are
somewhat involved and we do not want to overload the paper with different concepts of
comparison relations, for simplicity, for the purpose of Theorem [B.7.1] the reader may
think of the implicit constants in every ~-relation depending only on the original model

parameters ¢, ¢, c3, k3 and 6.

Definition 8.7.3 (Admissibility for shape analysis, shape regular points). Let m be the
solution of the Dyson equation (8.2.3) associated to a data pair (a,S) € Ag X 2.



8.7. CUBIC ANALYSIS 309

(i) Let 79 € R, J C R be an open interval with 0 € J, ©: J — C and r: J — A be
continuous functions and b € A. We say that m is (J, ©,b, r)-admissible for the
shape analysis at 1y if the following conditions are satisfied:

(a) The function m: H — A has a continuous extension to 7y + J, which we

also denote by m. The relation (8.6.1)) and the bounds (8.6.7a)) as well as
(8.6.7bf) hold true for all w € J.
(b) The function O satisfies the cubic equation (8.6.3)) for all w € J with the

coeflicients

H3 = 1/} + O(p)a
piz = 0 +13¢p + O(p* + plol),

= =2p") + ik po + O(p* + p?lo]),

[1]

(w) = (1 +v(w)) +O(p),

where p := (Imm(7))/m and ¥,k > 0 as well as o,k € R are some pa-
rameters satisfying and R, |k1| ~ 1. The function v: J — C satis-
fies (8.6.9)).
(c) The element b € A in fulfils b = b* + O(p) and b+ b* ~ 1.

(d1) If p > 0 then © and r are differentiable in w at w = 0.

(d2) If p = 0 then holds true for all w € J and Re © is non-decreasing on
the connected components of {w € J: ImO(w) = 0}.

(ii) Let 70 € R and J C R be an open interval with 0 € J. We say that 7y is a shape
reqular point for m on J if m is (J, O, b, r)-admissible for the shape analysis at

7o for some continuous functions ©: J — Cand r: J — A as well as b € A.

The key technical step in the proof of Theorem is the following Proposition [8.7.4}
it shows that Theorem holds under more general weaker conditions, in fact shape
admissibility is sufficient. For the proof of Theorem [8.7.1] we will first check shape reg-
ularity from Proposition [8.6.1] and then we will prove Proposition [8.7.4} both steps are
done in Section below.



310 CHAPTER 8. DYSON EQUATION: SPECTRAL BANDS, EDGES AND CUSPS

Proposition 8.7.4 (Theorem under weaker assumptions; Structure of the set of
minima in supp p N I). For the solution m to the Dyson equation , we write v =
7 Imm, p= (v).

Then there are thresholds p, ~ 1 and d, ~ 1 such that if p(10) < p. and 19 € supp p is
a local minimum of p as well as a shape regular point for m on J with an open interval
J C R satisfying 0 € J then holds true for all w € [—04,0,] N J N D. Here, as in
Thearem h = h(m) € A with h ~ 1 and D as well as ¥ depend only on the type of
To in the following way:

Suppose that 79 € dsupp p is the infimum of a connected component of supp p. If
p(1) =0 for all T € [1y — €, 70| with some € ~ 1 (e.g. 7o = infsuppp) and |inf J| = 1,
then the conclusion of case (a) in Theorem[8.7.1] holds true with A =1 and v(rp) = 0.

If 79 # infsupp p and 7 = sup((—o0o, 79) Nsupp p) s a shape regular point for m,
A S 1 with A =1 —7 and |o(r) — o(m1)| < |70 — 71|¢ for some constant ¢ € (0,1/3]
then the conclusion of case (a) in Theorem|8.7.1) holds true with this choice of A as well
as v(ty) = 0.

Similarly to (a), the statement of case (b) in Theorem can be translated to the
current setup. The cases (c¢) and (d) of Theorem cusp and internal minimum,
respectively, hold true without any changes.

Furthermore, suppose that 19 € supp p is a shape reqular point for m and p(1y) = 0,

then 7o is a cusp if o(19) = 0 and 19 is an edge, in particular 1o € Osupp p, if o(19) # 0.

Similarly, the following Proposition [8.7.5is the analogue of Theorem under the
sole requirement of shape admissibility. Owing to the weaker assumptions, the error
term in as well as the result in of Proposition are weaker than the
corresponding results in Theorem We will first show Proposition [8.7.5] and then
conclude Theorem by using extra arguments for the stronger conclusions; both
proofs will be presented in Section below.

At a shape regular point 7 € R, we set I' := v/27x/(2¢) (cf. Theorem (i)
below), where k = k(79) and ¥ = 1)(7g) are defined as in Definition (i) (b).

Proposition 8.7.5 (Behaviour of p close to minima, set of minima of p under weaker

assumptions). Let m be the solution to the Dyson equation, (8.2.3), and p = 7= *{Imm).
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(i) Then there are thresholds p, ~ 1, o, ~ 1 and d, ~ 1 such that if 7o € suppp is a
shape reqular point for m on an open interval J C R with 0 € J, p(10) < p. and
To 1S a local minimum of p then we have

(a) (Left edge) If 79 € Osuppp is the infimum of a connected component of
supp p, |o(m0)| < 0. and 7 = sup((—o0, ) Nsuppp) s a shape regular
point satisfying A <1 for A =19 — 7 and |o(r9) — o(r)| S |70 — 7| for
some constant ¢ € (0,1/3] then for allw € [0,4,] N J.

(b) (Right edge) If 79 € Osuppp is the supremum of a connected component
then a similar statement as in the case of a left edge holds true.

(c) (Cusp) If 19 ¢ Osuppp and p(19) = 0 then holds true for all w €
[—04, 0] N J.

(d) (Internal minimum) If 7o ¢ Osupp p and p(7o) > 0 then

o7+ ) = plro) + TVAU(W) + O (p'(“;')wwr < plm)) + \v<w>2) ,
’ (8.7.9)
V(W) = Womin (;;) , pi= péffg)

for allw € [=6,,0,] N J.

(7i) Let I C R be an open interval with supp pNI # & and |I| S 1 and let m have a
continuous extension to the closure I of I. Let J C R be an open interval with
0 € J and dist(0,0J) 2 1 such that J 4+ (Osuppp) NI C I. We assume that all
points in (0 supp p) NI are shape regular points for m on J and all estimates in
Deﬁm’tz’on hold true uniformly on (0 supp p)NI. If |o(1o)—o(m1)| < |ro—T1|°
for some ¢ € (0,1/3] and uniformly for all 79,7 € (Osupp p) NI then supp pN I
consists of K ~ 1 intervals, i.e., there are ay,...,ax € Osuppp U Il and
Bi,...,Bx € OsupppUII, a; < B; < iy, such that holds true with Iy
replaced by I and B; — a; ~ 1 if 3; #sup I and a; # inf I.

If ML, is defined as in then there is a threshold p, ~ 1 such that if, in
addition to the previous conditions in (ii), all points of (M, U dsuppp) NI are
shape regular points for m on J and all estimates in Definition hold true
uniformly on (M,, U dsupp p) NI then, for v € M, , we have |o; — | ~ 1 and
|Bi — | ~ 1 if oy # inf I and f5; # supl. Moreover, for any 1,72 € M,,, we
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have either

=l ~1, or | = el S min{p(m), p(12)}. (8.7.10)

If p(m1) =0 or p(y2) = 0 then, for v # 72, only the first case occurs.

An important step towards Theorem [8.7.1] and Proposition [8.7.4 will be to prove sim-
ilar behaviours for © as Im © is the leading term in v. These behaviours are collected
in the following theorem, Theorem [8.7.6] It has weaker assumptions than those of Theo-
rem and those required in Proposition — in particular, on the coefficient j; in
the cubic equation (8.6.3)). However, these assumptions will be sufficient for the purpose

of Theorem [8.7.6l

Theorem 8.7.6 (Abstract cubic equation). Let O(w) be a continuous solution to the

cubic equation

130(w)? + 120(w)? + 11O (w) + w=(w) =0 (8.7.11)

for w € J, where J C R is an open interval with 0 € J. We assume that the coefficients

satisfy
H3 = w + O(p))
piz = o + 3ip + O(p* + plol),
(8.7.12)
= =2p" + O(p° + plal),

E(w) = £(l+v(w)) + O(p)
with some fixed parameters v > 0, p > 0, 0 € R and k ~ 1. The cubic equation is

assumed to be stable in the sense that
Y+o®~1. (8.7.13)
Moreover, for all w € J, we require the following bounds on v and ©:

lv(w)| < |w|1/3, (8.7.14a)

10(w)| < w2, (8.7.14b)

Then the following statements hold true:
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(i) (p > 0) For any 11, ~ 1, there is a threshold p, ~ 1 such that if p € (0, p.] and

lo| < TL.p? then we have
Tm O(w) = pWonin (r;;) +O(min{pfwl, [w]?}). (8.7.15)

with T == \/27k/(2¢)). Note that I ~ 1 if p, ~ 1 is small enough.
(W) (p =0) If p =0 and we additionally assume ImO(w) > 0 for w € J, Re®© is
non-decreasing on the connected components of {w € J: ImO(w) = 0} as well

as

Imv(w)| < ImO(w) (8.7.16)

for all w € J then we have
(a) If o =0 then Im ©(w) has a cubic cusp at w =0, i.e.,

3 1/3
ImO(w) = f(q’;) w|2 + O(|w|*?). (8.7.17)
(b) If 0 # 0 then Im ©(w) has a square root edge at w = 0, i.e., there is ¢, ~ 1

such that

jwl

Im O(w) = cﬁl/wedge(ﬁ) +O((pw)| +e@)ew)),  (8.7.189)
if signw = sign o, and
ImO(w) =0, (8.7.18b)

if signw = —signo and lw| < ¢.|of?, where A € (0,00), ¢ € (0,00) and
e: R — [0,00) are defined by

" (4 P A6
A::mln{mw,l}, C::?)\/E|O_|71/Q,

. |w|1/2
e(w) = mm{ NI ,|w|1/3}.

(8.7.19)

We have A ~ |o]? and ¢ ~ 1. Moreover, for signw = sign o, we have

OW)] < elw). (8.7.20)
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8.7.2. Cubic equations in normal form. The core of the proof of Theorem [8.7.6]
is to bring into a normal form by a change of variables. We will first explain the
analysis of these normal forms, especially the mechanism of choosing the right branch of
the solution based upon selection principles that will be derived from the constraints on
© given in Theorem [8.7.6. Then, in Section [8.7.3 we show how to bring to these
normal forms.

In the following proposition, we study a special solution ©(\) to a one-parameter
family of cubic equations in normal forms with constant term A(\) (or 2A()\)), where
A()) is a perturbation of the identity map A — \. Here, a priori, the real parameter X is
always contained in an (possibly unbounded) interval around 0. This range of definition
will not be explicitly indicated in the statements but will be explicitly restricted for their
conclusions. We compare the solution to this perturbed cubic equation with the solution
to the cubic equation with constant term A. Depending on the precise type of the cubic

equation, the choice of the solution is based on some of the following selection principles

SP1 A+ Q()) is continuous

SP2 Q(0) = for some given Qy € C

SP3 Im (Q()\) — Q(0)) >0,

SP4’ Im A(N)| < 4[AImQ(A) for some v > 0 and Re2(\) is non-decreasing on the
connected components of {A: ImQ(\) = 0}.

We use the notation SP4’ to distinguish this selection principle from SP-4 which was
introduced in Lemma 9.9 of [4].

We will make use of the following standard convention for complex powers.

Definition 8.7.7 (Complex powers). We define C \ (—00,0) — C, { +— (" for v € C by
(7 := exp(vylog(), where log: C\ (—00,0) — C is a continuous branch of the complex

logarithm with log1 = 0.

With this convention, we record Cardano’s formula as follows:
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~

Proposition 8.7.8 (Cardano). The three roots of Q3 —3Q+2¢, ¢ € C, are Q.(¢), Q_(¢)
and Qo(g) which are defined by

0(0) = 5(B4(C) +B_(0)) = 5> (B4(C) — @_(0)),
00(C) = ~(B4(C) + ().

(8.7.21)

where

£V -T1)"3 if Re¢ > 1,
1(¢) = { (¢ +iy/T=C2)V3, if |[Re¢| < 1,
—(—¢FVCZ-1)"3, ifRe¢ < -1

Proposition 8.7.9 (Solution to the cubic in normal form). Let Q(\) satisfy SP1 and SP2.

(i) (Non-zero local minimum) Let Qo = v/3(i + x1) in SP2 and Q()\) satisfy
QA +3QN) +2AN) =0, AN =L+ x2+pA))A+xs,  (8.7.22)

with |p(N)] < afA|Y3, a > 0. Then there exist § ~ 1 and x, ~ 1 such that if

o, [xal, Ixal, xs| < x« then
Q) = Qo = Q) —iV3+ O((a + xal + [xs) min{|A|, AP?})  (8.7.23)

for all X € R satisfying |\ < §/a®, where QN) = ®oqq(N) + iv/3Peyen(N) and
Dogq and Peyen are the odd and even part of the function ®: C — C, ®(() =

(VT +O)Y3, respectively.
Moreover, we have for |\| < d/a® that

[2(A) = Qof S min{[Al AV} (8.7.24)

In the following, we assume that Q(N), in addition to SP1 and SP2, also satisfies SP3
and SPJ’.

(7i) (Simple edge) Let Qo =0 in SP2 and Q(\) be a solution to

Q*(\) + A(N) =0, A) = (1 + u(N). (8.7.25)
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If |p(N)| < A¥3|N|V3 for the v > 0 of SP4’ then there is c, ~ 1 such that
3+ O (M),

1)\1/2 Zf P W= [0’ C*’}/_Q], (8726)
MY2if A€ [—ey2, 0]

Moreover, we have ImQ(\) = 0 for A € [—c,y~2,0].
(7ii) (Sharp cusp) Let Qo =0 in SP2, v ~ 1 in SP4’ and Q(\) be a solution to

Q*(\) +A(N) =0, A = (1+ (M)A (8.7.27)
If |p(N)| S |MY? then there is § ~ 1 such that
Q) = Q) + O (I,

(=1 +iV3)AYE if A e (0,6), (8.7.28)

(L4+iv3)NV3,  if A€ [=6,0].

Q) =

N | —

(iv) (Two nearby edges) Let Qg = s for some s € {£1} in SP2, v ~ 1 in SP4’ and
Q(AN) be a solution to

QA)? = 3Q(\) +2A()\) = 0, A) = 1+ p(N)A + s. (8.7.29)

Then there are 6 ~ 1, o ~ 1 and v, ~ 1 such that if |u(\)| < FIAY? for some
7 € [0, 7] then
(a) We have

Q) = Q4 (1+ A + Olu) mind A2, 1A }), (8.7.30)

Jor all X € $(0,26/3%]. (Recall the definition of Q. from (8.7.21).) More-
over, for all X € s(0,26 /73], we have

Q) = Qo < min {|A]V2, A3}, (8.7.31)
(b) For all A € —s(0,2 — p7], we have

ImQ(\) < AY2 (8.7.32)
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(¢c) We have
Im Q(—s(2 + 07)) > 0. (8.7.33)

The core of each part in Proposition [8.7.9|is choosing the correct cubic root. For the
most complicated part (iv), we state this choice in the following auxiliary lemma. For its

formulation, we introduce the intervals
[1 = —S[—/\l,O), [2 = —S(O, )\2], 13 = —S[)\g, )\1], (8734)

where we used the definitions

J

)\1 = 257 )\2 =2 — Qﬁ’ )\3 = 2 + Q;}\/ (8735)

These definitions are modelled after (9.105) in [4]. We will choose ¥ = AY/3 in the proof of
Theorem [8.7.6] below. Then Ay corresponds to an expansion range J in the w coordinate.
Note that with the above choice of 4, we obtain the same \; as in (9.105) of [4]. However,
Ao and A3 differ slightly from those in [4], where Ay 3 were set to be 2F g|o|. Nevertheless,
we will see below that 4 ~ || but they are not equal in general.

For given 9, o ~ 1, we will always choose 7, ~ 1 so small that 4 < ~, implies
)\124, 1§)\2<2<)\3§3.
Therefore, the intervals in (8.7.34]) are disjoint and nonempty.

Lemma 8.7.10 (Choice of cubic roots in Proposition [8.7.9] (iv)). Under the assumptions
of Proposition (iv), there are &, 0,7y, ~ 1 such that if ¥ < 7, then we have

Q’Ik = QJr ° A‘Ik

for k=1,2,3. Here, Q+ is defined as in (8.7.21)).

PROOF. The proof is the same as the one of Lemma 9.14 in [4] but SP-4 in [4] is
replaced by SP4’ above. In that proof, SP-4 is used only in the part titled “Choice
of ay”. We redo this part here. Recall that as = 0,4+ denoted the index such that
Qlp, = Q,, o A|z, and our goal is to show ay = +. Similarly as in [4], we assume without

loss of generality s = —1. Since limy;_; Q_(\) = 2 and Q(0) = —1 by SP2, we conclude
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as # —. (In the corresponding step in [4], there was a typo: Q. (—1+0) = 2 should have
been Q_(—l +0) = 2, resulting in the choice as = +. This conclusion is only used in the
bound (9.137) of [4] which still holds true. The rest of the proof is unaffected.)

We now prove as # 0. To that end, we take the imaginary part of the cubic equation,

(8.7.29)), and obtain
3((ReQ)? — DNImQ = —2XIm p(\) + (Im Q)*. (8.7.36)

Suppose that a; = 0. From the definition of Qg, AA) = (1 + p(A)A — 1 and |p(N)] <

A|IA|Y3 we obtain
ReQo(A(N) < —1— A2+ CF2N72 [ImQo(AN)] S 722, (8.7.37)
(compare (9.120) in [4]). Thus, from (8.7.36)), we conclude
A m Q < [AIm Q

for small A as [Im pu(A)] < ImQ by SP4” and [Im A| = |A||Im x|. Hence, Im Q(X) = 0 for
small enough |A|. Thus, Re Q2 is non-decreasing for such A by SP4’, but from Q(0) = —1
and the first bound in (8.7.37) we conclude that Re() has to be decreasing if Q(\) =
Qo(A(N)). This contradiction shows ay # 0, hence, ay = +. The rest of the proof in [4] is

unchanged. O

PROOF OF PROPOSITION [R.7.9 For the proof of (i), we mainly follow the proof of
Proposition 9.3 in [4] with 74 = x1, 75 = x2 and v = x3 in (9.35) and (9.37) of [4].

Following the careful selection of the correct solution of (cf. (9.36) in [4])
by the selection principles till above (9.50) in [4] yields Q(A\) = Q(A())) and hence, in
particular, Q(xy3) = Qo = vV3(i+ x1). (2=, in [4].) By defining

Ao(N) == (1 + x2 + n(A)A

and using ()] < a|A|"/? instead of (9.54) in [4], we obtain

Q(8o(N) — D(0) = HR) ~ A(0) + 0 (<r><2| + m<A>|>1+',§‘|2/3)
— Q) — Q(0) + O((a + [xal) min{ AL, A2))
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instead of (9.56) in [4]. Thus, (9.57) in the proof of Proposition 9.3 in [4] yields
Q(xa + Aa(N) = xa) = 2N) = 20) +O((a + [xa + [xal) min{|A], |AF/*}).

Thus, we obtain since Q(x3) = Qo and Q(0) = iv/3. We remark that is
exactly (9.53) in [4].

The proof of (ii) resembles the proof of Lemma 9.11 in [4] but we replace assumption
SP-4 of [4] by SP4’. Since Q()) solves (8.7.25), there is a function A: R — {£} such
that Q(\) = QA(,\) (A(X)) for all A € R. Here, Q0 : C — C denote the functions
(Nli(g“) . icl/2, if Re( >0,

—(—=¢)V%, if Re(¢ < 0.
(Note that they were denoted by Q4 in (9.78) of [4]). By assumption, there is ¢, ~ 1
such that (M) < 1 for all [A] < ¢,y~2. Hence, by SP1, we find ay,a_ € {£} such that
A(N) = ay for X € [0, c,y 2]
For A > 0, we have

Im Q_(A(N)) = =AY2 4 O(u(MA?).

Thus, possibly shrinking ¢, ~ 1, we obtain Im Q_(A(X)) < 0 for A € (0, ¢,y2]. Therefore,
the choice ay = — would contradict SP3 and we conclude a, = +.
We now prove that a_ = +. Assume to the contrary that a_ = —. For small enough

¢, ~ 1, we have

ReQ_(A(N)) = [A[Y2Re (14 (V)2 ~ [A]V2,

Im Q- (A(A)) = [AY?Im (1 + p(V)"?) S [NV
for X\ € [—c,y72,0) by the definition of Q_ and A. Hence, taking the imaginary part of
(8.7.25)) and using SP4’ yield

A2 Q(A) S A Im ()

for A € [—c,y7%,0). By possibly shrinking ¢, ~ 1, we obtain ImQ(A\) = 0 for A €

[—c.v™2,0). Thus, SP4’ implies that Re (2 is non-decreasing on [—c,y~2,0) which con-
772,0) with small

tradicts Re Q_(0) = 0 and Re Q_(A(X)) ~ |A[Y2 > 0 for A € [—c,
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enough ¢, ~ 1. Hence, a_ = + which completes the selection of the main term Q= S~2+
in (8.7.26)). The error term in follows by estimating Q(A()\)) directly.

For the proof of (iii), we select the correct root of as in the proof of Lemma
9.12 in [4] under SP4’ instead of SP-4. Since ©2(\) solves there is a function
A: R — {0, £} such that

Q) = Qaey (A())

for all A € R. Here, we introduced the functions Qu: C— C, a =0, %, defined by
~ <1/37 if ReC > 07 ~ 1=F 1\/_

Q0 = Qi(() = 9
—(=¢)'3, if Re¢ <0,

20(¢).

(Note that they were denoted by Q,, a € {0,£}, in (9.87) of [4].) By SP1, A can
only change its value at A if A(A\) = 0. By choosing 6 ~ 1 small enough and using
(V)] < A3, we have A(N) = ay and A(—)\) = a_ for some constants a. and for all
A € (0,4].

We will now use SP3 and SP4’ to determine the value of a; and a_. As in (9.91) of
the proof of Lemma 9.12 in [4], we have

V3

+(sign \)Im Qi(A()\)) =5

A2+ O(NAY?) = N2 = CIAPE.

By possibly shrinking § ~ 1, we conclude Im Q_(A(A)) < 0 for A € (0,6] and Im Q. (A(N)) <
0 for A € [—0,0). Hence, owing to SP3, we conclude a; # — and a_ # +.

Next, we will prove ay # 0. For A > 0, we have
ReQo(AN) < =AY3 4 COXY3, TmQo(A(N) < A5
Thus, assuming Q(\) = Qo(A())) and estimating the imaginary part of yield
AT Q(A) S (Im Q) + [Tm AR S [ATm Q).

Hence, we possibly shrink § ~ 1 and conclude ImQ(A) = 0 for A € [0,0]. Therefore,
Re Q()\) is non-decreasing on [0, ] by SP4’. Combined with Qo = 0 and Re Qo(A())) <

— A3 we obtain a contradiction. Hence, this implies a; # 0, i.e., a; = +.
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A similar argument excludes a_ = 0 and we thus obtain a_ = —. Now, is
obtained from the definition of ) = Q+, which completes the proof of (iii).

For the proof of (iv), we remark that all estimates follow from Lemma in
the same way as they followed in [4] from Lemma 9.14 in [4]. Indeed, is the
same as (9.129) in [4]. The bound is shown analogously to (9.129) and (9.130)
in [4]. Moreover, is (9.137) in [4] and is obtained as (9.109) in [4]. This

completes the proof of Proposition [8.7.9 O

8.7.3. Proof of Theorem Before we prove Theorem [8.7.6], we collect some

properties of We4e. and W, which will be useful in the following. We recall that Wegee

and W,,;, were defined in (8.7.1)).

Lemma 8.7.11 (Properties of W, and Wegge).
(i) Let Q be defined as in Proposz'tion (i). Then, for any A € R, we have

By (N) = \}glm D) — 2(0)]. (8.7.38)

(ii) Let Q+ be defined as in (8.7.21)). Then, for any X > 0, we have

1 N

(iii) There is a function 0 [0,00) — R with uniformly bounded derivatives and
T(0) = 0 such that, for any X > 0, we have

Wedge(N) = A13/2(1 +T(N), 1U(A)| < min{A, AV} (8.7.40)

(iv) There is e, ~ 1 such that if |e| < e, then, for any X > 0, we have
Veage((1+)A) = (14 )2 Teqge(N) + O(e min{ A2, A/3}). (8.7.41)

We remark that (8.7.39) was present in (9.127) of [4] but the coefficient 1/(2v/3) was
erroneously missing there. The relation in (8.7.41)) is identical to (9.145) in |4]. Moreover,

we use the proof of [4].

PROOF. The parts (i), (ii) and (iii) are direct consequences of the definitions of W,
Q, Vegge and Q+.
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For the proof of (iv), we choose £, < 1/2 such that 1+¢& ~ 1 for |¢| <e,. fO0< A< 1
then follows from (8.7.40). For A > 1, we choose ¢, = 1/3 and then (8.7.41) is
a consequence of above as well as the stability of Cardano’s solutions, (9.111) in
Lemma 9.17 of [4]. O

In the following proof of Theorem [8.7.6, we will choose appropriate normal coordinates
2 and A in each case such that turns into one of the cubic equations in normal
form from Proposition [8.7.9, This procedure has been similarly performed in the proofs
of Proposition 9.3, Lemma 9.11, Lemma 9.12 and Section 9.2.2 in [4]. However, owing to

the weaker error bounds here, we include the proof for the sake of completeness.

PROOF OF THEOREM [R.7.6l We start with the proof of part (i) (cf. Proposition 9.3
in [4]). Owing to and |¥im (V)| < |AY3, the statement of is trivial for
|w| 2 1 since the error term dominates. Therefore, it suffices to prove for lw| <6
with some 0 ~ 1.

By possibly shrinking p, ~ 1, we can assume that |o| < II,p? is small enough such
that ¢ ~ 1 by . In the following, we will choose w-independent complex numbers
Yoy Yo, V15 - - - Y7 € C such that certain relations hold. For each choice, it is easily checked
that || S pfor k=1,0,1,...,7. We divide by pz and obtain

O3 +i3p(1 + 712)0% — 2% (1 + 711)O + (1 + 0 + (1 + %)V(w))gw =0, (8.7.42)

where v, 79, 71 and 7, are chosen such that

2

— =1i3p(1 + 79),
M3
Z; = —2p*(1+ ),
k(1 + V(c;i) +0(p) _ Z(l + 70 + (14 n)v(w)).

With these choices, we obtain 7., Yo, 71, 72 = O(p), since uz = »+0O(p), ps = i3p+0O(p?)
and p; = —2p* + O(p?) owing to (8.7.12), |o| < I,p% ¥ ~ 1 and |us3| ~ 1 for sufficiently

small p, ~ 1. We introduce the normal coordinates
3

Aim r;“’g, Q(\) = @{(1 + w)i@(’p) Fig 74}, (8.7.43)
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where I' := /27 /(21)). Note that I' ~ 1 since ) ~ 1. We choose =3 and 74 such that the
coefficient of the quadratic term of the cubic equation, (8.7.42)), in normal coordinates

vanishes while the coefficient of the linear term equals to 3. This amounts to the relations
=4 iy + vz 273 = 0,
314+ 7)? —i6(1 +70) (L + %) (1 +73) —2(L+7) (1 +3)° = 1.

Expressing 4 by 73 (and 9 which has already been chosen) via the first equation and
plugging the result into the second equation yield a quadratic equation for 3 in terms of
v and 75. In this quadratic equation the order one term cancels and hence 73 = O(p).

This also implies 74 = O(p). Thus, a straightforward computation starting from (8.7.42)
shows that () and A(X) satisfy (8.7.22) with

A = (L3 + sODA + 36, 3) = (14550,

i.e.,, x2 =75, X3 =7 and a = p by (8.7.14al).

Here, we chose
75 = (1+%) (1 +) — 1,
Y6 = V2T(— (i +72)* +13(1 +72) (1 +93) (i +72)* + 21 +71) (L + 73)* (i + 7)),
= 1+7)°1+%) -1

Since Y,,%,-.-,7 = O(p), we conclude vs5,7s,77 = O(p). Hence, from (8.7.23)) and
(8.7.43), we obtain 0 ~ 1 and x, ~ 1 such that

Im O (w) = Iml_f%\}g[ﬂ()\) Q)

w . :
= pWasn (15 ) + 0 (o min{ AL N7 + o min{ ], 1P/}
for |\ < §/p% if p < min{x,,p.}. Here, we also used (8.7.24)) to expand p/(1 + ~3)

and (8.7.38)). By employing (8.7.43) again and replacing p, by min{x., p«}, we con-
clude (8.7.15)).
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We now turn to the proof of part (i) of Theorem Since p = 0, the cubic
equation (8.7.11)) simplifies to the following equation

PO(w)? + 0O(w)* + k(1 + v(w))w = 0. (8.7.44)

We now prove Theorem [8.7.6] (ii) (a), i.e., the case ¢ = 0 (cf. Lemma 9.12 in [4]). For

1/3 and

any 0 ~ 1, the assertion is trivial for |w| > ¢ since the error term dominates |w|
Im ©(w) in this case (compare (8.7.14b))). Therefore, it suffices to prove the lemma for

|w| < § with some 6 ~ 1. We choose the normal coordinates

N—w, Q0 = (¢)1/3@(>\),

K

and notice that the cubic equation becomes with p(\) = v(A). The
bound implies [(N\)] < |A[Y3. Thus, is a consequence of Proposi-
tion [8.7.9| (iii). This completes the proof of (ii) (a).

For the proof of Theorem (ii) (b), we first show the following auxiliary lemma
(cf. Lemma 9.11 in [4]).

Lemma 8.7.12 (Simple edge). Let the assumptions of Theorem (i) hold true. If
o # 0 then there is ¢, ~ 1 such that, for |w| < c.|o]?, we have

VA2 + o (1vw) + ol o)) 2] ), if signw = signo,

ImO(w) = o
0, if signw = —signo.

(8.7.45)

Moreover, we have |0(w)| < |w/a|*? for |w| < c.|o]?.

ProOF. Dividing (8.7.44)) by ko yields

(1 + f@(w)) @(:)2 +(1+ I/(w))% ~0. (8.7.46)

We introduce A, Q(\) and p(\) defined by

In the normal coordinates A\ and Q(\), (8.7.46) viewed as a quadratic equation, fulfills

(8.7.25) with the above choice of (). Since [o 1O(oN)| < |o|~23|A|Y/3 by (8.7.14H),

— 1.
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there is ¢, ~ 1 such that

] S [(oN)] + o] O (eN)] < oA, [Imu(N)] S lo| ' TmO(oN) (8.7.47)

for |A| < c.]o|? by (8.7.144), (8.7.14B) and (8.7.16). Hence, we apply Proposition [8.7.9]
(ii) with v ~ |o|~! in SP4’ and obtain (8.7.45)) with an error term O(|u(\)[|A|'/?) instead,

as well as |O(w)| < |o|~Y2|w|Y2. Thus, the first bound in (8.7.47) completes the proof
of (8.7.45|). OJ

From the second case in (8.7.45)), we conclude the second case in (8.7.18]). The first
case in (8.7.18)) and ({8.7.20]) are trivial if |w| 2 1 due to (8.7.14b)) and ({8.7.4al). Hence, it

suffices to prove this case for |w| < § with some 6 ~ 1. If |o| = 1 then the first case in

(8.7.18)) also follows from ([8.7.45]) with § := c,|o|?. Indeed, from ([8.7.40]), we conclude

jwi

\/E = CAl/B\I}edge(ﬁ) + O(|W|3/2),

w ’1/2

g

where ¢ and A are defined as in (8-7.19). Since |w| S g(w) for |w| < 6 and £(w) defined as
in (8.7.19) we obtain the first case in if |o| > 1. Similarly, |O(w)| < |w/c|/? by
Lemma yields (8.7.20) if |w| < ¢ and |o| 2 1. Hence, it remains to show the first
case in (8.7.18)) and if |o| < o, for some o, ~ 1. In fact, we choose o, ~ 1 so small
that ¢ ~ 1 by and A < 1 for lo| < o,. In order to apply Proposition (iv),

we introduce

2 A A
A= KW’ Q(A) == 3|1§|@(2>\> + sign o, () = V<2)\> (8.7.48)

o~ o~

(cf. (9.96) and (9.99) in [4]). The cubic (8.7.44) takes the form (8.7.29)) in the normal
coordinates A and (\) with the above choice of u(A) and s = signo in (8.7.29). By

(8.714a)), we have |u(N)| < AV3|A[V/3. We set 5 := Al/3. Therefore, Proposition m
(iv) and (8.7.39) yield § ~ 1 and possibly smaller o, := min{o,, 7.} ~ 1 such that the
first case in (8.7.18) holds true for |o| < o, and |w| < 6 as u(A) = v(w) and A ~ |of.

Moreover, (8.7.31)) implies (8.7.20]) for |w| < §. This completes the proof of (ii) (b) and
hence of Theorem [R.7.6l O

8.7.4. Proof of Theorem [8.7.1] and Proposition In this section, we prove
Theorem and Proposition Some parts of the following proof resemble the
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proofs of Theorem 2.6, Proposition 9.3 and Proposition 9.8 in [4]. However, owing to the

weaker assumptions, we present it here for the sake of completeness.

PROOF OF THEOREM AND PROPOSITION [R.7.4l We will only prove the state-
ments in Proposition [8.7.4 Theorem is a direct consequence of this proposition as
well as Lemma [8.4.8] (ii) and Proposition [8.6.1]

Along the proof of Proposition , we will shrink 4, ~ 1 such that holds true
for all w € [=6,,0,] N J N D. We will transfer the expansions of © in Theorem to
expansions of v by means of (8.6.1). To that end, we take the imaginary part of

and obtain
v(19 4+ w) = v(1) + 7 'Reblm O(w) + 7 ' Im bRe O(w) + 7~ 'Tm r(w). (8.7.49)

We first establish at a shape regular point 79 € (supp p) \ dsupp p which is
a local minimum of 7 — p(7). If p = p(1) = 0, i.e., the case of a cusp at 7, case (c),
then ¢ = 0. Indeed, if 0 were not 0, then, by the second case in , Im O (w) would
vanish on one side of 75. By the third bound in , this would imply the vanishing
of p as well, contradicting to 79 € supp p \ dsupp p. Hence, for any d, ~ 1, and
immediately yield for w € [~0,,0,] N J N D with h = (27)"'bv/3(k /) />
using (8.6.7a)), (8.6.7b)) and b = b* due to p = 0.

We now assume p > 0 which corresponds to an internal nonzero minimum at 7y,
case (d). Thus, the following lemma implies that the condition |o| < I1,p? o = o(7),
needed to apply Theorem m (i) is fulfilled. We will prove Lemma |8.7.13 at the end of

this section.

Lemma 8.7.13 (Bound on |o| at nonzero local minimum). There are thresholds p. ~ 1

and 11, ~ 1 such that
|o(70)| < ILp(70)?

for all shape reqular points 79 € suppp which are a local minimum of p and satisfy

0 < p(70) < pu.



8.7. CUBIC ANALYSIS 327

Hence, (8.7.15)), (8.7.49) and (8.6.7D)) yield (8.7.3)) with 5 = pI'"'/3 and h = 7~ 'T"'/3Reb.

Here, we also used

plO(W)] + 10w + lw] + min{pJw], [w]/*} £ ""p'l<|w| SO+ TW? (8.7.50)

which is a consequence of (8.6.7a)), (8.7.4b|) for |w| < 1, as well as Reb ~ 1 and Imb =
O(p). This completes the proof of for shape regular points 7y € (supp p)\ 9 supp p,
cases (c¢) and (d).

We now turn to the proof of at an edge 79, case (a), i.e., for a shape regular

point 79 € dsupp p. We first prove a version of (8.7.3) with A in place of A, (18.7.51])
below. In a second step, we then replace A by A to obtain (8.7.3]).

Since 19 € dsupp p, we have p = p(19) = 0. Therefore, v(7y) = 0 since (-) is a faithful
trace and v(7) is positive semidefinite. As 79 € Jsupp p, we have o(m) # 0. Indeed,
assuming o(7y) = 0, using Theorem [8.7.6] (ii) (a), taking the imaginary part of as
well as applying the third bound in and the second bound in yield the
contradiction 7o € (supp p) \ dsupp p. Recalling the definitions of A and ¢ from (8.7.19)),

(8.7.49)) and the first case in (8.7.18) yield

jwl

(o +w) = 7B (Wb + O(F(w)?), B(w) = Al/quedge(A) (8.7.51)

for any w € [—0d.,0.] N J N D with signw = signo and some J, ~ 1. Here, we also used

b= b* ~ 1, the first bound in (8.6.5)), (8.7.20) and e(w) ~ ¥(w) by (8.7.4D) to obtain

10@)I* + |w| + (18(w)] + |w] +e(W)elw) S F(w)?

for any w € [—d,, 0] N J N D with signw = sign o and some d, ~ 1. This means that we
have shown with W replaced by 0.

We now replace A by A in to obtain (8.7.3)). To that end, we first assume
that |o| 2 1 and A < 1. The second part of implies |o]> < A < 1 and thus
o3 ~ A ~ 1. Since |o|® ~ A we conclude A ~ A. Therefore, we obtain

~ 1/6
Al/g\ljedge <|(§A|) = (2) A1/3‘I]edge(|(z|> + (’)(min{|w|3/2, |w|1/3}).
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Here, we used Weqee(|A]) < [AY3 for [A| = 1 and (8.7.40) otherwise. Applying this
relation to yields for w € |64, 6, N J N D with signw = signo, 6, ~ 1
and h == 1 ¢(A/A) /b ~ 1 for |o| 2 1 and A < 1.

The next lemma shows that |o| 2 1 at the edge of a gap of size A = 1. We postpone

its proof until the end of this section.

Lemma 8.7.14 (o at an edge of a large gap). Let 79 € Osupp p be a shape reqular point
form on J. If |inf J| 2 1 and there is € ~ 1 such that p(7) = 0 for all T € |19 — &, T
then |o| ~ 1. We also have |o| ~ 1 if supJ 2 1 and p(1) =0 for all 7 € [19, 79 + €] and

some € ~ 1.

Under the assumptions of the previous lemma, we set A := 1 and obtain trivially

A ~ 1~ A. Thus, (87.51) implies (8.7.3) by the same argument as in the case A < 1.

For |o| < o, with some sufficiently small o, ~ 1, we will prove below with the help

of the following Lemma [8.7.15| and (8.7.41)) that replacing A by A in (8.7.51) yields an
affordable error. We present the proof of Lemma [8.7.15] at the end of this section.

Lemma 8.7.15 (Size of small gap). Let 79,71 € Osuppp, 71 < To, be two shape regular
points for m on Jy and Jy, respectively, where Jy, JJ1 C R are two open intervals with
0 € JoNnJy. We assume |inf Jy| 2 1 and sup Jy 2 1 as well as (11, 79)Nsupp p = &. We set
A(1y) == 19—T71. Then there is & ~ 1 such that if |o(10)| < & and |o(10)—o(r)| < |70—71|°
for some ¢ € (0,1/3] then

200) _ 1 4 0o (m).

A(o)

The same statement holds true when Ty is replaced by 7 with A(m) == 19 — 71.

From Lemma [8.7.15, we conclude that there is v € C such that |y| < 1 and A =
(1+ v|a|)ﬁ. By possibly shrinking o, ~ 1, we can assume that |yo| < e, for |o| < o,

where €, ~ 1 is chosen as in Lemma [8.7.11| (iv). Thus, (8.7.41)) yields

N W A 1/6 w ) w 3/2
0 ()= () () el 5 )

Hence, choosing h := 7 1¢(A/A)Y6h as before and noticing h ~ 1 yields (8.7.3) in the
missing regime. This completes the proof of Proposition 8.7.4] As we have already
explained, Theorem follows immediately. U
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The core of the proof of Lemma [8.7.13]is an effective monotonicity estimate on v, see
(8.7.52) below, which is the analogue of (9.20) in Lemma 9.2 of [4]. Owing to the weaker
assumptions on the coefficients of the cubic equation, we need to present an upgraded

proof here. In fact, the bound in (9.20) of [4] contained a typo. It should have read as

1
{o(r))(1 +o(7)])

for 7 € D, satisfying II(7) > II.. However, this does not affect the correctness of the

(signo(7))d-v(7) 2

argument in [4].

Proor oF LEMMA R.7.13l In the whole proof, we will use the notation of Defini-
tion [8.7.3] We will show below that there are p, ~ 1 and II, ~ 1 such that

(sign k10 (7))0r0(7) 2 p(T) 7 (8.7.52)

for all 7 € R which satisfy p(7) € (0, p.] and |o(7)| > I.p(7)? and are admissible points
for the shape analysis.

Now, we first conclude the statement of the lemma from through a proof by
contradiction. If 7y satisfies the conditions of Lemma then 0,p(19) = 0 as 1y is a
local minimum of p. Assuming |o(79)| > I,p(79)? and applying (- ) to yield the
contradiction 0,p(79) > 0.

For the proof of we start by proving a relation for 0,v(7). We divide (8.6.1))
by w, use ©(0) = 0 and 7(0) = 0 as well as take the limit w — 0 to obtain 0,m(7) =
b9,,0(0) + 9,,r(0). Taking the imaginary part of the previous relation yields

70-v(7) = Im [b0,0(0)] + Im 9,7(0). (8.7.53)

We divide (8.6.7b)) by w, employ the first bound in (8.6.7a)) and obtain

s

2

51+|—°ﬂ

<1+ P

~Y

By sending w — 0 and using r(0) = 0, we conclude

Im 9,7(0)]] < 1. (8.7.54)
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We divide (8.6.3) by pw, take the limit w — 0 and use lim, 0 O(w) = ©(0) = 0 to
obtain
SO 5+ O))(imipo + 2% + O + o)
il 30+ Olp+ o) + s 1 OGP + plal) P
K ik10 +2p1p + O(p® + plo|)
pAp*|Y + O(p + o) + [mo + O(p* + plo])[*’

9,0(0) =

(8.7.55)

where we employed |u1|* = 4p*|+O(p+|0o])|? + p?|k10+O(p* +plo|)|? as p, 1, k1,0 € R.

Thus, we obtain

< p+plo]
~ PP+ O(p+ [o])? + [kio + O(p? + plo])?

p|Re 8,0(0) (8.7.56)

Therefore, using b = b* + O(p), b+b* ~ 1, k ~ 1 and |k1| ~ 1 yields

—1

: p ol +O(p+|o|) + O(p + plo|) lo| 1
sign k10)Im [b0,0(0)] 2 2 -.
(sign #10)Im (63, 6(0)} o+ O(p? + plol)2 + 2l + O(p+ [o])2 ~ [o]2+ p? p

Here, in the first step, the error term O(p + p|o|) in the numerator originates from the

second term in

(sign k10)Im [b0,0(0)] = (sign k10) (Re blm 0,,0(0) + Im bRe &J@(O))
(8.7.57)
2 (sign k10)Im 0,,0(0) — p|Re 0,0(0)|

and applying (8.7.56)) to it. We applied (8.7.55) to the first term on the right-hand side of
(8.7.57). In the last estimate, we used v, |o|, p < 1 and |o| > I1,p? for some large IT, ~ 1

as well as p < p, for some small p, ~ 1. Employing |o| > II,p? once more, the factor
lo|/(|o]? + p*) on the right-hand side scales like (1+ |o|)~' = 1. Hence, we conclude from
(8.7.53) and (8.7.54)) that

(sign k10)0;v(T) 2 ; + O(1).

By choosing p, ~ 1 sufficiently small, we obtain (8.7.52)). This completes the proof of
Lemma R.7.13 U

PrOOF OF LEMMA [B.7.14] We prove both cases, p(7) = 0 for all 7 € [1p — &, 7] or
for all 7 € [19,70 + €], in parallel. We can assume that |o| < & for any ¢ ~ 1 as the

statement trivially holds true otherwise. We choose (6, 0,7.) as in Proposition [8.7.9 (iv),
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A as in (8.7.19), normal coordinates (A, (X)) as in (8.7.48]) as well as 7 = A3 and
s = signo. We set A3 := 2+ pAY3 (cf. (8-7:35)) and wy = A)3/2. There is & ~ 1
such that A < 3 for |o| < & due to A ~ |of* by and the definition of A in
(8.7.19). Hence, w3 < C|o|® and, by possibly shrinking & ~ 1, we obtain —wssigno € J
for o] < & due to the assumption on J (JinfJ| 2 1 or supJ 2 1). From (8.7.33), we
obtain Im Q(—A3signo) > 0. Hence, Im O(—wssigno) > 0. From the third bound in
(8-6.8)), the second bound in and w3 < |o|®, we conclude v(—wssigno) > 0 for

lo| < ¢ and sufficiently small ¢ ~ 1. Thus, p(—wssigno) > 0 which implies w3 > «.

Therefore, |o|> 2 w3 > & ~ 1 which completes the proof of Lemma |8.7.14} O

We finish this section by proving Lemma |[8.7.15] It is similarly proven as Lemma 9.17
in [4]. We present the proof due to the weaker assumptions of Lemma [8.7.15, The main
difference is the proof of (8.7.59) below (cf. (9.138) in [4]). In [4], © could be explicitly

represented in terms of m, i.e,
O(w) = (f,m(r0 +w) —m(7))

(cf. (9.8) and (8.10¢) in [4] with o = 0). In our setup, b and r do not necessarily define
an orthogonal decomposition (cf. (8.6.1))).

PrOOF OoF LEMMA B.7.15l Let (4, 0,7.) be chosen as in Proposition (iv). We

choose A as in (8.7.19) and normal coordinates as in (8.7.48|) as well as 7 = A3 and
s = signo. We assume A < 72 in the following and define A3 as in ([8.7.35). By using

linf Jy| 2 1 as in the proof of Lemma [8.7.14] we find & ~ 1 such that —w3 € J; for
W = Agﬁ/Q and |o| < &. Thus, —A =7 — 19 € Jy. We set

Ao == inf{A > 0: ImQ(\) > 0}

and remark that Mg = 2A/A due to the definition of A and the third bound in (8.6.5).
From (8.7.33), we conclude Ay < A3. Thus, A < A(1+O(F)) = A1+ O(|o])) as o ~ 1

and J ~ |o|. Therefore, it suffices to show the opposite bound,

A > A1+ 0O(al). (8.7.58)
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If Ao > Ao := 2 — oAY3 (cf. (87.3H) then we have (8.7.58) as AY3 ~ |o| and o ~ 1. If

Ao < A9 then we will prove below that
Im QN + &) > £V/2 (8.7.59)
for £ € [0,1]. From (8.7.32)), we then conclude
co(A2 — Ao)'/? < ImQ(Ay) < Cyo|'?

as ¥ ~ |o|. Hence,

)\0 Z )\2 — (01/00)2|O'| Z 2 — CY|0'|7

where we used Ay = 2— 97 and o ~ 1 in the last step. This shows ([8.7.58)) also in the case
Ao < Ag. Therefore, the proof of the lemma will be completed once (8.7.59)) is proven.
In order to prove (8.7.59)), we translate it into the coordinates w relative to 7y and v.

From Ay < Ao, we obtain

A < (1= oAYHA <ol (8.7.60)

Since

(1o — A — @) =bImO(—A — @) + Imr(—A — &),

the bound (8.7.59) would follow from
v(to — A — @) = Alrp)~V0|@| /2 (8.7.61)

for sufficiently small A < |o]* < 33 and @ < & due to the third bound in (8.6.8). Since
v(1) =0 and 7, = 79 — A is a shape regular point, we conclude from (8.7.51)) that

o(n = @) 2 A(n) 0@
for || < 6. Therefore, it suffices to show that
A(r1) £ Aln) (8.7.62)

in order to verify (8.7.61). Owing to |o(70) — o(m1)| S A and (8.7.60]), we have

o(11)| S lo(ro)] + AC < |o(mo)]*.
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We allow for a smaller choice of & ~ 1 and assume (7)) ~ ¥(r9) ~ 1 by (8.6.6).
Assuming without loss of generality A(7y) < 1 and A(71) < 1, we obtain (8.7.62) by the
definition of A in (18.7.19). We thus get (8.7.62)) and hence (8.7.61)). This proves (8.7.59)

and completes the proof of Lemma [8.7.15] O

8.7.5. Proofs of Theorem and Proposition [8.7.5]

PROOF OF PROPOSITION [B. 7.5l We start with the proof of part (i). We apply (-)
to (8.7.3)), use p = (v) and obtain (h) from the definitions of h in the four cases given in

the proof of Proposition [8.7.4] Indeed, by using the relations
by =7+ 0O(p), @ =4T, (8.7.63)

which are proven below, as well as Lemma([3.7.15|in the cases (a) and (b) and the stronger
error estimate in case (d), we conclude part (i) of Proposition up to the
proof of .

The first relation in follows from applying (- ) to and using (8.5.134)),

Corollary [8.14.2| with 75 € supp p, the cyclicity of (-) and (8.5.19)). The second relation
in (8.7.63)) is a consequence of the definition of ¢ in (8.7.19) and the definition of I' in

Theorem (i). This completes the proof of part (i).

We now turn to the proof of part (ii) of Proposition and assume that all points
of (Osupp p) NI are shape regular for m and all estimates in Definition hold true
uniformly on this set. As in the proof of Proposition , we conclude o(15) # 0 for
all 79 € (Osuppp) N I. Owing to dist(0,0J) 2 1 and the Holder-continuity of ¢ on

(Osupp p) N1, Proposition is applicable to every 7y € (0supp p)NI. Hence, (8.7.4a))
and dist(0,0.J) 2 1 imply the existence of d1,¢; ~ 1 such that

p(10 + w) > ¢ |w|? (8.7.64)

for all w € —sign ()0, 1] and 79 € (O supp p) N 1. In particular, 7o —sign o(79)[0, 6] C
supp p for all 7y € (Osuppp) N I. Since |I| < 1, this implies that supp p N I consists
of finitely many intervals [, ;] with lengths 2 1, and, thus, their number K satisfies
K~1lasd; ~1and f; —a; >0, if 5; #supl and a; # inf [.
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Additionally, we now assume that the elements of M, are shape regular points for
m on J and all estimates in Definition hold true uniformly on M, . By possibly
shrinking p, ~ 1, we conclude from that |o; — | ~ 1 and |5; — | ~ 1 for any
i=1,...,K and vy € M,,.

Suppose now that 7o € M, with p(79) = 0. Then part (i) and dist(0,0J) 2 1 yield

the existence of 9, co ~ 1 such that

p(To + w) > calw|'/?

for all |w| < 5. By possibly further shrinking p, ~ 1, we thus obtain |7y — | ~ 1 for all
v e M, \ {r}. We thus conclude (8.7.10)) in this case.

Finally, let 71,7, € M,, with p(y1), p(72) > 0. Then applying (i) with 7 = ; and
To = 7o yields

Uy (w) + Ta(w) S w2 (p(v) 1wl S p(1)?) + p(12)1(|Jw] S p(12)?)) + Tr(w)? + Wa(w)?,

where we defined w = v, — v, and
Uy (w) = ﬁl‘ymin(@) Vy(w) = ﬁ2\1jmin(|(j3|>
P1 P2
with p; ~ p(71) and pa ~ p(72) (cf. Corollary 9.4 in [4]). Thus, we obtain either |w| ~ 1
or |w| < min{p(m),p(72)}*. This completes the proof of and hence the one of
Proposition [8.7.5] U

Finally, we use Proposition [8.7.5] and a Taylor expansion of p around a nonzero local

minimum 7y to obtain the stronger conclusions of Theorem [8.7.2

PROOF OF THEOREM [B.7.2]. We start with the proof of part (i). Let 79 € supp pN Iy
satisfy the conditions of Theorem m (i). Then, by Proposition , the conditions of
Proposition [8.7.5] (i) are fulfilled and all conclusions in Theorem [8.7.2] (i) apart from the
case |w| < ep(19)? in follow from Proposition (i).

For the proof of the missing case, we fix a local minimum 75 € suppp N Iy of p
such that p(79) < p.. We set p := p(79). Owing to the 1/3-Holder continuity of p by
Proposition there is € ~ 1 such that p(1y + w) ~ p if |w| < gp®. In particular,
p(170 + w) > 0 and using Lemma with £ = 2,3 to compute the second order Taylor
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expansion of p around 7y yields
3
Fo(w) = p(m + ) = p(m) =+ 0(|p| ) (8.7.65)
for all w € R satisfying |w| < ep3, where ¢ = ¢(7y) satisfies 0 < ¢ < 1.
On the other hand, 7y is a shape regular point by Proposition and a nonzero
local minimum of p. Hence, Proposition [8.7.5 (i) (d) implies

|w| r: W |w]
(W) = ‘Ifmm( ) + O( ) + O( + ) 8.7.66
Jr(w) =p e p 18p5w e p ( )

for |w| < ep?, where T' = T'(15). Here, we also used the second order Taylor expansion of
W in defined in in the second step. Note that I' ~ 1 since 1) + 02 ~ 1 by
and |o| < p? by Lemma

We compare and and conclude

2

C 9 = <’W’3 |W‘>
— = o=l =2
Py " % " p

for |w| < ep®. Choosing w = p™/? and solving for ¢ yield

F2

By starting from the expansion of f,, in (8.7.65)), using the Taylor expansion of ¥,;, and
(8-7.41)), we obtain (8.7.5d).

We now turn to the proof of (ii) of Theorem . By Proposition , the conditions
of Propositionm (ii) are satisfied on I" :== IN[—3k, 3k, where & = ||a||+2||S||'/2. Since
lal| <1 and [|S|| < [|S]la=).| S 1 by Assumptions [8.4.5, we have [I'| < 1. Moreover,
supp p C I’ by . Hence, by Proposition m it suffices to estimate the distance
|71 — 72|, where 71,7, € M, satisfy 1 # ..

Let 71,72 € M,,. By in Proposition [8.7.5 (ii), we know a dichotomy: either
71 — Y] = 1 or |y1 — %l < min{p(n),p(1)}t. For y1 # 72, we now exclude the
second case by using the expansions obtained in the proof of (i). If p, ~ 1 is chosen
sufficiently small then ¢(v1) ~ 1 and ¢(72) ~ 1 by (8.7.67). Hence, by assuming =72 S

min{p(71), p(72)}*, we obtain p(v2) > p(71) from the expansion of f,,(w) in (8.7.65) with
To = 71 and w = 5 — ;. Similarly, as ¢(y2) ~ 1, the expansion of f, (w) in (8.7.65)) with
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To = Y2 and w = 3 — 2 implies p(y1) > p(72). This is a contradiction. Therefore, the
distance of two small local minima of p is much bigger than min{p(71), p(12)}* and the

dichotomy above completes the proof of (ii). O

8.7.6. Behaviour at a regular edge. We now list a few consequences of the pre-
vious results that will be used in the companion paper on the edge universality [17].
As in |17], in this subsection, we also assume that S is flat and a is bounded, i.e., that
(8.3.10) is satisfied. In particular, owing to Proposition , there is a Holder continuous
probability density p: R — [0, 00) such that

mz) = [ 27 ar,

RT — 2

where m is the solution to the Dyson equation, .
In this subsection, we study p and its harmonic extension to the complex upper half-
plane in the vicinity of dsupp p C R. We say that 7y € 0supp p is a regular edge of p if
there is € ~ 1 such that p(7) = 0 for all 7 € [1y — &, 7] or T € [19, 70 + €]. The following

lemma characterizes regular edges and describes the behaviour of p close to them.

Lemma 8.7.16 (Behaviour of p close to a regular edge). Let a and S satisfy (8.3.10)
and m be the solution of the corresponding Dyson equation, (8.2.3). Suppose for some
To € Osupp p, there are my, > 0 and 6 > 0 such that

lm (7 +in)|| < m.

for all T € [T — 0,7 + 0] and n € (0,0]. Then the following implications hold true:

(i) If 1o is a regular edge then |o(1)| ~ 1.
(ii) If |o| ~ 1, 0 := 0(7p), then 1y is a regular edge. Moreover, there is §, ~ 1 such

that

2
_ |0|1/2|w|1/2—|—(’)(|w|)7 if signw = signo,
p(To+w) =

0, if signw = —signo,

for all w € [—d., 4.
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In this lemma, the comparison relation ~ is understood with respect to cy,cq,c3 from

(8.3.10) as well as & and m,.

PROOF. For the entire proof, we remark that, by Lemma m (ii), the conditions
of Proposition are satisfied. Moreover, p(7y) = 0 due to the continuity of p and
To € Jsupp p.

Thus, part (i) follows directly from Lemma as Ty is a shape regular point by
Proposition [8.6.1}

We now turn to the proof of (ii). We choose 8, ~ 1 as in Proposition [8.6.1] In
particular, é, < 0. We take the imaginary part of and apply (-) to the result.
This yields

p(ro+w) =Tm (O(w)r (b)) + 7 (Imr(w)) = Im O(w) + O((|O(w)| + |w|)Tm O(w))

for |w| < d.. Here, we used (b) = 7 by (8.7.63) in the proof of Proposition as well
as the third bound in (8.6.8]) in the second step.

By Proposition the assumptions of Theorem [8.7.6] (ii) are satisfied with x = .
Hence, we conclude (ii) of Lemma from Lemma by possibly shrinking J, ~ 1
due to |o| ~ 1, |0(w)| < Jw/a/? < |w|V? and |v(w)] < [O(wW)] + |w| < |w|'/? by the first
bound in (8.6.5). This completes the proof of Lemma O

The remainder of this section is devoted to understanding the harmonic extension of
p to the complex upper half-plane. We denote this extension by p(z) for z € H, i.e.,
p(z) = (Imm(z))/x for z € H.

The results of this subsection will hold true away from points, where m blows up,
and away from almost cusp points. We now introduce these sets precisely. For a given

m. > 0, we define the set P, := P/ C H, where |m(z)|| is larger than m,, i.e.,
P = {71 € R:sup|m(t +in)|| > m.}. (8.7.68)
n>0

For 7 € R \ supp p, let A(7) denote the size of the largest interval that contains 7 and is
contained in R \ supp p. For p, > 0 and A, > 0, we define the set P, = P?5 C R of

cusp
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almost cusp points through

PPS = L1 csuppp \ Osupp p : 7 is a local minimum of p, p(7) < p,}

cusp

(8.7.69)
U{r € R\ suppp: A(1) < A,}.

The set of points that are away from P,, and F..g, is denoted by ID. More precisely, for
some 0 > 0, we define

D:={z € H:dist(z, Py) >0, dist(z, Peusp) > 9} (8.7.70)

In this subsection, the model parameters are ¢y, ¢ and c3 from as well as m,,
P+, Ay and d from the definitions of P, Py, and D, respectively.

In the next lemma, we establish the behaviour of p(z) and B(z) if z is close to a
regular edge. Here, closeness means that x(z) + Im z ~ dist(z,dsupp p) is sufficiently
small, where z € D and x(z) := dist(Rez,dsuppp). By definition of D, D N dsupp p

consists only of regular edges.

Lemma 8.7.17. There is €, ~ 1 such that if z € D satisfies dist(z,dsupp p) < €, then

(i) For the harmonic extension of the self-consistent density of states p, we have

\/k(2) + Im z, if Re z € supp p,
Imz/\/k(z) +Imz, if Rez ¢ suppp.
p(2) + p(2) Mm z ~ /k(2) +Im 2, (8.7.71b)

(ii) Letl andb be defined as in Corollary[8.5.4 Setting po = (L, mS[blb + bS[blm) /2,

we have

p(z) ~ (8.7.71a)

(1, mS[b]bY] ~ 1, 2 (2)] ~ 1. (8.7.72)

(iii) Let B :=1d — C,,,S and ( be its eigenvalue of smallest modulus (cf. Corollary
8.5.9). We have

1B+ 1B @) S (5(2) + mz) ™2, B(:)] ~ yfi(z) +Imz. (8.7.73)
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PROOF. By assumption, z is e,-close to a regular edge. Thus, owing to ||m| < 1

by definition of D, Theorem (a), (b) and ({8.7.4a) immediately imply (8.7.71al).

Moreover, (8.7.71b]) is a direct consequence of (8.7.71al).
For the proof of (ii), we shrink e, ~ 1 as well as use (8.7.71a)), (8.7.71b)) and

dist(z, Osupp p) ~ £+ 1Im z to guarantee that Lemma and Corollary are appli-
cable. Furthermore, we use Lemma [8.7.14] and the definition of D to obtain |o(79)| ~ 1,

where 79 € dsupp p is the point in 0 supp p closest to z. The Hélder-continuity of o from
Lemma [8.5.5 (i) implies |o(2)| ~ 1 if e, is sufficiently small, i.e., z is sufficiently close
to 79. Therefore, evaluating and at z as well as using |o(2)| ~ 1 yield
|1a(2)] ~ 1 and |(I, mS[b]b)| ~ 1.

For the proof of (iii), we recall |o(z)| ~ 1 from the proof of (ii). Therefore,
and yield the first bound in (8.7.73). Similarly, we obtain the second bound
in by using |o(z)] ~ 1 and (8.7.71b)) in (8.5.14c). This completes the proof of
Lemma R.7.17 O

8.8. Band mass formula — Proof of Proposition [8.2.6|

Before proving Proposition [8.2.6] we state an auxiliary lemma which will be proven

at the end of this section.

Lemma 8.8.1. Let (a, S) be a data pair, m the solution of the associated Dyson equation,
(8.2.3), and p the corresponding self-consistent density of states. We assume ||a|| < ko
and S[z] < ki{z)1 for all x € A, and for some ko, k1 > 0. Then we have

(i) If T € R\ supp p then there is m(1) = m(7)* € A such that
lim||m(7 +in) — m(7)|| = 0.
nd0

Moreover, m(7) is invertible and satisfies the Dyson equation, , at z = T.
There is C' > 0, depending only on kg, ki and dist(, supp p), such that ||m(7)| <
C and ||(Id = (1 = t)CrynS) M| < C all t € ]0,1].

(ii) Fix 7 € R\ supp p. Let m; be the solution of associated to the data pair

(at, St) == (a — tS[m(7)], (1 —t)S)
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fort € 10,1] and p; the corresponding self-consistent density of states. Then, for
any t € [0, 1], we have

lig}let(T +1in) —m(7)| = 0. (8.8.1)
n

Moreover, there is ¢ > 0 such that dist(r,supp p;) > ¢ for all t € [0, 1].

PROOF OF PROPOSITION [8.2.6l We start with the proof of (i) and notice that the
existence of m(7) has been proven in Lemma [8.8.1] (i). In order to verify (8.2.10)), we
consider the continuous flow of data pairs (a;, S;) from Lemma [8.8.1] (ii) and the corre-

sponding solutions m; of the Dyson equation, (8.2.3)), and prove

pe((=00, 7)) = (1000 (me(7))) (8.8:2)

for all t € [0,1]. Note that dist(r,supp p;) > ¢ for all ¢ € [0, 1] by Lemma (ii).

In particular, by Lemma [8.8.1] (ii), m,(7) = m(7) is constant along the flow, and with
it the right-hand side of . The identity obviously holds for t = 1, because
my(z) = (a — Sm(7) — 2)~! is the resolvent of a self-adjoint element and m(7) satisfies
at z = 7 by Lemma [8.8.1] (i). Thus it remains to verify that the left-hand side
of stays constant along the flow as well. This will show for t = 0 which
Is .

First we conclude from the Stieltjes transform representation (8.2.4)) of m; that

pl(—00,m)) =~ fimi(2)) dz (3.8.3)

2w

where the contour encircles [minsupp p;, 7) counterclockwise, passing through the real
line only at 7 and to the left of minsupp p;, and we extended my(z) analytically to a
neighbourhood of the contour (set m(z) := my(z)* for z € H and use Lemma
close to the real axis to conclude analyticity in a neighbourhood of the contour).

We now show that the left-hand side of does not change along the flow. Indeed,
differentiating the right-hand side of with respect to ¢t and writing m; = my(z)
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yield
& fimnaz = fam(2)dz

= (Gt = 8)7 1], SIm(r)] - Slwi])dz
= f((azmt)(S[m(T)] — S[my]))dz

= fo. (tmeSlm(r)) = SmSime) ) dz

= 0.
Here, in the second step, we used 9ymy(z) = (C,,} —S;) 7' [=S[my] — S[m(7)]] obtained by
differentiating the Dyson equation, , for the data pair (a;, S;) defined in Lemmam
(ii) and the definition of the scalar product, (8.2.1). In the third step, we employed
(C’;l% — S)7H1] = (9.m4(2))* which follows from differentiating the Dyson equation,
, for the data pair (a;, S;) with respect to z. Finally, we used that m; is holomorphic
in a neighbourhood of the contour. This completes the proof of (i) of Proposition .

For the proof of (ii), we fix a connected component J of supp p. Let 71,5 € R\ supp p
satisfy 71 < 1o and [ry, 7] Nsupp p = J. By (8.2.10), we have

np(J) = n(p((—oo,rg)) — p((—oo,ﬁ))) = Tr(P,) — Tr(P) = rank P, — rank P,

where P; := 7(1(_oo0)(m(7;))) are orthogonal projections in C™*™ for i = 1,2. Hence,
np(J) € Z. Since 0 < np(J) < n by definition of supp p, we conclude np(J) € {1,...,n},
which immediately implies that supp p has at most n connected components. This com-

pletes the proof of Proposition [8.2.6 U

ProOF OF LEMMA [B.8.7] In part (i), the existence of the limit m(r) € A follows
immediately from the implication |(v)| = of Lemma [8.14.1] The invertibility of m(r)
can be seen by multiplying at z = 7+ in by m(7 + in) and taking the limit
n 4 0. This also implies that m(7) satisfies at z = 7. In order to bound ||(Id — (1—
t)Crn(ryS) ||, we recall the definitions of ¢, v and F' from (8.3.1]) and (8.3.4)), respectively,

and compute

Id — (1 = t)CrpS = Cpe o(Id = (1 = t)C, F)C 2!,
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for m = m(z) with z € H. Hence, by (8.14.1), Lemma [8.4.§| (i) and Lemma [3.12.2] we
obtain ||(Id— (1—¢)C,S) | S (1= (1=0)||F|]2) ™' < (1—||F]]2)"* < C forall z € T+iN,
where the set N C (0, 1] with an accumulation point at 0 is given in Lemma [8.14.1][(ii)]
Taking the limit | 0 under the constraint n € N and possibly increasing C' yield the
desired uniform bound. This completes the proof of (i).

We start the proof of (ii) with an auxiliary result. Similarly as in the proof of (i),
we see that Id — (1 — ¢)Cp+ S is invertible for m = m(z), z € 7 + iN with N as
before. Since ||F(z2)]]s < 1 —C~! for 2 € 7 +iN by Lemma Lemma [8.12.3]
implies that (Id — (1 — t)Cyp, F)™', F = F(2), and, thus, (Id — (1 — t)Cpp= ,nS) "t =
Cye o(Id = (1 = )Cyp o F) 1 C2t, are positivity-preserving for z € 7+iN. Taking the limit
n=1Imz | 0in N shows that (Id — (1 — t)Cyy-)S) ™! is positivity-preserving for any

t € [0, 1]. Moreover, (8.12.10) with = = 1 yields
(Id — (1 = )CrenS) 1] = Cr o(Id — (1 = #)Cyp  F) ' C L [1] > 1. (8.8.4)

Since (8.8.4]) holds true uniformly for z € 7+ iN and ¢t € [0, 1], taking the limit n =
Imz | 0in N, we obtain

(Id = (1 = t)CrynS) 1] > 1 (8.8.5)

for all ¢ € [0, 1].
We fix ¢t € [0, 1]. We write m = m(7) and define ®;: A x R — A through

By(A,n) = (Id = (1—£)ConS)[A] - i;7(mA + Am) —inm? — ;(1 1) (AS[AJm+mS[A]A)

In order to show (8.8.1)), we apply the implicit function theorem (see e.g. Lemma
below) to ®;(A,n) = 0. It is applicable as ®;(0,0) = 0 and 0,9;(0,0) = Id — (1 —¢)C,,,S
which is invertible by (i). Hence, we obtain an ¢ > 0 and a continuously differentiable
function As: (—e,e) — A such that ®,(A(n),n) = 0 for all n € (—e,e) and A(0) = 0.
We now show that A(n) +m(7) = my(7+1n) for all sufficiently small » > 0 by appealing
to the uniqueness of the solution to the Dyson equation, (8.2.3)), with the choice z = 7+in,

a=aand S =S; = (1—1)S. In fact, m = m(7) and m; = my(7 +in) with n > 0 satisfy
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the Dyson equations

—mt=1—a+Sm], —m;'=714+in—a+tS[m]+ (1 —1)S[m,] (8.8.6)

and my is the unique solution of the second equation under the constraint Imm,; > 0
(compare the remarks around (8.2.3)). A straightforward computation using the first
relation in and ®.(A(n),n) = 0 reveals that A;(n) + m(7) solves the second
equation in for m;. Moreover, differentiating ®,(A¢(n),n) = 0 with respect to 7
at n = 0 yields

,Im Ay(n = 0) = (Id — (1 — £)C;S) " [m?]
> [m™H|72(1d = (1 = )G S) A > [lm ™| 721

Here, we used that (Id — (1 —¢)C,,S)~! is compatible with the involution * and m = m*
in the first step. Then we employed the invertibility of m, m? > |[m™!||7?1 and the
positivity-preserving property of (Id — (1 — ¢)C,,S)™! in the second step and, finally,
in the last step. Hence, Im (A¢(n) + m(7)) = ImAs(n) > 0 for all sufficiently
small n > 0. The uniqueness of the solution to the Dyson equation for m;, the second
relation in (8.8.6)), implies Ay(n) +m(7) = m(7 + in) for all sufficiently small > 0 and
all t € [0,1]. Therefore, the continuity of A; as a function of 7, Ay(n) — A(0) = 0,
yields (8.8.1).

We now conclude from the implication [(iii)] = [(v)| of Lemma[8.14.1| that dist(7, supp p¢)
> ¢ for some € > 0. Lemma is applicable since ||a;|| < ko + k1C (cf. Lemma [3.12.2]
(i) and Lemma m (i)) and Siz] < S[x] < ki(z)1 for all z € A,. For any t € [0, 1],
statement in Lemma holds true with the same m = m(7) by and S
replaced by S; = (1 —¢)S. By (i), ||m| < C and ||(Id — (1 — t)C,,S) || < C for all
t € [0,1]. Hence, owing to Lemma [8.14.1][(v)] there is ¢ > 0 such that dist(r, supp p;) > €
for all ¢ € [0,1]. The uniformity of € in t is a consequence of the effective dependence
of the constants in Lemma on each other (see final remark in Lemma
and the uniform upper bound on [|(Id — (1 — ¢)C,,S)'||. This completes the proof of
Lemma R.8.1] O
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8.9. Dyson equation for Kronecker random matrices

In this section we present an application of the theory presented in this work to
Kronecker random matrices, i.e., block correlated random matrices with variance profiles
within the blocks, and their limits. In particular, in Lemma and Lemma below,
we will provide some sufficient checkable conditions that ensure the flatness of S and the
boundedness of ||m(z)]|, the main assumptions of Proposition [8.2.4 Theorem and
Theorem for the self-consistent density of states of Kronecker random matrices

introduced in Chapter [7]

8.9.1. The Kronecker setup. We fix K € N and a probability space (X, ) that

we view as a possibly infinite set of indices. We consider the von Neumann algebra
A= CHFeaL>X), (8.9.1)

with the tracial state
T
(k® f) r’i / fdm.

For K =1 the algebra A is commutative and this setup was previously considered in [4,

(CKXK

5). Now let (ay,)%. =1> (8,)'2, be families of matrices in with o, = a7, self-adjoint

and let (s")% =1 ()2, be families of non-negative bounded functions in L®(%2) and
suppose that all s# are symmetric, s*(z,y) = s*(y,z). Then we define the self-energy

operator S : A — A as

S(k® f) Z ke @ Suf + Z BukfB, @ T, f + kb, @ T ), (8.9.2)

p=1 v=1

where the bounded operators S, T, T : L>(X) — L>*(X) act as
(Suf)@) = [ (@) f Wm(ay).
/t” z,y) f(y)n(dy), /tV y, ) f(y)m(dy) .

Furthermore we fix a self-adjoint a = a* € A. With these data we will consider the Dyson

equation, (8.2.3)).
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The following lemma provides sufficient conditions that ensure flatness of S and
boundedness of ||m(z)|| uniformly in z up to the real line. We begin with some prepa-
rations. We use the notation z +— v, for z € X and an element v € CF*K @ L>(X),
interpreting it as a function on X with values in C¥*¥_ We also introduce the functions

v € L*(X?) via

) o= ([0 ) = 0 P+ )~ P P ) — e C)Phar)
(8.9.3)
and I': (0,00)? = L>(X), (A, 7) — T'a.(7) through
1 -2 1/2
Caa(r) = (L5 + lae = ayll +9@p)a) w(@y)) (8.9.4)
Here, we denoted by || - || the operator norm on C¥*¥ induced by the Euclidean norm on

CX. The two functions v and I' will be important to quantify the modulus of continuity

of the data (a,S).

Lemma 8.9.1. Let m be the solution of the Dyson equation, (8.2.3)), on the von Neumann
algebra A from (8.9.1)) associated to the data (a,S) with S defined as in (8.9.2)).

(i) Define T'(7) := Ck, essinf, I'1 (1) with Ck, == 4 4+ 4K (€1 + £3) max,, , (||a,l]* +
18,112)/2, where Ty (1) was introduced in (8.9.4) and assume that for some
z € H the L*-upper bound ||m(z)||s < A for some A > 1 is satisfied. Then we

have the uniform upper bound

T-1(A2)
Im()ll < —~,

(8.9.5)
where we interpret the right-hand side as oo if A is not in the range of the strictly
monotonously increasing function T'.

(7i) Suppose that the kernels of the operators S* and TV, used to define S in ,
are bounded from below, i.e., essinf,, s*(z,y) > 0 and essinf, ,t"(z,y) > 0.
Suppose further that

1 11 52
inf Trr (Z aukoy + Y (BB + ﬁj/@ﬂ,,)) > 0, (8.9.6)
u=1 v=1
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where the infimum is taken over all positive definite k € CE*X_ Then S is flat,
i.e., S € Spay (cf (8:2.2D)).

(iit) Let S be flat, hence, A := 1+ sup,y|m(2)||2 < co. Then holds true with
this A.

(iv) If a = 0 then, for each € > 0, holds true on |z| > € with A == 1+ 2e71.

ProOF oF LEMMA [B.9.7]1 We adapt the proof of Proposition 6.6 in [4] to our non-
commutative setting in order to prove (i). Recall the definition of v(x,y) in (8.9.3).

Estimating the norm [|m||y from below, we find

1 (dy) Ci, m(dy)
Imlf3 = ?Tr/ ey —— Tr/ 1)1 = 2 2 2
my (my) xm, (ma:) + Hax - ay” + 7(377?/) ||mH2

> Ce (Do llmal))

(8.9.7)

2
)

for m-almost all z € X, where we used

1

7 (my) ™ < m ()T (ay = aa)(ay — a0)" + ((Sm)e — (Sm)y)((Sm)e — (Sm),)*

IN

my (M) llae — ay[* + K (6 + o) max(flaul* + 18 [1*)y(2, y)* [[ml]3
(8.9.8)

We conclude A > A™'T(A||m,||) for any upper bound A > 1 on ||m|. In particular,
(8.9.5)) follows.
We turn to the proof of (ii). We view a positive element r € A, as a function

r:[0,1] — CK*F with values in positive semidefinite matrices. Then we find

l Lo
(Sr), > C/%(,; Ty, + V;(ﬂuryﬁi + 537“yﬁu)>7f(dy) ,

as quadratic forms on CE*¥ for almost every z € X. The claim follows now immediately

from ({8.9.6). Part (iii) is a direct consequence of (i) and (ii) as well as (8.3.11)). For the
proof of part (iv), we use part (i) and (8.2.6) if a = 0. O

8.9.2. N x N-Kronecker random matrices. As an application of the general Kro-
necker setup introduced above, we consider the matriz Dyson equation associated to Kro-
necker random matrices. Let X,,Y, € CV*¥ be independent centered random matrices

such that Y, = (y};) has independent entries and X, = (z};) has independent entries up to
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the Hermitian symmetry constraint X, = X 7. Suppose that the entries of V NX,, vV NY,
have uniformly bounded moments, E(|z!;[P + |y/;|P) < N7*/2C, and define their variance
profiles through

s(i,j) = NElhl”,  1°(i,j) = NE[gj/.
Then we are interested in the asymptotic spectral properties of the Hermitian Kronecker

random matrix
Kl 62
H:=A+) ,0X,+> (3 oY, +8,0Y)) e CF**gC"V, (8.9.9)
pn=1 v=1

as N — oo. Here the expectation matrix A is assumed to be bounded, ||A|| < C, and

block diagonal, i.e.

N

i=1
with Ej; = (0a0ik) 5=y € CVV and a; € CF*F. In Chapter [7] it was shown that
the resolvent G(z) = (H — z)~! of the Kronecker matrix H is well approximated by the
solution M (z) of a Dyson equation of Kronecker type, i.e., on the von Neumann algebra .4
in with self-energy S from and a = A € A, when we choose X = {1,..., N}
and 7 the uniform probability distribution. In other words, L>(X) = CV with entrywise

multiplication.

8.9.3. Limits of Kronecker random matrices. Now we consider limits of Kro-
necker random matrices H € CV*¥ with piecewise Holder-continuous variance profiles as
N — o0o. In this situation we can make sense of the continuum limit for the solution M (2)
of the associated matrix Dyson equation. The natural setup here is (X, 7) = ([0, 1], dx).
We fix a partition ([;)%, of [0, 1] into intervals of positive length, i.e., [0,1] = U;[; and
consider non-negative profile functions s*, ¢ : [0, 1]> — R that are Holder-continuous with
Holder exponent 1/2 on each rectangle I; x I. We also fix a function a : [0, 1] — CK*F
that is 1/2-Holder continuous on each [;. In this piecewise Holder-continuous setup the
Dyson equation on A with data pair (a,S) describes the asymptotic spectral properties

of Kronecker random matrices with fixed variance profiles s# and t”, i.e., the random
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matrices H introduced in Subsection [8.9.2]if their variances are given by
1 /i j 1 /i j
Ew:u(> Ew:tv()
‘x2j| NS N7 N ) ’ylj’ N N’ N )
and the matrices a; in (8.9.10) by a; = a(F).

Lemma 8.9.2. Suppose that a, s* and t¥ are piecewise Holder-continuous with Hélder
exponent 1/2 as described above. The empirical spectral distribution of the Kronecker
random matriz H, defined in (8.9.9), with eigenvalues (\;)EY converges weakly in proba-
bility to the self-consistent density of states p associated to the Dyson equation with data

pair (a,S) as defined in (8.9.2)), i.e., for any ¢ > 0 and ¢ € C(R) we have
1 KN
B fonf =) w0 o
(KN;gp(/\) R(pdp >¢e)] =0 — 00

ProoF oF LEMMA [R.9.2] It suffices to prove convergence of the Stieltjes transforms,
i.e., in probability += Trxn G(2) — (m(2)) for every fixed z € H, where G(z) = (H—2z)"!
is the resolvent of the Kronecker matrix H and m(z) is the solution to the Dyson equation
with data (a, S).

First we use the Theorem from Chapter [7] to show that

1 1 Y
7KN TrKN G(Z) — N ;TYK mz(z) — 0

in probability, where My = (mq,...,my) € (CE*¥)Y denotes the solution to a Dyson
equation formulated on the von Neumann algebra CX*¥ @ CV with entrywise multipli-
cation on vectors in CV as explained in Subsection . We recall that in this setup the
discrete kernels for S, and 7, from the definition of S in are given by NE|zf;[?
and NE|y|?, respectively, and a = >N a(%) ®e;. To distinguish this discrete data pair
from the continuum limit over C**¥ @ L>°[0, 1], we denote it by (ay, Sy). Note that in
Theorem [7.2.7] of Chapter [7] the test functions were compactly supported in contrast to
the function 7+ 1/(7 — 2) that we used here. However, by Theorem of Chapter
and since the self-consistent density of states is compactly supported (cf. and

|1S]] < 1) no eigenvalues can be found beyond a certain bounded interval, ensuring that

non compactly supported test function are allowed as well.
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Now it remains to show that (My) — (m) as N — oo for all z € H. For this purpose
we embed CV into L*[0,1] via Pv := SN, v;1{_1y/ni/n). With this identification My
and m satisfy Dyson equations on the same space CE*X @ 1.°°[0, 1]. Evaluating these two
equations at z + in, for a fixed z € H and any n > 0, and subtracting them from each

other yield
BIA] =m(Sy — S)[m]A + C,,,(Sy — S)[A] + mSn[A]A
+ Cn(Sny — S)[m] — m(an — a)A — Cplan — al,
where m = m(z +1in), My = My(z +1in), B =1d — C,,S and A = My — m. Using the
imaginary part of z we have dist(z+in, supp p) > Im z > 0. By (7.3.22)), (7.3.23)), ([7.3.11a))

and (7.3.11d) in Chapter [7] we infer ||m| + ||B~|2 < C for all n > 0 with a constant C
depending on Im z. Note that although the proofs in Chapter 7| were performed on CY*¥

all estimates were uniform in N and all algebraic relations in these proof translate to the
current setting on a finite von Neumann algebra. Using ||Sy — S|z < [|Sy — S| as well

as ||Sn|| < C and possibly increasing C', we thus obtain
IAfl2 < C(Wx + |A]3), Uy = |lay —all + [|Sy = 5],

where A = A(z+in), for alln > 0. We choose Ny sufficiently large such that 2¥ yC? < 1/4
for all N > Ny and define 7, := sup{n > 0: ||A(z+in)||2 > 2C¥x}. Since || My||+]||m| —
0 for n — oo, we conclude 7, < occ.

We now prove n, = 0. For a proof by contradiction, we suppose 7, > 0. Then,
by continuity, ||A(T + in.)|l2 = 2C¥y. Since 2UxyC? < 1/4, we have [|A(z + in,)|l2 <
40Uy /3 < 20Uy = ||A(z + iny)|l2- From this contradiction, we conclude 7, = 0.
Therefore, for N > Ny, we have

[Mn(2) =m(z)] < [A(2)]l2 < 20¥x = 2C([|Sy = S| + [lan — al]) .

Since the right-hand side converges to zero as N — oo, due to the piecewise Holder-
continuity of the profile functions, and since z was arbitrary, we obtain (My) — (m) as

N — oo for all z € H. This completes the proof of Lemma [8.9.2] O
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The boundedness of the solution to the Dyson equation in L?-norm already implies

uniform boundedness in the piecewise Holder-continuous setup.

Lemma 8.9.3. Suppose that a, s* and t¥ are piecewise 1/2-Hélder continuous and that
sup,epllm(z)|la < oo for some domain D C H. Then we have the uniform bound

sup..plm(2)]] < o.

In particular, if the random matrix H is centered, i.e., a = 0, then m(z) is uniformly
bounded as long as z is bounded away from zero; and if H is flat in the limit, i.e., S is

flat, then sup,y||m(z)| < oo.

PROOF. By (i) of Lemma the proof reduces to checking that lim, .., I'(T) = oo
for piecewise 1/2-Holder continuous data in the special case (X, 7) = ([0, 1], dz). But this
is clear since in that case ||a, — a,||* + v(z,y)* < C|z — y| implies that the integral in

(8.9.4)) is at least logarithmically divergent as 7 — oc. O

Corollary 8.9.4 (Band mass quantization). Let p be the self-consistent density of states
for the Dyson equation with data pair (a,S) and 7 € R\ supp p. Then

p((=o0,7)) € {;émm k=1, K}

In particular, in the L = 1 case when s, t* and a are 1/2-Hélder continuous on all of
0, 1]% and [0, 1], respectively, then p(J) is an integer multiple of 1/ K for every connected

component J of supp p and there are at most K such components.

ProoOF. Fix 7 € R\ supp p. We denote by x +— m,(7) the self-adjoint solution m(7)
viewed as a function of z € [0,1] with values in CE*K. As is clear from the Dyson
equation this function inherits the regularity of the data, i.e., it is continuous on each

interval [;. By the band mass formula (8.2.10) we have

1 & 1 &
—00,7T)) = — Trl_oy(me(m))de = —= > k||,
pll=00,m) = 3= [ Doy malr)dz = S il

where k; = Tr1(_oo0)(me(7)) € {0,..., K} is continuous in x € I; with discrete values

and therefore does not depend on . U
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Remark 8.9.5. We extend the conjecture from Remark 2.9 of [5] to the Kronecker set-
ting. We expect that in the piecewise 1/2-Holder continuous setting of the current section,

the number of connected components of the self-consistent spectrum supp p is at most

K(2L —1).

8.10. Perturbations of the data pair

In this section, as an application of our results in Sections to we show that
the Dyson equation, , is stable against small general perturbations of the data pair
(a, S) consisting of the bare matrix a and the self-energy operator S. To that end, let
T C R contain 0, S;: A — A, t € T, be a family of positivity-preserving operators and
a;=a; € A, t €T, be a family of self-adjoint elements. We set S := S;—o and a = a;—

and will always assume that there are cy,...,c; > 0 such that
c1(x)l < S[z] < ea(x)1, lla]| < cs, 1S — Si|| < eat, la — a:]] < st (8.10.1)

for all z € A, and for all t € T. For any t € T, let m; be the solution to the Dyson

equation associated to the data pair (a¢, S;), i.e.,
—my(2)7h = 21 — ay + Si[my(2)] (8.10.2)

for z € H (cf. ) We also set m = my—o.

The main result of this section, Proposition below, states that ||m.(z)—m(z)]| is
small for sufficiently small ¢ and all z away from points, where m(z) blows up. In the bulk
and away from (almost) cusp points, we obtain stronger estimates on ||m;(z) — m(z)||.

We now introduce these concepts precisely. We recall the definition of the set P, :=

P+ C H, where |[m(z)]| is larger than m, for a given m, > 0, from (8.7.68), i.e.,
PP = {1 € R:sup||m(r +in)| > m.}.
n>0

For any fixed m, > 0 and 0 > 0, we introduce the set Dyqq of points of distance at least
0 from P, i.e.,

Dyaq := D% = {2z € H: dist(z, P,,) > 6} (8.10.3)
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Note that ||m(z)|| < max{m.,d '} for all z € Dypqaq as [|m(2)| < (dist(z,suppp))~" by
837).

We now introduce the concept of the bulk. Since S € Yg,¢, the self-consistent density
of states of m (cf. Definition[8.2.2)) has a continuous density p: R — [0, c0) with respect to
the Lebesgue measure (cf. Proposition . We also write p for the harmonic extension
of p to H which satisfies p(z) = (Imm(z)) /7 for z € H. For p, > 0 and §; > 0, we denote

those points, where p is bigger than p, or which are at least J, away from supp p, by
Dpui = Dy = {z € H: p(2) > pu}, Doy = D%, = {z € H: dist(z,supp p) > .},

respectively. We remark that, for fixed p, and d,, we have the inclusion Dy, UDgy C Dpaq
for all sufficiently large m, and sufficiently small § by .

For 7 € R\ supp p, let A(7) denote the size of the largest interval that contains 7
and is contained in R \ supp p. We recall the definition of the set of almost cusp points

Prousp = P28 C R for p, > 0 and A, > 0 from (8.7.69)), which reads as

cusp

PP .= {1 € suppp \ dsupp p : 7 is a local minimum of p, p(7) < p,}

cusp
U{T € R\ suppp: A(1) < A,}.

For some 6. > 0, we denote those points which are at least J. away from almost cusp
points by
]D)nocusp = {Z cH: diSt(Z, Pcusp) > 68}

We remark that D = Dygq N Deysp with the definition of D in (8.7.70)).

In this section, the model parameters are given by cy, ..., c5 from (8.10.1) as well as
the fixed parameters my, §, ps, ds, A, and §. from the definitions of P,,, Dyaqa, Dy,
Dout, Peusps and Dyocusp, respectively. Thus, the comparison relation ~ (compare Conven-

tion [8.3.4]) is understood with respect to these parameters throughout this section.

Proposition 8.10.1. If the self-adjoint element a = as—g, a; in A and the positivity-

preserving operators S = Si—g, Sy on A satisfy (8.10.1)) for each t € T then there is
t. ~ 1 such that
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(a) Uniformly for all z € Dyaq and for allt € [—t., t.| NT, we have
lm(2) — m(2)|| < [¢]'.

In particular, ||m(z)|| < 1 uniformly for all z € Dyaa and for allt € [—t.,t.]NT.
(b) (Bulk and away from support of p) Uniformly for all z € Dy U Doy and for all
t €[t t.]NT, we have

lma(2) —m(2)|| S [t]-

c) (Away from almost cusps) Uniformly for all z € Dyocusp N Dpaa and for all t €
p
[—t., t.] N'T, we have

lme(2) = m(2)|| < [t'2.

In order to simplify the notation, we set Am; = Amy(z) = my(z) — m(z). The be-
haviour of Am, will be governed by a scalar-valued cubic equation (see (8.10.5) below).

|'/3 in the general estimate on ||my(z) — m(z)|| in

This is the origin of the cubic root |t
Proposition |8.10.1} In the special cases, z € Dyy U Doy and 2 € Dygeusp, the cubic equa-
tion simplifies to a linear or quadratic equation, respectively, which yield the improved

estimates |t| and [¢]!/2

, respectively.

We now define two positive auxiliary functions &;(z) and &(z) for z € Dyaq which
will control the coefficients in the cubic equation mentioned above. For their definitions,
we distinguish several subdomains of Dyqq. The slight ambiguity of the definitions due
to overlaps between these domains does, however, not affect the validity of the following
statements as the different versions of 51 as well as 52 are comparable with each other

with respect to the comparison relation ~ and 51 as well as 52 are only used in bounds

with respect to this comparison relation. For p, ~ 1 and J, ~ 1, we define

e Bulk: If z € Dy U Dy then we set

&1(2) = &(2) = 1. (8.10.4a)
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e Around a regular edge: If z = 79+ w + in € Dyoeusp N Dpaa With some

To € dsupp p, w € [, d,] and n € (0,0,] then we set
&1(2) = (|| + )72, E(2) = 1. (8.10.4b)

e Close to an internal edge with a small gap: Let o,5 € (Osuppp) \ Py
satisfy 5 < a and (8,a) Nsuppp = &. We set A :=«a — . If z € Dyqq satisfies
z=a—w+inor z =+ w+in for some w € [—d., A/2] and n € (0,0,] then we
define

&1(2) = (jw| + )2 (Jwl + 7+ A)YS, &(2) = (lw|+n+A)Y>  (8.10.4c)

e Around a small internal minimum: If z = 79 + w 4+ in € Dygq, where
To € supp p \ supp p is a local minimum of p with p(79) < ps, w € [—ds, d.] and
n € (0,0,] then we define

&1(2) = p(r0)* + (lwl +m)**,  &(2) = p(r0) + (Jw| + )"/, (8.10.4d)

We remark that 7o € dsuppp is a reqular edge if p(7) = 0 for all 7 € [ry — &, 7] or

T € [10, 70 + €] for some € ~ 1. In fact, Dyocusp N Dpaa N O supp p consists only of regular
edges.
In the proof of Proposition |8.10.1] we will use the following two lemmas, whose proofs

we postpone until the end of this section.

Lemma 8.10.2. Let Dygq be defined as in . Let a, S and (a¢)ier and (Si)ier
satisfy . Then there is ey ~ 1 such that if ||[Amy(z)|| < &1 for some z € Dpqq,
t € T, then there are I,b € A depending on z such that ©, := (I, Amy)/{l,b) satisfies a
cubic inequality

0] + 607 + &6, S [t] (8.10.5)

with complex coefficients & and & depending on z and t. The function ©; depends
continuously on Im z and we also have |0 < ||[Amy|| as well as ||Amy|| < |04 + [t] for
allteT.

The coefficients, &1 and &, behave as follows: There are 0, ~ 1, p, ~ 1 and ¢, ~ 1

such that, with the appropriate definitions of é} and 52 from (8.10.4)), we have
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o [fz € Dyaq satisfies the conditions for (8.10.4a)) or (8.10.4c) with w € [c.A, A/2]

then we have
G ~&G), 1) S &R (8.10.6a)
o [f 2z € Dyaq satisfies the conditions for (8.10.4b|) or (8.10.4c|) with w € [—0., ¢, A]
or then we have

&1(2)] ~ gl(z)a €a(2)| ~ gz(z) (8.10.6b)

All implicit constants in this lemma are uniform for any t € T.

Lemma 8.10.3. For 0 < n, < n* < oo, let &,&: [n.,n*] = C be complex-valued func-
tions and &, &, d: [N«, n*] = RT be continuous.

Suppose that some continuous function ©: [n.,n*] — C satisfies the cubic inequality
9% +£0%+ 60| <d (8.10.7)

on [n«,n*] as well as

di/? d
} (8.10.8)

O] < min{dl/g‘ =

b 5/27 51
at n.. If one of the following two sets of relations holds true:
1) (i) &/d, € /d?, €/(d&) are monotonically increasing functions,
(i) 11| ~ &, €] ~ &,
(iii) d2)€3 +dEy /€2 at n* is sufficiently small depending on the implicit constants
in 1) (i) as well as (8.10.7)) and (8.10.8).
2) (i) €/d? is a monotonically increasing function,

(ii) |&1] ~ &, |&] S &7

then, on [n.,n*], we have the bound

(8.10.9)

75;1/2751

1/2
O] < min{dl/?’ d d}

PROOF OF PROPOSITION [8.10.1l We start the proof by introducing the control pa-
rameter M (t). Let & and & be defined as in (8.10.4). For t € R, we set

M (t) = min{[t['/, &2 [t12, &7 ]} (8.10.10)
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We remark that M also depends on z as ;51 and 52 depend on z.
We will prove below that there are ¢, ~ 1 and C' ~ 1 such that, for any fixed
t € [—t.,t.)NT \ {0} (if this set is nonempty) and z € Dyqq, we have the implication

|Amy(Rez+1in)|| <&  forallp >Imz = |Am(2)]] < CM(t), (8.10.11)

where ¢; ~ 1 is from Lemma [8.10.2]
Armed with (8.10.11)), by possibly shrinking ¢, ~ 1, we can assume that 20ty < £1.
We fix 7 € R and t € [—t,,t,) NT \ {0} and set

e o= sup{y > 0 || Amy(r +in)]| > 20M(8)}.

Here, we use the convention 7, = —oc if the set is empty. Note that || Am,(7+in)|| < 2n!
since m and m; are Stieltjes transforms. Hence, 7, < oo as t # 0.

We prove now that 7, < inf{Imz : z € Dyqq, Rez = 7}. For a proof by contradiction,
we suppose that there is z, € Dyqq such that Rez, = 7 and Imz, = 7, (note that if
T+ in € Dpgq then 7 + i’ € Dygq for any n° > 7). Since Amy is continuous in z, we
have ||Amy(z.)|| = 2CM(t). Thus, ||[Am(7T + in)|| < 20t/ < &, for all n > 1, by
the choice of ¢,. From (8.10.11)), we conclude ||Amy(z,)|] < CM(t), which contradicts
|Am(2,)]] = 2CM(t). Thus, n, <inf{lmz: 2z € Dpgq, Rez = 7}.

As 7 was arbitrary, this yields ||[Amy(z)]] < 2CM(t) for all z € Dygq, which proves
part (a) of Proposition up to . Since gl(z) ~ 1 for z € Dyux U Doy and
52(2) ~ 1 for z € Dyocusp N Dpag, we also obtain part (b) and (c¢) from the definition of M
in (8.10.10).

Hence, it suffices to show to complete the proof of Proposition . In
order to prove (8.10.11)), we use Lemma [8.10.3| with ©(n) = ©,(Rez+1in), n > n, :=Im z,

d = |t|, and &, & and &, & are chosen as in (8.10.5) of Lemma [8.10.2 and (8.10.4)),
respectively. As ||Ami(Rez + in)|| < &; for all n > Im z, we conclude that (8.10.7)) is

satisfied with d = |t| due to (8.10.5)).

We first consider 2z € Dy UDgye. If 2 € Dy UDgy then Re 2z +1in € Dy UDgy and
&1(Re z+in) = &(Re z+in) = 1for all n > 7, and assumption 2) of Lemma([3.10.3]is always
fulfilled. Since ||[Am;(Rez + in)|| < 2n~! as remarked above and ¢ # 0, the condition
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in (8.10.8]) is met for some sufficiently large n > 0. Hence, by Lemma [8.10.3 there is
C ~ 1 such that |©.(z)] < CM(t). Possibly increasing C' ~ 1 and using |t| < ¢, ~ 1 yield
|Am(2)]] < CM(t) due to ||[Amy|| < O] + |¢] from Lemma [8.10.2

For each z € Dypqq \ Dpuik U Doy, due to (8.10.6), we have & (25) ~ 1 and &(zs5) ~ 1 for
25 := Re 2410, where 6, ~ 1 is asin Lemma|8.10.2] Hence, we conclude |©;(zs)| < CM (t)
as for z € Dy U Doyy. For each z € Dpgq \ Dpuk U Doy, the validity of assumption 1) or

assumption 2) of Lemma|8.10.3|can be read off from (8.10.6)). Lemma|8.10.3} thus, implies
|©:(2)| < CM(t). As before, we conclude ||[Amy(z)|| < CM(t) from Lemma [8.10.2, This

completes the proof of (8.10.11)) and, hence, the one of Proposition |8.10.1} U

ProoF oF LEMMA [B.T10.2l We remark that a straightforward computation starting

from (8.2.3)) and (8.10.2) yields

B[Am,] = A[Amy, Amy] + K[A®, A, Amy] + T[AY, A7), (8.10.12)

where B :=1d — C,,,S, Alz,y] == (mS[z]y + yS[z}m)/2 are defined as in (8.6.23), AS :=
Sy — S, A" :=a; —a and

KIAS, A®, Am,] — ;(mAS[Amt]Amt + Am, AS [ Amim + mAS[m]Amy + AmyAS [m]m)
- ;(mA“Amt + Am;A%m),
TIA®, A" = mA®[m]m — mA®m.

In the following, we will split Dyqq into two regimes and choose [ and b according to

the regime. In both cases, we use the definitions

— — (I, Amy) — o {{, )
0:=0,; = N r=ry = Q[Amy], Q:=1d - 00 b. (8.10.13)

In particular, Am; = ©b + r. We denote by p(z) the harmonic extension of p, i.e.,

p(z) = (Imm(z))/7.

If 2z is in the bulk or away from supp p then Am,(z) is in fact governed by a scalar-

valued linear equation for ©; with [ and b chosen appropriately. Similarly, if z is close to
a regular edge or close to an almost cusp point then Amy(z) is governed by a quadratic

or cubic equation, respectively. In order to treat these cases uniformly, we will artificially
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write all of these equations as a cubic equation by adding and subtracting apparently
superfluous terms.

Case 1: We first assume that z € Dyqq satisfies p(z) > p, for some p, ~ 1 or
dist(z,supp p) > § for some § ~ 1, i.e., z € Dz, UD? .

and | B~ £ 1 due to (8.4.1)), [|S]lay.y S 1, [[m(2)|| S 1 and Lemma [8.12.2{ (ii). In this
case, we choose | = b =1 and apply QB! to (8.10.12)) to obtain

This implies that B is invertible

r = QB (AlAmy, Amy] + K[A% A%, Amy] + TIA%, A]) = O(|0] + ||r|[[| Amy]| + [¢]),

where we used that ||m| < 1 on Dygq as well as ||A%]] + ||A]] < |¢|. Shrinking g, ~ 1,
using ||Amy|| < e, and absorbing ||r||||Am,|| into the left-hand side yield ||r]| < [©]* +|¢].
Thus, ||Am| < [O]+ |t|. Hence, applying B~! and (-) to (8.10.12)) and using (r) = 0 as

well as ||Amy|| < [O] + |t|, we find & € C such that [&] S 1 =& and
O = —50% + O(|t]|0] + [t]) = =667 + O(Jt]).

Adding and subtracting ©3 on the left-hand side as well as setting & := 1 — ©2 show
in Case 1 for sufficiently small &, ~ 1 as |©] < ||Amy|| < ey implies |&] ~ 1 = &.
This completes the proof of for z € Dk U Doyt

Case 2: We now prove for z € Dyqq satisfying p(z) < p, and dist(z, supp p) <
0 with sufficiently small p, ~ 1 and § ~ 1. For any e, ~ 1, we find 6 ~ 1 such that
p(z)'Im 2 < ¢, for all z € H satisfying dist(z, supp p) < § due to and the 1/3-
Holder continuity of z — p(z)"'Im 2 by Lemma [8.5.4] (ii). Therefore, using p(z) < p.,
we see that Lemma and Corollary are applicable for sufficiently small p, ~ 1
and § ~ 1. They yield I,b € A which we use to define © and r as in (8.10.13), i.e.,
Amy = 0Ob+r and © = (I, Amy) /{1, b).

In order to derive , we now follow the proof of Lemma applied to (8.10.12))
instead of . Here, A% and A® play the role of e. In fact, by Lemma and
Corollary [3.5.2] the first two bounds in are fulfilled. Owing to ||m|| < 1, the third
bound in (8.6.12) is trivially satisfied. Instead of the last two bounds in (8.6.12), we use

ITIA% AT S NAZ I+ 1A, KA, A% Amy]l| S ([AT]] + A [)]| Aml,
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due to [|m|| < 1 and ||Am,|| < 1. In fact, the last bound in will not hold true for
a general y € A but in the proof of Lemma it is only used with the special choice
y = Amy. We choose €, < ¢ for € from Lemmaand obtain the cubic equation (8.6.14))
from Lemma [8.6.2 with o = (I, T[A%, A%]) and ||e|| replaced by |¢| as ||A%]| +[|A%]| < [¢].
In particular, |uo| < [t]. We decompose the error term € = O(|O]* + [¢[|0] + |¢]?) from
into ¢ = €,0%+ ¢, with €1, é; € C satisfying ¢; = O(|0]) and é; = O(|t||O]+|¢|*).
With the notation of Lemma the cubic equation (8.6.14]) can be written as

(13 — €1)93 + Mz@Q + 1110 = —pp + e = O(|t]).

Since A and B introduced above have the same definitions as in and pug, po and
7 in depend only on A and B, Lemma yields the expansions of us, uo and
J41 in for sufficiently small p, ~ 1 and 6 ~ 1. By possibly shrinking ; ~ 1, we
find ¢ ~ 1 such that |us — 1] + |u2| > 2c as ;| < O] < ||Amy|| < ;. Here, we also used
|s| + [p2] Z 9+ |o| by as well as (8.5.35).

Consequently, we obtain (8.10.5]), where we introduced

o= (12 + (13 =21 = 1)0) (el =€) + Ul <o),

& = ml(pal > ¢) + 2 1(|uf < ).
M3 — €1

Hence, we have |&] ~ |uo| and €| ~ || for sufficiently small &1 ~ 1 as |e;| < |©] and
10| < [|[Amy|| < e1. This completes the proof of in Case 2.

It remains to show the scaling relations in for z € Dyqq satisfying p(z) < p.
and dist(z,supp p) < § in order to complete the proof of Lemma [8.10.2] Starting from
|&1| ~ |p1] and [&| ~ |pe| proven in Case 2, we conclude as in the proof of (10.6) in [4]
that

[&1] ~ p(2)* + |o(2)lp(2) +p(z)Tmz, || ~ pl(2) +|o(2)],
where o is defined as in . Here, & and & play the role of 1 and 5, respectively, in
[4]. Their definitions differ slightly but this does not affect the straightforward estimates.
Note that the proof in [4] relies on the expansions of p, o and ps from (8.33) in [4].
These are the exact analogues of (8.6.24), where p plays the role of a from [4].
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Based on the singularity analysis of the self-consistent density of states p in [4], Corol-
lary A.1 in [4] characterizes the behaviour of the harmonic extension p(z) for z € H in the
vicinity of these singularities. For z € Dyqq satisfying p(z) < p, and dist(z, supp p) < 4,
following the proof of Corollary A.1 in [4] and using Theorem above instead of
Theorem 2.6 in [4], we obtain the statements of Corollary A.1 in [4] in our setup as well.

Similarly, the proof of (10.7) in [4] yields

lo(B)] ~ (@) ~ (=B |o(n)l S p(n)?,

where a, f € (Osuppp) \ P, satisfy f < a and (8,a) Nsuppp = @ and 79 € suppp \
dsupp p is a local minimum of p and p(m) < p.. Here, we use Lemma above and
|o|1/% ~ A instead of Lemma 9.17 in [4] and Lemma above instead of Lemma 9.2 in
[4]. We then follow the proof of Proposition 4.3 in [7] and use the 1/3-Hoélder continuity
of o proven in Lemma m (i). This yields the missing scaling relations in (8.10.6)) and,
hence, completes the proof of Lemma [8.10.2] Il

In the previous proof of Lemma [8.10.2] we have established the following fact.

Remark 8.10.4 (Scaling relations of p(z)). The scaling relations of p(z) in Corollary A.1
of [4] hold true for z € Dyqq if there are ¢y, c2, 3 > 0 such that the data pair (a, S) satisfies

cr{x)l < S[z] < e, llal| < c3
for all z € A,.

ProoF oF LEMMA [R.10.3l By dividing the cubic inequality through d and consid-
ering % instead of ©, we may assume that d = 1. We fix ¢ € (0, 1) sufficiently small.

First we prove the lemma under assumption 1). Owing to the smallness of E% + % at
1 1

n* as well as the monotonicity of & and % there are 0 < ny,m2 < n* with the following
properties: (i) & > €%€2 on [n,,m]; (i) & < &*€2 on [y, n*]; (iii) €& < 1 on [n., mo); (iv)
g€, > 1 on [y, n*]. Here the intervals [n,,7] and [1,, 7] may be empty. We will now
assume the bound |©| < min{1, E;%, gil} at the initial value n* and bootstrap it down to

1+. Now we distinguish two cases:

Case 1 (> m3):  On [y, n*] we have €& > 1 and & < e%€2. Thus, by the cubic
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inequality

‘ 1 ) , 1 . e?
0] < mln{l,gm} implies  |O] < g—l < mln{&,éﬂ}.

In particular, there is a gap in the values of |©| and by continuity all values lie below the
gap on [n1,1"].

The interval [n,,n;] is split again, [n.,m] = [1«, 3] U [13, m], where n3 is chosen such
that (i) &¢2 > 1 on [ns,m]; (i) &e2 < 1 on [n,,n3]. Here one or both of these intervals
may be empty. Using & > %62 we see that on [, 71] the bound

O] < min{i, 53151} implies |O] < 55/215;‘/2 S min{gll/2, 57/1251} :
Again the gap in the values of |O] allows us to infer from the bound |©] < min{1, %%, gil}
at 7y that |©] satisfies the same bound on [n3,n;] up to an e-dependent multiplicative
constant.

Finally, on [1,, 73] we have & < e72 and &2 < e74€, < 6. Using the cubic inequality
this immediately implies |O]< 1<, min{1, %%, é} Here and in the following, the nota-

tion <. indicates that the implicit constant in the bound is allowed to depend on .

Case 2 (m < m3): On [n,n*] we have e€; > 1 and & < e%€2. So this regime
is treated exactly as in the beginning of Case 1. On [n., 7] we have e& < 1 and
52 < 52(772) < 5451(772)2 = &%, which implies |0 <15 min{1, ?%7 gi}

5 1

Now we prove the lemma under assumption 2). In this case we choose 0 < 7; < 1* such
that (i) €€, > 1 on [y, n*]; (ii) €€, < 1 on [, m]. Here the interval [n,,7;] may be empty.

On [ny, n*] the bound

1
VE&
From the gap in the values of |©| and its continuity we infer |©| < min{y/e, ﬁ} On
[0, m] we use & < e ! and |&| < &7 < e1/2 to conclude |©]<.1<. min{1, gil} This

0] < 1 implies §(0] < 14872102 < e V242610 implies [0] <

< e

finishes the proof of the lemma. O
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Lemma 8.10.5 (Holder continuity of ¢ and v with respect to a and S). Let T C R

contain 0. For each t € T, we assume that the linear operator S;: A — A satisfies

c1{x)1 < Sifx] < eofx)1 (8.10.14)

for all x € A, and some ¢ > ¢; > 0. Moreover, let a; = a} € A be self-adjoint such that
S and a; satisfy with a == a;—g and S := S;—q. Let my; be the solution to
and p(z) == (Immg(z)) /7 for z € H.

If o, and v, are defined according to , where m is replaced by my, then there
are py ~ 1 and t, ~ 1 such that

jo(z1) = ou(=0)l S Y2, J(z2) = vo(z2)] < [H'°

forallt € [—t.,t.JNT and all z1, 29 € Dpaga N{z € H: |2| < ¢6} satisfying p(z1) < p« and

p(22) + p(z0) m 2y < p,. Here, cg > 0 is also considered a model parameter.

Proor. We choose t, as in Proposition [8.10.1] and conclude from this result that
lme(2)]] < ks for all t € [—t,, ] NT, all z € Dyqq and some k3 ~ 1. Hence, owing to
(8-10.1), (8-10.14)) and Lemma [8.4.8] (ii), the conditions of Assumptions are met on
Dypaa N {z € H: |z| < ¢g}. Therefore, the lemma follows from Remark (ii) and (iii)

as well as Proposition [8.10.1| (a). O

8.11. Stieltjes transforms of positive operator-valued measures

In this section, we will show some results about the Stieltjes transform of a positive
operator-valued measure on A.

We first prove Lemma by generalizing existing proofs in the matrix algebra
setup. Since we have not found the general version in the literature, we provide a proof
here for the convenience of the reader. In the proof of Lemma[8.3.1] we will use that a von
Neumann algebra is always isomorphically isomorphic as a Banach space to the dual space
of a Banach space. In our setup, this Banach space and the identification are simple to
introduce which we will explain now. Analogously to L? defined in Section , we define
L' to be the completion of A when equipped with the norm ||z||; == ((z*z)/?) = (|x|) for
r € A. Moreover, we extend (-) to L' and remark that zy € L' forx € Aand y € L'. Tt
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is well-known (e.g. [138, Theorem 2.18]) that the dual space (L')" of L' can be identified

with A via the isometric isomorphism
A= (LY, x = i, VY L' —= C, y > (wy). (8.11.1)

We stress that the existence of this isomorphism requires the state () to be normal.

ProoF oF LEMMA [8.3.1l From (8.3.5)), we conclude that

lim in(z, h(in)z) = —(x, x)

n—oo

for all z € A. Hence, z — (x, h(z)z) is the Stieltjes transform of a unique finite positive
measure v, on R with v,(R) = ||z*x]|;.

For any € A, we can find z;,...24 € A, such that x = x; — 29 + iz — izy. We
define

op(x) = v /7 (B) — v (B) +ivmm(B) —iv (D) (8.11.2)

for B € B. This definition is independent of the representation of x. Indeed, for fixed
x € A, any representation ¥ = x; — x5 +ir3 —izry with z1, ..., 24 € A, defines a complex
measure ¢.(z) through B — ¢p(z) on R via (8.11.2). However, extending h to the lower
half-plane by setting h(z) := h(z)* for z € C with Imz < 0, the Stieltjes transform of
©.(x) is given by

[ Sid:("z) = (VI1, h(2)V/z1) — (Voo , h(2)\/r2) + {23, h(2)V/T3) — 1(\/T4, h(2)\/T4)
= (h(z)z)

for all z € C\ R. This formula shows that the Stieltjes transform of ¢.(x) is independent
of the decomposition z = x; — xs + ir3 — iry. Hence, pp(x) is independent of this
representation for all B € B since the Stieltjes transform uniquely determines even a
complex measure. A similar argument also implies that, for fixed B € B, pp defines a

linear functional on A.
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Since v z(R) = (y) for y € Ay, we obtain for any z = (Rex); — (Rex)_ +i(Imz), —
i(Imz)_ € A the bound

lpp()l < v /rer (R) + vy (R) + v (R) o m=(R)
<((Rex); + (Rex)- + (Imx); + (Imx)_) < 2[|z],

where we used that (Rez)+(Rez)_ = |Rez|and (Imz),+(Imz)_ = |Imz|. Therefore,
pp extends to a bounded linear functional on L' as A is a dense linear subspace of L.
Using the isomorphism in (8.11.1)), for each B € B, there exists a unique v(B) € A such
that

for all z € A. For y € A, we conclude v, (B) = v 5=(B) = ¢p(yy*) = (y,v(B)y) > 0,
where we used that v, = v jg7= since they have the same Stieltjes transform. Since
(v(B)y) > 0 for all y € A, we have v(B) € A, for all B € B. Moreover, v, = (z,v(-)z),
in particular, (x,v(R)z) = v, (R) = (x,x), for all z € A. The polarization identity yields
that v is an A, -valued measure on B satisfying and v(R) = 1. This completes
the proof of Lemma [8.3.1}] Il

Lemma 8.11.1 (Stieltjes transform inherits Holder regularity). Let v be an A, -valued
measure on R and h: H — A be its Stieltjes transform, i.e., h satisfies (8.3.6|) for all
z € H. Let f: I — A, be a y-Hélder continuous function on an interval I C R with

v € (0,1) and f be a density of v on I with respect to the Lebesque measure, i.e.,

() = fm)ll < Colr =l w(A) = [ f(r)dr

for all 7,7 € I, some C > 0 and for all Borel sets A C I. Moreover, we assume that
Nf(D| < Cy forallTeI. Let 0 € (0,1].
Then, for zy,zs € H satisfying Rezy,Re zo € I and dist(Re z,0I) > 0, k = 1,2, we

have
13Cy 14C;  Allv(R)|| N
1h(z1) — h(z)|| < (7<1 R )]21 _ . (8.11.3)
Furthermore, for z1, zo € H satisfying dist(zg, suppv) > 0, k = 1,2, we have
2||lv(R

92
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We remark that the proof of Lemma [8.11.1]is very similar to the proof of Lemma A.7

in [4]. Nevertheless, we present it here for the convenience of the reader.

PrOOF. We will prove (8.11.3)) in two steps: First, we will estimate the left-hand side
of for Im z; = Im 25 and then for Re z; = Re 2. Combining the estimates in these
two special cases, we will then conclude (8.11.3). We set Iy := {7 € I: dist(r,0I) > 6},
ie, I DIy

In fact, for wy,wy € Iy and n > 0, we now prove

10Co |, 100, 2o(®)]

(o + i) — h(ws + )] < (7(1 St g Yo — aP

(8.11.5)

First, we conveniently decompose h(ws + in) — h(wy +in). For k = 1,2, we have

- d
h(wy +1in) = in f(wy) + lim </Iﬂ(w1+[R . MdT — /(w1+[R . f(wk)7>

R—00 T — W — 17 \[ T — Wi — 17
v(d
+ &
R\I T — Wy — i
Here, we used that
R
lim — dr = im, lim flws) dr = lim f(ws) dr =0,
R—ooJ-RT — 11} R—oo Jo\J1 T — 22 R—oo Jj\Jo T — 29

where J; := w; + [ R, R| and J3 := ws + [—R, R|. Thus, we obtain the decomposition
hws +1in) — h(wy +in) = in(f(ws) — f(w1)) + 1%1_1)20 (Dy+...4+ Dg)+ D7, (8.11.6)

where we introduced

f(7) — flwr)

Dk — (—1)k 1(|T — w1| S |CU1 — CUQDdT, k= 1,2,
nn T — 2
Dy= [ (f0) = fwn) (2 = == ) U =l > e — e
= T) — — T — - T
3 Ing \r—n -2 ! ! 2 ’
1
Dy = (f(w1) — f(w2)) | ——1(|]7 — w1 > |w1 — wa|)dT,
nT— 2
w w
Dy = f( 1) 1(|T — (,d1| < |(,d1 — CUQ|)dT — f( 2) 1(|T - W1| < |W1 - W2|)d7-7
N T — 21 I T — 29

1 1
Doi== [ flwn) (-=r = == ) Ur — il > wn = wnl)dr,
AV T—29 T—21

D, = R\}( L >v(d7‘).

T — Z9 T — 21
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We remark that Dq,..., Dg depend on R. However, since the following estimates on
their norms will hold true uniformly for all large R, they will also hold true for the limes
superior of these norms.

In order to estimate || D;|| and ||Ds|, we pull the norm inside the integral, use the
Holder-continuity of f, neglect all n’s, extend the domain of integration from 7 N J; to R

and compute the remaining integral. This yields

2 C(] 2 CO

D1l < —fwr —wol",  [[D2f € —wr —wol".
v v

For the estimate of || D3|, we pull the norm inside the integral, disregard all n’s in

1 1 |(,d1 —(.L)2|

T—ws—in T—w —inl = |7 —w|]T —w|
use the Holder-continuity of f and extend the domain of integration from I N J; to R.

We, thus, obtain

lwy — wi|L(|7 — wi| > |wn —wz|)d7_ < 20,

R|T—wi||T —wi — (w2 —w)|'™7 7 (1 —7)

D3]] < Co jwi — w7,

The real part of the integral in the definition of D, vanishes as J; and the argument
of the characteristic function are symmetric around w;. Hence, since the imaginary part

of the integral is bounded by 7, the Holder-continuity of f yields
[ Da| < Comrlwr — wal”.

To bound ||Ds||, we pull the norm inside of the integrals and use wi,ws € Iy and
7 € R\ I to see that 0 is a lower bound on |7 — wy| and |7 — ws|. Moreover, the
characteristic function in the integrals yields upper bounds on |7 — w;| and |7 — wyl,

respectively. Hence, we obtain

2||f (wy)ll + 217 f (w2)
oAl

15| < I—

We now bound ||Dg|| and ||D7||. Computing the difference on the left-hand side,

taking its absolute value to the power v and using the triangle inequality for the modulus
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of difference to the power 1 — v as well as disregarding all n’s yield

1 1 217'Y|WQ —w1|"/

T—w;—in T—we—inl~ min{|r —wi|, |t — w|}HT
Thus, we pull the norms inside the integrals in the definition of Dy and D7, respectively,

use the previous bound as well as 7 € R\ [ and w; € Iy, i.e., |7 — w;| > 0, and obtain

2277| f (w2)

2177 (R
o s~ oy < 2

I
HD6|| < oty ]wl —w2|7.

Starting from (8.11.6)) and using the Holder continuity of f for the first term on the
right-hand side of (8.11.6)) as well as the previous estimates on || D1||,. .., ||D7|| complete

the proof of (8.11.5)).

We now establish the second special case. For w € Iy, and 1,7 > 0, we now show

the bound

V8C, | 4C1 | 2Jv(R)] y
— . 11
FI—n) e e )m el (8.11.7)

Similarly to the proof of (8.11.6)), we obtain the decomposition

Ihfeo +im) — e+ im)]| < (

h(w + i) — hw +im) = Er + By + E3,
where we introduced

B= [0 = 1) (- — ————)ar,

T—w—1ip 7T—w-—Iim

1 1
B, ::/ f(w)( S , )dr,
R\I T—w—1in T—w-—Iin

1 1
E3 ::/ < N - ; )U(dT)
R\ \T —w — i 7T —w—1in

Next, we verify the following bounds

V8Cy
(1 —7)

92~
£l =l

| B < m2 —m|,

| By < (8.11.8)

21-1
1Es ]| < G o (@)l n2 —m ™.
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We, thus, notice that (8.11.7]) is proven once the estimates in (8.11.8) are established.

Since

o =) (f(7) = f(w))
b, = 1/1( dr

T—w—im) (T —w —in)

we obtain
2 = m| ¥ Im=mld
1= Co o= g = wl = e —mD “Jo @+ I —m])
V8Co
< ———— | —ml|".
(1 =)

For the remaining estimates in the proof of (8.11.8)), we remark that
1 1

T—w—1ip T—w-—1Iin

|772 _ 771|7 21—y < 21—y
— |T—w|27 |7._w|1—7 = Hl+

Applying the second bound in (8.11.9)) to the definition of Fs yields

1 22
B < 21 - v/ — — _dr< i — |
1Bl < 2 F )l =ml” [ o TS g 1f (@)lllm2 = ml”,

which implies the second bound in (8.11.8). Similarly, we apply the third bound in
(8.11.9) to the definition of E3 and conclude

1—v

2
1Es]l < Z [l (R) [ lm2 — ™

This completes the proof of (8.11.8)) and, hence, the one of (8.11.7) as well. By combining

(8.11.5) and (8.11.7]), we obtain (8.11.3)).
The bound in (8.11.4)) is a trivial consequence of

1 1 2172y — 2|7 2

T—2 B T — 29| — min{|T — z|, |7 — 2|}t T 02

|Zl - 22|77

where we used 7 € supp v and dist(zx, suppv) > 6 for k = 1,2. This completes the proof
of Lemma [RB.TT.1] O

8.12. Positivity-preserving, symmetric operators on A

Lemma 8.12.1. Let T: A — A be a positivity-preserving, symmetric operator.

(i) If Tla) < C{a)1 for some C > 0 and all a € A, then ||T|]2 < 2C. Moreover,
|T||]2 is an eigenvalue of T and there is x € A, \ {0} such that T[z] = ||T||2z.
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(it) We assume ||T||2 = 1 and that there are ¢,C' > 0 such that
c{a)1 < Tla] < Cla)l (8.12.1)

foralla € Ay. Then 1 is an eigenvalue of T with a one-dimensional eigenspace.
There is a unique © € A satisfying T[z] = x and ||z|s = 1. Moreover, x is
positive definite,

cC7?1 <z < C1. (8.12.2)

Furthermore, the spectrum of T has a gap of size 6 := ®/(2(c> +2C?)C?)), i.e.,
Spec(T) C [-1+6,1—0]U{1}. (8.12.3)

Lemma [8.12.1]is the analogue of Lemma 4.8 in [6]. Here, we explain how to generalize
it to the context of von Neumann algebras. In the proof of Lemma [8.12.1, we will use
the following lemma. We omit its proof since the first part is obtained as in (4.2) of [6]

and the second part as in (5.28) of |4].

Lemma 8.12.2. Let T: A — A be a linear map.

(i) If T is positivity-preserving such that T[a] < C{a)1 for all a € Ay and some
C >0 then ||T[| < ||Tlg—y .y < 2C.
(ii) If T — wld is invertible on A for some w € C\ {0} and |[(T — wId)™!|]2 < oo,

|T||2= - < oo then we have
(T = wId) | < foo] (14 [Tl | (T = wId) 7).

Proor oF LEmMA R.12.1] For the proof of (i), we remark that Lemma (i)
implies [|T']| < ||T||2—. < 2C. Without loss of generality, we assume ||T||; = 1. Since
T is positivity-preserving, we have T'[b] € A, for all b € Ag,. It is easy to check that,
for each a € A, one may find b € Ay, such that |jalls = ||b]]2 and || T[a]|l2 < ||T'[b]]]2-

Hence, ||T|4..]l2 = ||T|l2 = 1 and 1 is contained in the spectrum of T: L2, — L2 , where

L2 = Twll ' ”2, due to the variational principle for the spectrum of self-adjoint operators
and [(b, T[0])| < (|b|,T[|b]]) for all b € As,. This last inequality can be checked easily by

decomposing b = by — b_ into positive and negative part.
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Hence, due to the symmetry of T', there is a sequence (y,), of approximating eigen-
vectors in A, i.e., ¥ € Asa, |ynll2 = 1 and T'[y,] — yn converges to 0 in L? for n — occ.
We set x,, := |yn|. By using [|T|z2 ||2 = 1 and (b, T'[b]) < (|b|,T[|b]]) for all b € As,, we
obtain [|T[z,] — zall3 < 2l|ynll2l|T[yn] — yull2 and, thus,

Tim [| T[] — 24l = 0. (8.12.4)

Since the unit ball in the Hilbert space L? is relatively sequentially compact in the weak
topology, we can assume by possibly replacing (,,),, by a subsequence that there is x € L?

such that x, — z weakly in L?. From T[z,| < C{x,)1, we conclude
zn, < (Id = T)[x,] + C{x,) 1.
Multiplying this by \/z, from the left and the right and applying (-) yields
1 < {z,, (Id — T)[z,]) + Clz,)>.

Taking the limit n — oo, we obtain (z) > C~Y2, due to (8.12.4). Hence, z # 0 and we

can replace x by z/||x||; and x, by z,/||z|s. For any b € L?, we have
(b, (1d = T)a]) = lim (b, (Id — T)[e,]) = 0

due to z, — = and (8.12.4)). Hence, T'[z] = x. Since ||T|j2.| < 2C, we have T[b] € A
for all b € L? and thus z = T[z] € A. Owing to z,, — = and z,, € A, , we obtain x € A,
This completes the proof of (i).

We start the proof of (ii) by using with @ = 2 which immediately yields the
upper bound in (8.12.2). As (z) > C~1/2, the first inequality in then yields the
lower bound in .

In order to prove the spectral gap, (8.12.3), we remark that |72 < 2C due to
the upper bound in and Lemma (i). Hence, by Lemma (ii), the
spectrum of 7" as an operator on A is contained in the union of {0} and the spectrum
of T as an operator on L?. Therefore, we will consider 7' as an operator on L? in the
following and exclusively study its spectrum as an operator on L?. Hence, to prove the

spectral gap, it suffices to establish a lower bound on (y, (Id & 7)[y]) for all self-adjoint
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y € A satisfying ||yl = 1 and (z,y) = 0. Fix such y € A. Since y is self-adjoint we have
N

y=lim g%,y = N (8.12.5)
—00 =

for some Y € R and p} € A orthogonal projections such that pypY = pldy;. Here, the
convergence y~ — y is with respect to ||-||. We can assume that ||y"]s = 1 for all N as
well as (pf) > 0 for all k and (pY + ...+ p¥) =1 for all N.

We will now reduce estimating (y, (Id = T')[y]) to estimating a scalar product on

CVN. On C¥, we consider the scalar product (-, - )y induced by the probability measure

m(A) = Tiealpy) on [N], ie.,
A, )N = i)\kﬂkﬁ?g)

for A = (M), = (up)_, € CN. The norm on CV and the operator norm on C¥*¥

induced by (-, -)x are denoted by |||y and |- ||, respectively. Moreover, Idy is the
identity map on CV. With this notation, we obtain from (8.12.5]) that

(v, (£ D)) = Jim Y2 N GY (£ D)) = Jim (0, (1dy = )W),

where we introduced AN = (AN, € CV and the N x N symmetric matrix SV viewed

as an integral operator on ([N], 7) with the kernel s given by

o~ e T))
)

Since ||y || = 1, we have ||A\"||x = 1. By the flatness of T', we have
c< sy <C. (8.12.6)

In the following, we will omit the N-dependence of A\, sg; and pg from our notation.
By the definition of (-, )y, we have

N

(A, SA)N = g; Nepr) sy = (™ Tly™)).
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Let s € CV be the Perron-Frobenius eigenvector of S satisfying Ss = ||S|s, ||s||x = 1.

From (8.12.6)), we conclude

c<{e,Seyy <||S] = (s,98)n <||T]l2 =1, (8.12.7)
where e = (1,...,1) € CV. Since ||s||y = 1 and ¢ < ||S]|, we have
Ss); O & C (& VN o
maxs, = 90 < C5m gy < € <Z<pk>) (Z sz<pk>) _¢
! 1S]] €= € \p=1 k=1 ¢

As infy; sk > ¢ by (8.12.6), Lemma 5.7 in [4] yields

Spec($) < [~ 181+ S 151 — 5] LTSI

We decompose A = (1 — ||w||%)/?s + w with w L s and obtain

3
[, SX)w] < IS = Tl + (111 - )uwHN<1— Sl (8.12.8)

where we used ||S|| <1 in the last step. Hence, it remains to estimate ||w||y.

Recalling T'[x] = x, we set & = ({xpx)/(p))i_, and compute

Z)\k Tpr) = (T, A\)N-

Since the left-hand side goes to (z,y) = 0 for N — oo, we can assume that [(Z,\)n| <
\/€/2 for any fixed € ~ 1 and all sufficiently large N. As i), > ¢/v/C by (8.12.2), we

obtain

wln)= Sk{pr _1—wN S?V: v — (7, w)n)?
(1 — [Jw]l3 (Z p>< [wl¥)(@, s)y = ({2, v — (T, w)n) 5.12.9)

< 2|z (3 lwlly +=.

Now, we use ¢ < (s, Ss)y from (8.12.7) to get

¢ < (5, 85)n = 3 spswsn (o) () < C (Z sk<pk>) .

k.l



8.12. POSITIVITY-PRESERVING, SYMMETRIC OPERATORS ON A 373

By plugging this and ||Z]|3 < ||z]|*> Xk {px) = 1 into (8.12.9)), solving the resulting estimate
for ||w||% and choosing € = ¢*/(2C?), we obtain
3

[ p———
N'=9(e3 +202)

Therefore, from (8.12.8]), we conclude

el

(3 + 202)C2

[ SAN €15

uniformly for all sufficiently large N € N. We thus obtain that

b

W (MEDW) = 5 e

ify L zand ||yl = 1. We conclude (8.12.3)), which completes the proof of the lemma. [

Lemma 8.12.3. If T: A — A is a positivity-preserving operator such that ||T||s < 1 and
|T||la— . < oo then Id — T is invertible as a bounded operator on A and (Id —T)~! is
positivity-preserving with

(Id — T) 'a*z] > x*x (8.12.10)

for all x € A.

PROOF. Since ||T'||; < 1, Id — T is invertible on L? and we conclude the invertibility
of Id — T on A from Lemma [8.12.2] (ii).
Moreover, for y € A with ||y*y|l2 < 1, we expand the inverse as a Neumann series
using ||T']|2 < 1 and obtain
(Id-1)""yyl =yy+ (Z T’“[y*y]> > y"y.
k=1
The series converges with respect to || -||2. In the last inequality, we used that 7% is a

positivity-preserving operator for all k& € N. Hence, by rescaling a general = € A, we see

that (Id — T')~! is a positivity-preserving operator on A which satisfies (8.12.10)). O
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8.13. Non-Hermitian perturbation theory

Let By: A — A be a bounded operator with an isolated, single eigenvalue 3, and an

associated eigenvector by, ||bol|2 = 1, i.e.,

BO [bo] = 6@ bo .

Moreover, we denote by P, and )y the spectral projections corresponding to [y and
Spec(By) \ {fo}. Note that Py + @y = Id but they are not orthogonal projections in
general. If [y is a normalized eigenvector of B associated to its eigenvalue By, then we
obtain

Py = <<ll§bo>> bo. (8.13.1)

For some bounded operator F: A — A, we consider the perturbation

B=DBy+FE.

We assume E to be sufficiently small such that there is an isolated, single eigenvalue ( of
B close to [y and that 8 and [, are separated from Spec(B) \ {8} and Spec(By) \ {50}
by an amount A > 0. Let P be the spectral projection of B associated to 3.

Lemma 8.13.1. We define b := P[by] and | := P*[ly]. Then b and | are eigenvectors of

B and B* corresponding to § and (3, respectively. Moreover, we have

where we introduced

by = — Qo(Bo — fold) " Elbo,
by = Qo(By — Bold) " E(By — Bold)*QuEbo] — Qo(Bo — Bold) 2EPR,Elby)
— PyEQo(By — Bold) 2 E[by),
b= —Qy(Bs — Fold) ™ E*[lo],
lo = Q3(Bg — Bold) " E*(B; — Bold) ™' Qo E*[lo] — Q5(By — Bold) *E* Py E*[lo]

— By E*Q5(Bg — Bold) T E*[lo).
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In particular, we have b;,l; = O(||E||") for i = 1,2. Furthermore, we obtain
B, b) = Bollo, bo) + (lo, E[bo)) — (lo, EBo(Bo — Bold) 2QoE[bo]) + O(||E|?). (8.13.3)

The implicit constants in the error terms depend only on the separation A.

PROOF. In this proof, the difference B — w with an operator B and a scalar w is

understood as B — wld. We first prove that

P=Py+ P +P+0O(E|, (8.13.4)
where we defined
Qo Qo
P = — EPy— PpE—2—
! Bo—Bo 0 """ By— By
Qo Qo Qo Qo Qo Qo
P, = PFE E + EPE + FE EP
2 Y By—B Bo—fo Bo—fo " Bo—S Bo—Po Bo—Po "
Qo Qo Qo
_— __FP FP -PF——FP - P FP E———.
(Bo—fo)? 00 0T By = Bo) 0 VTN (By - Bo)?

The analytic functional calculus yields that

1 1
P:E—f d
2miJr B —w w

1 1 1 1 1 1 1
- — E — E E d 8.13.5
27‘(’1%}‘( Bo—w+B0—w Bo—w Bg—w Bo—w Bo-bd)w ( )

+O(IE%),

where I is a closed path that encloses only 5 and 5y both with winding number +1 but no
other element of the spectra of B and By. Integrating the first summand in the integrand
of yields Fy. In the second and third summand, we expand Id = Py + )y in the
numerators. Applying an analogue of the residue theorem yields P, and P, for the second

and third summand, respectively. For example, for the second summand, we obtain

1 Qo Qo
dw = EP, — P.E .
< O B = B

1 1
P:——f E —_
! 27 FBO—(.U BO—(.U BO_BO
The other two combinations of Py, ()¢ vanish. Using a similar expansion for the third

term, we get (8.13.4)).
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Starting from (8.13.4]) as well as observing b, = PB;[by] and l; = P}[ly] for i = 1,2,
the relations ({8.13.2)) are a direct consequence of the definitions b = P[by] and | = P*[ly]
and (8.13.1)).

We will show below that

BP = ByPy + By + By + O(||E|)?), (8.13.6)
where we defined
Qo Qo >
B, .= P, EP, — EP,+ PE
1 oLu o 60<Bo—50 o+ fo By — By’
Qo Qo Qo Qo Qo Qo
B, — (PE E + EPE + E EP)
2= I\ T B = B =5 T Bo—Bo Bo— 0
BOQO BOQO BOQO
2% EpEP — P E—2% Ep — PERE—2%%
(Bo—fo)? 00 O By = o) 0 VT (By - f)?

Now, we obtain (8.13.3)) by applying (8.13.2)) as well as (8.13.6)) to 5(l,b) = (I, BPb).
In order to prove (8.13.6)), we use the analytic functional calculus with I' as defined

above to obtain

BP:—lf Y dw
T

2riJr B —w
1 1 1 1 1 1 1
= — — E — E E d
27Tij£w( Bo—w+Bo—w By—w By—w By—w Bo—w)w
+O([|B]1).

Proceeding similarly as in the proof of (8.13.4)) yields (8.13.6)) and thus completes the
proof of Lemma [8.13.1] O

8.14. Characterization of supp p

The following lemma gives equivalent characterizations of supp p in terms of m. Note
supp p = suppv due to the faithfulness of (-). We denote the disk of radius ¢ > 0
centered at z € C by D.(z) :={w € C: |z — w| < €}.

Lemma 8.14.1 (Behaviour of m on R \ suppp). Let m be the solution of the Dyson
equation, (8.2.3), for a data pair (a,S) € As X X with ||a|| < ko and S[z] < ki (z)1 for
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all v € A, and some ko, ky > 0. Then, for any fized 7 € R, the following statements are

equivalent:

(i) There is ¢ > 0 such that

lim sup 7||Im m(7 +in)||~* > c.
nl0

(it) There are C >0 and N C (0,1] with an accumulation point 0 such that

lm(2)]| < C, Im(=)~" < C,
(8.14.1)
CHImm(z))1 < Imm(z) < C{Imm(2))1, |F(2)]s<1—-C7!
for all z € T +iN. (The definition of F was given in (8.3.4).)
(iii) There is m =m* € A such that
lim||m(7 +in) — m|| = 0. (8.14.2)
nd0

Moreover, there is C' > 0 such that |m|| < C and ||(Id — C,,S)7 || < C.

(v) There are ¢ > 0 and an analytic function f: D.(17) — A such that f(z) = m(z)
for all z € D.(1) NH and f(z) = f(2)* for all z € D.(1). In particular,
f(z) = f(2)* for z € D.(1)NR.

In other words, m can be analytically extended to a neighbourhood of 7.

(v) There is € > 0 such that dist(7, supp p) = dist(7, suppv) > e.

(vi) There is ¢ > 0 such that

lim inf n||Im m(7 +in)||~* > c.
nd0

All constants in f depend effectively on each other as well as possibly ko, k1 and
an upper bound on |7|. For example, in the implication = € in can be chosen
to depend only on ki and C in .

We remark that m in|(iii)| above is invertible and satisfies (8.2.3)) at z = 7.
As a direct consequence of the equivalence of |(i)| and , we spell out the following

simple characterization of supp p.
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Corollary 8.14.2 (Characterization of supp p). Under the conditions of Lemma|8.14.1

we have

lifg n|[Tmm(r +in)||~* = 0. (8.14.3)
7
if and only if T € supp p(= suppv).

Remark 8.14.3. In the proof of Lemma the condition S[z] < ky(z)1 for all
r € A, is only used to guarantee the following two weaker consequences: First, this
condition implies ||S||o— .|| < 2k1. Moreover, this condition yields, by Lemma (i),
that F' = F(7 + in) has an eigenvector f € A, corresponding to ||F||s, F'f = || F||2f, for
any fixed 7 € R\supp p and any n € (0, 1]. If both of these consequences are verified, then
the condition S[z] < ky(z)1 may be dropped from Lemma without any changes in
the proof.

For the proof of Lemma [8.14.1, we need the following quantitative version of the

implicit function theorem.

Lemma 8.14.4 (Quantitative implicit function theorem). Let X,Y, Z be Banach spaces,
UC X andV CY open subsets with 0 € U, V. Let ®: U x V — Z be continuously
Fréchet-differentiable map such that the derivative 0y ®(0,0) with respect to the first vari-
able has a bounded inverse in the origin and ®(0,0) = 0. Let § > 0 such that B C U,
BY CV and

sup iy — (2,2(0,0) 7 8(x, )| <

=, (8.14.4)
(zy)eBE xBY 2

where BX and BY denote the 6-ball around 0 in X and Y, respectively. We also assume
that

1(8,9(0,0))7| < Cy, sup  [[0a®(z,y)|| < Cy

(z,y)eBE xBY
for some constants Ci, Cy, where Oy denotes the derivative of ® with respect to the
second variable. Then there is a constant € > 0, depending only on §, Cy and Cs, and
a unique function f: BY — B such that ®(f(y),y) = 0 for all y € BY. Moreover, f
is continuously Fréchet-differentiable and if ®(x,y) =0 for some (x,y) € B¥ x BY then
x = f(y). If ® is analytic then f will be analytic.

PROOF. The proof is elementary and left to the reader. O
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We will apply the implicit function theorem, Lemma [8.14.4] to the function ®,(y,w)

which we introduce now. For z,y € A and w € C, we define

2 w

P, (y,w) = (Id — C..9)[y] — wa” — E(xy + yx) (xS[y]y + yS[y]x). (8.14.5)

1
2
We remark that ®,,.)(m(z + w) — m(z),w) = 0 for all z € H and z + w € H

(see (8.6.9))). For the function ®,(y,w), we have the following consequence of the implicit
function theorem, Lemma

Lemma 8.14.5. For some © € A, we set (y,w) = P, (y,w) for ally € A and w € C.
If there is k > 0 such that

|zl <o ISI<w,  [Id=CS) M < (8.14.6)

then there are 6 > 0 and ¢ > 0, depending only on k, and an analytic function f: D.(0) —
Bjt such that

O(f(w),w) =0
for all w € D.(0), where D.(0) == {¢ € C:|¢| < ¢} and Bt = {j € A: ||g|]| < §}.
Moreover, f is unique in the following strong sense: if y € Bi' satisfies ®(y,w) = 0 for
some w € D.(0) then we have y = f(w).

PROOF. In order to prove Lemma[8.14.5] we apply Lemma [8.14.4] whose assumptions
we check first. For the directional derivative (0;P(y,w))[h] at (y,w) with respect to the

first variable in the direction h € A, we obtain

W

(012(y,w))[h] = (1d = G, S)[h] — o (wh + ha) — ;(SC(S[h]y + S[ylh) + (yS[h] + hS[y])x).

Hence, 0,9(0,0) = Id — C,.S and, owing to the third assumption in (8.14.6), we can
choose C] = k in Lemma [8.14.4] Moreover, we also conclude

(Id — (019(0,0)) 10, ®(y,w))[h] = ;(Id - C,.9)! {w(xh + hx) + z(S[y]lh + hS[y])
+ (hS[y) + yS[hl)a].

We now determine how to choose o such that (8.14.4) is satisfied. We estimate the

previous expression under the assumption that |y|] < ¢ and |w| < § for some § > 0.
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Under this assumption, we obtain
I(Id = (0:9(0,0)) ™' 01 (y, w))[A]| < I(Id = C.8) (| Bl|[l + 2z [[[[S]8) I

Hence, (8.14.4)) is satisfied if

1

0 < )
2|/(Id = Co.8) M|l (1 + 2[|S])

Therefore, we can choose § := (2x%(1 + 2k))~! in order to meet the condition (8.14.4).
From the definition of ® in (8.14.5]), we obtain that the directional derivative 0y ®(y, w)

at (y,w) with respect to the second variable is given by
5 1
(B22(y, w))[o] = (=27 — 5 (ay +y))o

for o € C. Hence, with the choice of § above, we can choose Cy = k?+kd in Lemma [8.14.4]
Therefore, 0, C; and C5 in Lemma(8.14.4] can be chosen to depend only on x due to the as-
sumption (8.14.6|). Thus, since ® is analytic due to its definition in (8.14.5)), Lemma/|8.14.5

follows from the implicit function theorem, Lemma |8.14.4] U

Proor oF LEMMA R.14.1l Lemma [8.12.2] (i) yields ||S|lo—j.) < 1 due to S[z] <
ki(z)1 for all x € Ay. Therefore, [la]| < 1 and [|S]| < [|S]l2m-y

supp v = supp p is bounded, i.e., sup{|7|: 7 € supp p} < 1 by (8.2.5a)).
First, we assume that (i) holds true. We set N := {n € (0,1]: n|[Imm(r + in)||~* >

< 1 imply that

~Y

¢/2}. By assumption, N is nonempty and has 0 as an accumulation point. In particular,
we have
2n

ImmE) <= gl SImm(z) S gn (8.14.7)

for all z € 74+ iN. The first bound is a direct consequence of the definition of N.
The second bound follows from (8.2.4) and the bounded support of v. Moreover, the
first bound immediately implies the third bound. By averaging the two last bounds in
and using Imm(7 +1in) < n for n € N, we obtain the third and fourth estimates

in (8.14.1). In particular, p(z) ~ ||Imm(z)|| for z € 7 +iN. Owing to (8.2.4)), for any
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z € Hand z,y € L?, we have

1 [ (z,v(dr)z) + (y,v(dr)y)
@ m( < 5 [

T2 < 717(<;1:,Im m(z)x) + (y,Im m(z)y))

2
<=z 2 2),
< = (I3 + lyll3)

Here, we used that v has a bounded support and in the second step and the first
bound in (8.14.7)) in the last step. This proves the first bound in (8.14.1). The second
estimate in (8.14.1]) is a consequence of as well as [|a]| S 1, [|S]| < [|S|lam S1
and the first bound in (8.14.1). We recall the definitions of ¢ = ¢(z) and u = u(z) in

(8.3.1). Owing to Lemma[8.4.8] (i), the bounds in (8.14.1) yield
lal S1. Mg 'S, Imu~ (Imu)l ~pl (8.14.8)

uniformly for all z € 7 +iN. Thus, forallz € A, and z =7 +inand n € N, F = F(2)
satisfies F'[x| < (x)1 due to S[z| < (x)1. Hence, Lemma|8.12.1| (i) yields the existence of
an eigenvector f € A, i.e., Ff = ||F||of. By taking the imaginary part of (8.3.3) and

then the scalar product with f as well as using the symmetry of F, we get

(f,aqq%)
(f,Imu)

for = = 7+ in and n € N (compare (8.4.5)). Here, we also used f € A, (8.14.8),
p(z) ~ ||[Imm(z)|| and the definition of N. This completes the proof of [(i)] = [(ii)]

Next, let[(ii)| be satisfied. As before, Lemma(8.4.8] (i) implies forall z € T4+iN
due to the first four bounds in (8.14.1). Thus, inspecting the proofs of Lemma [8.4.§ (iii)

and Proposition and using ||S||o—. < 1 via Lemma [8.12.2] (ii) yield

L [Flla = ~pllmm(z)[ " 2 ¢ (8.14.9)

1(1d = CpS) M S 1 (8.14.10)

uniformly for all z € 7+ iN. Thus, we can apply Lemma [8.14.5] with x = m(7 + in) for
each n € N. For ® as defined in (8.14.5), we set U, (A, w) == Py i) (A, w) for n € N,
A € A and w € C. Thus, by Lemma [8.14.5] there are § > 0, £ > 0 and unique analytic
functions A,: D.(0) — B# such that ¥, (A, (w),w) = 0 for all w € D.(0) and all n € N.

We now explain why & can be chosen uniformly for all n € N. By (8.14.1]) and (8.14.10)),

there are bounds on m(z) and (Id — Cy,(»)S)~" which hold uniformly for z € 7 + iN.
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Hence, there is a k > 0, independent of 7, such that holds true uniformly for
all n € N. These uniform bounds yield the uniformity of €. Since 0 is an accumulation
point of IV, there is 9 € N such that ny < e. We set z := 7 +iny. An easy computation
using at spectral parameters z and z + w shows ¥, (m(w + 2) — m(z),w) = 0
for all w € C such that w+ z € H. Owing to the continuity of m, we find & € (0,¢)
such that m(w + 2) — m(z) € B# for all w € D.(0). Thus, by the uniqueness of A,,
(cf. Lemma [8.14.5), Ay (w) = m(w + z) — m(z) for all w € D.(0). As A,, and m(- + 2)
are analytic, owing to the identity theorem, we obtain A, (w) +m(z) = m(w + z) for all
w € D.(0) satisfying w + z € H. Using 1y < €, we set m := A, (—ing) + m(z). For this
choice of m, the continuity of A, (w) for w — —iny and A, (w) +m(z) = m(w + 2) yield

(8.14.2). It remains to show that m is self-adjoint. Since (8.14.8)) holds true under as

we have shown above, we obtain
nlmm(z)| ™ ~ 1~ |[Flls = ¢

for z =7 +inand n € N as in (8.14.9). Thus, liminf,o|Imm(7 + in)|| < 0. Hence, we
obtain Imm = 0, i.e., m = m*. This completes the proof of [(ii)] = [(iii)]

If holds true then Id — C,,,S has a bounded linear inverse on A for m. Hence, we
can apply Lemma [8.14.5| with x = m. Therefore, there are § > 0, ¢ > 0 and an analytic
function A: D.(0) — Bj#' such that ®,,(A(w),w) = 0 for all w € D.(0). In particular,
f: D7) = A, f(w) = A(w—7)+m is analytic. From (8.14.2)) and (8.2.3]), we see that
m is invertible and satisfies at z = 7. Thus, a straightforward computation using
at z = 7 and at z = 7 4 in yields ®,,(m(r +in) —m,in) = 0 for all n € (0,¢].
Therefore, m(7 + in) = A(in) + m = f(7 + in) for all n € (0,7.] and some 7, € (0, €]

due to the uniqueness part of Lemma [8.14.5| and (8.14.2). Since m and f are analytic

on D.(7) NH, the identity theorem implies m(z) = f(z) for all z € D.(7) NH. A simple
computation shows ®,,(A(w)*,w) = ,,(A(w),w)* = 0 for all w € D.(0) as m = m*.
Hence, A(w) = A(w)* for all w € D.(0) by the uniqueness part of Lemma [8.14.5 Thus,
f(w) = f(w)* for all w € D.(7) and f(w) = f(w)* for all w € D.(7) NR. This proves

= Clearly, implies by .
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If the statement in holds true then dist(7, supp p) > e. In particular, by ,

we have

lirglui)nanIm m(r +in)|| =t > lirzlui)nf dist(T + in, supp p)? > &
for all n > 0. Here, we used in the first step. This immediately implies with
¢ = £2. Moreover, [(i)]is immediate from [(vi)}

Inspecting the proofs of the implications above shows the additional statement about
the effective dependence of the constants in |(i)| — . In particular, the application of
Lemma , in the proof of shows that € can be chosen to depend only on k; and
C' from |(iii)l This completes the proof of Lemma [8.14.1] d






CHAPTER 9

Correlated Random Matrices: Band Rigidity and Edge

Universality

The present chapter contains the preprint [17] which was written jointly with Laszl6
Erdés, Torben Kriiger and Dominik Schréder. We prove edge universality for a general
class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary
expectation. Our theorem also applies to internal edges of the self-consistent density
of states. In particular, we establish a strong form of band rigidity which excludes
mismatches between location and label of eigenvalues close to internal edges in these

general models.

9.1. Introduction

Spectral statistics of large random matrices exhibit a remarkably robust universality
pattern; the local distribution of eigenvalues is independent of details of the matrix ensem-
ble up to symmetry type. In the bulk of the spectrum this was first observed by Wigner
and formalized by Dyson and Mehta [114] who also computed the correlation functions
of the Gaussian ensembles in the 1960’s. At the spectral edges the correct statistics was
identified by Tracy and Widom both in the GUE and GOE ensembles [148, [149] in the
mid 1990’s. Subsequently, a main line of research became to extend universality to more
and more general classes of ensembles with the goal of eventually approaching the grand
vision that predicts GUE/GOE statistics for any sufficiently complex disordered quantum
system in the delocalized phase.

Beyond Gaussian ensembles, the first actual proofs of universality for Wigner ma-
trices took different paths in the bulk and at the edge. While in the bulk only limited
progress was made until a decade ago, the first fairly general edge universality proof by
Soshnikov [136] appeared shortly after the calculations of Tracy and Widom. The main

reason is that edge statistics is still accessible via an ingenious but laborious extension of

385
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the classical moment method. In contrast, the bulk universality required fundamentally
new tools based on resolvents and the analysis of the Dyson Brownian motion developed
in a series of work [58, 59, 62, (64} 68|, [71]. This method, called the three-step strategy, is
summarized in [67]. In certain cases parallel results [144, 145] were obtained via the four
moment comparison theorem.

Despite its initial success [74} 136], the moment method seems limited when it comes
to generalizations beyond Wigner matrices with i.i.d. entries; the bookkeeping of the
combinatorics is extremely complicated even in the simplest case. The resolvent approach
is much more flexible. Its primary goal is to establish local laws, i.e., proving that the local
eigenvalue density on scales slightly above the eigenvalue spacing becomes deterministic
as the dimension of the matrix tends to infinity. Refined versions of the local law even
identify resolvent matrix elements with a spectral parameter very close to the real axis.
In contrast to the bulk, at the spectral edge this information can be boosted to detect
individual eigenvalue statistics by comparison with the Gaussian ensemble. These ideas
have led to the proof of the Tracy-Widom edge universality for Wigner matrices with
high moment conditions [71], see also |145] with vanishing third moment. Finally, a
necessary and sufficient condition on the entry distributions was found in [109] following
earlier work in [125] and an almost optimal necessary condition in [21]. Direct resolvent
comparison methods have been used to prove Tracy-Widom universality for deformed
Wigner matrices, i.e., matrices with a deterministic diagonal expectation, [106], even in a
certain sparse regime [107]. The extension of this approach to sample covariance matrices
with a diagonal population covariance matrix at extreme edges [108]| has resolved a long
standing conjecture in the statistics literature. Tracy-Widom universality for general
population covariance matrices, including internal edges, was established in [101].

The next level of generality is to depart from the i.i.d. case. While the resolvent
method for proving local laws can handle generalized Wigner ensemble, i.e., matrices
H = (hg) with merely stochastic variance profile Y-, Var h,, = 1, the direct comparison
becomes problematic if higher moments vary since they cannot be simultaneously matched
with a GUE/GOE ensemble. The problem was resolved in [43] with a general approach

that also covered invariant f-ensembles. While Dyson Brownian motion did not play a
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direct role in [43], the proof used the addition of a small Gaussian component and the
concept of local ergodicity of the Gibbs state; ideas developed originally in [64] |65] in the
context of bulk universality.

A fully dynamical approach to edge universality, following an earlier development in
the bulk based on the three-step strategy, has recently been given in [103]. In general, the
first step within any three-step strategy is the local law providing a priori bounds. The
second step is the fast relaxation to equilibrium of the Dyson Brownian motion that proves
universality for Gaussian divisible ensembles. The third step is a perturbative comparison
argument to remove the small Gaussian component. Recent advances in the bulk have
crystallized that the only model dependent step in this strategy is the first one. The other
two steps have been formulated as very general “black-box” tools whose only input is the
local law see [66, (103} 104, 105]. Using the three-step approach and [103], edge universality
for sparse matrices was proven in [97] and for correlated Gaussian matrices with a specific
two-scale correlation structure in [1]. All these edge universality results only cover the
extremal edges of the spectrum, while the self-consistent (deterministic) density of states
may be supported on several intervals. Multiple interval support becomes ubiquitous for
Wigner-type matrices [7], i.e., matrices with independent entries and general expectation
and variance profile. The square root singularity in the density, even at the internal edges,
is a universal phenomenon for a very large class of random matrices since it is inherent to
the underlying Dyson equation. This was demonstrated for Wigner-type matrices in [4]
and more recently for correlated random matrices with a general correlation structure in
Chapter

In the current paper we show that the eigenvalue statistics at the spectral edges of the
self-consistent density follow the Tracy-Widom distribution, assuming only a mild decay
of correlation between entries, but otherwise no special structure. We can handle any
internal edge as well. In the literature internal edge universality for matrices of Wigner-
type has first been established for deformed GUE ensembles [129] which critically relied on
contour integral methods, only available for Gaussian models in the Hermitian symmetry
class. We remark that a similar method handled extreme eigenvalues of deformed GUE

[48,198]. A more general approach for internal edges has been given in [101] that could
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handle any deformed Wigner matrices with general expectation, as long as the variance
profile is constant, by comparing it with the corresponding Gaussian model. Our method
requires neither constant variance nor independence of the matrix elements.

In order to prove our general form of edge universality at all internal edges we used
three key inputs in addition to [103]. First, we rely on a detailed shape analysis of the
self-consistent density of states p from Chapter [l Secondly, we prove a strong version
of the local law that excludes eigenvalues in the internal gaps. Thirdly, we establish a
topological rigidity phenomenon for the bands, the connected components that constitute
the support of o. This band rigidity asserts that the number of eigenvalues within each
band exactly matches the mass that p predicts for that band. The topological nature
of band rigidity guarantees that this mass remains constant along the deformations of
the expectation and correlation structure of the entries as long as the gaps between the
bands remain open. A similar rigidity (also called “exact separation of eigenvalues”) has
first been established for sample covariance matrices in [23] and it also played a key role
in Tracy-Widom universality proof at internal edges in [101]. Note that band rigidity
is a much stronger concept than the customary rigidity in random matrix theory [71]
that allows for an uncertainty in the location of N€¢ eigenvalues. In other words, there is
no mismatch whatsoever between location and label of the eigenvalues near the internal
edges along the matrix Dyson Brownian motion, the label of the eigenvalue uniquely
determines to which spectral band it belongs.

Our result also highlights a key difference between Wigner-type matrix models and
invariant [-ensembles. For self-consistent densities with multiple support intervals (the
so-called multi-cut regime), the number of particles (eigenvalues) close to some support
interval fluctuates for invariant ensembles with general potentials |[41]. As a consequence
internal edge universality results (see e.g. |30, |118]) require a stochastic relabelling of
eigenvalues.

Our setup is a general N x N random matrix H = H* with a slowly decaying corre-
lation structure and arbitrary expectation, under the very same conditions as the recent
bulk universality result from [56]. Regarding strategy of proving the local law, the start-

ing point is to find the deterministic approximation of the resolvent G(z) = (H — 2)~!
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with a complex spectral parameter z in the upper half plane. This approximation is given

as the solution M = M(z) to the Matriz Dyson Equation (MDE)
14+ (z—A+SM)M =0,

where the expectation matrix A := EH and the linear map S[R] := E(H — A)R(H —
A) on the space of matrices R encode the first two moments of the random matrix.
The resolvent G(z) approximately satisfies the MDE with an additive perturbation term
which was already shown to be sufficiently small in [56]. This fact, combined with a
careful stability and shape analysis of the MDE in Chapter |8 imply that G is indeed
close to M. In order to prove edge universality we use a correlated Ornstein-Uhlenbeck
process H; which adds a small Gaussian component of size ¢ to the original matrix model,
while preserving expectation and covariance. We prove that the resolvent satisfies the
optimal local law uniformly along the flow and appeal to the recent result from [103]

/3 In the final step we perform a

to prove edge universality for H; whenever t > N~
Green function comparison together with our band rigidity to show that the eigenvalue
correlation functions of H, matches those of H as long as t < N~Y¢ which yields the
desired edge universality.

After presenting our main results in Section [9.2] we then prove the optimal local law

at regular edges (and in the spectral bulk), as well as eigenvector delocalization and both

types of rigidity in Section Section [0.4] is devoted to the proof of edge universality.

Notations. We now introduce some custom notations we use throughout the paper.
For non-negative functions f(A, B), g(A, B) we use the notation f <4 g if there exist
constants C'(A) such that f(A,B) < C(A)g(A, B) for all A, B. Similarly, we write
f~agift f <aqgand g <4, f. We do not indicate the dependence of constants on
basic parameters that will be called model parameters later. If the implied constants are
universal, we instead write f < g and f ~ g. We denote vectors by bold-faced lower
case Roman letters &,y € CV, and matrices by upper case Roman letters A, B € CV*V,
The standard scalar product and Euclidean norm on CV will be denoted by (x,y) and
|||, while we also write (A, B) := N~!Tr A*B for the scalar product of matrices, and

(Ay == N7'Tr A. The usual operator norm induced by the vector norm ||| will be
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denoted by ||A||, while the Hilbert-Schmidt (or Frobenius) norm will be denoted by
14|l = /(A,A). For random variables X,Y,... we denote the joint cumulant by
k(X,Y,...). For integers n we define [n] :={1,...,n}.

9.2. Main results

We consider correlated real symmetric and complex Hermitian random matrices of
the form

H=A+W, EW=0

with deterministic A € CV*¥ and sufficiently fast decaying correlations among the matrix
elements of W. The matrix entries w,, = w, are often labelled by double indices o =
(a,b) € [N]?. The randomness W is scaled in such a way that v/ Nw, are random variables
of order oneE]. This requirement ensures that the spectrum of H is kept of order 1, as
N tends to infinity. Our first aim is to prove that, in the bulk and around the regular
edges of the spectrum, the resolvent G = G(z) = (H — z)~! is well approximated by the
solution M = M (z) to the Matriz Dyson equation (MDE)

M — M*
L+ (z = A+ SM)M =0, ImM=—7— >0, S[R]:=EWRW, (9.2.1)

with 2 € H := {2€ C|Imz>0}. We suppress the dependence of G and M, and
similarly of many other quantities, on the spectral parameter z in our notation. Estimates
on z-dependent quantities are always meant uniformly for z in some specified domain.
From the solution M we define the self-consistent density of states

Im (M(E +1in))
™0 T

,  EcR,

which approximates the density of states of H increasingly well as IV tends to infinity. The
support of p is known to consist of several compact intervals with square root behaviour
at the edges. An edge is called regular if it is well separated from other edges. The
spectral bulk refers to points F where o(E) > ¢ with some fixed threshold ¢ > 0.

We now list our main assumptions, which are identical to those from [56]. All explicit

and implicit constants in Assumptions |(A) are called model parameters.

n some previous works, as in [56], the convention H = A + W/+/ N with order one w, was used.
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Assumption (A) (Bounded expectation). There exists some constant C' such that

|A|l < C for all N.

Assumption (B) (Finite moments). For all ¢ € N there exists a constant i, such that

E|vVNw,|? < pg for all a.

Assumption (CD) (Polynomially decaying metric correlation structure). For the k = 2

point correlation we assume a decay of the type

VELAVNW)PVE|f(VNW) P
‘“(fl(\/NW)’fQ(\/NW))’ S 1 + d(supp f1,supp f2)*

for some s > 12 and all square integrable functions fi, fo. For k > 3 we assume a decay

: (9.2.2a)

condition of the form

(AN, ARVNI)) S T k(e (9.2.2D)

€ E(Timin)

where T, is the minimal spanning tree in the complete graph on the vertices 1,... )k
with respect to the edge length dist({7, j}) = d(supp f;, supp f;), i.e., the tree for which
the sum of the lengths dist(e) is minimal, and ({7, j}) = &(f;, f;). Here d is the standard
Euclidean metric on the index space [N]? and supp f C [N]? denotes the set indexing all
entries in v/NW that f genuinely depends on.

Remark 9.2.1. All results in this paper and their proofs hold verbatim if Assump-
tion is replaced by the more general assumptions (C), (D) from [56]. In particular,
the metric structure imposed on the index space [N]? is not essential. For details the

reader is referred to |56, Section 2.1].

Assumption (E) (Flatness). There exist constants 0 < ¢ < C such that ¢ (T") < S[T] <

C (T) for any positive semi-definite matrix 7.

Assumption (F) (Fullness). There exists a constant A > 0 such that NE|Tr BW|> >
A'Tr B? for any deterministic matrix B of the same symmetry class (either real symmetric

or complex Hermitian) as H.

Our main technical result is an optimal local law in the spectral bulk and at regular

edges. According to the shape analysis from Chapter [§] it follows that ¢ can also feature
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almost-cusp points which we have to exclude from our spectral domain. For £ € R\supp o
we define A(F) = A¢(E) as the length of the largest interval around E in R\ supp p.

Accordingly, we define the set of almost-cusp points Peysp = PCCuSp for small ¢ as

Peusp = { E €suppp \ Osupp o | E is a local minimum of o, o(E) < ( }

U{EeR\suppo | A(E) <(},

and deusp(2) = diyep(2) = dist(z, Peusp) denotes the distance from the almost-cusps. We
will always work with spectral parameters z such that the solution M to (9.2.1) remains
bounded in a neighbourhood of z. To define this condition precisely, we fix a large

constant M, and define the set Py = Piy* as

P%*::{TeR

sup [ M(r +in)| > M, }
n>0

and the distance dy(z) = daj*(2) = dist(z, Py) from this set. For ¢, 6, M, > 0 we then

define the spectral domain I = D%*** away from almost-cusp and large || M|| points by
D= {2 € C| deusp(2) > 5, di(2) > 3, |z| < NP }

for some arbitrary fixed Cy. We remark that the boundedness of || M|| in a small interval
around the spectral parameter is automatically satisfied in the spectral bulk. At regular
edges, however, the boundedness cannot be guaranteed under our general assumptions
but has to be checked for each concrete model (see Section in Chapter [§ for a large
class of models for which || M| is guaranteed to be bounded). Our goal is to establish an
optimal local law for those spectral parameters z = F +in whose imaginary part n = Im z

is slightly larger than 1/N, i.e., in the spectral domain
DV::DH{ZGC‘ImZZN_H”}

for some v > 0.

Theorem 9.2.2 (Bulk and edge local law). Under Assumptions @ and for any

D, M,,v,€,0, > 0, there exists some C < oo depending only on these and the model
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parameters such that we have the isotropic local law,

€ 0 1 ) . ) —D
P - M <N D,)>1-CN
(Ite. (6 = M)l < NNyl (5 + ) ™ P2) 21-C
(9.2.3a)
for all deterministic vectors &,y € CV and the averaged local law,
1
P(|(B(G— M))| < N|B n D,)>1-CN"” 2.3b
(IBG = )] < N°|1B 1 — in D) 21-C (92:3b)

for all deterministic matrices B € CN*N. Moreover, outside the spectrum at a distanaﬂ
of k(z) := dist(Re z, D supp 0) we have the improved averaged local law for any w > 0

Nl B
N(k+Imz)(1+|z])

P (|<B(G - M))| < in ]Dout> >1-CN P, (9.2.3¢)

with C' also depending on w, where we introduced
]D)out = { zeD ’ dlSt(Re Z,supp Q) Z N_2/3+w } .

We remark that in the spectral bulk Theorem is identical to the local law in [56].
The novelty of the present paper is the optimal local law and its corollaries at the regular

edges.

Corollary 9.2.3 (No eigenvalues outside the support of the self-consistent density).
Under the assumptions of Theorem we have for any w,(,0,D, M, >0

P (3)\ € Spec H, dist(\, supp o) > N_2/3+“’, deusp(A) > 6, dy () > 5) <w.¢.6.D,M. NP,

Corollary 9.2.4 (Delocalization). Under the assumptions of Theorem it holds for

an (2-normalized eigenvector w corresponding to a non-cusp eigenvalue X of H that

N
sup P <]<a:,u)| > ﬁ’ Hu = My, ||u|| =1, dewsp(A) > 0, dnp(N) > 6) <eco.D NP

l[=]=1

for any e, (,6,D > 0.

Corollary 9.2.5 (Band rigidity and eigenvalue rigidity). Under the assumptions of The-
orem[9.2.9 the following holds. For any €, D > 0 there exists some C' < oo such that for

2We warn the reader that cumulants and the distance to the boundary of the spectrum are both denoted
by . Because cumulants are usually written with explicit random variables in the argument, this should
not create any confusions.
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any E € R\ supp o with dist(E, supp o) > € the number of eigenvalues less than E is with
high probability deterministic, i.e., that

P( Spec H N (—o0, E)| = N/_Eoo Q(m)dx) >1-CONP. (9.2.4a)

We also have the following strong form of eigenvalue rigidity. Let Ay < --- < Ay be
the ordered eigenvalues of H and denote the classical position of the eigenvalue close to

energy E € supp o by k(E) = [N [_ o(z)dz]. It then holds that

N¢ N¢
N dist(E, dsupp g)1/2" N2/3

P <sup ‘)\k(E) — E‘ > min{ }) <ecs.D NP (9.2.4Db)
E

for any €,(,0,D > 0, where the supremum 1is taken over all E € suppo such that
dewsp(E) > 6 and dy(E) > 6.

Remark 9.2.6 (Integer mass). Note that entails the non trivial fact that for £ ¢
suppo, N [ on0 o(z)dz is always an integer, see Proposition in Chapter [8, Moreover,
it then trivially implies that N [, ; o(z)dz is an integer for each band [a, ], i.e., connected
component of supp p. Finally, (9.2.4a)) also shows that the number of eigenvalues in each
band is given by this integer with overwhelming probability. This is in sharp contrast
to invariant S-ensembles where no such mechanism is present. For example, for an odd
number of particles in a symmetric double-well potential, N [°__ o(z)dz = N/2 is a half

integer.

The main application of the optimal local law from Theorem is edge universality,
as stated in the following theorem, generalising several previous edge universality results
listed in the introduction. For definiteness we only state and prove the result for regular
right-edges. The corresponding statement for left-edges can be proven along the same

lines.

Theorem 9.2.7 (Edge Universality). Under the Assumptions@ the following state-
ment holds true. Assume that E € R is a reqular right-edge of o with a gap of size
¢ for some ¢ > 0, ie., o([E,E + ¢|]) = {0}. Then we have a square root edge of
the form o(x) = 73/2\/(E—733)+/7r +o(|E —x|) for some v > 0. The integer (see
Remark iy = N [E_o(z)dx labels the largest eigenvalue \;, close to the band
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edge E with high probability. Furthermore, for test functions F: R¥1 — R such that
|F|l + IVF|, < C < oo we have

‘IE [F(YN?(Xiy = B), ..., AN (N, — E))]|
—E[F(N(uy = 2),..., N (uy i — 2))] ’ <N

for some € > 0. Here y,...,uy are the eigenvalues of a standard GUE/GOFE matriz,
depending on the symmetry class of H.

From Theorem [9.2.7| we can immediately conclude that the eigenvalues of H near the
regular edges follow the Tracy-Widom distribution. We remark that the direct analogue
of Theorem does not hold true for invariant S-ensembles with a multi-cut density.
This is due to the fact that the number of particles close to a band of the self-consistent
density, commonly known as the filling fraction, is known to be a fluctuating quantity
for general classes of potentials. We refer the reader to [37] for a description of this
phenomenon, to [117, |127] for non-Gaussian linear statistics in the multi-cut regime and
to [41] for results on the fluctuations of filling fractions. Variants of Theorem which

allow for a relabelling of eigenvalues for invariant S-ensembles can be found in [30, 118].

9.3. Proof of the local law

The proof of a local law consists of three largely separate arguments. The first part
concerns the analysis of the stability operator B := 1 — MS[-]M and shape analysis of
the solution M to . The second part is proving that the resolvent G is indeed an
approximate solution to (9.2.1]) in the sense that

D=1+ (z—A+S[G])G = WG + S[G]G (9.3.1)

is small. Finally, the third part consists of a bootstrap argument starting far away
from the real axis and iteratively lowering the imaginary part n = Im 2z of the spectral
parameter while maintaining the desired bound on G — M.

For brevity we will carry out the proof of Theorem for |z| < 1. Following the

very same steps also proves the general result but requires carrying correction terms for
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the large z regime in many estimates. Since the large z-regime is already covered by the

results from [56] we focus on the |z|] < 1 regime in the present paper.

9.3.1. Stability. We denote the right-eigenmatrix corresponding to an, in absolute
value, smallest eigenvalue 3 of B by B, i.e., B[B] = B, and the corresponding left-
eigenmatrix and spectral projections by P and P = (P,-) B, Q := 1 — P with (P, B) = 1.
From ({9.2.1)) and (9.3.1]) we have

B[G — M] = —MD + MS|G — M|(G — M). (9.3.2)

We note that B! is unstable in some particular direction near the edge, which is why
we separate this unstable direction and establish bounds in terms of © = (P,G — M)
and D from ((9.3.2). This separation is not necessary away the edge, but to keep our
presentation shorter, we refrain from distinguishing these two cases and we just mimic
the edge proof for the bulk as well. We begin by collecting some qualitative [96] and
quantitative (cf. Chapter[8|and [6]) information about the MDE. We recall the definition
of kK = k(z) in Theorem as the distance of Re z to dsupp p.

Proposition 9.3.1 (Stability of MDE and properties of the solution). The following hold

true under Assumption (E).

(i) The MDE has a unique solution M = M(z) for all z € H and moreover
the map z — M(z) is holomorphic.

(i) The holomorphic function (M) : H — H is the Stieltjes transform of a compactly
supported probability measure p on R.

(7ii) The measure p from s absolutely continuous with respect to the Lebesgue
measure and has a continuous density 0: R — [0,00), called the self-consistent
density of states, which is also real analytic on the open set { o > 0}.

(iv) If dewsp > 0 and dyy > 6 for some § > 0 and |z| S 1, then o(z) ~s /K +1 for
Rez € supp o, and o(z) ~s n//k +n for Re z & supp o.
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(v) If dewsp > 6 and dyy > 6 for some § > 0 and |z| < 1, there exist P, B such that

we have the bounds on the stability operator and its unstable direction

|87, . SyvEFn B, . HIBI+IPI <51,
(P, MS[B]B)| + [f] ~5 1, 18] ~s VEFT.

PRrROOF. Claims (i)—(iii) follow directly from [96] and [6]. In order to conclude (iv)-
(v) from Chapter [§| we specialize its setup by choosing A = C¥*V and (-) = N~'Tr in
Chapter . Moreover, we note that o, S, P, B, P, Q, B and || - ||, are denoted by p,
S, 1, b, P, Q, B and ||-||,, respectively, in Chapter . We also observe that de.s, > 0,
dy > 6 implies that Re z is either in the spectral bulk, close to a regular edge or well
away from supp o. Thus, (iv) follows from (8.7.71a)) in Chapter[8] Furthermore, whenever
vk +1n < 1, then it follows that |(P, MS[B|B)| ~ 1 from in Chapter [§ by the
normalization from Corollary in Chapter [§] This yields the third bound in (v). The
first and the last bound in (v) are shown in (8.7.73]) in Chapter |8} The second bound in
(v) is a consequence of and in Chapter . We note that if \/k +1n 21

then the choice of P, B is of no particular importance as then already ||[B7|| < 1. O

We now design a suitable norm following [56]. For cumulants of matrix elements
K(Wap, Weq) We use the short-hand notation k(ab, ed). We also use the short-hand nota-
tion k(xb, cd) for the = (2,)qcv-weighted linear combination Y, z,k(ab, cd) of such
cumulants. We use the notation that replacing an index in a scalar quantity by a dot
(+) refers to the corresponding vector, e.g. A, is a short-hand notation for the vector

(Aap)ben). We fix two vectors x, y and some large integer K and define the sets

Iy={=zy}tU{e, P, |ac[N]},
Ivi =L U{ Mu|u € I } U{k((Mu)a,b-), cqg((Mu)a,-b) | u € Iy, a,b € [N] },
where k. + kg = K is a decomposition of k according to the Hermitian symmetry. Due

to Assumption |(CD)| such a decomposition exists in a way that the operator norms of

the matrices ||kq(xa, -b)|| and ||k.(xa, b-)||, indexed by (a,b), are bounded uniformly in x
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with ||| < 1. We now define the norm

R
|\R|; = maxM.
uwvel [Jull [[v]

IR = RIS = 3 N R], N el
0<k<K uelc |[jull
Remark 9.3.2. We remark that compared to [56], the sets [ contain some additional
vectors generated by the vectors of the form P in I;. This addition is necessary to
control the spectral projection P in the ||-||,-norm. We note, however, that the precise
form of the sets Iy were not important for the proofs in [56]. It was only used that the

sets contain deterministic vectors, and that their cardinality grows at most as some finite

power |I;| < N of N.

In terms of this norm we obtain the following easy estimate on G — M in terms of
its projection © = (P,G — M) onto the unstable direction of the stability operator 5.
We remark that if the, in absolute value, smallest eigenvalue of B is of order 1, then this

projection onto the corresponding direction is not necessary.

Proposition 9.3.3. For fired z such that |G — M|, < N=*X there are deterministic

matrices Ry, Ry with norm < 1 such that
G-M=6B-B'QMDI+&,  |€], SNY5 (6] + D), (9.3.3a)

with an error term &, where © satisfies the approximate quadratic equation

60 +&0” = O (NYX|ID|2 + |(RiD)| + |(R: D)) (9.3.3b)
with
&l ~ v+ 5, &) + [&a] ~ 1

and any implied constants are uniform in x,y and z € D.

PROOF. We begin with an auxiliary lemma about the ||-||,-norm of some important

quantities, the proof of which we defer to Section below.
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Lemma 9.3.4. Depending only on the model parameters we have the estimates for any

RE CNXN
IMS[RIR||, < N'*|IRII?, IMR|, < NVXR],,

I9l.. S 1, |50

<1,

*—x
Decomposing G — M = P|G — M|+ Q|G — M| and inverting B in (9.3.2)) on the range
of Q yields

G—M=0B+Q[G-M|=06B-B"'QMD]+0 (NG - M|?)
= OB - B'Q[MD] + 0 (N**(jo* +[|D|?)) ,
where O (+) is meant with respect to the ||-||,-norm and the second equality followed by

iteration, Lemma and the assumption on |G — M]||,. Going back to the original
equation ((9.3.2) we find

BOB + BQ|G — M] = —MD + MS[OB — B 'Q[MD]|(6B — B'Q[MD])
+0 (NY5(e]’ + || D|?))
and thus by projecting with P we arrive at the quadratic equation
o = O + 0% = O (N (O + | DI13))
po = (P, MS[B'Q[MD]|B'Q[MD] — MD),
= (P,MS[B|B~'Q[MD] + MS[B~ QM D] B) + 3,
piz = (P, MS|[B]B) .

We now proceed by analysing the coefficients in this quadratic equation. We estimate the
quadratic term in pq directly by N*%||D|?, while we write the linear term as (R;D) for
the deterministic Ry := —M*P with ||R|| < 1. For the linear coefficient p; we similarly
find a deterministic matrix Rs such that || Rs|| < 1 and puy = (ReD) + . Finally, we find

from Proposition 9.3.1(v)| that |us| + |8 ~ 1 and |B| ~ /K + 7. By incorporating the
10| N¥K term into & we obtain ([9.3.3D)). O
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9.3.2. Probabilistic bound. We now collect the averaged and isotropic bound on
D from [56]. We first introduce a commonly used (see, e.g., [60]) notion of high-probability
bound.

Definition 9.3.5 (Stochastic Domination). If
X=(XMw|NeNueUM) and v =(Y™(W)|NeNueU™N)

are families of non-negative random variables indexed by N, and possibly some parameter
u, then we say that X is stochastically dominated by Y, if for all ¢, D > 0 we have
sup P {X(N)(u) > NEY(N)(u)} < NP
ucU W)

for large enough N > Ny(¢, D). In this case we use the notation X < Y.

It can be checked (see [60, Lemma 4.4]) that < satisfies the usual arithmetic properties,
e.g. if X7 <Y; and X5 < Y, then also X7+ X5 < Y1 4+Y;5 and X; X, < Y7Y5. To formulate

the result compactly we also introduce the notations

IR <AinD <= |R|*™ < A unif. in z,y and z € D,

|R|av—<Ain]D < W%AUH]leBaHdZGD

for random matrices R and a deterministic control parameter A = A(z), where B, x,y
are deterministic matrices and vectors. We also define an isotropic high-moment norm,
already used in [56], for p > 1 and a random matrix R,
(E |(z, Ry)|")"'"

] [yl
Proposition 9.3.6 (Bound on the Error). Under the Assumptions there exists

Rl =
2]l Sup

a constant C' such that for any fived vectors x,y and matrices B and spectral parameters

|z2| <1, and any p > 1, € > 0,

(=, Dy), I G| o/ |IGILyCr
i S VY T (LG (1+") (9.3.5a)
2ol < NV e L El) (1 T
BD, _ I o/ Gy
—ar - Ser N (1 (1 Q) 9.3.5b
(721 | I— NIm z ( * ||G||q> + Ne ) ( )
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where q = Cp*/e. Here u > 0 depends on s in Assumption . In particular, if

|G — M| <A <1, then
o+ A o+ A
D —_— D —_—. 3.
Dl SR, L, < 4 (9.3.50)

PRrROOF. This follows from combining [56, Theorem 3.1], the following lemmaﬂ from
[56, Lemma 4.4] and | M]| < M.. O

Lemma 9.3.7. Let R be a random matriz and ® a deterministic control parameter. Then

the following implications hold:

(i) If ® > N7, |R|| < N and |Ryy| < @ ||| ||yl for all z,y and some C, then
IR, <pe N°® for alle >0,p>1.

(ii) Conversely, if || R, <pe N°® for all e > 0,p > 1, then IR||5*Y < @ for any
fired K €N, &,y € CV.

9.3.3. Bootstrapping. We now fix v > 0 and start with the proof of Theorem [9.2.2]

Phrased in terms of the [|-||,-norm we will prove

|
G- M| <N¥YE( [ &« ~
| = Ny T Nn )

1
~— Rez € supp o
G — M|, < NYE LN in D
1 N2/K
N(k+n) + (Nn)?Vk+n Re z ¢ supp ¢

(9.3.6)

for D =D, and K > 1/7, i.e., for K~ sufficiently large. In order to prove (9.3.6) we use

the following iteration procedure.

Proposition 9.3.8. There exists a constant vs > 0 depending only on K and 7y such
that (9.3.6) for D = D, with vo > ~ implies (9.3.6) also for D = D, with v =
max{y,% — 7s}-

3C.f. Remark where we argue that the proof of [56] about ||-||, hold true verbatim in the present
case despite the slightly larger sets Ij.
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Proor oF (9.3.6) FOrR D = D,, ASSUMING PROPOSITION (9.3.8| For D = ID; we have
(9.3.6) by [56, Theorem 2.1]ﬂ We then iteratively apply Proposition m finitely many
times until we have shown (9.3.6) for D = D,. d

PROOF OoF PROPOSITION [9.3.8 We now suppose that (9.3.6)) has been proven for
some D = D, and aim at proving (9.3.6) for D = I, for some v; = v — 75, 0 < 75 < 7.
The proof has two stages. Firstly, we will establish the rough bounds

O] < N/ and |G- M| <N>X in D, (9.3.7)

and then in the second stage improve upon this bound iteratively until we reach
forD=D,,.

Rough bound. By (0.3.6)), Lemmal[9.3.7/and monotonicity of the map (0, 00) — R, 7
n||G(E +in)l, (see e.g. (77) in [56]) we find |G|, <., N < N** in D,,. As long as
27vs < p we thus have

e+2Cs+7s 5 (242 e+275+27s < (342
e R e
We now fix @,y and it follows from that

275 (3+20)+2/K

’51@ + 52@2‘ < N in D,

1D, <ep

and consequently by Lipschitz continuity of the lhs. with a Lipschitz constant of n=2 < N2,
and choosing K, v, large and respectively small enough depending on v we find that with
high probability |£,0 + &0?% < N~K in all of D,,. The following lemma translates
the bound on &0 + £&©?| into a bound on |O].

Lemma 9.3.9. Let d = d(n) be a monotonically decreasing function in n > 1/N and

assume 0 < d < N~€ for some € > 0. Suppose that

d
‘fl@ + 526)2‘ <d forall z €D, and |O] < min {\/"G—‘Hf \/E} for some z,
then also |©| < min{d/\/k + 1, Vd} for all 2’ € D with Re 2’ = Re 2y and Im 2’ < Tm z.

4We remark referring to [56] for the initial bound is purely a matter of brevity and convenience. Equally
well we could also prove in some initial domain, say, Dy from scratch, where we have the trivial
bound ||G — M| < £. Using this rough bound we could then iteratively improve the bound as detailed
in the paragraph Strong bound below, until follows in Ds.
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PRrOOF. This proof is basically identical to the analysis of the solutions to the same
approximate quadratic equation, as appeared in various previous works, see e.g. [67]. In
the spectral bulk this is trivial since then |&| ~ /K +n ~ 1. Near a spectral edge we
observe that (k+n)/d is monotonically increasing in 1. First suppose that (k+n)/d > 1
from which it follows that |©] < d/v/k+n S Vd in the relevant branch determined
by the given estimate on © at zy. Now suppose that below some 7-threshold we have
(k+n)/d S 1. Then we find |8] < /k +n+Vd S Vd < d/y/k+ 1 and the claim follows

also in this regime. U

Since ([9.3.7) holds in D, and 1/Nn < N~10/K e know
O] < min{N -V /5, NYK)

and therefore can conclude the rough bound |©| < N=%K in all of D,, by Lemma m
with d = N~'%/K_ Consequently we have also that

IG = M|, 1(IG = M|, < N7F) < N7/ in D

Y1

Due to this gap in the possible values for |G — M|, it follows from a standard continuity
argument that |G — M|, < N=°% and therefore since x, y were arbitrary, |0 < N~/
and |G — M| < N=%¥ in all of D,,.

Strong bound. All of the following bounds hold uniformly in the domain D., which is
why we suppress this qualifier. By combining Proposition [9.3.3| and Proposition [9.3.6| we
find for deterministic 0 < § < A < N~%% under the assumptions || < 6, |G — M| < A,

A A
G — M| < 9+N2/K,/Q;n, 60 + &0 < Nz/KQ;VLn. (9.3.8)

The bound on |G — M| in (9.3.8) is a self-improving bound and we find after iteration
that

that

1 0o+16
- M NYE [ — —.
|G | <0+ (Nn+ N )

Hence, we have

+0 1
O+ 602 < NYKEZZ L NK_—
‘51 + & ’ = N + (N2
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We now distinguish whether Re z is inside or outside the spectrum. Inside we have g ~

VE + 1, so we fix § and use Lemma [9.3.9| with d = N* X (\/k + 1+60)/(Nn)+N*% /(Nn)?
to conclude |©| < min{d/\/k + 1, /d} from the input assumption |0 < N*X /Ny in D, .

Iterating this bound, we obtain

1 0 1
O] < N¥K_—  p G- M|< N[ |=—4+ _—].
O] < Ny ence | | < N + Nn

By an analogous argument, outside of the spectrum we have an improved bound on ©

1 1
@ = N2/K7 +N4/K—,
© N(k+n) (Nn)2V/E+1

because ¢ ~ n/+/k + 1. Finally, for the claimed bound on |G — M| we use (9.3.3a)) in

order to obtain a bound on |G — M|, in terms of a bound on ©. U

Due to (9.3.6)), we now have all the ingredients to prove the local law, as well as

delocalization of eigenvectors, and the absence of eigenvalues away from the support of p.

PROOF OF THEOREM [9.2.2] COROLLARY AND COROLLARY [9.2.4] The local
law inside the spectrum (9.2.3a)—(9.2.3b]) follows immediately from ([9.3.6). Now we prove
Corollary If there exists an eigenvalue A with dist(\,supp o) > N~2/3+%  then at,
say, z = A +iN~%% we have |(G — M)| > ¢N~'/5. On the other hand we know from the
improved local law that with high probability [(G — M)| < N~ and we obtain

the claim.
We now turn to the proof of Corollary [0.2.4] For the eigenvectors u; and eigenvalues
Ar of H we find from the spectral decomposition and the local law with high probability

(@, wi) | (@, ug)|?
E—XN)*+n* 7  n

1 2 Im (x,Gz) :nz(

for 2 = E + in and any normalised & € CV, where the last inequality followed assuming
that E is chosen n-close to A,. With the choice n = N™'*7 for arbitrarily small v > 0
the claim follows. Note that for this proof only of Theorem was used.
Finally, we establish and consider z with |z| < 1, dist(Re z, supp o) > N—2/3+v,
dewsp > 0, dy > 9 and x,y, B fixed. We note that the regime |z| £ 1 was already cov-

ered in [56] and we therefore do not have to track the large |z|-dependence again in the
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present paper. As in the proof of [7, Corollary 1.11], the optimal local law (9.3.6)) implies
rigidity up to the edge as formulated in Corollary [0.2.5 The only difference is that this
standard argument proves ([9.2.4h|) only if the supremum is restricted to E € supp g with
dist(E, dsupp o) > N~2/3+¢. The cause for this restriction is a possible mismatch of the
labelling of the edge eigenvalues, in other words the precise location of N€¢ eigenvalues
near an internal gap is not established yet; they may belong to either band adjacent
to this gap. This shortcoming will be remedied by the band rigidity in the proof of
Corollary below. However, for the current argument, the imprecise location of N¢
eigenvalues does not matter. In fact, already from this version of rigidity, together with
the delocalisation of eigenvectors (Corollary and the absence of eigenvalues outside
of the spectrum by Corollary we have, at z = E +in (recall that we consider z with
dewsp > 6, dyp > 6 and dist(Re 2, supp g) > N~2/3+%),

[z, i) 1 n no(r)dr
Im (x,G(2)x) = =% S TE 2
< () > n;(E_)\kP_i_n? N;(E—/\k)2+772 RlE—JI|2+T/2

for any normalised vector . From the square root behaviour of p at the edge and

k(z) > N72/3% we can easily infer [|[Im G|, < n/y/k + 1. Therefore it follows from
Proposition that || D||°+|(RD)| < 1/(N+/r + 1) and from (9.3.3b) and Lemma

that |©] < N¥5=1/(k 4+ ). Finally, we thus obtain,

2/K 2/K
N/ + N/ <N2/K$
N(k+n) Ny+n"~ N(k+n)

from (9.3.3al) and (9.2.3c]) follows. 0

PROOF OF COROLLARY [0.2.5] We begin with the proof of (9.2.4a) and consider a

‘G_M’av_<

flow that interpolates between H = H, and a deterministic matrix H;. Fix FE ¢ supp g
with dist(E, supp ) > €. We set

Hyi=1—tW + 4, A =A—tSIM(E)], S :=(1-1t)8, (9.3.9)

for any ¢ € [0,1]. The MDE corresponding to H; is 1+ (z — Ay + Si[M,])M; = 0 and
is designed in such a way that M;(FE), the solution evaluated in E, is kept constant.
The flow of solutions M; was considered in the proof of Proposition [8.2.6] in Chapter [§]

where it was shown that the self-consistent spectrum supp g; stays away from E uniformly
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along the flow, i.e., that dist(E, supp ;) >, 1, see Lemma (ii) in Chapter |8, We will
now show that along the flow, with overwhelming probability, no eigenvalue crosses the

spectral parameter E. More precisely we claim that
IP(E € Spec H; for some t € [0, 1]) < NP (9.3.10)

for any D > 0. Since Hy = H and H; = A — S[M(F)], (9.3.10) implies that with

overwhelming probability
[Spec H 11 (=00, E)| = [Spec(A — S[M(E)]) 1 (=00, E)| = N (L(—se)(M(E))),
where the last identity used the fact that
M(E)=(A—-S[M(E)] - E)™", (9.3.11)

i.e., that M (FE) is the resolvent of A—S[M(E)] at spectral parameter E (see Lemma (i)
in Chapter [§). Now (9.2.4a) follows from Proposition in Chapter [§] i.e., from

(g (M(E) = [ o()ax

It remains to show . We first consider the regime of values ¢ close to 1. Since
E is separated away from supp o, and M (F) is bounded we conclude from that
the spectrum of A — S[M (F)] is also separated away from E. Moreover, applying Corol-
lary[9.2.3/to H = W yields ||W|| < C with overwhelming probability as the corresponding
self-consistent density of states has compact support by Propositionm (ii). Since there-
fore H; is a small perturbation of A — S[M(FE)| as long as t is close to 1, we conclude
that the spectrum of H; is bounded away from E as well for every fixed ¢ > 1 — ¢ for
some small enough constant ¢ > 0. We are thus left with the regime ¢ < 1 — ¢, where the
flatness condition from Assumption is satisfied. In this regime we use Corollary
with H = H,. Since dist(F,supp p;) >, 1 this corollary implies that the spectrum of H; is
bounded away from F with overwhelming probability for every fixed ¢t <1 —c¢. Applying

a discrete union bound in t together with the Lipschitz continuity of the eigenvalues in ¢

for the flow (9.3.9) on the set || < C yields (9.3.10).
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Finally, (9.2.4b)) follows from the optimal local law as in the proof of Theorem m
and Corollary above. This time, however, ensures that there is no mismatch
between location and label of eigenvalues close to internal edges. In the spectral bulk
this potential discrepancy between label and location does not matter as allows
for an Nuncertainty. At the spectral edge, however, neighbouring eigenvalues can lie on
opposite sides of a spectral gap and we need to make sure that each eigenvalue
has, with high probability, a definite location with respect to the spectral gap. U

9.4. Proof of Universality

In order to prove Theorem [9.2.7, we define the Ornstein Uhlenbeck (OU) process
starting from H = H, by

1
AH, = =3 (H, — A)dt + »2[dB,),  %[R]=EW Tr(WR), (9.4.1)

where B; is a matrix of, up to symmetry, independent (real or complex, depending on
the symmetry class of H) Brownian motions and ¥'/2 is the square root of the positive
definite operator ¥ : CV*V — CN*N_ We note that the same process has already been
used in [6, 49| [56] to prove bulk universality. The proof now has two steps: Firstly, we will
prove edge universality for H, if t > N~'/3 and then we will prove that for t < N~1/6,

the eigenvalues of H; have the same k-point correlation functions as those of H = H,,.

9.4.1. Dyson Brownian Motion. The process (9.4.1)) can be integrated, and we

have
t t

H,—-A= 6_t/2(H0—A)+/ 6(s—t)/221/2[st]7 / e(s—t)/221/2[st] NN(O, (1—e‘t)§]).
0 0

The process is designed in such a way that it preserves expectation EH; = A and covari-
ances Cov (hf,, ht,;) = Cov (hap, heq) along the flow. Due to the fullness Assumption
there exists a constant ¢ > 0 such that (1 — e %)% — ctLSUE/GOE > for ¢+ < 1, where
NGOE/GUE denotes the covariance operator of the GOE/GUE ensembles. It follows that

we can write

H = H +VaU,  rk =r—cts®PC  EH, —=A U~ GOE/GUE,
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where x; here denotes the cumulants of ﬁt, and U is chosen to be independent of ﬁt.
Due to the fact that Gaussian cumulants of degree more than 2 vanish, it is easy to check
that H,, H, satisfy the assumptions of Theorem uniformly in, say, t < N~/1° From

—1/3+¢ with some small € > 0.

now on we fix t = N
Since the MDE is purely determined by the first two moments of the corresponding
random matrix, it follows that G; := (H; — z)~! is close to the same M in the sense of a

local law for all t. For G; :== (H, — z)~" we have the MDE
14 (z— A+ S[M)M, =0, S =8 — tSEOE/CUE (9.4.2)

that can be viewed as a perturbation of the original MDE with ¢t = 0. The corresponding
self-consistent density of states is g;(E) := lim,n o Im (M, (E +in)) /m. The fact that M,
remains bounded uniformly in ¢t < N~Y19 follows from the MDE perturbation result in
Proposition [8.10.1] in Chapter [§ with a; := A and S; := S; as S; is positivity-preserving
and the condition on S; in in Chapter |§|is obviously satisfied for this choice of S;
due to HSGOE/ GUE[R]H < (R) for all positive definite R. In particular the shape analysis
from Chapter [§ also applies to M;.

The free convolutions of the empirical spectral density of H, and 0; with the semicir-
cular distribution generated by v/ctU are given implicitly as the unique solutions to the

equations
Mi(2) = (Golz +ctimge(2)), mie(z) = (My(z + ctmi,(2))) -

We denote the corresponding right-edges close to £ by E, and E,. By differentiating the
defining equations for m}, and m}, we find

(mg.)' ()

1+ ct(mk.)'(2)

(m.)'(2)
1+ ct(mf,)'(2)

= (M{(&(2))) ,

= (M;(&(2))) , = (GL(&(2)))

(9.4.3a)

(1 + ct(mg)'(2))?

where &(2) == z + ctmb(2) and &(2) == z + ctml.(z). From the first two equalities in

(9.4.3a)) we conclude

L=t (M(&(E)), 1= ct{GYE(E)), (9.4.3b)
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by considering the z — E; and z — E, limits and that (mk)’, (k)" blow up at the edge
due to the well-known square root behaviour of the density along the semicircular flow.
We now compare the edge location and edge slope of the densities o}, and gf, corresponding
to mk. and mf, with that of M. Very similar estimates for deformed Wigner ensembles
have been used in [97]. We split the analysis into four claims.

Claim 1. |E; — E| < t/N. Using that SCVE[R] = (R), SC9F[R] = (R) + R!/N and
evaluated at &(z), we find using the boundedness of M,

L+ (2 = A+ SIM(&(2)))Mi(6(2)) = et (SO IM(&(2))] — (Mi(&(2))) ) Mi(&(2))

t
-0(5)
It thus follows that M,;(&(z)) approximately satisfies the MDE for M at z. By using

the first bound in Proposition 9.3.1(v)| expressing the stability of the MDE against small

additive perturbations it follows that

t
mch—MZ = [(My(&:(2)) — M(2))| S
k(=) = (M(2))] = [(Mu(&(2)) S i dtiRe s osm 0

< t :
N\/dist(Re 2z, 0supp o)

(9.4.4)

Suppose first that £ = F, + d for some positive § > 0. Then v/§ < Im (M(E, 4+ 6/2)) <
t/N V8, where the first bound follows from the square root behaviour of  at the edge E,
while the second bound comes from at z = F; 4+ 6/2 and Imml.(E;, + 6/2) = 0.
We thus conclude 6 < t/N. If on the contrary £ = E; — ¢ for some 6 > 0, then with a
similar argument V6 < Immk (E 4 6/2) < t/N and we have § < /N also in this case
and the claim follows.

Claim 2. |y —~| < (t/N)Y%. From the third equality in (9.4.3a)) we can relate the
edge-slope of mf, to M. Indeed, if v/ denotes the slope, i.e., ok(x) = V2 (B — )y )T+
o (E; — x), then using the elementary integrals

0o 1/2
lim 1/2/ de _ lim
10 o (z—in)? 27 n—0

3/2/00 \/E/W dx:i3/2
0o (x—in)? 8
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we obtain the precise divergence asymptotics of the derivatives (mf.)'(z) and (mf.)"(z2)

as z = F; +in — E, and conclude

2y (@M () s o UM E)) /7
3= ey = (@ MHE(ED) . e = -t .

We now use (9.4.4) at, say, z = v := E — /t/N. By Claim 1 we have F; — x ~ /t/N

and thus

%3/2 _ ImE”:fc_(? o) ((t/N)1/4) _ Im L(if_(?) Lo ((t/N)1/4)
Im (M (z))

= ﬁ + 0 ((t/N)1/4) _ 73/2 +0O ((t/N)1/4) ,

where we used Claim 1 again in the third equality. This completes the proof of the claim.

Claim 3. |Et — E;| < 1/Nt. Since M, has a square root edge at some Et, it follows
from the first equality in that &(E;) — E, ~ t2. Using rigidity in the form of
Corollary for the matrix H, to estimate C:*; from below at a spectral parameter

outside of the support, we have the bound
ot = [(GE(B)) [T < [&(E) — B>,
Consequently using the local law in the form of Lemma [0.5.1] it follows that
[(M{(&(Ev) | = 1/ct + O<(1/Nt*) ~ 1/t,

whence &(E,) — E, ~ t2 where we again used the square root singularity of (M,) at E,.

We can conclude, starting from , that
0 = (M{(&(EY) — (GHE(EY)) = (M](&(EL)) — (M{(&(EV)) + (M] — G (& (E)))
~ |&(Er) = GBI/t + O<(1/NtY),

where we used that |(M/(E;+rt?)| ~ t3 for ¢ < r < C and the improved local
law (G' — M') < 1/Nk? at a distance K ~ t? away from the spectrum, as stated in
Lemma [9.5.1] We thus find that |&,(E,) — &(E,)| < 1/Nt. It remains to relate this to an

estimate on |E, — E;|. We have

By — By S |&(Ey) — &(B)| + tmi(By) — mi(Ey)| + tl(mi, — i) (E),
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where we bounded the second term by ¢|(M,(&(E,)) — My(&(Ey)))| < 1/Nt using the

bounds in [(M](E; +rt2))| ~ 1/t and the third term by [((M, — Gy)(&(E})))| < 1/Nt

using the local law t? away from supp g;. Thus we can conclude that |F; — Et| < 1/Nt.
Claim 4. |y — 3| < 1/Nt3. We first note that v, ~ 1 follows from |[(M] (&(Ey)))| ~

t=3. Therefore it suffices to estimate
UM (& (E)) — GG (E))| < (M (&(Ey)) — M](§(E)))|

+ (M (&(EY) = GHE(E)))]
s
Nt3’
as follows from (M"(E, 4 rt?)) ~ t=5 for ¢ < r < C' and the local law from Lemma m
at a distance of k ~ t? away from the spectrum. Thus we have |y; — ;| < 1/Nt3.

We now check that ﬁt is n,-regular in the sense of [103, Definition 2.1] for 7, =
N=2/3+<_ Tt follows from the local law that cgy(z) < Im (Gy(2)) < Coi(2) for some
constants ¢, C', whenever Imz > n,. Now (2.4)—(2.5) in [103] follow in high probability
from the assumption that g, has a regular edge at F; . Furthermore, the absence of
eigenvalues in the interval [E; + 0., Ey + ¢/2] with high probability follows directly from
Corollary [9.2.3, Finally, ||H,| < N with high probability follows directly from | H,| <
(Tr|H,|?)"/2. We can thus conclude that with high probability, H, is n, = N~2/3*¢ regular
for any positive € > 0.

We denote the eigenvalues of H, = H,+ cv/tU by A > .. > A Then it follows from
[103, Theorem 2.2] that for N=¢ > ¢ > N~2/3%¢ with high probability for test functions
F: R - R with ||F|| + [[VF||, <1 there exists some ¢ > 0 such that

‘]E [F(ANYSO = By, AN (L — By)) [H

(9.4.5)
—E[F(N*(uy = 2), ..., N (1 — 2))] ‘ <N

By combining (9.4.5)) with |E— E,| < N~2/3¢ |y —7,| < N=¢ from Claims 1-4, we obtain

’E [F(YN? 2\ = E), ... ,yN*B(N 4, — B))]

(9.4.6)
—E[P(NY3 (0 —2),..., N (1 — 2))] ’ SN 4N

for our choice of ¢t = N~1/3+¢,
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9.4.2. Green’s Function Comparison. It remains to prove that the local correla-
tion functions of H; agree with those of H. We will prove that for any fixed x; € R,

lim P (N*3(\,, — E) > 5,0 =0,.... k)

N—oo

is independent of ¢ as long as, say, t < N~'/3t¢. We first note that the local law holds
uniformly in t also for H,;. This follows easily from the fact that the assumptions stay
uniformly satisfied along the flow because expectation and covariance are preserved while
higher order cumulants also remain unchanged up to a multiplication with a t-dependent
constant. For [ = N=%/3-¢/3 yn = N~2/3=¢ and smooth monotonous cut-off functions K;
with K;(z) =0 for  <i—1 and K;(z) = 1 for z > i we have

E H Kioi (Ir: /INQ““ TrGy(x+ E + in)dx) -0 (N—e/9>

i=0 iN=2/541

<P (N2/3(A§0H —E) >, i=0,....k) (9.4.7)

Im N72/3+€
<EHK$O+Z ( - /x TrGt(m—i—E—Hn)dx) —I—O(N—e/9).

=0 iNT2/8—

We note that the strategy of expressing k-point correlation functions of edge-eigenvalues
through a regularized expression involving the resolvent has already been used in |71,
97, 1102, |106] for proving edge universality. The precise formula has already been
used, for example, in [97, Eq. (4.8)].

In order to compare the expectations in at times t = 0 and t = N~V/3+¢, we

claim that we have the bound

N— 2/3+e€

=Im / Tr Gi(E + = + in)dx, |E

N—2/34]

dx,

i < N/6+3e (9.4.8)

PRrROOF OF ((9.4.8). We consider general functions f of the random matrix f(H;) and
find from It6’s lemma that

df(Hd)
E dt

N | —

B |- 3 wal0)(H) +

> “(O%B)(aaaﬁf)(H)] :

a76
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For the second term we use the general neighbourhood cumulant expansion from [506,

Proposition 3.5] to obtain

e gL > sy B0, 0m) - L@, 0m)

dt 2<m<R @ B,.BmEN

LYY % K“"“;wﬁ)_“(“’ﬂ)@aaﬁﬁ(ﬂ)\w0

|
2 SR B BweN m:

+5 35 3 wla,3)(0.0:0)(H)|

o BeNe

(9.4.9)
Eq. requires some explanations. The neighbourhood NV («) 3 « is a neighbourhood
of a of size |[N| < NY27# for some constant x4 > 0 which is guaranteed to exist by
Assumptions (C), (D) in [56], and thereby by Assumption in the present paper.
The random variable K (w,;wg), as defined in [56, Section 3.1, is called the pre-cumulant
which is justified by the fact that EKX = . In , () is an irrelevant error term, defined
in [56, Proposition 3.5]. The central assumption on the correlation decay is that there
exist some nested neighbourhoods N; C --- C Nz = N such that the covariance of f
supported in N, and ¢ supported in N¢,; is of size N73. The pre-cumulants K have
the property that Cov (K, f) < N~% whenever f is supported outside N and w,,wg
split into two groups contained in N, and N ;. Due to the pigeon-hole principle such
a splitting always occurs. The large integer R is chosen in such a way that R > 1/u
in which case the second term in becomes negligible small. For more details the

reader is referred to [56].
We now apply to X;. We consider the first term in (9.4.9)) as the leading order

term and will first work out the desired bound for

Elm NW[ Y YOy

2/3
aN~—2/34 2<m<R Q1 Q2,...,am+1EN

1
(m + 1)n(e) 1 G AMG A . G A G| de,

(9.4.10)

where Gy = Gy(z + E +in). For m > 4, we can trivially estimate the corresponding term

from (9.4.10) by

N72/3+6N27(m+1)/2N sup ||Gt||m+2 < N~ 1/64€

|z| <N —2/3+¢ mz e
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where we used the local law in the last step to obtain [|Gyl|, < [[Mil| < 1 and the
summability of cumulants in the form >, .. [s(cq,...,0x)| S 1. For m = 2 we write

out and use the local law in the form [[Im G4[|, < o: + |Gy — M|, S N~1/3+¢ to obtain

Z "i<a1b17 a2b27 a3b3)E |(Gt)ca1 (Gt)blaz (Gt>b2a3 (Gt)b:gc‘

ai,bi,c

(Im G )aya, /(I G )i
n

< Z H(albla CL2b2, a3b3)E\/ ‘(Gt)blag (Gt)b2a3’ S N273/2+1/3+25
a;i,b;

and consequently can bound the corresponding term by N'/6+3¢ The case m = 3 is very
similar and we obtain a bound of N~1/3+3¢,

We now consider the neighbourhood induced error terms in , i.e., the second,
third and fourth term. The treatment of these error terms is rather easy and closely
resembles the argument in |56, Proof of Corollary 2.6]. For the convenience of the reader
we briefly sketch the bounds for all remaining terms but leave the details to the reader.
For the last term we use |k(a, 8)] < N~4 for 8 € N to obtain

E> > k(a,B) ’Tr GtAO‘GtAﬁGt’ SN Y EN(G)ab(Grea(Gr)edl

a BeNc abcde

3/2
<N o < N3¢

for the integrand and can conclude that the term is bounded by N~2/3+4¢ due to the
integration length. For the third term in (9.4.9) we bound the derivative trivially by N

(R+1)/2 which compensates for

(coming from the trace), while the cumulant is of size N~
the summation of size N2 |N| < N2tR/2-1R and we can choose R = 2/ large to obtain
a bound of N~1/6+¢ for the term after integration. Finally, for the fourth term in ([9.4.9)
we have a naive bound of size N~2/3+5/2%¢ hich we can improve to N~7/6+¢ ysing the

pigeon-hole principle and the covariance bound (as in [56, Eq. (27)]). O

For the case of general k and smooth functions K;’s in (9.4.7)) we can easily generalise
(19.4.8) to

dx,.
Eg(Xao, - Xuy,) dtj < NY/6+3e
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for any 0 < j < k and any smooth function g. Then by a routine power counting

argument and Taylor expanding the K;’s it follows that for any ¢t < NV ~1/3+¢ we have

I
@Hmw<fA

Im N72/3+5
_EHKZH@ ( / TrGo(z + E +in) dx)

i—0 T iN—2/34]

N72/3+6

TrGi(x + E + in)dx)

z‘N72/3:|:l

‘ ~ N1/6 4e”

Together with (9.4.7) we obtain for any k, x;

P (NP, — E) > @, i € [k]) =P (N*P(\),,, — E) > @, i € [k]) + O (N~7°).
(9.4.11)

ProoF oF THEOREM [0.2.7 The theorem follows directly from (9.4.6]) and (9.4.11).

O
9.5. Auxiliary results
PRrROOF OF LEMMA [0.3.4 From (70a)—(70b) in [56] we havd]
IMSIRIR|, S N'*¥|R|;,  IMR|, < N'¥|R|, (9.5.1a)
and furthermore by a three term geometric expansion also
B9 <+ 11Ql ) (1 +lICuSl s + xS [BQ| . lICHS e )-
(9.5.1b)
Since
1B IBILIRI. .
IPLRJ, = [P R IBI, < H S Rl < P20 SO 22 < 2] BRI,
it follows that || P]|,_,, S 1 and therefore also ||Q||, ,, S 1. Now, since || R||,.. < [|R]], <

|R|| and according to (73) in [56] also max{||S|| s+ ISy} < 1. the lemma
follows together with ||B!Q||,. 1. < 1 from Proposition [9.3.1(v)| O

5C.f. Remark [9.3.2 for the applicability of these bounds in the present setup.
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Lemma 9.5.1. Fix any €,6 > 0 and an integer k > 0. Under the assumptions of
Theorem [9.2.3, for the k-th derivatives of M and G we have the bound

1
N gk+1°

(GW(z) = MP(2))] < (9.5.2)

uniformly in z € D with k = dist(z,supp 0) > N =23 doyep > 3, dy > 0.

Proor. We will fix z = x + in throughout the proof. Let xy: R — R be a smooth
cut-off function such that x(a') = 1 for &' = dist(2’,supp ) < /3 and x(z') = 0 for
k' > 2k /3 and let X be a cut-off function such that x(n’) = 1 for ’ <1 and x(n') = 0 for
17 > 2. We also assume that the cut-off functions have bounded derivatives in the sense
IVl S /81X S 1/62 and €] S 1. We now define £(2/) = (a' — =) *x(a’) and
the almost analytic extension

O = £o@ i) = 00 [f (@) + i f ()]
in’ N i .
O=f () = XN + 5% () [F (') + 1 f'(2')].
It follows from the Cauchy Theorem and the absence of eigenvalues outside { x =1} in

the sense of Corollary that with high probability

(6%(2) = M) = ~Re [ [ 07°() (GE) - M) e’

Due to the fact that ¥’ = 0 for ’ < 1 the second term in 9z fC only gives a contribution of
1/NkF+1 even by the local law and the ||-|| . bound for d-f¢ and we now concentrate on
the first term. First, we exclude the integration regime ' < N~'*7 in which we cannot

use the local law but only the trivial bound (G — M) < 1/1/. For the contribution of this
regime to we thus have to estimate

1+'y/ |f// |d$,< -

Y
k
N Jiz—a/|>2x/3 L@Q |z — 2| Klx —z
N7
~ N R

1 1 1

/
,|k’+1 + |l‘ . I'/|k+2

dx




9.5. AUXILIARY RESULTS 417

and we have shown that

(GW(2) = MB(2))]

N” ? x(2') X'(2') X" (@)
= N —i_/R/NfHV n/{u e T P - (G(2') = M(Z))| dn'da’.

il |2 — [ — 2"

We now use the local law of the form [(G — M)| < 1/N(x +n') and that in the second

and third term the integration regime is only of order s to obtain the final bound of

N7 /NgF+1 for any v > 0. O
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