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Abstract

The eigenvalue density of many large random matrices is well approximated by a

deterministic measure, the self-consistent density of states. In the present work, we show

this behaviour for several classes of random matrices. In fact, we establish that, in each

of these classes, the self-consistent density of states approximates the eigenvalue density

of the random matrix on all scales slightly above the typical eigenvalue spacing.

For large classes of random matrices, the self-consistent density of states exhibits

several universal features. We prove that, under suitable assumptions, random Gram

matrices and Hermitian random matrices with decaying correlations have a 1/3-Hölder

continuous self-consistent density of states ρ on R, which is analytic, where it is positive,

and has either a square root edge or a cubic root cusp, where it vanishes. We, thus,

extend the validity of the corresponding result for Wigner-type matrices from [4, 5, 7].

We show that ρ is determined as the inverse Stieltjes transform of the normalized

trace of the unique solution m(z) to the Dyson equation

−m(z)−1 = z − a+ S[m(z)]

on CN×N with the constraint Imm(z) ≥ 0. Here, z lies in the complex upper half-plane,

a is a self-adjoint element of CN×N and S is a positivity-preserving operator on CN×N

encoding the first two moments of the random matrix. In order to analyze a possible

limit of ρ for N → ∞ and address some applications in free probability theory, we also

consider the Dyson equation on infinite dimensional von Neumann algebras.

We present two applications to random matrices. We first establish that, under cer-

tain assumptions, large random matrices with independent entries have a rotationally

symmetric self-consistent density of states which is supported on a centered disk in C.

Moreover, it is infinitely often differentiable apart from a jump on the boundary of this

disk. Second, we show edge universality at all regular (not necessarily extreme) spectral

edges for Hermitian random matrices with decaying correlations.
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CHAPTER 1

Introduction

The study of eigenvalue densities of large random matrices has a long history. In

a seminal work, it was initiated by Wigner in the 1950’s [157]. He proved that the

eigenvalue density of an N ×N Hermitian matrix with independent (up to the symmetry

constraint) and centered entries of variance 1/N converges to a semicircular distribution

when N tends to infinity [158]. Such matrices are now called Wigner matrices and the

convergence result is referred to as Wigner’s semicircle law. Figure 1.1 shows Wigner’s

semicircle law, ρsc(x) ..= 1
2π

√
(4− x2)+, and the eigenvalue density of a sampled Wigner

matrix.

−2 −1 0 1 20

0.1

0.2

0.3

E

ρ
sc

Figure 1.1. Wigner’s semicircle law
ρsc and eigenvalue density of a 1000 ×
1000 Gaussian Wigner matrix

Wigner’s semicircle law is the first instance

of the universality phenomenon in random

matrix theory (RMT) since he showed that

the limit of the eigenvalue density is indepen-

dent of the precise distribution of the ma-

trix entries. Moreover, Wigner conjectured

that the distribution of the gaps of consec-

utive eigenvalues of Wigner matrices follows a

universal law which only depends on the ba-

sic symmetry type of the random matrix, i.e.,

whether it is a real symmetric or a complex Hermitian matrix. Nowadays, it is a common

belief in RMT that many features of the eigenvalue statistics of large random matrices

are universal in the sense that they do not depend on fine details of the random matrix

ensemble† but hold true for large classes of random matrices with the same “symmetry”

type.

† By a slight abuse of terminology, we use the terms “random matrix” and “random matrix ensemble”
interchangeably. Strictly speaking, the latter usually denotes the induced probability measure on the
space of Hermitian matrices but we do not make this distinction here.
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2 CHAPTER 1. INTRODUCTION

Since Wigner’s ground-breaking ideas, verifying this belief is one of the main objectives

in RMT and many works have been devoted to this goal.

The present work contributes to this goal for five classes of random matrices:

• Hermitian random matrices with a special fourfold symmetry,

• Random Gram matrices,

• Random matrices with independent entries,

• Kronecker random matrices,

• Hermitian random matrices with general, decaying correlations among their en-

tries.

In the remainder of this introduction, we describe the questions about the eigenvalue

statistics studied in the present work. In Chapter 2, we then explain the results presented

in the final seven chapters, Chapter 3 to Chapter 9. Each of these chapters has been

published (or submitted for publication) as a separate paper. Hence, it can be read

independently.

When analyzing the eigenvalue density of a large random matrix, the first question

one asks is whether there is a deterministic measure that approximates the eigenvalue

density of this ensemble. A theorem that answers this question affirmatively is called

global law and the deterministic measure is referred to as the self-consistent density of

states.

This deterministic measure is typically determined solely by the first two moments of

the random matrix ensemble and it can be computed by solving the Dyson equation

−m(z)−1 = z1− a+ S[m(z)] (1)

on CN×N under the constraint that Imm(z) ..= 1
2i(m(z)−m(z)∗) is positive definite. Here,

z lies in the complex upper half-plane, 1 is the identity matrix in CN×N , a is a self-adjoint

element of CN×N and S is a positivity-preserving operator on CN×N . The matrix a and

the operator S encode the first and the second moment of the random matrix ensemble,

respectively.

In many cases, the global law can be strengthened to a local law which asserts that

the eigenvalue density is well approximated by the self-consistent density of states not
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only globally but also on smaller mecoscopic scales. A local law is called optimal if it

holds on all scales slightly above the typical eigenvalue spacing. We remark that local

laws have played a pivotal role in the proof of the so-called Wigner-Dyson-Mehta (WDM)

universality conjecture via the three-step strategy [67], see also the recent developments

in [66, 105]. The WDM universality conjecture, which is due to Dyson and Mehta [114],

formalizes Wigner’s conjecture on the eigenvalue gap distribution mentioned above. It

predicts that the eigenvalue statistics on the microscopic scale, the scale of the typical

eigenvalue spacing, in the bulk, i.e., where the self-consistent density of states is strictly

positive, is given by a universal distribution for all random matrices of the same basic

symmetry type. Similarly, for each basic symmetry type, there is a universal (Tracy-

Widom) distribution that governs the eigenvalue statistics on the microscopic scale at

the edge, i.e., at the boundary of the support of the self-consistent density of states. This

phenomenon is called edge universality.

Thus, there are three strongly connected but mathematically distinct questions, we

will study

(a) Analysis of the solution to the Dyson equation, (1),

(b) Proof of the optimal local laws,

(c) Proof of universality of local spectral statistics.

Previously, in [4, 5], some remarkable universal regularity properties of the self-

consistent density of states ρ of Wigner-type matrices have been proven. Wigner-type

matrices are Hermitian random matrices with centered, independent entries (up to the

symmetry constraint). They naturally generalize Wigner matrices. Indeed, ρ is shown

to be 1/3-Hölder continuous, analytic, where it is positive, and have a square root edge

or an internal cubic root cusp, where it vanishes. It is remarkable that despite the high

dimensionality and nonlinearity of the Dyson equation, the singularity structure of ρ can

be described in such a simple universal form. Such detailed information about ρ is also

necessary to establish a local law not only in the bulk but also in the vicinity of the

singularities of ρ. For a certain class of Wigner-type matrices, this has been achieved

in [7].
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We stress that independence of the matrix elements leads to a structurally much

simpler Dyson equation. In fact, m in (1) is always a diagonal matrix in this case and,

thus, the Dyson equation can be studied in a commutative setup.

In the current thesis, we substantially generalize the results of [4, 5, 7] by dropping

the independence condition on the matrix elements. This leads to a conceptually much

more involved genuinely noncommutative Dyson equation, in fact, the analysis of the

Dyson equation can go beyond matrices and we present it in the more general setup of

von Neumann algebras.

The optimal local law and local spectral statistics in the bulk have been proven in

the noncommutative matrix setup in [6, 56]. In this thesis, we perform the detailed

edge analysis, culminating in the proof of the Tracy-Widom universality for the edge

eigenvalues (including all internal edges) for very general random matrices with correlated

entries.

We also analyze the corresponding questions, regularity of self-consistent density of

states and local law, for random matrices with independent entries. For these non-

Hermitian matrices, the eigenvalues concentrate on a domain in the complex plane.

Studying whether the eigenvalues of a random matrix concentrate on a deterministic

set is an even more elementary question than a global law. Indeed, the latter implies the

former and the deterministic set is the support of the self-consistent density of states.



CHAPTER 2

Overview of the results

We now explain the contents of each individual chapter of the thesis in a short,

informal way. We also put these results into the historical context and give the most

important motivations. For more detailed information about previous results, we refer

to the introductions of the individual chapters. Each section in the present chapter is

numbered and titled according to the number and title of the chapter summarized in it.

chapter 3: local semicircle law for random matrices with a fourfold

symmetry. Wigner introduced Wigner matrices as a model for the Hamiltonian of large

atomic nuclei [159]. In this analogy, the eigenvalues of the Wigner matrix correspond

to the energy levels of the atomic nucleus. Since then, random matrix theory has found

many further applications in physics. In [32], it was argued that a good approximation

to the two-dimensional Anderson model is given by a random matrix H = (hij)i,j∈Z/NZ

which satisfies the fourfold symmetry

hij = h̄ji = h−i,−j = h̄−j,−i (2)

for all i, j ∈ Z/NZ and possesses a constant diagonal.

Motivated by this application, we study a class of random matrices with the four-

fold symmetry, (2), in Chapter 3† below. For these matrices, we establish a local law

with Wigner’s semicircle law as self-consistent density of states, i.e., the local semicircle

law. Compared to all previous proofs of local semicircle laws, the main difficulty is that

the fourfold symmetry requires the simultaneous analysis of two vector self-consistent

equations for the diagonal and the counterdiagonal of the resolvent instead of only one

equation for the diagonal of the resolvent. In fact, our argument follows the strategy

in [60], where the local semicircle law for generalized Wigner matrices was shown. A

† Chapter 3 is based on the publication [12].

5



6 CHAPTER 2. OVERVIEW OF THE RESULTS

Hermitian matrix H = (hij)Ni,j=1 is a generalized Wigner matrix if {hij : i ≤ j} are in-

dependent and centered random variables such that all variances sij ..= E|hij|2 scale like

1/N with upper and lower bounds and the variance matrix S = (sij)Ni,j=1 is stochastic,

i.e., the entries in each row sum up to 1.

In fact, in Chapter 3, we consider random matrices H = (hij)i,j∈Z/NZ whose entries

are centered and independent up to the fourfold symmetry (2) for all i, j ∈ Z/NZ.

Moreover, we assume that all variances sij ..= E|hij|2 scale like 1/N and the variance

matrix S = (sij)i,j∈Z/NZ is stochastic. We denote by msc(z) the Stieltjes transform of the

semicircle law ρsc on [−2, 2] and by G(z) ..= (H − z)−1 the resolvent of H with entries

Gij(z). In this situation, we show that, for any γ > 0, we have

max
i,j∈Z/NZ

|Gij(z)− δijmsc(z)| ≲
1√

NIm z
(3)

with very high probability1 for all z ∈ C such that Im z ≥ N−1+γ and ||Re z| − 2| ≥ γ

(see Theorem 3.2.3 below). We remark that (3) is prototypical for local laws of Hermitian

matrices, which are most conveniently formulated as a high probability estimate on the

difference between the resolvent and a deterministic matrix. The estimate (3) is an

optimal local law since it implies the convergence of the eigenvalue density of H to the

semicircle law on all mesoscopic scales. Here, owing to the normalization sij ≤ 1/N , the

typical eigenvalue spacing is 1/N and Im z selects the mesoscopic scale ≥ N−1+γ. The

local law, (3), also implies eigenvalue rigidity, i.e.,

|λj − γj| ≲ N−1 (4)

with very high probability1for δ ≤ j/N ≤ 1− δ. Here, λ1 ≤ . . . ≤ λN are the eigenvalues

of H and γ1, . . . , γN are the 1/N -quantiles of the semicircle distribution ρsc.

The local semicircle law, solely with the Hermitian symmetry, in [60] was obtained

by analyzing a self-consistent equation for the vector (Gii − msc)Ni=1. Compared to the

Hermitian symmetry, the fourfold symmetry imposes additional correlations among the

entries. Therefore, the proof of (3) in Chapter 3 below requires analyzing an additional

1The notation ≲ in (3) and (4) indicates that the estimates hold true up to an Nε-factor with arbitrary
ε > 0. The probability of the associated event depends on ε. The precise statement is obtained by
replacing ≲ by the stochastic domination ≺ (see Definition 3.2.1 below).
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self-consistent equation for the vector (Gi,−i)i∈Z/NZ simultaneously to the one for (Gii −

msc)i∈Z/NZ.

chapter 4: local law for random gram matrices. Prior to Wigner matrices,

Wishart had introduced another special class of random matrices in 1928 [160]. In appli-

cations to mathematical statistics, he used random matrices of the form XX∗, where X

is a p × n matrix with independent, centered Gaussian entries of identical variance. In

this situation, XX∗ is called a Wishart matrix.

0 0.5 1 1.5 20

0.5

1

1.5

E

ρ
γ

(a) p = 1000, n = 2000, γ = 1/2

0 0.5 1 1.5 20

0.5

1

1.5

2

E

ρ
γ

(b) p = 1000, n = 1000, γ = 1

Figure 2.1. Comparison between
Marchenko-Pastur law ργ and the eigen-
value density of XX∗, where X is a
p × n matrix with independent, centered
Gaussian entries of variance 1/(p+ n).

Sample covariance matrices are the

generalization of Wishart matrices when

the assumption of Gaussian distribution

of the entries is dropped. Sample covari-

ance matrices play an important role in

mathematical statistics. This is because

the covariance matrix of n repeated (in-

dependent) measurements of a vector x ∈

Cp with independent components is usu-

ally modeled by a sample covariance ma-

trix XX∗ with a p × n matrix X. In

1967, Marchenko and Pastur obtained the

counterpart of Wigner’s semicircle law for

sample covariance matrices [112]. The

Marchenko-Pastur law asserts that if n

tends to infinity and simultaneously p/n

tends to a strictly positive, finite constant

γ ∈ (0,∞) then the eigenvalue density of

XX∗ converges to a deterministic proba-

bility density ργ on R. In Figure 2.1, this

result is demonstrated in two cases, in Fig-

ure 2.1 (a) for p/n→ γ = 1/2 and in Figure 2.1 (b) for p/n→ γ = 1.
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By dropping the assumption of identical variances in the definition of sample covari-

ance matrices, we obtain random Gram matrices XX∗, where X is a p× n matrix with

independent, centered entries. In the theory of wireless communication, they are used to

model systems with multiple transmitting and receiving antennas [90, 150]. The channel

capacity of such system is given by an integral with respect to the eigenvalue density of

XX∗. Assuming a global or local law for XX∗, this can be approximated by an integral

with respect to the self-consistent density of states.

In Chapter 4† below, we therefore prove a bulk local law for random Gram matrices

and analyze their self-consistent density of states ρ. The main challenge compared to

previous works is an additional unstable direction in the defining equation for ρ close to

zero. Therefore, the proof of the local law requires very precise information about the

behaviour of ρ in the vicinity of zero. In order to obtain this information, we distinguish

the cases (i) p = n and (ii) p/n is away from zero, one and infinity. The other main

assumption in Chapter 4 is that the variances of the entries of X scale like p with upper

and lower bounds. Denoting the variances of the entries of X by sij and the variance

matrix by S = (sij)i,j, the self-consistent density of states ρ can be obtained from the

unique solution (m1,m2) ∈ Cp+n of the vector Dyson equation

− 1
(m1)i

= z + (Sm2)i, for i = 1, . . . , p,

− 1
(m2)k

= z + (Stm1)k, for k = 1, . . . , n,
(5)

satisfying Imm1(z) > 0 and Imm2(z) > 0 for all z ∈ C with Im z > 0. In fact, Imm1(E+

iη) in the limit η ↓ 0 determines ρ at E for any E ∈ R. For a sample covariance matrix, the

system (5) reduces to a single scalar quadratic equation that can be solved explicitly [112].

For general S, no explicit solution exists.

For Wigner-type random matrices, the quadratic vector equation (QVE), which is

similar to (5), has been analyzed in [4, 7]. One key element in the regularity analysis of

the self-consistent density of states and the proof of the local law for Wigner-type matrices

and random Gram matrices is to understand the stability properties of the QVE and (5),

† Chapter 4 below essentially agrees with the publication [14] which is a joint work with László Erdős
and Torben Krüger.
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respectively, against small pertubations. The linear stability operator of the QVE has

precisely one unstable direction. This instability is directly regularized by the positivity

of the self-consistent density of states in the bulk. In contrast to this simpler case, the

linear stability operator of (5) has two unstable directions. The first unstable direction

is again controlled by the positivity of the self-consistent density of states ρ in the bulk.

For the second one, m1 and m2 have to be analyzed in detail for Re z = 0. Indeed, we

show that (m1,m2) avoids this unstable direction for p = n due to an extra symmetry.

In Theorem 4.2.8 below, we then conclude that ρ has an inverse square-root blow-up at

E = 0 in this case. For |p/n − 1| ≥ c, the support of ρ has a gap around zero and ρ

has a point mass at zero if p > n (see Theorem 4.2.10 below). This is used to conclude

regularity of the absolutely continuous part of ρ and the local law close to E = 0.

chapter 5: singularities of the density of states of random gram ma-

trices. In Chapter 5† below, we extend the bulk analysis of ρ in Chapter 4 to the vicinity

of the singularities of ρ and the local law to the whole real line. In the vicinity of the

singularities, the stability is more critical and, owing to the additional unstable direction

of the stability operator, the stability analysis has to be adjusted even for Re z ̸= 0. More

precisely, we prove under some additional assumptions on the variances sij and away from

zero that ρ is 1/3-Hölder continuous, analytic, where it is positive, and has a square root

or a cubic root singularity, where it vanishes. Thus, the self-consistent density of states of

random Gram matrices has the same regularity properties as the self-consistent density

of states of Wigner-type matrices.

In fact, the precise behaviour of ρ close to its singularities is obtained by carefully

expanding ρ(τ0 + ω) for small ω around τ0 ∈ supp ρ satisfying ρ(τ0) = 0. In [4, 5], it

was shown for the Wigner-type setup that this expansion is stable in the sense that the

coefficients of the cubic and quadratic terms do not vanish at the same time. Owing to this

essential property, the expansion is dominated by the cubic or the quadratic term as the

coefficient of the linear term vanishes. Hence, we obtain an approximately cubic equation

for ρ(τ0 + ω) and only square root or cubic root singularities can occur. We remark that

the coefficients in this expansion are basically determined by the linear stability operator
† Chapter 5 is based on the publication [11].
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of the QVE at z = τ0, i.e., the analogue of (5) at z = τ0. Therefore, in the setup of Gram

matrices, the stability of this expansion requires a new proof compared to [4, 5] due to

the presence of two unstable directions of the stability operator.

chapter 6: local inhomogeneous circular law. Chapter 6† below deals with

random matrices with independent entries, i.e., without any symmetry. We show the

optimal local law for such matrices and analyze the regularity of their self-consistent

density of states. The unstable nature of the spectrum of these non-Hermitian and

even non-normal matrices requires a much harder simultaneous analysis of a family of

Wigner-type matrices with noncentered entries of non-identical variances. This is the

main novelty compared to previous works.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 2.2. Eigenvalues of a
300× 300 matrix with centered, in-
dependent Gaussian entries of vari-
ance 1/300. Almost all eigenvalues
are contained in a disk of radius 1.

We now explain our results in Chapter 6 and

the difficulties in more detail. Let X = (xij)Ni,j=1

be a random matrix with independent and cen-

tered entries. We again denote its variance ma-

trix by S = (sij)Ni,j=1, sij ..= E|xij|2, and assume

that all variances sij scale like 1/N . In Theo-

rem 6.2.6 below, we prove, under additional tech-

nical assumptions, that there exists a determin-

istic function σ : C → [0,∞) such that the eigen-

value density of X is well approximated by σ on all

scales above the typical eigenvalue spacing. The

proof holds true inside the disk D(0, R) of radius

R ..=
√
ρ(S), where ρ(S) is the spectral radius of

S. Analogously to the case of identical variances,

where σ is the uniform measure on the unit disk (see Figure 2.2), σ is radially symmetric

and supported on D(0, R). Moreover, σ is infinitely often differentiable on D(0, R) and

has positive upper and lower bounds on D(0, R), i.e., it has a jump discontinuity on

the boundary of D(0, R) (see Proposition 6.2.5 below). Furthermore, for every ε > 0,

† Chapter 6 below presents the publication [13] which is a joint work with László Erdős and Torben
Krüger.
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all eigenvalues of X are contained in D(0, R + ε) with very high probability (see Theo-

rem 6.2.6 below).

Prior to our work, the local law has only been established in the case of identical

variances sij = 1/N [44, 45, 146, 162], which requires a linear stability analysis of a scalar

cubic equation. For non-identical variances, a much more challenging linear stability

analysis of a 2N -dimensional vector Dyson equation for the Hermitian random matrix

Hζ =

⎛⎜⎝ 0 X − ζ

(X − ζ)∗ 0

⎞⎟⎠ , (6)

where ζ ∈ C is an additional parameter, is necessary. This Hermitization trick is due to

Girko [81]. The global law has been proven in [51]. The proof of a local law necessitates

the analysis on much finer scales compared to the one of a global law. Therefore, to obtain

our result, the linear stability analysis of the full vector Dyson equation is performed on

all scales. The main difficulty is the additional complex parameter ζ in (6), which is

not present in the general Hermitian problems studied in [4, 5, 6, 7]. The bounds in the

linear stability analysis, also for derivatives with respect to ζ, have to be uniform in ζ.

This uniformity is also necessary to obtain the detailed information about σ mentioned

above. In particular, the positive lower bound on σ and its smoothness are new results

compared to [51].

chapter 7: location of the spectrum of Kronecker random matrices.

In Chapter 7† below, we prove that, for a very big class of Hermitian and non-Hermitian

random matrices, the eigenvalues concentrate on deterministic sets. The main difficulty

is the lack of a priori control on the self-consistent density of states as we do not impose

any irreducibility condition on the variance matrix. Such condition has been present in

all previous works. More precisely, we study Kronecker random matrices. These are block

matrices that consist of a K × K block structure with blocks of size N × N . Each of

these blocks is a linear combination of finitely many Wigner-type matrices and random

† Chapter 7 below is a slightly modified version of the publication [16] which was obtained in joint work
with László Erdős, Torben Krüger and Yuriy Nemish.
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matrices with independent entries. These matrices are assumed to be independent but

each matrix is allowed to appear in multiple blocks.

For any Kronecker random matrix X, we provide a monotonically increasing family of

deterministic subsets Dε, ε > 0, of the complex plane and prove, under some normalization

and moment conditions, that for each ε > 0, the spectrum of X is contained in Dε,

Spec(X) ⊂ Dε (7)

with very high probability for N → ∞ and fixed K (see Theorem 7.2.4 below). In

some situations, it is known that ∩ε>0Dε actually coincides with the support of the self-

consistent density of states obtained from the Dyson equation (cf. Chapters 4, 6 and 9

below). We expect this to be true in much greater generality. Furthermore, we show

a global law for any Hermitian Kronecker random matrix in the limit N → ∞ and for

fixed K in Theorem 7.2.7 below. Here, we assume that the Hermitian Kronecker matrix

satisfies the same normalization and moment conditions as required for the proof of (7).

Owing to the lack of any irreducibility condition for the variance matrix, e.g. a lower

bound on the individual variances, and the presence of correlations among the blocks,

the self-consistent density of states ρ will not behave nicely in general. However, a

sufficient a priori understanding of ρ was essential in all previous arguments. This can be

circumvented by a careful analysis of the corresponding Dyson equation (see (8) below)

for z /∈ supp ρ. On this set, the Dyson equation can still be analyzed and yields enough

information to prove (7) and the global law for Hermitian Kronecker matrices.

chapter 8: the dyson equation with linear self-energy: spectral bands,

edges and cusps. In Chapter 8† below, we study the solution to the Dyson equation

with linear self-energy (see (8) below) which generalizes the QVE as well as the (vector

and matrix) Dyson equations mentioned previously or studied in [4, 5, 6]. We show de-

tailed regularity properties of a measure induced by this solution. This measure is the

analogue of the self-consistent density of states. Compared to previous works, the non-

commutativity of the underlying algebra requires a novel perturbation expansion around

† Chapter 8 essentially agrees with the preprint [15] which is joint work with László Erdős and Torben
Krüger.
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a non-self-adjoint operator. Indeed, we consider a von Neumann algebra A with unit 1

and a faithful, normal, tracial state ⟨ · ⟩ : A → C. Moreover, let a = a∗ ∈ A be a self-

adjoint element and S : A → A a positivity-preserving linear map which is symmetric

with respect to the scalar product (x, y) ↦→ ⟨x∗y⟩ on A. Here, S is called the self-energy.

The Dyson equation (with linear self-energy)

−m(z)−1 = z1− a+ S[m(z)] (8)

has a unique solution m : H → A, H ..= {z ∈ C : Im z > 0}, such that Imm(z) ..=

(m(z) − m(z)∗)/(2i) is positive definite for all z ∈ H [96]. In fact, m is the Stieltjes

transform of a measure on R with values in the positive semidefinite elements of A (see

Proposition 8.2.1 below). Under suitable assumptions, we show that there is a 1/3-Hölder

continuous function v : R→ A such that

m(z) =
∫
R

v(τ)
τ − z

dτ

for all z ∈ H. Furthermore, the function v is real-analytic, where it is positive, and has

either a square root edge or a cubic root cusp, where it vanishes (cf. Theorem 8.2.5 below).

In Theorem 8.7.1 below, we also obtain precise expansions of v close to all small local

minima. The main difficulty compared to the singularity analysis of the QVE in [4] is the

noncommutativity of the multiplication in A. This leads to considerably more involved

computations compared to [4] but also necessitates a perturbation expansion around a

non-self-adjoint operator in place of the self-adjoint unperturbed operator from [4]. We

also prove a novel band mass formula which relates the mass of (−∞, E] with respect to

the probability density ρ = ⟨v⟩ for any E ∈ R \ supp ρ to the limit m(E + iη) for η ↓ 0

(cf. (8.2.10) below). In many cases, the band mass formula yields quantization results

for the mass ρ(U) of a band U ⊂ R, i.e., U is a connected component of supp ρ (see

Proposition 8.2.6 (ii) and Corollary 8.9.4).

The Dyson equation, (8), plays an important role in the analysis of large Hermitian

random matrices. Let H be an N × N Hermitian random matrix with possibly non-

centered and correlated entries. In this setup, bulk local laws have been obtained in

[6, 56] under general conditions on the correlation decay of the entries of H. In fact,
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if we choose A = CN×N , ⟨ · ⟩ the normalized trace on CN×N , a ..= EH the expectation

of H and S[x] ..= E[(H − a)x(H − a)] for x ∈ CN×N in (8) then the local laws in [6,

56] assert that the resolvent of H at z ∈ H is close to m(z) as long as z is away from

the spectral edges of the spectrum of H. In particular, the eigenvalue density of H is

well approximated by the inverse Stieltjes transform ρ of z ↦→ ⟨m(z)⟩. Hence, ρ is the

self-consistent density of states of H and the main results of Chapter 8 show that, under

certain assumptions, ρ = ⟨v⟩ has the same regularity properties as the self-consistent

density of states of Wigner-type matrices.

chapter 9: correlated random matrices: band rigidity and edge uni-

versality. In Chapter 9† below, we consider Hermitian random matrices with decaying

correlations and general expectation, which generalize Wigner-type matrices. For these

random matrices, we prove edge universality at all (possibly internal) regular edges. The

edge universality at internal edges requires band rigidity, i.e., the absence of whatso-

ever discrepancy between the number of eigenvalues in a band and its mass, which is

the key novelty for these general random matrix models. Even for Wigner-type matri-

ces, self-consistent densities of states with multiple support intervals become ubiquitous.

Therefore, band rigidity is necessary to obtain edge universality at all regular edges.

More precisely, we first extend the bulk local laws from [6, 56] to regular spectral

edges by applying the results of Chapter 8. Then we use the band mass formula from

Chapter 8, the local law and an interpolation argument to establish band rigidity for

Hermitian random matrices with decaying correlations (compare Corollary 9.2.5 below).

The band rigidity crucially strengthens the customary eigenvalue rigidity (cf. (4)).

In the mid 1990’s, Tracy and Widom computed the distribution of the (appropriately

rescaled) fluctuation of the largest eigenvalue of the Gaussian unitary ensemble around 2

in the limit when the matrix size tends to infinity [148]. The Gaussian unitary ensemble

refers to a complex Hermitian Wigner matrix with Gaussian distributed entries. Since

then, for many complex Hermitian random matrix ensembles, the eigenvalues at regular

spectral edges have been shown to follow this Tracy-Widom distribution. This phenome-

non is called edge universality. For the symmetry class of real symmetric random matrices,
† Chapter 9 presents the preprint [17] which was written in joint work with László Erdős, Torben Krüger
and Dominik Schröder.



2.1. OUTLOOK 15

there is a similar development originating from the work of Tracy and Widom in [149].

Combining the edge local law and the band rigidity in Chapter 9 as well as the recent

results on the edge statistics of Dyson Brownian motion in [103] implies Tracy-Widom

statistics of the extreme eigenvalue at each regular edge (compare Theorem 9.2.7 below).

2.1. Outlook

We complete these introductory chapters with an outlook on two long standing open

problems in random matrix theory, the universality for non-Hermitian random matrices

and the metal-insulator phase transition for random band matrices.

2.1.1. Universality of local spectral statistics of non-Hermitian random

matrices. For Hermitian random matrices with independent entries, the universality of

the local spectral statistics is rather well understood. The distributions of various local

observables of eigenvalues, e.g. k-point correlation functions and gap statistics of bulk

eigenvalues, fluctuations of extreme eigenvalues etc. have been identified for a rich class of

these Wigner-type matrices. The common approach to these questions has two part: (i)

the eigenvalue distribution is explicitly computed for a model with Gaussian distributed

entries, (ii) more general models are shown to exhibit the same eigenvalue distribution

as the Gaussian model, i.e., the distribution is universal.

Surprisingly, the corresponding questions for random matrices with independent en-

tries without Hermitian symmetry are much harder to answer rigorously. Whereas part

(i) of the strategy outlined before for Hermitian matrices can still be completed for many

observables, part (ii) has only been obtained rigorously for rather restricted classes of

models. For example, even for matrices with i.i.d. entries the universality of the k-point

correlation functions has solely been proven under a strong condition of four matching

moment with the corresponding Gaussian model [146]. The above mentioned statements

for Wigner-type matrices do not need any moment matching conditions; exclusively the

correct rescaling is required to obtain a universal distribution for very rich classes of Her-

mitian random matrices in the large matrix limit. A similar behaviour for non-Hermitian

random matrices is also expected but has not been established rigorously yet.
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2.1.2. Spectral statistics of random band matrices. A Hermitian N ×N ran-

dom matrix H = (hij)Ni,j=1 is a random band matrix of width W , 1 ≤ W ≤ N , if hij = 0

for all i, j ∈ [N ] satisfying |i− j| > W . There is a dichotomy for the spectral statistics of

H depending on the band width W . For large W , the spectral statistics of H agree with

the random matrix statistics, e.g. eigenvector delocalization and strong correlations be-

tween nearby eigenvalues. This is called the metal or conductor phase. For small W , the

eigenvectors of H are exponentially localized and the eigenvalues are essentially indepen-

dent of each other. This is the insulator phase. Owing to a non-rigorous supersymmetric

analysis, a sharp phase transition between these two regimes is expected at W ≈
√
N

[78].

We refrain from providing an exhaustive overview of the literature here and only list

the strongest results towards this conjecture; we refer to [42] for a recent more detailed

overview. In case the band matrix has Gaussian entries with a special variance and block

structure a sharp phase transition on the level of two point correlation function of the

characteristic polynomial can be seen at W ≈
√
N [128, 130]. In the general case, random

matrix statistics including eigenvector delocalization has been established for W ≫ N3/4

in [cite Bourgade Yau Yin]. This is the strongest upper bound on the critical band width.

The strongest lower bound has been verified in [126], where eigenvector localization for

W ≪ N1/8 has been proven. For a Gaussian model, this has been improved to W ≪ N1/7

in [121]. Prior to these results, numerous works have been devoted to upper and lower

bounds on the critical band width, which shows that precisely localizing this band width

is an intriguing and attractive problem in random matrix theory.



CHAPTER 3

The local semicircle law for random matrices with a fourfold

symmetry

In this chapter, we present a slightly modified version of [12]. We consider real

symmetric and complex Hermitian random matrices with the additional symmetry hxy =

hN−y,N−x. The matrix elements are independent (up to the fourfold symmetry) and not

necessarily identically distributed. This ensemble naturally arises as the Fourier transform

of a Gaussian orthogonal ensemble (GOE). It also occurs as the flip matrix model – an

approximation of the two-dimensional Anderson model at small disorder. We show that

the density of states converges to the Wigner semicircle law despite the new symmetry

type. We also prove the local version of the semicircle law on the optimal scale.

3.1. Introduction

In 1955, Wigner conjectured that the eigenvalues of large random matrices describe

the energy levels of large atoms [157]. Therefore, the distribution of the eigenvalues of a

random matrix is an interesting and often studied object in random matrix theory. For an

N ×N random matrix with eigenvalues (λi)Ni=1, let µN ..= N−1∑N
i=1 δλi

be the empirical

spectral measure. The celebrated Wigner semicircle law [157] asserts that µN converges

to the semicircle law given by the density
√

(4− x2)+/(2π) in the limit that the matrix

size N goes to infinity.

The Wigner-Dyson-Mehta conjecture in [114] asserts that the distribution of the dif-

ference between consecutive eigenvalues of a large random matrix only depends on the

symmetry type of the matrix and not on the distribution of the entries. This indepen-

dence of the actual distribution is called universality. The proof of this conjecture by

Erdős, Schlein, Yau and Yin in [64, 65] is built upon establishing a local semicircle law

in the first step (see [69] for a review). An alternative approach was pursued by Tao and

Vu in [144].

17
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Wigner’s semicircle law can be used to compute the number of eigenvalues contained

in a fixed interval for a large random matrix. With the help of a local semicircle law

such prediction can also be made in the case of a variable interval size as long as it is

considerably bigger than N−1 which is the typical distance of neighbouring eigenvalues.

A local semicircle law is most commonly proven by establishing a convergence of the

Stieltjes transform mN(z) ..= N−1∑N
i=1(λi − z)−1 of µN to the Stieltjes transform m

of Wigner’s semicircle law. Then an interval size of N−1 corresponds to showing the

convergence when η = Im z is of this order.

One of the most general versions of a local semicircle law is presented in [60]. They

suppose that the random matrix H = (hxy)x,y is complex Hermitian (or real symmetric),

i.e., hxy = h̄yx for all x and y with real-valued random variables hxx for all x such that

(hxy)x≤y forms an independent family of centered random variables. Besides assuming

that the variances sxy ..= E|hxy|2 of a row sum up to one, i.e,

∑
y

sxy = 1 (3.1.1)

for all x which ensures that the eigenvalues stay of order 1, the most important require-

ment is the independence of the entries (up to the symmetry constraint).

Many works in random matrix theory start with this independence assumption. How-

ever, some naturally arising random matrix models do not fulfill it. An example is the

Fourier transform of a Gaussian Orthogonal Ensemble (GOE). For an N × N matrix

H = (hxy)Nx,y=1 the Fourier transform Ĥ = (ĥpq)p,q∈Z/NZ is defined through

ĥpq = 1
N

N∑
x,y=1

hxy exp
(
−i 2π

N
(px− qy)

)

for p, q ∈ Z/NZ. If H = (hxy)Nx,y=1 is a real symmetric matrix then Ĥ = (ĥpq)p,q∈Z/NZ

fulfills the relations

ĥpq = ĥqp = ĥ−q,−p = ĥ−p,−q

for p, q ∈ Z/NZ. If the entries of H are, in addition, centered Gaussian distributed

random variables such that {hxy;x ≤ y} are independent with Eh2
xx = 2Eh2

xy for x ̸= y
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then the entries of Ĥ will be independent up to this symmetry which we call fourfold

symmetry.

Interestingly, this symmetry also arises in random matrix approximations of the An-

derson model. In [32], it is argued that the fourfold symmetry with a constant diagonal

– called the flip symmetry – is a good approximation of the two-dimensional Anderson

model in the regime of small disorder (see [54] for a review on random matrix models of

the Anderson model).

The first local law for Wigner matrices on the optimal scale η ≈ N−1 (with logarithmic

corrections) in the bulk has been proven by Erdős, Schlein and Yau in [63]. In [72], Erdős,

Yau and Yin proved that mN −m is of the optimal order (Nη)−1 in the bulk and they

could extend this result to the edges in [71]. In the more general case with non-identical

variances and the assumption (3.1.1), a local semicircle law on the scale η ≈ M−1 with

M ..= (maxx,y sxy)−1 has been established by Erdős, Yau and Yin in [70]. For this case,

Erdős, Knowles, Yau and Yin obtained the optimal order (Mη)−1 of mN − m in [60]

even at the edge. A more detailed overview of the historical development of the local

semicircle law can be found in Section 2.1 of [57].

Our main result is a proof of the local semicircle law for random matrices possessing

the fourfold symmetry. Despite the different symmetry type compared to the case in

[60] the limiting distribution of the empirical spectral measure will still be Wigner’s

semicircle law. The basic structure of the proof follows [60]. The main novelty is that not

only the diagonal elements of the Green function have to be treated separately from the

offdiagonal ones, but elements on the counterdiagonal need to be estimated separately

via a new self-consistent equation.

We conclude this introduction with an outline of the structure of the present article. In

the following section, we introduce our model and some notation and state our main result.

In Section 3.3, we prove that the Fourier transform of a GOE satisfies the assumptions of

Theorem 3.2.3. The remaining part is devoted to the proof of our main result. Section 3.4

contains a collection of the tools used in the proof which is given in the subsequent section.

In Section 3.6, we show that the fluctuation averaging holds true for the fourfold symmetry

as well.
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3.2. Main Result

For N ∈ N and x, y ∈ Z/NZ, let ζ(N)
xy be real or complex valued random variables

(in the following we drop the N -dependence in our notation) such that ζxx is real valued,

Eζxy = 0 and E|ζxy|2 = 1 for all x, y. Moreover, we assume that for every p ∈ N there is

a constant µp such that

E|ζxy|p ≤ µp (3.2.1)

for all x, y ∈ Z/NZ and N ∈ N. For fixed N ∈ N, the entries are supposed to be

independent up to the fourfold symmetry ζxy = ζ̄yx = ζ−y,−x = ζ̄−x,−y for all x, y ∈ Z/

NZ.

For N ∈ N, let S = (sxy)x,y∈Z/NZ be an N × N -matrix of nonnegative real numbers

such that sxy = syx = s−y,−x = s−x,−y for all x, y and S is stochastic, i.e., for every x we

have ∑
y

sxy = 1. (3.2.2)

Furthermore, we assume that the N -dependent parameter M ..= (maxx,y sxy)−1 satisfies

N δ ≤M ≤ N (3.2.3)

for some δ > 0. Note that the first estimate is an assumption on S whereas the second

bound follows from the definition of M and (3.2.2).

Defining hxy ..= s1/2
xy ζxy we obtain the Hermitian random matrix H(N) = (hxy)x,y∈Z/NZ

which fulfills the following fourfold symmetry

hxy = h̄yx = h−y,−x = h̄−x,−y (3.2.4)

because of the definition of ζxy and the conditions on S. By definition, S describes the

variances of H(N).
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Let ρ denote Wigner’s semicircle law and m its Stieltjes transform, i.e.,

ρ(x) ..= 1
2π
√

(4− x2)+, m(z) ..= 1
2π

∫ 2

−2

√
4− x2

x− z
dx (3.2.5)

for x ∈ R and z ∈ C\R. For the real and imaginary part of z ∈ C, we will use the

abbreviations E and η, respectively, i.e., z = E + i η with E, η ∈ R.

With this definition the complex valued function m(z) is the unique solution of

m(z) + 1
m(z) + z

= 0 (3.2.6)

such that Imm(z) > 0 for η > 0. Denoting the resolvent or Green function of H by

G(z) ..= (H − z)−1

and its entries by Gij(z) for z ∈ C\R we obtain for the Stieltjes transform mN of the

empirical spectral measure

mN(z) = 1
N

TrG(z).

We use the definitions of stochastic domination and spectral domain given in [60].

Definition 3.2.1 (Stochastic Domination). Let X = (X(N)(u);u ∈ U (N), N ∈ N) and

Y = (Y (N)(u);u ∈ U (N), N ∈ N) be two families of nonnegative random variables for a

possibly N -dependent parameter set U (N). We say that X is stochastically dominated by

Y , uniformly in u, if for all ε > 0 and D > 0 there is a N0(ε,D) ∈ N such that

sup
u∈U(N)

P
[
X(N)(u) > N εY (N)(u)

]
≤ N−D

for all N ≥ N0. In this case, we use the notation X ≺ Y . If X is a family consisting of

complex valued random variables and |X| ≺ Y then we write X ∈ O≺(Y ).

The definition of stochastic domination implies the following estimate which is im-

portant for our arguments

|hxy| ≺ s1/2
xy ≤M−1/2. (3.2.7)

Definition 3.2.2. An N -dependent family D = (D(N))N∈N of subsets of the complex

plane with

D(N) ⊂ {z = E + i η ∈ C;E ∈ [−10, 10],M−1 ≤ η ≤ 10}
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for every N ∈ N is called a spectral domain.

In analogy to the matrix S, we define R = (rxy) = (Eh2
xy)

x ̸=−x
y ̸=−y . If N is odd then R is

an (N − 1)× (N − 1) matrix, otherwise it is an (N − 2)× (N − 2) matrix. For η > 0, we

introduce the corresponding two control parameters

ΓS(z) ..= ∥(1−m2(z)S)−1∥ℓ∞→ℓ∞ , ΓR(z) ..= ∥(1−m2(z)R)−1∥ℓ∞→ℓ∞ (3.2.8)

and their maximum Γ(z) ..= max{ΓS(z),ΓR(z)} (Note that ΓS is denoted by Γ in [60]).

For the definition of the spectral domain underlying our estimates, we define

ηE ..= min
{
η; 1
Mη
≤ min

{
M−γ

Γ(z)3 ,
M−2γ

Γ(z)4Imm(z)

}
for all z ∈ [E + i η, E + i 10]

}
(3.2.9)

for γ ∈ (0, 1/2) and E ∈ R. Then, for γ ∈ (0, 1/2) the spectral domain S ≡ S(γ) =

(S(N))N∈N is defined as

S(N) ..= {E + i η; |E| ≤ 10, ηE ≤ η ≤ 10} . (3.2.10)

Note that the spectral domain S differs from the spectral domain S in [60] due to the

new definition of Γ(z). Besides this difference the following main result of this article has

the same form as Theorem 5.1 in [60].

Theorem 3.2.3 (Local Semicircle Law). Let H be a random matrix with the fourfold sym-

metry (3.2.4) such that the conditions (3.2.1) and (3.2.2) are fulfilled. For γ ∈ (0, 1/2),

we have

|Gxy(z)− δxym(z)| ≺
√

Imm(z)
Mη

+ 1
Mη

(3.2.11)

uniformly in x, y and z ∈ S, as well as

|mN(z)−m(z)| ≺ 1
Mη

(3.2.12)

uniformly in z ∈ S.

The proof of our main result is based on studying self-consistent equations in the same

way as the proof of Theorem 5.1 in [60] which uses one self-consistent equation forGxx−m.

However, due to the fourfold symmetry it is no longer possible to directly show that the

entries Gx,−x are small as in [60]. Therefore, we introduce a second, new self-consistent
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equation for Gx,−x. While deriving these self-consistent equations we will see that the

expressions Gxx−m for x ∈ Z/NZ and Gx,−x for x ̸= −x are connected among each other

via E|hxa|2 and Eh2
xa, respectively. Therefore, we introduce the matrix R in an analogous

fashion as S is introduced in [60]. The corresponding control parameters ΓR and ΓS will

appear in our estimates in Section 3.5.3. Whereas the latter control parameter is present

in [60] and denoted by Γ in there, the matrix R and the corresponding parameter ΓR are

new in our work. The role of Γ in [60] is filled by the maximum Γ(z) = max{ΓS(z),ΓR(z)}.

Estimates on Γ similar to the ones in [60] are collected in Lemma 3.4.8 and Remark 3.4.9.

Remark 3.2.4. If the random variables hxy are complex valued with Eh2
xy = 0 for all

x ̸= y then ΓR(z) ≤ CΓS(z) for z ∈ {E + i η;E ∈ [−10, 10], η ∈ (0, 10]} and therefore

we can replace Γ by ΓS in (3.2.9). Thus, in this case, our estimates hold on the spectral

domain used in Theorem 5.1 in [60].

To have a shorter notation in the following arguments, we introduce the z-dependent

stochastic control parameters

Λd(z) ..= max
x
|Gxx(z)−m(z)|, Λg(z) ..= max

x̸=y ̸=−x
|Gxy(z)|,

Λ−(z) ..= max
x̸=−x
|Gx,−x(z)|,

Λo(z) ..= max{Λg(z),Λ−(z)}, Λ(z) ..= max{Λd(z),Λo(z)}.

(3.2.13)

Compared to [60] we added the control parameter Λ− since the off-diagonal terms Gx,−x

will be estimated differently than the generic off-diagonal terms.

3.3. Fourier Transform of Random Matrices

In this section, we give an example of a random matrix satisfying the conditions

of Theorem 3.2.3, namely the Fourier transform (in the following sense) of a Gaussian

orthogonal ensemble.

Definition 3.3.1 (Fourier Transform). Let H = (hxy)Nx,y=1 be an N × N matrix. The

Fourier transform Ĥ = (ĥpq)p,q∈Z/NZ is the N ×N matrix whose entries are given by

ĥpq = 1
N

N∑
x,y=1

hxy exp
(
−i 2π

N
(px− qy)

)
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for p, q ∈ Z/NZ.

In the next Lemma we collect the basic properties of the Fourier transform of a

Gaussian orthogonal ensemble which will imply the conditions of Theorem 3.2.3.

Lemma 3.3.2. Let H be a GOE and Ĥ its Fourier transform. Then the entries ĥpq and

ĥrs are independent if and only if

(p, q) /∈ {(r, s), (s, r), (−r,−s), (−s,−r)}.

Moreover, Ĥ satisfies the fourfold symmetry (3.2.4) for all p, q ∈ Z/NZ. We have

E|ĥpq|2 = N−1, Eĥ2
pr = 0 (3.3.1)

for all q and p ̸= r.

Proof. To prove the if-part it suffices to show that Ĥ satisfies (3.2.4) which is a

direct consequence of the fact that H is symmetric.

Since ĥpq and ĥrs are jointly normally distributed and Eĥpq = Eĥrs = 0, it suffices to

prove that Eĥpqĥrs = 0 and Eĥpqĥrs = 0 in order to show that these random variables

are independent. The formula Ehx1y1hx2y2 = N−1(δx1x2δy1y2 + δx1y2δy1x2) together with

N∑
x=1

exp
(
−i 2π

N
mx

)
=

⎧⎪⎪⎨⎪⎪⎩
N, m = 0,

0, otherwise

for m ∈ Z/NZ yields Eĥpqĥrs = N−1 for (p, q) ∈ {(s, r), (−r,−s)} and Eĥpqĥrs = 0

otherwise. Thus, Eĥpqĥrs ̸= 0 if and only if (p, q) ∈ {(s, r), (−r,−s)}. In particular,

Eĥ2
pq = 0 for p ̸= q.

The relation ĥrs = ĥsr implies the first part of (3.3.1) and concludes the proof of the

only-if part. □

Therefore, the Fourier transform of a Gaussian orthogonal ensemble fulfills all require-

ments of Theorem 3.2.3 with spq ..= N−1 and ζpq ..= N−1/2ĥpq. Because of the first result

in (3.3.1) the condition (3.2.2) is fulfilled. By the second part of (3.3.1) Remark 3.2.4 is

applicable. Thus, the local semicircle law holds true for these random matrices.
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3.4. Tools

In this section, we collect the tools for the proof of Theorem 3.2.3. We start with listing

some resolvent identities which are the basic tool for all our estimates as they encode the

dependences between diagonal and off-diagonal entries of the resolvents. Computing the

partial expectation of certain terms in expansions of the resolvent entries with respect

to a minor will be an important step to derive the self-consistent equations. Thus, we

introduce some notation in the second subsection. We conclude with the fluctuation

averaging, an important mechanism to improve some bounds, and some estimates on m

and Γ which are frequently used in our proofs.

3.4.1. Minors and Resolvent Identities. Let H = (hxy)x,y∈Z/NZ be a Hermitian

matrix and T ⊂ Z/NZ.

Definition 3.4.1. We define the N ×N matrix H(T) and its resolvent or Green function

G(T) through

(H(T))ij ..= 1(i /∈ T)1(j /∈ T)hij, G(T)(z) ..= (H(T) − z)−1

for i, j ∈ Z/NZ and for z ∈ C\R. We denote the entries of G(T)(z) by G(T)
ij (z). We set

(T)∑
i

..=
∑
i;i/∈T

.

In both cases, we write (a1, . . . , an,T) for ({a1, . . . , an} ∪ T).

Note that H(T) is still a Hermitian N×N matrix, in particular G(T) exists. To estimate

the resolvent entries we make essential use of the following relations.

Lemma 3.4.2 (Resolvent Identities). For i, j, k /∈ T, the following statements hold:

1
G

(T)
ii

= hii − z −
(T,i)∑
a,b

hiaG
(T,i)
ab hbi. (3.4.1)

If i, j ̸= k then

G
(T)
ij = G

(T,k)
ij +

G
(T)
ik G

(T)
kj

G
(T)
kk

,
1

G
(T)
ii

= 1
G

(T,k)
ii

− G
(T)
ik G

(T)
ki

G
(T)
ii G

(T,k)
ii G

(T)
kk

. (3.4.2)
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If i ̸= j then

G
(T)
ij = −G(T)

ii

(T,i)∑
a

hiaG
(T,i)
aj = −G(T)

jj

(T,j)∑
a

G
(T,j)
ia haj. (3.4.3)

The proof of Schur’s complement formula, (3.4.1), and the first identity in (3.4.2) can

be found in Lemma 4.2 in [70] and the second identity follows directly from the first one.

Lemma 6.10 in [59] contains a proof of (3.4.3).

Moreover, if η > 0 then the spectral theorem for self-adjoint matrices yields

∑
l

|G(T)
kl (z)|2 = 1

η
ImG

(T)
kk (z). (3.4.4)

This identity is sometimes called Ward identity.

The functional calculus implies the following estimates on the entries of the resolvent:

|G(T)
ij (z)| ≤ η−1 ≤M (3.4.5)

for η > 0 and all i, j ∈ Z/NZ. The second estimate holds if z ∈ D where D is a spectral

domain.

3.4.2. Partial Expectation. For the partial expectation with respect to the σ-

algebra generated by H(x,−x), we introduce the following notation.

Definition 3.4.3 (Partial Expectation). Let X be an integrable random variable. For

x ∈ Z/NZ we define the random variables ExX and FxX through

ExX ..= E[X|H(x,−x)], FxX ..= X − ExX.

The random variable ExX is called the partial expectation of X with respect to x.

The symbols Ex and Fx are the analogues of Pi and Qi in [60] that were defined by

considering the minor H(i). Due to the fourfold symmetry column x, −x and row x, −x

contain the same information, so the conditional expectation is taken with respect to

the minor H(x,−x). Notice that it may happen that x = −x, in which case H(x,−x) is an

(N − 1)× (N − 1) minor.

Definition 3.4.4 (Independence). We say that the integrable random variable X is in-

dependent of T ⊂ Z/NZ if X = ExX for all x ∈ T.
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If Y is independent of x then Fx(X)Y = XY − Ex(XExY ) = Fx(XY ) and therefore

EFx(X)Y = EFx(XY ) = E(XY )− EEx(XY ) = 0. (3.4.6)

3.4.3. Fluctuation Averaging. Let D be a spectral domain, H satisfy the require-

ments of Theorem 3.2.3 and Ψ a deterministic (possibly z-dependent) control parameter

which satisfies

M−1/2 ≤ Ψ ≤M−c (3.4.7)

for all z ∈ D and for some c > 0.

The aim of the fluctuation averaging is to estimate linear combinations of the form∑
k tikXk with special random variables Xk and a family of complex weights T = (tik)

that satisfy

0 ≤ |tik| ≤M−1,
∑
k

|tik| ≤ 1. (3.4.8)

Note that the family T may be N -dependent. Examples of such weights are given by tik =

sik = E|hik|2, tik = N−1 or tik = rik = Eh2
ik. Recall that Λ(z) = maxx,y|Gxy(z)− δxym(z)|

which is the basic quantity we want to estimate (cf. (3.2.13)).

Theorem 3.4.5 (Fluctuation Averaging). Let D be a spectral domain, Ψ a deterministic

control parameter satisfying (3.4.7) and T = (tik) a weight satisfying (3.4.8). If Λ ≺ Ψ

then ⏐⏐⏐⏐⏐∑
k

tikFk
1
Gkk

⏐⏐⏐⏐⏐ ≺ Ψ2,

⏐⏐⏐⏐⏐∑
k

tikFkGkk

⏐⏐⏐⏐⏐ ≺ Ψ2,

⏐⏐⏐⏐⏐⏐
∑
k ̸=−k

tikFkGk,−k

⏐⏐⏐⏐⏐⏐ ≺ Ψ2 (3.4.9)

uniformly in i and z ∈ D. If Λ ≺ Ψ and T commutes with S then we have⏐⏐⏐⏐⏐∑
k

tik(Gkk −m)
⏐⏐⏐⏐⏐ ≺ ΓSΨ2 (3.4.10)

uniformly in i and z ∈ D. If Λ ≺ Ψ and T commutes with R then we have⏐⏐⏐⏐⏐⏐
∑
k ̸=−k

tikGk,−k

⏐⏐⏐⏐⏐⏐ ≺ ΓRΨ2 (3.4.11)

uniformly in i and z ∈ D.
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A similar result was proven in [60], but due to the fourfold symmetry we need the

third estimate in (3.4.9) and (3.4.11) which were not present there. For the first estimate

in (3.4.9), there is the following stronger bound assuming that there is a stronger a priori

bound on the off-diagonal terms, i.e., on Λo(z) = maxx ̸=y|Gxy(z)| (cf. (3.2.13)):

Theorem 3.4.6. Let D be a spectral domain, Ψ and Ψo deterministic control parameters

satisfying (3.4.7) and T = (tik) a weight satisfying (3.4.8). If Λ ≺ Ψ and Λo ≺ Ψo then⏐⏐⏐⏐⏐∑
k

tikFk
1
Gkk

⏐⏐⏐⏐⏐ ≺ Ψ2
o (3.4.12)

uniformly in i and z ∈ D.

The proof of Theorem 3.4.5 and 3.4.6 can be found in Section 3.6.

3.4.4. Estimates on m and Γ. For convenience, we list some elementary estimates

from [60] which are often used in the following proofs.

Lemma 3.4.7. There is a constant c > 0 such that for z ∈ {E + iη;E ∈ [−10, 10], η ∈

(0, 10]} we have

c ≤ |m(z)|, |m(z)| ≤ 1− cη, |m(z)| ≤ η−1, Imm(z) ≥ cη. (3.4.13)

Since Γ ≥ ΓS it suffices to prove the following lower bounds on Γ for ΓS.

Lemma 3.4.8. There is a constant c > 0 such that

c ≤ Γ(z), |1−m2(z)|−1 ≤ Γ(z) (3.4.14)

for all z ∈ {E + iη;E ∈ [−10, 10], η ∈ (0, 10]}.

Remark 3.4.9. Since ∥R∥ℓ∞→ℓ∞ ≤ 1 the proof of Proposition A.2 in [60] yields that

ΓR(z) ≤ C logN
1−max±

⏐⏐⏐1±m2

2

⏐⏐⏐ ≤ C logN
min{η + E2, θ}

for z ∈ {E + i η;−10 ≤ E ≤ 10,M−1 ≤ η ≤ 10} with

θ ≡ θ(z) ..=

⎧⎪⎪⎨⎪⎪⎩
κ+ η√

κ+η , if |E| ≤ 2,
√
κ+ η, if |E| > 2,
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and κ ..= ||E| − 2|.

3.5. Proof of the Main Result

This section contains the proof of our main result, Theorem 3.2.3. First, we establish

the two self-consistent equations which will be the basis of all our estimates. In Sec-

tion 3.5.2, we bound the error terms in these self-consistent equations so that we can

use them to prove a preliminary bound on the central quantity Λ (cf. (3.2.13)) in Sec-

tion 3.5.3. Finally, we complete the proof of Theorem 3.2.3 in Section 3.5.4 by iteratively

improving the preliminary bound from the previous section.

3.5.1. Self-consistent Equations. The goal of this section is to establish the two

self-consistent equations for the difference Gxx−m and for the off-diagonal terms Gx,−x.

As the matrices are indexed by elements in Z/NZ it might happen that x = −x for x ∈ Z/

NZ, more precisely we have 0 = −0 in Z/NZ and moreover if N is even N/2 = −N/2.

Since the expansion of the diagonal term Gxx by means of the resolvent identities is a bit

different for x = −x and in this cases the entry Gx,−x is in fact a diagonal term we have

to distinguish the two cases, x ̸= −x and x = −x, in the sequel.

Recall for the following lemma that sxa = E|h2
xa| and rxa = Eh2

xa.

Lemma 3.5.1. For vx ..= Gxx −m we have the self-consistent equation

−
∑
a

sxava + Υx = 1
vx +m

− 1
m

(3.5.1)

with the error term

Υx =

⎧⎪⎪⎨⎪⎪⎩
hxx + Ax − Zx, x = −x,

hxx + Ax +Bx − Cx − Yx − Zx, x ̸= −x,
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and the abbreviations

Ax ..=
∑
a

sxa
GaxGxa

Gxx

, Bx
..=

(x,−x)∑
a

sxa
G

(x)
a,−xG

(x)
−x,a

G
(x)
−x,−x

, (3.5.2)

Cx ..=
(
|hx,−x|2 − s−x,x

)
G

(x)
−x,−x + h−x,x

(x,−x)∑
a

hxaG
(x)
a,−x + hx,−x

(x,−x)∑
b

G
(x)
−x,bhbx, (3.5.3)

Yx ..=
(
G

(x)
−x,−x

)−1 (x,−x)∑
a,b

hxaG
(x)
a,−xG

(x)
−x,bhbx, (3.5.4)

Zx ..=

⎧⎪⎪⎨⎪⎪⎩
∑(x)
a,b Fx

[
hxaG

(x)
ab hbx

]
, x = −x,∑(x,−x)

a,b Fx
[
hxaG

(x,−x)
ab hbx

]
, x ̸= −x.

(3.5.5)

The self-consistent equation for Gx,−x is given by

Gx,−x = m2 ∑
a̸=−a

rxaGa,−a + Ex, (3.5.6)

for x ̸= −x where we defined Ex ..= E1
x + E2

x − E3
x − E4

x with the error terms

E1
x

..= −m2 ∑
a∈{x,−x}

rxaGa,−a +m2 ∑
a=−a

rxaGaa

+
(
GxxG

(x)
−x,−x −m2

) (x,−x)∑
a

rxaGa,−a −GxxG
(x)
−x,−xhx,−x,

E2
x

..=GxxG
(x)
−x,−x

(x,−x)∑
a

Fx
[
hxaG

(x,−x)
ab hb,−x

]
,

E3
x

..=G
(x)
−x,−x

(x,−x)∑
a

rxaGaxGx,−a, E4
x

..= Gxx

(x,−x)∑
a

rxaG
(x)
a,−xG

(x)
−x,−a.

The self-consistent equation (3.5.1) has the same form as (5.9) in [60] and it is proven

in a similar way by expanding by means of Schur’s complement formula and computing

the partial expectation of a term in this expansion. However, we had to replace Pi by Ex
to derive it and the error term Υx contains terms which did not appear in (5.8) from [60].

(If x = −x then Υx has the same form as in [60].) The term Ax is exactly the same as

Ai in (5.8) of [60]. The term Zx is the analogue of Zi in [60] but the terms Bx, Cx and

Yx are completely new and will require new estimates.
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The self-consistent equation (3.5.6) is new and does not have a counterpart in [60].

Due to the fourfold symmetry there is the necessity to introduce it since in contrast to

the symmetry studied in [60] proving directly that the off-diagonal elements Gx,−x are

small is not possible.

As deriving this self-consistent equation follows the same line as the proof of (3.5.1)

– expanding and computing the partial expectation of a term in this expansion – it is

not surprising that some error terms in (3.5.6) have counterparts in (3.5.1). Namely, E2
x

is the counterpart of Zx. Moreover, E3
x and E4

x are the error terms corresponding to Ax
and Bx, respectively.

Proof. We start with the proof of (3.5.1). For x = −x the derivation of (3.5.1)

follows exactly as (5.9) in Section 5.1 of [60] since Ex and Fx agree with Px and Qx

respectively in this case. Similarly, for x ̸= −x the self-consistent equation (3.5.1) will be

obtained from Schur’s complement formula (3.4.1) with T = ∅. In this case, its last term

can be written in the form
(x)∑
a,b

hxaG
(x)
ab hbx =hx,−xG(x)

−x,−xh−x,x +
(x,−x)∑
a

hxaG
(x)
a,−xh−x,x +

(x,−x)∑
b

hx,−xG
(x)
−x,bhbx

+
(x,−x)∑
a,b

hxaG
(x,−x)
ab hbx +

(
G

(x)
−x,−x

)−1 (x,−x)∑
a,b

hxaG
(x)
a,−xG

(x)
−x,bhbx

(3.5.7)

by applying the resolvent identity (3.4.2). Since the random variables hxa and h−x,b are

independent of H(x,−x) we have Ex
[
hxaG

(x,−x)
ab hbx

]
= sxaG

(x,−x)
aa δab. Thus,

(x,−x)∑
a,b

Ex
[
hxaG

(x,−x)
ab hbx

]
=

(x,−x)∑
a

sxaG
(x,−x)
aa

=
∑
a

sxaGaa −
∑
a

sxa
GaxGxa

Gxx

− s−x,xG
(x)
−x,−x −

(x,−x)∑
a

sxa
G

(x)
a,−xG

(x)
−x,a

G
(x)
−x,−x

,

where we used in the second step the resolvent identity (3.4.2) twice. By splitting the

fourth summand on the right-hand side of (3.5.7) according to Ex + Fx = 1, we get

(x,−x)∑
a,b

hxaG
(x,−x)
ab hbx =

(x,−x)∑
a,b

Ex
[
hxaG

(x,−x)
ab hbx

]
+

(x,−x)∑
a,b

Fx
[
hxaG

(x,−x)
ab hbx

]
=
∑
a

sxaGaa − Ax − s−x,xG
(x)
−x,−x −Bx + Zx.

(3.5.8)
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Therefore, the results of (3.5.7) and (3.5.8) allow us to write (3.4.1) in the form

1
Gxx

= −z −m+ Υx −
∑
a

sxava,

which implies (3.5.1) using (3.2.6).

We fix x ̸= −x. To derive (3.5.6) we apply the resolvent identity (3.4.3) twice to get

Gx,−x = −GxxG
(x)
−x,−xhx,−x +GxxG

(x)
−x,−x

(x,−x)∑
a,b

hxaG
(x,−x)
ab hb,−x. (3.5.9)

Since ExhxaG(x,−x)
ab hb,−x = G

(x,−x)
a,−a rxaδb,−a splitting up the sum in the second term in

(3.5.9) according to Ex + Fx = 1 yields

Gx,−x = −GxxG
(x)
−x,−xhx,−x +GxxG

(x)
−x,−x

(x,−x)∑
a

rxaGa,−a + E2
x − E3

x − E4
x (3.5.10)

where we used the resolvent identity (3.4.2) twice. We obtain (3.5.6) by adding and

substracting m2∑
a rxaGa,−a to the right-hand side of (3.5.10). □

3.5.2. Auxiliary Estimates. The next lemma contains bounds on the resolvent

entries of minors of H if there exists an a priori bound on Λ (Recall its definition in

(3.2.13)). We will use a deterministic (possibly z-dependent) parameter Ψ which fulfills

cM− 1
2 ≤ Ψ ≤M−c (3.5.11)

for some c > 0 and all large enough N .

Lemma 3.5.2. Let D be a spectral domain and φ the indicator function of a (possibly

z-dependent) event. Let Ψ be a deterministic control parameter satisfying (3.5.11). If

φΛ ≺ Ψ and T ⊂ N is a fixed finite subset then

φ|G(T)
ij | ≺ φΛo ≺ Ψ, φ|G(T)

ii | ≺ 1, φ

|G(T)
ii |
≺ 1,

φ|G(T)
ii −m| ≺ φΛ, φImG

(T)
ii ≺ Imm+ Λ

uniformly in z ∈ D and in i, j for i ̸= j and i, j /∈ T.

Proof. This result follows by induction on the size of T using (3.4.13) and (3.4.2). □
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Using this result we will establish the first bounds on the error terms in the self-

consistent equations in the next lemma. When applying the first part of the following

lemma the indicator φ will be defined precisely in such way that the condition φΛ ≺M−c

holds, i.e., to ensure that φΛ is small.

Lemma 3.5.3. Let D be a spectral domain.

(i) If φ is an indicator function such that φΛ ≺M−c (for some c > 0) then

φ(Λg + |Ax|+ |Bx|+ |Cx|+ |Yx|+ |Zx|) ≺ φΛ2 +
√

Imm+ Λ
Mη

, (3.5.12)

φ(|E1
x |+ |E2

x |+ |E3
x |+ |E4

x |) ≺ φΛ2 +
√

Imm+ Λ
Mη

(3.5.13)

uniformly in x and z ∈ D.

(ii) For fixed η > 0 we have the estimates

Λ− ≤ η−2Λ− + 2η−3Λ2
− + ϵ (3.5.14)

with ϵ ≺M−1/2 uniformly in z ∈ {w ∈ C; Imw = η}, and

Λg ≺ M−1/2 + Λ−, (3.5.15)

|Ax|+ |Bx|+ |Cx|+ |Yx|+ |Zx| ≺ M−1/2 + Λo (3.5.16)

uniformly in x and in z ∈ {w ∈ C; Imw = η}.

Proof. In this proof we will occasionally split the index set of a summation into the

parts {a ̸= −a} and {a = −a} and use that the latter set contains at most two elements.

In the following proof of the first part Lemma 3.5.2 will be applied several times with

Ψ = M−c. Note that M−1/2 ≺
√

(Imm+ Λ)/(Mη) because of the fourth estimate in

(3.4.13). First, we assume x ̸= −x. Applying the second estimate in (3.2.7) and (3.2.2)

to the definition of Ax in (3.5.2) yields

φ|Ax| ≺ sxx|Gxx|+
(x)∑
a

sxaφ
|GxaGax|
|Gxx|

≺M−1 + φΛ2
o. (3.5.17)

Similarly, using the first estimate in Lemma 3.5.2 we get φ|Bx| ≺ φΛ2
o.
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The representation

Cx = |hx,−x|2G(x)
−x,−x − s−x,xG

(x)
−x,−x −

Gx,−x

Gxx

h−x,x − hx,−x
G−x,x

Gxx

, (3.5.18)

which follows from the resolvent identity (3.4.3), together with (3.2.7) implies

φ|Cx| ≺M−1/2. (3.5.19)

To estimate Yx we need the following two auxiliary bounds: We have

φ

⏐⏐⏐⏐⏐⏐
(x,−x)∑
a

h2
xaG

(x,−x)
a,−a

⏐⏐⏐⏐⏐⏐ ≤
(x,−x)∑
a̸=−a
|hxa|2φ|G(x,−x)

a,−a |+
(x,−x)∑
a=−a
|hxa|2φ|G(x,−x)

aa | ≺ φΛo+M−1, (3.5.20)

where we used (3.2.7) and (3.2.2) in last step. Now, we use the quadratic Large Deviation

Bounds from [60] after conditioning on G(x,−x). By applying (C.4) in [60] with Xk = ζxk

and akl = s
1/2
xk G

(x,−x)
k,−l s

1/2
xl we get

φ

⏐⏐⏐⏐⏐⏐
(x,−x)∑
k ̸=l

hxkG
(x,−x)
k,−l hxl

⏐⏐⏐⏐⏐⏐
2

≺
(x,−x)∑
k ̸=l

sxksxlφ|G(x,−x)
k,−l |2 ≺

φ

Mη

(x,−x)∑
k

sxkImG
(x,−x)
kk ≺ Imm+ Λ

Mη
,

(3.5.21)

where we used the second estimate in (3.2.7) and (3.4.4) in the second step. Thus, the

representation

Yx = G
(x)
−x,−x

⎛⎝(x,−x)∑
a,k

hxaG
(x,−x)
ak hk,−x

⎞⎠⎛⎝(x,−x)∑
b,l

h−x,lG
(x,−x)
lb hbx

⎞⎠ , (3.5.22)

which follows from the resolvent identity (3.4.3), yields (after separating the case k = −a)

φ|Yx| ≺ φ

⏐⏐⏐⏐⏐⏐
(x,−x)∑
a

h2
xaG

(x,−x)
a,−a

⏐⏐⏐⏐⏐⏐
2

+ φ

⏐⏐⏐⏐⏐⏐
(x,−x)∑
a̸=k

hxaG
(x,−x)
a,−k hxk

⏐⏐⏐⏐⏐⏐
2

≺ φΛ2
o + Imm+ Λ

Mη
≺ φΛ2

o +
√

Imm+ Λ
Mη

.

(3.5.23)

Before estimating Zx, we conclude from its definition in (3.5.5) that

Zx ..=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x)∑
a

(
|hxa|2 − sxa

)
G(x)
aa +

(x)∑
a̸=b

hxaG
(x)
ab hbx, x = −x,

(x,−x)∑
a

(
|hxa|2 − sxa

)
G(x,−x)
aa +

(x,−x)∑
a̸=b

hxaG
(x,−x)
ab hbx, x ̸= −x.
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We fix x ̸= −x and apply (C.4) in [60] with Xi = ζxi and aij = s
1/2
xi G

(x,−x)
ij s

1/2
jx to get

φ

⏐⏐⏐⏐⏐⏐
(x,−x)∑
i ̸=j

hxiG
(x,−x)
ij hjx

⏐⏐⏐⏐⏐⏐
2

≺

⎛⎝(x,−x)∑
i ̸=j

sxisjxφ|G(x,−x)
ij |2

⎞⎠1/2

≺ Imm+ Λ
Mη

, (3.5.24)

where the last step follows in the same way as the last step in (3.5.21). Moreover, (C.2)

in [60] with Xi = (|ζxi|2 − 1)(E|ζxi|4 − 1)−1/2 and ai = (E|ζxi|4 − 1)1/2sxiG
(x,−x)
ii implies

φ

⏐⏐⏐⏐⏐⏐
(x,−x)∑

i

(
|hxi|2 − sxi

)
G

(x,−x)
ii

⏐⏐⏐⏐⏐⏐
2

≺
(x,−x)∑

i

s2
xi(E|ζxi|4 − 1)φ|G(x,−x)

ii |2 ≺M−1, (3.5.25)

where we used (3.2.1), the second estimate in (3.2.7) and (3.2.2) in the last step. There-

fore, absorbing M−1/2 into the second summand we get

φ|Zx| ≤ φ

⏐⏐⏐⏐⏐⏐
(x,−x)∑
i ̸=j

hxiG
(x,−x)
ij hjx

⏐⏐⏐⏐⏐⏐+ φ

⏐⏐⏐⏐⏐⏐
(x,−x)∑

i

(
|hxi|2 − sxi

)
G

(x,−x)
ii

⏐⏐⏐⏐⏐⏐ ≺
√

Imm+ Λ
Mη

. (3.5.26)

If x = −x then Zx can be bounded by the right-hand side in (3.5.12) similarly to the

previous estimate and for Ax in exactly the same way as in (3.5.17).

To estimate the generic off-diagonal entry Gxy under the assumption that all of

x,−x, y,−y are different, we use the expansion

Gxy = −G(−x,−y)
xx G(x,−x,−y)

yy

⎛⎝hxy − (x,−x,y,−y)∑
k,l

hxkG
(x,−x,y,−y)
kl hly

⎞⎠
+ G

(−x)
x,−yG

(−x)
−y,y

G
(−x)
−y,−y

+ Gx,−xG−x,y

G−x,−x
,

(3.5.27)

which follows from applying (3.4.3) twice and afterwards applying the first identity in

(3.4.2) twice. Conditioning on G(x,−x,y,−y) and applying (C.3) in [60] with Xk = ζxk,

Yl = ζly and akl = s
1/2
xk G

(x,−x,y,−y)
kl s

1/2
ly yield

φ

⏐⏐⏐⏐⏐⏐
(x,−x,y,−y)∑

k,l

hxkG
(x,−x,y,−y)
kl hly

⏐⏐⏐⏐⏐⏐
2

≺ φ
(x,−x,y,−y)∑

k,l

sxk|G(x,−x,y,−y)
kl |2sly ≺

Imm+ Λ
Mη

, (3.5.28)

where the last step follows exactly as in (3.5.21), which implies

φ|Gxy| ≺M−1/2 +
√

Imm+ Λ
Mη

+ φΛ2
o.
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If x = −x or y = −y then the proof of the last statement is easier. This finishes the proof

of (3.5.12).

Now, we turn to the proof of (3.5.13). The trivial estimate |Eh2
xy| ≤ E|hxy|2 = sxy ≤

M−1 implies that the first two terms in φ|E1
x | are bounded by M−1. By (3.2.7) its last

term is bounded by M−1/2. Splitting the summation in the third term of φ|E1
x | into

a ̸= −a and a = −a and using the estimate on |Ehxy|2 we obtain φ|E1
x | ≺ φΛΛ− +M−1/2

due to (3.2.2), (3.4.13), the fourth estimate in Lemma 3.5.2 and (3.2.7). Similarly to the

bound on the third term in φ|E1
x |, we get φ|E3

x | ≺ φΛ2
o and φ|E4

x | ≺ φΛ2
o. To estimate E2

x

we calculate the partial expectation in its definition which yields

E2
x = GxxG

(x)
−x,−x

(x,−x)∑
a

(
h2
xa − rxa

)
G

(x,−x)
a,−a +GxxG

(x)
−x,−x

(x,−x)∑
a̸=b

hxaG
(x,−x)
a,−b hxb.

Similarly to (3.5.25) the first term can be bounded by M−1. Using (3.5.21) for the second

term implies

φ|E2
x | ≺

√
Imm+ Λ
Mη

which completes the proof of (3.5.13).

Finally, we prove part (ii) of Lemma 3.5.3. In contrast to part (i), we fix η > 0. Since

constants do not matter in the estimates with respect to the stochastic domination we

will not keep track of η in such estimates. We start the proof of part (ii) of Lemma 3.5.3

with verifying (3.5.16). First, we remark that applying (3.2.7), (3.4.4) and (3.4.5) yields⏐⏐⏐⏐⏐⏐
(T)∑
a

hxaG
(T′)
ab

⏐⏐⏐⏐⏐⏐ ≤
(∑

a

|hxa|2
)1/2 (∑

a

|G(T′)
ab |2

)1/2

≺
(∑

a

sxa

)1/2 (
η−1ImG

(T′)
bb

)1/2
≤ η−1

(3.5.29)

for arbitrary finite subsets T,T′ ⊂ N. The resolvent identity (3.4.3) and the previous

bound imply

|Ax| ≤ |sxxGxx|+
(x)∑
a

sxa|Gax|

⏐⏐⏐⏐⏐⏐
(x)∑
b

hxbG
(x)
ba

⏐⏐⏐⏐⏐⏐ ≺M−1 + Λo, (3.5.30)
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where we used (3.2.7) and (3.4.5) in the second step. The estimate

|Bx| ≤
(x,−x)∑
a

sxa

⏐⏐⏐⏐⏐⏐
(x,−x)∑
k

G
(x,−x)
ak hk,−x

⏐⏐⏐⏐⏐⏐ |G(x)
−x,a| ≺M−1/2 (3.5.31)

is a consequence of (C.2) in [60] with Xk = ζk,−x and ak = s
1/2
k,−xG

(x,−x)
ak , (3.4.4), (3.4.5)

and (3.2.2).

Applying (3.5.29) to the second and third term in (3.5.3) and (3.2.7) to the first term

yields |Cx| ≺M−1/2.

To estimate Yx we start from (3.5.22) but (3.5.20) is estimated differently. Using the

resolvent identity (3.4.2) twice we get⏐⏐⏐⏐⏐⏐
(x,−x)∑
k

h2
xkG

(x,−x)
k,−k

⏐⏐⏐⏐⏐⏐ ≺
(x,−x)∑
k ̸=−k

sxk|Gk,−k|+
(x,−x)∑
k=−k

sxk|Gkk|

+
(x,−x)∑
k

sxk
|G(x)

k,−xG
(x)
−x,−k|

|G(x)
−x,−x|

+
(x,−x)∑
k

sxk
|GkxGx,−k|
|Gxx|

≺ Λo +M−1/2,

where the last step follows similarly to (3.5.30) and (3.5.31). Combining this with the

usage of (3.4.5) instead of Lemma 3.5.2 in (3.5.21) yields |Yx| ≺ M−1/2 + Λo. We get

|Zx| ≺M−1/2 by similar adjustments of (3.5.26). This completes the proof of (3.5.16).

Before proving (3.5.14) we show

Λg ≤ η−1Λ− + ϵ̃ (3.5.32)

with some ϵ̃ ≺M−1/4 uniformly for z ∈ {w ∈ C; Imw = η}. In case all of x, −x, y and −y

are different it will be derived from the representation in (3.5.27). The first summand in

(3.5.27) is bounded by M−1/2 due to (3.2.7) and (3.4.5). Using (3.4.5) instead of Lemma

3.5.2 in (3.5.28) yields that the second term in (3.5.27) is dominated by M−1/2 as well.

For the third summand in (3.5.27) we use the estimate⏐⏐⏐⏐⏐⏐G
(−x)
x,−yG

(−x)
−y,y

G
(−x)
−y,−y

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐G(−x)
xx

(x,−x)∑
a

hxaG
(x,−x)
a,−y

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
(−y,−x)∑

a

h−y,aG
(−y,−x)
ay

⏐⏐⏐⏐⏐⏐ ≺M−1/2,
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where we used (C.2) in [60] as in the proof of (3.5.31) for the first factor and (3.5.29) for

the second factor. For the fourth term in (3.5.27) we obtain

|Gx,−xG−x,y|
|G−x,−x|

≤ Λ−

⏐⏐⏐⏐⏐⏐
(−x)∑
a

h−x,aG
(−x)
ay

⏐⏐⏐⏐⏐⏐ ≤ Λ−

⎛⎝(−x)∑
a

|h−x,a|2
⎞⎠1/2⎛⎝(−x)∑

a

|G(−x)
ay |2

⎞⎠1/2

≤ Λ−η
−1 + η−2

⏐⏐⏐⏐⏐⏐
(−x)∑
a

(|h−x,a|2 − s−x,a)

⏐⏐⏐⏐⏐⏐
1/2

(3.5.33)

by applying the resolvent identity (3.4.3) and inserting s−x,a. In the last step, we applied

(3.4.4) and (3.4.5). Note that similarly to (3.5.25) we conclude that the second term is

dominated by M−1/4.

We denote the sum of the absolute values of the first three summands in (3.5.27)

and the second summand in (3.5.33) by ϵ̃xy and set ϵ̃ ..= supx,y ϵ̃xy. Then the above

considerations show ϵ̃ ≺M−1/4 in this case. If x = −x or y = −y then estimating Gxy is

easier. Thus, (3.5.32) follows.

Without inserting s−x,a in (3.5.33) and instead using (3.2.7) we see that the represen-

tation (3.5.27) implies (3.5.15).

To prove (3.5.14) we assume x ̸= −x and consider the expansion

Gx,−x = GxxG
(x)
−x,−x

(x,−x)∑
a̸=−a

rxaGa,−a +GxxG
(x)
−x,−x

(x,−x)∑
a=−a

rxaGa,−a −GxxG
(x)
−x,−xhx,−x

+ E2
x − E3

x − E4
x .

Obviously, the absolute value of the first summand on the right-hand side is not bigger

than η−2Λ− and |E3
x | ≤ η−1Λ2

g. We call the sum of the second and the third term on

the right-hand side E5
x and obtain |E5

x | ≺ M−1/2 by (3.2.7). Similarly as before, we get

|E2
x | ≺ M−1/2 by using (3.4.5) instead of Lemma 3.5.2. An argument in the fashion of

(3.5.31) yields |E4
x | ≺M−1/2.

Thus, by setting ϵx ..= 2η−1ϵ̃2 + |E2
x |+ |E4

x |+ |E5
x | and using (3.5.32) we get

|Gx,−x| ≤ η−2Λ− + η−1Λ2
g + |E2

x |+ |E4
x |+ |E5

x | ≤ η−2Λ− + 2η−3Λ2
− + ϵx.

Since ϵx ≺ M−1/2 uniformly in x the estimate (3.5.14) follows from the definition ϵ ..=

supx ϵx. □
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3.5.3. Preliminary Bound on Λ. In this section, we establish a deterministic

bound on Λ. The proof will make essential use of the self-consistent equations in Lemma

3.5.1.

Proposition 3.5.4. We have Λ ≺M−γ/3Γ−1 uniformly in S.

Once we have proven the two subsequent lemmas the proof of Proposition 3.5.4 follows

exactly as in [60].

Lemma 3.5.5. We have the estimate 1(Λ ≤M−γ/4Γ−1)Λ ≺M−γ/2Γ−1 uniformly in S.

Proof. In this proof, we will use Lemma 3.5.3 (i) several times with φ ..= 1(Λ ≤

M−γ/4Γ−1). Following the proof of Lemma 5.4 in [60] we get

φΛd ≺ φΓS
(

Λ2 +
√

Imm+ Λ
Mη

)

since |Υx| ≺ φΛ2 +
√

(Imm+ Λ)/Mη by (3.5.12). Moreover, because of (3.5.12) and the

first estimate in (3.4.14) we have

φΛg ≺ φΓS
(

Λ2 +
√

Imm+ Λ
Mη

)
.

Using (3.5.6) we get ∑
y ̸=−y

(1−m2Rxy)Gy,−y = Ex

for all x ̸= −x. Inverting (1−m2R) and using (3.5.13) yield

φΛ− = max
x ̸=−x

φ|Gx,−x| ≤ ΓR max
x̸=−x

φ|Ex| ≺ φΓR
(

Λ2 +
√

Imm+ Λ
Mη

)
. (3.5.34)

In total, we get

φΛ ≺ φΓ
(

Λ2 +
√

Imm+ Λ
Mη

)
as in (5.18) of [60]. Employing the definitions of S and φ as in the proof of Lemma 5.4

in [60] establishes the claim. □

When estimating the off-diagonal terms Gx,−x in (3.5.34) the control parameter ΓR
appears naturally as the operator norm of (1−m2R)−1 in the same way as ΓS (which is

called Γ in [60]) is used in [60] to bound the differences Gxx −m.
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Lemma 3.5.6. We have Λ ≺M−1/2 uniformly in z ∈ [−10, 10] + 2i.

Proof. We use the bounds |G(T)
ij | ≤ 1/η = 1/2 from (3.4.5) and |m| ≤ 1/η = 1/2

from the third estimate in (3.4.13). In particular, they imply |vx| = |Gxx −m| ≤ 1 and

|m−1| ≥ 2.

By (3.5.14) with η = 2 we have

Λ− ≤
8
5ϵ ≺M−1/2.

Thus, (3.5.15) implies Λg ≺ M−1/2. Hence, Λo ≺ M−1/2 and therefore |Υx| ≺ M−1/2

by (3.5.16).

Following now the reasoning of the proof of Lemma 5.5 in [60] we get Λ ≺M−1/2. □

Proof of Proposition 3.5.4. The maximum of the two Lipschitz-continuous func-

tions ΓS and ΓR is a Lipschitz-continuous function whose Lipschitz-constant is not bigger

than the maximum of the original Lipschitz-constants. Therefore, Proposition 3.5.4 can

be proven exactly in the same way as Proposition 5.3 in [60]. □

3.5.4. Proof of the Main Result. In the whole section let Ψ be a deterministic

control parameter satisfying

cM−1/2 ≤ Ψ ≤M−γ/3Γ−1. (3.5.35)

The following proposition states that such deterministic bound on Λ can always be

improved. This self-improving mechanism is also present in Proposition 5.6 of [60].

Proposition 3.5.7. Let Ψ satisfy (3.5.35) and fix ε ∈ (0, γ/3). If Λ ≺ Ψ then Λ ≺ F (Ψ)

with

F (Ψ) ..= M−εΨ +
√

Imm

Mη
+ M ε

Mη
.

Proof. We will apply the results of Lemma 3.5.3 (i) with φ = 1. Using (3.5.12) we

get

Λg + |Υx| ≺ Λ2 +
√

Imm+ Λ
Mη

≺ ΓΨ2 +
√

Imm+ Ψ
Mη

(3.5.36)
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because of the first estimate in (3.4.14). The self-consistent equation (3.5.6) for Gx,−x

implies the estimate

|Gx,−x| ≤ |m2|

⏐⏐⏐⏐⏐⏐
∑
a̸=−a

(Eh2
xa)Ga,−a

⏐⏐⏐⏐⏐⏐+ |Ex| ≺ ΓΨ2 +
√

Imm+ Ψ
Mη

(3.5.37)

which holds uniformly in x. Here, we applied the fluctuation averaging (3.4.11) for Gx,−x

with txa = Eh2
xa and (3.4.13) to the first summand, |Eh2

xy| ≤ M−1, Lemma 3.5.2 and

(3.4.14) to the second summand and (3.5.13) to |Ex| and employed ΓR ≤ Γ and (3.4.14)

afterwards.

Starting with these estimates the reasoning in the proof of Proposition 5.6 in [60]

yields

Λ ≺ ΓΨ2 +
√

Imm+ Λ
Mη

.

The claim follows from applying Young’s inequality and the condition Ψ ≤M−γ/3Γ−1 to

the right-hand side of the previous estimate. □

In the following lemma we use the notation [v] for the mean of a vector v = (vi)i ∈ CN ,

i.e.,

[v] = 1
N

∑
i

vi.

Lemma 3.5.8. If Ψ is a deterministic control parameter such that Λ ≺ Ψ then we have

[Υ] ∈ O≺(Ψ2).

Proof. If x ̸= −x then we obtain from Schur’s complement formula (3.4.1) and the

definition of Υx

Υx = Ax +Bx − sx,−xExG(x)
−x,−x − ExYx + Fx

1
Gxx

. (3.5.38)

The fluctuation averaging (3.4.9) with tik = 1/N yields [FxG−1
xx ] ∈ O≺(Ψ2). Obviously,

we have |Ax| ≺ Ψ2 and |Bx| ≺ Ψ2 by Lemma 3.5.2. Lemma 3.6.1, Lemma 3.5.2 and

(3.2.7) imply |sx,−xExG(x)
−x,−x| ≺M−1 ≤ Ψ2 due to the first estimate in (3.5.35).

Using (3.5.20) and the first two steps in (3.5.21) with φ = 1 we obtain⏐⏐⏐⏐⏐⏐
(x,−x)∑
k,l

hxkG
(x,−x)
kl hl,−x

⏐⏐⏐⏐⏐⏐ ≺ Ψ. (3.5.39)
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Thus, the representation of Yx in (3.5.22) and the application of Lemma 3.5.2 yield

|Yx| ≺ Ψ2. Hence, Lemma 3.6.1 implies |ExYx| ≺ Ψ2. For x = −x the relation (3.5.38)

without the second to fourth term on the right-hand side and |Ax| ≺ Ψ2 hold true and

|[Υ]| ≺ Ψ2 follows from (3.5.38). □

Proposition 3.5.4, Proposition 3.5.7 and Lemma 3.5.8 imply Theorem 3.2.3 along the

same lines as Proposition 5.3, Proposition 5.6 and Lemma 5.7 in [60] complete the proof

of Theorem 5.1 in [60].

3.6. Proof of the Fluctuation Averaging

In this section, we verify the fluctuation averaging, i.e., Theorem 3.4.5 and Theo-

rem 3.4.6. To this end, we transfer the proof of the fluctuation averaging given in [60]

to our setting. We only highlight the differences due to the special counterdiagonal

terms Gx,−x.

We start with two preparatory lemmas. The following result is the analogue of

Lemma B.1 in [60] whose proof works in the current situation as well. Recall that ExX =

E[X|H(x,−x)] is the expectation conditioned on the minor H(x,−x) and FxX = X − ExX

for an integrable random variable X (cf. Definition 3.4.1 and Definition 3.4.3).

Lemma 3.6.1. Let Ψ be a deterministic control parameter satisfying Ψ ≥ N−C and let

X(u) be nonnegative random variables such that for every p ∈ N there exists a constant

cp with E[X(u)p] ≤ N cp for all large N . If X(u) ≺ Ψ uniformly in u then

ExX(u)n ≺ Ψn, FxX(u)n ≺ Ψn, EX(u)n ≺ Ψn

uniformly in u and in x.

This lemma will be used throughout the following arguments. The trivial condition

E[X(u)p] ≤ N cp will always be fulfilled. The following lemma which replaces (B.5) in [60]

gives an auxiliary bound for estimating high moments of |∑k tikFkG−1
kk | when there are

bounds on Λ = maxx,y|Gxy − δxym| and Λo = maxx ̸=y|Gxy| (cf. (3.2.13)).

Lemma 3.6.2. Let D be a spectral domain. Suppose Λ ≺ Ψ and Λo ≺ Ψo for some

deterministic control parameters Ψ and Ψo which satisfy (3.5.11). Then for fixed p ∈ N
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we have ⏐⏐⏐⏐Fx (G(T)
xx

)−1
⏐⏐⏐⏐ ≺ Ψo (3.6.1)

uniformly in T ⊂ N, |T| ≤ p, x /∈ T ∪ −T and z ∈ D.

Proof. If x = −x then the proof of (3.6.1) is exactly the same as the proof of (B.5)

in [60]. For x ̸= −x we start with (3.4.1). Since x,−x /∈ T we obtain as in the proof of

(3.5.7) by using the first resolvent identity (3.4.2) that

(T,x)∑
a,b

hxaG
(T,x)
ab hbx = C(T)

x +
(T,x,−x)∑

a,b

hxaG
(T,x,−x)
ab hbx

+
(
G

(T,x)
−x,−x

)−1 (T,x,−x)∑
a,b

hxaG
(T,x)
a,−xG

(T,x)
−x,b hbx,

(3.6.2)

where we used the definition

C(T)
x

..= hx,−xG
(T,x)
−x,−xh−x,x +

(T,x,−x)∑
a

hxaG
(T,x)
a,−xh−x,x +

(T,x,−x)∑
b

hx,−xG
(T,x)
−x,b hbx.

The assumptions of Lemma 3.6.1 are fulfilled for each term of the expansion in (3.6.2)

by (3.2.7) and the second estimate in (3.4.5).

Similar to the proof of (3.5.19) we get |C(T)
x | ≺ M−1/2 ≤ Ψo by (3.5.11). Using the

first step in (3.5.24) and the argument in (3.5.25) we get⏐⏐⏐⏐⏐⏐Fx
(T,x,−x)∑

a,b

hxaG
(T,x,−x)
ab hbx

⏐⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐⏐⏐
(T,x,−x)∑
a̸=b

hxaG
(T,x,−x)
ab hbx

⏐⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐⏐
(T,x,−x)∑

a

(
|hxa|2 − sxa

)
G(T,x,−x)
aa

⏐⏐⏐⏐⏐⏐
≺ Ψo

where we used that Ψo fulfills (3.5.11). The estimate⏐⏐⏐⏐⏐⏐
(T,x,−x)∑

k,l

hxkG
(T,x,−x)
kl hl,−x

⏐⏐⏐⏐⏐⏐ ≺ Ψo (3.6.3)

which follows from adapting (3.5.20) and the first step in (3.5.21) implies⏐⏐⏐⏐⏐⏐
(
G

(T,x)
−x,−x

)−1 (T,x,−x)∑
a,b

hxaG
(T,x)
a,−xG

(T,x)
−x,b hbx

⏐⏐⏐⏐⏐⏐ ≺ Ψ2
o ≺ Ψo (3.6.4)
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using a similar representation as in (3.5.22) and Lemma 3.5.2. By Lemma 3.6.1 these

estimates imply ⏐⏐⏐⏐⏐⏐Fx
(T,x)∑
a,b

hxaG
(T,x)
ab hbx

⏐⏐⏐⏐⏐⏐ ≺ Ψo.

Thus, the claim is obtained by applying Schur’s complement formula (3.4.1) to G(T)
xx and

observing that |Fx(hxx − z)| = |hxx| ≺ M−1/2 ≤ Ψo as hxx is independent of H(x,−x) and

Ehxx = 0. □

Proof of Theorem 3.4.6. The proof is similar to the proof of Theorem 4.7 on

pages 48 to 53 in [60] so we only describe the changes needed to transfer this proof to its

version for the fourfold symmetry.

First, we use Lemma 3.6.2 instead of (B.5). Moreover, we have to change some notions

introduced in the proof of Theorem 4.7. In the middle of page 49, an equivalence relation

on the set {1, . . . , p} is introduced which has to be substituted by the following equivalence

relation. Starting with k ..= (k1, . . . , kp) ∈ (Z/NZ)p and r, s ∈ {1, . . . , p} we define r ∼ s

if and only if kr = ks or kr = −ks. As in [60] the summation over all k is regrouped with

respect to this equivalence relation and the notion of “lone” labels has to be understood

with respect to this equivalence relation. We use the same notation kL for the set of

summation indices corresponding to lone labels. Differing from the definition in [60] we

call a resolvent entry G(T)
xy with x, y /∈ T maximally expanded if kL ∪ −kL ⊂ T ∪ {x, y}.

Correspondingly, we denote by A the set of monomials in the off-diagonal entries G(T)
xy

with T ⊂ kL ∪ −kL, x ̸= y and x, y ∈ k\T (considering k as a subset of Z/NZ) and

the inverses of diagonal entries 1/G(T)
xx with T ⊂ kL ∪ −kL and x ∈ k\T. With these

alterations the algorithm can be applied as in [60]. In the proof of (B.15) the assertion

(∗) has to be replaced by

(∗) For each s ∈ L there exists r = τ(s) ∈ {1, . . . , p}\{s} such that the monomial

Arσr
contains a resolvent entry with lower index ks or −ks.

To prove this claim, we suppose by contradiction that there is s ∈ L such that Arσr

does not contain ks and −ks as lower index for all r ∈ {1, . . . , p}\{s}. Without loss of

generality we assume s = 1. This implies that each resolvent entry in Arσr
contains k1 and

−k1 as upper index since Arσr
is maximally expanded for all r ∈ {2, . . . , p}. Therefore,
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Arσr
is independent of k1 as defined in Definition 3.4.4. Using (3.4.6) and proceeding as

in [60] concludes the proof of (∗).

Following verbatim the remaining steps in the proof of Theorem 4.7 in [60] establishes

the assertion of Theorem 3.4.6. □

Now, we deduce Theorem 3.4.5 from Theorem 3.4.6.

Proof of Theorem 3.4.5. The first estimate in (3.4.9) follows from Theorem 3.4.6

directly by setting Ψo
..= Ψ and using Λo ≤ Λ ≺ Ψo.

To verify the second estimate in (3.4.9) we use the fourth estimate in Lemma 3.5.2

which implies

|FxG(T)
xx | = |Fx

(
G(T)
xx −m

)
| ≺ Ψ. (3.6.5)

Now, following the proof of Theorem 3.4.6 verbatim with Ψo
..= Ψ and replacing the

usage of Lemma 3.6.2 by (3.6.5) yield the second estimate in (3.4.9).

Similarly, the third estimate in (3.4.9) is proven by following the proof of Theo-

rem 3.4.6 verbatim with Ψo
..= Ψ and Lemma 3.6.2 replaced by

|FxG(T)
x,−x| ≺ Λo ≺ Ψ

for x ̸= −x which is a consequence of Lemma 3.5.2 and Lemma 3.6.1.

Next, we establish (3.4.10). We start from Schur’s complement formula (3.4.1) with

T = ∅ and use (3.2.6) to get

1
Gxx

= 1
m

+ hxx −

⎛⎝ (x)∑
k,l

hxkG
(x)
kl hlx −m

⎞⎠ . (3.6.6)

Using Lemma 3.5.2 with φ = 1 and the first estimate in (3.4.13) we get⏐⏐⏐⏐ 1
Gxx

− 1
m

⏐⏐⏐⏐ =
⏐⏐⏐⏐Gxx −m
Gxxm

⏐⏐⏐⏐ ≺ |Gxx −m| ≺ Ψ.

Thus, |hxx −
(∑(x)

k,l hxkG
(x)
kl hlx −m

)
| ≺ Ψ as well. Therefore, we can expand the inverse

of the right-hand side of (3.6.6) around 1/m which yields

vx ..= Gxx −m = m2

⎛⎝−hxx +
(x)∑
k,l

hxkG
(x)
kl hlx −m

⎞⎠+ gx (3.6.7)
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with error terms gx such that |gx| ≺ Ψ2 uniformly in x. By (3.5.7), (3.5.8), (3.5.3), (3.5.4)

and (3.5.5), we have for x ̸= −x the representation

(x)∑
k,l

hxkG
(x)
kl hlx =

∑
a

sxaGaa−Ax−Bx−s−x,xG
(x)
−x,−x+Zx+Yx+Cx+s−x,xG

(x)
−x,−x. (3.6.8)

Taking the expectation Ex of (3.6.7) we want to prove that

Exvx = m2∑
a

sxava + fx, (3.6.9)

where |fx| ≺ Ψ2 uniformly in x. From (3.5.8) we get that the sum of the first four

summands on the right-hand side of (3.6.8) is H(x,−x)-measurable. Therefore, it suffices

to show that all summands except the first one on the right-hand side of (3.6.8) are

bounded by Ψ2 uniformly in x. For Ax and Bx this follows directly from their definitions

in (3.5.2). Since Zx = FxXx for some random variable Xx we get ExZx = 0. The

representation (3.5.18) for Cx and Lemma 3.5.2 yield |Cx| ≺ M−1 + M−1/2Ψ ≺ Ψ2 by

(3.5.11). The bound (3.6.4) with T = ∅ gives |Yx| ≺ Ψ2 uniformly in x. If x = −x then

the argumentation in [60] can be applied. This finishes the proof of (3.6.9).

Therefore, since Ex + Fx = 1 we have

wa ..=
∑
x

taxvx =
∑
x

taxExvx +
∑
x

taxFxvx = m2∑
x,y

taxsxyvy + Fa

= m2∑
x,y

saxtxyvy + Fa = m2∑
x

saxwx + Fa,
(3.6.10)

where we used (3.6.9) with the notation Fa ..= ∑
x tax(fx + Fxvx) in the third step and

in the fourth step that T and S commute. Note that |Fa| ≺ Ψ2 uniformly in a as

|∑x taxFxvx| = |∑x taxFxGxx| ≺ Ψ2 by the second estimate in (3.4.9). Introducing the

vectors w ..= (wa)a∈Z/NZ and F ..= (Fa)a∈Z/NZ and writing (3.6.10) in matrix form we get

w = m2Sw + F.

Inverting the last equation yields

w = (1−m2S)−1F.
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Recalling the definition (3.2.8) we have

∥w∥∞ ≤ ΓS∥F∥∞ ≺ ΓSΨ2

since |Fa| ≺ Ψ2 uniformly in a is equivalent to ∥F∥∞ ≺ Ψ2. This proves (3.4.10).

In order to prove (3.4.11) it suffices to verify

ExGx,−x = m2 ∑
a̸=−a

(Eh2
xa)Ga,−a + fx (3.6.11)

with |fx| ≺ Ψ2 uniformly in x. Then (3.4.11) follows from the same reasoning as in the

proof of (3.4.10) with S replaced by R and

wx ..=
∑
a̸=−a

txaGa,−a.

To compute the partial expectation ExGx,−x we use the expansion

Gx,−x = m2
(x,−x)∑
a

(Eh2
xa)G

(x,−x)
a,−a +m2

(x,−x)∑
a̸=b

hxaG
(x,−x)
a,−b hxb

+m2
(x,−x)∑
a

(
h2
xa − Eh2

xa

)
G

(x,−x)
a,−a + (m2 −GxxG

(x)
−x,−x)hx,−x −m2hx,−x

+ (GxxG
(x)
−x,−x −m2)

(x,−x)∑
a̸=b

hxaG
(x,−x)
a,−b hxb

+ (GxxG
(x)
−x,−x −m2)

(x,−x)∑
a

h2
xaG

(x,−x)
a,−a ,

(3.6.12)

which follows from the resolvent identities in a similar way as (3.5.6).

The first summand in (3.6.12) is H(x,−x)-measurable. Using (3.4.2) twice and adding

the two missing terms we obtain the first summand on the right-hand side of (3.6.11).

The error terms originating from the usage of the resolvent identities and the added terms

are obviously dominated by Ψ2. The partial expectations with respect to H(x,−x) of the

second and the fifth term vanish. For the remaining terms we use Lemma 3.6.1. First,

|m2 − GxxG
(x)
−x,−x| ≺ Ψ because of the triangle inequality, Lemma 3.5.2 and the second

estimate in (3.4.13). Thus, using (3.2.7) and (3.4.7) for the fourth term, the first step in

(3.5.21) for the sixth term and (3.5.20) for the seventh term we get that these summands

are dominated by Ψ2. Similarly to (3.5.25) we see that the third summand is dominated by
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Ψ2 using the Large Deviation Bound (C.2) in [60] and the first estimate in Lemma 3.5.2.

Lemma 3.6.1 establishes (3.6.11) which finishes the proof of Theorem 3.4.5. □



CHAPTER 4

Local law for random Gram matrices

This chapter consists of a modified version of the publication [14] which was written

jointly with László Erdős and Torben Krüger. We prove a local law in the bulk of the

spectrum for random Gram matricesXX∗, a generalization of sample covariance matrices,

where X is a large matrix with independent, centered entries with arbitrary variances.

The limiting eigenvalue density that generalizes the Marchenko-Pastur law is determined

by solving a system of nonlinear equations. Our entrywise and averaged local laws are

on the optimal scale with the optimal error bounds. They hold both in the square case

(hard edge) and in the properly rectangular case (soft edge). In the latter case we also

establish a macroscopic gap away from zero in the spectrum of XX∗.

4.1. Introduction

Random matrices were introduced in pioneering works by Wishart [160] and Wig-

ner [157] for applications in mathematical statistics and nuclear physics, respectively.

Wigner argued that the energy level statistics of large atomic nuclei could be described

by the eigenvalues of a large Wigner matrix, i.e., a hermitian matrix H = (hij)Ni,j=1 with

centered, identically distributed and independent entries (up to the symmetry constraint

H = H∗). He proved that the empirical spectral measure (or density of states) converges

to the semicircle law as the dimension of the matrix N goes to infinity. Moreover, he

postulated that the statistics of the gaps between consecutive eigenvalues depend only on

the symmetry type of the matrix and are independent of the distribution of the entries

in the large N limit. The precise formulation of this phenomenon is called the Wigner-

Dyson-Mehta universality conjecture, see [114].

Historically, the second main class of random matrices is the one of sample covariance

matrices. These are of the form XX∗ where X is a p×n matrix with centered, identically

distributed independent entries. In statistics context, its columns contain n samples of a

49
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p-dimensional data vector. In the regime of high dimensional data, i.e., in the limit when

n, p → ∞ in such a way that the ratio p/n converges to a constant, the empirical spec-

tral measure of XX∗ was explicitly identified by Marchenko and Pastur [112]. Random

matrices of the form XX∗ also appear in the theory of wireless communication; the spec-

tral density of these matrices is used to compute the transmission capacity of a Multiple

Input Multiple Output (MIMO) channel. This fundamental connection between random

matrix theory and wireless communication was established by Telatar [147] and Foschini

[76, 77] (see also [150] for a review). In this model, the element xij of the channel matrix

X represents the transmission coefficient from the j-th transmitter to the i-th receiver

antenna. The received signal is given by the linear relation y = Xs + w, where s is the

input signal and w is a Gaussian noise with variance σ2. In case of i.i.d. Gaussian input

signals, the channel capacity is given by

Cap = 1
p

log det
(
I + σ−2XX∗

)
. (4.1.1)

The assumption in these models that the matrix elements of H or X have identical dis-

tribution is a simplification that does not hold in many applications. In Wigner’s model,

the matrix elements hij represent random quantum transition rates between physical

states labelled by i and j and their distribution may depend on these states. Analo-

gously, the transmission coefficients in X may have different distributions. This leads

to the natural generalizations of both classes of random matrices by allowing for general

variances, sij ..= E|hij|2 and sij ..= E|xij|2 , respectively. We will still assume the inde-

pendence of the matrix elements and their zero expectation. Under mild conditions on

the variance matrix S = (sij), the limiting spectral measure depends only on the second

moments, i.e., on S, and otherwise it is independent of the fine details of the distributions

of the matrix elements. However, in general there is no explicit formula for the limiting

spectral measure. In fact, the only known way to find it in the general case is to solve a

system of nonlinear deterministic equations, known as the Dyson (or Schwinger-Dyson)

equation in this context, see [34, 82, 99, 156].
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For the generalization of Wigner’s model, the Dyson equation is a system of equations

of the form

− 1
mi(z)

= z +
N∑
j=1

sijmj(z), for i = 1, . . . , N, z ∈ H, (4.1.2)

where z is a complex parameter in the upper half plane H ..= {z ∈ C : Im z > 0}.

The average ⟨m(z)⟩ = 1
N

∑
imi(z) in the large N limit gives the Stieltjes transform of the

limiting spectral density, which then can be computed by inverting the Stieltjes transform.

In fact, mi(z) approximates individual diagonal matrix elements Gii(z) of the resolvent

G(z) = (H − z)−1, thus the solution of (4.1.2) gives much more information on H than

merely the spectral density. In the case when S is a stochastic matrix, i.e., ∑j sij = 1

for every i, the solution mi(z) to (4.1.2) is independent of i and the density is still the

semicircle law. The corresponding generalized Wigner matrix was introduced in [70] and

the optimal local law was proven in [71, 72]. For the general case, a detailed analysis of

(4.1.2) and the shapes of the possible density profiles was given in [4, 5] with the optimal

local law in [7].

Considering the XX∗ model with a general variance matrix for X, we note that in

statistical applications the entries of X within the same row still have the same variance,

i.e., sik = sil for all i and all k, l. However, beyond statistics, for example modeling

the capacity of MIMO channels, applications require to analyze the spectrum of XX∗

with a completely general variance profile for X [52, 92]. These are called random Gram

matrices, see e.g. [82, 90]. The corresponding Dyson equation is (see [52, 82, 150] and

references therein)

− 1
mi(ζ)

= ζ −
n∑
k=1

sik
1

1 +∑p
j=1 sjkmj(ζ)

, for i = 1, . . . , p, ζ ∈ H. (4.1.3)

We have mi(ζ) ≈ (XX∗ − ζ)−1
ii and the average of mi(ζ) yields the Stieltjes transform

of the spectral density exactly as in case of the Wigner-type ensembles. In fact, there is

a direct link between these two models: Girko’s symmetrization trick reduces (4.1.3) to
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studying (4.1.2) on CN with N = n+ p, where S and H are replaced by

S =

⎛⎜⎝ 0 S

St 0

⎞⎟⎠ , H =

⎛⎜⎝ 0 X

X∗ 0

⎞⎟⎠ , (4.1.4)

respectively, and z2 = ζ.

The limiting spectral density, also called the global law, is typically the first question

one asks about random matrix ensembles. It can be strengthened by considering its local

versions. In most cases, it is expected that the deterministic density computed via the

Dyson equation accurately describes the eigenvalue density down to the smallest possible

scale which is slightly above the typical eigenvalue spacing (we choose the standard nor-

malization such that the spacing in the bulk spectrum is of order 1/N). This requires to

understand the trace of the resolvent G(z) at a spectral parameter very close to the real

axis, down to the scales Im z ≫ 1/N . Additionally, entry-wise local laws and isotropic lo-

cal laws, i.e., controlling individual matrix elements Gij(z) and bilinear forms ⟨v,G(z)w⟩,

carry important information on eigenvectors and allow for perturbation theory. More-

over, effective error bounds on the speed of convergence as N goes to infinity are also of

great interest.

Local laws have also played a crucial role in the recent proofs of the Wigner-Dyson-

Mehta conjecture. The three-step approach, developed in a series of works by Erdős,

Schlein, Yau and Yin [64, 65] (see [69] for a review), was based on establishing the local

law as the first step. Similar input was necessary in the alternative approach by Tao and

Vu in [141, 144].

In this paper, we establish the optimal local law for random Gram matrices with a

general variance matrix S in the bulk spectrum; edge analysis and local spectral univer-

sality is deferred to a forthcoming work. We show that the empirical spectral measure of

XX∗ can be approximated by a deterministic measure ν on R with a continuous density

away from zero and possibly a point mass at zero. The convergence holds locally down to

the smallest possible scale and with an optimal speed of order 1/N . In the special case

when X is a square matrix, n = p, the measure ν does not have a point mass but the

density has an inverse square-root singularity at zero (called the hard edge case). In the

soft edge case, n ̸= p, the continuous part of ν is supported away from zero and it has
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a point mass of size 1 − n/p at zero if p > n. All these features are well-known for the

classical Marchenko-Pastur setup, but in the general case we need to demonstrate them

without any explicit formula.

We now summarize some previous related results on Gram matrices. If each entry

of X has the same variance, local Marchenko-Pastur laws have first been proven in [65,

122] for the soft edge case; and in [44, 46] for the hard edge case. The isotropic local law

was given in [36]. Relaxing the assumption of identical variances to a doubly stochastic

variance matrix of X, the optimal local Marchenko-Pastur law has been established in [3]

for the hard edge case. Sample correlation matrices in the soft edge case were considered

in [28].

Motivated by the linear model in multivariate statistics and to depart from the iden-

tical distribution, random matrices of the form TZZ∗T ∗ have been extensively studied

where T is a deterministic matrix and the entries of Z are independent, centered and have

unit variance. If T is diagonal, then they are generalizations of sample covariance matrices

as TZZ∗T ∗ = XX∗ and the elements of X = TZ are also independent. With this defini-

tion, all entries within one row of X have the same variance since sij = E|xij|2 = (TT ∗)ii,

i.e., it is a special case of our random Gram matrix. In this case the Dyson system of

equations (4.1.3) can be reduced to a single equation for the average ⟨m(z)⟩, i.e., the

limiting density can still be obtained from a scalar self-consistent equation. This is even

true for matrices of the form XX∗ with X = TZT̃ , where both T and T̃ are determin-

istic, investigated for example in [53]. For general T the elements of X = TZ are not

independent, so general sample covariance matrices are typically not Gram matrices. The

global law for TZZ∗T ∗ has been proven by Silverstein and Bai in [134]. Knowles and Yin

showed optimal local laws for a general deterministic T in [101].

Finally, we review some existing results on random Gram matrices with general vari-

ance S, when (4.1.3) cannot be reduced to a simpler scalar equation. The global law, even

with nonzero expectation of X, has been determined by Girko [82] via (4.1.3) who also

established the existence and uniqueness of the solution to (4.1.3). More recently, moti-

vated by the theory of wireless communication, Hachem, Loubaton and Najim initiated a

rigorous study of the asympotic behaviour of the channel capacity (4.1.1) with a general
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variance matrix S [88, 92], This required to establish the global law under more general

conditions than Girko; see also [90] for a review from the point of view of applications.

Hachem et al. have also established Gaussian fluctuations of the channel capacity (4.1.1)

around a deterministic limit in [91] for the centered case. For a nonzero expectation of

X, a similar result was obtained in [89], where S was restricted to a product form. Very

recently in [33], a special k-fold clustered matrix XX∗ was considered, where the samples

came from k different clusters with possibly different distributions. The Dyson equation

in this case reduces to a system of k equations. In an information-plus-noise model of

the form (R + X)(R + X)∗, the effect of adding a noise matrix to X with identically

distributed entries was studied knowing the limiting density of RR∗ [55].

In all previous works concerning general Gram matrices, the spectral parameter z

was fixed, in particular Im z had a positive lower bound independent of the dimension of

the matrix. Technically, this positive imaginary part provided the necessary contraction

factor in the fixed point argument that led to the existence, uniqueness and stability of

the solution to the Dyson equation, (4.1.3). For local laws down to the optimal scales

Im z ≫ 1/N , the regularizing effect of Im z is too weak. In the bulk spectrum Im z is

effectively replaced with the local density, i.e., with the average imaginary part Im ⟨m(z)⟩.

The main difficulty with this heuristics is its apparent circularity: the yet unknown

solution itself is necessary for regularizing the equation. This problem is present in all

existing proofs of any local law. This circularity is broken by separating the analysis

into three parts. First, we analyze the behavior of the solution m(z) as Im z → 0.

Second, we show that the solution is stable under small perturbations of the equation

and the stability is provided by Im ⟨m(E + i0)⟩ for any energy E in the bulk spectrum.

Finally, we show that the diagonal elements of the resolvent of the random matrix satisfy

a perturbed version of (4.1.3), where the perturbation is controlled by large deviation

estimates. Stability then provides the local law.

While this program could be completed directly for the Gram matrix and its Dyson

equation, (4.1.3), the argument appears much shorter if we used Girko’s linearization

(4.1.4) to reduce the problem to a Wigner-type matrix and use the comprehensive analysis
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of (4.1.2) from [4, 5] and the local law from [7]. There are two major obstacles to this

naive approach.

First, the results of [4, 5] are not applicable as S does not satisfy the uniform primi-

tivity assumption imposed in these papers (recall that a matrix A is primitive if there is a

positive integer L such that all entries of AL are strictly positive). This property is crucial

for many proofs in [4, 5] but S in (4.1.4) is a typical example of a nonprimitive matrix.

It is not a mere technical subtlety, in fact in the current paper, the stability estimates of

(4.1.2) require a completely different treatment, culminating in the key technical bound,

the Rotation-Inversion lemma (see Lemma 4.3.6 later).

Second, Girko’s transformation is singular around z ≈ 0 since it involves a z2 = ζ

change in the spectral parameter. This accounts for the singular behavior near zero in

the limiting density for Gram matrices, while the corresponding Wigner-type matrix has

no singularity at zero. Thus, we need to perform a more accurate analysis near zero. If

p ̸= n, the soft edge case, we derive and analyze two new equations for the first coefficients

in the expansion of m around zero. Indeed, the solutions to these new equations describe

the point mass at zero and provide information about the gap above zero in the support

of the approximating measure. In the hard edge case, n = p, an additional symmetry

allows us to exclude a point mass at zero.

Acknowledgement. The authors thank Zhigang Bao for helpful discussions.

Notation. For vectors v, w ∈ Cl, the operations product and absolute value are

defined componentwise, i.e., vw = (viwi)li=1 and |v| = (|vi|)li=1. Moreover, for w ∈

(C \ {0})l, we set 1/w ..= (1/wi)li=1. For vectors v, w ∈ Cl, we define ⟨w⟩ = l−1∑l
i=1 wi,

⟨v , w⟩ = l−1∑l
i=1 viwi, ∥w∥2

2 = l−1∑l
i=1|wi|2 and ∥w∥∞ = maxi=1,...,l|wi|, ∥v∥1

..= ⟨|v|⟩.

Note that ⟨w⟩ = ⟨1 , w⟩ where we used the convention that 1 also denotes the vector

(1, . . . , 1) ∈ Cl. For a matrix A ∈ Cl×l, we use the short notations ∥A∥∞
..= ∥A∥∞→∞

and ∥A∥2
..= ∥A∥2→2 if the domain and the target are equipped with the same norm

whereas we use ∥A∥2→∞ to denote the matrix norm of A when it is understood as a map

(Cl, ∥·∥2)→ (Cl, ∥·∥∞).
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4.2. Main results

Let X = (xik)i,k be a p × n matrix with independent, centered entries and variance

matrix S = (sik)i,k, i.e.,

Exik = 0, sik ..= E|xik|2

for i = 1, . . . , p and k = 1, . . . , n.

Assumptions 4.2.1. (A) The variance matrix S is flat, i.e., there is s∗ > 0 such

that

sik ≤
s∗

p+ n

for all i = 1, . . . , p and k = 1, . . . , n.

(B) There are L1, L2 ∈ N and ψ1, ψ2 > 0 such that

[(SSt)L1 ]ij ≥
ψ1

p+ n
, [(StS)L2 ]kl ≥

ψ2

p+ n

for all i, j = 1, . . . , p and k, l = 1, . . . , n.

(C) All entries of X have bounded moments in the sense that there are µm > 0 for

m ∈ N such that

E|xik|m ≤ µms
m/2
ik

for all i = 1, . . . , p and k = 1, . . . , n.

(D) The dimensions of X are comparable with each other, i.e., there are constants

r1, r2 > 0 such that

r1 ≤
p

n
≤ r2.

In the following, we will assume that s∗, L1, L2, ψ1, ψ2, r1, r2 and the sequence

(µm)m are fixed constants which we will call, together with some constants introduced

later, model parameters. The constants in all our estimates will depend on the model

parameters without further notice. We will use the notation f ≲ g if there is a constant

c > 0 that depends on the model parameter only such that f ≤ cg and their counterparts

f ≳ g if g ≲ f and f ∼ g if f ≲ g and f ≳ g. The model parameters will be kept

fixed whereas the parameters p and n are large numbers which will eventually be sent to

infinity.
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We start with a theorem about the deterministic density.

Theorem 4.2.2. (i) If (A) holds true, then there is a unique holomorphic function

m : H→ Cp satisfying

− 1
m(ζ) = ζ − S 1

1 + Stm(ζ) (4.2.1)

for all ζ ∈ H such that Imm(ζ) > 0 for all ζ ∈ H. Moreover, there is a probability

measure ν on R whose support is contained in [0, 4s∗] such that

⟨m(ζ)⟩ =
∫
R

1
ω − ζ

ν(dω)

for all ζ ∈ H.

(ii) Assume (A), (B) and (D). The measure ν is absolutely continuous wrt. the

Lebesgue measure apart from a possible point mass at zero, i.e., there are a

number π∗ ∈ [0, 1] and a locally Hölder-continuous function π : (0,∞) → [0,∞)

such that ν(dω) = π∗δ0(dω) + π(ω)1(ω > 0)dω.

Part (i) of this theorem has already been proven in [92] and we will see that it also

follows directly from [4, 5]. We included this part only for completeness. Part (ii) is a

new result.

For ζ ∈ C \ R, we denote the resolvent of XX∗ at ζ by

R(ζ) ..= (XX∗ − ζ)−1

and its entries by Rij(ζ) for i, j = 1, . . . , p.

We state our main result, the local law, i.e., optimal estimates on the resolvent R,

both in entrywise and in averaged form. In both cases, we provide different estimates

when the real part of the spectral parameter ζ is in the bulk and when it is away from

the spectrum. As there may be many zero eigenvalues, hence, a point mass at zero in the

density ν, our analysis for spectral parameters ζ in the vicinity of zero requires a special

treatment. We thus first prove the local law under the general assumptions (A) – (D) for

ζ away from zero. Some additional assumptions in the following subsections will allow

us to extend our arguments to all ζ.
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All of our results are uniform in the spectral parameter ζ which is contained in some

spectral domain

Dδ
..= {ζ ∈ H : δ ≤ |ζ| ≤ 10s∗} (4.2.2)

for some δ ≥ 0. In the first result, we assume δ > 0. In the next section, under additional

assumptions on S, we will work on the bigger spectral domain D0 that also includes a

neighbourhood of zero.

Theorem 4.2.3 (Local Law for Gram matrices). Let δ, ε∗ > 0 and γ ∈ (0, 1). If X is a

random matrix satisfying (A) – (D) then for every ε > 0 and D > 0 there is a constant

Cε,D > 0 such that

P
(
∃ζ ∈ Dδ, i, j ∈ {1, . . . , p} : Im ζ ≥ p−1+γ, π(Re ζ) ≥ ε∗,

|Rij(ζ)−mi(ζ)δij| ≥
pε√
pIm ζ

)
≤ Cε,D

pD
,

(4.2.3a)

P
(
∃ζ ∈ Dδ, i, j ∈ {1, . . . , p} : dist(ζ, supp ν) ≥ ε∗,

|Rij(ζ)−mi(ζ)δij| ≥
pε
√
p

)
≤ Cε,D

pD
,

(4.2.3b)

for all p ∈ N. Furthermore, for any sequences of deterministic vectors w ∈ Cp satisfying

∥w∥∞ ≤ 1, we have

P
(
∃ζ ∈ Dδ : Im ζ ≥ p−1+γ, π(Re ζ) ≥ ε∗,⏐⏐⏐⏐⏐1p

p∑
i=1

wi [Rii(ζ)−mi(ζ)]
⏐⏐⏐⏐⏐ ≥ pε

pIm ζ

)
≤ Cε,D

pD
,

(4.2.4a)

P
(
∃ζ ∈ Dδ : dist(ζ, supp ν) ≥ ε∗,⏐⏐⏐⏐⏐1p

p∑
i=1

wi [Rii(ζ)−mi(ζ)]
⏐⏐⏐⏐⏐ ≥ pε

p

)
≤ Cε,D

pD
,

(4.2.4b)

for all p ∈ N. In particular, choosing wi = 1 for all i = 1, . . . , p in (4.2.4) yields that

p−1 TrR(ζ) is close to ⟨m(ζ)⟩.

The constant Cε,D depends, in addition to ε and D, only on the model parameters and

on γ, δ and ε∗.
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These results are optimal up to the arbitrarily small tolerance exponents γ > 0 and

ε > 0. We remark that under stronger (e.g. subexponential) moment conditions in (C),

one may replace the pγ and pε factors with high powers of log p.

Owing to the symmetry of the assumptions (A) – (D) in X and X∗, we can exchange

X and X∗ in Theorem 4.2.3 and obtain a statement about X∗X instead of XX∗ as well.

For the results in the up-coming subsections, we need the following notion of a se-

quence of high probability events.

Definition 4.2.4 (Overwhelming probability). Let N0 : (0,∞) → N be a function that

depends on the model parameters and the tolerance exponent γ only. For a sequence

A = (A(p))p of random events, we say that A holds true asymptotically with overwhelming

probability (a.w.o.p.) if for all D > 0

P(A(p)) ≥ 1− pD

for all p ≥ N0(D).

We denote the eigenvalues of XX∗ by λ1 ≤ . . . ≤ λp and define

i(χ) ..=
⌈
p
∫ χ

−∞
ν(dω)

⌉
, for χ ∈ R. (4.2.5)

For a spectral parameter χ ∈ R in the bulk, the nonnegative integer i(χ) is the index of

an eigenvalue expected to be close to χ.

Theorem 4.2.5. Let δ, ε∗ > 0 and X be a random matrix satisfying (A) – (D).

(i) (Bulk rigidity away from zero) For every ε > 0 and D > 0, there exists a constant

Cε,D > 0 such that

P
(
∃ τ ∈ (δ, 10s∗] : π(τ) ≥ ε∗, |λi(τ) − τ | ≥

pε

p

)
≤ Cε,D

pD
(4.2.6)

holds true for all p ∈ N.

The constant Cε,D depends, in addition to ε and D, only on the model pa-

rameters as well as on δ and ε∗.

(ii) Away from zero, all eigenvalues lie in the vicinity of the support of ν, i.e., a.w.o.p.

Spec(XX∗) ∩ {τ ; |τ | ≥ δ, dist(τ, supp ν) ≥ ε∗} = ∅. (4.2.7)
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In the following two subsections, we distinguish between square Gram matrices, n = p,

and properly rectangular Gram matrices, |p/n− 1| ≥ d∗ > 0, in order to extend the local

law, Theorem 4.2.3, to include zero in the spectral domain D. Since the density of states

behaves differently around zero in these two cases, separate statements and proofs are

necessary.

4.2.1. Square Gram matrices. The following concept is well-known in linear al-

gebra. For understanding singularities of the density of states in random matrix theory,

it was introduced in [4].

Definition 4.2.6 (Fully indecomposable matrix). A K × K matrix T = (tij)Ki,j=1 with

nonegative entries is called fully indecomposable if for any two subsets I, J ⊂ {1, . . . , K}

such that #I + #J ≥ K, the submatrix (tij)i∈I,j∈J contains a nonzero entry.

For square Gram matrices, we add the following assumptions.

(E1) The matrix X is square, i.e., n = p.

(F1) The matrix S is block fully indecomposable, i.e., there are constants φ > 0,

K ∈ N, a fully indecomposable matrix Z = (zij)Ki,j=1 with zij ∈ {0, 1} and a

partition (Ii)Ki=1 of {1, . . . , p} such that

#Ii = p

K
, sxy ≥

φ

p+ n
zij, x ∈ Ii and y ∈ Ij

for all i, j = 1, . . . , K.

The constants φ and K in (F1) are considered model parameters as well.

Remark 4.2.7. Clearly, (E1) yields (D) with r1 = r2 = 1. Moreover, adapting the proof

of Theorem 2.2.1 in [29], we see that (F1) implies (B) with L1, L2, ψ1 and ψ2 explicitly

depending on φ and K.

Theorem 4.2.8 (Local law for square Gram matrices). If X satisfies (A), (C), (E1) and

(F1), then

(i) The conclusions of Theorem 4.2.3 are valid with the following modifications:

(4.2.3b) and (4.2.4) hold true for δ = 0 (cf. (4.2.2)) while instead of (4.2.3a),
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we have

P
(
∃ζ ∈ D0,∃i, j : Im ζ ≥ p−1+γ, π(Re ζ) ≥ ε∗,

|Rij(ζ)−mi(ζ)δij| ≥ pε
√
⟨Imm(ζ)⟩
pIm ζ

)
≤ Cε,D

pD
.

(4.2.8)

(ii) π∗ = 0 and the limit limω↓0 π(ω)
√
ω exists and lies in (0,∞).

(iii) (Bulk rigidity down to zero) For every ε∗ > 0 and every ε > 0 and D > 0, there

exists a constant Cε,D > 0 such that

P
(
∃ τ ∈ (0, 10s∗] : π(τ) ≥ ε∗, |λi(τ) − τ | ≥

pε

p

(
√
τ + 1

p

))
≤ Cε,D

pD
(4.2.9)

for all p ∈ N. The constant Cε,D depends, in addition to ε and D, only on the

model parameters and on ε∗.

(iv) There are no eigenvalues away from the support of ν, i.e., (4.2.7) holds true with

δ = 0.

We remark that the bound of the individual resolvent entries (4.2.8) deteriorates as

ζ gets close to zero since ⟨Imm(ζ)⟩ ∼ |ζ|−1/2 in this regime while the averaged version,

(4.2.4), with δ = 0, does not show this behaviour.

4.2.2. Properly rectangular Gram matrices.

(E2) The matrix X is properly rectangular, i.e., there is d∗ > 0 such that⏐⏐⏐⏐pn − 1
⏐⏐⏐⏐ ≥ d∗.

(F2) The matrix elements of S are bounded from below, i.e., there is a φ > 0 such

that

sik ≥
φ

n+ p

for all i = 1, . . . , p and k = 1, . . . , n.

The constants d∗ and φ in (E2) and (F2), respectively, are also considered as model

parameters. Note that (F2) is a simpler version of (F1). For properly rectangular Gram

matrices we work under the stronger condition (F2) for simplicity but our analysis could

be adjusted to some weaker condition as well.
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Remark 4.2.9. Note that (F2) immediately implies condition (B) with L = 1.

We introduce the lower edge of the absolutely continuous part of the distribution ν

for properly rectangular Gram matrices

δπ ..= inf{ω > 0: π(ω) > 0}. (4.2.10)

Theorem 4.2.10 (Local law for properly rectangular Gram matrices). Let X be a random

matrix satisfying (A), (C), (D), (E2) and (F2). We have

(i) The gap between zero and the lower edge is macroscopic δπ ∼ 1.

(ii) (Bulk rigidity down to zero) The estimate (4.2.6) holds true with δ = 0.

(iii) There are no eigenvalues away from the support of ν, i.e., (4.2.7) holds true with

δ = 0.

(iv) If p > n, then π∗ = 1− n/p and dim ker(XX∗) = p− n a.w.o.p.

(v) If p < n, then π∗ = 0 and dim ker(XX∗) = 0 a.w.o.p.

(vi) (Local law around zero) For every ε∗ ∈ (0, δπ), every ε > 0 and D > 0, there

exists a constant Cε,D > 0, such that

P
(
∃ ζ ∈ H, i, j ∈ {1, . . . , p} : |ζ| ≤ δπ − ε∗,

|Rij(ζ)−mi(ζ)δij| ≥
pε

|ζ|√p

)
≤ Cε,D

pD
,

(4.2.11)

for all p ∈ N if p > n and

P
(
∃ ζ ∈ H, i, j ∈ {1, . . . , p} : |ζ| ≤ δπ − ε∗,

|Rij(ζ)−mi(ζ)δij| ≥
pε
√
p

)
≤ Cε,D

pD
,

(4.2.12)

for all p ∈ N if p < n. Moreover, in both cases

P
(
∃ ζ ∈ H : |ζ| ≤ δπ − ε∗,

⏐⏐⏐⏐⏐1p
p∑
i=1

[Rii(ζ)−mi(ζ)]
⏐⏐⏐⏐⏐ ≥ pε

p

)
≤ Cε,D

pD
, (4.2.13)

for all p ∈ N.

The constant Cε,D depends, in addition to ε and D, only on the model pa-

rameters and on ε∗.
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If p > n, then the Stieltjes transform of the empirical spectral measure of XX∗ has

a term proportional to 1/ζ due to the macroscopic kernel of XX∗. This is the origin of

the additional factor 1/|ζ| in (4.2.11).

Remark 4.2.11. As a consequence of Theorem 4.2.8 and Theorem 4.2.10 and under the

same conditions, the standard methods in [36] and [7] can be used to prove an anisotropic

law and delocalization of eigenvectors in the bulk.

4.3. Quadratic vector equation

For the rest of the paper, without loss of generality, we will assume that s∗ = 1 in (A),

which can be achieved by a simple rescaling of X. In the whole section, we will assume

that the matrix S satisfies (A), (B) and (D) without further notice.

4.3.1. Self-consistent equation for resolvent entries. We introduce the random

matrix H and the deterministic matrix S defined through

H =

⎛⎜⎝ 0 X

X∗ 0

⎞⎟⎠ , S =

⎛⎜⎝ 0 S

St 0

⎞⎟⎠ . (4.3.1)

Note that both matrices, H and S have dimensions (p + n) × (p + n). We denote

their entries by H = (hxy)x,y and S = (σxy)x,y, respectively, where σxy = E|hxy|2 with

x, y = 1, . . . , n+ p.

It is easy to see that condition (B) implies

(B’) There are L ∈ N and ψ > 0 such that

L∑
k=1

(Sk)xy ≥
ψ

n+ p
(4.3.2)

for all x, y = 1, . . . , n+ p.

In the following, a crucial part of the analysis will be devoted to understanding the

resolvent of H at z ∈ H, i.e., the matrix

G(z) ..= (H − z)−1 (4.3.3)
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whose entries are denoted by Gxy(z) for x, y = 1, . . . , n + p. For V ⊂ {1, . . . , n + p}, we

use the notation G(V )
xy to denote the entries of the resolvent G(V )(z) = (H(V ) − z)−1 of

the matrix H(V )
xy = hxy1(x /∈ V )1(y /∈ V ) where x, y = 1, . . . , n+ p.

The Schur complement formula and the resolvent identities applied to G(z) yield the

self-consistent equations

− 1
g1,i(z)

= z +
n∑
k=1

sikg2,k(z) + d1,i(z), (4.3.4a)

− 1
g2,k(z)

= z +
p∑
i=1

sikg1,i(z) + d2,k(z), (4.3.4b)

where g1,i(z) ..= Gii(z) for i = 1, . . . , p and g2,k(z) ..= Gk+p,k+p(z) for k = 1, . . . , n with

the error terms

d1,r
..=

n∑
k,l=1,k ̸=l

xrkG
(r)
kl xrl +

n∑
k=1

(
|xrk|2 − srk

)
G

(r)
k+n,k+n −

n∑
k=1

srk
Gk+n,rGr,k+n

g1,r
,

d2,m
..=

p∑
i,j=1,i ̸=j

ximG
(m+p)
ij xjm +

p∑
i=1

(
|xim|2 − sim

)
G

(m+p)
ii −

p∑
i=1

sim
Gi,m+pGm+p,i

g2,m

for r = 1, . . . , p and m = 1, . . . , n.

We will prove a local law which states that g1,i(z) and g2,k(z) can be approximated by

(m1(z))i and (m2(z))k, respectively, where m1 : H→ Cp and m2 : H→ Cn are the unique

solution of

− 1
m1

= z + Sm2, (4.3.5a)

− 1
m2

= z + Stm1, (4.3.5b)

which satisfy Imm1(z) > 0 and Imm2(z) > 0 for all z ∈ H.

The system of self-consistent equations for g1 and g2 in (4.3.4) can be seen as a

perturbation of the system (4.3.5). With the help of S, equations (4.3.5a) and (4.3.5b)

can be combined to a vector equation for m = (m1,m2)t ∈ Hp+n, i.e.,

− 1
m

= z + Sm. (4.3.6)

Since S is symmetric, has nonnegative entries and fulfills (A) with s∗ = 1, Theorem 2.1

in [4] is applicable to (4.3.6). Here, we take a = 0 in Theorem 2.1 of [4]. This theorem
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implies that (4.3.6) has a unique solution m with Imm(z) > 0 for any z ∈ H. Moreover,

by this theorem, mx is the Stieltjes transform of a symmetric probability measure on R

whose support is contained in [−2, 2] for all x = 1, . . . , n+ p and we have

∥m(z)∥2 ≤
2
|z|

(4.3.7)

for all z ∈ H. The function ⟨m⟩ is the Stieltjes transform of a symmetric probability

measure on R which we denote by ρ, i.e.,

⟨m(z)⟩ =
∫
R

1
t− z

ρ(dt) (4.3.8)

for z ∈ H. Its support is contained in [−2, 2].

We combine (4.3.4a) and (4.3.4b) to obtain

− 1
g

= z + Sg + d, (4.3.9)

where g = (g1, g2)t and d = (d1, d2)t. We think of (4.3.9) as a perturbation of (4.3.6)

and most of the subsequent subsection is devoted to the study of (4.3.9) for an arbitrary

perturbation d.

Before we start studying (4.3.6) we want to indicate how m and R are related to

m = (m1,m2)t and G, respectively. The Stieltjes transforms as well as the resolvents

are essentially related via the same transformation of the spectral parameter. If G11(z)

denotes the upper left p × p block of G(z) then R(z2) = (XX∗ − z2)−1 = G11(z)/z. In

the proof of Theorem 4.2.2 in Subsection 4.3.4, we will see that m and m1 are related

via m(ζ) = m1(
√
ζ)/
√
ζ. (We always choose the branch of the square root satisfying

Im
√
ζ > 0 for Im ζ > 0.) Assuming this relation and introducing m̃2(ζ) ..= m2(

√
ζ)/
√
ζ,

we obtain
− 1
m(ζ) = ζ(1 + Sm̃2(ζ)),

− 1
m̃2(ζ)

= ζ(1 + Stm(ζ))
(4.3.10)

from (4.3.5). Solving the second equation for m̃2 and plugging the result into the first one

yields (4.2.1) immediately. In fact, m̃2 is the analogue of m corresponding to X∗X, i.e,

the Stieltjes transform of the deterministic measure approximating the eigenvalue density

of X∗X.
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4.3.2. Structure of the solution. We first notice that the inequality sik ≤ 1/(n+p)

implies

∥Stw∥∞ = max
k=1,...,n

p∑
i=1

sik|wi| ≤ max
k=1,...,n

(
p

p∑
i=1

s2
ik

)1/2 (1
p

p∑
i=1
|wi|2

)1/2

≤ ∥w∥2 (4.3.11)

for all w ∈ Cp, i.e., ∥St∥2→∞ ≤ 1. Now, we establish some preliminary estimates on the

solution of (4.3.6).

Lemma 4.3.1. Let z ∈ H and x ∈ {1, . . . , n+ p}. We have

|mx(z)| ≤
1

dist(z, supp ρ) , (4.3.12a)

Immx(z) ≤
Im z

dist(z, supp ρ)2 . (4.3.12b)

If z ∈ H and |z| ≤ 10 then

|z| ≲ |mx(z)| ≤ ∥m(z)∥∞ ≲
|z|2−2L

⟨Imm(z)⟩ (4.3.13a)

|z|2L⟨Imm(z)⟩ ≲ Immx(z). (4.3.13b)

In particular, the support of the measures representing mx is independent of x away from

zero.

The proof essentially follows the same line of arguments as the proof of Lemma 5.4

in [4]. However, instead of using the lower bound on the entries of SL as in [4] we have

to make use of the lower bound on the entries of ∑L
k=1 S

k.

To prove another auxiliary estimate on S, we define the vectors Sx = (σxy)y=1,...,n+p ∈

Rn+p for x = 1, . . . , n+ p. Since (4.3.2) implies

ψ ≤
L∑
k=1

n+p∑
y=1

(Sk)xy ≤
L∑
k=1

n+p∑
v=1

σxv max
t=1,...,n+p

n+p∑
y=1

(Sk−1)ty ≤ L
n+p∑
v=1

σxv

for any fixed x = 1, . . . , n+ p, where we used ∥Sk−1∥∞ ≤ ∥S∥k−1
∞ ≤ 1 by (A), we obtain

inf
x=1,...,n+p

∥Sx∥1 ≥
ψ

L
. (4.3.14)
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In particular, together with (A), this implies
p∑
j=1

sjk ∼ 1,
n∑
l=1

sil ∼ 1, i = 1, . . . , p, k = 1, . . . , n. (4.3.15)

In the study of the stability of (4.3.6) when perturbed by a vector d, as in (4.3.9), the

linear operator

F (z)w ..= |m(z)|S(|m(z)|w) (4.3.16)

for w ∈ Cn+p plays an important role. Before we collect some properties of operators

of this type in the next lemma, we first recall the definition of the gap of an operator

from [4].

Definition 4.3.2. Let T be a compact self-adjoint operator on a Hilbert space. The

spectral gap Gap(T ) ≥ 0 is the difference between the two largest eigenvalues of |T |

(defined by spectral calculus). If the operator norm ∥T∥ is a degenerate eigenvalue of

|T |, then Gap(T ) = 0.

In the next lemma, we study matrices of the form F̂ (r)xy ..= rxσxyry where r ∈

(0,∞)n+p and x, y = 1, . . . , n + p. If infx rx > 0 then (4.3.2) implies that all entries

of ∑L
k=1 F̂ (r)k are strictly positive. Therefore, by the Perron-Frobenius theorem, the

eigenspace corresponding to the largest eigenvalue λ̂(r) of F̂ (r) is one-dimensional and

spanned by a unique non-negative vector f̂ = f̂(r) such that ⟨f̂ , f̂⟩ = 1.

The block structure of S implies that there is a matrix F̂ (r) ∈ Rp×n such that

F̂ (r) =

⎛⎜⎝ 0 F̂ (r)

F̂ (r)t 0

⎞⎟⎠ . (4.3.17)

However, for this kind of operator, we obtain Spec (F̂ (r)) = − Spec (F̂ (r)), i.e., Gap(F̂ (r))

= 0 by above definition. Therefore, we will compute Gap(F̂ (r)F̂ (r)t), instead. We will

apply these observations for F (z) where the blocks F̂ (|m(z)|) will be denoted by F (z).

Lemma 4.3.3. For a vector r ∈ (0,∞)n+p which is bounded by constants r+ ∈ (0,∞)

and r− ∈ (0, 1], i.e.,

r− ≤ rx ≤ r+
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for all x = 1, . . . , n + p, we define the matrix F̂ (r) with entries F̂ (r)xy ..= rxσxyry for

x, y = 1, . . . , n + p. Then the eigenspace corresponding to λ̂(r) ..= ∥F̂ (r)∥2→2 is one-

dimensional and λ̂(r) satisfies the estimates

r2
− ≲ λ̂(r) ≲ r2

+. (4.3.18)

There is a unique eigenvector f̂ = f̂(r) corresponding to λ̂(r) satisfying f̂x ≥ 0 and

∥f̂∥2 = 1. Its components satisfy

r2L
−
r4

+
min

{
λ̂(r), λ̂(r)−L+2

}
≲ f̂x ≲

r4
+

λ̂(r)2
, for all x = 1, . . . , n+ p. (4.3.19)

Moreover, F̂ (r)F̂ (r)t has a spectral gap

Gap
(
F̂ (r)F̂ (r)t

)
≳
r8L

−
r16

+
min

{
λ̂(r)6, λ̂(r)−8L+10

}
. (4.3.20)

The estimates in (4.3.18) and (4.3.19) can basically be proven following the proof of

Lemma 5.6 in [4] where SL is replaced by∑L
k=1 S

k and (F̂ /λ̂)L by∑L
k=1(F̂ /λ̂)k. Therefore,

we will only show (4.3.20) assuming the other estimates.

Proof. We write f̂ = (f̂1, f̂2)t for f̂1 ∈ Cp and f̂2 ∈ Cn and define a linear operator

on Cp through

T ..=
L∑
k=1

(
F̂ F̂ t

λ̂2

)k
.

Thus, ∥T∥2 = L as T f̂1 = Lf̂1. Using (B’) we first estimate the entries tij by

tij ≥
L∑
k=1

r4k
−

λ̂2k

(
(SSt)k

)
ij
≥ r4L

− min
{
λ̂−2, λ̂−2L

} ψ

n+ p
, for i, j = 1, . . . , p.

Estimating ∥f̂1∥2 and ∥f̂1∥∞ from (4.3.19) and applying Lemma 5.6 in [5] or Lemma 5.7

in [4] yield

Gap(T ) ≥ ∥f̂1∥2
2

∥f̂1∥2
∞
p inf
i,j
tij ≳

r8L
−
r16

+
min

{
λ̂4, λ̂−8L+8

}
.

Here we used (D) and note that the factor infi,j tij in Lemma 5.6 in [5] is replaced by

p infi,j tij as tij are considered as the matrix entries of T and not as the kernel of an integral

operator on L2({1, . . . , p}) where {1, . . . , p} is equipped with the uniform probability

measure. As q(x) ..= x + x2 + . . . + xL is a monotonously increasing, differentiable
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function on [0, 1] and Spec(F̂ F̂ t/λ̂2) ⊂ [0, 1] we obtain Gap(T ) ∼ Gap(F̂ F̂ t)/λ̂2 which

concludes the proof. □

Lemma 4.3.4. The matrix F (z) defined in (4.3.16) with entries

F xy(z) = |mx(z)|σxy|my(z)|

has the norm

∥F (z)∥2 = 1− Im z⟨f(z)|m(z)|⟩
⟨f(z)Imm(z)|m(z)|−1⟩

, (4.3.21)

where f(z) is the unique eigenvector of F (z) associated to ∥F (z)∥2. In particular, we

obtain

(1− ∥F (z)∥2)−1 ≲
1
|z|

min
{

1
Im z

,
1

|z| dist(z, supp ρ)2

}
(4.3.22)

for z ∈ H satisfying |z| ≤ 10.

Proof. The derivation of (4.3.21) follows the same steps as the proof of (4.4) in [5]

(compare Lemma 5.5 in [4] as well). We take the imaginary part of (4.3.6), multiply the

result by |m| and take the scalar product with f . Thus, we obtain⟨
f ,

Imm
|m|

⟩
= Im z⟨f |m|⟩+ ∥F ∥2

⟨
f ,

Imm
|m|

⟩
, (4.3.23)

where we used the symmetry of F and Ff = ∥F ∥2f . Solving (4.3.23) for ∥F ∥2

yields (4.3.21).

Now, (4.3.22) is a direct consequence of Lemma 4.3.1 and (4.3.21). □

4.3.3. Stability away from the edges and continuity. All estimates of m− g,

when m and g satisfy (4.3.6) and (4.3.9), respectively, are based on inverting the linear

operator

B(z)w ..= |m(z)|2
m(z)2 w − F (z)w

for w ∈ Cn+p. The following lemma bounds B−1(z) in terms of ⟨Imm(z)⟩ if z is away

from zero. For δ > 0, we use the notation f ≲δ g if and only if there is an r > 0 which is

allowed to depend on model parameters such that f ≲ δ−rg.
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Lemma 4.3.5. There is a universal constant κ ∈ N such that for all δ > 0 we have

∥B−1(z)∥2 ≲δ min
{

1
(Re z)2⟨Imm(z)⟩κ ,

1
Im z

,
1

dist(z, supp ρ)2

}
, (4.3.24)

∥B−1(z)∥∞ ≲δ min
{

1
(Re z)2⟨Imm(z)⟩κ+2 ,

1
(Im z)3 ,

1
dist(z, supp ρ)4

}
(4.3.25)

for all z ∈ H satisfying δ ≤ |z| ≤ 10.

For the proof of this result, we will need the two following lemmata. We recall that by

the Perron-Frobenius theorem an irreducible matrix with nonnegative entries has a unique

ℓ2-normalized eigenvector with positive entries corresponding to its largest eigenvalue. By

the definition of the spectral gap, Definition 4.3.2, we observe that if AA∗ is irreducible

then Gap(AA∗) = ∥AA∗∥2 −max(Spec(AA∗) \ {∥AA∗∥2}).

Lemma 4.3.6 (Rotation-Inversion Lemma). There exists a positive constant C such that

for all n, p ∈ N, unitary matrices U1 ∈ Cp×p, U2 ∈ Cn×n and A ∈ Rp×n with nonnegative

entries such that A∗A and AA∗ are irreducible and ∥A∗A∥2 ∈ (0, 1], the following bound

holds:


⎛⎜⎝ U1 A

A∗ U2

⎞⎟⎠
−1 

2
≤ C

Gap(AA∗)|1− ∥A∗A∥2⟨v1 , U1v1⟩⟨v2 , U2v2⟩|
, (4.3.26)

where v1 ∈ Cp and v2 ∈ Cn are the unique positive, normalized eigenvectors with AA∗v1 =

∥A∗A∥2v1 and A∗Av2 = ∥A∗A∥2v2. The norm on the left-hand side of (4.3.26) is infinite

if and only if the right-hand side of (4.3.26) is infinite, i.e., in this case the inverse does

not exist.

This lemma is proven in the Section 4.5 below.

Lemma 4.3.7. Let R : Cn+p → Cn+p be a linear operator and D : Cn+p → Cn+p a diag-

onal operator. If R−D is invertible and Dxx ̸= 0 for all x = 1, . . . , n+ p then

∥(R−D)−1∥∞ ≤
(
n+p
inf
x=1
|Dxx|

)−1 (
1 + ∥R∥2→∞∥(R−D)−1∥2

)
. (4.3.27)

The proof of (4.3.27) follows a similar way as the proof of (5.28) in [4].
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Proof of Lemma 4.3.5. The bound on ∥B−1(z)∥∞, (4.3.25), follows from (4.3.24)

by employing (4.3.27). We use (4.3.27) with R = F (z) and D = |m(z)|2/m(z)2 and

observe that ∥F (z)∥2→∞ ≤ ∥m∥2
∞∥S∥2→∞. Therefore, (4.3.25) follows from (4.3.24) as

∥m∥∞ ≲ min{⟨Imm⟩−1, (Im z)−1, dist(z, supp ρ)−1} by (4.3.13a) and

min{⟨Imm⟩−1, (Im z)−1, dist(z, supp ρ)−1} ≳δ 1 by (4.3.13a) and δ ≤ |z| ≤ 10.

Now we prove (4.3.24). Our first goal is the following estimate

∥B−1(z)∥2 ≲δ
1

Gap(F (z)F (z)t)(Re z)2⟨Imm(z)⟩κ (4.3.28)

for some universal κ ∈ N which will be a consequence of Lemma 4.3.6. We apply this

lemma with⎛⎜⎝ 0 F (z)

F (z)t 0

⎞⎟⎠ = F (z) ..= F̂ (|m(z)|), U ..=

⎛⎜⎝U1 0

0 U2

⎞⎟⎠ = diag
(
|m(z)|2
m(z)2

)

and v1
..= f1/∥f1∥2 and v2

..= f2/∥f2∥2 where f = (f1, f2)t ∈ Cp+n. Note that λ(z) ..=

λ̂(|m(z)|) = ∥F (z)∥2 in Lemma 4.3.3 and F (z) = F̂ (|m(z)|) in the notation of (4.3.17).

In Lemma 4.3.3, we choose r−
..= infx|mx(z)| and r+

..= ∥m(z)∥∞ and use the bounds

r− ≳ |z| and r+ ≲ |z|2−2L/⟨Imm(z)⟩ by (4.3.13a). Moreover, we have

|z|2 ≲ ∥F (z)∥2 ≤ 1 (4.3.29)

by (4.3.13a), (4.3.18) and (4.3.21).

We write U = diag(e−i 2ψ), i.e., eiψ = m/|m|, and ψ = (ψ1, ψ2)t ∈ Rp+n to obtain

⟨v1 , U1v1⟩ = ⟨v1 , (cosψ1 − i sinψ1)2v1⟩ = ⟨v1 , (1− 2(sinψ1)2 − 2i cosψ1 sinψ1)v1⟩

and a similar relation holds for ⟨v2 , U2v2⟩. Thus, we compute

Re
(
1− ∥F (z)tF (z)∥2⟨v1 , (1− 2(sinψ1)2 − 2i cosψ1 sinψ1)v1⟩

× ⟨v2 , (1− 2(sinψ2)2 − 2i cosψ2 sinψ2)v2⟩
)

= 1− ∥F (z)tF (z)∥2(1− 2⟨v1 , (sinψ1)2v1⟩ − 2⟨v2 , (sinψ2)2v2⟩

+ 4⟨v1 , (sinψ1)2v1⟩⟨v2 , (sinψ2)2v2⟩)
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Using 2a+ 2b− 4ab ≥ (a+ b)(2− a− b) for a, b ∈ R, and estimating the absolute value

by the real part yields⏐⏐⏐1− ∥F (z)tF (z)∥2⟨v1 , U1v1⟩⟨v2 , U2v2⟩
⏐⏐⏐

≥ 1− ∥F (z)tF (z)∥2 + ∥F (z)tF (z)∥2
(
⟨v1, (sinψ1)2 v1⟩+ ⟨v2, (sinψ2)2 v2⟩

)
×
(
⟨v1, (cosψ1)2 v1⟩+ ⟨v2, (cosψ2)2 v2⟩

)
≳ |z|4⟨f , (sinψ)2 f⟩⟨f , (cosψ)2 f⟩

≳δ

(
inf

x=1,...,n+p
f 4
x

)⟨(Imm
|m|

)2⟩⟨(Rem
|m|

)2⟩
,

(4.3.30)

where we used 1 ≥ ∥F (z)tF (z)∥2 = ∥F ∥2
2 ≳ |z|4 by (4.3.29) and

⟨f , (sinψ)2 f⟩⟨f , (cosψ)2 f⟩ ≤ 1

in the second step. In order to estimate the last expression in (4.3.30), we use r− ≳ |z|

and ∥F (z)∥2 ≤ 1 by (4.3.29) as well as (4.3.13a), (4.3.18) and (4.3.19) to get for the first

factor

inf
x=1,...,n+p

f 4
x ≳ r8L+8

− r−16
+ ≳δ ⟨Imm⟩16. (4.3.31)

To estimate the last factor in (4.3.30), we multiply the real part of (4.3.6) with |m| and

obtain

(1 + F )Rem
|m|

= −τ |m|

if z = τ + i η for τ, η ∈ R. Estimating ∥·∥2 of the last equation yields

|τ |∥m∥2 ≤ 2
Rem
|m|


2

by (4.3.29). As ∥m∥2 ≥ ∥Imm∥2 ≥ ⟨Imm⟩ we get

2
Rem
|m|


2
≥ |τ |⟨Imm⟩. (4.3.32)

Finally, we use (4.3.31) for the first factor in (4.3.30) and (4.3.32) for the last factor

and apply the last estimate in (4.3.13a) and Jensen’s inequality, ⟨(Imm)2⟩ ≥ ⟨Imm⟩2,
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to estimate the second factor which yields
⏐⏐⏐1− ∥F (z)tF (z)∥2⟨v1 , U1v1⟩⟨v2 , U2v2⟩

⏐⏐⏐ ≳δ |τ |2⟨Imm⟩κ. (4.3.33)

This completes the proof of (4.3.28).

Next, we bound Gap(F (z)F (z)t) from below by applying Lemma 4.3.3 with r−
..=

infx|mx(z)| and r+
..= ∥m(z)∥∞. As F (z) = F̂ (|m(z)|) we have

Gap(F (z)F (z)t) ≳δ ⟨Imm(z)⟩16,

where we used the estimates in (4.3.13a) and (4.3.29). Combining this estimate on

Gap(F (z)F (z)t) with (4.3.28) and (4.3.22) and increasing κ, we obtain

∥B−1(z)∥2 ≲δ min
{

1
(Re z)2⟨Imm(z)⟩κ ,

1
Im z

,
1

dist(Re z, supp ρ)2

}

as ∥B−1(z)∥2 ≤ (1− ∥F (z)∥2)−1 and δ ≤ |z| ≤ 10. □

Lemma 4.3.8 (Continuity of the solution). If m is the solution of the QVE (4.3.6) then

z ↦→ ⟨m(z)⟩ can be extended to a locally Hölder-continuous function on H\{0}. Moreover,

for every δ > 0 there is a constant c depending on δ and the model parameters such that

|⟨m(z1)⟩ − ⟨m(z2)⟩| ≤ c|z1 − z2|1/(κ+1) (4.3.34)

for all z1, z2 ∈ H\{0} such that δ ≤ |z1|, |z2| ≤ 10 where κ is the universal constant of

Lemma 4.3.5.

Proof. In a first step, we prove that z ↦→ ⟨Imm(z)⟩ is locally Hölder-continuous.

Taking the derivative of (4.3.6) with respect to z ∈ H yields

(1−m2(z)S)∂zm(z) = m(z)2.

By using that ∂zϕ = i 2∂zImϕ for every analytic function ϕ and taking the average, we

get

i 2∂z⟨Imm⟩ = ⟨|m|,B−1|m|⟩.
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Here, we suppressed the z-dependence of B−1. We apply Cauchy-Schwarz inequality and

use (4.3.7), (4.3.24) and (4.3.13a) to obtain

|∂z⟨Imm⟩| ≤ ∥m∥2∥B−1∥2→2∥m∥2 ≲δ min{(Re z)−2⟨Imm⟩−κ, (Im z)−1} ≲δ ⟨Imm⟩−κ

for all z ∈ H satisfying δ ≤ |z| ≤ 10. This implies that z ↦→ ⟨Imm(z)⟩ is Hölder-

continuous with Hölder-exponent 1/(κ + 1) on z ∈ H satisfying δ ≤ |z| ≤ 10. Moreover,

it has a unique continuous extension to Iδ ..= {τ ∈ R; δ/3 ≤ |τ | ≤ 10}. Multiplying this

continuous function on Iδ by π−1 yields a Lebesgue-density of the measure ρ (cf. (4.3.8))

restricted to Iδ.

We conclude that the Stieltjes transform ⟨m⟩ has the same regularity by decomposing

ρ into a measure supported around zero and a measure supported away from zero and

using Lemma A.7 in [4]. □

For estimating the difference between the solution m of the QVE and a solution g of

the perturbed QVE (4.3.9), we introduce the deterministic control parameter

ϑ(z) ..= ⟨Imm(z)⟩+ dist(z, supp ρ), z ∈ H.

Lemma 4.3.9 (Stability of the QVE). Let δ ≳ 1. Suppose there are some functions

d : H → Cp+n and g : H → (C\{0})n+p satisfying (4.3.9). Then there exist universal

constants κ1, κ2 ∈ N and a function λ∗ : H → (0,∞), independent of n and p, such that

λ∗(10i ) ≥ 1/5, λ∗(z) ≳δ ϑ(z)κ1 and

∥g(z)−m(z)∥∞1
(
∥g(z)−m(z)∥∞ ≤ λ∗(z)

)
≲δ ϑ(z)−κ2∥d(z)∥∞ (4.3.35)

for all z ∈ H satisfying δ ≤ |z| ≤ 10. Moreover, there are a universal constant κ3 ∈ N

and a matrix-valued function T : H → C(p+n)×(p+n), depending only on S and satisfying

∥T (z)∥∞→∞ ≲ 1, such that

|⟨w, g(z)−m(z)⟩| · 1
(
∥g(z)−m(z)∥∞ ≤ λ∗(z)

)
≲δ ϑ(z)−κ3

(
∥w∥∞∥d(z)∥2

∞ + |⟨T (z)w,d(z)⟩|
) (4.3.36)

for all w ∈ Cp+n and z ∈ H satisfying δ ≤ |z| ≤ 10.
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Proof. We set Φ(z) ..= max{1, ∥m(z)∥∞}, Ψ(z) ..= max{1, ∥B−1(z)∥∞} and λ∗(z) ..=

(2ΦΨ)−1. As Φ(z) ≤ max{1, (Im z)−1} and ∥B−1(z)∥∞ ≤ (1 − ∥F (z)∥∞)−1 ≤ (1 −

(Im z)−2)−1 due to ∥m(z)∥∞ ≤ (Im z)−1 we obtain λ∗(10i ) ≥ 1/5. Since δ ≤ |z| we

obtain ⟨Imm(z)⟩−1 ≳δ 1 by (4.3.13a). Thus, for z ∈ H satisfying δ ≤ |z| ≤ 10 the first

estimate in (4.3.12a), the last estimate in (4.3.13a) and (4.3.25) yield

Φ ≲δ ϑ
−1, Ψ ≲δ ϑ

−κ−2,

where κ is the universal constant from Lemma 4.3.5. Therefore, λ∗(z) ≳δ ϑ(z)κ+3 and

Lemma 5.11 in [4] yield the assertion as ∥w∥1 = (p+ n)−1∑
x|wx| ≤ ∥w∥∞. □

4.3.4. Proof of Theorem 4.2.2.

Proof of Theorem 4.2.2. We start by proving the existence of the solution m

of (4.2.1). Let m = (m1,m2)t be the solution of (4.3.6) satisfying Imm(z) > 0 for

z ∈ H. For ζ ∈ H, we set m(ζ) ..= m1(
√
ζ)/
√
ζ. Then it is straightforward to check

that m satisfies (4.2.1) by solving (4.3.5b) for m2 and plugging the result into (4.3.5a).

Note that Imm(ζ) > 0 for all ζ ∈ H since m1,i is the Stieltjes transform of a symmetric

measure on R (cf. the explanation before (4.3.7) for the symmetry of this measure).

Next, we show the uniqueness of the solution m of (4.2.1) with Imm(ζ) > 0 for ζ ∈ H

which is a consequence of the uniqueness of the solution of (4.3.6). Therefore, we set

m̃1(ζ) ..= m(ζ), m̃2(ζ) ..= −1/(ζ(1 + Stm̃1(ζ))) and m̃(ζ) ..= (m̃1(ζ), m̃2(ζ))t for ζ ∈ H.

From (4.2.1), we see that

|m̃1| =
1⏐⏐⏐ζ − S 1
1+Stm̃1

⏐⏐⏐ ≤ 1
Im ζ + S 1

|1+Stm̃1|S
tIm m̃1

≤ 1
Im ζ

(4.3.37)

for all ζ ∈ H. Since m̃2 satisfies

− 1
m̃2(ζ)

= ζ + St
1

1 + Sm̃2
(ζ) (4.3.38)

for ζ ∈ H, a similar argument yields |m̃2| ≤ (Im ζ)−1. Combining these two estimates,

we obtain |m̃(ζ)| ≤ (Im ζ)−1 for all ζ ∈ H. Therefore, multiplying (4.2.1) and (4.3.38)
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with m̃1 and m̃2, respectively, yields

|1 + i ξm̃x(i ξ)| ≤ ∥m̃(i ξ)∥∞
1

1− ∥m̃(i ξ)∥∞
≤ 1
ξ − 1 → 0

for ξ → ∞ and x = 1, . . . , n + p where we used |m̃(ζ)| ≤ (Im ζ)−1 in the last but

one step. Thus, m̃x is the Stieltjes transform of a probability measure νx on R for all

x = 1, . . . , n+ p. Multiplying (4.2.1) by m̃1, taking the imaginary part and averaging at

ζ = χ+ i ξ, for χ ∈ R and ξ > 0, yields

χ⟨Im m̃1⟩+ ξ⟨Re m̃1⟩ = −
⟨

Re m̃1 , S
1

|1 + Stm̃1|2
StIm m̃1

⟩

+
⟨

Im m̃1 , S
1

|1 + Stm̃1|2
(1 + StRe m̃1)

⟩

=
⟨

Im m̃1 , S
1

|1 + Stm̃1|2

⟩
≥ 0,

(4.3.39)

where we used the definition of the transposed matrix and the symmetry of the scalar

product in the last step. On the other hand, we have

χ⟨Im m̃1⟩+ ξ⟨Re m̃1⟩ =
∫
R

ξt

(t− χ)2 + ξ2ν(dt).

Assuming that there is a χ < 0 such that χ ∈ supp ν we obtain that χ⟨Im m̃1⟩ +

ξ⟨Re m̃1⟩ < 0 for ξ ↓ 0 which contradicts (4.3.39). Therefore supp νx ⊂ [0,∞) for

x = 1, . . . , p.

Together with a similar argument for m̃2, we get that supp νx ⊂ [0,∞) for all x =

1, . . . , n + p. In particular, we can assume that m̃ is defined on C \ [0,∞). We set

m1(z) ..= zm̃1(z2), m2(z) ..= zm̃2(z2) and m(z) ..= (m1(z),m2(z))t for all z ∈ H. Hence,

we get

Immx(τ + i η) = η
∫

[0,∞)

t+ τ 2 + η2

(t− τ 2 + η2)2 + 4η2τ 2νx(dt)

as supp νx ⊂ [0,∞). This implies Imm(z) > 0 for z ∈ H and thus the uniqueness of

solutions of (4.3.6) with positive imaginary part implies the uniqueness of m̃1.

Finally, we verify the claim about the structure of the probability measure representing

⟨m⟩. By Lemma 4.3.8 and the statements following (4.3.6), ⟨m1⟩ is the Stieltjes transform

of π∗δ0 + ρ1(ω)dω for some π∗ ∈ [0, 1] and some symmetric Hölder-continuous function
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ρ1 : R \ {0} → [0,∞) whose support is contained in [−2, 2]. Therefore, m is the Stieltjes

transform of ν(dω) ..= π∗δ0(dω)+π(ω)1(ω > 0)dω where π(ω) = ω−1/2ρ1(ω1/2) for ω > 0.

Thus, the support of ν is contained in [0, 4]. □

4.3.5. Square Gram matrices. In this subsection, we study the stability of (4.3.6)

for n = p. Here, we assume (A), (E1) and (F1). These assumptions are strictly stronger

than (A), (B) and (D) (cf. Remark 4.2.7).

For the following arguments, it is important that m is purely imaginary for Re z = 0

as m(−z̄) = −m(z) for all z ∈ H. If we set

v(z) = Imm(z) (4.3.40)

for z ∈ H, then v fulfills
1

v(iη) = η + Sv(iη) (4.3.41)

for all η ∈ (0,∞) due to (4.3.6). The study of this equation will imply the stability of

the QVE at z = 0. The following proposition is the main result of this subsection.

Proposition 4.3.10. Let n = p, i.e., (E1) holds true, and S satisfies (A) as well as

(F1).

(i) There exists a δ̂ ∼ 1 such that |m(z)| ∼ 1 uniformly for all z ∈ H satisfying

|z| ≤ 10 and Re z ∈ [−δ̂, δ̂]. Moreover, ⟨Imm(z)⟩ ≳ 1 for all z ∈ H satisfying

|z| ≤ 10 and Re z ∈ [−δ̂, δ̂] and there is a v(0) = (v1(0), v2(0))t ∈ Rp ⊕ Rp such

that v(0) ∼ 1 and

iv(0) = lim
η↓0
m(iη).

(ii) (Stability of the QVE at z = 0) Suppose that some functions d = (d1, d2)t : H→

Cp+p and g = (g1, g2)t : H→ (C\{0})p+p satisfy (4.3.9) and

⟨g1(z)⟩ = ⟨g2(z)⟩ (4.3.42)

for all z ∈ H. There are numbers λ∗, δ̂ ≳ 1, depending only on S, such that

∥g(z)−m(z)∥∞1
(
∥g(z)−m(z)∥∞ ≤ λ∗

)
≲ ∥d(z)∥∞ (4.3.43)
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for all z ∈ H satisfying |z| ≤ 10 and Re z ∈ [−δ̂, δ̂]. Moreover, there is a matrix-

valued function T : H→ C2p×2p, depending only on S and satisfying ∥T (z)∥∞ ≲

1, such that

|⟨w, g(z)−m(z)⟩| · 1
(
∥g(z)−m(z)∥∞ ≤ λ∗

)
≲ ∥w∥∞∥d(z)∥2

∞ + |⟨T (z)w,d(z)⟩|
(4.3.44)

for all w ∈ C2p and z ∈ H satisfying |z| ≤ 10 and Re z ∈ [−δ̂, δ̂].

The remainder of this subsection will be devoted to the proof of this proposition.

Therefore, we will always assume that (A), (E1) and (F1) are satisfied.

Lemma 4.3.11. The function v : i(0,∞)→ R2p defined in (4.3.40) satisfies

1 ≲ inf
η∈(0,10]

v(iη) ≤ sup
η>0
∥v(iη)∥∞ ≲ 1. (4.3.45)

If we write v = (v1, v2)t for v1, v2 : i(0,∞)→ Rp, then

⟨v1(iη)⟩ = ⟨v2(iη)⟩ (4.3.46)

for all η ∈ (0,∞).

The estimate in (4.3.45), with some minor modifications which we will explain next,

is shown as in the proof of (6.30) of [4].

Proof. From (4.3.41) and the definition of S, we obtain η⟨v1⟩ − η⟨v2⟩ = ⟨v1 , Sv2⟩ −

⟨v2 , S
tv1⟩ = 0 for all η ∈ (0,∞) which proves (4.3.46). Differing from [4], the discrete

functional J̃ is defined as follows:

J̃(u) = φ

2K

2K∑
i,j=1

u(i)Ziju(j)−
2K∑
i=1

log u(i) (4.3.47)

for u ∈ (0,∞)2K (we used the notation u(i) to denote the i-th entry of u) where Z is the

2K × 2K matrix with entries in {0, 1} defined by

Z =

⎛⎜⎝ 0 Z

Zt 0

⎞⎟⎠ . (4.3.48)
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Decomposing u = (u1, u2)t for u1, u2 ∈ (0,∞)K and writing u1(i) = u(i) and u2(j) =

u(K + j) for their entries we obtain

J̃(u) = φ

K

K∑
i,j=1

u1(i)Ziju2(j)−
K∑
i=1

(log u1(i) + log u2(i)). (4.3.49)

Lemma 4.3.12. If Ψ < ∞ is a constant such that u = (u1, u2)t ∈ (0,∞)K × (0,∞)K

satisfies

J̃(u) ≤ Ψ,

where J̃ is defined in (4.3.47), and ⟨u1⟩ = ⟨u2⟩, then there is a constant Φ <∞ depending

only on (Ψ, φ,K) such that
2Kmax
k=1

u(k) ≤ Φ.

Proof. We define Z̃ij ..= Ziσ(j) where σ is a permutation of {1, . . . , K} such that

Z̃ii = 1 for all i = 1, . . . , K where we use the FID property of Z. Moreover, we set

Mij
..= u1(i)Z̃iju2(σ(j)) and follow the proof of Lemma 6.10 in [4] to obtain

u1(i)u2(σ(j)) ≲ (MK−1)ij ≲ 1

for all i, j = 1, . . . , K. Averaging over i and j yields

⟨u1⟩2 = ⟨u2⟩2 ≲ 1

where we used ⟨u1⟩ = ⟨u2⟩. This concludes the proof of Lemma 4.3.12. □

Recalling the function v in Lemma 4.3.11, we set u = (⟨v⟩1, . . . , ⟨v⟩2K) with ⟨v⟩i =

Kp−1∑
x∈Ii

vx, where Ii ..= p + Ii−K for i ≥ K + 1. Then we have ⟨u1⟩ = ⟨u2⟩ by

(4.3.46) and since I1, . . . , I2K is an equally sized partition of {1, . . . , 2p}. Therefore, the

assumptions of Lemma 4.3.12 are met which implies (4.3.45) of Lemma 4.3.11 as in [4]. □

We recall from Lemma 4.3.4 that f = (f1, f2)t is the unique nonnegative, normalized

eigenvector of F corresponding to the eigenvalue ∥F ∥2. Moreover, we define f−
..=

(f1,−f2)t which clearly satisfies

Ff− = −∥F ∥2f−. (4.3.50)
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Since the spectrum of F is symmetric, Spec(F ) = − Spec(F ) with multiplicities, and

∥F ∥2 is a simple eigenvalue of F , the same is true for the eigenvalue −∥F ∥2 of F and

f− spans its associated eigenspace. We introduce

e−
..=

⎛⎜⎝ 1

−1

⎞⎟⎠ ∈ Cp ⊕ Cp. (4.3.51)

Lemma 4.3.13. For η ∈ (0,∞), the derivative of m satisfies

m′(iη) = d
dzm(iη) = −v(iη)(1 + F (iη))−1v(iη). (4.3.52)

Moreover, |m′(iη)| ≲ 1 uniformly for η ∈ (0, 10].

Proof. In the whole proof, the quantities v, f , f− and F are evaluated at z = iη

for η > 0. Therefore, we will mostly suppress the z-dependence of all quantities.

Differentiating (4.3.6) with respect to z and using (4.3.40) yields

−(1 + F )m
′

v
= v.

As ∥F ∥2 < 1 by (4.3.21), the matrix (1 + F ) is invertible which yields (4.3.52) for all

η ∈ (0,∞).

In order to prove |m′(iη)| ≲ 1 uniformly for η ∈ (0,∞), we first prove that

|⟨f−(iη)v(iη)⟩| ≤ O(η). (4.3.53)

We define the auxiliary operator A ..= ∥F ∥2 +F = 1 +F − η ⟨fv⟩
⟨f⟩ where we used (4.3.21)

and (4.3.40). Note that

Af− = 0, Ae− = e− + Fe− − η
⟨fv⟩
⟨f⟩

e− = O(η), (4.3.54)

where we used Fe− = −e− + η(v1,−v2)t which follows from (4.3.6) and the definition

of F .

Defining Qu ..= u− ⟨f−u⟩f− for u ∈ C2p and decomposing

e− =
⟨
f−e−

⟩
f− +Qe−
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yield AQe− = O(η) because of (4.3.54). As |m(iη)| ∼ 1 by (4.3.45) for η ∈ (0, 10] the

bound (4.3.20) in Lemma 4.3.3 implies that there is an ε ∼ 1 such that for all η ∈ (0, 10]

we have

Spec(F ) ⊂ {−∥F ∥2} ∪ [−∥F ∥2 + ε, ∥F ∥2 − ε] ∪ {∥F ∥2}. (4.3.55)

Since−∥F ∥2 is a simple eigenvalue of F and (4.3.50) the symmetric matrixA = ∥F ∥2+F

is invertible on f⊥
− and

(A|f⊥
−

)−1


2
= ε−1 ∼ 1. As f− ⊥ Qe− we conclude Qe− = O(η)

and hence

(1− ⟨f⟩)(1 + ⟨f⟩) = 1− ⟨f⟩2 = 1−
⟨
f−e−

⟩2
= ∥Qe−∥2

2 = O(η2). (4.3.56)

Thus, using (4.3.46) and (4.3.56), this implies

|⟨f−(iη)v(iη)⟩| =
⏐⏐⏐⟨ve−⟩+

⟨
v
[
f− − e−

]⟩⏐⏐⏐ ≲ f− − e−


2

=
√

2(1− ⟨f⟩) = O(η),

which concludes the proof of (4.3.53).

In (4.3.52), we decompose v = ⟨f−v⟩f− + Qv and, using Ff− = −∥F ∥2f− and

(4.3.21), we obtain

m′ = −v ⟨f−v⟩
η

⟨f⟩
⟨fv⟩

f− − v(1 + F )−1Qv.

Using (4.3.55), we see that ∥(1 +F )−1Qv∥2 ∼ 1 uniformly for η ∈ (0, 10]. Together with

⟨f−(iη)v(iη)⟩ = O(η) by (4.3.53), this yields |m′(iη)| ≲ 1 uniformly for η ∈ (0, 10]. □

The previous lemma, (4.3.41) and Lemma 4.3.11 imply that v(0) ..= limη↓0 v(iη) exists

and satisfies

v(0) ∼ 1, 1 = v(0)Sv(0) = F (0)1, ⟨v1(0)⟩ = ⟨v2(0)⟩, (4.3.57)

where v(0) = (v1(0), v2(0))t.

In the next lemma, we establish an expansion of m(z) on the upper half-plane around

z = 0. The proof of this result and later the stability estimates on g −m will be a

consequence of the equation

Bu = e−iψuFu+ e−iψgd (4.3.58)
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where u = (g −m)/|m| and eiψ = m/|m| with ψ ∈ R2p. This quadratic equation in u

was derived in Lemma 5.8 in [4].

Lemma 4.3.14. For z ∈ H, we have

m(z) = iv(0)− zv(0)(1 + F (0))−1v(0) +O(|z|2), (4.3.59a)

m(z)
|m(z)| = i− (Re z)(1 + F (0))−1v(0) +O(|z|2). (4.3.59b)

In particular, there is a δ̂ ∼ 1 such that |m(z)| ∼ 1 uniformly for z ∈ H satisfying

Re z ∈ [−δ̂, δ̂] and |z| ≤ 10. Moreover,

∥f(z)− 1∥∞ = O(|z|),
f−(z)− e−


∞

= O(|z|). (4.3.60)

Proof. In order to prove (4.3.59a), we consider (4.3.6) at z as a perturbation of

(4.3.6) at z = 0 perturbed by d = z in the notation of (4.3.9). The solution of the

unperturbed equation is m = iv(0). Following the notation of (4.3.9), we find that

(4.3.58) holds with g = m(z) and u(z) = (m(z) − iv(0))/v(0). We write u(z) =

θ(z)e− + w(z) with w ⊥ e−. (We will suppress the z-dependence in our notation.)

Plugging this into (4.3.58) and projecting onto e− yields

θ⟨v(0)⟩ = −⟨e−v(0)w⟩ , (4.3.61)

where we used that F (0)1 = 1, i.e., ⟨F (0)w⟩ = ⟨w⟩, ⟨e−wF (0)w⟩ = 0 and ⟨v1(0)⟩ =

⟨v2(0)⟩. Thus, we have θ = O(∥w∥∞) because of (4.3.57), so that we conclude −(1 +

F (0))w = zv(0) +O(∥w∥2
∞ + |z|∥w∥∞). As w, (1 +F (0))w and v(0) are orthogonal to

e−, the error term is also orthogonal to it which implies

w = −z(1 + F (0))−1v(0) +O(|z|2) (4.3.62)

using that (1 + F (0))−1 is bounded on e⊥
−.

Observing that ⟨m1(z)⟩ = ⟨m2(z)⟩ for z ∈ H by (4.3.6) and differentiating this relation

yields ⟨m′(iη)e−⟩ = 0 for all η ∈ (0,∞). Hence,

⟨e−v(0)(1 + F (0))−1v(0)⟩ = − lim
η↓0
⟨e−m

′(iη)⟩ = 0 (4.3.63)
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by Lemma 4.3.13.

Plugging (4.3.62) into (4.3.61), we obtain

θ⟨v(0)⟩ = ⟨e−v(0)(1 + F (0))−1v(0)⟩+O(|z|2) = O(|z|2),

where we used (4.3.63). Hence, m(z) = v(0)(u+ iv(0)) concludes the proof of (4.3.59a)

which immediately implies (4.3.59b).

Using the expansion of m in (4.3.59a) in a similar argument as in the proof of

∥f−(iη)− e−∥2 = O(η) in Lemma 4.3.13 yields

∥f(z)− 1∥2 = ∥f−(z)− e−∥2 = O(|z|).

Similarly, using (4.3.27), we obtain (4.3.60). □

By a standard argument from perturbation theory and possibly reducing δ̂ ∼ 1, we can

assume that B(z) has a unique eigenvalue β(z) of smallest modulus for z ∈ H satisfying

|Re z| ≤ δ̂ and |z| ≤ 10 such that |β′| − |β| ≳ 1 for β′ ∈ Spec(B(z)) and β′ ̸= β. This

follows from |m| ∼ 1 and thus Gap(F (z)F (z)t) ≳ 1 by Lemma 4.3.3. For z ∈ H satisfying

|Re z| ≤ δ̂ and |z| ≤ 10, we therefore find a unique (unnormalized) vector b(z) ∈ C2p

such that B(z)b(z) = β(z)b(z) and ⟨f− , b(z)⟩ = 1.

We introduce the spectral projection P onto the spectral subspace associated to the

eigenvalue β(z) of the operator B(z) acting on (C2p, ∥ · ∥∞). We obtain the relation

P = ⟨b̄ , ·⟩
⟨b2⟩

b.

Note that P is not an orthogonal projection in general. Let Q ..= 1 − P denote the

complementary projection onto the spectral subspace of B(z) not containing β(z) (this

Q is different from the one in the proof of Lemma 4.3.13). SinceB(z) = −1−F (z)+O(|z|)

we obtain

∥b(z)− e−∥∞ = ∥b(z)− e−∥∞ = O(|z|) (4.3.64)

for z ∈ H satisfying |Re z| ≤ δ̂ and |z| ≤ 10.
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Lemma 4.3.15. By possibly reducing δ̂ from Lemma 4.3.14, but still δ̂ ≳ 1, we have

∥B−1(z)∥∞ ≲
1
|z|
, ∥B−1(z)Q∥∞ + ∥(B−1(z)Q)∗∥∞ ≲ 1 (4.3.65)

for z ∈ H satisfying |Re z| ≤ δ̂ and |z| ≤ 10.

Proof. Due to |m(z)| ∼ 1 and using (4.3.27) withR = F (z) andD = |m(z)|2/m(z)2,

it is enough to prove the estimates in (4.3.65) with ∥·∥∞ replaced by ∥·∥2. We first

remark that |m(z)| ∼ 1 and arguing similarly as in the proof of Lemma 4.3.4 imply

∥B−1(z)∥2 ≲ (Im z)−1.

Now we prove ∥B−1(z)∥2 ≲ (Re z)−1. We apply Lemma 4.3.6 and recall U1 =

|m1|2/m2
1 and U2 = |m2|2/m2

2 to get

Im
(

1− ∥F (z)tF (z)∥2

⟨
f1

∥f1∥2
, U1

f1

∥f1∥2

⟩⟨
f2

∥f2∥2
, U2

f2

∥f2∥2

⟩)

= ∥F (z)tF (z)∥2

∥f1∥2∥f2∥2
⟨v(0)⟩Re z +O(|z|2),

(4.3.66)

where we used (4.3.59b), (4.3.60) and ∥f1∥2, ∥f2∥2, ∥F (z)tF (z)∥2 ∼ 1. Since v(0) ∼ 1

and Gap(F (z)F (z)t) ≳ 1 by Lemma 4.3.3 and |m(z)| ∼ 1, (4.3.66) and Lemma 4.3.6

yield ∥B−1(z)∥2 ≲ (Re z)−1 and hence ∥B−1(z)∥2 ≲ min{(Im z)−1, (Re z)−1} ≲ |z|−1.

The estimate ∥B−1(z)Q∥∞ ≲ 1 in (4.3.65) follows from Gap(F (z)F (z)t) ≳ 1 by Lem-

ma 4.3.3, |m(z)| ∼ 1 and a standard argument from perturbation theory as presented

in Lemma 8.1 of [4]. Here, it might be necessary to reduce δ̂. We remark that B∗ =

|m|2/m2 − F and similarly P ∗ = ⟨b , ·⟩/⟨b2⟩b, i.e., B∗ and P ∗ emerge by the same

constructions where m is replaced by m. Therefore, we obtain ∥(B−1(z)Q)∗∥∞ ≲ 1. □

Proof of Proposition 4.3.10. The part (i) follows from the previous lemmata.

The part (ii) has already been proven for |z| ≥ δ in Lemma 4.3.9 and for any δ ≳ 1.

Therefore, we restrict ourselves to |z| ≤ δ for a sufficiently small δ ≳ 1. We recall

eiψ = m/|m|.

Owing to Lemma 4.3.14 and (4.3.64), there are positive constants δ,Φ, Φ̂ ∼ 1 which

only depend on the model parameters such that

∥m(z)∥∞ ≤ Φ, ∥b(z)− e−∥2∥b∥∞ +
e−iψ + i


∞
∥b∥2

∞ ≤ Φ̂|⟨b2⟩||z| (4.3.67)
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for all z ∈ H satisfying |z| ≤ δ. Here, we used ∥w∥2 ≤ ∥w∥∞ for all w ∈ C2p. Note

that we employed (4.3.64) for estimating ∥b − e−∥2 as well as to obtain ∥b∥∞ ∼ 1 and

|⟨b2⟩| ∼ 1 for all z ∈ H satisfying |z| ≤ δ if δ ≳ 1 is small enough.

Lemma 4.3.15 implies the existence of Ψ, Ψ̂ ∼ 1 such that

∥B−1(z)∥∞ ≤ Ψ|z|−1, ∥B−1(z)Q∥∞ ≤ Ψ̂ (4.3.68)

for all z ∈ H satisfying |z| ≤ δ if 1 ≲ δ ≤ δ̂ is sufficiently small. With these definitions,

we set

λ∗
..= 1

2Φ(ΨΦ̂ + Ψ̂)
. (4.3.69)

The estimate on h ..= g(z)−m(z) = u|m| will be obtained from inverting B in (4.3.58).

In order to control the right-hand side of (4.3.58), we decompose it, according to 1 =

P +Q, as

e−iψuFu =

⟨
be−iψuFu

⟩
⟨b2⟩

b+Qe−iψuFu, e−iψgd =

⟨
e−iψgdb

⟩
⟨b2⟩

b+Qe−iψgd.

Clearly, as ∥S∥∞ ≤ 1 we have

∥(B−1Q)(e−iψuFu)∥∞ ≤ Ψ̂∥h∥2
∞, ∥(B−1Q)(e−iψgd)∥∞ ≤ Ψ̂∥g∥∞∥d∥∞

due to (4.3.68). Using ⟨e−hSh⟩ = 0 and (4.3.67), we obtain⟨be−iψuFu
⟩ b

⟨b2⟩


∞
≤
(
|−i⟨hShe−⟩|+ |−i⟨(b− e−)hSh⟩|+

⏐⏐⏐⟨(e−iψ + i
)
bhSh

⟩⏐⏐⏐)

× ∥b∥∞

|⟨b2⟩|

≤ Φ̂|z|∥h∥2
∞.

Similarly, due to (4.3.67) and ⟨gde−⟩ = ⟨g1(z)d1(z)⟩− ⟨g2(z)d2(z)⟩ = 0 by the perturbed

QVE (4.3.9), we get⟨e−iψgdb
⟩ b

⟨b2⟩


∞
≤
(
|⟨gde−⟩|+ |⟨(b− e−)gd⟩|+

⏐⏐⏐⟨(e−iψ + i
)
bgd

⟩⏐⏐⏐) ∥b∥∞

|⟨b2⟩|

≤ Φ̂|z|∥g∥∞∥d∥∞.
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Thus, inverting B in (4.3.58), multiplying the result with |m|, taking its norm and using

(4.3.68) yield

∥h∥∞ ≤ Φ(ΨΦ̂ + Ψ̂)∥h∥2
∞ + Φ(ΨΦ̂ + Ψ̂)∥g∥∞∥d∥∞,

which implies

∥h∥∞1
(
∥h∥∞ ≤ λ∗

)
≤ Φ(1 + 2Φ(ΨΦ̂ + Ψ̂))∥d∥∞

by the definition of λ∗ in (4.3.69). This concludes the proof of (4.3.43).

For the proof of (4.3.44), inverting B in (4.3.58) and taking the scalar product with

w yield

⟨w ,h⟩ = ⟨w ,B−1(e−iψhSh)⟩+ ⟨w , |m|B
−1b⟩

⟨b2⟩
⟨
hd

[
(e−iψ + i)b− i(b− e−)

]⟩
+ ⟨(B−1Q)∗(|m|w) , e−iψhd⟩+ ⟨Tw ,d⟩,

(4.3.70)

where we used ⟨e−gd⟩ = 0 and set

Tw ..= ⟨b2⟩−1⟨|m|B−1b ,w⟩m
[
(eiψ − i)b+ i(b− e−)

]
+ eiψm(B−1Q)∗(|m|w).

Using (4.3.67) and (4.3.68) as well as a similar argument as in the proof of (4.3.43) for

the first term in the definition of T and ∥(B−1Q)∗∥∞ ≲ 1 by (4.3.65) for the second term,

we obtain ∥T ∥∞ ≲ 1. Moreover, as above we see that the first term on the right-hand

side of (4.3.70) is ≲ ∥w∥∞∥h∥2
∞. The estimates (4.3.67) and (4.3.68) imply that the

second term on the right-hand side of (4.3.70) is ≲ ∥w∥∞∥h∥∞∥d∥∞. Applying (4.3.43)

to these bounds yields (4.3.44). □

4.3.6. Properly rectangular Gram matrices. In this subsection, we study the

behaviour of m1 and m2 for z close to zero for p/n different from one. We establish that

the density of the limiting distribution is zero around zero – a well-known feature of the

Marchenko-Pastur distribution for p/n different from one.

We suppose that the assumptions (A), (C) and (D) are fulfilled and we will study the

case p > n. More precisely, we assume that

p

n
≥ 1 + d∗ (4.3.71)
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for some d∗ > 0 which will imply that each component of m1 diverges at z = 0 whereas

each component of m2 stays bounded at z = 0. Later, in the proof of Theorem 4.2.10,

we will see that these properties carry over to m and m̃2 defined above (4.3.10). We use

the notation Dδ(w) ..= {z ∈ C : |z − w| < δ} for δ > 0 and w ∈ C.

Proposition 4.3.16 (Solution of the QVE close to zero). If (F2) and (4.3.71) are satisfied

then there exist a vector u ∈ Cp, a constant δ∗ ≳ 1 and analytic functions a : Dδ∗(0)→ Cp,

b : Dδ∗(0) → Cn such that the unique solution m = (m1,m2)t of (4.3.6) with Imm > 0

fulfills

m1(z) = za(z)− u

z
, m2(z) = zb(z) (4.3.72)

for all z ∈ Dδ∗(0) ∩H. Moreover, we have

(i) ∑p
i=1 ui = p− n and 1 ≲ ui ≤ 1 for all i = 1, . . . , p,

(ii) b(0) = 1/Stu ∼ 1,

(iii) ∥a(z)∥∞ + ∥b(z)∥∞ ≲ 1 uniformly for all z ∈ Dδ∗(0),

(iv) limη↓0 Imm1(τ + i η) = 0 and limη↓0 Imm2(τ + i η) = 0 locally uniformly for all

τ ∈ (−δ∗, δ∗)\{0}.

The ansatz (4.3.72) is motivated by the following heuristics. Considering H as an

operator Cp⊕Cn → Cn⊕Cp, we expect that the first component described by X∗ : Cp →

Cn has a nontrivial kernel for dimensional reasons whereas the second component has a

trivial kernel. Since the nonzero eigenvalues of H2 correspond to the nonzero eigenvalues

of XX∗ and X∗X, the Marchenko-Pastur distribution indicates that there is a constant

δ∗ ≳ 1 such that H has no nonzero eigenvalue in (−δ∗, δ∗). As the first component m1 of

m corresponds to the “first component” of H , the term −u/z in (4.3.72) implements the

expected kernel. For dimensional reasons, the kernel should be p− n dimensional which

agrees with part (i) of Proposition 4.3.16. The factor z in the terms za(z) and zb(z) in

(4.3.72) realizes the expected gap in the eigenvalue distribution around zero.

Proof of Proposition 4.3.16. We start with the defining equations for u and b.

We assume that u ∈ (0, 1]p fulfills

1
u

= 1 + S
1
Stu

(4.3.73)
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and b : Dδ∗(0)→ Cp fulfills

− 1
b(z) = z2 − St 1

1 + Sb(z) (4.3.74)

for some δ∗ > 0. We then define a : Dδ∗(0)→ Cp through

z2a(z) = u− 1
1 + Sb(z) (4.3.75)

and set m̂1(z) ..= za(z) − u/z and m̂2(z) ..= zb(z) for z ∈ Dδ∗(0). Thus, for z ∈ Dδ∗(0),

we obtain

z + Stm̂1(z) = z − St 1
1 + Sb(z) = − 1

zb(z) = − 1
m̂2(z)

,

where we used (4.3.75) in the first step and (4.3.74) in the second step. Similarly, solving

(4.3.75) for Sb(z) yields

z + Sm̂2(z) = z + z

(
1

u− z2a(z) − 1
)

= − 1
m̂1(z)

, z ∈ Dδ∗(0). (4.3.76)

Thus, (m̂1, m̂2) satisfy (4.3.6), the defining equation for m = (m1,m2) and we will be

able to conclude that m̂1 = m1 and m̂2 = m2.

For the rigorous argument, we first establish the existence and uniqueness of u and b

that follow from the next two lemmata whose proofs are given later.

Lemma 4.3.17. If (F2) and (4.3.71) are satisfied then there is a unique solution of

(4.3.73) in the set u ∈ (0, 1]p. Moreover,

1 > ui ≳ 1, (Stu)k ≳ 1 (4.3.77)

for all i = 1, . . . , p and k = 1, . . . , n and ∑p
i=1 ui = p− n.

Lemma 4.3.18. If (F2) and (4.3.71) are satisfied, then there are a δ∗ ∼ 1 and a unique

holomorphic function b : Dδ∗(0)→ Cn satisfying (4.3.74) with b(0) = 1/(Stu), where u is

the solution of (4.3.73). Moreover, we have ∥b(z)∥∞ ≲ 1 and ∥(1 + Sb(z))−1∥∞ ≤ 1/2

for all z ∈ Dδ∗(0), b(0) ∼ 1, b′(0) = 0, Im (zb(z)) > 0 for all z ∈ Dδ∗(0) with Im z > 0

and Im (zb(z)) = 0 for z ∈ (−δ∗, δ∗).

Given u and b(z), the formula (4.3.75) defines a(z) for z ̸= 0. To extend its definition

to z = 0, we observe that the right-hand side of (4.3.75) is a holomorphic function for all
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z ∈ Dδ∗(0) by Lemma 4.3.18. Since b(0) = 1/(Stu) and the derivative of the right-hand

side of (4.3.75) vanishes as b′(0) = 0, the first two coefficients of the Taylor series of

the right-hand side on Dδ∗(0) are zero by (4.3.73). Thus, (4.3.75) defines a holomorphic

function a : Dδ∗(0)→ Cp.

Furthermore, Im m̂2(z) > 0 for Im z > 0 by Lemma 4.3.18. Taking the imaginary

part of (4.3.76) yields
Im m̂1(z)
|m̂1(z)|2

= Im z + SIm m̂2(z), (4.3.78)

which implies Im m̂1(z) > 0 for Im z > 0 as Im m̂2(z) > 0 for z ∈ H ∩Dδ∗(0). Since the

solution m of (4.3.6) with Imm(z) > 0 for Im z > 0 is unique by Theorem 2.1 in [4], we

have m(z) = m̂(z) ..= (m̂1(z), m̂2(z))t for all z ∈ H ∩Dδ∗(0). The statements in (i), (ii)

and (iii) follow from Lemma 4.3.17, Lemma 4.3.18 and (4.3.75).

For the proof of (iv), we note that limη↓0 Imm2(τ+i η) = 0 for all τ ∈ (−δ∗, δ∗) locally

uniformly by Lemma 4.3.18. Because of (4.3.78) and the locally uniform convergence of

m1(τ+i η) to τa(τ)−u/τ for η ↓ 0 and τ ∈ (−δ∗, δ∗)\{0}, we have limη↓0 Imm1(τ+i η) = 0

locally uniformly for all τ ∈ (−δ∗, δ∗)\{0} as well, which concludes the proof of (iv). □

We conclude this subsection with the proofs of Lemma 4.3.17 and Lemma 4.3.18.

Proof of Lemma 4.3.17. We will show that the functional

J : (0, 1]p → R, u ↦→ 1
p

n∑
j=1

log
( p∑
i=1

sijui

)
+ 1
p

p∑
i=1

(ui − log ui)

has a unique minimizer u with ui > 0 for all i = 1, . . . , p which solves (4.3.73). Note that

J(1, . . . , 1) = 1
p

n∑
j=1

log
( p∑
i=1

sij

)
+ p

p
≤ 1. (4.3.79)
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We start with an auxiliary bound on the components of u. Using (F2) and Jensen’s

inequality, we get

J(u) ≥ 1
p

n∑
k=1

log
( p∑
i=1

φ

n+ p
ui

)
+ 1
p

p∑
i=1

(ui − log ui)

≥ 1
p

( p∑
i=1

n

p
log

(
φ

2 ui
)
−

p∑
i=1

log ui
)

≥ −1
p

d∗

1 + d∗

p∑
i=1

log ui + n

p
log

(
φ

2

)
, (4.3.80)

where we used (4.3.71) in the last step. For any u ∈ (0, 1]p with J(u) ≤ J(1, . . . , 1), using

(4.3.79), we obtain

1 ≥ J(1, . . . , 1) ≥ J(u) ≥ − d∗

p(1 + d∗)

p∑
i=1

log ui + n

p
log

(
φ

2

)

≥ − d∗

p(1 + d∗)
log ui + 1

r1
log

(
φ

2

)
,

for any i = 1, . . . , p, i.e., ui ≥ exp(−p(1 + d∗)(1− r−1
1 log(φ/2))/d∗) > 0.

Therefore, taking a minimizing sequence, using a compactness argument and the

continuity of J , we obtain the existence of u⋆ ∈ (0, 1]p such that J(u⋆) = infu∈(0,1]p J(u)

and

u⋆i ≥ exp
(
−p1 + d∗

d∗

(
1− 1

r1
log

(
φ

2

)))
, i = 1, . . . , p. (4.3.81)

Next, we show that u⋆i < 1 for all i = 1, . . . , p. Assume that u⋆i = 1 for some i ∈ {1, . . . , p}.

Consider a vector û that agrees with u⋆ except that u⋆i is replaced by λ ∈ (0, 1). An

elementary calculation then shows that J(û) ≥ J(u⋆) implies sik = 0 for all k = 1, . . . , n

which contradicts (4.3.15).

Therefore, evaluating the derivative J(u⋆ + τh) for h ∈ Rp at τ = 0, which vanishes

since u⋆ ∈ (0, 1)p is a minimizer, we see that u⋆ satisfies (4.3.73).

To see the uniqueness of the solution of (4.3.73), we suppose that u⋆, v⋆ ∈ (0, 1]p

satisfy (4.3.73), i.e., u⋆ = f(u⋆) and v⋆ = f(v⋆) where f : (0, 1]p → (0, 1]p, f(u) =

(1 + S((Stu)−1))−1. On (0, 1]p we define the distance function

D(u, v) ..= sup
i=1,...,p

d(ui, vi) (4.3.82)
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where d(a, b) = (a − b)2/(ab) for a, b > 0. This function d defined on (0,∞)2 is the

analogue of D defined in (A.6) of [5] on H2. Therefore, we can apply Lemma A.2 in [5]

with the natural substitutions which yields

D(u⋆, v⋆) = D(f(u⋆), f(v⋆)) =
(

1 + 1
S(Stu⋆)−1

)−1 (
1 + 1

S(Stv⋆)−1

)−1

D(u⋆, v⋆)

≤ cD(u⋆, v⋆).

for some number c. Here we used 1. and 2. of Lemma A.2 in [5] in the second step and 3.

of Lemma A.2 in [5] in the last step. Since we can choose c < 1 by (4.3.81), we conclude

u⋆ = v⋆. This argument applies particularly to minimizers of J on (0, 1]p.

In the following, we will denote the unique minimizer of J by u. To compute the sum

of the components of u we multiply (4.3.73) by u and sum over i = 1, . . . , p and obtain

p =
p∑
i=1

ui +
p∑
i=1

ui

(
S

1
Stu

)
i

=
p∑
i=1

ui +
n∑
j=1

(Stu)j
1

(Stu)j
=

p∑
i=1

ui + n,

i.e., ∑p
i=1 ui = p− n.

Finally, we show that the components of the minimizer u are bounded from below by

a positive constant which only depends on the model parameters. For k ∈ {1, . . . , n}, we

obtain

(Stu)k ≥
φ

n+ p

p∑
i=1

ui ≥
φ

2 ⟨u⟩ = φ

2

(
1− n

p

)
≥ φd∗

2(1 + d∗)
, (4.3.83)

where we used (F2) in the first step, n ≤ p in the second step, ∑p
i=1 ui = p − n in the

third step and (4.3.71) in the last step. This implies the third bound in (4.3.77).

Therefore, we obtain for all i = 1, . . . , p from (4.3.73)

1
ui

= 1 +
n∑
k=1

sik
1

(Stu)k
≤ 1 + 2(1 + d∗)

φd∗
,

where we used (A) with s∗ = 1 in the last step. This shows that ui is bounded from

below by a positive constant which only depends on the model parameters, i.e., the

second bound in (4.3.77). □

Proof of Lemma 4.3.18. Instead of solving (4.3.74) directly, we solve a differential

equation with the correctly chosen initial condition in order to obtain b. Note that

b0
..= 1/(Stu) fulfills (4.3.74) for z = 0 and b0 ∼ 1 by (4.3.77) and (4.3.15).
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For any b ∈ Cn satisfying (Sb)i ̸= −1 for i = 1, . . . , p, we define the linear operator

L(b) : Cn → Cn, v ↦→ L(b)v ..= bSt
1

(1 + Sb)2S(bv),

where bv is understood as componentwise multiplication. Using the definition of L(b),

b0 = 1/(Stu) and (4.3.73), we get

L(b0)1 = 1
Stu

Stu2S
1
Stu

= 1
Stu

(
Stu− Stu2

)
= 1− Stu2

Stu
≤ 1− κ (4.3.84)

for some κ ∼ 1. Here we used (4.3.15), u2 ≳ 1 and (4.3.77) in the last step. As

L(b0) = 1
Stu

Stu2S
( 1
Stu
·
)

is symmetric and positivity-preserving, Lemma 4.6 in [4] implies ∥L(b0)∥2→2 ≤ 1 − κ

because of (4.3.84). Therefore, (1 − L(b0)) is invertible and ∥(1 − L(b0))−1∥2→2 ≤ κ−1.

Moreover, ∥(1 − L(b0))−1∥∞→∞ ≤ 1 + ∥L(b0)∥2→∞κ
−1 by (4.3.27) with R = L(b0) and

D = 1. The estimate (4.3.11) and the submultiplicativity of the operator norm ∥·∥2 yield

∥L(b0)∥2→∞ ≲ 1. Thus, we obtain

∥(1− L(b0))−1∥∞ ≲ 1.

We introduce the notation Uδ′ ..= {b ∈ Cn; ∥b − b0∥∞ < δ′}. If we choose δ′ ≤

(2∥S∥∞→∞)−1 then

|(1 + Sb)i| = |u−1
i + (S(b− b0))i| ≥ |u−1

i | − ∥S∥∞→∞∥b− b0∥∞ ≥ 1/2

for all i = 1, . . . , p, where we used the definition of b0, (4.3.73) and ui ≤ 1. Therefore,

∥(1 + Sb)−1∥∞ ≤ 1/2 for all b ∈ Uδ′ , i.e., Uδ′ → Cn×n, b ↦→ L(b) will be a holomorphic

map. In particular,

∥L(b)− L(b0)∥∞ ≲ ∥b− b0∥∞. (4.3.85)

If D ..= L(b)−L(b0) and ∥(1−L(b0))−1D∥∞→∞ ≤ 1/2 then (1−L(b)) will be invertible

and

(1− L(b))−1 =
(
1− (1− L(b0))−1D

)−1
(1− L(b0))−1,



4.3. QUADRATIC VECTOR EQUATION 93

as well as ∥(1 − L(b))−1∥∞→∞ ≤ 2∥(1 − L(b0))−1∥∞→∞. Therefore, (4.3.85) implies the

existence of δ′ ∼ 1 such that (1 − L(b)) is invertible and ∥(1 − L(b))−1∥∞ ≲ 1 for all

b ∈ Uδ′ .

Hence, the right-hand side of the differential equation

b′ ..= ∂

∂z
b = 2zb(1− L(b))−1b =.. f(z, b) (4.3.86)

is holomorphic on Dδ′(0)× Uδ′ . As δ′ ∼ 1 and sup{∥f(z, w)∥∞; z ∈ Dδ′(0), b ∈ Uδ′} ≲ 1,

the standard theory of holomorphic differential equations yields the existence of δ∗ ≳ 1

and a holomorphic function b : Dδ∗(0) → Cn which is the unique solution of (4.3.86) on

Dδ∗(0) satisfying b(0) = b0.

The solution of the differential equation (4.3.86) is a solution of (4.3.74) since dividing

by b, multiplying by (1− L(b)) and dividing by b in (4.3.86) yields

b′

b2 = 2z + 1
b
L(b)b

′

b
.

This is the derivative of (4.3.74). Since b(0) = b0 fulfils (4.3.74) for z = 0 the unique

solution of (4.3.86) with this initial condition is a solution of (4.3.74) for z ∈ Dδ∗(0).

There is only one holomorphic solution of (4.3.74) due to the uniqueness of the solution

of (4.3.86). This proves the existence and uniqueness of b(z) in Lemma 4.3.18.

Since b is a holomorphic function on Dδ∗(0) such that |b(z)| ≲ 1 on Dδ∗(0) and δ∗ ∼ 1

there is a holomorphic function b1 : Dδ∗(0)→ Cn such that

b(z) = b0 + b1(z)z

and |b1(z)| ≲ 1. Thus, we can assume that δ∗ ≳ 1 is small enough such that Im zb(z) ≥

(b0 − |z||b1(z)|)Im z > 0 for all z ∈ Dδ∗(0) ∩H.

Taking the imaginary part of (4.3.74) for τ ∈ R, we get

Im b(τ)
|b(τ)|2 = St

1
|1 + Sb(τ)|2SIm b(τ)

or equivalently, introducing

L̃(z) : Cn → Cn, v ↦→ L̃(z)v ..= |b(z)|St|1 + Sb(z)|−2S(|b(z)|v)



94 CHAPTER 4. LOCAL LAW FOR RANDOM GRAM MATRICES

for z ∈ Dδ∗(0), we have (
1− L̃(τ)

) Im b(τ)
|b(τ)| = 0. (4.3.87)

As ∥(1 +Sb(z))−1∥∞ ≤ 1/2 for all z ∈ Dδ∗(0), the linear operator L̃(z) is well-defined for

all z ∈ Dδ∗(0). Because L̃(0) = L(b0) and ∥L̃(b) − L̃(b0)∥∞ ≲ ∥b − b0∥∞ we can assume

that δ∗ ≳ 1 is small enough such that (1 − L̃(z)) is invertible for all z ∈ Dδ∗(0). Thus,

(4.3.87) implies that Im b(τ) = 0 for all τ ∈ (−δ∗, δ∗) and consequently, Im τb(τ) = 0 for

all τ ∈ (−δ∗, δ∗). □

4.4. Local laws

4.4.1. Local law for H. In this section, we will follow the approach used in [7]

to prove a local law for the Wigner-type matrix H . We will not give all details but

refer the reader to [7]. Therefore, we consider (4.3.4) as a perturbed QVE of the form

(4.3.9) with g ..= (g1, g2)t : H → Cp+n and d ..= (d1, d2)t : H → Cp+n, in particular

g(z) = (Gxx(z))x=1,...,n+p where Gxx are the diagonal entries of the resolvent of H defined

in (4.3.3). We recall that ρ is the probability measure on R whose Stieltjes transform is

⟨m⟩, cf. (4.3.8), where m is the solution of (4.3.6) satisfying Imm(z) > 0 for z ∈ H.

Definition 4.4.1 (Stochastic domination). Let P0 : (0,∞)2 → N be a given function

which depends only on the model parameters and the tolerance exponent γ. If φ = (φ(p))p
and ψ = (ψ(p))p are two sequences of nonnegative random variables then we will say that

φ is stochastically dominated by ψ, φ ≺ ψ, if for all ε > 0 and D > 0 we have

P
(
φ(p) ≥ pεψ(p)

)
≤ p−D

for all p ≥ P0(ε,D).

In the following, we will use the convention that τ ..= Re z and η ..= Im z for z ∈ C.

Theorem 4.4.2 (Local law for H away from the edges). Fix any δ, ε∗ > 0 and γ ∈ (0, 1)

independent of p. If the random matrix X satisfies (A) – (D) then the resolvent entries
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Gxy(z) of H defined in (4.3.3) and (4.3.1), respectively, fulfill

max
x,y=1,...,n+p

|Gxy(z)−mx(z)δxy| ≺
1
√
pη
, if Im z ≥ p−1+γ and ⟨Imm(z)⟩ ≥ ε∗, (4.4.1a)

max
x,y=1,...,n+p

|Gxy(z)−mx(z)δxy| ≺
1
√
p
, if dist(z, supp ρ) ≥ ε∗, (4.4.1b)

uniformly for z ∈ H satisfying δ ≤ |z| ≤ 10. For any sequence of deterministic vectors

w ∈ Cn+p satisfying ∥w∥∞ ≤ 1, we have

|⟨w , g(z)−m(z)⟩| ≺ 1
pη
, if Im z ≥ p−1+γ and ⟨Imm(z)⟩ ≥ ε∗, (4.4.2a)

|⟨w , g(z)−m(z)⟩| ≺ 1
p
, if dist(z, supp ρ) ≥ ε∗, (4.4.2b)

uniformly for z ∈ H satisfying δ ≤ |z| ≤ 10. Here, the threshold function P0 in the

definition of the relation ≺ depends on the model parameters as well as δ, ε∗ and γ.

Remark 4.4.3. The proof of Theorem 4.4.2 actually shows an explicit dependence of the

estimates (4.4.1) and (4.4.2) on ε∗. More precisely, if the right-hand sides of (4.4.1) and

(4.4.2) are multiplied by a universal inverse power of ε∗ and the right-hand side of the

condition Im z ≥ p−1+γ is multiplied by the same inverse power of ε∗ then Theorem 4.4.2

holds true where the relation ≺ does not depend on ε∗ any more.

Let µ1 ≤ . . . ≤ µn+p be the eigenvalues of H . We define

I(τ) ..=
⌈
(n+ p)

∫ τ

−∞
ρ(dω)

⌉
, τ ∈ R. (4.4.3)

Thus, I(τ) denotes the index of an eigenvalue expected to be close to the spectral pa-

rameter τ ∈ R.

Corollary 4.4.4 (Bulk rigidity, Absence of eigenvalues outside of supp ρ). Let δ, ε∗ > 0.

(i) Uniformly for all τ ∈ [−10,−δ]∪ [δ, 10] satisfying ρ(τ) ≥ ε∗ or dist(τ, supp ρ) ≥

ε∗, we have ⏐⏐⏐⏐#{j;µj ≤ τ} − (n+ p)
∫ τ

−∞
ρ(dω)

⏐⏐⏐⏐ ≺ 1. (4.4.4)
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(ii) Uniformly for all τ ∈ [−10,−δ] ∪ [δ, 10] satisfying ρ(τ) ≥ ε∗, we have

|µI(τ) − τ | ≺
1

n+ p
. (4.4.5)

(iii) Asymptotically with overwhelming probability, we have

#
(

Spec(H) ∩ {τ ∈ [−10,−δ] ∪ [δ, 10]; dist(τ, supp ρ) ≥ ε∗}
)

= 0. (4.4.6)

The estimates (4.4.2a) and (4.4.2b) in Theorem 4.4.2 imply Corollary 4.4.4 in the same

way as the corresponding results, Corollary 1.10 and Corollary 1.11, in [7] were proven.

In fact, inspecting the proofs in [7], rigidity at a particular point τ0 in the bulk requires

only (i) the local law, (4.4.2a), around τ0 = Re z, (ii) the local law somewhere outside of

the support of ρ, (4.4.2b), and (iii) a uniform global law with optimal convergence rate,

(4.4.2b), for any z away from supp ρ.

Proof of Theorem 4.4.2. In the proof, we will use the following shorter notation.

We introduce the spectral domain

DH ..= {z ∈ H : δ ≤ |z| ≤ 10, Im z ≥ p−1+γ, ⟨Imm(z)⟩ ≥ ε∗ or dist(z, supp ρ) ≥ ε∗}

for the parameters γ > 0, ε∗ > 0 and δ > 0. Moreover, we define the random control

parameters

Λd(z) ..= ∥g(z)−m(z)∥∞, Λo(z) ..= max
x,y=1,...,n+p

x ̸=y

|Gxy(z)|, Λ(z) ..= max{Λd(z),Λo(z)}.

Before proving (4.4.1) and (4.4.2), we establish the auxiliary estimates: Uniformly for

all z ∈ DH , we have

Λd(z) + ∥d(z)∥∞ ≺

√⟨Imm(z)⟩
(n+ p)η + 1

(n+ p)η + 1√
n+ p

, (4.4.7a)

Λo(z) ≺

√⟨Imm(z)⟩
(n+ p)η + 1

(n+ p)η + 1√
n+ p

. (4.4.7b)

Moreover, for every sequence of vectors w ∈ Cp+n satisfying ∥w∥∞ ≤ 1, we have

|⟨w , g(z)−m(z)⟩| ≺ ⟨Imm(z)⟩
(n+ p)η + 1

(n+ p)2η2 + 1
n+ p

(4.4.8)
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uniformly for z ∈ DH .

Now, we show that (4.4.8) follows from (4.4.7a) and (4.4.7b). To that end, we use the

following lemma which is proven as Theorem 3.5 in [7].

Lemma 4.4.5 (Fluctuation Averaging). For any z ∈ DH and any sequence of deter-

ministic vectors w ∈ Cn+p with the uniform bound, ∥w∥∞ ≤ 1 the following holds

true: If Λo(z) ≺ Φ for some deterministic (n and p-dependent) control parameter Φ

with Φ ≤ (n+ p)−γ/3 and Λ(z) ≺ (n+ p)−γ/3 a.w.o.p., then

|⟨w,d(z)⟩| ≺ Φ2 + 1
n+ p

. (4.4.9)

By (4.4.7a), the indicator function in (4.3.36) is nonzero a.w.o.p. Moreover, (4.4.7b)

ensures the applicability of the fluctuation averaging, Lemma 4.4.5, which implies that

the last term in (4.3.36) is stochastically dominated by the right-hand side in (4.4.8).

Using (4.4.7a) again, we conclude that the first term of the right-hand side of (4.3.36) is

dominated by the right-hand side of (4.4.8).

In order to show (4.4.7a) and (4.4.7b) we use the following lemma whose proof we

omit, since it follows exactly the same steps as the proof of Lemma 2.1 in [7].

Lemma 4.4.6. Let λ∗ : H→ (0,∞) be the function from Lemma 4.3.9. We have

∥d(z)∥∞1(Λ(z) ≤ λ∗(z)) ≺

√Im ⟨g(z)⟩
(n+ p)η + 1√

n+ p
, (4.4.10a)

Λo(z)1(Λ(z) ≤ λ∗(z)) ≺

√Im ⟨g(z)⟩
(n+ p)η + 1√

n+ p
(4.4.10b)

uniformly for all z ∈ DH .

By (4.3.35) and (4.4.10a), we obtain

(Λd(z) + ∥d(z)∥∞)1(Λd(z) ≤ λ∗(z)) ≺

√ ⟨Imm⟩
(n+ p)η + (n+ p)−εΛd + (n+ p)ε

(n+ p)η + 1√
n+ p
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for any ε ∈ (0, γ). Here we used Im g = Imm+O(Λd). We absorbe (n+ p)−εΛd into the

left-hand side and get

(Λd(z) + ∥d(z)∥∞)1(Λd(z) ≤ λ∗(z)) ≺

√ ⟨Imm⟩
(n+ p)η + 1

(n+ p)η + 1√
n+ p

(4.4.11)

as ε ∈ (0, γ) is arbitrary. From (4.4.10b), we conclude

Λo(z)1(Λ(z) ≤ λ∗(z)) ≺

√ ⟨Imm⟩
(n+ p)η + 1

(n+ p)η + 1√
n+ p

, (4.4.12)

where we used Im g = Imm+O(Λd) and (4.4.11) and the fact that Λd ≤ Λ.

We will conclude the proof by establishing that 1(Λ(z) ≤ λ∗(z)) = 1 a.w.o.p. due to an

application of Lemma A.1 in [7]. Combining (4.4.11) and (4.4.12) and using ⟨Imm(z)⟩ ≲

(Im z)−1, we obtain

Λ(z)1(Λ(z) ≤ λ∗(z)) ≺ (n+ p)−γ/2 (4.4.13)

for z ∈ DH by the definition of DH . We define the function Φ(z) ..= (n+ p)−γ/3 and note

that Λ(z) = ∥g(z)−m(z)∥∞ is Hölder-continuous since g and m are Hölder-continuous

by

max
x,y=1,...,n+p

|Gxy(z1)−Gxy(z2)| ≤
|z1 − z2|

(Im z1)(Im z2)
≤ (n+ p)2|z1 − z2| (4.4.14)

for z1, z2 ∈ DH and Lemma 4.3.8, respectively. We choose z0
..= 10i . Since |Gxy(z)| ≤

(Im z)−1 and |mx(z)| ≤ (Im z)−1 we get Λ(10i ) ≤ 1 and hence 1(Λ(10i ) ≤ λ∗(10i )) = 1

by Lemma 4.3.9. Therefore, we conclude Λ(z0) ≤ (n + p)−γ/2 ≤ Φ(z0) from (4.4.13).

Moreover, (4.4.13) implies Λ ·1(Λ ∈ [Φ−(n+p)−1,Φ]) < Φ−(n+p)−1 a.w.o.p. uniformly

on DH . Thus, we get Λ(z) ≤ (n+ p)−γ/3 a.w.o.p. for all z ∈ DH by applying Lemma A.1

in [7] to Λ and Φ on the connected domain DH , i.e., 1(Λ(z) ≤ λ∗(z)) = 1 a.w.o.p.

Therefore, (4.4.11) and (4.4.12) yield (4.4.7a) and (4.4.7b), respectively. As remarked

above this also implies (4.4.1a).

For the proof of (4.4.1b) and (4.4.2b), we first notice that

Gxx(z) =
n+p∑
a=1

|ua(x)|2
µa − z
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for all x = 1, . . . , n + p, where ua(x) denotes the x-component of a ∥·∥2 normalized

eigenvector ua corresponding to the eigenvalue µa of H . Therefore, we conclude

ImGxx(z) = η
n+p∑
a=1

|ua(x)|2
(µa − τ)2 + η2 ≺ η

n+p∑
a=1

1(Aa)
|ua(x)|2

(µa − τ)2 + η2 ≺ η

for all z ∈ H satisfying δ ≤ |z| ≤ 10 and dist(z, supp ρ) ≥ ε∗. Here we used that

Aa ..= {dist(µa, supp ρ) ≤ ε∗/2} occurs a.w.o.p by (4.4.6) and thus 1 − 1(Aa) ≺ 0. In

particular, we have ⟨Im g⟩ ≺ η. Now, (4.4.10a) and (4.4.10b) yield

∥d(z)∥∞1(Λ(z) ≤ λ∗(z)) ≺
1√
n+ p

, (4.4.15a)

Λo(z)1(Λ(z) ≤ λ∗(z)) ≺
1√
n+ p

. (4.4.15b)

Following the previous argument but using (4.4.15a) and (4.4.15b) instead of (4.4.10a)

and (4.4.10b), we obtain (4.4.1b) and (4.4.2b) and this completes the proof of Theo-

rem 4.4.2. □

4.4.2. Local law for Gram matrices.

Proofs of Theorem 4.2.3 and Theorem 4.2.5. Splitting the resolvent of H at

z ∈ C \ R into blocks

G(z) =

⎛⎜⎝G11(z) G12(z)

G21(z) G22(z)

⎞⎟⎠
and computing the product G(z)(H − z) blockwise, we obtain that (XX∗ − z2)−1 =

G11(z)/z and (X∗X − z2)−1 = G22(z)/z for z ∈ C \ R. Therefore, (4.2.3) follows from

(4.4.1) as well as |z| ≥ δ and m(ζ) = m1(
√
ζ)/
√
ζ for ζ ∈ H.

As p ∼ n we obtain

|⟨w, diag(XX∗ − ζ)−1 −m(ζ)⟩| ≲
⏐⏐⏐⏐⏐
⟨

(w, 0)t , 1√
ζ

(
g(
√
ζ)−m(

√
ζ)
)⟩⏐⏐⏐⏐⏐

for w ∈ Cp. Using p ∼ n, this implies (4.2.4) by (4.4.2). This concludes the proof of

Theorem 4.2.3.

Theorem 4.2.5 is a consequence of the corresponding result for H , namely Corol-

lary 4.4.4. □
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Proof of Theorem 4.2.8. As m(ζ) = m1(
√
ζ)/
√
ζ for ζ ∈ H, Proposition 4.3.10

implies |m(ζ)| ≲ |ζ|−1/2. Thus, π∗ = 0. Recalling π(ω) = ω−1/2ρ1(ω1/2)1(ω > 0), where

ρ1 is the bounded density representing ⟨m1⟩, yields

lim
ω↓0

π(ω)
√
ω = 1

π
⟨v1(0)⟩ ∈ (0,∞)

by (4.3.59a) which proves part (ii) of Theorem 4.2.8.

Since n = p, in this case we have Spec(XX∗) = Spec(X∗X). Thus, ⟨g1⟩ = ⟨g2⟩, i.e.,

(4.3.42) is fulfilled and Proposition 4.3.10 is applicable.

Using Proposition 4.3.10 instead of Lemma 4.3.9 and following the argument in Sub-

section 4.4.1, we obtain the same result as Theorem 4.4.2 without the restriction |z| ≥ δ.

As in the proof of Theorem 4.2.3, we obtain

|Rij(ζ)− δijmi(ζ)| ≺

√
Re
√
ζ

|
√
ζ|
√
pIm ζ

≲

√
⟨Imm(ζ)⟩
pIm ζ

.

Here, we deviated from the proof of Theorem 4.2.3 since |z| can be arbitrarily small for

z ∈ D0 and used part (ii) of Theorem 4.2.8 in the last step. This concludes the proof of

part (i) of Theorem 4.2.8.

Consequently, a version of Corollary 4.4.4 for δ = 0 holds true. Then, part (iii) and

(iv) of the theorem follow immediately. □

4.4.3. Proof of Theorem 4.2.10. In this subsection, we will assume that (A), (C),

(D) and (F2) as well as
p

n
≥ 1 + d∗ (4.4.16)

for some d∗ > 0 hold true.

Theorem 4.4.7 (Local law for H around z = 0). If (A), (C), (D), (F2) and (4.4.16)

hold true, then

(i) The kernel of H and the kernel of H2 have dimension p− n a.w.o.p.

(ii) There is a γ∗ ≳ 1 such that

|µ| ≥ γ∗ (4.4.17)

a.w.o.p. for all µ ∈ Spec(H) such that µ ̸= 0.
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(iii) For every ε∗ > 0, we have

max
x,y=1,...,n+p

|Gxy(z)−mx(z)δxy| ≺
1

|z|
√
n+ p

, (4.4.18a)

|⟨g⟩ − ⟨m⟩| ≺ |z|
n+ p

. (4.4.18b)

uniformly for z ∈ H satisfying |z| ≤
√
δπ − ε∗.

We will prove that the kernel of H2 has dimension p − n by using a result about

the smallest nonzero eigenvalue of XX∗ from [73]. Since this result requires the entries

of X to have the same variance and a symmetric distribution, in order to cover the

general case, we employ a continuity argument which replaces xik, for definiteness, by

centered Gaussians with variance (n+ p)−1. This will immediately imply Theorem 4.4.7

and consequently Theorem 4.2.10.

We recall the definition of δπ from (4.2.10) and choose δ∗ as in Proposition 4.3.16 for

the whole section. Note that δ2
∗ ≤ δπ.

Lemma 4.4.8. If (4.4.16) holds true then for all δ1, δ2 > 0 such that δ1 < δ2 < δ2
∗/2, the

matrix H2 has no eigenvalues in [δ1, δ2] a.w.o.p.

Proof. Part (iii) of Corollary 4.4.4 with δ = δ1 and ε∗ = min{δ1, δπ − δ2} implies

#
(
Spec(H) ∩ [

√
δ1,
√
δ2]
)

= 0

a.w.o.p. because there is a gap in the support of ρ by part (iii) of Proposition 4.3.16.

Since Spec(H2) = Spec(H)2 this concludes the proof. □

For the remainder of the section, let X̂ = (x̂ik)k=1,...,n
i=1,...,p consist of independent centered

Gaussians with E|x̂ik|2 = (n+ p)−1. We set

Ĥ ..=

⎛⎜⎝ 0 X̂

X̂∗ 0

⎞⎟⎠ .
Lemma 4.4.9. If (4.4.16) holds true then the kernel of X̂X̂∗ has dimension p−n a.w.o.p.,

ker(X̂∗X̂) = {0} a.w.o.p. and there is a γ̂ ∼ 1 such that

λ̂ ≥ γ̂ (4.4.19)
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for all λ̂ ∈ Spec(X̂∗X̂).

Proof. Let λ̂1 ≤ . . . ≤ λ̂p be the eigenvalues of X̂X̂∗. The assertion will follow once

we have established that λ̂p−n+1 ≳ 1 a.w.o.p. since X̂X̂∗ and X̂∗X̂ have the same nonzero

eigenvalues and dim ker X̂X̂∗ ≥ p − n for dimensional reasons. Corollary V.2.1 in [73]

implies that λ̂p−n+1 ≥ γ−−p−2/3+ε a.w.o.p. for each ε > 0 where γ−
..= 1−2√pn/(n+p) ≳

1, thus λ̂p−n+1 ≳ 1 a.w.o.p. In fact, our proof only requires that λ̂p−n+1 ≥ γ−− ε for any

ε > 0 a.w.o.p, which already follows from the argument in [133]. □

Proof of Theorem 4.4.7. We define H t
..=
√

1− tH +
√
tĤ for t ∈ [0, 1] and set

γ∗
..= min{δ∗/2,

√
γ̂}, where γ̂ is chosen as in (4.4.19). By Lemma 4.4.8 with δ2

..= γ2
∗

and δ1
..= γ2

∗/2, H2
t has no eigenvalues in [δ1, δ2] a.w.o.p. for every t ∈ [0, 1]. Clearly,

the eigenvalues of H2
t depend continuously on t. Therefore, #(Spec(H2) ∩ [0, δ1)) =

#(Spec(Ĥ2) ∩ [0, δ1)). Thus, we get the chain of inequalities

p− n ≤ dim kerH = dim kerH2 ≤ #
(
Spec(H2) ∩ [0, δ1)

)
= #

(
Spec(Ĥ2) ∩ [0, δ1)

)
= dim ker Ĥ2 = p− n.

Here we used Lemma 4.4.9 in the last step. As the left and the right-hand-side are equal

all of the inequalities are equalities which concludes the proof of part (i) and part (ii).

We will omit the proof of part (iii) of Theorem 4.4.7 as it is very similar to the

proof of part (vi) of Theorem 4.2.10 below which will be independent of part (iii) of

Theorem 4.4.7. □

Proof of Theorem 4.2.10. Since δ∗ is chosen as in Proposition 4.3.16 we conclude

δπ ≥ δ2
∗ ≳ 1 from part (iv) of this proposition. Part (ii) and (iii) of the theorem follow

immediately from (4.4.17) in Theorem 4.4.7.

If p > n, then dim kerXX∗ = p−n a.w.o.p. as p−n ≤ dim kerXX∗ ≤ dim kerH2 =

p− n a.w.o.p by part (i) of Theorem 4.4.7. By Proposition 4.3.16, we obtain π∗ = ⟨u⟩ =

1 − n/p, where u is defined as in this proposition. This proves part (iv). If p < n, then

part (v) follows from interchanging the roles of X and X∗ and following the same steps

as in the proof of part (iv).
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For the proof of part (vi), we first assume p > n. By Proposition 4.3.16 we can

uniquely extend ζm(ζ) =
√
ζm1(

√
ζ) to a holomorphic function on Dδ2

∗
(0). We fix γ∗ as

in (4.4.17). On the event {λi ≥ γ2
∗ for all i = p− n+ 1, . . . , p}, which holds true a.w.o.p.

by (4.4.17), the function ζR(ζ) can be uniquely extended to a holomorphic function on

Dγ2
∗
(0). We set δ ..= min{γ2

∗/2, δ2
∗} and assume without loss of generality that δ ≤ δπ−ε∗.

For ζ ∈ H satisfying δ ≤ |ζ| ≤ δπ − ε∗, (4.2.11) is immediate from (4.2.3b). We apply

(4.2.3b) to obtain maxi,j|Rij(ζ) − mi(ζ)δij| ≺ 1/p for ζ ∈ H satisfying |ζ| = δ. By

the symmetry of R(ζ) and m(ζ) this estimate holds true for all ζ ∈ C satisfying |ζ| = δ.

Thus, the maximum principle implies that maxi,j|ζRij(ζ)−ζmi(ζ)δij| ≺ 1/p which proves

(4.2.11) since {λi ≥ 2δ for all i = p− n+ 1, . . . , p} which holds true a.w.o.p. by 2δ ≤ γ2
∗

and (4.4.17). If p < n then XX∗ does not have a kernel a.w.o.p. by (v). Therefore, a

similar argument yields (4.2.12).

For the proof of (4.2.13), we observe that dim ker(XX∗) = pπ∗ a.w.o.p. in both cases

by (iv) and (v). Thus,

1
p

p∑
i=1

[Rii(ζ)−mi(ζ)] = 1
p

⎛⎝ ∑
j : λj≥γ2

∗

1
λj − ζ

−
p∑
i=1

ai(
√
ζ)
⎞⎠

a.w.o.p. for ζ ∈ Dδ(0), δ chosen as above, by (4.4.17), where a is the holomorphic function

on Dδ∗(0) defined in Proposition 4.3.16. The right-hand side of the previous equation

can therefore be uniquely extended to a holomorphic function on Dδ∗(0). As before, the

estimate (4.2.3b) can be extended to ζ ∈ H with |ζ| ≤ δ by the maximum principle. □

The local law for ζ around zero needed an extra argument, Theorem 4.2.10, due to

the possible singularity at ζ = 0. We note that this separate treatment is necessary even

if p < n, in which case XX∗ does not have a kernel and R(ζ) is regular at ζ = 0, since

we study XX∗ and X∗X simultaneously. Our main stability results are formulated and

proven in terms of H , as defined in (4.3.1). Therefore, these results are not sensitive to

whether p or n is bigger which means whether XX∗ has a kernel or X∗X.

4.5. Proof of the Rotation-Inversion lemma

In this section, we prove the Rotation-Inversion lemma, Lemma 4.3.6.
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Proof of Lemma 4.3.6. In this proof, we will write ∥A∥ to denote ∥A∥2. Moreover,

we introduce a few short hand notations,

U ..=

⎛⎜⎝ U1 0

0 U2

⎞⎟⎠ , A ..=

⎛⎜⎝ 0 A

A∗ 0

⎞⎟⎠ , a±
..= 1√

2

⎛⎜⎝ v1

±v2

⎞⎟⎠ , ρ ..= ∥A∗A∥1/2.

In particular, we have Av2 = ρeiψv1 and A∗v1 = ρe−iψv2 for some ψ ∈ R. By redefining

v1 to be eiψv1 we may assume that ψ = 0 and get Aa± = ±ρa± as well.

Let us check that indeed U + A is not invertible if the right-hand side of (4.3.26) is

infinite, i.e., if

∥A∗A∥⟨v1 , U1v1⟩⟨v2 , U2v2⟩ = 1 .

In this case we find ∥A∗A∥ = 1, ⟨v1 , U1v1⟩ = eiφ and ⟨v2 , U2v2⟩ = e−iφ for some φ ∈ R.

Thus, v1 and v2 are eigenvectors of U1 and U2, respectively. Therefore, both U and A

leave the 2-dimensional subspace spanned by (v1, 0) and (0, v2) invariant and in this basis

the restriction of U +A is represented by the 2× 2-matrix⎛⎜⎝ eiφ 1

1 e−iφ

⎞⎟⎠ ,
which is not invertible.

We will now show that in every other case U +A is invertible and its inverse satisfies

(4.3.26). To this end we will derive a lower bound on ∥(U + A)w∥ for an arbitrary

normalized vector w ∈ Cn+p. Any such vector admits a decomposition,

w = α+a+ + α−a− + βb ,

where α± ∈ C, β ≥ 0 and b is a normalized vector in the orthogonal complement of the

2-dimensional space spanned by a+ and a−. The normalization of w implies

|α+|2 + |α−|2 + β2 = 1 . (4.5.1)

The case β = 1 is trivial because the spectral gap of A∗A implies a spectral gap of A in

the sense that

Spec(A/ρ) ⊆ {−1} ∪ [− 1 + ρ−2 Gap(AA∗), 1− ρ−2 Gap(AA∗) ] ∪ {1} . (4.5.2)
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Thus, we will from now on assume β < 1.

We will use the notations P∥ and P⊥ for the orthogonal projection onto the 2-

dimensional subspace spanned by a± and its orthogonal complement, respectively. We

also introduce

λ ..= 1
2
|α+ + α−|2

|α+|2 + |α−|2
∈ [0, 1] ,

κ ..= (|α+|2 + |α−|2)−1/2∥P∥(1 + U∗A)(α+a+ + α−a−)∥ .
(4.5.3)

With this notation we will now prove

∥(U +A)w∥ ≥ c1 Gap(AA∗)κ , (4.5.4)

for some positive numerical constant c1. The analysis is split into the following regimes:

Regime 1: κ1/2 < 10β,

Regime 2: κ1/2 ≥ 10β and λ < 1/10,

Regime 3: κ1/2 ≥ 10β and λ > 9/10,

Regime 4: κ1/2 ≥ 10β and 1/10 ≤ λ ≤ 9/10 and |⟨v1 , U1v1⟩|2 + |⟨v2 , U2v2⟩|2 ≤ 2− κ/2,

Regime 5: κ1/2 ≥ 10β and 1/10 ≤ λ ≤ 9/10 and |⟨v1 , U1v1⟩|2 + |⟨v2 , U2v2⟩|2 > 2− κ/2.

These regimes can be chosen more carefully in order to optimize the constant c1 in (4.5.4),

but we will not do that here.

Regime 1: In this regime we make use of the spectral gap of A∗A by simply using the

triangle inequality,

∥(U +A)w∥ ≥ ∥w∥ − ∥Aw∥ = 1−
√
ρ2 |α+|2 + ρ2 |α−|2 + β2∥Ab∥2.

We use the inequality 1−
√

1− τ ≥ τ/2 for τ ∈ [0, 1] as well as the normalization (4.5.1)

and find

2∥(U +A)w∥ ≥ 1− ρ2 + ρ2β2 − β2∥Ab∥2 ≥ ρβ2(ρ− ∥Ab∥) ≥ β2 Gap(AA∗) .

The last inequality follows from (4.5.2) and because b is orthogonal to a±. Since β2 ≥

κ/100, we conclude that in the first regime (4.5.4) is satisfied.
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Regime 2: In this regime we project on the second component of (U +A)w.
√

2∥(U +A)w∥ ≥ ∥(α+ − α−)U2v2 +
√

2βU2b2 − (α+ + α−)A∗v1 −
√

2βA∗b1∥

≥ |α+ − α−|∥U2v2∥ −
√

2β∥U2b2∥ − ρ |α+ + α−|∥v2∥ −
√

2β∥A∗b1∥

≥
√

2
√
|α+|2 + |α−|2(

√
1− λ−

√
λ)− 2

√
2β .

Here we used the notation b = (b1, b2) for the components of b. The last inequality holds

by the normalization of v2 and b, by ρ ≤ 1 and by the definition of λ from (4.5.3), which

also implies

|α+ − α−|2 = 2(1− λ)(|α+|2 + |α−|2) .

Since λ < 1/4 in this regime and κ ≤ 2 by the definition of κ in (4.5.3) we find β ≤

κ1/2/10 ≤ 1/5 and infer

∥(U +A)w∥ ≥
√

1− β2(
√

1− λ−
√
λ)− 2β ≥ 1/10 ≥ κ/20 .

Regime 3: By the symmetry in a± and α± and therefore in λ and 1− λ this regime is

treated in the same way as Regime 2 by estimating the norm of the first component of

(U +A)w from below.

Regime 4: Here we project onto the orthogonal complement of the subspace spanned

by a+ and a−,

∥(U +A)w∥ ≥ ∥P⊥(U +A)w∥ ≥ ∥P⊥U(α+a+ + α−a−)∥ − β∥P⊥(U +A)b∥ . (4.5.5)

We compute the first term in this last expression more explicitly,

∥P⊥U(α+a+ + α−a−)∥2 = ∥α+a+ + α−a−∥2 − ∥P∥U(α+a+ + α−a−)∥2

= |α+|2 + |α−|2 −
1
2 |α+ + α−|2|⟨v1 , U1v1⟩|2

− 1
2 |α+ − α−|2|⟨v2 , U2v2⟩|2

= (1− β2)(1− λ|⟨v1 , U1v1⟩|2 − (1− λ)|⟨v2 , U2v2⟩|2) .

(4.5.6)

For the second equality we used that

∥P∥u∥2 = |⟨v1 , u1⟩|2 + |⟨v2 , u2⟩|2, u = (u1, u2) ∈ Cp+n.
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With the choice of variables

ξ ..= |⟨v1 , U1v1⟩|2 , η ..= |⟨v2 , U2v2⟩|2 ,

we are minimizing the last line in (4.5.6) under the restrictions that are satisfied in this

regime,

min{1− λξ − (1− λ)η : ξ, η ∈ [0, 1] , 2ξ + 2η ≤ 4− κ} ≥ 1
2 κmin{1− λ, λ} .

We use the resulting estimate in (4.5.5) and in this way we arrive at

∥(U +A)w∥ ≥ 1√
2
κ1/2

√
1− β2 min{1− λ, λ}1/2 − 2β ≥ κ1/2

100 ≥
κ

200 .

In the second to last inequality we used β ≤ 1/5 which was already established in the

consideration of Regime 2 and in the last inequality we used κ ≤ 2.

Regime 5: In this regime we project onto the span of a+ and a−,

∥(U +A)w∥ = ∥(1 + U∗A)w∥

≥ ∥P∥(1 + U∗A)(α+a+ + α−a−)∥ − β∥P∥(1 + U∗A)b∥

=
√
|α+|2 + |α−|2 κ− β ∥P∥U∗Ab∥ .

(4.5.7)

The second term in the last line is estimated by using

∥P∥U∗Ab∥2 ≤ ∥Ab∥ sup
h∥a±

sup
u⊥a±

|⟨h,U∗u⟩|2 ,

where the suprema are taken over normalized vectors h and u in the 2-dimensional sub-

space spanned by a± and its orthogonal complement, respectively. First we perform the

supremum over h and get

∥P∥U∗Ab∥2 ≤ sup
u⊥a±

(|⟨v1 , U
∗
1u1⟩|2 + |⟨v2 , U

∗
2u2⟩|2)

≤ sup
u1⊥v1

|⟨v1 , U
∗
1u1⟩|2 + sup

u2⊥v2

|⟨v2 , U
∗
2u2⟩|2,

(4.5.8)

where the vectors u1 ∈ Cp and u2 ∈ Cn are normalized. Computing

sup
u1⊥v1

|⟨v1 , U
∗
1u1⟩|2 = 1− |⟨v1 , U1v1⟩|2 , sup

u2⊥v2

|⟨v2 , U
∗
2u2⟩|2 = 1− |⟨v2 , U2v2⟩|2 ,
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we get

∥P∥U∗Ab∥2 ≤ 2− |⟨v1 , U1v1⟩|2 − |⟨v2 , U2v2⟩|2 ≤ κ/2 ,

where we used the choice of Regime 5 in the last step. Plugging this bound into (4.5.7)

and using β ≤ κ1/2/10 as well as β ≤ 1/5 yields

∥(U +A)w∥ ≥
√

1− β2 κ− βκ1/2 ≥ κ/2 .

This finishes the proof of (4.5.4). In order to show (4.3.26), and thus the lemma, we

notice that

κ ≥ inf
u∥a±
∥P∥(1 + U∗A)u∥ ,

where the infimum is taken over normalized vectors u in the span of a+ and a−. Thus,

it suffices to estimate the norm of the inverse of P∥(1 + U∗A)P∥, restricted to the 2-

dimensional subspace with orthonormal basis (v1, 0) and (0, v2). In this basis this linear

operator takes the form of the simple 2× 2-matrix,⎛⎜⎝ 1 ρ⟨v1 , U1v1⟩

ρ⟨v2 , U2v2⟩ 1

⎞⎟⎠ .
Its inverse is bounded by the right-hand side of (4.3.26), up to the factor Gap(AA∗) that

we encountered in (4.5.4), and the lemma is proven. □



CHAPTER 5

Singularities of the density of states of random Gram matrices

In this chapter, we present the results from [11]. For large random matrices X with

independent, centered entries but not necessarily identical variances, the eigenvalue den-

sity of XX∗ is well approximated by a deterministic measure on R. We show that the

density of this measure has only square and cubic-root singularities away from zero. We

also extend the bulk local law in Chapter 4 (cf. [14]) to the vicinity of these singularities.

5.1. Introduction

The empirical eigenvalue density or density of states of many large random matrices

is well approximated by a deterministic probability measure, the self-consistent density

of states. If X is a p × n random matrix with independent, centered entries of identical

variances then the limit of the eigenvalue density of the sample covariance matrix XX∗

for large p and n with p/n converging to a constant has been identified by Marchenko

and Pastur in [112]. However, some applications in wireless communication require un-

derstanding the spectrum of XX∗ without the assumption of identical variances of the

entries of X = (xkq)k,q [52, 92, 150]. In this case, the matrix XX∗ is a random Gram

matrix.

For constant variances, the self-consistent density of states is obtained by solving

a scalar equation for its Stieltjes transform, the scalar Dyson equation. In case the

variances skq ..= E|xkq|2 depend nontrivially on k and q, the self-consistent density of

states is obtained from the solution m(ζ) = (m1(ζ), . . . ,mp(ζ)) ∈ Hp of the vector Dyson

equation [82]

− 1
mk(ζ)

= ζ −
n∑
q=1

skq
(
1 +

p∑
l=1

slqml(ζ)
)−1

for all k ∈ [p], (5.1.1)

for all ζ ∈ H. Here, we introduced H ..= {ζ ∈ C : Im ζ > 0} and [p] ..= {1, . . . , p}. Indeed,

the average ⟨m(ζ)⟩1 ..= p−1∑p
k=1 mk(ζ) is the Stieltjes transform of the self-consistent

109
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density of states denoted by ⟨ν⟩1. If the limit of ⟨ν⟩1 as p, n → ∞ exists then it can be

studied via an infinite-dimensional version of (5.1.1) (see (5.2.3) below).

For Wigner-type matrices, i.e., Hermitian random matrices with independent (up to

the Hermiticity constraint), centered entries, the analogue of (5.1.1) is a quadratic vector

equation (QVE) in the language of [4, 5]. In these papers, finite and infinite-dimensional

versions of the QVE have been extensively studied to analyze the self-consistent density

of states whose Stieltjes transform is the average of the solution to the QVE. The authors

show that the self-consistent density of states has a 1/3-Hölder continuous density. Except

for finitely many square-root and cubic-root singularities this density is real-analytic. The

square-root behaviour emerges solely at the edges of the connected components of the

support of the self-consistent density of states, whereas the cubic-root singularities lie

inside these components. The detailed stability analyis in [4] is then used in [7] to obtain

the local law for Wigner-type matrices. A local law typically refers to a statement about

the convergence of the eigenvalue density to a deterministic measure on a scale slightly

above the typical local eigenvalue spacing.

For the Dyson equation for random Gram matrices, we obtain away from ζ = 0 the

same results as mentioned above in the QVE setup. Furthermore, we extend our local law

for random Gram matrices in Chapter 4 (cf. [14]) to the vicinity of the singularities of the

self-consistent density of states. This can be seen as another instance of the universality

phenomenon in random matrix theory. Despite the different structure of Gram and

Wigner-type matrices, the densities of states of these Hermitian random matrices have

the same types of singularities. We refer to Chapter 4 and the references therein for

related results about random Gram matrices.

There is a close connection between Gram and Wigner-type matrices. The Dyson

equation, (5.1.1), can be transformed into a QVE in the sense of [4] and the spectrum of

XX∗ is closely related to that of a Wigner-type matrix in the sense of [7]. This is easiest

explained on the random matrix level through a special case of the linearization tricks:

If X has independent and centered entries then the random matrix

H =

⎛⎜⎝ 0 X

X∗ 0

⎞⎟⎠ (5.1.2)
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is a Wigner-type matrix and the spectra ofH2 and XX∗ agree away from zero. Therefore,

instead of trying to analyze (5.1.1) and XX∗ directly, it is more efficient to study the

corresponding QVE and Wigner-type matrix as in Chapter 4. However, owing to the

large zero blocks in H , its variance matrix is not uniformly primitive (see A3 in [4]), a

key assumption for the analysis in [4]. Indeed, the stability operator of the QVE possesses

an additional unstable direction f−, which has to be treated separately. In Chapter 4,

this study has been conducted in the bulk spectrum and away from the support of ⟨ν⟩1,

where f− did not play an important role at least away from zero.

In this note, we present a new argument needed in the analysis of the cubic equation

(see (5.3.18) below) describing the stability of the QVE close to its singularities in order to

incorporate the additional unstable direction. In fact, the analysis of the cubic equation

in [4] heavily relies on the uniform primitivity of the variance matrix. Adapting this

argument to the current setup cannot exclude that the coefficients of the cubic and the

quadratic term in the cubic equation vanish at the same time due to the presence of f−.

A nonvanishing cubic or quadratic coefficient is however absolutely crucial for the cubic

stability analysis in [4]. Otherwise not only square-root or cubic-root but also higher

order singularities would emerge. Our main novel ingredient, a very detailed analysis

of these coefficients, actually excludes this scenario. With this essential new input, the

regularity and the singularity structure of (5.1.1) as well as the local law for XX∗ follow

by correctly combining the arguments in [4, 7] and Chapter 4.

Acknowledgement. The author is very grateful to László Erdős for many fruitful

discussions and many valuable suggestions. The author would also like to thank Torben

Krüger for several helpful conversations.

5.2. Main results

5.2.1. Structure of the solution to the Dyson equation. Let (X1,S1, π1) and

(X2,S2, π2) be two finite measure spaces such that π1(X1) and π2(X2) are strictly positive.

Moreover, we denote the spaces of bounded and measurable functions on X1 and X2 by

Bi
..=
{
u : Xi → C : ∥u∥∞

..= sup
x∈Xi

|u(x)| <∞
}



112 CHAPTER 5. DENSITY OF STATES OF RANDOM GRAM MATRICES

for i = 1, 2. We consider B1 and B2 equipped with the supremum norm ∥ · ∥∞. We

denote the induced operator norms by ∥ · ∥B1→B2 and ∥ · ∥B2→B1 . For u ∈ B1, we write

uk = u(k) for k ∈ X1. We use the same notation for v ∈ B2.

Let s : X1 × X2 → R+
0 , s(k, q) = skq be a measurable nonnegative function such that

sup
k∈X1

∫
X2
skqπ2(dq) <∞, sup

q∈X2

∫
X1
skqπ1(dk) <∞. (5.2.1)

We define the bounded linear operators S : B2 → B1 and St : B1 → B2 through

(Sv)k =
∫
X2
skrvrπ2(dr), k ∈ X1, v ∈ B2, (Stu)q =

∫
X1
slqulπ1(dl), q ∈ X2, u ∈ B1.

(5.2.2)

We are interested in the solution m : H→ B1 of the Dyson equation

− 1
m(ζ) = ζ − S 1

1 + Stm(ζ) , (5.2.3)

for ζ ∈ H, which satisfies Imm(ζ) > 0 for all ζ ∈ H.

Proposition 5.2.1 (Existence and Uniqueness). If (5.2.1) holds true then there is a

unique function m : H→ B1 satisfying (5.2.3) and Imm(ζ) > 0 for all ζ ∈ H. Moreover,

m : H→ B1 is analytic. For each k ∈ X1, there is a unique probability measure νk on R

such that mk is the Stieltjes transform of νk, i.e.,

mk(ζ) =
∫ ∞

0

1
E − ζ

νk(dE) (5.2.4)

for all ζ ∈ H. The support of νk is contained in [0,Σ] for each k ∈ X1, where

Σ ..= 4 max
{
∥S∥B2→B1 , ∥St∥B1→B2

}
. (5.2.5)

Further assumptions on π1, π2 and S will yield a more detailed understanding of the

measures νk. To formulate these assumptions, we introduce the averages of u ∈ B1 and

v ∈ B2 through

⟨u⟩1 = 1
π1(X1)

∫
X1
ukπ1(dk), ⟨v⟩2 = 1

π2(X2)

∫
X2
vqπ2(dq).

Additionally, we set ∥u∥t ..= ⟨|u|t⟩1/t1 and ∥v∥t ..= ⟨|v|t⟩1/t2 for u ∈ B1, v ∈ B2 and t ≥ 1.

Moreover, for k ∈ X1 and q ∈ X2, we define the functions Sk : X2 → R+
0 , Sk(r) = skr
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and (St)q : X1 → R+
0 , (St)q(l) = slq. We call Sk and (St)q the rows and columns of S,

respectively.

Assumptions 5.2.2. (A1) The total measures π1(X1) and π2(X2) are comparable,

i.e., there are constants 0 < π∗ < π∗ such that

π∗ ≤
π1(X1)
π2(X2)

≤ π∗.

(A2) The operators S and St are irreducible in the sense that there are L1, L2 ∈ N

and κ1, κ2 > 0 such that
(
(SSt)L1u

)
k
≥ κ1⟨u⟩1,

(
(StS)L2v

)
q
≥ κ2⟨v⟩2,

for all u ∈ B1, v ∈ B2 satisfying u ≥ 0 and v ≥ 0 and for all k ∈ X1, q ∈ X2.

(A3) The rows and columns of S are sufficiently close to each other in the sense that

there is a continuous strictly monotonically decreasing function γ : (0, 1] → R+
0

such that limε↓0 γ(ε) =∞ and for all ε ∈ (0, 1], we have

γ(ε) ≤ min
{

inf
k∈X1

1
π1(X1)

∫
X1

π1(dl)
ε+ ∥Sk − Sl∥2

2
, inf
q∈X2

1
π2(X2)

∫
X2

π2(dr)
ε+ ∥(St)q − (St)r∥2

2

}
.

(A4) The operators S and St map square-integrable functions continuously to bounded

functions, i.e., there are constants Ψ1,Ψ2 > 0 such that

∥S∥L2(π2/π2(X2))→B1 ≤ Ψ1, ∥St∥L2(π1/π1(X1))→B2 ≤ Ψ2.

Our estimates will be uniform in all models that satisfy Assumptions 5.2.2 with the

same constants. Therefore, the constants π∗, π∗ from (A1), L1, L2, κ1, κ2 from (A2),

the function γ from (A3) and Ψ1, Ψ2 from (A4) are called model parameters. We refer

to Remark 5.2.4 below for an easily checkable sufficient condition for (A3). We now state

our main result about the regularity and the possible singularities of νk defined in (5.2.4).

Theorem 5.2.3. If we assume (A1) – (A4) then the following statements hold true:

(i) (Regularity of ν) There are ν0 ∈ B1 and νd : X1 × (0,∞) → [0,∞), (k,E) ↦→

νdk(E) such that

νk(dE) = ν0
kδ0(dE) + νdk(E)dE (5.2.6)
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for all k ∈ X1. For all δ > 0, the function νd is uniformly 1/3-Hölder continuous

on [δ,∞), i.e.,

sup
k∈X1

sup
E1 ̸=E2, E1,E2≥δ

|νdk(E1)− νdk(E2)|
|E1 − E2|1/3 <∞.

For all k ∈ X1, we have

{E ∈ (0,∞) : ⟨νd(E)⟩ > 0} = {E ∈ (0,∞) : νdk(E) > 0}.

We set P ..= {E ∈ (0,∞) : ⟨νd(E)⟩ > 0}. For each δ > 0, the set P∩ (δ,∞) is a

finite union of open intervals. The map νd : (0,∞) \ ∂P → B1 is real-analytic.

There is ρ∗ > 0 depending only on the model parameters and δ such that the

Lebesgue measure of each connected component of P ∩ (δ,∞) is at least 2ρ∗.

(ii) (Singularities of νd) Fix δ > 0. For any E0 ∈ (∂P)∩ (δ,∞), there are two cases

CUSP: The point E0 is the intersection of the closures of two connected components

of P∩ (δ,∞) and νd has a cubic root singularity at E0, i.e., there is c ∈ B1

satisfying infk∈X1 ck > 0 such that

νdk(E0 + λ) = ck|λ|1/3 +O(|λ|2/3), λ→ 0.

EDGE: The point E0 is the left or right endpoint of a connected component of P ∩

(δ,∞) and νd has a square root singularity at E0, i.e., there is c ∈ B1

satisfying infk∈X1 ck > 0 such that

νdk(E0 + θλ) = ckλ
1/2 +O(λ), λ ↓ 0,

where θ = +1 if E0 is a left endpoint of P and θ = −1 if E0 is a right

endpoint.

In Figure 5.1, we present an example of a self-consistent density of states ⟨νd⟩1 for

X1 = [κcn] and X2 = [n] with κc > 0 and n ∈ N. If π1 and π2 are the (unnormalized)

counting measures on X1 and X2, respectively, and κc is chosen suitably then we obtain

Figure 5.1 with a cubic cusp at E ≈ 8.
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(a) Self-consistent density of states ⟨νd⟩1.

St =

κcn←−−−−−−−−→ κcn←−−−−−−−−→
6
4

4
3

↑⏐⏐⏐↓n
(b) Variance profile.

Figure 5.1. Example of a self-consistent density of states with variance
profile S. It has square-root edges at the left and right endpoint of its
support and a cubic cusp at E ≈ 8.

Remark 5.2.4 (Piecewise Hölder-continuous rows and columns of S imply (A3)). Let

X1 and X2 be two nontrivial compact intervals in R and π1 and π2 the Lebesgue measures.

In this case, (A3) holds true if the maps k ↦→ Sk and r ↦→ (St)r are piecewise 1/2-Hölder

continuous in the sense that there are two finite partitions (Iα)α∈A and (Jβ)β∈B of X1 and

X2, respectively, such that, for all α ∈ A and β ∈ B, we have

∥Sk − Sl∥2 ≤ Cα|k − l|1/2, ∥(St)q − (St)r∥2 ≤ Dβ|q − r|1/2

for all k, l ∈ Iα and for all q, r ∈ Jβ. There is a similar condition for (A3) if X1 = [p] and

X2 = [n] for some p, n ∈ N and the measures π1 and π2 are the (unnormalized) counting

measures on [p] and [n], respectively.

5.2.2. Local law for random Gram matrices. In this subsection, we state our

results on random Gram matrices. We now set X1 = [p], X2 = [n] as well as π1 and π2 the

(unnormalized) counting measures on [p] and [n], respectively. In particular, π1(X1) = p

and π2(X2) = n.

Assumptions 5.2.5. Let X = (xkq)k,q be a p × n random matrix with independent,

centered entries and variance matrix S = (skq)k,q, i.e., Exkq = 0 and skq ..= E|xkq|2 for

k ∈ [p], q ∈ [n]. Moreover, we assume that (A1), (A2) and (A3) in Assumptions 5.2.2

and the following conditions are satisfied.
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(B1) The variances are bounded in the sense that there exists s∗ > 0 such that

skq ≤
s∗

p+ n
for k ∈ [p], q ∈ [n].

(B2) All entries of X have bounded moments in the sense that there are µm > 0 for

m ≥ 3 such that

E|xkq|m ≤ µms
m/2
kq for all k ∈ [p], q ∈ [n].

The sequence (µm)m≥3 in (B2) is also considered a model parameter.

Since (B1) implies (A4), we can apply Theorem 5.2.3. By its first part, for every

δ > 0, there are α1, . . . , αK , β1, . . . , βK ∈ [δ,∞) for some K ∈ N such that

supp
⟨
νd|[δ,∞)

⟩
1

=
K⋃
i=1

[αi, βi], αj < βj < αj+1

and ρ∗ > 0 depending only on the model parameters and δ such that βi − αi ≥ 2ρ∗ for

all i ∈ [K]. For ρ ∈ [0, ρ∗), we introduce the local gap size ∆ρ via

∆ρ(E) ..=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αi+1 − βi, if βi − ρ ≤ E ≤ αi+1 + ρ for some i ∈ [K],

1, if E ≤ α1 + ρ or E ≥ βK − ρ,

0, otherwise.

(5.2.7)

For δ, γ > 0, we define the spectral domain Dδ,γ
..= {ζ ∈ H : |ζ| ≥ δ, Im ζ ≥ p−1+γ}. We

introduce the resolvent R(ζ) ..= (XX∗ − ζ)−1 of XX∗ at ζ ∈ H and denote its entries by

Rkl(ζ) for k, l ∈ [p].

Theorem 5.2.6 (Local law for Gram matrices). Let Assumptions 5.2.5 hold true. Fix

δ > 0 and γ ∈ (0, 1). Then there is ρ ∈ (0, ρ∗) depending only on the model parameters

and δ such that if we define κ = κ(p) : H→ (0,∞] through

κ(ζ) = (∆ρ(Re ζ)1/3 + ⟨Imm(ζ)⟩)−1
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then, for each ε > 0 and D > 0, there is a constant Cε,D > 0 such that

P

⎛⎜⎜⎝ sup
ζ∈Dδ,γ

k,l∈[p]

p−ε
⏐⏐⏐Rkl(ζ)−mk(ζ)δkl

⏐⏐⏐ ≤
√
⟨Imm(ζ)⟩
pIm ζ

+ min
{ 1√

pIm ζ
,
κ(ζ)
pIm ζ

}⎞⎟⎟⎠ ≥ 1− Cε,D
pD

.

(5.2.8a)

Furthermore, for any ε > 0 and D > 0, there is a constant Cε,D > 0 such that, for any

deterministic vector w ∈ Cp satisfying maxk∈[p]|wk| ≤ 1, we have

P
(

sup
ζ∈Dδ,γ

⏐⏐⏐⏐1p
p∑

k=1
wk
(
Rkk(ζ)−mk(ζ)

)⏐⏐⏐⏐ ≤ pε min
{ 1√

pIm ζ
,
κ(ζ)
pIm ζ

})
≥ 1− Cε,D

pD
. (5.2.8b)

The constant Cε,D in (5.2.8) depends only on the model parameters as well as δ and γ in

addition to ε and D.

Remark 5.2.7. (i) (Corollaries of the local law) In the same way as in [7] and in

Chapter 4, the standard corollaries of a local law – convergence of cumulative

distribution function, rigidity of eigenvalues, anisotropic law and delocalization

of eigenvectors – may be proven.

(ii) (Local law in the bulk and away from supp ν) In the bulk, Theorem 5.2.6 has

already been proven in Chapter 4. Away from supp ν, the convergence rate in

(5.2.8a) and (5.2.8b) can be improved and thus the condition Im ζ ≥ p−1+γ can

be removed there. See Chapter 4 for Gram matrices and Chapter 7 for Kronecker

matrices.

(iii) (Local law close to zero) Strengthening the assumption (A2), we have proven

the local law close to zero in the cases, n = p and |p− n| ≥ cn, in Chapter 4.

5.3. Quadratic vector equation

In this section, we translate (5.2.3) into a quadratic vector equation of [4] (see (5.3.2)

below) and show that Proposition 5.2.1 trivially follows from [4]. However, the singularity

analysis in [4] has to be changed essentially due to the violation of the uniform primitivity

condition, A3 in [4], on S (cf. (5.3.1) below) in our setup.
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Let X ..= X1 ⊔ X2 be the disjoint union of X1 and X2 and π the probability measure

defined through

π(A ⊔B) = (π1(X1) + π2(X2))−1(π1(A) + π2(B)), for A ⊂ X1, B ⊂ X2.

Moreover, we denote the set of bounded measurable functions X→ C by B ..= {w : X→

C : ∥w∥∞
..= supx∈X|w(x)| < ∞} with the supremum norm ∥ · ∥∞. Finally, on B =

B1 ⊕B2, we define the linear operator S : B → B through

S ..=

⎛⎜⎝ 0 S

St 0

⎞⎟⎠ , i.e., Sw = S(w|X2) + St(w|X1) for w ∈ B. (5.3.1)

Here, we consider S(w|X2) and St(w|X1) as functions X → C, extended by zero outside

of X1 and X2, respectively. Instead of (5.2.3), we study the quadratic vector equation

(QVE)

− 1
m

= z + Sm (5.3.2)

for z ∈ H. Here, we used the change of variables z2 = ζ. We now explain how m and

m are related. If m is a solution of (5.3.2) then m1
..= m|X1 and m2

..= m|X2 satisfy

−m−1
1 = z + Sm2 and −m−1

2 = z + Stm1. Solving the second equation for m2, plugging

the result into the first relation and choosing z =
√
ζ ∈ H, we see that m defined through

m(ζ) = m1(
√
ζ)√
ζ

(5.3.3)

for ζ ∈ H is a solution of (5.2.3). If m has positive imaginary part then m as well.

For u ∈ B, we write ux ..= u(x) with x ∈ X. For u,w ∈ B, we denote the scalar

product of u and w and the average of u by

⟨u ,w⟩ ..=
∫
X
ux wxπ(dx), ⟨u⟩ ..= ⟨1 ,u⟩ =

∫
X
uxπ(dx). (5.3.4)

We also introduce the Hilbert space L2(π) ..= {u : X → C : ⟨u ,u⟩ < ∞}. The operator

S is symmetric on B with respect to ⟨ · , · ⟩ and positivity preserving, as skr ≥ 0 for all

k ∈ X1 and r ∈ X2. Therefore, by Theorem 2.1 in [4], there exists m : H → B which

satisfies (5.3.2) for all z ∈ H. This function is unique if we require that the solution of

(5.3.2) satisfies Imm(z) > 0 for z ∈ H. Moreover, m : H → B is analytic and, for all
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z ∈ H, we have

∥m(z)∥2 ≤ 2|z|−1.

Furthermore, for all x ∈ X, there are symmetric probability measures ρx on R such that

mx(z) =
∫
R

1
τ − z

ρx(dτ) (5.3.5)

for all z ∈ H [4]. That means that mx is the Stieltjes transform of ρx. By (2.7) in [4],

the definition of Σ in (5.2.5) and ∥S∥ = ∥S∥B→B = max{∥S∥B2→B1 , ∥St∥B1→B2}, the

support of ρx is contained in [−Σ1/2,Σ1/2].

Proof of Proposition 5.2.1. The existence of m directly follows from the trans-

form in (5.3.3) and the existence of m. The uniqueness of m and the existence of νk,

k ∈ X1, are obtained as in the proof of Theorem 4.2.2 in Chapter 4. □

The special structure of S (cf. (5.3.1)) implies an important symmetry of the solu-

tion m. We multiply (5.3.2) by m and take the scalar product of the result with e− ∈ B

defined through e−(k) = 1 if k ∈ X1 and e−(q) = −1 if q ∈ X2. As ⟨e− ,m(Sm)⟩ = 0,

we have

z⟨e− ,m⟩ = −⟨e−⟩ = −π1(X1)− π2(X2)
π1(X1) + π2(X2)

, (5.3.6)

for all z ∈ H.

Assumptions 5.3.1. In the remainder of this section, we assume that (A1), (A2), (A4)

and the following condition hold true:

(C2) There are δ̃ > 0 and Φ > 0 such that for all z ∈ H satisfying |z| ≥ δ̃, we have

∥m(z)∥∞ ≤ Φ.

Remark 5.3.2 (Relation between (A3) and (C2)). By slightly adapting the proofs of

Theorem 6.1 (ii) and Proposition 6.6 in [4], we see that, by (A3), for each δ̃ > 0, there

is Φδ̃ > 0 such that (C2) is satisfied with a constant Φ ≡ Φδ̃.

Since our estimates in this section will be uniform in all models that satisfy (A1),

(A2), (A4) and (C2) with the same constants, we introduce the following notion.
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Convention 5.3.3 (Comparison relation). For nonnegative scalars or vectors f and g,

we will use the notation f ≲ g if there is a constant c > 0, depending only on π∗, π
∗ in

(A1), L1, L2, κ1, κ2 in (A2), Ψ1,Ψ2 in (A4) as well as δ̃ and Φ in (C2), such that

f ≤ cg. Moreover, we write f ∼ g if both, f ≲ g and f ≳ g, hold true.

5.3.1. Hölder continuity and analyticity. We recall Σ from (5.2.5) and introduce

the set HΣ
δ̃

..= {z ∈ H : 2δ̃ ≤ |z| ≤ 10Σ1/2} and its closure HΣ
δ̃
.

Proposition 5.3.4 (Regularity of m). Assume (A1), (A2), (A4) and (C2).

(i) The restriction m : HΣ
δ̃
→ B is uniformly 1/3-Hölder continuous, i.e.,

∥m(z)−m(z′)∥∞ ≲ |z − z′|1/3 (5.3.7)

for all z, z′ ∈ HΣ
δ̃
. In particular, m can be uniquely extended to a uniformly

1/3-Hölder continuous function HΣ
δ̃
→ B, which we also denote by m.

(ii) The measure ρ from (5.3.5) is absolutely continuous, i.e., there is a function

ρd : X× R \ (−2δ̃, 2δ̃)→ [0,∞), (x, τ) ↦→ ρdx(τ) such that
(
ρx|R\(−2δ̃,2δ̃)

)
(dτ) = ρdx(τ)dτ, for all x ∈ X. (5.3.8)

The components ρdx are comparable with each other, i.e., ρdx(τ) ∼ ρdy(τ) for all

x, y ∈ X and τ ∈ R \ [−2δ̃, 2δ̃]. Moreover, the function ρd : R \ [−2δ̃, 2δ̃] → B

is uniformly 1/3-Hölder continuous, symmetric in τ , ρd(τ) = ρd(−τ), and real-

analytic around any τ ∈ R \ [−2δ̃, 2δ̃] apart from points τ ∈ supp⟨ρd⟩, where

ρd(τ) = 0.

A similar result has been obtained in Theorem 2.4 in [4] essentially relying on the

uniform primitivity assumption A3 in [4]. For discrete X1 and X2 without assuming (C2),

Lemma 4.3.8 in Chapter 4 shows Hölder continuity of ⟨m⟩ instead of m with a smaller

exponent than 1/3. Both conditions, A3 in [4] and the discreteness of X1 and X2, are

violated in our setup. However, based on the proof of Theorem 2.4 in [4], we now explain

how to extend the arguments of [4] and Chapter 4 to show Proposition 5.3.4.
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Lemma 5.3.5. Uniformly for all z ∈ HΣ
δ̃
, we have

|m(z)| ∼ 1, (5.3.9)

Imm(z) ∼ ⟨Imm(z)⟩. (5.3.10)

Using the arguments in the proof of Lemma 5.4 in [4], Lemma 5.3.5 follows immedi-

ately from (A2), (C2) and (5.3.2). Here, as in the proof of Lemma 4.3.1 in Chapter 4,

the uniform primitivity assumption A3 of [4] has to be replaced by (B’) in Chapter 4,

which is a direct consequence of (A2).

The Hölder continuity and the analyticity of m and hence ρd will be consequences of

analyzing the perturbed QVE

− 1
g

= z + Sg + d (5.3.11)

for z ∈ H and d = z − z′ as well as the stability operator B defined through

B(z)u = |m(z)|2
m(z)2 u− F (z)u, (5.3.12)

where F (z) : B → B is defined through F (z)u = |m(z)|S (|m(z)|u) for any u ∈ B

(cf. [4] and Chapter 4). Correspondingly, we introduce F (z) : B2 → B1 via

F (z)w = |m1(z)|S(|m2(z)|w)

for w ∈ B2 and F t(z) : B1 → B2 via F t(z)u = |m2(z)|St(|m1(z)|u) for u ∈ B1.

To formulate the key properties of F and B, we now introduce some notation. The

operator norms for operators on B and L2(π) are denoted by ∥ · ∥∞ and ∥ · ∥2, respectively.

If T : L2 → L2 is a compact self-adjoint operator then the spectral gap Gap(T ) is the

difference between the two largest eigenvalues of |T |. We remark that S and hence FF t

are compact operators due to (A4).

Lemma 5.3.6 (Properties of F ). The eigenspace of F associated to ∥F ∥2 is one-dimen-

sional and spanned by a unique L2(π)-normalized positive f+ ∈ B. The eigenspace

associated to −∥F ∥2 is one-dimensional and spanned by f−
..= f+e− ∈ B. We have

f+ ∼ 1 (5.3.13)
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uniformly for z ∈ HΣ
δ̃
. There is ε ∼ 1 such that

∥Fu∥2 ≤ (∥F ∥2 − ε)∥u∥2 (5.3.14)

uniformly for z ∈ HΣ
δ̃

and for all u ∈ B satisfying ⟨f+ ,u⟩ = 0 and ⟨f− ,u⟩ = 0.

Furthermore, we have ∥F ∥2 ≤ 1, Gap(F (z)F t(z)) ∼ 1 uniformly for z ∈ HΣ
δ̃
.

Lemma 5.3.6 is a consequence of the proof of Lemma 4.3.3 in Chapter 4 with r = |m|

and (5.3.9).

Lemma 5.3.7. Uniformly for z ∈ HΣ
δ̃
, we have

∥B−1(z)∥∞ ≲
1

⟨Imm(z)⟩2 . (5.3.15)

Proof. We describe the modifications in the proof of Lemma 4.3.5 in Chapter 4

necessary to obtain (5.3.15). We remark that (4.3.11) in Chapter 4 holds true due to (A4).

Let z ∈ HΣ
δ̃
. Taking the real part in (5.3.2), using (5.3.9) and Lemma 5.3.6, we

obtain the bound ∥Rem|m|−1∥2 ≥ |Re z|∥m∥2/2 ≳ |Re z|. Therefore, using ⟨(Imm)2⟩ ≥

⟨Imm⟩2 by Jensen’s inequality, we obtain (4.3.28) in Chapter 4 with κ = 2. Employing

Gap
(
F (z)F t(z)

)
∼ 1,

we get ∥B−1(z)∥∞ ≲ (Re z)−2⟨Imm(z)⟩−2. As ∥B−1(z)∥2 ≤ (1−∥F (z)∥2)−1 ≲ (Im z)−1

by (4.3.22) in Chapter 4 we conclude from Imm ≲ min{1, (Im z)−1} that

∥B−1(z)∥∞ ≲ |z|−2⟨Imm(z)⟩−2.

This concludes the proof of (5.3.15) since |z| ≥ 2δ̃. □

Note that if ρ has a density ρd around a point τ0 then, uniformly for τ in a neigh-

bourhood of τ0, we have

ρd(τ) = π−1 lim
η↓0

Imm(τ + iη). (5.3.16)

Proof of Proposition 5.3.4. Following the proof of Proposition 7.1 in [4] yields

the uniform 1/3-Hölder continuity of m and ρd. In this proof, the estimate (5.40b) has

to be replaced by (5.3.15). Furthermore, (5.3.10) substitutes Proposition 5.3 (ii) in [4],

in particular, ρdx(τ) ∼ ρdy(τ). We remark that now the same proofs extend Lemma 5.3.5,
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Lemma 5.3.6 and Lemma 5.3.7 to all z ∈ HΣ
δ̃
. Hence, the proof of Corollary 7.6 in [4]

yields the analyticity using (5.3.16) for τ ∈ R ∩HΣ
δ̃
. □

5.3.2. Singularities of ρd and the cubic equation. We now study the behaviour

of ρd near points τ ∈ R, where ρd is not analytic. Theorem 2.6 in [4] describes the

density near the edges and the cusps as well as the transition between the bulk and the

singularity regimes in a quantitative manner. The same results hold for ρd as well:

Proposition 5.3.8. We assume (A1), (A2), (A4) and (C2). Then all statements of

Theorem 2.6 in [4] hold true on R \ [−2δ̃, 2δ̃].

For the proof of Proposition 5.3.8 we follow Chapter 8 and 9 in [4] which contain the

proof of the analogue of Proposition 5.3.8, Theorem 2.6 in [4], and describe the necessary

changes as well as the main philosophy.

The shape of the singularities of m as well as the stability of the QVE (cf. Chapter 10

in [4]) will be a consequence of the stability of a cubic equation. We note that similar as in

Lemma 8.1 of [4], the following properties of the stability operator B = B(z) defined in

(5.3.12) can be proven. There is ε∗ ∼ 1 such that for z ∈ HΣ
δ̃

satisfying ⟨Imm(z)⟩ ≤ ε∗,

B has a unique eigenvalue β = β(z) of smallest modulus and |β′| − |β| ≳ 1 for all

β′ ∈ Spec(B) \ {β}. The eigenspace associated to β is one-dimensional and there is a

unique vector b = b(z) ∈ B in this eigenspace such that ⟨b(z) ,f+⟩ = 1.

Let z ∈ HΣ
δ̃

such that ⟨Imm(z)⟩ ≤ ε∗ and g ∈ B satisfy the perturbed QVE, (5.3.11),

at z. We define

Θ(z) ..=
⟨
b̄(z)
⟨b(z)2⟩

,
g −m(z)
|m(z)|

⟩
. (5.3.17)

By possibly shrinking ε∗ ∼ 1, we obtain that if ∥g −m(z)∥∞ ≤ ε∗ then it can be shown

as in Proposition 8.2 in [4] that Θ satisfies

µ3Θ3 + µ2Θ2 + µ1Θ + ⟨|m|b̄ ,d⟩ = κ ((g −m)/|m|,d) , (5.3.18)

where µ1, µ2 and µ3, which depend only on S and z, as well as κ are given in [4].
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The main ingredient that needs to be changed in our setup is the estimate in (8.13)

of [4]. It gives a lower bound on the nonnegative quadratic form

D(w) ..=
⟨
Q+w , (∥F ∥2 + F ) (1− F )−1Q+w

⟩
(5.3.19)

for w ∈ B, where the projection Q+ is defined through Q+w
..= w − ⟨f+ ,w⟩f+. For

some c(z) > 0 and all w ∈ B, this lower bounds reads as follows

D(w) ≥ c(z)∥Q+w∥2
2. (5.3.20)

However, in our setup, owing to the second unstable direction f− ⊥ f+, Ff− =

−∥F ∥2f−, we have D(f−) = 0 which contradicts (5.3.20). In [4], the estimate (5.3.20)

is only used to obtain

|µ3(z)|+ |µ2(z)| ≳ 1 (5.3.21)

(cf. (8.34) in [4]) for all z ∈ HΣ
δ̃

satisfying ⟨Imm(z)⟩ ≤ ε∗ and ∥g −m(z)∥∞ ≤ ε∗ for

ε∗ ∼ 1 small enough. In fact, it is shown above (8.50) in [4] that

|µ3| ≳ ψ +O(α) |µ2| ≳ |σ|+O(α). (5.3.22)

Here, we introduced the notations ψ ..= D(pf 2
+) with p ..= sign(Rem) as well as α ..=

⟨f+Imm/|m|⟩ and σ ..= ⟨f+ ,pf
2
+⟩. The proof used in [4] to show (5.3.22) works in

our setup as well. Since α = ⟨f+Imm/|m|⟩ ∼ ⟨Imm⟩ ≤ ε∗ by (5.3.9) and (5.3.13),

we conclude that |µ3| + |µ2| ≳ ψ + |σ| for ε∗ ∼ 1 small enough. Hence, (5.3.21) is a

consequence of

Lemma 5.3.9 (Stability of the cubic equation). There exists ε∗ ∼ 1 such that

ψ(z) + σ2(z) ∼ 1 (5.3.23)

uniformly for all z ∈ HΣ
δ̃

satisfying ⟨Imm(z)⟩ ≤ ε∗.

Proof. We first remark that due to (5.3.9), (5.3.10) and possibly shrinking ε∗ ∼ 1

we can assume

|Rem(z)| ∼ 1 (5.3.24)
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for z ∈ HΣ
δ̃

satisfying ⟨Imm(z)⟩ ≤ ε∗. Second, owing to (5.3.14), for all w ∈ B, we have

the following analogue of (5.3.20)

D(w) ≳ ∥Q±w∥2
2, (5.3.25)

where Q± is the projection onto the orthogonal complement of f+ and f−, i.e, Q±w =

w − ⟨f+ ,w⟩f+ − ⟨f− ,w⟩f−. Note that (5.3.14) also yields the upper bound D(w) ≲

∥Q+w∥2
2 and hence the upper bound in (5.3.23) by (5.3.13). Therefore, it suffices to

prove the lower bound in (5.3.23). A straightforward computation starting from (5.3.25)

and using f− = e−f+ yields

ψ + σ2 = D(pf 2
+) + ⟨pf 3

+⟩2 ≳ ∥pf 2
+ − ⟨f− ,pf

2
+⟩f−∥2

2 =
⟨
f 2

+

(
pf+ − ⟨pe−f

3
+⟩e−

)2
⟩
.

(5.3.26)

Using (5.3.13), (5.3.24) and |Rem| = pRem, we conclude

ψ + σ2 ≳
⟨

(Rem)2
(
pf+ − ⟨pe−f

3
+⟩e−

)2
⟩

≥ ⟨f+|Rem|⟩
(
⟨f+|Rem|⟩+ 2⟨pe−f

3
+⟩⟨e−⟩Re 1

z

)
(5.3.27)

Here, we employed Jensen’s inequality and (5.3.6) in the second step. Since z ∈ HΣ
δ̃

and ⟨e−⟩ = 0 for π1(X1) = π2(X2), there exists ι∗ ∼ 1 such that the last factor on the

right-hand side of (5.3.27) is bounded from below by ⟨f+|Rem|⟩/2 for all z ∈ HΣ
δ̃

and

|π1(X1)−π2(X2)| ≤ ι∗(π1(X1)+π2(X2)). Since ⟨f+|Rem|⟩2 ≳ 1 by (5.3.13) and (5.3.24),

this finishes the proof of (5.3.23) for |π1(X1) − π2(X2)| ≤ ι∗(π1(X1) + π2(X2)). For the

proof of (5.3.23) in the remaining regime, |π1(X1) − π2(X2)| > ι∗(π1(X1) + π2(X2)), we

introduce y ..= e−pf+ and use y2 = f 2
+ ∼ 1 and (y + ⟨y3⟩)2 ≲ 1 by (5.3.13) to obtain

from (5.3.26) the bound

ψ + σ2 ≳
⟨(
y − ⟨y3⟩

)2 (
y + ⟨y3⟩

)2
⟩

=
⟨(

(y2 − 1) + (1− ⟨y3⟩2)
)2
⟩
≥
⟨(
y2 − 1

)2
⟩
.

(5.3.28)

Here, we used ⟨y2⟩ = ⟨f 2
+⟩ = 1 and (1− ⟨y3⟩2)2 ≥ 0. Since 0 = ⟨f− ,f+⟩ = ⟨e−y

2⟩,

using (5.3.28), we conclude

⟨e−⟩2 = ⟨e−(1− y2)⟩2 ≤ ⟨(1− y2)2⟩ ≲ ψ + σ2. (5.3.29)
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This implies (5.3.23) for |π1(X1)− π2(X2)| > ι∗(π1(X1) + π2(X2)) as ⟨e−⟩2 ≥ ι2∗ ∼ 1. This

completes the proof of Lemma 5.3.9. □

Following the remaining arguments of Chapter 8 and 9 in [4] yields Proposition 5.3.8.

5.4. Proofs of Theorem 5.2.3 and Theorem 5.2.6

Proof of Theorem 5.2.3. By Remark 5.3.2, we can apply Proposition 5.3.4 for

each δ̃ > 0. Hence, there are ρ0 ∈ B and ρd : X× R \ {0} → [0,∞) such that

ρx(dτ) = ρ0
xδ0(dτ) + ρdx(τ)dτ

for all x ∈ X. For k ∈ X1, we set ν0
k

..= ρ0
k and

νdk(E) ..= E−1/2ρdk(E1/2)1(E > 0) (5.4.1)

with E ∈ R. Therefore, using (5.3.3), we obtain (5.2.6) (cf. the proof of Theorem 4.2.2 in

Chapter 4). The 1/3-Hölder continuity of ρd implies the 1/3-Hölder continuity of νd. Sim-

ilarly, the analyticity of νd is obtained from the analyticity of ρd. From Proposition 5.3.8

with δ̃ =
√
δ/2, we conclude that P ∩ (δ,∞) is a finite union of open intervals and its

connected components have a Lebesgue measure of at least 2ρ∗ for some ρ∗ depending

only on the model parameters and δ. This completes the proof (i).

For the proof of (ii), we follow the proof of Theorem 2.6 in [5]. We replace the

estimates (4.1), (4.2), (5.3) and (6.7) as well as their proofs in [5] by (5.3.9), (5.3.10),

(5.3.15) and (5.3.23) as well as their proofs in this note, respectively. This proves a result

corresponding to Theorem 2.6 in [5] for ρd and τ0 ∈ (∂P) ∩ (0,∞) in our setup. Using

the transform (5.4.1) completes the proof of Theorem 5.2.3. □

Proof of Theorem 5.2.6. Note that (B1) implies (A4). By Remark 5.3.2, (A3)

implies (C2). Using (5.3.21) to replace (8.34) in [4], we obtain an analogue of Proposi-

tion 10.1 in [4] in our setup on HΣ
δ̃
. Therefore, we have proven in our setup analogues

of all the ingredients provided in [4] and used in [7] to prove a local law for Wigner-type

random matrices with a uniform primitive variance matrix. Thus, following the argu-

ments in [7], we obtain a local law for the resolvent of H defined in (5.1.2) and spectral

parameters z ∈ HΣ
δ̃
∩ {w ∈ H : Imw ≥ (p + n)−1+γ}, where δ̃ =

√
δ/2 and γ ∈ (0, 1).

Proceeding as in the proof of Theorem 4.2.3 in Chapter 4 yields Theorem 5.2.6. □



CHAPTER 6

Local inhomogeneous circular law

This section is devoted to the article [13] which is joint work with László Erdős

and Torben Krüger. We consider large random matrices X with centered, independent

entries which have comparable but not necessarily identical variances. Girko’s circular

law asserts that the spectrum is supported in a disk and in case of identical variances,

the limiting density is uniform. In this special case, the local circular law by Bourgade

et al. [44, 45] shows that the empirical density converges even locally on scales slightly

above the typical eigenvalue spacing. In the general case, the limiting density is typically

inhomogeneous and it is obtained via solving a system of deterministic equations. Our

main result is the local inhomogeneous circular law in the bulk spectrum on the optimal

scale for a general variance profile of the entries of X.

6.1. Introduction

The density of eigenvalues of large random matrices typically converges to a deter-

ministic limit as the dimension n of the matrix tends to infinity. In the Hermitian case,

the best known examples are the Wigner semicircle law for Wigner ensembles and the

Marchenko-Pastur law for sample covariance matrices. In both cases the spectrum is real,

and these laws state that the empirical eigenvalue distribution converges to an explicit

density on the real line.

The spectra of non-Hermitian random matrices concentrate on a domain of the

complex plane. The most prominent case is the circular law, asserting that for an

n × n matrix X with independent, identically distributed entries, satisfying Exij = 0,

E|xij|2 = n−1, the empirical density converges to the uniform distribution on the unit

disk {z : |z| < 1} ⊂ C. Despite the apparent similarity in the statements, it is consider-

ably harder to analyze non-Hermitian random matrices than their Hermitian counterparts

127
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since eigenvalues of non-Hermitian matrices may respond very drastically to small pertur-

bations. This instability is one reason why the universality of local eigenvalue statistics

in the bulk spectrum, exactly on the scale of the eigenvalue spacing, is not yet established

for X with independent (even for i.i.d.) entries, while the corresponding statement for

Hermitian Wigner matrices, known as the Wigner-Dyson-Mehta universality conjecture,

has been proven recently, see [69] for an overview.

The circular law for i.i.d. entries has a long history, we refer to the extensive re-

view [40]. The complex Gaussian case (Ginibre ensemble) has been settled in the six-

ties by Mehta using explicit computations. Girko in [81] found a key formula to relate

linear statistics of eigenvalues of X to eigenvalues of the family of Hermitian matrices

(X − z1)∗(X − z1), where z ∈ C is a complex parameter and 1 is the identity matrix in

Cn×n. Technical difficulties still remained until Bai [22] presented a complete proof under

two additional assumptions requiring higher moments and bounded density for the single

entry distribution. After a series of further partial results [83, 116, 142] the circular law

for i.i.d. entries under the optimal condition, assuming only the existence of the second

moment, was established by Tao and Vu [143].

Another line of research focused on the local version of the circular law with constant

variances, E|xij|2 = n−1, which asserts that the local density of eigenvalues is still uniform

on scales n−1/2+ϵ, i.e., slightly above the typical spacing between neighboring eigenvalues.

The optimal result was achieved in Bourgade, Yau and Yin [44, 45] and Yin [162] both

inside the unit disk (“bulk regime”) and at the edge |z| = 1. If the first three moments

match those of a standard complex Gaussian, then a similar result has also been obtained

by Tao and Vu in [146]. In [146], this result was used to prove the universality of local

eigenvalue statistics under the assumption that the first four moments match those of

a complex Gaussian. While there is no proof of universality for general distributions

without moment matching conditions yet, similar to the development in the Hermitian

case, the local law is expected to be one of the key ingredients of such a proof in the

future.

In this paper we study non-Hermitian matrices X with a general matrix of variances

S = (sij)ni,j=1, i.e., we assume that xij are centered, independent, but sij ..= E|xij|2 may
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depend nontrivially on the indices i, j. We show that the eigenvalue density is close to a

deterministic density σ on the smallest possible scale. As a direct application, our local

law implies that the spectral radius ρ(X) of X is arbitrarily close to
√
ρ(S), where ρ(S)

is the spectral radius of S. More precisely, we prove that for every ε > 0
√
ρ(S)− ε ≤ ρ(X) ≤

√
ρ(S) + ε

with a very high probability as n tends to infinity. The fact that the spectral radius

of X becomes essentially deterministic is the key mathematical mechanism behind the

sharp “transition to chaos” in a commonly studied mean field model of dynamical neural

networks [135]. This transition is described by the stability/instability of the system of

ordinary differential equations

q̇i(t) = qi(t)− λ
n∑
j=1

xijqj(t)

for i = 1, . . . , n as λ varies. Moreover, the number of unstable modes close to the critical

value of the parameter λ is determined by the behaviour of σ at the spectral edge which

we also analyze. Such systems have originally been studied under the assumption that the

coefficients xij are independent and identically distributed [113]. More recently, however,

it was argued [9, 10] that for more realistic applications in neuroscience one should allow

xij to have varying distributions with an arbitrary variance profile S.

After Girko’s Hermitization, understanding the spectrum of X reduces to analyzing

the spectrum of the family

Hz ..=

⎛⎜⎝ 0 X − z1

X∗ − z̄1 0

⎞⎟⎠ (6.1.1)

of Hermitian matrices of double dimension, where z ∈ C. The Stieltjes transform of the

spectral density of Hz at any spectral parameter ζ in the upper half plane H ..= {ζ ∈

C : Im ζ > 0} is approximated via the solution of a system of 2n nonlinear equations,
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written concisely as

− 1
m1

= ζ + Sm2 −
|z|2

ζ + Stm1
,

− 1
m2

= ζ + Stm1 −
|z|2

ζ + Sm2
,

(6.1.2)

where ma = mz
a(ζ) ∈ Hn, a = 1, 2 are n-vectors with each component in the upper

half plane. The normalized trace of the resolvent, 1
2ntrace(Hz − ζ1)−1, is approximately

equal to 1
n

∑
j[mz

1(ζ)]j = 1
n

∑
j[mz

2(ζ)]j in the n → ∞ limit. The spectral density of

Hz at any E ∈ R is then given by setting ζ = E + iη and taking the limit η → 0+

for the imaginary part of these averages. In fact, for Girko’s formula it is sufficient to

study the resolvent only along the positive imaginary axis ζ ∈ iR+. Heuristically, the

equations in (6.1.2) arise from second order perturbation theory and in physics they are

commonly called Dyson equations. Their analogues for general Hermitian ensembles with

independent or weakly dependent entries play an essential role in random matrix theory.

They have been systematically studied by Girko, for example, (6.1.2) in the current

random matrix context appears as the canonical equation of type K25 in Theorem 25.1

in [82]. In particular, under the condition that all sij variances are comparable, i.e.,

c/n ≤ sij ≤ C/n with some positive constants c, C, Girko identifies the limiting density.

From his formulas it is clear that this density is rotationally symmetric. He also presents a

proof for the weak convergence of the empirical eigenvalue distribution but the argument

was considered incomplete. This deficiency can be resolved in a similar manner as for

the circular law assuming a bounded density of the single entry distribution using the

argument from Section 4.4 of [40]. In a recent preprint [51] Cook et al. substantially relax

the condition on the uniform bound sij ≥ c/n by replacing it with a concept of robust

irreducibility. Moreover, relying on the bound by Cook [50] on the smallest singular value

of X, they also remove any condition on the regularity of the single entry distribution

and prove weak convergence on the global scale.

The matrix Hz may be viewed as the sum of a Wigner-type matrix [7] with centered,

independent (up to Hermitian symmetry) entries and a deterministic matrix whose two

off-diagonal blocks are −z1 and −z̄1, respectively. Disregarding these z terms for the

moment, (6.1.2) has the structure of the Quadratic Vector Equations that were extensively
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studied in [4, 5]. Including the z-terms, Hz at first sight seems to be a special case of

the random matrix ensembles with nonzero expectations analyzed in [6] and (6.1.2) is the

diagonal part of the corresponding Matrix Dyson Equation (MDE). In [6] an optimal local

law was proven for such ensembles. However, the large zero blocks in the diagonal prevent

us from applying these results to Hz or even to Hz=0. In fact, the flatness condition A1

in [6] (see (6.3.1) later) prohibit such large zero diagonal blocks. These conditions are

essential for the proofs in [6] since they ensure the stability of the corresponding Dyson

equation against any small perturbation. In this case, there is only one potentially

unstable direction, that is associated to a certain Perron-Frobenius eigenvector, and this

direction is regularized by the positivity of the density of states at least in the bulk regime

of the spectrum.

If the flatness condition A1 is not satisfied, then the MDE can possess further un-

stable directions. In particular, in our setup, the MDE is not stable in the previously

described strong sense; there is at least one additional unstable direction which cannot

be regularized by the positivity of the density of states. Owing to the specific structure of

Hz, the matrix Dyson equation decouples and its diagonal parts satisfy a closed system

of vector equations (6.1.2). Compared to the MDE, the reduced vector equations (6.1.2)

are rather cubic than quadratic in nature. For this reduced system, however, we can show

that there is only one further unstable direction, at least when S is entrywise bounded

from below by some c/n. The system is not stable against an arbitrary perturbation, but

for the perturbation arising in the random matrix problem we reveal a key cancellation

in the leading contribution to the unstable direction. Armed with this new insight we

will perform a detailed stability analysis of (6.1.2).

This delicate stability analysis is the key ingredient for the proof of our main result, the

optimal local law for X with an optimal speed of convergence as n → ∞. In this paper

we consider the bulk regime, i.e., spectral parameter z inside the disk with boundary

|z|2 = ρ(S), where ρ(S) is the spectral radius of S. We defer the analysis of the edge of

the spectrum of X to later works.

In the special case z = 0, we thoroughly studied the system of equations (6.1.2) even

for the case when S is a rectangular matrix in Chapter 4 (cf. [14]); the main motivation
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was to prove the local law for random Gram matrices, i.e., matrices of the form XX∗.

Note that in Chapter 4 we needed to tackle a much simpler quadratic system since taking

z = 0 in (6.1.2) removes the most complicated nonlinearity.

Finally, we list two related recent results. Local circular law on the optimal scale in

the bulk has been proven in [161] for ensembles of the form TX, where T is a deterministic

N×M matrix and X is a random M×N matrix with independent, centered entries whose

variances are constant and have vanishing third moments. The structure of the product

matrix TX is very different from our matrices that could be viewed as the Hadamard

(entrywise) product of the matrix (s1/2
ij ) and a random matrix with identical variances.

The approach of [161] is also very different from ours: it relies on first assuming that

X is Gaussian and using its invariance to reduce the problem to the case when T ∗T is

diagonal. Then the corresponding Dyson equations are much simpler, in fact they consist

of only two scalar equations and they are characterized by a vector of parameters (of

the singular values of T ) instead of an entire matrix of parameters S. The vanishing

third moment condition in [161] is necessary to compare the general distribution with

the Gaussian case via a moment matching argument. We also mention the recent proof

of the local single ring theorem on optimal scale in the bulk [27]. This concerns another

prominent non-Hermitian random matrix ensemble that consists of matrices of the form

UΣV , where U , V are two independent Haar distributed unitaries and Σ is deterministic

(may be assumed to be diagonal). The spectrum lies in a ring about the origin and the

limiting density can be computed via free convolution [85].

Acknowledgement. We are grateful to David Renfrew for discussing some appli-

cations of our results with us and to Dominik Schröder for helping us visualizing our

results.

Notation. For vectors v, w ∈ Cl, we write their componentwise product as vw =

(viwi)li=1. If f : U → C is a function on U ⊂ C, then we define f(v) ∈ Cl for v ∈ U l

to be the vector with components f(v)i = f(vi) for i = 1, . . . , l. We will in particular

apply this notation with f(z) = 1/z for z ∈ C \ {0}. We say that a vector v ∈ Cl

is positive, v > 0, if vi > 0 for all i = 1, . . . , l. Similarly, the notation v ≤ w means

vi ≤ wi for all i = 1, . . . , l. For vectors v, w ∈ Cl, we define ⟨w⟩ = l−1∑l
i=1 wi, ⟨v , w⟩ =
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l−1∑l
i=1 viwi, ∥w∥2

2 = l−1∑l
i=1|wi|2 and ∥w∥∞ = maxi=1,...,l|wi|, ∥v∥1

..= ⟨|v|⟩. Note that

⟨w⟩ = ⟨1 , w⟩, where we used the convention that 1 also denotes the vector (1, . . . , 1) ∈ Cl.

In general, we use the notation that if a scalar α appears in a vector-valued relation,

then it denotes the constant vector (α, . . . , α). In most cases we will work in n or 2n

dimensional spaces. Vectors in C2n will usually be denoted by boldface symbols like v,

u or y. Correspondingly, capitalized boldface symbols denote matrices in C2n×2n, for

example R. We use the symbol 1 for the identity matrix in Cl×l, where the dimension

l = n or l = 2n is understood from the context. For a matrix A ∈ Cl×l, we use the

short notation ∥A∥∞
..= ∥A∥∞→∞ and ∥A∥2

..= ∥A∥2→2 if the domain and the target are

equipped with the same norm whereas we use ∥A∥2→∞ to denote the matrix norm of A

when it is understood as a map (Cl, ∥·∥2) → (Cl, ∥·∥∞). We define the normalized trace

of an l × l matrix B = (bij)li,j=1 ∈ Cl×l as

trB ..= 1
l

l∑
j=1

bjj. (6.1.3)

For a vector y ∈ Cl, we write diag y or diag(y) for the diagonal l× l matrix with y on its

diagonal, i.e., this matrix acts on any vector x ∈ Cl as

diag(y)x = yx. (6.1.4)

We write d2z for indicating integration with respect to the Lebesgue measure on C. For

a ∈ C and ε > 0, the open disk in the complex plane centered at a with radius ε is

denoted by D(a, ε) ..= {b ∈ C | |a − b| < ε}. Furthermore, we denote the characteristic

function of some event A by 1(A), the positive real numbers by R+
..= (0,∞) and the

nonnegative real numbers by R+
0

..= [0,∞).

6.2. Main results

Let X be a random n × n matrix with centered entries, Exij = 0, and sij ..= E|xij|2

the corresponding variances. We introduce its variance matrix S ..= (sij)ni,j=1.

Assumptions 6.2.1. (A) The variance matrix S is flat, i.e., there are 0 < s∗ < s∗

such that
s∗

n
≤ sij ≤

s∗

n
(6.2.1)



134 CHAPTER 6. LOCAL INHOMOGENEOUS CIRCULAR LAW

for all i, j = 1, . . . , n.

(B) All entries of X have bounded moments in the sense that there are µm > 0 for

m ∈ N such that

E|xij|m ≤ µmn
−m/2 (6.2.2)

for all i, j = 1, . . . , n.

(C) Each entry of
√
n X has a density, i.e., there are probability densities fij : C→

[0,∞) such that

P
(√

n xij ∈ B
)

=
∫
B
fij(z)d2z

for all i, j = 1, . . . , n and B ⊂ C a Borel set. There are α, β > 0 such that

fij ∈ L1+α(C) and

∥fij∥1+α ≤ nβ (6.2.3)

for all i, j = 1, . . . , n.

In the following, we will assume that s∗, s∗, α, β and the sequence (µm)m are fixed

constants which we will call model parameters. The constants in all our estimates will

depend on the model parameters without further notice.

Remark 6.2.2. The Assumption (C) is used in our proof solely for controlling the small-

est singular value of X − z1 with very high probability uniformly for z ∈ D(0, τ ∗) with

some fixed τ ∗ > 0 in Proposition 6.5.9. All our other results do not make use of As-

sumption (C). Provided a version of Proposition 6.5.9 that tracks the z-dependence can

effectively be obtained without (C), our main result, the local inhomogeneous circular

law in Theorem 6.2.6, will hold true solely assuming (A) and (B). For example a very

high probability estimate uniform in z in a statement similar to Corollary 1.22 of [50]

would be sufficient.
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The density of states of X will be expressed in terms of vτ1 and vτ2 which are the

positive solutions of the following two coupled vector equations

1
vτ1

= η + Svτ2 + τ

η + Stvτ1
, (6.2.4a)

1
vτ2

= η + Stvτ1 + τ

η + Svτ2
, (6.2.4b)

for all η ∈ R+ and τ ∈ R+
0 . Here, vτ1 , vτ2 ∈ Rn

+ and recall that the algebraic operations

are understood componentwise, e.g., (1/v)i = 1/vi for the i-th component of the vector

1/v. The system (6.2.4) is a special case of (6.1.2) with w = iη, τ = |z|2 and va = Imma

for a = 1, 2. The existence and uniqueness of solutions to equations of the type (6.2.4)

are considered standard knowledge in the literature [82]. The equations can be viewed

as a special case of the matrix Dyson equation for which existence and uniqueness was

proven in [96]. We explain this connection in more detail in Section 6.6 below, where we

give the proof of Lemma 6.2.3 for the convenience of the reader.

Lemma 6.2.3 (Existence and uniqueness). For every τ ∈ R+
0 , there exist two uniquely

determined functions vτ1 : R+ → Rn
+, vτ2 : R+ → Rn

+ which satisfy (6.2.4).

We denote the spectral radius of S by ρ(S), i.e.,

ρ(S) ..= max|Spec(S)|.

Now, we define the density of states of X through the solution to (6.2.4).

Definition 6.2.4 (Density of states of X). Let vτ1 and vτ2 be the unique positive solutions

of (6.2.4). The density of states σ : C→ R of X is defined through

σ(z) ..= − 1
2π

∫ ∞

0
∆z

⟨
vτ1 (η)

⏐⏐⏐τ=|z|2
⟩

dη (6.2.5)

for |z|2 < ρ(S) and σ(z) ..= 0 for |z|2 ≥ ρ(S). The right-hand side of (6.2.5) is well-defined

by part (i) of the following proposition.

In the following proposition, we present some key properties of the density of states

σ of X. Some of them have previously been known [51, 82]. For an alternative represen-

tation of σ, see (6.4.8) later.
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Proposition 6.2.5 (Properties of σ). Let vτ1 and vτ2 be the unique positive solutions of

(6.2.4). Then

(i) The function R+ × C→ R2n
+ , (η, z) ↦→ (vτ1 (η), vτ2 (η)) |τ=|z|2 is infinitely often dif-

ferentiable and η ↦→ ∆z

⟨
vτ1 (η)

⏐⏐⏐τ=|z|2
⟩

is integrable on R+ for each z ∈ D(0,
√
ρ(S)).

(ii) The function σ, defined in (6.2.5), is a rotationally symmetric probability density

on C.

(iii) The restriction σ|
D(0,
√
ρ(S)) is infinitely often differentiable such that for every

ε > 0 each derivative is bounded uniformly in n on D(0,
√
ρ(S)− ε). Moreover,

there exist constants c1 > c2 > 0, which depend only on s∗ and s∗, such that

c1 ≥ σ(z) ≥ c2 (6.2.6)

for all z ∈ D(0,
√
ρ(S)). In particular, the support of σ is the closed disk of

radius
√
ρ(S) around zero. In fact, the jump height lim σ(z) as |z| ↑

√
ρ(S) can

be computed explicitly (see Remark 6.4.2 below).

The next theorem, the main result of the present article, states that the eigenvalue

distribution of X, with a very high probability, can be approximated by σ on the meso-

scopic scales n−a for any a ∈ (0, 1/2). Note that n−1/2 is the typical eigenvalue spacing

so our result holds down to the optimal local scale. To study the local scale, we shift and

rescale the test functions as follows. Let f ∈ C2
0(C). For w ∈ C and a > 0, we define

fw,a : C→ C, fw,a(z) ..= n2af(na(z − w)).

We denote the eigenvalues of X by z1, . . . , zn.

Theorem 6.2.6 (Local inhomogeneous circular law). Let X be a random matrix which

has independent centered entries and satisfies (A), (B) and (C). Furthermore, let a ∈

(0, 1/2), φ > 0, τ∗ > 0 and σ defined as in (6.2.5).

(i) (Bulk spectrum) For every ε > 0, D > 0, there is a positive constant Cε,D such

that

P
(⏐⏐⏐⏐⏐ 1n

n∑
i=1

fw,a(zi)−
∫
C
fw,a(z)σ(z)d2z

⏐⏐⏐⏐⏐ ≥ n−1+2a+ε∥∆f∥L1

)
≤ Cε,D

nD
(6.2.7)
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holds true for all n ∈ N, for every w ∈ C satisfying |w|2 ≤ ρ(S) − τ∗ and for

every f ∈ C2
0(C) satisfying supp f ⊂ D(0, φ). The point w and the function f

may depend on n.

(ii) (Away from the spectrum) For every D > 0, there exists a positive constant CD
such that

P
(
∃ i ∈ {1, . . . , n}

⏐⏐⏐ |zi|2 ≥ ρ(S) + τ∗
)
≤ CD
nD

(6.2.8)

holds true for all n ∈ N.

In addition to the model parameters, the constant Cε,D in (6.2.7) depends only on a, φ

and τ∗ (apart from ε and D) and the constant CD in (6.2.8) only on τ∗ (apart from D).

The key technical input for the proof of Theorem 6.2.6 is the local law for Hz (see

Theorem 6.5.2). In Figure 6.1 below, we illustrate how the empirical spectral measure

of X converges to σ for an example with a nontrivial variance profile S. We now state

a simple corollary of the local law for Hz on the complete delocalization of the bulk

eigenvectors of X.

Corollary 6.2.7 (Eigenvector delocalization). Let τ∗ > 0. For all ε > 0 and D > 0,

there is a positive constant Cε,D such that

P
(
∥y∥∞ ≥ n−1/2+ε

)
≤ Cε,D

nD
(6.2.9)

holds true for all n ∈ N and for all eigenvectors y ∈ Cn of X, normalized as ∑n
i=1|yi|2 = 1,

corresponding to an eigenvalue z ∈ SpecX with |z|2 ≤ ρ(S) − τ∗. The constant Cε,D in

(6.2.9) depends only on τ∗ and the model parameters (in addition to ε and D).

The proof of Corollary 6.2.7 will be given after the statement of Theorem 6.5.2. We

remark that eigenvector delocalization for random matrices with independent entries was

first proven by Rudelson and Vershynin in [124].

6.2.1. Short outline of the proof. We start with the Hermitization trick due to

Girko which expresses ∑n
i=1 fw,a(zi) in terms of an integral of the log-determinant of

X − z1 for any z ∈ C. Furthermore, the log-determinant of X − z1 can be rewritten as

the log-determinant of a Hermitian matrix Hz.
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(c) Eigenvalue histogram and density of states σ

Figure 6.1. These figures were obtained by sampling 200 matrices of size
2000×2000 with centered complex Gaussian entries and the variance profile
S. Figure (a) shows the eigenvalue density for the variance profile S given
in Figure (b) (We rescaled S such that ρ(S) = 1). The eigenvalue density is
rotationally invariant and almost all eigenvalues are contained in the disk
of radius 1 around zero. Moreover, the eigenvalue density is considerably
higher around 0. Figure (c) compares the histogram of the eigenvalue with
the density of states σ obtained from (6.2.4) and (6.2.5).

Using the log-transform of the empirical spectral measure of X, we obtain

1
n

n∑
i=1

fw,a(zi) = 1
2πn

∫
C

∆fw,a(z) log|det(X − z1)|d2z. (6.2.10)
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To express the log-determinant of X − z1 in terms of a Hermitian matrix, we introduce

the 2n× 2n matrix

Hz ..=

⎛⎜⎝ 0 X − z1

X∗ − z̄1 0

⎞⎟⎠ (6.2.11)

for all z ∈ C. Note that the eigenvalues of Hz come in opposite pairs and we denote

them by λ2n ≤ . . . ≤ λn+1 ≤ 0 ≤ λn ≤ . . . ≤ λ1 with λi = −λ2n+1−i for i = 1, . . . , 2n.

We remark that the moduli of these real numbers are the singular values of X − z1. The

Stieltjes transform of its empirical spectral measure is denoted by mz, i.e.,

mz(ζ) = 1
2n

2n∑
i=1

1
λi(z)− ζ

(6.2.12)

for ζ ∈ C satisfying Im ζ > 0. It will turn out that on the imaginary axis Immz(iη) is

very well approximated by ⟨vτ1 (η)⟩ = ⟨vτ2 (η)⟩, where τ = |z|2 and (vτ1 , vτ2 ) is the solution

of (6.2.4). This fact is commonly called a local law for Hz. With this notation, we have

the following relation between the determinant of X − z1 and the determinant of Hz

log|det(X − z1)| = 1
2 log|detHz|. (6.2.13)

We write the log-determinant in terms of the Stieltjes transform (this formula was used

by Tao and Vu [146] in a similar context)

log|detHz| = log|det(Hz − iT1)| − 2n
∫ T

0
Immz(iη)dη, (6.2.14)

for any T > 0. Combining (6.2.5), (6.2.10), (6.2.13) and (6.2.14) as well as subtracting

1/(1 + η) freely and using integration by parts, we obtain

1
n

n∑
i=1

fw,a(zi)−
∫
C
fw,a(z)σ(z)d2z =

1
4πn

∫
C

∆fw,a(z) log|det(Hz − iT1)|d2z

− 1
2π

∫
C

∆fw,a(z)
∫ T

0

[
Immz(iη)−

⟨
vτ1 (η)

⏐⏐⏐τ=|z|2
⟩ ]

dη d2z

+ 1
2π

∫
C

∆fw,a(z)
∫ ∞

T

(⟨
vτ1 (η)

⏐⏐⏐τ=|z|2
⟩
− 1
η + 1

)
dη d2z.

(6.2.15)
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The task is then to prove that each of the terms on the right-hand side of (6.2.15) is

dominated by n−1+2a∥∆f∥1 with very high probability. The parameter T will be chosen

to be a large power of n, so that the first and the third term will easily satisfy this bound.

Estimating the second term on the right-hand side of (6.2.15) is much more involved and

we focus only on this term in this outline.

We split its dη - integral into two parts. For η ≤ n−1+ε, ε ∈ (0, 1/2), the integral

is controlled by an estimate on the smallest singular value of X − z1. This is the only

step in our proof which uses Assumption (C), i.e., that the entries of X have bounded

densities in the sense of (6.2.3).

For η ≥ n−1+ε, we use a local law for Hz, i.e., an optimal pointwise estimate (up to

negligible nε-factors) on

Immz(iη)−
⟨
vτ1 (η)

⏐⏐⏐τ=|z|2
⟩
, (6.2.16)

uniformly in η and z (see Theorem 6.5.2 for the precise formulation). Note that a local

law forHz is needed only at spectral parameters on the imaginary axis. This will simplify

the proof of the local law we need in this paper.

The proof of the local law is based on a stability estimate of (6.2.4). To write these

equations in a more concise form, we introduce the 2n× 2n matrices

So =

⎛⎜⎝ 0 S

St 0

⎞⎟⎠ , Sd =

⎛⎜⎝St 0

0 S

⎞⎟⎠ . (6.2.17)

We remark that So is denoted by S in Chapter 4 and Chapter 5. Moreover, H in these

chapters agrees with Hz=0 from (6.2.11) at z = 0. With the notation from (6.2.17), the

system of equations (6.2.4) can be written as

iv +
(

iη + Soiv −
τ

iη + Sdiv

)−1

= 0, (6.2.18)

where we introduced v ..= (v1, v2) ∈ R2n.

Let Gz(η) ..= (Hz − iη1)−1, η > 0, be the resolvent of Hz at spectral parameter

iη. We will prove that its diagonal g(η) = (⟨ei ,Gz(η)ei⟩)2n
i=1, where ei denotes the i-th
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standard basis vector in C2n, satisfies a perturbed version of (6.2.18),

g +
(

iη + Sog −
τ

iη + Sdg

)−1

= d, (6.2.19)

with τ = |z|2 and a small random error term d. As mz(iη) = ⟨g(η)⟩ (cf. (6.2.12))

obtaining a local law, i.e., an optimal pointwise estimate on (6.2.16), reduces to a stability

problem for the Dyson equation, (6.2.18).

Computing the difference of (6.2.19) and (6.2.18), we obtain

L (g − iv) = r (6.2.20)

for some error vector r = O(∥d∥) (for the precise definition we refer to (6.3.24) below)

and with the matrix L defined through its action on y ∈ C2n via

Ly ..= y + v2(Soy)− τ v2

(η + Sdv)2 (Sdy). (6.2.21)

Therefore, a bound on g − iv uniformly for η ≥ n−1+ε requires a uniform bound on the

inverse of L down to this local spectral scale.

In fact, the mere invertibility of L even for η bounded away from zero is a nontrivial

fact that is not easily seen from (6.2.21). In Section 6.3 we will factorize L into the form

L = V −1(1− TF )V

for some invertible matrix V and self-adjoint matrices T and F with the properties

∥T ∥2 = 1 and ∥F ∥2 ≤ 1 − cη for some c > 0. In particular, this representation shows

the a priori bound ∥L−1∥2 ≤ Cη−1 for some C > 0. The blow-up in the norm of L−1 is

potentially caused by the two extremal eigendirections f+ and f− of F , which satisfy

Ff± = ±∥F ∥2f± .

However, it turns out that the positivity of the solutions v1, v2 of (6.2.4) implies that

∥Tf+∥2 is strictly smaller than 1, so that ∥(1 − TF )f+∥2 ≥ c∥f+∥2 for some constant

c > 0. In this sense the solution of the Dyson equation regularizes the potentially unstable

direction f+.



142 CHAPTER 6. LOCAL INHOMOGENEOUS CIRCULAR LAW

In contrast, the other instability caused by f− persists since we will find that (1 −

TF )f− = O(η). This problem can only be resolved by exploiting an extra cancellation

that originates from the special structure of the random matrix Hz. The leading contri-

bution of the random error r = O(∥d∥) from (6.2.20) pointing in the unstable direction

happens to vanish with a remaining subleading term of order η∥d∥. The extra η-factor

cancels the η−1-divergence of ∥L−1∥2 and allows us to invert the stability operator L

in (6.2.20).

From this analysis, we conclude ∥g − iv∥ ≤ C∥d∥. This result allows us to follow

the general arguments developed in [6] for verifying the optimal local law for Hz. These

steps are presented only briefly in Section 6.5.

6.3. Dyson equation for the inhomogeneous circular law

As explained in Section 6.2.1 a main ingredient in the proof of Theorem 6.2.6 is the

local law for the self-adjoint random matrix Hz with noncentered independent entries

above the diagonal. In [6] such a local law was proven for a large class of self-adjoint

random matrices with noncentered entries and general short range correlations. For any

fixed z ∈ C, the matrix Hz satisfies the assumptions made for the class of random

matrices covered in [6] with one crucial exception: Hz is not flat (cf. (2.28) in [6]), i.e.,

for any constant c > 0, the inequality

1
n
E |⟨a , (H − EH)b⟩|2 ≥ c∥a∥2

2∥b∥2
2, (6.3.1)

is not satisfied for H = Hz and vectors a, b that both have support either in {1, . . . , n}

or {n+1, . . . , 2n}. Nevertheless we will show that the conclusion from Theorem 2.9 of [6]

remains true for spectral parameters iη on the imaginary axis, namely that the resolvent

Gz(η) ..= (Hz − iη1)−1 approaches the solution M z(η) of the Matrix Dyson Equation

(MDE)

−M z(η)−1 = iη1−Az + S[M z(η)] , η > 0 , (6.3.2)

as n → ∞. In fact, the solution of (6.3.2) is unique under the constraint that the

imaginary part ImM ..= (M −M ∗)/(2i) is positive definite [96]. The data Az ∈ C2n×2n
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and S : C2n×2n → C2n×2n determining (6.3.2) are given in terms of the first and second

moments of the entries of Hz,

Az ..= EHz =

⎛⎜⎝ 0 −z

−z 0

⎞⎟⎠ , S[W ] ..=

⎛⎜⎝diag(Sw2) 0

0 diag(Stw1)

⎞⎟⎠ , (6.3.3)

for an arbitrary 2n× 2n matrix

W = (wij)2n
i,j=1 =

⎛⎜⎝W11 W12

W21 W22

⎞⎟⎠ , w1
..= (wii)ni=1 , w2

..= (wii)2n
i=n+1 . (6.3.4)

In the following, we will not keep the z-dependence in our notation and just write M ,

A and G instead of M z, Az and Gz. A simple calculation (cf. the proof of Lemma 6.2.3

in Section 6.6 below) shows that M : R+ → C2n×2n is given by

M z(η) ..=

⎛⎜⎝ i diag (vτ1 (η)) −z diag (uτ (η))

−z̄ diag (uτ (η)) i diag (vτ2 (η))

⎞⎟⎠ , (6.3.5)

where z ∈ C, τ = |z|2, (vτ1 , vτ2 ) is the solution of (6.2.4) and uτ ..= vτ1/(η + Stvτ1 ). In this

section we will therefore analyze the solution and the stability of (6.2.4).

6.3.1. Analysis of the Dyson equation (6.2.4). Combining the equations in (6.2.4),

recalling v = (v1, v2) and the definitions of So and Sd in (6.2.17), we obtain

1
v

= η + Sov + τ

η + Sdv
(6.3.6)

for η > 0 and τ ∈ R+
0 , where v : R+ → R2n

+ . This equation is equivalent to (6.2.18). The

τ -dependence of v, v1 and v2 will mostly be suppressed but sometimes we view v = vτ (η)

as a function of both parameters.

Equation (6.3.6) has an obvious scaling invariance when S is rescaled to λS for λ > 0.

If vτ (η) is the positive solution of (6.3.6), then vτλ(η) ..= λ−1/2vτλ
−1(ηλ−1/2) is the positive

solution of
1
vλ

= η + λSovλ + τ

η + λSdvλ
. (6.3.7)

Therefore, without loss of generality, we may assume that the spectral radius of S is one,

ρ(S) = 1,



144 CHAPTER 6. LOCAL INHOMOGENEOUS CIRCULAR LAW

in the remainder of the paper.

The following proposition, the first main result of this section, collects some basic

estimates on the solution v of (6.3.6). For the whole section, we fix τ∗ > 0 and τ ∗ > τ∗ +1

and except for Proposition 6.3.2, we exclude the small interval [1 − τ∗, 1 + τ∗] from our

analysis of vτ . Because of the definition of σ in (6.2.5) – recall τ = |z|2 in the definition

– we will talk about inside and outside regimes for τ ∈ [0, 1 − τ∗] and τ ∈ [1 + τ∗, τ
∗],

respectively.

Recalling s∗ and s∗ from (6.2.1) we make the following convention in order to suppress

irrelevant constants from the notation.

Convention 6.3.1. For nonnegative scalars or vectors f and g, we will use the notation

f ≲ g if there is a constant c > 0, depending only on τ∗, τ ∗, s∗ and s∗ such that f ≤ cg

and f ∼ g if f ≲ g and f ≳ g both hold true. If f, g and h are scalars or vectors and

h ≥ 0 such that |f − g| ≲ h, then we write f = g +O(h). Moreover, we define

P ..= {τ∗, τ
∗, s∗, s

∗}

because many constants in the following will depend only on P.

Proposition 6.3.2. The solution vτ of (6.3.6) satisfies

⟨vτ1 (η)⟩ = ⟨vτ2 (η)⟩. (6.3.8)

for all η > 0 and τ ∈ R+
0 as well as the following estimates:

(i) (Large η) Uniformly for η ≥ 1 and τ ∈ [0, τ ∗], we have

vτ (η) ∼ η−1. (6.3.9)

(ii) (Inside regime) Uniformly for η ≤ 1 and τ ∈ [0, 1], we have

vτ (η) ∼ η1/3 + (1− τ)1/2. (6.3.10)

(iii) (Outside regime) Uniformly for η ≤ 1 and τ ∈ [1, τ ∗], we have

vτ (η) ∼ η

τ − 1 + η2/3 . (6.3.11)
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Proof of Proposition 6.3.2. We start with proving (6.3.8). By multiplying (6.2.4a)

by (η + Stv1) and (6.2.4b) by (η + Sv2) and realizing that both right-hand sides agree,

we obtain
v1

η + Stv1
= v2

η + Sv2
. (6.3.12)

From (6.3.12), we also get

0 = η(v1 − v2) + v1Sv2 − v2S
tv1.

We take the average on both sides, use ⟨v1Sv2⟩ = ⟨v1 , Sv2⟩ = ⟨v2S
tv1⟩ and divide by

η > 0 to infer (6.3.8).

From (6.2.1), we immediately deduce the following auxiliary bounds

⟨v1⟩ ≲ Stv1 ≲ ⟨v1⟩, ⟨v2⟩ ≲ Sv2 ≲ ⟨v2⟩. (6.3.13)

We start with establishing v ∼ ⟨v⟩. Since the entries of S are strictly positive and

ρ(S) = 1 there is a unique vector p ∈ Rn
+ which has strictly positive entries such that

Sp = p, ⟨p⟩ = 1, p ∼ 1 (6.3.14)

by the Perron-Frobenius Theorem and (6.2.1). We multiply (6.2.4a) by v1 as well as

η + Stv1 and obtain η + Stv1 = v1(η + Sv2)(η + Stv1) + τv1. Taking the scalar product

with p and using ⟨p⟩ = 1 and ρ(S) = 1 yield

η + ⟨pv1⟩ =
⟨
pv1(η + Stv1)(η + Sv2)

⟩
+ τ⟨pv1⟩. (6.3.15)

Therefore, (6.3.13), ⟨v1⟩ = ⟨v2⟩ = ⟨v⟩ by (6.3.8) and (6.3.14) imply

η + ⟨v⟩ ∼
[
(η + ⟨v⟩)2 + τ

]
⟨v⟩. (6.3.16)

We use (6.3.13) in (6.2.4a) and (6.2.4b) to conclude

v ∼ 1
η + ⟨v⟩+ τ

η+⟨v⟩
= η + ⟨v⟩

(η + ⟨v⟩)2 + τ
∼ ⟨v⟩, (6.3.17)

where we applied (6.3.16) in the last step. Hence, it suffices to prove all estimates (6.3.9),

(6.3.10) and (6.3.11) for v replaced by ⟨v⟩ only.
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We start with an auxiliary upper bound on ⟨v⟩. By multiplying (6.3.6) with v, we

get 1 = ηv+vSov+ τv/(η+Sdv) ≥ vSov. Hence, 1 ≥ ⟨v1Sv2⟩ ≳ ⟨v1⟩⟨v2⟩ = ⟨v⟩2, where

we used (6.3.13) in the second step and (6.3.8) in the last step.

Next, we show (6.3.9). Clearly, (6.3.6) implies v ≤ η−1. Moreover, as τ ≤ τ ∗ and

η ≥ 1 ≳ ⟨v⟩ we find η ≲ η2⟨v⟩ from (6.3.16). This gives the lower bound on v in (6.3.9)

when combined with (6.3.17).

We note that (6.3.16) immediately implies ⟨v⟩ ≳ η for η ≤ 1. Now, we show (6.3.10).

For τ ∈ [0, 1], we bring the term τ⟨pv1⟩ to the left-hand side in (6.3.15) and use v1 ∼

v2 ∼ ⟨v⟩ and (6.3.13) as well as ⟨v⟩ ≳ η to obtain

η + (1− τ)⟨v⟩ ∼ ⟨v⟩3. (6.3.18)

From (6.3.18), it is an elementary exercise to conclude (6.3.10) for η ≤ 1.

Similarly, for 1 ≤ τ ≤ τ ∗, we bring ⟨pv1⟩ to the right-hand side of (6.3.15), use ⟨v⟩ ≳ η

for η ≤ 1 and conclude

η ∼ ⟨v⟩3 + (τ − 1)⟨v⟩. (6.3.19)

As before it is easy to conclude (6.3.11) from (6.3.19). We leave this to the reader. This

completes the proof of Proposition 6.3.2. □

Our next goal is a stability result for (6.3.6) in the regime τ ∈ [0, 1− τ∗]∪ [1 + τ∗, τ
∗].

In the following proposition, the second main result of this section, we prove that iv(η)

well approximates g(η) for all η > 0 if g satisfies (6.2.19) and as long as d is small.

However, we will need an additional assumption on g = (g1, g2), namely that ⟨g1⟩ = ⟨g2⟩

(see (6.3.20) below). Note that this is imposed on the solution g of (6.2.19) and not

directly on the perturbation d. Nevertheless, in our applications, the constraint (6.3.20)

will be automatically satisfied owing to the specific block structure of the matrix Hz

from (6.2.11).

Proposition 6.3.3 (Stability). Suppose that some functions d : R+ → C2n and g =

(g1, g2) : R+ → H2n satisfy (6.2.19) and

⟨g1(η)⟩ = ⟨g2(η)⟩ (6.3.20)
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for all η > 0. There is a number λ∗ ≳ 1, depending only on P, such that

∥g(η)− iv(η)∥∞ · 1
(
∥g(η)− iv(η)∥∞ ≤ λ∗

)
≲ ∥d(w)∥∞ (6.3.21)

uniformly for η > 0 and τ ∈ [0, 1− τ∗] ∪ [1 + τ∗, τ
∗].

Moreover, there is a matrix-valued function R : R+ → C2n×2n, depending only on τ

and S and satisfying ∥R(η)∥∞ ≲ 1, such that

|⟨y, g(η)− iv(η)⟩| ·1
(
∥g(η)− iv(η)∥∞ ≤ λ∗

)
≲ ∥y∥∞∥d(η)∥2

∞ + |⟨R(η)y,d(η)⟩| (6.3.22)

uniformly for all y ∈ C2n, η > 0 and τ ∈ [0, 1− τ∗] ∪ [1 + τ∗, τ
∗].

The proof of this result is based on deriving a quadratic equation for the difference

h ..= g − iv and establishing a quantitative estimate on h in terms of the perturbation

d. Computing the difference of (6.2.19) and (6.2.18), we obtain an equation for g − iv.

A straightforward calculation yields

Lh = r, for h = g − iv, (6.3.23)

where we used L defined in (6.2.21) and introduced the vector r through

r ..= d+ iv(h− d)Soh− τu
[
d− g

iη + Sdg
+ u

]
Sdh. (6.3.24)

The vector u in (6.3.24) is defined through

u ..= v1

η + Stv1
= v2

η + Sv2
, u ..= (u, u) = v

η + Sdv
(6.3.25)

which is consistent by (6.3.12).

Notice that all terms on the right-hand side of (6.3.24) are either second order in h

or they are of order d, so (6.3.23) is the linearization of (6.2.19) around (6.2.18).

In the following estimates, we need a bound on u as well. Indeed, Proposition 6.3.2

yields

u = v

η + Sdv
∼ 1

1 + η2 (6.3.26)

uniformly for η > 0 and τ ∈ [0, τ ∗].
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To shorten the upcoming relations, we introduce the vector

ṽ ..= (v2, v1)

and the matrices T , F and V defined by their action on a vector y = (y1, y2), y1, y2 ∈ Cn

as follows

Ty ..= 1
u

⎛⎜⎝−v1v2y1 + τu2y2

τu2y1 − v1v2y2

⎞⎟⎠ , (6.3.27a)

Fy ..=
√
vu

ṽ
So

(√
vu

ṽ
y
)
, (6.3.27b)

V y ..=
√
ṽ

uv
y. (6.3.27c)

All these matrices are functions of η and τ . They provide a crucial factorization of the

stability operator L; indeed, a simple calculation shows that

L = V −1(1− TF )V . (6.3.28)

This factorization reveals many properties of L which are difficult to observe directly.

Owing to (6.3.23), the stability analysis of (6.3.6) requires a control on the invertibility

of the matrix L. The matrices V and V −1 are harmless. A good understanding of the

spectral decompositions of the simpler matrices F and T will then yield that L has only

one direction, in which its inverse is not bounded. We remark that the factorization

(6.3.28) is the diagonal part of the one used in the stability analysis of the matrix Dyson

equation in [6].

Because of (6.3.28), we can study the stability of

(1− TF )(V h) = V r (6.3.29)

instead of (6.3.23). From Proposition 6.3.2 and (6.3.26), we conclude that

∥V ∥∞∥V −1∥∞ ≲ 1 (6.3.30)

uniformly for all η > 0 and τ ∈ [0, 1 − τ∗] ∪ [1 + τ∗, τ
∗]. Hence, it suffices to control the

invertibility of 1− TF .
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For later usage, we derive two relations for u. From (6.3.25), recalling ṽ = (v2, v1),

we immediately get
ṽ

u
= η + Sov. (6.3.31)

We multiply (6.3.6) by vu and use (6.3.31) to obtain

u = vṽ + τu2, 1 = vṽ

u
+ τu. (6.3.32)

The next lemma collects some properties of F . For this formulation, we introduce

e−
..= (1,−1) ∈ C2n.

Lemma 6.3.4 (Spectral properties of F ). The eigenspace of F corresponding to its

largest eigenvalue ∥F ∥2 is one dimensional. It is spanned by a unique positive normalized

eigenvector f+, i.e., Ff+ = ∥F ∥2f+ and ∥f+∥2 = 1. For every η > 0, the norm of F

is given by

∥F ∥2 = 1− η

⟨
f+

√
v/(η + Sov)

⟩
⟨
f+

√
v(η + Sov)

⟩ . (6.3.33)

Defining f−
..= f+e−, we have

Ff− = −∥F ∥2f−. (6.3.34)

(i) (Inside regime) The following estimates hold true uniformly for τ ∈ [0, 1 − τ∗].

We have

1− ∥F ∥2 ∼ η. (6.3.35)

uniformly for η ∈ (0, 1]. Furthermore, uniformly for η ≥ 1, we have

1− ∥F ∥2 ∼ 1. (6.3.36)

Moreover, uniformly for η ∈ (0, 1], f+ satisfies

f+ ∼ 1 (6.3.37)

and there is ε ∼ 1 such that

∥Fx∥2 ≤ (1− ε)∥x∥2 (6.3.38)
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for all x ∈ C2n satisfying x ⊥ f+ and x ⊥ f−.

(ii) (Outside regime) Uniformly for all η > 0 and τ ∈ [1 + τ∗, τ
∗], we have

1− ∥F ∥2 ∼ 1. (6.3.39)

Proof. The statements about the eigenspace corresponding to ∥F ∥2 and f+ follow

from Lemma 4.3.3 in Chapter 4.

For the proof of (6.3.33), we multiply (6.3.6) by v and take the scalar product of the

resulting relation with f+

√
u/(vṽ). Using that

⟨
f+

√
u

vṽ
, vSov

⟩
=
⟨
f+

√
vu

ṽ
, Sov

⟩
=
⟨
So

(
f+

√
vu

ṽ

)
, v
⟩

=
⟨√

ṽ

vu
Ff+ , v

⟩
= ∥F ∥2

⟨
f+ ,

√
vṽ

u

⟩
,

this yields

∥F ∥2

⟨
f+ ,

√
vṽ

u

⟩
=
⟨
f+

√
u

vṽ
, 1− τu

⟩
− η

⟨
f+

√
u

vṽ
, v
⟩
.

We conclude (6.3.33) from applying (6.3.32) and (6.3.31) to the last relation.

Since F from (6.3.27b) has the form

F =

⎛⎜⎝ 0 F

F t 0

⎞⎟⎠ ,
for some F ∈ Cn×n we have F (e−y) = −e−(Fy) for all y ∈ C2n. Thus, we get (6.3.34)

from Ff+ = ∥F ∥2f+.

In the regime τ ∈ [0, 1− τ∗] and η ∈ (0, 1], we have uniform lower and upper bounds

on v from Proposition 6.3.2. Therefore, the estimates in (6.3.37) and (6.3.38) follow from

Lemma 4.3.3 in Chapter 4. Combining (6.3.37), (6.3.33) and Proposition 6.3.2 yields

(6.3.35). In the large η regime, i.e., for η ≥ 1, since v ∼ η−1 by Proposition 6.3.2 we

obtain
v

η + Sov
∼ η−2, v(η + Sov) ∼ 1. (6.3.40)
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Hence, as f+ > 0 we conclude⟨
f+

√
v/(η + Sov)

⟩
⟨
f+

√
v(η + Sov)

⟩ ∼ ⟨f+⟩
⟨f+⟩

1
η

= 1
η
, (6.3.41)

uniformly for all η ≥ 1. This shows that (6.3.36) holds true for all η ≥ 1 and τ ∈ [0, 1−τ∗].

We now turn to the proof of (ii). If τ ∈ [1 + τ∗, τ
∗], then v ∼ η by (6.3.11) for η ≤ 1

and therefore
v

η + Sov
∼ 1, v(η + Sov) ∼ η2.

As f+ > 0, we thus have

η

⟨
f+

√
v/(η + Sov)

⟩
⟨
f+

√
v(η + Sov)

⟩ ∼ ⟨f+⟩
⟨f+⟩

= 1. (6.3.42)

For η ≥ 1, we argue as in (6.3.40) and (6.3.41) and arrive at the same conclusion (6.3.42).

Thus, because of (6.3.33) the estimate (6.3.39) holds true for all η > 0 and τ ∈ [1 +

τ∗, τ
∗]. □

Next, we give an approximation for the eigenvector f− belonging to the isolated

single eigenvalue −∥F ∥2 of F by constructing an approximate eigenvector. For η ≤ 1

and τ ∈ [0, 1− τ∗], we define

a ..= e−(V v)
∥V v∥2

(6.3.43)

which is normalized as ∥e−(V v)∥2 = ∥V v∥2. We compute

F (V v) =
√
u

vṽ
v (Sov) =

√
u

vṽ
(1− ηv − τu)

=
√
vṽ

u
− ηv

√
u

vṽ
= ∥F ∥2V v +O(η).

(6.3.44)

Here, we used vSov = −ηv+vṽ/u by (6.3.31). For estimating the O(η) term we applied

(6.3.10), (6.3.26) and (6.3.35) since τ ∈ [0, 1 − τ∗] and η ≤ 1. Using the block structure

of F as in the proof of (6.3.34), we obtain

F (e−(V v)) = −∥F ∥2e−(V v) +O(η). (6.3.45)

The following lemma states that a approximates the nondegenerate eigenvector f−.
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Lemma 6.3.5. The eigenvector f− can be approximated by a in the ℓ∞-norm, i.e.,

∥f− − a∥∞ = O(η) (6.3.46)

uniformly for η ≤ 1 and τ ∈ [0, 1− τ∗].

Lemma 6.3.5 is proven at the end of Section 6.7 below. In the following lemma, we

show some properties of T .

Lemma 6.3.6 (Spectral properties of T ). The symmetric operator T , defined in (6.3.27a),

satisfies

(i) ∥T ∥2 = 1, ∥T ∥∞ = 1.

(ii) The spectrum of T is given by

Spec(T ) = {−1} ∪
{
τui −

(vṽ)i
ui

⏐⏐⏐⏐⏐ i = 1, . . . , n
}
.

(iii) For all η > 0, we have T (τ = 0) = −1 and if τ > 0, then the eigenspace of T

corresponding to the eigenvalue −1 is n-fold degenerate and given by

Eig(−1,T ) = {(y,−y)|y ∈ Cn} . (6.3.47)

(iv) The spectrum of T is strictly away from one, i.e., there is ε > 0, depending only

on P, such that

Spec(T ) ⊂ [−1, 1− ε] (6.3.48)

uniformly for τ ∈ [0, 1− τ∗] and η ∈ (0, 1].

Proof. The second relation in (6.3.32) implies ∥T ∥∞ = 1 and T (τ = 0) = −1.

Moreover, it yields that all vectors of the form (y,−y) for y ∈ Cn are contained in

Eig(−1,T ). We define the vector y(j) ∈ C2n by y(j) ..= (δi,j + δi,j+n)2n
i=1 and observe that

Ty(j) =
(
τuj −

(vṽ)j
uj

)
y(j)

for j = 1, . . . , n. Counting dimensions implies that we have found all eigenvalues, hence

(ii) follows. For τ > 0, we have τuj − (vṽ)j/uj = 2τuj − 1 > −1 by (6.3.32) and uj > 0

for all j = 1, . . . , n. This yields the missing inclusion in (6.3.47). Since T is a symmetric

operator, ∥T ∥2 = 1 follows from (ii) and |τu− vṽ/u| ≤ 1 by (6.3.32).
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For the proof of (iv), we remark that there is ε > 0, depending only on P , such that

2vṽ/u ≥ ε for all η ∈ (0, 1] and τ ∈ [0, 1− τ∗] by (6.3.10) and (6.3.26). Thus,

τu− vṽ
u

= 1− 2vṽ
u
≤ 1− ε

by (6.3.32). This concludes the proof of the lemma. □

Now we are ready to give a proof of Proposition 6.3.3 based on inverting 1− TF .

Proof of Proposition 6.3.3. We recall that h = g − iv. Throughout the proof

we will omit arguments, but we keep in mind that g, d, h and v depend on η and τ . The

proof will be given in three steps.

The first step is to control ∥r∥∞ from (6.3.24) in terms of ∥h∥2
∞ and ∥d∥∞, i.e., to

show

∥r∥∞1(∥h∥∞ ≤ 1) ≲ ∥h∥2
∞ + ∥d∥∞. (6.3.49)

Inverting V −1(1 − TF )V in (6.3.29), controlling the norm of the inverse and choosing

λ∗ ≤ 1 small enough, we will conclude Proposition 6.3.3 from (6.3.49). For any η∗ ∈ (0, 1],

depending only on P , this argument will be done in the second step for τ ∈ [0, 1− τ∗] ∪

[1 + τ∗, τ
∗] and η ≥ η∗ as well as for τ ∈ [1 + τ∗, τ

∗] and η ∈ (0, η∗]. In the third step, we

consider the most interesting regime τ ∈ [0, 1− τ∗] and η ≤ η∗ for a sufficiently small η∗,

depending on P only. In this regime, we will use an extra cancellation for the contribution

of r in the unstable direction of L.

Step 1: For all η > 0 and τ ∈ [0, 1− τ∗] ∪ [1 + τ∗, τ
∗], (6.3.49) holds true.

From (6.2.19), we obtain

τ
g − d

iη + Sdg
= 1 + (iη + Sog)(g − d).

We start from (6.3.24), use the previous relation, τu = 1 + iv(iη + Soiv) by (6.3.6) and

ṽ = (v2, v1) = u(η + Sov) by (6.3.32) and get

r = d+ iv(h− d)Soh− u [iv(iη + Soiv)− (g − d)(iη + Sog)]Sdh

= d+ iv(h− d)Soh+ u [h(iη + Soiv) + gSoh]Sdh− du(iη + Sog)Sdh

= ivhSoh+ iṽhSdh+ ugSohSdh+ d− ivdSoh− du(iη + Sog)Sdh.

(6.3.50)
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Notice that the first three terms are quadratic in h (the linear terms dropped out), while

the last three terms are controlled by d. Now, we show that all other factors are bounded

and hence irrelevant whenever ∥g− iv∥∞ ≤ λ∗ for η > 0 and τ ∈ [0, 1−τ∗]∪ [1+τ∗, τ
∗]. In

this case, we conclude ∥g∥∞ ≲ 1 uniformly for all η > 0 and τ ∈ [0, 1− τ∗]∪ [1+ τ∗, τ
∗] by

(6.3.9) and (6.3.10) from Proposition 6.3.2. Therefore, starting from (6.3.50) and using

∥v∥∞ ≲ 1 by (6.3.9) and (6.3.10), and ∥u∥∞ ≲ 1 by (6.3.26), we obtain (6.3.49).

Step 2: For any η∗ ∈ (0, 1], there exists λ∗ ≳ 1, depending only on P and η∗,

such that (6.3.21) holds true for η ≥ η∗ and τ ∈ [0, 1 − τ∗] ∪ [1 + τ∗, τ
∗]

as well as for η ∈ (0, η∗] and τ ∈ [1 + τ∗, τ
∗].

Moreover, with this choice of λ∗, (6.3.22) holds true in these (η, τ) pa-

rameter regimes as well.
Within Step 2, we redefine the comparison relation to depend both on P and η∗. Later in

Step 3 we will choose an appropriate η∗ depending only on P , so eventually the comparison

relations for our choice will depend only on P .

We are now working in the regime, where η ≥ η∗ and τ ∈ [0, 1−τ∗]∪ [1+τ∗, τ
∗] or η ∈

(0, η∗] and τ ∈ [1 + τ∗, τ
∗]. In this case, to prove (6.3.21), we invert L = V −1(1−TF )V

(cf. (6.2.21)) in Lh = r, bound ∥L−1∥∞ ≲ 1, which is proven below, and conclude

∥h∥∞1(∥h∥∞ ≤ 1) ≲ ∥h∥2
∞ + ∥d∥∞

from (6.3.49) for η ≥ η∗ and τ ∈ [0, 1 − τ∗] ∪ [1 + τ∗, τ
∗] as well as for η ∈ (0, η∗] and

τ ∈ [0, 1− τ∗]. This means that there are Ψ1,Ψ2 ∼ 1 such that

∥h∥∞1(∥h∥∞ ≤ 1) ≤ Ψ1∥h∥2
∞ + Ψ2∥d∥∞.

Choosing λ∗
..= min{1, (2Ψ1)−1} this yields

∥h∥∞1(∥h∥∞ ≤ λ∗) ≤ 2Ψ2∥d∥∞.

Thus, we are left with controlling ∥L−1∥∞, i.e., proving ∥L−1∥∞ ≲ 1.

In the regime η ≥ η∗ and τ ∈ [0, 1 − τ∗] ∪ [1 + τ∗, τ
∗], we have v ∼ 1/η by Propo-

sition 6.3.2 and u ∼ 1/η2 by (6.3.26). Hence, V ∼ η and V −1 ∼ 1/η. Therefore,

∥V ∥∞∥V −1∥∞ ≲ 1 and due to ∥L−1∥∞ ≲ ∥V −1∥∞∥(1 − TF )−1∥∞∥V ∥∞, it suffices
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to show ∥(1 − TF )−1∥∞ ≲ 1. Basic facts on the operator 1 − TF are collected in

Lemma 6.7.1 in Section 6.7 below. In particular, because of (6.7.9), the ℓ∞ bound follows

from ∥(1−TF )−1∥2 ≲ 1. Using (6.3.35), (6.3.36) and (6.3.39), we get that 1−∥F ∥2 ∼ 1

for all η ≥ η∗ and τ ∈ [0, 1− τ∗]∪ [1 + τ∗, τ
∗]. Hence, 1−∥TF ∥2 ∼ 1 by Lemma 6.3.6 (i),

so the bound ∥(1 − TF )−1∥2 ≲ 1 immediately follows. This proves (6.3.21) for η ≥ η∗

and τ ∈ [0, 1− τ∗] ∪ [1 + τ∗, τ
∗].

For η ≤ η∗ and τ ∈ [1 + τ∗, τ
∗], we have v ∼ η by (6.3.11), u ∼ 1 by (6.3.26).

Thus, V ∼ 1, V −1 ∼ 1 as well as ∥V ∥∞∥V −1∥∞ ≲ 1. As above it is enough to show

∥(1−TF )−1∥2 ≲ 1. By Lemma 6.3.6 (i) and (6.3.39), 1−∥TF ∥2 ∼ 1 which again leads

to ∥(1− TF )−1∥2 ≲ 1. We conclude (6.3.21) for η ≤ η∗ and τ ∈ [1 + τ∗, τ
∗].

Next, we verify (6.3.22) in these two regimes. Using h ·1(∥h∥∞ ≤ λ∗) = O(∥d∥∞) by

(6.3.21), v ≲ 1 and u ≲ 1, we see that with the exception of d, all terms in (6.3.50) are

second order in d. Therefore,

r · 1(∥h∥∞ ≤ λ∗) = d · 1(∥h∥∞ ≤ λ∗) +O
(
∥d∥2

∞

)
(6.3.51)

uniformly for η ≥ η∗ and τ ∈ [0, 1 − τ∗] ∪ [1 + τ∗, τ
∗] as well as for η ∈ (0, η∗] and

τ ∈ [1 + τ∗, τ
∗].

We start from Lh = r and compute

⟨y ,h⟩ = ⟨(L−1)∗y , r⟩ = ⟨(L−1)∗y ,d⟩+ ⟨(L−1)∗y , r − d⟩ = ⟨Ry ,d⟩+ ⟨(L−1)∗y , r − d⟩.

(6.3.52)

Here, we defined the operator R = R(η) on C2n in the last step through its action on

any x ∈ C2n via

Rx ..=
(
L−1

)∗
x = V −1(1− FT )−1V x. (6.3.53)

Now, we establish that ∥(L−1)∗∥∞ ≲ 1 in the two regimes considered in Step 2. From

this, we conclude that ∥R∥∞ ≲ 1 and that the last term in (6.3.52) when multiplied

by 1(∥h∥∞ ≤ λ∗) is bounded by ≲ ∥y∥∞∥d∥2
∞ because of (6.3.51). By Lemma 6.3.6

(i), (6.3.35), (6.3.36) and (6.3.39) we have 1 − ∥FT ∥2 ∼ 1. Thus, ∥(1 − FT )−1∥2 ≲ 1

and hence ∥(1 − FT )−1∥∞ ≲ 1 by Lemma 6.7.1 (ii). As ∥V ∥∞∥V −1∥∞ ≲ 1 we get

∥(L−1)∗∥∞ ≲ 1. Therefore, we conclude that (6.3.22) holds true uniformly for η ≥ η∗ and
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τ ∈ [0, 1 − τ∗] ∪ [1 + τ∗, τ
∗] as well as for η ∈ (0, η∗] and τ ∈ [1 + τ∗, τ

∗]. Thus, we have

proven the proposition for these combinations of η and τ .

Finally, we prove the proposition in the most interesting regime, τ ∈ [0, 1 − τ∗] and

for small η:
Step 3: There exists η∗ > 0, depending only on P , and λ∗ ≳ 1 such that (6.3.21)

holds true for η ∈ (0, η∗] and τ ∈ [0, 1 − τ∗]. Moreover, with this choice

of λ∗, (6.3.22) holds true for η ∈ (0, η∗] and τ ∈ [0, 1− τ∗].
The crucial step for proving (6.3.21) and (6.3.22) was the order one bound on ∥(1 −

TF )−1∥2. However, in the regime τ ∈ [0, 1− τ∗] and small η such bound is not available

since (1−TF )f− = O(η) which can be deduced from (6.3.62) below. The simple bound

∥(1− TF )−1∥2 ≲ η−1 (6.3.54)

which is a consequence of (6.3.35) and ∥T ∥2 = 1 is not strong enough. In order to

control ∥(1 − TF )−1V r∥2 we will need to use a special property of the vector V r,

namely that it is almost orthogonal to f−. This mechanism is formulated in the following

Contraction-Inversion Lemma which is proven in Section 6.7 below. It is closely related

to the Rotation-Inversion lemmas – Lemma 5.8 in [5] and Lemma 4.3.6 in Chapter 4

– which control the invertibility of 1 − UF , where U is a unitary operator and F is

symmetric.

Lemma 6.3.7 (Contraction-Inversion Lemma). Let ε, η, c1, c2, c3 > 0 satisfying η ≤

εc1/(2c2
2) and A,B ∈ C2n×2n be two Hermitian matrices such that

∥A∥2 ≤ 1, ∥B∥2 ≤ 1− c1η. (6.3.55)

Suppose that there are ℓ2-normalized vectors b± ∈ C2n satisfying

Bb+ = ∥B∥2b+, Bb− = −∥B∥2b−, ∥Bx∥2 ≤ (1− ε)∥x∥2 (6.3.56)

for all x ∈ C2n such that x ⊥ span{b+, b−}.

Furthermore, assume that

⟨b+ ,Ab+⟩ ≤ 1− ε, ∥(1 +A)b−∥2 ≤ c2η. (6.3.57)
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Then there is a constant C > 0, depending only on c1, c2, c3 and ε, such that for each

p ∈ C2n satisfying

|⟨b− ,p⟩| ≤ c3η∥p∥2, (6.3.58)

it holds true that

∥(1−AB)−1p∥2 ≤ C∥p∥2. (6.3.59)

We will apply this lemma with the choicesA = T ,B = F , b± = f± and p = V r. The

resulting bound on ∥(1 − TF )−1V r∥2 will be lifted to a bound on ∥(1 − TF )−1V r∥∞

by (6.7.9). All estimates in the remainder of this proof will hold true uniformly for

τ ∈ [0, 1 − τ∗]. However, we will not stress this fact for each estimate. Moreover, the

estimates will be uniform for η ∈ (0, η∗]. The threshold η∗ ≤ 1 will be chosen later such

that it depends on P only and the assumptions of Lemma 6.3.7 are fulfilled. We now

start checking the assumptions of Lemma 6.3.7.

By Proposition 6.3.2, there is Φ1 ∼ 1 such that

Φ−1
1 ≤ v ≤ Φ1 (6.3.60)

for all η ∈ (0, 1]. We recall from (6.3.35) that there is a constant c1 ∼ 1 such that

∥F ∥2 ≤ 1− c1η for all η ∈ (0, 1]. Recalling the definition of a from (6.3.43), we conclude

from (6.3.46) the existence of Φ2 ∼ 1 such that

∥f− − a∥2 ≤ ∥f− − a∥∞ ≤ Φ2η (6.3.61)

for all η ∈ (0, 1]. Here, we used that ∥y∥2 ≤ ∥y∥∞ for all y ∈ C2n due to the normalization

of the ℓ2 norm.

Since the first and the second n-component of the vector V v are the same we have

Ta = −a by (6.3.43) and Lemma 6.3.6 (iii). Hence,

∥f− + Tf−∥2 ≤ ∥f− − a∥2 + ∥T ∥2∥f− − a∥2 ≤ 2Φ2η (6.3.62)

by ∥T ∥2 = 1 and (6.3.61).

Due to (6.3.38), there exists ε ∼ 1 such that

∥Fx∥2 ≤ (1− ε)∥x∥2
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for all x ∈ C2n such that x ⊥ f+ and x ⊥ f− and for all η ∈ (0, 1]. As T is Hermitian

we can also assume by (6.3.48) that

⟨f+ ,Tf+⟩ ≤ 1− ε

for all η ∈ (0, 1] by possibly reducing ε but keeping ε ≳ 1.

So far we checked the conditions (6.3.55)–(6.3.57), it remains to verify (6.3.58) with

the choice p = V r. Assuming that ⟨a ,V r⟩ = 0, we deduce from (6.3.61) that

|⟨f− ,V r⟩| ≤ |⟨a ,V r⟩|+ ∥f− − a∥2∥V r∥2 ≤ Φ2η∥V r∥2. (6.3.63)

This is the estimate required in (6.3.58). Hence, it suffices to show that V r is perpen-

dicular to a, i.e.,

⟨e−(V v) ,V r⟩ =
⟨
e−
(
V 2v

)
, Lh

⟩
=
⟨
L∗
(
e−
ṽ

u

)
, h

⟩
= 0, (6.3.64)

where we used the symmetry of V , that V is diagonal and (6.3.23) in the first equality,

and the notation ṽ = (v2, v1).

We compute

L∗
(
e−
ṽ

u

)
= e−

ṽ

u
+ So

(
v2e−

ṽ

u

)
− τStd

(
u2e−

ṽ

u

)

=

⎛⎜⎝ η + Sv2 − S
(
v2
(
v1v2
u

+ τu
))

−η − Stv1 + St
(
v1
(
v1v2
u

+ τu
))
⎞⎟⎠ = ηe−.

(6.3.65)

Here, we used (6.3.31) in the second step and the n-component relations of the second

identity in (6.3.32) in the last step. Since ⟨e−g⟩ = ⟨e−v⟩ = 0 by (6.3.20) and (6.3.8),

respectively, this proves (6.3.64) and therefore (6.3.63) as well. Thus, we checked all

conditions of Lemma 6.3.7.

By possibly reducing η∗ but keeping η∗ ≳ 1, we can assume that η∗ ≤ εc1/(8Φ2
2).

Now, we can apply Lemma 6.3.7 with ε, c1, c2 = 2Φ2, c3 = Φ2 for any η ∈ (0, η∗]. Thus,

applying (6.3.59) in Lemma 6.3.7 to (6.3.29), we obtain ∥V h∥2 ≲ ∥V r∥2 and hence

∥V h∥∞ ≲ ∥V r∥∞ because of (6.7.9). Therefore, for any λ∗ > 0, depending only on P ,



6.3. DYSON EQUATION FOR THE INHOMOGENEOUS CIRCULAR LAW 159

we have

∥h∥∞1(∥h∥∞ ≤ λ∗) ≲ ∥V −1∥∞∥V r∥∞1(∥h∥∞ ≤ λ∗) ≲ ∥h∥2
∞ + ∥d∥∞

uniformly for η ∈ (0, η∗] and τ ∈ [0, 1 − τ∗]. Here, we used (6.3.30) and (6.3.49) in the

second step. Choosing λ∗ > 0 small enough as before, we conclude (6.3.21) for η ∈ (0, η∗]

and τ ∈ [0, 1− τ∗]. Since η∗ > 0 depends only on P , and η∗ was arbitrary in the proof of

Step 2 we proved (6.3.21) for all η > 0 and τ ∈ [0, 1− τ∗] ∪ [1 + τ∗, τ
∗].

In order to prove (6.3.22), we remark that because of (6.3.21) and (6.3.50) the estimate

(6.3.51) holds true for η ∈ (0, η∗] and τ ∈ [0, 1−τ∗] as well. Due to the instability (6.3.54)

of (1 − TF )−1 and, correspondingly, of its adjoint, the definition of R in (6.3.53) will

not yield an operator satisfying ∥R∥∞ ≲ 1 in this regime. Therefore, we again employ

that the inverse of 1− TF is bounded on the subspace orthogonal to f− and the blow-

up in the direction of f− is compensated by the smallness of ⟨f− ,V r⟩ following from

⟨a ,V r⟩ = 0 and ∥f− − a∥∞ = O(η) by (6.3.46).

Let Q be the orthogonal projection onto the subspace f⊥
−, i.e., Qx ..= x−⟨f− ,x⟩f−

for all x ∈ C2n. Recalling the definition of a in (6.3.43), we now define the operator

R = R(η) on C2n as follows:

Rx ..= V
(
(1− TF )−1Q

)∗
V −1x− ⟨V −1(1− TF )−1f− ,x⟩V (f− − a) (6.3.66)

for every x ∈ C2n. Note that this R is different from the one given in (6.3.53) that is used

in the other parameter regimes. Now, we estimate ∥Rx∥∞. For the first term, we use the

bound (6.7.11) whose assumptions we check first. The first condition, ∥(1−TF )−1Q∥2 ≲

1, in (6.7.10) follows from (6.3.59) as (6.3.58) with p = Qx is trivially satisfied and hence

∥(1−TF )−1Qx∥2 ≲ ∥Qx∥2 ≲ ∥x∥2. The second condition in (6.7.10) is met by (6.3.35)

and the third condition is exactly (6.3.62). Using ∥f−∥∞ ≲ 1 from (6.3.37), (6.7.11) and

(6.3.30), we conclude that the first term in (6.3.66) is ≲ ∥x∥∞. In the second term, we

use the trivial bound (1− TF )−1


∞
≲ η−1 (6.3.67)

which is a consequence of the corresponding bound on ∥(1−TF )−1∥2 in (6.3.54) and (6.7.9).
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The potential blow-up in (6.3.67) for small η is compensated by the estimate ∥f−−a∥∞ =

O(η) from (6.3.46). Altogether this yields ∥R(η)∥∞ ≲ 1 for all η ∈ (0, η∗].

From the definition of R, we obtain

⟨y ,h⟩ = ⟨y ,V −1(1− TF )−1V r⟩

=
⟨
V −1y , (1− TF )−1QV (r − d)

⟩
+
⟨
y , V −1(1− TF )−1f−

⟩ ⟨
f− − a , V (r − d)

⟩
+ ⟨Ry ,d⟩.

(6.3.68)

Notice that we first inserted 1 = Q+ |f−⟩⟨f−| before V r, then we inserted the vector a

in the second term for free by using ⟨a ,V r⟩ = 0 from (6.3.64). This brought in the factor

f− − a ∼ O(η) that compensates the (1 − TF )−1 on the unstable subspace parallel to

f−. Finally, we subtracted the term d to r freely and we defined the operator R exactly

to compensate for it. The reason for this counter term d is the formula (6.3.51) showing

that r−d is one order better in d than r. Thus, the first two terms in the right-hand side

of (6.3.68) are bounded by ∥d∥2
∞∥y∥∞. The compensating term, ⟨Ry ,d⟩ remains first

order in d but only in weak sense, tested against the vector Ry, and not in norm sense.

This is the essential improvement of (6.3.22) over (6.3.21). Recalling now h = g − iv,

the identity (6.3.68) together with the bounds we just explained concludes the proof of

Proposition 6.3.3. □

6.4. Proof of Proposition 6.2.5

As in the previous section, we assume without loss of generality that ρ(S) = 1. See

the remark about (6.3.7).

For τ∗ > 0 and τ ∗ > τ∗ + 1, we define

D<
..= {z ∈ C | |z|2 ≤ 1− τ∗}, D>

..= {z ∈ C | 1 + τ∗ ≤ |z|2 ≤ τ ∗}. (6.4.1)

Via τ = |z|2, the sets D< and D> correspond to the regimes [0, 1 − τ∗] and [1 + τ∗, τ
∗],

respectively, which are used in the previous section.

Proof of Proposition 6.2.5. Since the defining equations in (6.2.4) are smooth

functions of η, τ and (vi)i=1,...,2n and the operator L is invertible for η > 0 the implicit
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function theorem implies that the function v : R+×R+
0 → R2n

+ is smooth. Therefore, the

function R+ × C→ R2n
+ , (η, z) ↦→ vτ (η)|τ=|z|2 is also smooth.

For α = (α1, α2) ∈ N2, we define

∂αv ..= ∂α1
η ∂

α2
τ v.

For fixed τ∗ > 0 and τ ∗ > τ∗ + 1, we first prove that for all α ∈ N2, we have

∥∂αv∥∞ ≲ 1 (6.4.2)

uniformly for all η > 0 and τ ∈ [0, 1− τ∗] ∪ [1 + τ∗, τ
∗].

Differentiating (6.2.4) with respect to η and τ , respectively, yields

L(∂ηv) = −v2 + τu2, L(∂τv) = −uv. (6.4.3)

By further differentiating with respect to η and τ , we iteratively obtain that for any

multi-index α ∈ N2

L∂αv = rα, (6.4.4)

where rα only depends on η, τ and ∂βv for β ∈ N2, |β| = β1 + β2 < |α|. In fact, for all

α ∈ N2, we have

L(∂α+e1v) = ∂α
(
−v2 + τu2

)
−

∑
ν≤α,ν ̸=(0,0)

⎛⎜⎝α
ν

⎞⎟⎠ (∂νL)
(
∂α−ν+e1v

)
, (6.4.5a)

L(∂α+e2v) = ∂α (−vu)−
∑

ν≤α,ν ̸=(0,0)

⎛⎜⎝α
ν

⎞⎟⎠ (∂νL)
(
∂α−ν+e2v

)
. (6.4.5b)

As an example, we compute

L∂2
τv = −2u∂τv + 2u2Sd∂τv − 2v∂τvSo∂τv + 2τu2

v
∂τvSd∂τv −

2τu3

v
(Sdv)2

= 2
v

(∂τv)2 + 2u2Sd∂τv −
2τu3

v
(Sd∂τv)2 , (6.4.6)

where we used the second relation in (6.4.3) in the second step.

By induction on |α| = α1 +α2, we prove ∥rα∥∞ ≲ 1 and ∥∂αv∥∞ ≲ 1 simultaneously.

From (6.4.5), we conclude that rα+e1 and rα+e2 are bounded in ℓ∞-norm if ∥∂νv∥∞ ≲ 1
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for all ν ≤ α as the first term on the right-hand side of (6.4.5a) and (6.4.5b), respectively,

and ∂νL for all ν ≤ α are bounded. In order to conclude that ∂α+e1v and ∂α+e2v are

bounded it suffices to prove that ∥∂αv∥∞ ≲ ∥rα∥∞ by controlling L−1 in (6.4.4).

As in the proof of Proposition 6.3.3 the norm of L−1 is bounded, ∥L−1∥∞ ≲ 1, for

τ ∈ [1+τ∗, τ
∗] or τ ∈ [0, 1−τ∗] and large η as well as τ ∈ [0, 1−τ∗] and small η separately.

We thus focus on the most interesting regime where τ ∈ [0, 1 − τ∗] and small η. As for

the proof of Proposition 6.3.3 we apply Lemma 6.3.7 in this regime. We only check the

condition (6.3.58) here since the others are established in the same way as in the proof of

Proposition 6.3.3. Recall the definition of a in (6.3.43). Using ⟨e−∂
αv⟩ = 0 from (6.3.8)

for all α ∈ N2, we obtain

⟨a , V rα⟩ =
⟨
L∗(e−V

2v) , ∂αv
⟩

= ⟨ηe− , ∂
αv⟩ = 0

for all α ∈ N2. Here, we used L∗(e−V
2v) = ηe− which is shown in (6.3.65) in the proof

of Proposition 6.3.3. This concludes the proof of (6.4.2).

Next, we show the integrability of ∆z⟨vτ1 |τ=|z|2⟩ as a function of η for z ∈ D< for fixed

τ∗ > 0. Note that ⟨vτ1⟩ = ⟨vτ ⟩ by (6.3.8). Using

∆z

(
vτ |τ=|z|2

)
= 4

(
τ∂2

τv
τ + ∂τv

τ
)
|τ=|z|2

together with (6.4.3) and (6.4.6), we obtain

L∆z

(
vτ |τ=|z|2

)
= 4

(
2τ
v

(∂τv)2 + 2τu2Sd∂τv −
2τ 2u3

v
(Sd∂τv)2 − uv

)
. (6.4.7)

From (6.3.9), (6.3.10) and (6.3.26), we conclude that uv ∼ (1 + η3)−1 and hence |∂τv| ≲

(1 + η3)−1 uniformly for z ∈ D< since ∥∂αv∥∞ ≲ ∥rα∥∞. Therefore, the right-hand

side of (6.4.7) is of order (1 + η3)−1 for z ∈ D< and hence using the control on L−1

as before, we conclude that |∆z

(
vτ |τ=|z|2

)
| ≲ (1 + η3)−1 uniformly for η > 0. Thus,

∆z⟨vτ1 |τ=|z|2⟩ = ∆z⟨vτ |τ=|z|2⟩ as a function of η is integrable on R+ and the integral is a

continuous function of z ∈ D<. As τ∗ > 0 was arbitrary, this concludes the proof of part

(i) of Proposition 6.2.5 and shows that σ is a rotationally invariant function on C which

is continuous on D(0, 1).
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Now, we establish that for τ < 1, the derivative of the average of u with respect to τ

gives an alternative representation of the density of states as follows

σ(z) = 1
π
∂τ (τ⟨u0⟩) |τ=|z|2 = − 2

π
⟨Sov0 , ∂τv0⟩|τ=|z|2 , (6.4.8)

where u0
..= limη↓0 u(η) and v0

..= limη↓0 v(η). The first relation in (6.4.8) will be proven

below and the second one follows immediately using τu0 = 1 − v0Sov0 by (6.3.6) and

(6.3.25) for η ↓ 0, as well as Sto = So.

We first give a heuristic derivation of the first equality in (6.4.8) (see for example

Section 4.6 of [40]). Writing the resolvent Gz of Hz as

Gz =

⎛⎜⎝G11 G12

G21 G22

⎞⎟⎠
with blocks G11, G12, G21 and G22 of size n× n, we obtain

trG12 = tr
[(

(X − z)(X∗ − z̄) + η2
)−1

(X − z)
]

= −∂z̄ tr log
(
(X − z)(X∗ − z̄) + η2

)
= − 2

n
∂z̄ log|det(Hz − iη)|

for the normalized trace of G12 (see (6.1.3)). Since ∆z = 4∂z∂z̄, taking the ∂z-derivative

of the previous identity, we obtain

1
2n∆z log|det(Hz − iη)| = −∂z trG12. (6.4.9)

Using (6.2.5), (6.2.14) and Immz ≈ ⟨vτ1 |τ=|z|2⟩, the left-hand side of (6.4.9) is approx-

imately πσ(z) after taking the η ↓ 0 limit. On the other hand, Gz converges to M z

for n → ∞. Thus, by (6.3.5) the right-hand side of (6.4.9) can be approximated by

∂z
(
z⟨uτ |τ=|z|2(η)⟩

)
. Therefore, taking η ↓ 0, we conclude

πσ(z) ≈ ∂zz⟨uτ0|τ=|z|2⟩ = (∂ττ⟨uτ0⟩) |τ=|z|2 .

In fact, this approximation holds not only in the n → ∞ limit but it is an identity for

any fixed n. This completes the heuristic argument for (6.4.8).
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We now turn to the rigorous proof of the first relation in (6.4.8). In fact, for τ < 1,

we prove the following integrated version∫
|z′|2≤τ

σ(z′)d2z′ = τ⟨uτ0⟩. (6.4.10)

Since σ is a continuous function on D(0, 1) differentiating (6.4.10) with respect to τ

immediately yields (6.4.8).

In order to justify the existence of the limits of v and u for η ↓ 0 and the computations

in the proof of (6.4.10), we remark that by (6.4.2), (η, z) ↦→ vτ (η)|τ=|z|2 can be uniquely

extended to a positive C∞ function on [0,∞) × D(0, 1). In the following, v and vτ0 ..=

vτ |η=0 denote this function and its restriction to {0} × [0, 1), respectively. In particular,

the restriction vτ0|τ=|z|2 is a smooth function on D(0, 1) which satisfies

1
vτ0

= Sov
τ
0 + τ

Sdvτ0
(6.4.11)

with τ = |z|2. Moreover, derivatives of v in η and τ and limits in η and τ for τ < 1 can

be freely interchanged.

For the proof of (6.4.10), we use integration by parts to obtain∫
|z′|2≤τ

σ(z′)d2z′ = −2τ
∫ ∞

0
∂τ ⟨v⟩dη = −τ

∫ ∞

0
∂τ (⟨v⟩+ ⟨ṽ⟩) dη. (6.4.12)

We recall ṽ = (v2, v1) and get

v = η + Sdv
(η + Sdv)(η + Sov) + τ

, ṽ = η + Sov
(η + Sdv)(η + Sov) + τ

from (6.3.6). This implies the identity

∂η log ((η + Sdv)(η + Sov) + τ) = v + ṽ + ṽSd∂ηv + vSo∂ηv.

Using

⟨ṽSd∂ηv⟩+ ⟨vSo∂ηv⟩ = ⟨vSo∂ηv⟩+ ⟨vSo∂ηv⟩ = ∂η⟨vSov⟩

and recalling v0
..= limη↓0 v(η), we find for (6.4.12) the expression∫ ∞

0
∂τ (⟨v⟩+ ⟨ṽ⟩) dη = −⟨∂τ log ((Sdv0)(Sov0) + τ)⟩+ ∂τ ⟨v0Sov0⟩. (6.4.13)
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Hence, due to

⟨∂τ log ((Sdv0)(Sov0) + τ)⟩ = ⟨u⟩+ ⟨ṽ0Sd∂τv0⟩+ ⟨vSo∂τv0⟩ = ⟨u⟩+ ∂τ ⟨v0Sov0⟩.

we obtain (6.4.10) from (6.4.13). The formula (6.4.10) was also obtained in [51] with a

different method.

We prove (iii) before (ii). As v0 is infinitely often differentiable in τ and τ = |z|2, we

conclude from (6.4.8) that σ is infinitely often differentiable in z. The following lemma

shows (6.2.6) which completes the proof of part (iii).

Lemma 6.4.1 (Positivity and boundedness of σ). Uniformly for z ∈ D(0, 1), we have

σ(z) ∼ 1, (6.4.14)

where ∼ only depends on s∗ and s∗.

Proof of Lemma 6.4.1. We will compute the derivative in (6.4.8) and prove the

estimate (6.4.14) first for z ∈ D< and arbitrary τ∗ > 0 depending only on s∗ and s∗. Then

we show that there is τ∗ > 0 depending only on s∗ and s∗ such that (6.4.14) holds true

for z ∈ D(0, 1) \ D<.

In this proof, we write D(y) ..= diag(y) for y ∈ Cl for brevity. Furthermore, we

introduce the 2n× 2n matrix

E ..=

⎛⎜⎝1 1

1 1

⎞⎟⎠ .
In the following, v and all related quantities will be evaluated at τ = |z|2. We start the

proof from (6.4.8), recall L = V −1(1 − TF )V and use the second relation in (6.4.3) as

well as (6.3.31) to obtain

σ(z) = − 2
π
⟨Sov0 , ∂τv0⟩

= lim
η↓0

2
π

⟨
V −1 ṽ

u
, (1− TF )−1V (vu)

⟩

= lim
η↓0

2
π

⟨√
vṽ ,

1√
u

(1− TF )−1√u
√
vṽ

⟩

= lim
η↓0

2
π

⟨√
vṽ ,

(
1−D(u−1/2)TFD(u1/2)

)−1√
vṽ
⟩
.

(6.4.15)
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Note that the inverses of 1 − TF and 1 − τD(u−1/2)TFD(u1/2) exist by Lemma 6.3.6

and Lemma 6.3.4 as η > 0 and τ < 1.

Due to (6.3.27a) and (6.3.32), we have T = −1 + τuE which implies

1−D(u−1/2)TFD(u1/2)

= 1 + D(u−1/2)FD(u1/2)− τD(u1/2)EFD(u1/2)

=
(
1− τD(u1/2)EF (1 + F )−1D(u1/2)

) (
1 + D(u−1/2)FD(u1/2)

)
.

(6.4.16)

From (6.3.33) and (6.3.44), we deduce
√
uF

√
vṽ/u =

√
vṽ + O(η). Hence, due to

(6.4.16), (6.4.15) yields

σ(z) = lim
η↓0

1
π

⟨√
vṽ ,

(
1− τD(u1/2)EF (1 + F )−1D(u1/2)

)−1√
vṽ
⟩
. (6.4.17)

Defining the matrix F ∈ Cn×n through Fy =
√
v1u/v2S

√
v2u/v1 y for y ∈ Cn, we obtain

F =

⎛⎜⎝ 0 F

F t 0

⎞⎟⎠ , (1 + F )−1 =

⎛⎜⎝ (1− FF t)−1 −(1− FF t)−1F

−F t(1− FF t)−1 (1− F tF )−1

⎞⎟⎠ . (6.4.18)

Furthermore, we introduce the n× n matrix A by

A ..= 2 · 1 + (F t − 1)(1− FF t)−1 + (F − 1)(1− F tF )−1.

From the computation

EF (1 + F )−1 =

⎛⎜⎝1 + (F t − 1)(1− FF t)−1 1 + (F − 1)(1− F tF )−1

1 + (F t − 1)(1− FF t)−1 1 + (F − 1)(1− F tF )−1

⎞⎟⎠ ,
we conclude that

(
1− τD(u1/2)EF (1 + F )−1D(u1/2)

)−1

⎛⎜⎝x
x

⎞⎟⎠ =

⎛⎜⎝(1− τD(u1/2)AD(u1/2))−1x

(1− τD(u1/2)AD(u1/2))−1x

⎞⎟⎠ (6.4.19)

for all x ∈ Cn. Before applying this relation to (6.4.17), we show that 1−τD(u1/2)AD(u1/2)

is invertible for τ < 1. The relations in (6.4.18) yield

⟨x,Ax⟩ = 2∥x∥2
2 − 2

⟨⎛⎜⎝x
x

⎞⎟⎠ , (1 + F )−1

⎛⎜⎝x
x

⎞⎟⎠⟩ (6.4.20)
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for all x ∈ Cn and η > 0. In particular, since ∥F ∥2 ≤ 1 by (6.3.33) we conclude A ≤ 1.

Hence, τu = 1− v1v2/u < 1 for τ < 1 by (6.3.32) implies that 1− τD(u1/2)AD(u1/2) is

invertible for τ < 1. Thus, we apply (6.4.19) to (6.4.17) and obtain for z ∈ D(0, 1)

σ(z) = 2
π

lim
η↓0

⟨√
v1v2 ,

(
1− τD(u1/2)AD(u1/2)

)−1√
v1v2

⟩
. (6.4.21)

Let τ∗ > 0 depend only on s∗ and s∗. From (6.3.10) and (6.4.2), we conclude that

|σ| ≲ 1 uniformly for z ∈ D< because of (6.4.8). This proves the upper bound in (6.4.14)

for z ∈ D<.

For the proof of the lower bound, we infer some further properties of A and 1 −

τD(u1/2)AD(u1/2), respectively, from information about F via (6.4.20). In the following,

we use versions of Proposition 6.3.2, (6.3.26) and Lemma 6.3.4 extended to the limiting

case η = 0+. Recalling v0 = limη↓0 v, these results are a simple consequence of the

uniform convergence ∂αv → ∂αv0 for η ↓ 0 and all α ∈ N2 by (6.4.2).

Since f− = (
√
v1v2/u,−

√
v1v2/u)+O(η) by (6.3.45) there are η∗, ε ∼ 1 by Lemma 6.3.4

such that Spec(F |W ) ⊂ [−1 + ε, 1] on the subspace W ..= {(x, x)|x ∈ Cn} ⊂ C2n as

f− ⊥ W uniformly for all η ∈ [0, η∗]. Therefore, for ∥x∥2 = 1, the right-hand side of

(6.4.20) is contained in [2(ε− 1)/ε, 1]. Since (F t(1− FF t)−1)t = F (1− F tF )−1 the ma-

trix A is real symmetric and hence the spectrum of A is contained in [2(ε − 1)/ε, 1] for

all η ∈ [0, η∗] as well.

The real symmetric matrix A has a positive and a negative part, i.e., there are positive

matrices A+ and A− such that A = A+ − A−. Hence, we have

1− τD(u1/2)AD(u1/2) = 1− τD(u1/2)A+D(u1/2) + τD(u1/2)A−D(u1/2). (6.4.22)

The above statements about (6.4.20) yield SpecA+ ⊂ [0, 1] and SpecA− ⊂ [0, 2(1−ε)/ε].

As 0 ≤ uτ we conclude from (6.4.22) that the spectrum of 1 − τD(u1/2)AD(u1/2) is

contained in (0, 2/ε] for all η ∈ [0, η∗]. Therefore, using (6.4.21), we obtain

σ(z) = 2
π

lim
η↓0

⟨√
v1v2 ,

(
1− τD(u1/2)AD(u1/2)

)−1√
v1v2

⟩
≥ ε

π
⟨v0ṽ0⟩ ≳ 1

uniformly for all z ∈ D<. Here, we used (6.3.10) in the last step. This shows (6.4.14) for

z ∈ D< for any τ∗ > 0 depending only on s∗ and s∗.
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We now show that there is τ∗ > 0 depending only on s∗ and s∗ such that (6.4.14) holds

true for z ∈ D(0, 1)\D<. This is proven by tracking the blowup of (1−τD(u1/2)AD(u1/2))−1

in 1 − τ for τ ↑ 1 in (6.4.21) and establishing a compensation through v1 ∼ v2 ∼

(1 − τ)1/2 due to (6.3.10). This yields the upper and lower bound in (6.4.14). Since

1 − τD(u1/2)AD(u1/2) in (6.4.21) is also invertible for η = 0 we may directly set η = 0

in the following argument.

We multiply the first component of the first relation in (6.3.32) by τ and solve for τu

to obtain

τu = 1
2
(
1 +
√

1− 4τv1v2
)

= 1− τv1v2 +O
(
(1− τ)2

)
.

Therefore, using v1 ∼ v2 ∼ (1− τ)1/2, we have

τD(u1/2)AD(u1/2) = A− τ

2 (D(v1v2)A+ AD(v1v2)) +O
(
(1− τ)2

)
.

Moreover, from (6.4.20) we conclude that Aa = a for a ..=
√
v1v2/u/∥

√
v1v2/u∥2. Here,

we also used (6.3.44) and (6.3.33) with η = 0.

Thus, the smallest eigenvalue of the positive operator 1− τD(u1/2)AD(u1/2) satisfies

λmin
(
1− τD(u1/2)AD(u1/2)

)
= λmin (1− A) + τ⟨a2v1v2⟩+O

(
(1− τ)2

)
= τ⟨a2v1v2⟩+O

(
(1− τ)2

)
.

Here, we used multiple times that Aa = a. Therefore, as A is symmetric we conclude

from (6.4.21) that

σ(z) = 2
π

⟨√
v1v2 ,

(
1− τD(u1/2)AD(u1/2)

)−1√
v1v2

⟩
≥
⟨a,√v1v2⟩2

τ⟨a2v1v2⟩
+O (1− τ) .

Since a ∼ 1 and v1 ∼ v2 ∼ (1− τ)1/2 there is τ∗ ∼ 1 such that the lower bound in (6.4.14)

holds true for z ∈ D(0, 1) \ D<. Starting from (6.4.21), we similarly obtain

σ(z) ≤ ⟨v1v2⟩
τ⟨a2v1v2⟩

+O (1− τ) .

Using the positivity of a, v1 ∼ v2 ∼ (1 − τ)1/2 and possibly shrinking τ∗ ∼ 1 the upper

bound in (6.4.14) for z ∈ D(0, 1) \D< follows. This concludes the proof of Lemma 6.4.1.

□
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As σ(z) = 0 for |z| ≥ 1 we conclude from (6.2.6) that σ is nonnegative on C. We

use (6.4.10) to compute the total mass of the measure on C defined by σ. Clearly,

u0 = v0/Sdv0 and using (6.4.11) and (6.4.10), we obtain

lim
τ↑1

∫
|z′|2≤τ

σ(z′)d2z′ = 1− lim
τ↑1
⟨v0 ,Sov0⟩ = 1.

Here, we used that limτ↑1 v0 = 0 by (6.3.10). Hence, as σ(z) = 0 for |z| ≥ 1 it defines a

probability density on C which concludes the proof of Proposition 6.2.5. □

Remark 6.4.2 (Jump height). In fact, it is possible to compute the jump height of the

density of states σ at the edge τ = |z|2 = 1. Let s1 and s2 be two eigenvectors of St and

S, respectively, associated to the eigenvalue 1, i.e., Sts1 = s1 and Ss2 = s2. Note that s1

and s2 are unique up to multiplication by a scalar.

With this notation, expanding vτ for τ ≤ 1 around τ = 1 yields

v1 =
√

1− τ
(
⟨s1s2⟩⟨s2⟩
⟨s2

1s
2
2⟩⟨s1⟩

)1/2

s1 +O
(
(1− τ)3/2

)
,

v2 =
√

1− τ
(
⟨s1s2⟩⟨s1⟩
⟨s2

1s
2
2⟩⟨s2⟩

)1/2

s2 +O
(
(1− τ)3/2

)
.

Therefore, solving (6.3.32) for τu and expanding in 1 − τ , we obtain that σ has a jump

of height

lim
|z|2↑1

σ(z) = 1
π

lim
τ↑1

∂τ (τ⟨u0⟩) = 1
π

⟨s1s2⟩2

⟨s2
1s

2
2⟩
.

6.5. Local law

We begin this section with a notion for high probability estimates.

Definition 6.5.1 (Stochastic domination). Let C : R2
+ → R+ be a given function which

depends only on a, φ, τ∗, τ ∗ and the model parameters. If Φ = (Φ(n))n and Ψ = (Ψ(n))n are

two sequences of nonnegative random variables, then we will say that Φ is stochastically

dominated by Ψ, Φ ≺ Ψ, if for all ε > 0 and D > 0 we have

P
(
Φ(n) ≥ nεΨ(n)

)
≤ C(ε,D)

nD

for all n ∈ N.
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As a trivial consequence of Exij = 0, (6.2.1) and (6.2.2) we remark that

|xij| ≺ n−1/2. (6.5.1)

6.5.1. Local law for Hz. Let (vτ1 , vτ2 ) be the positive solution of (6.2.4) and uτ

defined as in (6.3.25). In the whole section, we will always evaluate vτ1 , vτ2 and uτ at

τ = |z|2 and mostly suppress the dependence on τ and |z|2, respectively, in our notation.

Recall that M z is defined in (6.3.5). Note that although v1, v2 and u are rotationally

invariant in z ∈ C, the dependence of M z on z is not rotationally symmetric.

For the following theorem, we remark that the sets D< and D> were introduced

in (6.4.1).

Theorem 6.5.2 (Local law for Hz). Let X satisfy (A) and (B) and let G = Gz be the

resolvent of Hz as defined in (6.2.11). For fixed ε ∈ (0, 1/2), the entrywise local law

∥Gz(η)−M z(η)∥max ≺

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
nη

for z ∈ D< , η ∈ [n−1+ε, 1] ,
1√
n

+ 1
nη

for z ∈ D> , η ∈ [n−1+ε, 1] ,
1√
nη2 for z ∈ D< ∪ D> , η ∈ [1,∞) ,

(6.5.2)

holds true. In particular,

∥g(η)− iv(η)∥∞ ≺

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
nη

for z ∈ D< , η ∈ [n−1+ε, 1] ,
1√
n

+ 1
nη

for z ∈ D> , η ∈ [n−1+ε, 1] ,
1√
nη2 for z ∈ D< ∪ D> , η ∈ [1,∞) ,

(6.5.3)

where g = (⟨ei ,Gei⟩)2n
i=1 denotes the vector of diagonal entries of the resolvent Gz.

For a nonrandom vector y ∈ C2n with ∥y∥∞ ≤ 1 we have

|⟨y , g(η)− iv(η)⟩| ≺

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
nη

for z ∈ D< , η ∈ [n−1+ε, 1] ,
1
n

+ 1
(nη)2 for z ∈ D> , η ∈ [n−1+ε, 1] ,

1
nη2 for z ∈ D< ∪ D> , η ∈ [1,∞) .

(6.5.4)

As an easy consequence we can now prove Corollary 6.2.7.
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Proof of Corollary 6.2.7. Let y ∈ Cn be an eigenvector of X corresponding to

the eigenvalue z ∈ SpecX with |z|2 ≤ ρ(S) − τ∗. Then the 2n-vector (0, y) is contained

in the kernel of Hz. Therefore, (6.2.9) is an easy consequence of (6.5.3) (Compare with

the proof of Corollary 1.14 in [7]). □

We recall our normalization of the trace, tr1 = 1, from (6.1.3).

Proof of Theorem 6.5.2. Recall from the beginning of Section 6.3 how our prob-

lem can be cast into the setup of [6]. In the regime z ∈ D< we follow the structure of

the proof of Theorem 2.9 in [6] and in the regime z ∈ D> the proof of Proposition 7.1

in [6] until the end of Step 1. In fact, the arguments from these proofs can be taken

over directly with three important adjustments. The flatness assumption (6.3.1) is used

heavily in [6] in order to establish bounds (Theorem 2.5 in [6]) on the deterministic limit

of the resolvent and for establishing the stability of the matrix Dyson equation, cf. (6.5.5)

below, (Theorem 2.6 in [6]). Since this assumption is violated in our setup we present ap-

propriately adjusted versions of these theorems (Proposition 6.3.2 and Proposition 6.3.3

in [6]). We will also take over the proof of the fluctuation averaging result (Proposi-

tion 6.5.5 below) for Hz from [6] since the flatness did not play a role in that proof at

all. Note that the η−2-decay in the spectral parameter regime η ≥ 1 was not covered in

[6]. But this decay simply follows by using the bounds ∥M z(η)∥max + ∥Gz(η)∥max ≤ 2
η

instead of just ∥M z(η)∥max + ∥Gz(η)∥max ≤ C along the proof.

As in [6] we choose a pseudo-metric d on {1, . . . , 2n}. Here this pseudo-metric is

particularly simple,

d(i, j) ..=

⎧⎪⎪⎨⎪⎪⎩
0 if i = j or i = j + n or j = i+ n ,

∞ otherwise ,
i, j = 1, . . . , 2n .

With this choice of d the matrixHz satisfies all assumptions in [6] apart from the flatness.

We will now show that as in [6] the resolvent Gz satisfies the perturbed matrix Dyson

equation

−1 = (iη1−Az + S̃[Gz(η)])Gz(η) +Dz(η) . (6.5.5)
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Here, Az is given by (6.3.3),

D(η) ..= Dz(η) ..= −(S̃[Gz(η)] +Hz −Az)Gz(η) , (6.5.6)

is a random error matrix and S̃ is a slight modification of the operator S defined in (6.3.3),

S̃[W ] ..= E(Hz −Az)W (Hz −Az) =

⎛⎜⎝diag(Sw2) T ⊙W t
21

T ∗ ⊙W t
12 diag(Stw1)

⎞⎟⎠ . (6.5.7)

Here, ⊙ denotes the Hadamard product, i.e., for matrices A = (aij)li,j=1 and B = (bij)li,j=1,

we define their Hadamard product through (A⊙B)ij ..= aijbij for i, j = 1, . . . , l. Moreover,

we used the conventions from (6.3.4) for W and introduced the matrix T ∈ Cn×n with

entries

tij ..= Ex2
ij .

Note that in contrast to [6] the matrix M solves (6.3.2), which is given in terms of the

operator S and not S̃ (we remark that S̃ was denoted by S in [6]). As we will see below

this will not affect the proof, since the entries of the matrix T are of order N−1 and thus

the off-diagonal terms in (6.5.7) of S̃ are negligible.

We will see that D = Dz is small in the entrywise maximum norm

∥W ∥max
..= 2nmax

i,j=1
|wij| ,

W = (wij)2n
i,j=1, and use the stability of (6.5.5) to show that G(η) = Gz(η) approaches

M (η) = M z(η) defined in (6.3.5) as n→∞, i.e., we will show that

Λ(η) ..= ∥G(η)−M (η)∥max , (6.5.8)

converges to zero. For simplicity we will only consider the most difficult regime z ∈ D<

and η ≤ 1 inside the spectrum. The cases z ∈ D> and η ≥ 1 are similar but simpler

and left to the reader. In a more general setup, these regimes are addressed in Chapter 7

below. We simply follow the proof in Section 3 of [6] line by line until the flatness

assumption is used. This happens for the first time inside the proof of Lemma 3.3. We

therefore replace this lemma by the following modification.
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Lemma 6.5.3. Let z ∈ D<. Then

∥D(η)∥max ≺
1√
n
, η ≥ 1 .

Furthermore, we have

∥D(η)∥max 1(Λ(η) ≤ n−ε) ≺ 1
√
nη

, η ∈ [n−1+ε, 1]. (6.5.9)

To show Lemma 6.5.3 we follow the proof of its analog, Lemma 3.3 in [6], where the

flatness assumption as well as the assumptions that the spectral parameter is in the bulk

of the spectrum (formulated as ρ(ζ) ≥ δ in [6]) are used only implicitly through the upper

bound on M (Theorem 2.5 in [6]). However, the conclusion of this theorem clearly still

holds in our setup because M has the 2 × 2-diagonal structure (6.3.5) and the vectors

v1, v2 and u are bounded by Proposition 6.3.2 and (6.3.26).

We continue following the arguments of Section 3 of [6] using our Lemma 6.5.3 above

instead of Lemma 3.3 there. The next step that uses the flatness assumption is the

stability of the MDE (Theorem 2.6 in [6]) which shows that the bound (6.5.9) also implies

Λ(η) 1(Λ(η) ≤ n−ε) ≺ 1
√
nη

.

In our setup this stability result is replaced by the following lemma whose proof is post-

poned until the end of the proof of Theorem 6.5.2.

Lemma 6.5.4 (MDE stability). Suppose that some functions Dab, Gab : R+ → Cn×n for

a, b = 1, 2 satisfy (6.5.5) with

D ..=

⎛⎜⎝D11 D12

D21 D22

⎞⎟⎠ , G ..=

⎛⎜⎝G11 G12

G21 G22

⎞⎟⎠ , (6.5.10)

and the additional constraints

trG11 = trG22 , ImG = 1
2i(G−G

∗) is positive definite . (6.5.11)

There is a constant λ∗ ≳ 1, depending only on P, such that

∥G−M∥max χ ≲ ∥D∥max + 1
n
, χ ..= 1(∥G−M∥max ≤ λ∗) , (6.5.12)
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uniformly for all z ∈ D< ∪ D>, where M(η) = M z(η) is defined in (6.3.5).

Furthermore, there exist eight matrix valued functions R(k)
ab : R+ → Cn×n with a, b, k =

1, 2, depending only on z and S, and satisfying ∥R(k)
ab ∥∞ ≲ 1, such that

⏐⏐⏐ tr[diag(y)(G−M )]
⏐⏐⏐χ ≲ max

a,b,k=1,2

⏐⏐⏐ tr[diag(R(k)
ab yk)Dab]

⏐⏐⏐+ ∥y∥∞
( 1
n

+ ∥D∥2
max

)
,

(6.5.13)

uniformly for all z ∈ D< ∪ D> and y = (y1, y2) ∈ C2n.

The important difference between Theorem 2.6 in [6] and Lemma 6.5.4 above is the

additional assumption (6.5.11) imposed on the solution of the perturbed MDE. This

assumption is satisfied for the resolvent of the matrix Hz because of the 2 × 2-block

structure (6.2.11). In fact, we apply the block decomposition in (6.5.10) to G = (Hz −

iη1)−1 and obtain

G11(η) = iη1
(X − z1)(X − z1)∗ + η21

, G22(η) = iη1
(X − z1)∗(X − z1) + η21

.

Using Lemma 6.5.4 in the remainder of the proof of the entrywise local law in Section 3

of [6] completes the proof of (6.5.2).

To see (6.5.4) we use the fluctuation averaging mechanism, which was first established

for generalized Wigner matrices with Bernoulli entries in [72]. The following proposition

is stated and proven as Proposition 3.4 in [6]. Since the flatness condition was not used

in its proof at all, we simply take it over.

Proposition 6.5.5 (Fluctuation averaging). Let z ∈ D< ∪ D>, ε ∈ (0, 1/2), η ≥ n−1

and Ψ a nonrandom control parameter such that n−1/2 ≤ Ψ ≤ n−ε. Suppose the local law

holds true in the form

∥G(η)−M(η)∥max ≺ Ψ .

Then for any nonrandom vector y ∈ Cn with ∥y∥∞ ≤ 1 we have

max
a,b=1,2

⏐⏐⏐ tr[diag(y)Dab]
⏐⏐⏐ ≺ Ψ2 ,
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where Dab ∈ Cn×n, a, b = 1, 2, are the blocks of the error matrix

D(η) =

⎛⎜⎝D11 D12

D21 D22

⎞⎟⎠ ,

which was defined in (6.5.6).

Using this proposition the averaged local law (6.5.4) follows from (6.5.2) and (6.5.13).

This completes the proof of Theorem 6.5.2. □

Proof of Lemma 6.5.4. We write (6.5.5) in the 2× 2 - block structure⎛⎜⎝diag(iη + Sg2) z1

z1 diag(iη + Stg1)

⎞⎟⎠
⎛⎜⎝G11 G12

G21 G22

⎞⎟⎠

= −

⎛⎜⎝1 0

0 1

⎞⎟⎠−
⎛⎜⎝D11 + (T ⊙Gt

21)G21 D12 + (T ⊙Gt
21)G22

D21 + (T ∗ ⊙Gt
12)G11 D22 + (T ∗ ⊙Gt

12)G22

⎞⎟⎠ ,
(6.5.14)

where we introduced g = (g1, g2) ∈ C2n, the vector of the diagonal elements of G.

We restrict the following calculation to the regime, where ∥G(η)−M (η)∥max ≤ λ∗ for

some sufficiently small λ∗ in accordance with the characteristic function on the left-hand

side of (6.5.12). In particular,

∥g(η)− iv(η)∥∞ ≤ λ∗ . (6.5.15)

Since by (6.2.4) and (6.3.5) the identity⎛⎜⎝i diag(η + Sv2(η)) z1

z1 i diag(η + Stv1(η))

⎞⎟⎠
−1

= −M(η) ,

holds we infer from the smallness of ∥g− iv∥max that the inverse of the first matrix factor

on the left-hand side of (6.5.14) is bounded and satisfies


⎛⎜⎝diag(iη + Sg2) z1

z1 diag(iη + Stg1)

⎞⎟⎠
−1

+M


max
≲ ∥g − iv∥max . (6.5.16)
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Using this in (6.5.14) yields

G+

⎛⎜⎝diag(iη + Sg2) z1

z1 diag(iη + Stg1)

⎞⎟⎠
−1

= MD +O
(
∥g − v∥max∥D∥max + ∥G−M∥2

max + 1
n

)
,

(6.5.17)

where we applied the simple estimate

∥(T ⊙Gt
ab)Gcd∥max ≲ ∥G−M∥2

max + 1
n
∥G−M∥max∥M∥max + 1

n
∥M∥2

max

≲ ∥G−M∥2
max + 1

n
,

(6.5.18)

which follows from

∥T∥max ≲
1
n
.

Thus the diagonal elements g of G satisfy (6.2.19) with an error term d that is given

by

d = ((MD)ii)2n
i=1 +O

(
∥G−M∥2

max + 1
n

)
. (6.5.19)

Here we used ∥D∥max ≲ ∥G −M∥max, which follows directly from (6.5.5) and (6.3.2).

With (6.3.21) and (6.3.22) in Proposition 6.3.3, the stability result on (6.2.19), we con-

clude that

∥g − iv∥∞ ≲ ∥D∥max + ∥G−M∥2
max + 1

n
, (6.5.20)

and that

|⟨y , g − iv⟩| ≲
⏐⏐⏐ tr[diag(Ry)MD]

⏐⏐⏐+ ∥D∥2
max + ∥G−M∥2

max + 1
n
, (6.5.21)

for some bounded R ∈ C2n×2n and any y ∈ C2n with ∥y∥∞ ≤ 1, respectively. Combining

(6.5.16) with (6.5.17) and (6.5.20) yields

∥G−M∥max ≲ ∥D∥max + ∥G−M∥2
max + 1

n
.
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By choosing λ∗ sufficiently small we may absorb the quadratic term of the difference

G−M on the right-hand side into the left-hand side and (6.5.12) follows. Using (6.5.12)

in (6.5.21) to estimate the term ∥G−M∥2
max proves (6.5.13). □

We use a standard argument to conclude from (6.5.4) the following statement about

the number of eigenvalues λi(z) of Hz in a small interval centered at zero.

Lemma 6.5.6. Let ε > 0. Then

#{i : |λi(z)| ≤ η} ≺ nη , (6.5.22)

uniformly for all η ≥ n−1+ε and z ∈ D<.

Furthermore, we have

sup
z∈D>

1
|λi(z)|

≺ n1/2 . (6.5.23)

Proof. For the proof of (6.5.22) we realize that (6.5.2) implies a uniform bound on

the resolvent elements up to the spectral scale η ≥ n−1+ε. Thus we have

#Ση

2η ≤
∑
i∈Ση

η

η2 + λi(z)2 ≤ 2n Im trGz(η) ≺ n ,

where Ση
..= {i : |λi(z)| ≤ η}. Here, we used the normalization of the trace (6.1.3).

Before proving (6.5.23), we first establish that

1
|λi(z)|

≺ n1/2 , (6.5.24)

uniformly for z ∈ D>. We use (6.5.4) and ⟨v(η)⟩ ∼ η to estimate

η

η2 + λi(z)2 ≤ 2n Im trGz(η) ≺ nη + 1
nη2 , (6.5.25)

with the choice η ..= n−1/2−ε for any ε > 0. This immediately implies |λi(z)|−1 ≺ n1/2+ε,

hence (6.5.24). For the stronger bound (6.5.23) we use that z ↦→ Im trGz(η) is a Lipschitz

continuous function (with a Lipschitz constant Cη−2 uniformly in z) and that D> is

compact, so the second bound in (6.5.25) holds even after taking the supremum over

z ∈ D>. Thus

sup
z∈D>

η

η2 + λi(z)2 ≤ 2n sup
z∈D>

Im trGz(η) ≺ nη + 1
nη2
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holds for η ..= n−1/2−ε. From the last inequality we easily conclude (6.5.23). □

6.5.2. Local inhomogeneous circular law. For the following proof of Theorem

6.2.6 we recall that without loss of generality, we are assuming that ρ(S) = 1 which can

be obtained by a simple rescaling of X. Moreover, from (6.4.1), for τ∗ > 0 and τ ∗ > 1+τ∗,

we recall the notation

D<
..= {z ∈ C | |z|2 ≤ 1− τ∗}, D>

..= {z ∈ C | 1 + τ∗ ≤ |z|2 ≤ τ ∗}.

Proof of Theorem 6.2.6. We start with the proof of part (i) of Theorem 6.2.6.

We will estimate each term on the right-hand side of (6.2.15). Let w ∈ D<. We suppress

the τ dependence of v1 in this proof but it will always be evaluated at τ = |z|2.

As supp f ⊂ Dφ(0), a > 0 and w ∈ D< we can assume that the integration domains of

the d2z integrals in (6.2.15) are D< instead of C. Hence, it suffices to prove every bound

along the proof of (i) uniformly for z ∈ D<.

To begin, we estimate the first term in (6.2.15). Since

log|det(Hz − iT1)| = 2n log T +
n∑
j=1

log
(

1 +
λ2
j

T 2

)

and the integral of ∆fw,a over C vanishes as f ∈ C2
0(C), we obtain⏐⏐⏐⏐ 1

4πn

∫
C

∆fw,a(z) log|det(Hz − iT1)|d2z
⏐⏐⏐⏐ ≤ 1

2π

∫
C
|∆fw,a(z)|

tr ((Hz)2)
T 2 d2z. (6.5.26)

Here, we used log(1 + x) ≤ x for x ≥ 0. Furthermore, if |z| ≤ 1, then we have

tr((Hz)2) = 1
n

n∑
i,j=1

(xij − zδij)(xij − z̄δij) ≤
2
n

n∑
i,j=1
|xij|2 + 2|z|2 ≺ 1, (6.5.27)

where we applied (6.1.3) in the first and (6.5.1) in the last step. Therefore, choosing T ..=

n100, we conclude from (6.5.26) and (6.5.27) that the first term in (6.2.15) is stochastically

dominated by n−1+2a∥∆f∥1.

To control the second term on right-hand side of (6.2.15), we define

I(z) ..=
∫ T

0
|Immz(iη)− ⟨v1(η)⟩| dη (6.5.28)

for z ∈ D<. We will conclude below the following lemma.
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Lemma 6.5.7. For every δ > 0 and p ∈ N, there is a positive constant C, depending

only on δ and p in addition to the model parameters and τ∗, such that

sup
z∈D<

EI(z)p ≤ C
nδp

np
. (6.5.29)

We now show that this moment bound on I(z) will yield that the second term in

(6.2.15) is ≺ n−1+2a∥∆f∥1. Indeed, for every p ∈ N and δ > 0, using Hölder’s inequality,

we estimate

E
⏐⏐⏐⏐⏐
∫
C

∆fw,a(z)
∫ T

0
[Immz(iη)− ⟨v1(η)⟩] dη d2z

⏐⏐⏐⏐⏐
p

≤
∫
C
. . .
∫
C

p∏
i=1
|∆fw,a(ζi)|

p∏
i=1

(EI(ζi)p)1/p d2ζ1 . . . d2ζp

≤ C∥∆f∥p1
nδp+2ap

np
.

(6.5.30)

Applying Chebyshev’s inequality to (6.5.30) and using that δ > 0 and p were arbitrary,

we get ⏐⏐⏐⏐⏐
∫
C

∆fw,a(z)
∫ T

0
Immz(iη)− ⟨v1(η)⟩dη d2z

⏐⏐⏐⏐⏐ ≺ n−1+2a∥∆f∥1.

Hence, the bound on the second term on the right-hand side of (6.2.15) follows once we

have proven (6.5.29).

For the third term in (6.2.15), notice that the integrand is bounded by Cη−2 so it is

bounded by n2aT−1∥∆f∥1. This concludes the proof of (i) of Theorem 6.2.6 up to the

proof of Lemma 6.5.7 which is given below.

We now turn to the proof of (ii). We will use an interpolation between the random

matrix X and an independent Ginibre matrix X̂ together with the well-known result that

a Ginibre matrix does not have any eigenvalues |λ| ≥ 1 + τ∗ with very high probability.

With the help of (6.5.23) we will control the number of eigenvalues outside of the disk of

radius 1 + τ ∗ along the flow. We fix τ ∗ > 1 + τ∗.

Let (x̂ij)ni,j=1 be independent centered complex Gaussians of variance n−1, i.e., E x̂ij =

0 and E|x̂ij|2 = n−1. We set X̂ ..= (x̂ij)ni,j=1, i.e., X̂ is a Ginibre matrix. We denote the

eigenvalues of X̂ by ẑ1, . . . , ẑn.

For t ∈ [0, 1], we denote the spectral radius of the matrix tS + (1 − t)E by ρt ..=

ρ(tS + (1 − t)E), where E is the n × n matrix with entries eij ..= 1/n, E = (eij)ni,j=1.
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Furthermore, we define

X t ..= ρ
−1/2
t

(
tX + (1− t)X̂

)
, Hz,t ..=

⎛⎜⎝ 0 X t − z1

(X t − z1)∗ 0

⎞⎟⎠
for t ∈ [0, 1]. The eigenvalues of X t andHz,t are denoted by zti and λtk(z), respectively, for

i = 1, . . . , n and k = 1, . . . , 2n. The one-parameter family t ↦→ X t interpolates between

X and X̂ by keeping the spectral radius of the variance matrix at constant one.

Note that ∥(X t − z1)−1∥2 = max2n
k=1|λtk(z)|−1. We can apply Lemma 6.5.6 to the

matrices X t for any t to get

sup
z∈D>

(X t − z1)−1


2
≺ n1/2

uniformly in t from (6.5.23). In fact, the estimate can be strengthened to

sup
t∈[0,1]

sup
z∈D>

(X t − z1)−1


2
≺ n1/2 (6.5.31)

exactly in the same way as (6.5.24) was strengthened to (6.5.23), we only need to observe

that the two-parameter family (z, t) ↦→ Im trGz,t(η) is Lipschitz continuous in both

variables, where Gz,t denotes the resolvent of Hz,t.

Let γ be the circle in C centered at zero with radius 1 + τ∗. For t ∈ [0, 1], we have

N(t) ..= #{i | |zti | ≤ 1 + τ∗} = n

2πi

∫
γ

tr
(
(X t − z1)−1

)
dz,

where tr : Cn×n → C denotes the normalized trace, i.e., tr1 = 1. Due to (6.5.31) N(t) is a

continuous function of t. Thus, N(t) is constant as a continuous integer-valued function.

Using Corollary 2.3 of [75], we obtain that #{k | |ẑk| ≥ τ ∗} = 0 with very high

probability. Furthermore, #{k | ẑk ∈ D>} = 0 with very high probability by (6.5.31).

Thus,

N(1) = N(0) = n−#{k | ẑk ∈ D>} −#{k | |ẑk| ≥ τ ∗} = n

with very high probability which concludes the proof of (ii) and hence of Theorem 6.2.6.

□

Remark 6.5.8. In the above proof we showed that ∥Hz∥ ≤ C with very high probability

via an interpolation argument using the norm-boundedness of a Ginibre matrix and the
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local law for the entire interpolating family. Robust upper bounds on the norm of random

matrices are typically proven by a simple moment method. Such approach also applies

here. For example, one may follow the proof of Lemma 7.2 in [70], and estimate every

moment E|xij|k by its maximum over all i, j. The final constant estimating ∥Hz∥ will

not be optimal due to these crude bounds, but it will still only depend on s∗ and µm from

(6.2.1) and (6.2.2), respectively. This argument is very robust, in particular it does not

use Hermiticity.

In the proof of Lemma 6.5.7, we will need an estimate on the smallest singular value of

X−z1 presented in the following Proposition 6.5.9. In fact, it will be used to control the

dη-integral in the second term on the right-hand side of (6.2.15) for η ≤ n−1+ε. Notice

that Proposition 6.5.9 is the only result in our proof of Theorem 6.2.6 which requires the

entries of X to have a bounded density.

Adapting the proof of [40, Lemma 4.12] with the bounded density assumption to our

setting, we obtain the following proposition.

Proposition 6.5.9 (Smallest singular value of X − z1). Under the condition (6.2.3),

there is a constant C, depending only on α, such that

P
( 2n

min
i=1
|λi(z)| ≤

u

n

)
≤ Cu2α/(1+α)nβ+1 (6.5.32)

for all u > 0 and z ∈ C.

Proof. We follow the proof in [40] and explain the differences. Let R1, . . . , Rn denote

the rows of
√
nX − z1. Proceeding as in [40] but using our normalization conventions,

we are left with estimating

P
(
n|⟨Ri , y⟩| ≤

u√
n

)
uniformly for i ∈ {1, . . . , n} and for arbitrary y ∈ Cn satisfying ∥y∥2 = 1/

√
n and tracking

its dependence on u > 0. We choose j ∈ {1, . . . , n} such that |yj| ≥ 1/
√
n and compute

the conditional probability

Pij ..= P
(
n|⟨Ri , y⟩| ≤

u√
n

⏐⏐⏐xi1, . . . , x̂ij, . . . , xin) =
∫
C

1
(⏐⏐⏐⏐⏐ ayj + ζ

⏐⏐⏐⏐⏐ ≤ u

yj
√
n

)
fij(ζ)d2ζ,
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where a is independent of xij. Using (6.2.3) and |yj| ≥ 1/
√
n, we get

|Pij| ≤
⏐⏐⏐⏐⏐π u

yj
√
n

⏐⏐⏐⏐⏐
2α/(1+α)

∥fij∥1+α ≤ (πu)2α/(1+α)nβ.

Thus, P (n|⟨Ri , y⟩| ≤ u/
√
n) ≤ (πu)2α/(1+α)nβ which concludes the proof of (6.5.32) as

in [40]. □

Proof of Lemma 6.5.7. To show (6.5.29), we use the following estimate which

converts a bound in ≺ into a moment bound. For every nonnegative random variable

satisfying Y ≺ 1/n and Y ≤ nc for some c > 0 the p-th moment is bounded by

EY p ≤ EY p1(Y ≤ nδ−1) +
(
EY 2p

)1/2 (
P
(
Y > nδ−1

))1/2
≤ C

npδ

np
, (6.5.33)

for all p ∈ N, δ > 0 and for some C > 0, depending on c, p and δ.

As a first step in the proof of (6.5.29), we choose ε ∈ (0, 1/2), split the dη integral

in the definition of I(z), (6.5.28), and consider the regimes η ≤ n−1+ε and η ≥ n−1+ε,

separately. For η ≤ n−1+ε, we compute∫ n−1+ε

0
Immz(iη)dη = 1

2n

n∑
i=1

log
(

1 + n−2+2ε

λ2
i

)
.

We recall that λ1, . . . , λ2n are the eigenvalues of Hz. Therefore, (6.5.28) yields∫ T

0
[Immz(iη)− ⟨v1(η)⟩] dη

= 1
n

∑
|λi|<n−l

log
(

1 + n−2+2ε

λ2
i

)
+ 1
n

∑
|λi|≥n−l

log
(

1 + n−2+2ε

λ2
i

)

−
∫ n−1+ε

0
⟨v1(η)⟩dη +

∫ 1

n−1+ε
[Immz(iη)− ⟨v1(η)⟩] dη

+
∫ T

1
[Immz(iη)− ⟨v1(η)⟩] dη.

(6.5.34)

Here, l ∈ N is a large fixed integer to be chosen later.

We will estimate each of the terms on the right-hand side of (6.5.34) individually. We

will apply (6.5.33) for estimating the absolute value of the second, fourth and fifth term

on the right-hand side of (6.5.34). For the first term, we will need a separate argument

based on Proposition 6.5.9, which we present now.
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For the first term in (6.5.34), we compute

E

⎛⎝ 1
n

∑
|λi|≤n−l

log
(

1 + n−2+2ε

λ2
i

)⎞⎠p ≤ E
[
logp

(
1 + n−2+2ε

λ2
n

)
1(λn ≤ n−l)

]

≤ CE
[
|log λn|p1(λn ≤ n−l)

]
for some constant C > 0 independent of n. We compute the expectation directly

E
[
|log λn|p1(λn ≤ n−l)

]
= p

∫ ∞

l logn
P
(
λn ≤ e−t

)
tp−1dt

≤ Cnβ+1+2α/(1+α)
∫ ∞

l logn
tp−1e−2αt/(1+α)dt.

Here, we applied (6.5.32) in Proposition 6.5.9 with u = e−tn. Choosing l large enough,

depending on α, β and p, we obtain that the right-hand side is smaller than n−p. This

shows the bound (6.5.29) for the first term in (6.5.34).

To estimate the second term on the right-hand side of (6.5.34), we decompose the

sum into three regimes, n−l ≤ |λi| < n−1+ε, n−1+ε ≤ |λi| < n−1/2 and n−1/2 ≤ |λi|.

For the first regime, we use (6.5.22) with η = n−1+ε and log(1 + n−2+2ε+l) ≤ C log n

to get

1
n

∑
|λi|∈[n−l,n−1+ε]

log
(

1 + n−2+2ε

λ2
i

)
≤ C log n

n
#{i : |λi| ≤ n−1+ε} ≺ nε

n
. (6.5.35)

As this sum is clearly polynomially bounded in n we can apply (6.5.33) to conclude that

the first regime of the second term in (6.5.34) fulfills the moment bound in (6.5.29).

For the intermediate regime, due to the symmetry Spec(Hz) = − Spec(Hz), we only

consider the positive eigenvalues. We decompose the interval [n−1+ε, n−1/2] into dyadic

intervals of the form [ηk, ηk+1], where ηk ..= 2kn−1+ε. Thus, we obtain

1
n

∑
|λi|∈[n−1+ε,n−1/2]

log
(

1 + n−2+2ε

λ2
i

)
≤ 2
n

N∑
k=0

∑
λi∈[ηk,ηk+1]

log
(

1 + n−2+2ε

λ2
i

)
≺ nε

n
, (6.5.36)

where we introduced N = O(log n) in the first step. Moreover, we used the monotonicity

of the logarithm, log(1+x) ≤ x in the last step and the following consequence of (6.5.22):

#{i : λi ∈ [ηk, ηk+1]} ≤ #{i : |λi| ≤ ηk+1} ≺ nε2k+1.
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The left-hand side of (6.5.36) is trivially bounded by log 2. Therefore, applying (6.5.33) to

the left-hand side of (6.5.36), we conclude that it satisfies the moment estimate in (6.5.29).

For estimating the second term in (6.5.34) in the third regime, employing |λi| ≥ n−1/2

and log(1 + x) ≤ x, we obtain

1
n

∑
|λi|≥n−1/2

log
(

1 + n−2+2ε

λ2
i

)
≤ 1
n

∑
|λi|≥n−1/2

log
(
1 + n−1+2ε

)
≤ 2n2ε

n
. (6.5.37)

Here, we used that Hz has 2n eigenvalues (counted with multiplicities). This determinis-

tic bound and (6.5.33) imply that the moments of this sum are bounded by the right-hand

side in (6.5.29).

Combining the estimates in these three regimes, (6.5.35) , (6.5.36) and (6.5.37), we

conclude that the second term in (6.5.34) satisfies the moment bound in (6.5.29).

We now estimate the third term on the right-hand side of (6.5.34). Since v ∼ 1 for

z ∈ D< and η ≤ 1 by (6.3.10), the p-th power of the third term is immediately bounded

by the right-hand side of (6.5.29).

To bound the fourth and fifth term in (6.5.34), we note that Immz(iη) = ⟨g(η)⟩ for

η > 0 and recalling the choice T = n100, we obtain∫ 1

n−1+ε
|Immz(iη)− ⟨v1(η)⟩| dη ≺ nε

n
,

∫ T

1
|Immz(iη)− ⟨v1(η)⟩| dη ≺ 1

n
(6.5.38)

from the first and third regime in (6.5.4) with y = 1. As the integrands are bounded by

n2 trivially (6.5.33) yields that the moments of the fourth and fifth term in (6.5.34) are

bounded by the right-hand side in (6.5.29).

Since ε ∈ (0, 1/2) was arbitrary this concludes the proof of (6.5.29). □

6.6. Proof of Lemma 6.2.3

The existence and uniqueness of the solution to (6.2.4) will be a consequence of the

existence and uniqueness of the solution to the matrix Dyson equation

−M−1(η) = iη1−A+ S[M (η)]. (6.6.1)

Note that A ∈ C2n×2n and S : C2n×2n → C2n×2n were defined in (6.3.3).
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The matrix Dyson equation, (6.6.1), has a unique solution under the constraint that

the imaginary part

ImM ..= 1
2i(M −M ∗)

is positive definite. This was established in [96]. In the context of random matrices,

(6.6.1) was studied in [6].

In the following proof, for vectors a, b, c, d ∈ Cn, we will denote the 2n × 2n matrix

having diagonal matrices with diagonals a, b, c, d on its top-left, top-right, lower-left and

lower-right n× n blocks, respectively, by⎛⎜⎝a b

c d

⎞⎟⎠ ..=

⎛⎜⎝diag a diag b

diag c diag d

⎞⎟⎠ ∈ C2n×2n.

Proof of Lemma 6.2.3. We show that there is a bijection between the solutions of

(6.6.1) with positive definite imaginary part ImM and the positive solutions of (6.3.6).

We remark that (6.6.1) implies that there are vector-valued functions a, b, c, d : R+ →

Cn such that for all η > 0 we have

M (η) =

⎛⎜⎝a(η) b(η)

c(η) d(η)

⎞⎟⎠ . (6.6.2)

First, we show that Im diagM is a solution of (6.3.6) satisfying Im diagM > 0 if

M satisfies (6.6.1) and ImM is positive definite. Due to (6.6.2), multiplying (6.6.1) by

M yields that (6.6.1) is equivalent to

−1 = iηa+ aSd+ bz̄, 0 = iηb+ za+ bSta,

0 = iηc+ z̄d+ cSd, −1 = iηd+ dSta+ zc
(6.6.3)

Solving the second relation in (6.6.3) for b and the third relation in (6.6.3) for c, we obtain

b = − za

iη + Sta
, c = − z̄d

iη + Sd
. (6.6.4)

Plugging the first relation in (6.6.4) into the first relation in (6.6.3) and the second

relation in (6.6.4) into the fourth relation in (6.6.3) and dividing the results by a and d,
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respectively, imply

−1
a

= iη + Sd− |z|2

iη + Sta
, −1

d
= iη + Sta− |z|2

iη + Sd
.

Therefore, if a and d are purely imaginary then (Im a, Im d) = −i(a, d) will fulfill (6.3.6).

In order to prove that a and d are purely imaginary, we define

M̃ ..=

⎛⎜⎝ã(η) b̃(η)

c̃(η) d̃(η)

⎞⎟⎠ ..=

⎛⎜⎝−ā z
z̄
b̄

z̄
z
c̄ −d̄

⎞⎟⎠ .
The goal is to conclude M = M̃ , and hence a = −ā and d = −d̄, from the uniqueness of

the solution of (6.6.1) with positive definite imaginary part. Since the relations (6.6.3)

are fulfilled if a, b, c, d are replaced by ã, b̃, c̃, d̃, respectively, M̃ satisfies (6.6.1). For

j = 1, . . . , n, we define the 2× 2 matrices

Mj
..=

⎛⎜⎝aj bj

cj dj

⎞⎟⎠ , M̃j
..=

⎛⎜⎝ãj b̃j

c̃j d̃j

⎞⎟⎠ .
Note that ImM is positive definite if and only if ImMj is positive definite for all

j = 1, . . . , n. Similarly, the positive definiteness of Im M̃ is equivalent to the positive

definiteness of Im M̃j for all j = 1, . . . , n. We have

ImMj =

⎛⎜⎝ Im aj
1
2i(bj − c̄j)

1
2i(cj − b̄j) Im dj

⎞⎟⎠ , Im M̃j
..=

⎛⎜⎝ Im aj
z

2iz̄ (b̄j − cj)
z̄

2iz (c̄j − bj) Im dj

⎞⎟⎠ .
As tr Im M̃j = tr ImMj and det Im M̃j = det ImMj for all j = 1, . . . , n we get that M̃ is

a solution of (6.6.1) with positive definite imaginary part Im M̃ . Thus, the uniqueness

of the solution of (6.6.1) implies M = M̃ as well as a = −ā and d = −d̄.

Moreover, since

ImM =

⎛⎜⎝ Im a (b− c̄)/(2i)

(c− b̄)/(2i) Im d

⎞⎟⎠
is positive definite we have that Im a > 0 and Im d > 0. Hence, (Im a, Im d) is a positive

solution of (6.3.6).

Conversely, let v = (v1, v2) ∈ C2n be a solution of (6.3.6) satisfying v > 0 and u

be defined as in (6.3.25). Because of (6.3.25), we obtain that M = M z, defined as in
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(6.3.5), is a solution of (6.6.1). To conclude that ImM is positive definite, it suffices to

show that det ImMj > 0 for all j = 1, . . . , n with

Mj
..=

⎛⎜⎝i(v1)j −zuj
−z̄uj i(v2)j

⎞⎟⎠
as tr ImMj = (v1)j + (v2)j > 0. Since zuj − z̄uj = 0 for all j = 1, . . . , n by (6.3.25) we

obtain

det ImMj = (v1)j(v2)j −
1
4 |zuj − z̄uj|

2 = (v1)j(v2)j > 0.

Therefore, there is a bijection between the solutions of (6.6.1) with positive definite

imaginary part and the positive solutions of (6.3.6). Appealing to the existence and

uniqueness of (6.6.1) proven in [96] concludes the proof of Lemma 6.2.3. □

6.7. Proof of the Contraction-Inversion Lemma

Proof of Lemma 6.3.7. The bounds (6.3.55) imply that 1−AB is invertible and

∥(1−AB)−1∥2 ≤
1
c1η

.

The main point of this lemma is to show that (1−AB)−1p can be bounded independently

of η for p satisfying (6.3.58). We introduce h ..= (1−AB)−1p. Thus, (6.3.59) is equivalent

to ∥h∥2 ≤ C∥p∥2 for some C > 0 which depends only on c1, c2, c3 and ε. Without loss of

generality, we may assume that ∥h∥2 = 1. We decompose

h = αb− + βb+ + γx, (6.7.1)

where α = ⟨b− ,h⟩, β = ⟨b+ ,h⟩ and x ⊥ b± satisfying ∥x∥2 = 1, thus |α|2+|β|2+|γ|2 = 1.

Since B = B∗, we have b+ ⊥ b− and Bx ⊥ b±. Hence, we obtain

∥ABh∥2
2 ≤ ∥Bh∥2

2 ≤ |α|2∥B∥2 + |β|2∥B∥2 + |γ|2∥Bx∥2
2 ≤ 1− ε+ ε(|α|2 + |β|2),

where we used ∥A∥2 ≤ 1, ∥B∥2 ≤ 1 and ∥Bx∥2 ≤ 1 − ε in the last step. Therefore, if

|α|2 +|β|2 ≤ 1−δ for some δ > 0 to be determined later, then ∥ABh∥2 ≤
√

1− εδ∥h∥2 ≤

(1− εδ/2)∥h∥2 and thus

1 = ∥h∥2 ≤
2
εδ
∥p∥2. (6.7.2)
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For the rest of the proof, we assume that |α|2 + |β|2 ≥ 1 − δ. In the regime,

where |α| is relatively large, we compute ⟨b− , (1−AB)h⟩, capitalize on the positiv-

ity of ⟨b− , (1−AB)b−⟩ and treat all other terms as errors. In the opposite regime,

where |β| is relatively large, we use the positivity of ⟨b+ , (1−AB)b+⟩.

Using (6.7.1), we compute

⟨b− ,p⟩ = ⟨b− , (1−AB)h⟩ = α(1+∥B∥2⟨b− ,Ab−⟩)−β∥B∥2⟨b− ,Ab+⟩−γ⟨b− ,ABx⟩.

From ∥A∥2 ≤ 1, the Hermiticity of A, ⟨b− ,Bx⟩ = 0, (6.3.57) and (6.3.56), we deduce

|⟨b− ,Ab−⟩| ≤ 1,

|⟨b− ,Ab+⟩| = |⟨b− +Ab− , b+⟩| ≤ c2η,

|⟨b− ,ABx⟩| = |⟨b− +Ab− ,Bx⟩| ≤ c2η(1− ε).

Employing these estimates, ∥B∥2 ≤ 1 − c1η and (6.3.58), together with |γ|2 ≤ δ, we

obtain

c3∥p∥2 ≥ |α|c1 − |β|c2 −
√
δc2(1− ε) (6.7.3)

after dividing through by η > 0. If |α|c1 ≥ c2|β| +
√
δc2(1 − ε) + δεc3/2 then we

obtain (6.7.2).

Therefore, it suffices to show (6.7.2) in the regime

|γ|2 ≤ δ, |α|c1 ≤ c2|β|+
√
δc2(1− ε) + δεc3/2. (6.7.4)

For this regime, we use (6.7.1) and obtain

⟨b+ ,p⟩ = ⟨b+ , (1−AB)h⟩

= β(1− ∥B∥2⟨b+ ,Ab+⟩)− α∥B∥2⟨b+ ,Ab−⟩ − γ⟨b+ ,ABx⟩.
(6.7.5)

We employ (6.3.56), (6.3.57), the Hermiticity of A and ⟨b− , b+⟩ = 0 to obtain

⟨b+ ,Ab+⟩ ≤ 1− ε,

|⟨b+ ,Ab−⟩| = |⟨b+ , b− +Ab−⟩| ≤ c2η,

|⟨b+ ,ABx⟩| ≤ 1− ε.

(6.7.6)
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Applying (6.7.6) to (6.7.5), yields

∥p∥2 ≥ |⟨b+ ,p⟩| ≥ |β|ε− |α|c2η − |γ|(1− ε) ≥ |β|ε− |α|
εc1

2c2
−
√
δ(1− ε), (6.7.7)

where we used the assumption η ≤ εc1/2c2
2. Since |α|c1/c2 ≤ |β| + O(

√
δ) from (6.7.4),

we obtain that ∥p∥2 ≥ |β|ε/3 for any δ ≤ δ0(c1, c2, c3, ε) sufficiently small. Furthermore,

|α|2 + |β|2 ≥ 1 − δ and the fact that |β| is large compared with |α| in the sense (6.7.4)

guarantee that |β|2 ≥ 1
3 [1+(c2/c1)2]−1, if δ is sufficiently small. In particular, ∥p∥2 ≥ εδ/2

can be achieved with a small δ, i.e., (6.7.2) holds true in the regime (6.7.4) as well. This

concludes the proof of Lemma 6.3.7. □

Lemma 6.7.1. (i) Uniformly for z ∈ D< ∪ D> and η > 0, we have

∥F ∥2→∞ ≲ 1, ∥TF ∥2→∞ ≲ 1, ∥FT ∥2→∞ ≲ 1. (6.7.8)

(ii) If ζ /∈ Spec(TF ) ∪ {0} and ∥(ζ1− TF )−1y∥2 ≲ ∥y∥2 for some y ∈ C2n then

∥(ζ1− TF )−1y∥∞ ≲
1
|ζ|
∥y∥∞. (6.7.9)

A similar statement holds true for (ζ̄1− FT )−1 = [(ζ1− TF )−1]∗.

(iii) For every η∗ > 0, depending only on τ∗ and the model parameters, such that

∥(1− TF )−1Q∥2 ≲ 1, 1− ∥F ∥2 ≳ η,

∥f− + Tf−∥2 ≲ η, ∥f−∥∞ ≲ 1
(6.7.10)

uniformly for all η ∈ (0, η∗] and z ∈ D<, we have

∥
(
(1− TF )−1Q

)∗
∥∞ ≲ 1 (6.7.11)

uniformly for η ∈ (0, η∗] and z ∈ D<. Here, Q denotes the orthogonal projection

onto the subspace f⊥
−, i.e., Qy ..= y − ⟨f− ,y⟩f− for every y ∈ C2n.

The estimate (6.7.9) is proven similarly as (5.28) in [4].
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Proof. As ∥So∥2→∞ ≲ 1 by (6.2.1), we obtain from Proposition 6.3.2 and (6.3.26)

the bound

∥F ∥2→∞ ≤ ∥V −1∥∞∥So∥2→∞∥V −1∥2 =
uvṽ


∞
∥So∥2→∞ ≲ 1

uniformly for all η > 0 and z ∈ D< ∪D>. This proves the first estimate in (6.7.8). From

Lemma 6.3.6 (i), we conclude the second and the third estimate in (6.7.8).

We set x ..= (ζ1− TF )−1y. By assumption there is C ∼ 1 such that

∥x∥2 ≤ C∥y∥2 ≤ C∥y∥∞.

Moreover, since ζx = TFx+ y we obtain from the previous estimate

|ζ|∥x∥∞ ≤ ∥TFx∥∞ + ∥y∥∞ ≤ (∥TF ∥2→∞C + 1) ∥y∥∞.

Using the second estimate in (6.7.8), this concludes the proof of (6.7.9). The statement

about (ζ̄1 − FT )−1 follows in the same way using the third estimate in (6.7.8) instead

of the second.

For the proof of (6.7.11), we remark that the first condition in (6.7.10) implies that
((1− TF )−1Q

)∗
2

=
(1− TF )−1Q


2
≲ 1. (6.7.12)

The second assumption in (6.7.10) yields
(1− TF )−1


2
≲ η−1. (6.7.13)

Take y ∈ C2n arbitrary. We get [T ,Q]y = ⟨Tf− + f− ,y⟩f− − ⟨f− ,y⟩(Tf− + f−),

where [T ,Q] = TQ−QT denotes the commutator of T and Q. Therefore,

∥[T ,Q]∥2 ≤ 2∥f− + Tf−∥2 ≲ η (6.7.14)

by the third condition in (6.7.10). We set x ..= Q(1−FT )−1y = ((1− TF )−1Q)∗
y and

compute

x = FTx+Qy − F [T ,Q](1− FT )−1y,
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where we commuted 1 − FT and Q and used that F and Q commute. Hence, using

∥x∥2 ≲ ∥y∥2 ≲ ∥y∥∞ by (6.7.12) , ∥Q∥∞ ≤ 1 + ∥f−∥∞, (6.7.14) and (6.7.13), we obtain

∥x∥∞ ≲
(
∥FT ∥2→∞ + 1 + ∥f−∥∞ + ∥F ∥2→∞

)
∥y∥∞ ≲ ∥y∥∞.

Here, we used the fourth assumption in (6.7.10) and (6.7.8). Notice that the η−1 factor

from the trivial estimate (6.7.13) was compensated by the smallness of the commutator

[T ,Q] which was a consequence of the third assumption in (6.7.10). This concludes the

proof of (6.7.11). □

Proof of Lemma 6.3.5. We first prove that

∥f− − a∥2 = O(η). (6.7.15)

uniformly for η ≤ 1 and τ ∈ [0, 1− τ∗]. To that end, we introduce the auxiliary operator

A ..= ∥F ∥21 + F .

Therefore, we obtain from Ff− = −∥F ∥2f− and (6.3.45)

Af− = 0, Aa = O(η).

Let Q be the orthogonal projection onto the subspace f⊥
− orthogonal to f−, i.e., Qy ..=

y − ⟨f− ,y⟩f− for y ∈ C2n. We then obtain AQa = O(η) which implies Qa = O(η) as

A is invertible on f⊥
− and ∥(A|f⊥

−
)−1∥2 ∼ 1 by (6.3.38). We infer (6.7.15).

For the proof of (6.3.46), we follow the proof of (6.7.11), replace T by −1 and use

Lemma 6.3.4 (i) instead of the second and fourth condition in (6.7.10). □





CHAPTER 7

Location of the spectrum of Kronecker random matrices

In this chapter, we present the results of the publication [16] which was prepared in

joint work with László Erdős, Torben Krüger and Yuriy Nemish. For a general class of

large non-Hermitian random block matrices X we prove that there are no eigenvalues

away from a deterministic set with very high probability. This set is obtained from the

Dyson equation of the Hermitization of X as the self-consistent approximation of the

pseudospectrum. We demonstrate that the analysis of the matrix Dyson equation from

[6] offers a unified treatment of many structured matrix ensembles.

7.1. Introduction

Large random matrices tend to exhibit deterministic patterns due to the cumulative

effects of many independent random degrees of freedom. The Wigner semicircle law

[157] describes the deterministic limit of the empirical density of eigenvalues of Wigner

matrices, i.e., Hermitian random matrices with i.i.d. entries (modulo the Hermitian

symmetry). For non-Hermitian matrices with i.i.d. entries, the limiting density is Girko’s

circular law, i.e., the uniform distribution in a disk centered around zero in the complex

plane, see [40] for a review.

For more complicated ensembles, no simple formula exists for the limiting behavior,

but second order perturbation theory predicts that it may be obtained from the solution

to a nonlinear equation, called the Dyson equation. While simplified forms of the Dyson

equation are present in practically every work on random matrices, its full scope has

only recently been analyzed systematically, see [6]. In fact, the proper Dyson equation

describes not only the density of states but the entire resolvent of the random matrix.

Treating it as a genuine matrix equation unifies many previous works that were specific

to certain structures imposed on the random matrix. These additional structures of-

ten masked a fundamental property of the Dyson equation, its stability against small

193
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perturbations, that plays a key role in proving the expected limit theorems, also called

global laws. Girko’s monograph [82] is the most systematic collection of many possible

ensembles, yet it analyzes them on a case by case basis.

In this paper, using the setup of the matrix Dyson equation (MDE) from [6], we

demonstrate a unified treatment for a large class of random matrix ensembles that contain

or generalize many of Girko’s models. For brevity, we focus only on two basic problems:

(i) obtaining the global law and (ii) locating the spectrum. The global law, typically

formulated as a weak convergence of linear statistics of the eigenvalues, describes only

the overwhelming majority of the eigenvalues. Even local versions of this limit theorem,

commonly called local laws (see e.g. [44, 60], Chapter 6 and references therein) are

typically not sensitive to individual eigenvalues and they do not exclude that a few

eigenvalues are located far away from the support of the density of states.

Extreme eigenvalues have nevertheless been controlled in some simple cases. In par-

ticular, for the i.i.d. cases, it is known that with a very high probability all eigenvalues lie

in an ε-neighborhood of the support of the density of states. These results can be proven

with the moment method, see [19, Theorem 2.1.22] for the Hermitian (Wigner) case, and

[80] for the non-Hermitian i.i.d. case; see also [24, 25] for the optimal moment condi-

tion. More generally, norms of polynomials in large independent random matrices can

be computed via free probability; for GUE or GOE Gaussian matrices it was achieved in

[87] and generalized to polynomials of general Wigner and Wishart type matrices in [18,

47]. These results have been extended recently to polynomials that include deterministic

matrices with the goal of studying outliers, see [31] and references therein.

All these works concern Hermitian matrices either directly or indirectly by considering

quantities, such as norms of non-Hermitian polynomials, that can be deduced from related

Hermitian problems. For general Hermitian random matrices, the density of states may

be supported on several intervals. In this situation, excluding eigenvalues outside of the

convex hull of this support is typically easier than excluding possible eigenvalues lying

inside the gaps of the support. This latter problem, however, is especially important for

studying the spectrum of non-Hermitian random matrices X, since the eigenvalues of

X around a complex parameter ζ can be understood by studying the spectrum of the
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Hermitized matrix

Hζ =

⎛⎜⎝ 0 X − ζ

X∗ − ζ̄ 0

⎞⎟⎠ (7.1.1)

around 0. Note that for ζ ∈ C away from the spectrum of X, zero will typically fall

inside a gap of the spectrum of Hζ by its symmetry.

In this paper, we consider a very general class of structured block matrices X that

we call Kronecker random matrices since their structure is reminiscent to the Kronecker

product of matrices. They have L × L large blocks and each block consists of a linear

combination of random N × N matrices with centered, independent, not necessarily

identically distributed entries; see (7.2.1) later for the precise definition. We will keep L

fixed and let N tend to infinity. The matrix X has a correlation structure that stems

from allowing the same N × N matrix to appear in different blocks. This introduces

an arbitrary linear dependence among the blocks, while keeping independence inside the

blocks. The dependence is thus described by L× L deterministic structure matrices.

Kronecker random ensembles occur in many real-world applications of random ma-

trix theory, especially in evolution of ecosystems [93] and neural networks [123]. These

evolutions are described by a large system of ODE’s with random coefficients and the

spectral radius of the coefficient matrix determines the long time stability, see [113] for

the original idea. More recent results are found in [2, 9, 10] and references therein. The

ensemble we study here is even more general as it allows for linear dependence among

the blocks described by arbitrary structure matrices. This level of generality is essential

for another application; to study spectral properties of polynomials of random matrices.

These are often studied via the “linearization trick” and the linearized matrix is exactly

a Kronecker random matrix. This application is presented in [61], where the results of

the current paper are directly used.

We present general results that exclude eigenvalues of Kronecker random matrices

away from a deterministic set D with a very high probability. The set D is determined by

solving the self-consistent Dyson equation. In the Hermitian case, D is the self-consistent

spectrum defined as the support of the self-consistent density of states ρ which is defined

as the imaginary part of the solution to the Dyson equation when restricted to the real

line. We also address the general non-Hermitian setup, where the eigenvalues are not
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confined to the real line. In this case, the set D = Dε contains an additional cutoff

parameter ε and it is the self-consistent ε-pseudospectrum, given via the Dyson equation

for the Hermitized problem Hζ , see (7.2.7) later. The ε → 0 limit of the sets Dε is

expected not only to contain but to coincide with the support of the density of states in

the non-Hermitian case as well, but this has been proven only in some special cases. We

provide numerical examples to support this conjecture.

We point out that the global law and the location of the spectrum for A+X, where

X is an i.i.d. centered random matrix and A is a general deterministic matrix (so-called

deformed ensembles), have been extensively studied, see [26, 38, 39, 139, 140, 143]. For

more references, we refer to the review [40]. In contrast to these papers, the main focus

of our work is to allow for general (not necessarily identical) distributions of the matrix

elements.

In this paper, we first study arbitrary Hermitian Kronecker matrices H ; the Her-

mitization Hζ of a general Kronecker matrix is itself a Kronecker matrix and therefore

just a special case. Our first result is the global law, i.e., we show that the empirical

density of states of H is asymptotically given by the self-consistent density of states ρ

determined by the Dyson equation. We then also prove an optimal local law for spectral

parameters away from the instabilities of the Dyson equation. The Dyson equation for

Kronecker matrices is a system of 2N nonlinear equations for L×L matrices, see (7.2.6)

later. In case of identical distribution of the entries within each N × N matrix, the

system reduces to a single equation for a 2L × 2L matrix – a computationally feasible

problem. This analysis provides not only the limiting density of states but also a full

understanding of the resolvent for spectral parameters z very close to the real line, down

to scales Im z ≫ 1/N . Although the optimal local law down to scales Im z ≫ 1/N cannot

capture individual eigenvalues inside the support of ρ, the key point is that outside of

this support a stronger estimate in the local law may be proven that actually detects

individual eigenvalues, or rather lack thereof. This observation has been used for simpler

models before, in particular [60, Theorem 2.3] already contained this stronger form of the

local semicircle law for generalized Wigner matrices, see also [7] for Wigner-type matrices,

Chapter 4 for Gram matrices (cf. [14]) and [56] for correlated matrices with a uniform
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lower bound on the variances. In particular, by running the stability analysis twice, this

allows for an extension of the local law for any Im z > 0 outside of the support of ρ.

Finally, applying the local law to the Hermitization Hζ of a non-Hermitian Kronecker

matrixX, we translate local spectral information onHζ around 0 into information about

the location of the spectrum of X. This is possible since ζ ∈ Spec(X) if and only if

0 ∈ Spec(Hζ). In practice, we give a good approximation to the ε-pseudospectrum of X

by considering the set of those ζ values in C for which 0 is at least ε distance away from

the support of the self-consistent density of states for Hζ .

In the main part of the paper, we give a short, self-contained proof that directly aims at

locating the Hermitian spectrum under the weakest conditions for the most general setup.

We split the proof into two well-separated parts; a random and a deterministic one. In

Section 7.4 and 7.5 as well as Section 7.8 below we give a model-independent probabilistic

proof of the main technical result, the local law (Theorem 7.4.7 and Lemma 7.8.1),

assuming only two explicit conditions, boundedness and stability, on the solution of the

Dyson equation that can be checked separately for concrete models. In Section 7.3.2

we prove that these two conditions are satisfied for Kronecker matrices away from the

self-consistent spectrum. The key inputs behind the stability are (i) a matrix version of

the Perron-Frobenius theorem and (ii) a sophisticated symmetrization procedure that is

much more transparent in the matrix formulation. In particular, the global law is an

immediate consequence of this approach. Moreover, the analysis reveals that outside of

the spectrum the stability holds without any lower bound on the variances, in contrast to

local laws inside the bulk spectrum that typically require some non-degeneracy condition

on the matrix of variances.

We stress that only the first part involves randomness and we follow the Schur com-

plement method and concentration estimates for linear and quadratic functionals of in-

dependent random variables. Alternatively, we could have used the cumulant expansion

method that is typically better suited for ensembles with correlation [56]. We opted for

the former path to demonstrate that correlations stemming from the block structure can

still be handled with the more direct Schur complement method as long as the noncom-

mutativity of the L × L structure matrices is properly taken into account. Utilizing a
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powerful tensor matrix structure generated by the correlations between blocks resolves

this issue automatically.

Acknowledgement. The authors are grateful to David Renfrew for several discus-

sions and for calling their attention to references on applications of non-Hermitian models.

7.1.1. Notation. Owing to the tensor product structure of Kronecker random ma-

trices (see Definition 7.2.1 below), we need to introduce different spaces of matrices. In

order to make the notation more transparent to the reader, we collect the conventions

used on these spaces in this subsection.

For K,N ∈ N, we will consider the spaces CK×K , (CK×K)N and CK×K ⊗ CN×N , i.e.,

we consider K × K matrices, N -vectors of K × K matrices and N × N matrices with

K × K matrices as entries. For brevity, we denote M ..= CK×K ⊗ CN×N . Elements of

CK×K are usually denoted by small roman letters, elements of (CK×K)N by small boldface

roman letters and elements of M by capitalized boldface roman letters.

For α ∈ CK×K , we denote by |α| the matrix norm of α induced by the Euclidean

distance on CK . Moreover, we define two different norms on the N -vectors of K × K

matrices. For any r = (r1, . . . , rN) ∈ (CK×K)N we define ∥r∥ ..= maxNi=1|ri|, and

∥r∥2
hs

..= 1
NK

N∑
i=1

Tr(r∗
i ri). (7.1.2)

These are the analogues of the maximum norm and the Euclidean norm for vectors in

CN which corresponds to K = 1. Note that ∥r∥hs ≤ ∥r∥.

For any function f : U → CK×K from U ⊂ CK×K to CK×K , we lift f to UN by defining

f(r) ∈ (CK×K)N entrywise for any r = (r1, . . . , rN) ∈ UN ⊂ (CK×K)N , i.e.,

f(r) ..= (f(r1), . . . , f(rN)). (7.1.3)

We will in particular apply this definition for f being the matrix inversion map and

the imaginary part. Moreover, for x = (x1, . . . , xN), y = (y1, . . . , yN) ∈ (CK×K)N we

introduce their entrywise product xy ∈ (CK×K)N through

xy ..= (x1y1, . . . , xNyN) ∈ (CK×K)N . (7.1.4)
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Note that for K ̸= 1, in general, xy ̸= yx.

If a ∈ CK×K or A ∈ M are positive semidefinite matrices, then we write a ≥ 0

or A ≥ 0, respectively. Similarly, for a ∈ (CK×K)N , we write a ≥ 0 to indicate that

all components of a are positive semidefinite matrices in CK×K . The identity matrix in

CK×K and M is denoted by 1.

We also use two norms on M. These are the operator norm ∥ · ∥2 induced by the

Euclidean distance on CKN ∼= CK ⊗ CN and the norm ∥ · ∥hs induced by the scalar

product ⟨ · , · ⟩ on M defined through

⟨R ,T ⟩ ..= 1
NK

Tr (R∗T ) , ∥R∥hs
..=
√
⟨R ,R⟩, (7.1.5)

for R,T ∈ M. In particular, all orthogonality statements on M are understood with

respect to this scalar product. Furthermore, we introduce ⟨R⟩ ..= ⟨1 ,R⟩, the normalized

trace for R ∈M.

We also consider linear maps on (CK×K)N and M, respectively. We follow the con-

vention that the symbols S , L and T label linear maps (CK×K)N → (CK×K)N and S,

L or T denote linear maps M→M. The symbol Id refers to the identity map on M.

For any linear map T : (CK×K)N → (CK×K)N , let ∥T ∥ denote the operator norm of T

induced by ∥ · ∥ and let ∥T ∥sp denote the operator norm induced by ∥ · ∥hs. Similarly, for

a linear map T : M→M, we write ∥T ∥ for the operator norm induced by ∥ · ∥2 on M

and ∥T ∥sp for its operator norm induced by ∥ · ∥hs on M.

We use the notation [n] ..= {1, . . . , n} for n ∈ N. For i, j ∈ [N ], we introduce the

matrix Eij ∈ CN×N which has a one at its (i, j) entry and only zeros otherwise, i.e.,

Eij ..= (δikδjl)Nk,l=1. (7.1.6)

For i, j ∈ [N ], the linear map Pij : M→ CK×K is defined through

PijR = rij, (7.1.7)

for any R = ∑N
i,j=1 rij ⊗ Eij ∈M with rij ∈ CK×K .



200 CHAPTER 7. LOCATION OF THE SPECTRUM OF KRONECKER RANDOM MATRICES

7.2. Main results

Our main object of study are Kronecker random matrices which we define first. To

that end, we recall the definition of Eij from (7.1.6).

Definition 7.2.1 (Kronecker random matrix). A random matrix X ∈ CL×L ⊗ CN×N is

called Kronecker random matrix if it is of the form

X =
ℓ∑

µ=1
α̃µ ⊗Xµ +

ℓ∑
ν=1

(β̃ν ⊗ Yν + γ̃ν ⊗ Y ∗
ν ) +

N∑
i=1

ãi ⊗ Eii, ℓ ∈ N, (7.2.1)

where Xµ = X∗
µ ∈ CN×N are Hermitian random matrices with centered independent

entries (up to the Hermitian symmetry) and Yν ∈ CN×N are random matrices with

centered independent entries; furthermore X1, . . . , Xℓ, Y1, . . . , Yℓ are independent. The

“coefficient” matrices α̃µ, β̃ν , γ̃ν ∈ CL×L are deterministic and they are called structure

matrices. Finally, ã1, . . . , ãN ∈ CL×L are also deterministic.

We remark that the number of Xµ and Yν matrices effectively present in X may differ

by choosing some structure matrices zero. Furthermore, note that EX = ∑N
i=1 ãi ⊗ Eii,

i.e., the deterministic matrices ãi encode the expectation of X.

Our main result asserts that all eigenvalues of a Kronecker random matrix X are con-

tained in the self-consistent ε-pseudospectrum for any ε > 0, with a very high probability

if N is sufficiently large. The self-consistent ε-pseudospectrum, Dε, is a deterministic

subset of the complex plane that can be defined and computed via the self-consistent

solution to the Hermitized Dyson equation. Hermitization entails doubling the dimension

and studying the matrixHζ defined in (7.1.1) for any spectral parameter ζ ∈ C associated

with X. We introduce an additional spectral parameter z ∈ H ..= {w ∈ C : Imw > 0}

that will be associated with the Hermitian matrix Hζ . The Hermitized Dyson equation

is used to study the resolvent (Hζ − z1)−1.

We first introduce some notation necessary to write up the Hermitized Dyson equation.

For µ, ν ∈ [ℓ], we define

αµ ..=

⎛⎜⎝0 1

0 0

⎞⎟⎠⊗ α̃µ +

⎛⎜⎝0 0

1 0

⎞⎟⎠⊗ α̃∗
µ, βν ..=

⎛⎜⎝0 1

0 0

⎞⎟⎠⊗ (β̃ν + γ̃∗
ν). (7.2.2)
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We set

sµij
..= E |xµij|2, tνij

..= E |yνij|2, (7.2.3)

where xµij and yνij are the (scalar) entries of the random matrices Xµ and Yν , respectively,

i.e., Xµ = (xµij)Ni,j=1 and Yν = (yνij)Ni,j=1. We define a linear map S on (C2×2 ⊗ CL×L)N ,

i.e., on N -vectors of (2L)× (2L) matrices as follows. For any r = (r1, . . . , rN) ∈ (C2×2⊗

CL×L)N we set

S [r] = (S1[r],S2[r], . . . ,SN [r]) ∈ (C2×2 ⊗ CL×L)N ,

where the i-th component is given by

Si[r] ..=
N∑
k=1

⎛⎝ ℓ∑
µ=1

sµikαµrkαµ +
ℓ∑

ν=1
(tνikβνrkβ∗

ν + tνkiβ
∗
νrkβν)

⎞⎠ ∈ C2×2 ⊗ CL×L, i ∈ [N ].

(7.2.4)

For j ∈ [N ] and ζ ∈ C, we define aζj ∈ C2×2 ⊗ CL×L through

aζj
..=

⎛⎜⎝0 1

0 0

⎞⎟⎠⊗ ãj +

⎛⎜⎝0 0

1 0

⎞⎟⎠⊗ ã∗
j −

⎛⎜⎝0 ζ

ζ̄ 0

⎞⎟⎠⊗ 1. (7.2.5)

The Hermitized Dyson equation is the following system of equations

− 1
mζ
j(z)

= z1− aζj + Sj[mζ(z)], j = 1, 2, . . . N, (7.2.6)

for the vector

mζ(z) = (mζ
1(z), . . . ,mζ

N(z)) ∈ (C2×2 ⊗ CL×L)N .

Here, 1 denotes the identity matrix in C2×2 ⊗ CL×L and ζ ∈ C as well as z ∈ H are

spectral parameters associated to X and Hζ , respectively.

Lemma 7.2.2. For any z ∈ H and ζ ∈ C there exists a unique solution to (7.2.6) with

the additional condition that the matrices Immζ
j(z) ..= 1

2i(m
ζ
j(z) − mζ

j(z)∗) are positive

definite for all j ∈ [N ]. Moreover, for j ∈ [N ], there are measures vζj on R with values

in the positive semidefinite matrices in C2×2 ⊗ CL×L such that

mζ
j(z) =

∫
R

vζj (dτ)
τ − z

for all z ∈ H and ζ ∈ C.
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Lemma 7.2.2 is proven after Proposition 7.3.10 below. Throughout the paper mζ

will always denote the unique solution to the Hermitized Dyson equation defined in

Lemma 7.2.2. The self-consistent density of states ρζ of Hζ is given by

ρζ(dτ) ..= 1
2LN

N∑
j=1

Tr vζj (dτ)

(cf. Definition 7.3.3 below). The self-consistent spectrum of Hζ is the set supp ρζ =⋃N
j=1 supp vζj . Finally, for any ε > 0 the self-consistent ε-pseudospectrum of X is defined

by

Dε
..= {ζ ∈ C : dist(0, supp ρζ) ≤ ε}. (7.2.7)

The eigenvalues of X will concentrate on the set Dε for any fixed ε > 0 if N is large. The

motivation for this definiton (7.2.7) is that ζ is in the ε-pseudospectrum of X if and only

if 0 is in the ε-vicinity of the spectrum of Hζ , i.e., dist(0, Spec(Hζ)) ≤ ε. We recall that

the ε-pseudospectrum Specε(X) of X is defined through

Specε(X) ..= Spec(X) ∪ {ζ ∈ C \ Spec(X) : ∥(X − ζ1)−1∥2 ≥ ε−1}. (7.2.8)

In accordance with Subsection 7.1.1, ∥·∥2 denotes the operator norm on CL×L ⊗ CN×N

induced by the Euclidean norm on CL⊗CN and 1 is the identity matrix in CL×L⊗CN×N .

The precise statement is given in Theorem 7.2.4 below whose conditions we collect

next.

Assumptions 7.2.3. (i) (Upper bound on variances) There is κ1 > 0 such that

sµij ≤
κ1

N
, tνij ≤

κ1

N
(7.2.9)

for all i, j ∈ [N ] and µ, ν ∈ [ℓ].

(ii) (Bounded moments) For each p ∈ N, p ≥ 3, there is φp > 0 such that

E|xµij|p ≤ φpN
−p/2, E|yνij|p ≤ φpN

−p/2 (7.2.10)

for all i, j ∈ [N ] and µ, ν ∈ [ℓ].
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(iii) (Upper bound on structure matrices) There is κ2 > 0 such that

max
µ∈[ℓ]
|α̃µ| ≤ κ2, max

ν∈[ℓ]
|β̃ν | ≤ κ2, (7.2.11)

where |α| denotes the operator norm induced by the Euclidean norm on CL.

(iv) (Bounded expectation) Let κ3 > 0 be such that the matrices ãi ∈ CL×L satisfy

Nmax
i=1
|ãi| ≤ κ3. (7.2.12)

The constants L, ℓ, κ1, κ2, κ3 and (φp)p∈N are called model parameters. Our estimates

will be uniform in all models possessing the same model parameters, in particular the

bounds will be uniform in N , the large parameter in our problem. Now we can formulate

our main result:

Theorem 7.2.4 (All eigenvalues of X are inside self-consistent ε-pseudospectrum). Fix

L ∈ N. Let X be a Kronecker random matrix as in (7.2.1) such that the bounds (7.2.9) –

(7.2.12) are satisfied.

Then for each ε > 0 and D > 0, there is a constant Cε,D > 0 such that

P( Spec(X) ⊂ Dε) ≥ 1− Cε,D
ND

. (7.2.13)

The constant Cε,D in (7.2.13) only depends on the model parameters in addition to ε

and D.

Remark 7.2.5. (i) Theorem 7.2.4 follows from the slightly stronger Lemma 7.6.1

below; we show that not only the spectrum ofX but also its ε/2-pseudospectrum

lies in the self-consistent ε-pseudospectrum.

(ii) By carefully following the proof of Lemma 7.6.1, one can see that ε can be

replaced by N−δ with a small universal constant δ > 0. The constant C in

(7.2.13) will depend only on D and the model parameters.

(iii) (Only finitely many moments) If (7.2.10) holds true only for p ≤ P and some

P ∈ N then there is a D0(P ) ∈ N such that the bound (7.2.13) is valid for all

D ≤ D0(P ).

(iv) The self-consistent ε-pseudospectrum Dε from (7.2.7) is defined in terms of the

support of the self-consistent density of states of the Hermitized Dyson equation
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(7.2.6). In particular, to determine Dε one needs to solve the Dyson equation

for spectral parameters z in a neighborhood of z = 0. There is an alternative

definition for a deterministic ε-regularized set that is comparable to Dε and

requires to solve the Dyson equation solely on the imaginary axis z = iη, namely

D̃ε =
{
ζ : lim sup

η↓0

1
η

max
j
|Immζ

j(iη)| ≥ 1
ε

}
. (7.2.14)

Hence, (7.2.13) is true if Dε is replaced by D̃ε. For more details we refer the

reader to Section 7.7 below.

(v) (Hermitian matrices) IfX is a Hermitian random matrix, X = X∗, i.e., α̃µ = α̃∗
µ

and β̃∗
ν = γ̃ν for all µ, ν ∈ [ℓ] and ã∗

i = ãi for all i ∈ [N ], then the Hermitization

is superfluous and the Dyson equation may be formulated directly for X. One

may easily show that the support of the self-consistent density of states ρ is the

intersection of all self-consistent ε-pseudospectra:

supp ρ =
⋂
ε>0

Dε.

(vi) Theorem 7.2.4 as well as its stronger version for the Hermitian case, Theo-

rem 7.4.7, identify a deterministic superset of the spectrum of X. In fact, it

is expected that for a large class of Kronecker matrices the set ⋂ε>0 Dε is the

smallest deterministic set that still contains the entire Spec(X) up to a negligible

distance. For L = 1 this has been proven for many Hermitian ensembles and

for the circular ensemble. Example 7.2.6 below presents numerics for the L ≥ 2

case.

Example 7.2.6. Fix L ∈ N. Let ζ1, . . . , ζL ∈ C and a ∈ CL×L denote the diagonal

matrix with ζ1, . . . , ζL on its diagonal. We set X ..= a⊗ 1 +W , where W has centered

i.i.d. entries with variance 1/(NL). Clearly, X is a Kronecker matrix. In this case the

Dyson equation can be directly solved and one easily finds that

⋂
ε>0

Dε =
{
ζ ∈ C :

L∑
i=1

1
|ζi − ζ|2

≥ L
}

(7.2.15)
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(To our knowledge, the formula on the r.h.s. first appeared in [100]). Figure 7.1 shows

the set (7.2.15) and the actual eigenvalues of X for N = 8000 and different matrices a.

(a) {ζ1, ζ2} = {±0.97} (b) {ζ1, ζ2} = {±1.0}

(c) {ζ1, ζ2} = {±1.03}

(d) {ζ1, . . . , ζ5} = {0,±1.4,±0.8 + i1.26}

Figure 7.1. Eigenvalues of sample random matrix with N = 8000 and ∩ε>0Dε.

The empirical density of states of a Hermitian matrix H ∈ CL×L ⊗ CN×N is defined

through

µH(dτ) ..= 1
NL

∑
λ∈Spec(H)

δλ(dτ). (7.2.16)

Theorem 7.2.7 (Global law for Hermitian Kronecker matrices). Fix L ∈ N. For N ∈ N,

let HN ∈ CL×L⊗CN×N be a Hermitian Kronecker random matrix as in (7.2.1) such that

the bounds (7.2.9) – (7.2.12) are satisfied. Then there exists a sequence of deterministic

probability measures ρN on R such that the difference of ρN and the empirical spectral

measure µHN
, defined in (7.2.16), of HN converges to zero weakly in probability, i.e.,

lim
N→∞

∫
R
f(τ)(µHN

− ρN)(dτ) = 0 (7.2.17)
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for all f ∈ C0(R) in probability. Here, C0(R) denotes the continuous functions on R

vanishing at infinity.

Furthermore, there is a compact subset of R which contains the supports of all ρN .

This compact set depends only on the model parameters.

Theorem 7.2.7 is proven in Section 7.8 below. The measure ρN , the self-consistent

density of states, can be obtained by solving the corresponding Dyson equation, see

Definition 7.3.3 later. If the function f is sufficiently regular then our proof combined with

the Helffer-Sjöstrand formula yields an effective convergence rate of order N−δ in (7.2.17).

7.3. Solution and stability of the Dyson equation

The general matrix Dyson equation (MDE) has been extensively studied in [6], but

under conditions that exclude general Kronecker random matrices. Here, we relax these

conditions and show how to extend some key results of [6] to our current setup. Our

analysis of the MDE on the space of n × n matrices, M = Cn×n, will then be applied

to (7.2.6) with n = 2LN = KN . On M = Cn×n, we use the norms as defined in

Subsection 7.1.1 and require the pair (A,S) to have the following properties:

Definition 7.3.1 (Data pair). We call (A,S) a data pair if

• The imaginary part ImA = 1
2i(A − A

∗) of the matrix A ∈ Cn×n is negative

semidefinite.

• The linear operator S : Cn×n → Cn×n is self-adjoint with respect to the scalar

product

⟨R ,T ⟩ ..= 1
n

Tr[R∗T ] ,

and preserves the cone of positive semidefinite matrices, i.e., it is positivity pre-

serving.

For any data pair (A,S), the MDE then takes the form

−M−1(z) = z1−A+ S[M(z)], z ∈ H, (7.3.1)

for a solution matrixM(z) ∈ Cn×n. It was shown in this generality that the MDE, (7.3.1),

has a unique solution under the constraint that the imaginary part ImM (z) ..= (M (z)−
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M (z)∗)/(2i) is positive definite [96]. We remark that ImA being negative semidefinite

is the most general condition for which our analysis is applicable. Furthermore, in [6],

properties of the solution of (7.3.1) and the stability of (7.3.1) against small perturbations

were studied in the general setup with Hermitian A and under the so-called flatness

assumption,

c

n
Tr(R)1 ≤ S[R] ≤ C

n
Tr(R)1 , (7.3.2)

for all positive definite R ∈ Cn×n with some constants C > c > 0. Within Section 7.3 we

will generalize certain results from [6] by dropping the flatness assumption (7.3.2) and

the Hermiticity of A. The results in this section, apart from (7.3.4b) below, follow by

combining and modifying several arguments from [6]. We will only explain the main steps

and refer to [6] for details. At the end of the section we translate these general results

back to the setup of Kronecker matrices with the associated Dyson equation (7.2.6).

7.3.1. Solution of the Dyson equation. According to Proposition 2.1 in [6] the

solution M to (7.3.1) has a Stieltjes transform representation

M (z) =
∫
R

V (dτ)
τ − z

, z ∈ H , (7.3.3)

where V is a compactly supported measure on R with values in positive semidefinite

n × n-matrices such that V (R) = 1, provided A is Hermitian. The following lemma

strengthens the conclusion about the support properties for this measure compared to

Proposition 2.1 in [6].

Lemma 7.3.2. Let (A,S) be a data pair as in Definition 7.3.1 and M : H → Cn×n be

the unique solution to (7.3.1) with positive definite imaginary part. Then

(i) There is a unique measure V on R with values in positive semidefinite matrices

and V (R) = 1 such that (7.3.3) holds true.

(ii) If A is Hermitian, then

suppV ⊂ SpecA+ [−2∥S∥1/2, 2∥S∥1/2], (7.3.4a)

SpecA ⊂ suppV + [−∥S∥1/2, ∥S∥1/2]. (7.3.4b)
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Proof of Lemma 7.3.2. The representation (7.3.3) follows exactly as in the proof

of Proposition 2.1 in [6] even for A with negative semidefinite imaginary part. We now

prove (7.3.4a) motivated by the same proof in [6]. For a matrix R ∈ Cn×n, its smallest

singular value is denoted by σmin(R). Note that σmin(z1−A) = dist(z, SpecA) since A

is Hermitian. In the following, we fix z ∈ H such that dist(z, SpecA) = σmin(z1−A) >

2∥S∥1/2.

Under the condition ∥M(z)∥2 ≤ σmin(z1−A)/(2∥S∥), we obtain from (7.3.1)

∥M (z)∥2 = 1
σmin(z1−A+ S[M(z)]) ≤

1
σmin(z1−A)− ∥S∥∥M(z)∥2

≤ 2
dist(z, SpecA) .

(7.3.5)

Therefore, using σmin(z1 − A) > 2∥S∥1/2, we find a gap in the values ∥M (z)∥2 can

achieve

∥M(z)∥2 /∈
( 2
σmin(z1−A) ,

σmin(z1−A)
2∥S∥

)
.

For large values of η = Im z, ∥M (z)∥2 is smaller than the lower bound of this interval.

Thus, since ∥M (z)∥2 is a continuous function of z and the set {w ∈ H : dist(w, SpecA) >

2∥S∥1/2} is path-connected, we conclude that (7.3.5) holds true for all z ∈ H satisfying

dist(z, SpecA) > 2∥S∥1/2.

We take the imaginary part of (7.3.1) and use A = A∗ to obtain ImM = ηM ∗M +

M ∗S[ImM ]M . Solving this relation for ImM and estimating its norm yields

∥ImM∥2 ≤
η∥M∥2

2
1− ∥S∥∥M∥2

2
≤ 4η

dist(z, SpecA)2 − 4∥S∥ .

Here, we employed ∥M∥2
2∥S∥ < 1 by (7.3.5) and dist(z, SpecA) > 2∥S∥1/2. Hence,

ImM converges to zero locally uniformly on the set {z ∈ H : dist(z, SpecA) > 2∥S∥1/2}

for η ↓ 0. Therefore, E /∈ suppV if dist(E, SpecA) > 2∥S∥1/2. This concludes the proof

of (7.3.4a).

We now prove (7.3.4b). From (7.3.1), we obtain

A− z1 = M−1(1 +MS[M ]) (7.3.6)
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for z ∈ H. Since V (R) = 1, we have

∥M∥2 ≤
1

dist(z, suppV ) . (7.3.7)

Therefore, taking the inverse in (7.3.6) and applying (7.3.7) yield

∥(A− z1)−1∥2 ≤
1

dist(z, suppV )(1− ∥S∥ dist(z, suppV )−2) (7.3.8)

for all z ∈ H satisfying dist(z, suppV )2 > ∥S∥. Taking Im z ↓ 0 in (7.3.8), we see

that the matrix A − E1 is invertible for all E ∈ R satisfying dist(E, suppV )2 > ∥S∥,

showing (7.3.4b). □

In accordance with Definition 2.3 in [6] we define the self-consistent density of states

as the unique measure whose Stieltjes transform is n−1 TrM .

Definition 7.3.3 (Self-consistent density of states). The measure

ρ(dτ) ..= 1
n

TrV (dτ) = ⟨V (dτ)⟩ (7.3.9)

is called the self-consistent density of states. Clearly, supp ρ = suppV . For the following

lemma, we also define the harmonic extension of the self-consistent density of states

ρ : H→ R+ through

ρ(z) ..= 1
π
⟨ImM (z)⟩. (7.3.10)

In the following we will use the short hand notation

dρ(z) ..= dist(z, supp ρ) .

Lemma 7.3.4 (Bounds onM andM−1). Let (A,S) be a data pair as in Definition 7.3.1.

(i) For z ∈ H, we have the bounds

∥M∥2 ≤
1

dρ(z)
, (7.3.11a)

(Im z)∥M−1∥−2
2 1 ≤ ImM ≤ Im z

d2
ρ(z)

1, (7.3.11b)

∥M−1∥2 ≤ |z|+ ∥A∥2 + ∥S∥∥M∥2. (7.3.11c)
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(ii) For z ∈ H, we have the bound

ρ(z) ≤ Im z

πd2
ρ(z)

. (7.3.12)

Proof. Using (7.3.3) immediately yields (7.3.11a) and the upper bound in (7.3.11b)

since V (R) = 1. With η = Im z and taking the imaginary part of (7.3.1), we obtain

ImM = ηM ∗M −M ∗(ImA)M +M ∗S[ImM ]M ≥ ηM ∗M

as ImA ≤ 0, ImM ≥ 0 and S is positivity preserving. Since R∗R ≥ ∥R−1∥−2
2 1 for any

R ∈ Cn×n the lower bound in (7.3.11b) follows. From (7.3.1), we obtain (7.3.11c). Since

ρ(z) = π−1⟨ImM(z)⟩ the upper bound in (7.3.11b) implies (7.3.12). □

7.3.2. Stability of the Dyson equation. The goal of studying the stability of the

Dyson equation in matrix form, (7.3.1), is to show that if some G satisfies

− 1 = (z1−A+ S[G])G+D (7.3.13)

for some small D, then G is close to M . It turns out that to a large extent this is a

question about the invertibility of the stability operator L ..= Id −MS[ · ]M acting on

Cn×n. From (7.3.1) and (7.3.13), we obtain the following equation

L[G−M ] = MD +MS[G−M ](G−M ) (7.3.14)

relating the difference G−M with D. We will call (7.3.14) the stability equation. Under

the assumption thatG is not too far fromM , the question whetherG−M is comparable

with D is determined by the invertibility of L in (7.3.14) and the boundedness of the

inverse.

In this subsection, we show that ∥L−1∥ is bounded, provided dist(z, suppV ) is bounded

away from zero. In order to prove this bound on L−1, we follow the symmetrization pro-

cedure for L introduced in [6]. We introduce the operators CR : Cn×n → Cn×n and

F : Cn×n → Cn×n through

CR[Q] = RQR, F ..= CWC√
ImMSC√

ImMCW ,
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for Q ∈ Cn×n. Furthermore, the matrix T ∈ Cn×n, the unitary matrix U ∈ Cn×n and

the positive definite matrix W ∈ Cn×n are defined through

T ..= C−1√
ImM

[ReM ]− i1, U ..= T

|T |
, W ..= |T |1/2.

With these notations, a direct calculation yields

L = Id− CMS = C√
ImMCWCU∗(CU −F)C−1

W C−1√
ImM

, (7.3.15)

as in (4.39) of [6].

We remark that CR for R ∈ Cn×n is invertible if and only if R is invertible and

C−1
R = CR−1 in this case. Similarly, C∗

R = CR∗ .

Our goal is to verify ∥F∥sp ≤ 1− c for some positive constant c which yields ∥(CU −

F)−1∥sp ≤ c−1 as ∥CU∥sp = 1. Then the boundedness of the other factors in (7.3.15)

implies the bound on the inverse of the stability operator L.

Convention 7.3.5 (Comparison relation). For nonnegative scalars or vectors f and g,

we will use the notation f ≲ g if there is a constant c > 0, depending only on ∥S∥hs→∥ · ∥

such that f ≤ cg and f ∼ g if f ≲ g and f ≳ g both hold true. If the constant c

depends on an additional parameter (e.g. ε > 0), then we will indicate this dependence

by a subscript (e.g. ≲ε).

Lemma 7.3.6. Let (A,S) be a data pair as in Definition 7.3.1.

(i) Uniformly for any z ∈ H, we have

d4
ρ(z)∥M−1∥−2

2 1 ≲W 4(Im z)2 ≲ ∥M∥2
2∥M−1∥4

21. (7.3.16)

(ii) There is a positive semidefinite F ∈ Cn×n such that ∥F ∥hs = 1 and F [F ] =

∥F∥spF . Moreover,

1− ∥F∥sp = (Im z)⟨F , CW [ImM ]⟩
⟨F ,W−2⟩

. (7.3.17)

(iii) Uniformly for z ∈ H, we have

1− ∥F∥sp ≳ d4
ρ(z)∥M−1∥−4

2 . (7.3.18)
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The proof of this lemma is motivated by the proofs of Lemma 4.6 and Lemma 4.7 (i)

in [6].

Proof. We set η ..= Im z. We rewrite the definition of W and use the upper bound

in (7.3.11b) to obtain

W 4 = C−1√
ImM

(CImM + CReM )[(ImM )−1] ≥ η−1d2
ρ(z)C−1√

ImM
[MM ∗ +M ∗M ]

≳ ∥M−1∥−2
2 η−2d4

ρ(z)1.

Here, we also applied MM ∗ +M ∗M ≥ 2∥M−1∥−2
2 1 and the upper bound in (7.3.11b)

again. This proves the lower bound in (7.3.16). Similarly, using MM ∗ + M ∗M ≤

2∥M∥2
21 and the lower bound in (7.3.11b) we obtain the upper bound in (7.3.16).

For the proof of (ii), we remark that F preserves the cone of positive semidefinite

matrices. Thus, by a version of the Perron-Frobenius theorem of cone preserving operators

there is a positive semidefinite F such that ∥F ∥hs = 1 and FF = ∥F∥spF . Following

the proof of (4.24) in [6] and noting that this proof uses neither the uniqueness of F nor

its positive definiteness, we obtain (7.3.17).

The bound in (7.3.18) is obtained by plugging the lower bound in (7.3.16) and the

lower bound in (7.3.11b) into (7.3.17). We start by estimating the numerator in (7.3.17).

Using F ≥ 0, the cyclicity of the trace, (7.3.11b) and the lower bound in (7.3.16), we get

⟨F , CW [ImM ]⟩ ≥ η⟨
√
FW 2

√
F ⟩∥M−1∥−2

2 ≳ ∥M−1∥−3
2 d2

ρ(z)⟨F ⟩. (7.3.19)

Similarly, we have

⟨F ,W−2⟩ = ⟨
√
FW−2

√
F ⟩ ≲ η

d2
ρ(z)
∥M−1∥2⟨F ⟩. (7.3.20)

Combining (7.3.19) and (7.3.20) in (7.3.17) yields (7.3.18) and concludes the proof of the

lemma. □

Lemma 7.3.7 (Bounds on the inverse of the stability operator). Let (A,S) be a data

pair as in Definition 7.3.1.
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(i) The stability operator L is invertible for all z ∈ H. For fixed E ∈ R and

uniformly for η ≥ max{1, |E|, ∥A∥2}, we have

∥L−1(E + iη)∥ ≲ 1. (7.3.21)

(ii) Uniformly for z ∈ H, we have

∥L−1(z)∥sp ≲
∥M(z)∥2∥M−1(z)∥9

2
d8
ρ(z)

. (7.3.22)

(iii) Uniformly for z ∈ H, we have

∥L−1(z)∥+ ∥(L−1(z))∗∥ ≲ 1 + ∥M(z)∥2
2 + ∥M (z)∥4

2∥L−1(z)∥sp. (7.3.23)

Proof. We start with the proof of (7.3.22). From the upper and lower bounds in

(7.3.16) and (7.3.11b), respectively, we obtain

∥CW∥ ≲
1
η
∥M∥2∥M−1∥2

2, ∥C−1
W ∥ ≲

η

d2
ρ(z)
∥M−1∥2, (7.3.24a)

∥C√
ImM∥ ≲

η

d2
ρ(z)

, ∥C−1√
ImM
∥ ≲ 1

η
∥M−1∥2

2. (7.3.24b)

Since ∥CT∥sp ≤ ∥CT∥ for Hermitian T ∈ Cn×n we conclude from (7.3.24), (7.3.18) and

(7.3.11a) the bound

∥L−1∥sp ≲
∥M∥2∥M−1∥5

2
d4
ρ(z)

∥(CU −F)−1∥sp ≲
∥M∥2∥M−1∥9

2
d8
ρ(z)

.

For the proof of (7.3.23), we remark that ∥S∥hs→∥ · ∥ ≲ 1 implies ∥S∥∥ · ∥→hs ≲ 1.

Therefore, exactly as in the proof of (4.53) in [6], we obtain the first bound in (7.3.23).

We similarly conclude the second bound from ∥(L−1)∗∥sp = ∥L−1∥sp.

We conclude the proof of Lemma 7.3.7 by remarking that (7.3.21) is a consequence

of (7.3.22), (7.3.11a), (7.3.23) and (7.3.11c). □

Corollary 7.3.8 (Lipschitz-continuity of M ). If (A,S) is a data pair as in Defini-

tion 7.3.1 then there exists c > 0 such that for each (possibly N-dependent) ε ∈ (0, 1] we

have

∥M (z1)−M (z2)∥2 ≲ (ε−c + ∥A∥c2)|z1 − z2| (7.3.25)

for all z1, z2 ∈ H such that Im z1, Im z2 ≥ ε.
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Proof. We differentiate (7.3.1) with respect to z and obtain L[∂zM ] = M 2. We

invert L, use (7.3.22), (7.3.11a) and (7.3.11c) and follow the proof of (7.3.23). This yields

(7.3.25) and hence concludes the proof of Corollary 7.3.8. □

7.3.3. Translation to results for Kronecker matrices. Here we translate the

results of Subsections 7.3.1 and 7.3.2 into results about (7.2.6). In fact, we study (7.2.6)

in a slightly more general setup. Motivated by the identification C2×2⊗CL×L ∼= C2L×2L,

we consider (7.2.6) on CK×K for some K ∈ N instead. The results of Subsections 7.3.1 and

7.3.2 are applied with n = KN . Moreover, the special aζj defined in (7.2.5) are replaced

by general aj ∈ CK×K . Therefore, the parameter ζ will not be present throughout this

subsection. We thus look at the Dyson equation in vector form

− 1
mj(z)

= z1− aj + Sj[m(z)], (7.3.26)

where z ∈ H, mj(z) ∈ CK×K for j ∈ [N ], m(z) ..= (m1(z), . . .mN(z)) and Sj is defined

as in (7.2.4).

Recall that the definition of Sj involves coefficients sµij and tνij as well as matrices

αµ and βν . Next, we formulate assumptions on S in terms of these data as well as

assumptions on a1, . . . , aN .

Assumptions 7.3.9. (i) For all µ, ν ∈ [ℓ] and i, j ∈ [N ], we have nonnegative

scalars sµij ∈ R and tνij ∈ R satisfying (7.2.9). Furthermore, sµij = sµji for all

i, j ∈ [N ] and µ ∈ [ℓ].

(ii) For µ, ν ∈ [ℓ], we have αµ, βν ∈ CK×K and αµ is Hermitian. There is α∗ > 0

such that

max
µ∈[ℓ]
|αµ| ≤ α∗, max

ν∈[ℓ]
|βν | ≤ α∗. (7.3.27)

(iii) The matrices a1, . . . , aN ∈ CK×K have a negative semidefinite imaginary part,

Im aj ≤ 0.

The conditions in (i) of Assumptions 7.3.9 are motivated by the definition of the

variances in (7.2.3). In particular, since Xµ is Hermitian the variances from (7.2.3)

satisfy sµij = sµji.
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In order to apply the results of Subsections 7.3.1 and 7.3.2 to (7.3.26), we now relate

it to the matrix Dyson equation (MDE) (7.3.1). It turns out that (7.3.26) is a special

case when the MDE on M = CK×K ⊗ CN×N is restricted to the block diagonal matrices

D ..= span{a⊗D : a ∈ CK×K , D ∈ CN×N diagonal} ⊂ M. (7.3.28)

We recall Ell, Sl and Pll from (7.1.6), (7.2.4) and (7.1.7), respectively, and define A ∈M

and S : M→M through

A ..=
N∑
l=1

al ⊗ Ell, S[R] ..=
N∑
l=1

Sl[(P11R, . . . , PNNR)]⊗ Ell. (7.3.29)

With these definitions, the Dyson equation in vector form, (7.3.26), can be rewritten in

the matrix form (7.3.1) for a solution matrix M ∈ M. In the following, we will refer to

(7.3.1) with these choices of M, A and S as the Dyson equation in matrix form.

In the remainder of the paper, we will consider the Dyson equation in matrix form,

(7.3.1), exclusively with the choices of A and S from (7.3.29). We have the following

connection between (7.3.26) and (7.3.1). If M is a solution of (7.3.1) then, since the

range of S is contained in D and A ∈ D, we have M ∈ D, i.e, it can be written as

M (z) =
N∑
j=1

mj(z)⊗ Ejj (7.3.30)

for some unique m1(z), . . . ,mN(z) ∈ CK×K . Moreover, these mi solve (7.3.26). Con-

versely, if m = (m1, . . . ,mN) ∈ (CK×K)N solves (7.3.26) then M defined via (7.3.30)

is a solution of (7.3.1). Furthermore, if M satisfies (7.3.30) then ImM is positive defi-

nite if and only if Immj is positive definite for all j ∈ [N ]. This correspondence yields

the following translation of Lemma 7.3.2 to the setting for Kronecker random matrices,

Proposition 7.3.10 below.

For part (ii), we recall ∥r∥ = maxNi=1|ri| for r = (r1, . . . , rN) ∈ (CK×K)N and that

∥S ∥ denotes the operator norm of S : (CK×K)N → (CK×K)N induced by ∥ · ∥. We

also used that ∥S ∥ = ∥S∥, which is easy to see since S = S on the block diagonal

matrices (CK×K)N ∼= D and S = 0 on the orthogonal complement D⊥. The orthogonal

complement is defined with respect to the scalar product on M introduced in (7.1.5).
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Furthermore, we remark that the identity (7.3.30) implies

∥M∥2 = ∥m∥.

Proposition 7.3.10 (Existence, uniqueness of m). Under Assumptions 7.3.9 we have

(i) There is a unique function m : H→ (CK×K)N such that the components m(z) =

(m1(z), . . . ,mN(z)) satisfy (7.3.26) for z ∈ H and all j ∈ [N ] and Immj(z) is

positive definite for all z ∈ H and all j ∈ [N ]. Furthermore, for each j ∈ [N ],

there is a measure vj on R with values in the positive semidefinite matrices of

CK×K such that vj(R) = 1 and for all z ∈ H, we have

mj(z) =
∫
R

vj(dτ)
τ − z

. (7.3.31)

(ii) If aj is Hermitian, i.e., aj = a∗
j for all j ∈ [N ] then the union of the supports of

vj is comparable with the union of the spectra of the aj in the following sense

N⋃
j=1

supp vj ⊂
N⋃
j=1

Spec aj + [−2∥S ∥1/2, 2∥S ∥1/2], (7.3.32a)

N⋃
j=1

Spec aj ⊂
N⋃
j=1

supp vj + [−∥S ∥1/2, ∥S ∥1/2]. (7.3.32b)

Proof of Lemma 7.2.2. Using the identification C2×2⊗CL×L ∼= CK×K for K = 2L

and the definitions in (7.2.2) and (7.2.5), the lemma is an immediate consequence of

Proposition 7.3.10 with aj = aζj for j ∈ [N ] since the proof of the proposition only uses

the qualitative conditions in Assumptions 7.3.9. □
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Proposition 7.3.10 asserts that there is a measure VM on R with values in the positive

semidefinite elements of D ⊂M such that for z ∈ H, we have

VM (dτ) ..=
N∑
j=1

vj(dτ)⊗ Ejj, M (z) =
∫
R

1
τ − z

VM (dτ). (7.3.33)

Clearly, we have VM = V for the unique measure V with values in positive semidefinite

matrices that satisfies (7.3.3). And we have suppVM = supp ρ with the self-consistent

density of states defined in (7.3.9). Note that in this setup

ρ(dτ) = 1
NK

N∑
j=1

Tr vj(dτ) , (7.3.34)

with the CK×K-matrix valued measures vj defined through (7.3.31).

In the remainder of the paper, m = (m1, . . . ,mN) and M always denote the unique

solutions of (7.3.26) and (7.3.1), respectively, connected via (7.3.30). We now modify

the concept of comparison relation introduced in Convection 7.3.5 so that inequalities

are understood up to constants depending only on the model parameters from Assump-

tion 7.3.9.

Convention 7.3.11 (Comparison relation). From here on we use the comparison relation

introduced in Convection 7.3.5 so that the constants implicitly hidden in this notation may

depend only on K, ℓ, κ1 from (7.2.9) and α∗ from (7.3.27).

Lemma 7.3.12 (Bounds on S ). Assumptions 7.3.9 imply

∥S ∥sp ≲ 1, ∥S ∥ ≲ 1. (7.3.35)

Proof. Direct estimates of S [a] for a ∈ (CK×K)N starting from the definition of Si,

(7.2.4), and using the assumptions (7.2.9) and (7.3.27) yield the bounds in (7.3.35). □

Similarly to L, we now introduce the stability operator of the Dyson equation in

vector form, (7.3.26). In fact, it is defined through

L : (CK×K)N → (CK×K)N , L (r1, . . . , rN) ..= (ri −miSi[r]mi)Ni=1. (7.3.36)

We remark that S and thus L leave the set of block diagonal matrices D defined in

(7.3.28) invariant. The operators S and L are the restrictions of S and L to D. In
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particular, we have

∥L −1∥sp ≤ ∥L−1∥sp, ∥L−1∥sp ≤ max{1, ∥L −1∥sp}, ∥L −1∥ ≤ ∥L−1∥, (7.3.37)

since L acts as the identity map on the orthogonal complement D⊥ of the block diagonal

matrices. Here, the orthogonal complement is defined with respect to the scalar product

onM introduced in (7.1.5). Moreover, L is invertible if and only if L is invertible. Using

(7.3.37) the bounds on L from Lemma 7.3.7 can be translated into bounds on L

7.4. Hermitian Kronecker matrices

The analysis of a non-Hermitian random matrix usually starts with Girko’s Her-

mitization procedure. It provides a technique to extract spectral information about a

non-Hermitian matrix X from a family of Hermitian matrices (Hζ)ζ∈C defined through

Hζ ..=

⎛⎜⎝0 1

0 0

⎞⎟⎠⊗X +

⎛⎜⎝0 0

1 0

⎞⎟⎠⊗X∗ −

⎛⎜⎝0 ζ

ζ̄ 0

⎞⎟⎠⊗ 1, ζ ∈ C. (7.4.1)

Applying Girko’s Hermitization procedure to a Kronecker random matrix X as in (7.2.1)

generates a Hermitian Kronecker matrixHζ ∈ C2×2⊗CL×L⊗CN×N . However, similarly to

our analysis in Section 7.3, we study more general Kronecker matricesH ∈ CK×K⊗CN×N

as in (7.4.2) below for K,N ∈ N. This is motivated by the identification C2×2 ⊗CL×L ∼=
C2L×2L.

For K,N ∈ N, let the random matrix H ∈ CK×K ⊗ CN×N be defined through

H ..=
ℓ∑

µ=1
αµ ⊗Xµ +

ℓ∑
ν=1

(βν ⊗ Yν + β∗
ν ⊗ Y ∗

ν ) +
N∑
i=1

ai ⊗ Eii. (7.4.2)

Furthermore, we make the following assumptions. Let ℓ ∈ N. For µ ∈ [ℓ], let αµ ∈ CK×K

be a deterministic Hermitian matrix and Xµ = X∗
µ ∈ CN×N a Hermitian random matrix

with centered and independent entries (up to the Hermitian symmetry constraint). For

ν ∈ [ℓ], let βν ∈ CK×K be a deterministic matrix and Yν a random matrix with centered

and independent entries. We also assume that X1, . . . , Xℓ, Y1, . . . , Yℓ are independent. Let

a1, . . . , aN ∈ CK×K be some deterministic matrices with negative semidefinite imaginary
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part. We recall that Eii was defined in (7.1.6) and introduce the expectation A ..= EH =∑N
i=1 ai ⊗ Eii.

If A is a Hermitian matrix then H as in (7.4.2) with the above properties is a

Hermitian Kronecker random matrix in the sense of Definition 7.2.1. As in the setup

from (7.2.1), the matrices α1, . . . αℓ, β1, . . . , βℓ are called structure matrices.

Since the imaginary parts of a1, . . . , aN are negative semidefinite, the same holds true

for the imaginary part of A and H . Hence, the matrix H−z1 is invertible for all z ∈ H.

For z ∈ H, we therefore introduce the resolvent G(z) of H and its “matrix elements”

Gij(z) ..= PijG ∈ CK×K for i, j ∈ [N ] defined through

G(z) ..= (H − z1)−1, G(z) =
N∑

i,j=1
Gij(z)⊗ Eij.

We recall that Pij has been defined in (7.1.7). Our goal is to show that Gij is small for

i ̸= j and Gii is well approximated by the deterministic matrix mi(z) ∈ CK×K in the

regime where K ∈ N is fixed and N ∈ N is large.

Apart from the above listed qualitative assumptions, we will need the following quan-

titative assumptions. To formulate them we use the same notation as before, i.e., the

entries of Xµ and Yν are denoted by Xµ = (xµij)Ni,j=1 and Yν = (yνij)Ni,j=1 and their variances

by sµij ..= E|xµij|2 and tνij
..= E|yνij|2 (cf. (7.2.3)).

Assumptions 7.4.1. We assume that all variances sµij and tµij satisfy (7.2.9) and the en-

tries xµij and yνij of the random matrices fulfill the moment bounds (7.2.10). Furthermore,

the structure matrices satisfy (7.3.27).

In this section, the model parameters are defined to be K, ℓ, κ1 from (7.2.9), the

sequence (φp)p∈N from (7.2.10) and α∗ from (7.3.27), so the relation ≲ indicates an in-

equality up to a multiplicative constant depending on these model parameters. Moreover,

for the real and imaginary part of the spectral parameter z we will write E = Re z and

η = Im z, respectively.
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7.4.1. Error term in the perturbed Dyson equation. We introduce the notion

of stochastic domination, a high probability bound up to N ε factors.

Definition 7.4.2 (Stochastic domination). If Φ = (Φ(N))N and Ψ = (Ψ(N))N are two

sequences of nonnegative random variables, then we say that Φ is stochastically dom-

inated by Ψ, Φ ≺ Ψ, if for all ε > 0 and D > 0 there is a constant C(ε,D) such

that

P
(
Φ(N) ≥ N εΨ(N)

)
≤ C(ε,D)

ND
(7.4.3)

for all N ∈ N and the function (ε,D) ↦→ C(ε,D) depends only on the model parameters.

If Φ or Ψ depend on some additional parameter δ and the function (ε,D) ↦→ C(ε,D)

additionally depends on δ then we write Φ ≺δ Ψ.

We set hij ..= PijH ∈ CK×K . Using PlmA = alδlm, Exµik = 0, E yνik = 0, (7.2.9),

(7.3.27) and (7.2.10) we trivially obtain

|Pik (H −A)| = |hik − aiδik| ≺ N−1/2. (7.4.4)

For B ⊂ [N ] we set

HB ..=
N∑

i,j=1
hBij ⊗ Eij, hBij

..= hij1(i, j /∈ B),

and denote the resolvent of HB by GB(z) ..=
(
HB − z1

)−1
for z ∈ H. Since ImHB =

ImAB ≤ 0 for B ⊂ [N ], the matrix (HB − z1) is invertible for all z ∈ H and

∥GB(z)∥2 ≤
1

Im z
. (7.4.5)

In the following, we will use the convention
B∑
k∈A

..=
∑

k∈A\B

for A,B ⊂ [N ] and B ⊂ A. If A = [N ] then we simply write ∑B
k .

For i ∈ [N ], starting from the Schur complement formula,

− 1
Gii

= z − hii +
{i}∑
k,l

hikG
{i}
kl hli, (7.4.6)
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and using the definition of Si in (7.2.4), we obtain the perturbed Dyson equation

− 1
gi

= z1− ai + Si[g] + di. (7.4.7)

Here, we introduced

gi ..= Gii, g ..= (g1, . . . , gN) ∈ (CK×K)N (7.4.8)

and the error term di ∈ CK×K . We remark that (7.4.7) is a perturbed version of the

Dyson equation in vector form, (7.3.26), and recall that m denotes its unique solution

(cf. Proposition 7.3.10). To represent the error term di in (7.4.7), we use hik = aiδik +∑
µ x

µ
ikαµ +∑

ν (yνikβν + yνkiβ
∗
ν) and write di ..= d

(1)
i + . . .+ d

(8)
i , where

d
(1)
i

..= −hii + ai, (7.4.9a)

d
(2)
i

..=
{i}∑
k

(∑
µ

αµG
{i}
kk αµ

(
|xµik|2 − s

µ
ik

)
+
∑
ν

(
(|yνik|2 − tνik)βνG

{i}
kk β

∗
ν + (|yνki|2 − tνki)β∗

νG
{i}
kk βν

) )
,

(7.4.9b)

d
(3)
i

..=
∑
ν

{i}∑
k

(
yνikβνG

{i}
kk βνy

ν
ki + yνkiβ

∗
νG

{i}
kk β

∗
νy

ν
ik

)
(7.4.9c)

d
(4)
i

..=
( ∑
µ=µ′

{i}∑
k ̸=l

+
∑
µ̸=µ′

{i}∑
k,l

)
αµx

µ
ikG

{i}
kl x

µ′

li αµ′ , (7.4.9d)

d
(5)
i

..=
( ∑
ν=ν′

{i}∑
k ̸=l

+
∑
ν ̸=ν′

{i}∑
k,l

)
(yνikβν + yνkiβ

∗
ν)G

{i}
kl

(
yν

′

li βν′ + yν
′
il β

∗
ν′

)
, (7.4.9e)

d
(6)
i

..=
{i}∑
k,l

∑
µ

∑
ν

(
αµx

µ
ikG

{i}
kl (yνliβν + yνilβ

∗
ν) + (yνikβν + yνkiβ

∗
ν)G

{i}
kl x

µ
liαµ

)
, (7.4.9f)

d
(7)
i

..=
{i}∑
k

(∑
µ

αµs
µ
ik

(
G

{i}
kk −Gkk

)
αµ

+
∑
ν

(
tνikβν

(
G

{i}
kk −Gkk

)
β∗
ν + tνkiβ

∗
ν

(
G

{i}
kk −Gkk

)
βν
) )
,

(7.4.9g)

d
(8)
i

..= −
(∑

µ

sµiiαµGiiαµ +
∑
ν

tνii (βνGiiβ
∗
ν + β∗

νGiiβν)
)
. (7.4.9h)

In the remainder of this section, we consider E = Re z to be fixed and view quantities

like m and G only as a function of η = Im z. In the following lemma, we will use the
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following random control parameters to bound the error terms introduced in (7.4.9):

Λhs(η) ..= 1
N

[
TrG(E + iη)∗G(E + iη)

]1/2

Λw(η) ..= 1√
2N

Nmax
i=1

[
TrPii[G(E + iη)∗G(E + iη) +G(E + iη)G(E + iη)∗]

]1/2
,

Λ(η) ..= Nmax
i,j=1
|Gij(E + iη)−mi(E + iη)δij| .

(7.4.10)

We remark that due to our conventions, we have

∥m∥ = Nmax
i=1
|mi|, ∥m−1∥ = Nmax

i=1
|m−1

i |.

Lemma 7.4.3. (i) Uniformly for η ≥ 1 and i ̸= j, we have

|di| ≺ 1, (7.4.11a)

|Gij| ≺ η−2. (7.4.11b)

(ii) Uniformly for η > 0, we have

(|d(1)
i |+ . . .+ |d(6)

i |)χ ≺
1√
N

+ Λhs + ∥m−1∥Λ2
w, (7.4.12a)

(|d(7)
i |+ |d

(8)
i |)χ ≺ ∥m−1∥Λ2

w + 1
N
|Gii|, (7.4.12b)

where χ is the characteristic function χ ..= 1(Λ ≤ (4∥m−1∥)−1).

Moreover, uniformly for η > 0 and i ̸= j, we have

|Gij|χ ≺ ∥m∥Λw. (7.4.13)

In the proof of Lemma 7.4.3, we use the following relation between the entries of GT

and GT∪{k}

GT
ij = G

T∪{k}
ij +GT

ik

1
GT
kk

GT
kj (7.4.14)

for T ⊂ [N ], k /∈ T and i, j /∈ T ∪ {k}. This is an identity of K ×K matrices and 1/GT
kk

is understood as the inverse matrix of GT
kk. The proof of (7.4.14) follows from the Schur

complement formula.
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Proof. We will prove the bounds in (7.4.12) in parallel with the estimate

|d(1)
i |+ . . .+ |d(8)

i | ≺
1√
N

+ 1
N

( {i}∑
k,l

|G{i}
kl |2

)1/2
+ 1
N

{i}∑
k

|G{i}
kk |+

1
N

∑
k

|Gkk| (7.4.15)

that we will use to show (7.4.11a).

The trivial estimate (7.4.4) implies that |d(1)
i | ≺ 1/

√
N .

In the remaining part of the proof, we will often apply the large deviation bounds

with scalar valued random variables from Theorem C.1 in [60]. In our case, they will be

applied to sums or quadratic forms of independent random variables, whose coefficients

are K×K matrices; this generalization clearly follows from the scalar case [60] if applied

to each entry separately.

We first show the following estimate

|d(2)
i |+ |d

(3)
i | ≺

1√
N

( 1
N

{i}∑
k

|G{i}
kk |2

)1/2
. (7.4.16)

From the linear large deviation bound (C.2) in [60], we conclude that the first term in

(7.4.9b) is bounded by

∑
µ

|αµ|
⏐⏐⏐ {i}∑
k

G
{i}
kk (|xµik|2 − s

µ
ik)
⏐⏐⏐|αµ| ≺ 1

N

( {i}∑
k

|G{i}
kk |2

)1/2
.

The second and third term in (7.4.9b) are estimated similarly with the help of (C.2) in

[60] which yields (7.4.16) for |d(2)
i |. We apply the linear large deviation bound (C.2) in

[60] and bound the first term in (7.4.9c) as follows:

⏐⏐⏐∑
ν

( {i}∑
k

yνiky
ν
kiβνG

{i}
kk βν

)⏐⏐⏐ ≺ 1
N

( {i}∑
k

|G{i}
kk |2

)1/2
.

The bound on the second term in (7.4.9c) is obtained in the same way. Consequently, we

have proven (7.4.16).

Using the quadratic large deviation bounds (C.4) and (C.3) in [60], we obtain

|d(4)
i |+ |d

(5)
i |+ |d

(6)
i | ≺

( 1
N2

{i}∑
k,l

|G{i}
kl |2

)1/2
. (7.4.17)
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Moreover, (7.4.16) and (7.4.17) also imply that |d(2)
i | + . . . + |d(6)

i | are bounded by the

second term on the right-hand side of (7.4.15).

Using (7.4.14), (7.2.9) and (7.3.27), we conclude

|d(7)
i | ≲ min

{ 1
N

{i}∑
k

|Gki|
⏐⏐⏐⏐ 1
Gii

⏐⏐⏐⏐|Gik|,
1
N

{i}∑
k

(|G{i}
kk |+ |Gkk|)

}
. (7.4.18)

The assumptions (7.2.9) and (7.3.27) imply

|d(8)
i | ≲ |Gii|/N. (7.4.19)

This concludes the proof of (7.4.15). Applying (7.4.5) to (7.4.15), we obtain (7.4.11a).

For all k, l /∈ {i}, we now show that
⏐⏐⏐G{i}

kl

⏐⏐⏐χ ≤ |Gkl|+
4
3∥m

−1∥|Gki||Gil|. (7.4.20)

This immediately yields (7.4.12a) using (7.4.16) and (7.4.17). For the proof of (7.4.20),

we conclude from (7.4.14) by dividing and multiplying the second term by mi that

G
{i}
kl = Gkl −Gki

1
Gii

mi
1
mi

Gil. (7.4.21)

From the definition of χ in Lemma 7.4.3, we see that⏐⏐⏐⏐ 1
mi

Gij − δij
⏐⏐⏐⏐χ ≤ 1

4 ,
⏐⏐⏐⏐ 1
Gii

mi

⏐⏐⏐⏐χ ≤ 4
3 , (7.4.22)

which proves (7.4.20) and hence (7.4.12a).

Since (7.4.12b) is established for |d(8)
i | (cf. (7.4.19)), it suffices to use the second

bound in (7.4.22) to finish the proof of (7.4.12b) by estimating |d(7)
i | via the first term

in (7.4.18).

We now show (7.4.13) and (7.4.11b). The identity

Gij = −
{j}∑
k

G
{j}
ik hkjGjj

and the linear large deviation bound (C.2) in [60] imply

|Gij| ≺
( 1
N

{j}∑
k

|G{j}
ik |2

)1/2
|Gjj|. (7.4.23)
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Using (7.4.5) to estimate |G{j}
ik | and |Gjj|, we obtain (7.4.11b). Applying the estimate

(7.4.20) and the definition of χ in (7.4.23) yield |Gij|χ ≺ |Gjj|χΛw. Hence, the second

bound in (7.4.22) implies (7.4.13) and conclude the proof of Lemma 7.4.3. □

For the following computations, we recall the definition of the product and the imag-

inary part on (CK×K)N from (7.1.3) and (7.1.4), respectively.

The proof of the following Lemma 7.4.4 is based on inverting the stability operator

in the difference equation describing g −m in terms of d. We derive this equation first.

Subtracting (7.3.26) from (7.4.7) and multiplying the result from the left by mi and from

the right by gi yield

gi −mi = miSi[g −m]mi +midigi +miSi[g −m](gi −mi)

for i ∈ [N ]. Introducing d = (d1, . . . , dN) ∈ (CK×K)N as well as recalling S [r] =

(Si[r])Ni=1, the definition of Si from (7.2.4) and L [r] = r −mS [r]m from (7.3.36), we

can write

L (g −m) = mdg +mS [g −m](g −m). (7.4.24)

Since L is invertible for z ∈ H by Lemma 7.3.7 ((i)) and (7.3.37), applying the inverse

of L on both sides of (7.4.24) and estimating the norm yields

∥g −m∥ ≤ ∥L −1∥∥m∥(∥d∥∥g∥+ ∥S ∥∥g −m∥2) (7.4.25)

We recall the definition of ρ from (7.3.10).

Lemma 7.4.4. (i) Uniformly for η ≥ max{1, |E|, ∥A∥2}, we have

Λ ≺ η−2. (7.4.26)

(ii) Uniformly for η > 0, we have

∥g −m∥1(Λ ≤ ϑ) ≺ ∥L −1∥∥m∥2
(

1√
N

+ Λhs + ∥m−1∥Λ2
w

)
, (7.4.27)

where

ϑ ..= 1
4(∥L −1∥∥m∥∥S ∥+ ∥m−1∥) . (7.4.28)
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(iii) Let a1, . . . , aN be Hermitian. We define

ψ ..= ∥L −1∥∥m∥2∥m−1∥ 1
Nη

,

φ ..= ∥L −1∥∥m∥2
(

1√
N

+
√

ρ

Nη
+ ∥L −1∥∥m∥2 1

Nη
+ ∥m

−1∥
Nη

∥Imm∥
)

+ ∥m∥
⎛⎝√∥Imm∥

Nη
+ ∥m∥

Nη

⎞⎠ .

Then for all δ > 0 and uniformly for all η > 0 such that ψ(η) ≤ N−δ we have

Λ 1(Λ ≤ ϑ) ≺δ φ . (7.4.29)

Note that the proof of (iii) of Lemma 7.4.4 requires H to be Hermitian because of

the use of the Ward identity, G(η)∗G(η) = η−1ImG(η). The Ward identity implies

PiiG
∗G = PiiGG

∗ = ImGii/η and hence,

Λhs =
√
⟨ImG⟩
Nη

, Λw = max
i

√
Im TrGii

Nη
. (7.4.30)

Proof. We start with the proof of (7.4.26). We remark that ∥g∥ + ∥m∥ ≤ 2/η by

(7.4.5) and (7.3.11a). Therefore, for η ≥ max{1, |E|, ∥A∥2}, we conclude from (7.4.25)

that

∥g −m∥ ≲ 1
η2∥d∥+ 1

η3 .

Here, we also used (7.3.21), (7.3.37) and (7.3.35). Since ∥d∥ ≺ 1 by (7.4.11a), we get

∥g −m∥ ≺ η−2 in this η-regime. Hence, combined with the bound (7.4.11b) for the

offdiagonal terms, we obtain (7.4.26).

For the proof of (ii), we also start from (7.4.25). Since 2∥L −1∥∥m∥∥S ∥ϑ ≤ 1 by

definition of ϑ (cf. (7.4.28)) and ∥g∥1(Λ ≤ ϑ) ≤ ∥m∥∥m−1g∥1(Λ ≤ ϑ) ≤ 4∥m∥/3 by

the second bound in (7.4.22), we conclude that

∥g −m∥1(Λ ≤ ϑ) ≤ 8∥L −1∥∥m∥∥d∥∥m∥/3 . (7.4.31)

Applying (7.4.12) to the right-hand side and using |Gii| ≤
√
NΛhs, we obtain (7.4.27).
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For the proof of (iii), let now H be Hermitian. Therefore, (7.4.30) is applicable and

yields

Λhs =
√
⟨ImG⟩
Nη

≲

√
ρ

Nη
+ 1
ε

1
Nη

+ ε∥g −m∥ ,

Λ2
w =

(
Nmax
i=1

√
Im TrGii

Nη

)2
≤ ∥Imm∥

Nη
+ ∥g −m∥

Nη
.

Here, we used ⟨ImG⟩ ≤ ⟨ImM⟩ + ∥g −m∥, ⟨ImM⟩ = πρ and Young’s inequality as

well as introduced an arbitrary ε > 0 in the first estimate. We plug these estimates into

the right-hand side of (7.4.27) and choose ε ..= N−γ/(∥L −1∥∥m∥2) for arbitrary γ > 0.

Thus, we can absorb ∥g −m∥ in the estimate on Λhs into the left-hand side of (7.4.27).

Similarly, using ψ(η) ≤ N−δ we absorb ∥g−m∥ in the estimate on Λw into the left-hand

side of (7.4.27). This yields (7.4.29) for the contribution of the diagonal entries to Λ.

For the offdiagonal entries, we use the second relation in (7.4.30) and get as before

Λw = Nmax
i=1

√
Im TrGii

Nη
≤
√
∥Imm∥
Nη

+ 1
ε

1
Nη

+ εΛ.

Using this estimate in (7.4.13) and choosing ε ..= N−γ/∥m∥ to absorb Λ into the left-

hand side, we obtain (7.4.29) for diagonal and offdiagonal entries of G. This concludes

the proof of Lemma 7.4.4. □

Lemma 7.4.5 (Averaged local law). Suppose for some deterministic control parameter

0 < Φ ≤ N−ε a local law holds in the form

Λ ≺ Φ
∥m−1∥

. (7.4.32)

Then for any deterministic c1, . . . , cN ∈ CK×K with maxi|ci| ≤ 1 we have

⏐⏐⏐ 1
N

N∑
i=1

c∗
i (Gii −mi)

⏐⏐⏐ ≺ ∥(L −1)∗∥∥m∥
( Φ2

∥m−1∥2 + max
{ 1√

N
,Φ
}

Φ+

∥m∥2

N
+ Λ2

w∥m∥∥m−1∥
)
.

(7.4.33)

In (7.4.33), the adjoint of L −1 is understood with respect to the scalar product

Tr(x ·y), where we defined the dot-product x ·y for x = (x1, . . . , xN), y = (y1, . . . , yN) ∈
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(CK×K)N via

x · y ..= 1
N

N∑
i=1

x∗
i yi ∈ CK×K . (7.4.34)

It is easy to see that x ·L −1y = ((L −1)∗x) · y.

Proof. We set c ..= (c1, . . . , cN) and recall g = (G11, . . . , GNN) ∈ (CK×K)N . Using

(7.4.24), we compute

1
N

N∑
i=1

c∗
i (Gii−mi) = c · (g−m) = (m∗(L −1)∗[c]) · (dg+ S [g−m](g−m)). (7.4.35)

We rewrite the term dg next. Indeed, a straightforward computation starting from the

Schur complement formula (7.4.6) shows that

diGii =
(
Qi

1
Gii

)
Gii + (d(7)

i + d
(8)
i )Gii

=
(
Qi

1
Gii

)
mi +

(
Qi

1
Gii

)
(Gii −mi) + (d(7)

i + d
(8)
i )Gii,

(7.4.36)

where we defined QiZ ..= Z − EiZ and the conditional expectation

EiZ ..= E[Z|H{i}] = E[Z|{xµkl, yνkl : k, l ∈ [N ] \ {i}, µ, ν ∈ [ℓ]}]

for any random variable Z.

The advantage of the representation (7.4.36) is that we can apply the following propo-

sition to the first term on the right-hand side. It shows that when Qi(1/Gii) is averaged

in i, there are certain cancellations taking place such that the average has a smaller or-

der than Qi(1/Gii) = O(Λ). The first statement of this type was proven for generalized

Wigner matrices in [72]. The complete proof in our setup will be presented in Section

7.5.

Proposition 7.4.6 (Fluctuation Averaging). Let Φ be a deterministic control parameter

such that 0 < Φ ≤ N−ε. If

max
i,j

⏐⏐⏐⏐ 1
mi

Gij − δij
⏐⏐⏐⏐ ≺ Φ , (7.4.37)
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then for any deterministic c1, . . . , cN ∈ CK×K satisfying maxi|ci| ≤ 1 we have
⏐⏐⏐⏐ 1
N

N∑
i=1

ciQi
1
Gii

mi

⏐⏐⏐⏐ ≺ max
{ 1√

N
,Φ
}

Φ . (7.4.38)

Note that the assumption (7.4.32) directly implies (7.4.37). Moreover, (7.4.37) yields⏐⏐⏐⏐(Qi
1
Gii

)
(Gii −mi)

⏐⏐⏐⏐ ≤ ⏐⏐⏐⏐Qi

( 1
Gii

mi − 1
)⏐⏐⏐⏐∥m−1∥Λ ≺ Φ2.

Thus, we obtain from (7.4.35) and (7.4.36) the relation

|c · (g −m)| ≺ ∥(L −1)∗∥∥m∥
( 1
N

⏐⏐⏐ N∑
i=1

c̃iQi
1
Gii

mi

⏐⏐⏐+ Φ2+

Nmax
i=1

(|d(7)
i |+ |d

(8)
i |)|Gii|+ ∥S ∥Λ2

)
,

(7.4.39)

where c̃ = (c̃1, . . . , c̃N) ∈ (CK×K)N is a multiple of m∗(L −1)∗[c] and ∥c̃∥ ≤ 1. From

this estimate, we now conclude (7.4.33). Since (7.4.37) is satisfied by (7.4.32) the bound

(7.4.38) implies that the first term on the right-hand side of (7.4.39) is controlled by

the right-hand side of (7.4.33). For the third term, we use (7.4.12b) and |Gii| ≤ ∥m∥ +

Φ/∥m−1∥ as well as Φ ≤ 1 ≤ ∥m∥∥m−1∥. Hence, (7.3.35) concludes the proof of (7.4.33)

and Lemma 7.4.5. □

7.4.2. No eigenvalues away from self-consistent spectrum. We now state and

prove our result for Hermitian Kronecker matricesH , Theorem 7.4.7 below. The theorem

has two parts. For simplicity, we state the first part under the condition that A =∑
i ai⊗Eii is bounded. We relax this condition in the second part for the purpose of our

main result, Theorem 7.2.4. In this application, A = Aζ = ∑
i a

ζ
i ⊗ Eii, where aζi are

given in (7.2.5), and we need to deal with unbounded ζ as well.

We recall that m = (m1, . . . ,mN) is the unique solution of (7.3.26) with positive

imaginary part. Moreover, the function ρ : H→ R+ was defined in (7.3.10), the set supp ρ

in Definition 7.3.3 and dρ(z) ..= dist(z, supp ρ). We denote E ..= Re z and η ..= Im z. For

a matrix B, we write σmin(B) to denote its smallest singular value.

Theorem 7.4.7 (No eigenvalues away from supp ρ). Fix K ∈ N. Let A = ∑N
i=1 ai ⊗ Eii

be a Hermitian matrix and H be a Hermitian Kronecker random matrix as in (7.4.2)

such that (7.2.9), (7.2.10) and (7.3.27) are satisfied.
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(i) Assume that A is bounded, i.e., ∥A∥2 ≤ κ4. Then there is a universal constant

δ > 0 such that for each D > 0, there is a constant CD > 0 such that

P
(

Spec(H) ⊂ {τ ∈ R : dist(τ, supp ρ) ≤ N−δ}
)
≥ 1− CD

ND
. (7.4.40)

(ii) Assume now only the weaker bound

∥A∥2 = Nmax
i=1
|ai| ≤ Nκ7 (7.4.41)

Let H(2)
out be defined through

H(2)
out

..=
{
w ∈ H : dist(w, SpecA) ≥ 2∥S ∥1/2 + 1, ∥A− w1∥2

σmin(A− w1) ≤ κ9

}
. (7.4.42)

Then for each D > 0, there is a constant CD > 0 such that

P
(

Spec(H) ∩H(2)
out = ∅

)
≥ 1− CD

ND
. (7.4.43)

The constants CD in (7.4.40) and (7.4.43) only depend on K, κ1, (φp)p≥3, α∗, κ4, κ7 and

κ9 in addition to D.

We will prove Theorem 7.4.7 as a consequence of the following Lemma 7.4.8. This

lemma is a type of local law. Its general comprehensive version, Lemma 7.8.1 below,

is a standard application of Lemma 7.4.4, Lemma 7.4.5 and Proposition 7.4.6. For the

convenience of the reader, we will give an outline of the proof in Section 7.8 below.

We also consider κ7, κ8, κ9 from (7.4.41) and (7.4.44) below, respectively, as model

parameters.

Lemma 7.4.8. Fix K ∈ N. Let κ7 > 0 and A = ∑N
i=1 ai ⊗ Eii be a Hermitian matrix

such that (7.4.41) holds true. Let H be a Hermitian Kronecker random matrix as in

(7.4.2) such that (7.2.9), (7.2.10) and (7.3.27) are satisfied. We define

H(1)
out

..=
{
w ∈ H : dist(w, SpecA) ≤ 2∥S ∥1/2 + 1, ∥A∥2 ≤ κ8

}
, (7.4.44a)

H(2)
out

..=
{
w ∈ H : dist(w, SpecA) ≥ 2∥S ∥1/2 + 1, ∥A− w1∥2

σmin(A− w1) ≤ κ9

}
. (7.4.44b)
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Then there are p ∈ N and P ∈ N independent of N and the model parameters such that

⏐⏐⏐ 1
N

N∑
i=1

Tr Im (Gii(z)−mi(z))
⏐⏐⏐ ≺ max

{
1, 1
dPρ (z)

}( 1
N

+ 1
(Nη)2

)
(7.4.45)

for any z = E + iη ∈ H(1)
out ∪H(2)

out such that |E| ≤ Nκ7+1 and η ≥ N−1+γ(1 + d−p
ρ (z)).

We remark that since A is Hermitian, if ∥A∥2 is bounded, then the second condition

in (7.4.44b) is automatically satisfied (perhaps with a larger κ9), given the first one. So

for ∥A∥2 ≤ κ8, alternatively, we could have defined the sets

H(1)
out

..=
{
w ∈ H : dist(w, SpecA) ≤ 2∥S ∥1/2 + 1

}
,

H(2)
out

..=
{
w ∈ H : dist(w, SpecA) ≥ 2∥S ∥1/2 + 1

}
.

(7.4.46)

If ∥A∥2 does not have an N -independent bound, then we could have defined H(1)
out

..= ∅

and H(2)
out as in (7.4.42). The estimate (7.4.45) holds as stated with these alternative

definitions of H(1)
out and H(2)

out.

Definition 7.4.9. (Overwhelming probability) We say that an eventA(N) happens asymp-

totically with overwhelming probability, a.w.o.p., if for each D > 0 there is CD > 0 such

that for all N ∈ N, we have

P(A(N)) ≥ 1− CD
ND

.

Proof of Theorem 7.4.7. From (7.4.4), we conclude the crude bound

max
λ∈SpecH

|λ|2 ≤ Tr(H2) =
N∑

i,j=1
|hij|2 ≺ (1 + ∥A∥2

2)N. (7.4.47)

Therefore, there are a.w.o.p. no eigenvalues of H outside of [−a, a] with a ..= (1 +

∥A∥2)
√
N .

We introduce the set Aδ ..= {ω ∈ R : dist(ω, supp ρ) ≥ N−δ} for δ > 0. The previous

argument proves that there are no eigenvalues in Aδ \ [−a, a] for any δ > 0. For the

opposite regime, i.e., to show that Aδ ∩ [−a, a] does not contain any eigenvalue of H

a.w.o.p. with some small δ > 0, we use the following standard lemma and will include a

proof for the reader’s convenience at the end of this section.
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Lemma 7.4.10. Let H be an arbitrary Hermitian random matrix and G(z) ..= (H −

z1)−1 its resolvent at z ∈ H. Let Φ: H→ R+ be a deterministic (possibly N-dependent)

control parameter such that

1
N

Im TrG(τ + iη0) ≺ Φ(τ + iη0) (7.4.48)

for some τ ∈ R and η0 > 0.

(i) If (Nη0)−1 ≥ N εΦ(τ + iη0) for some ε > 0 then Spec(H) ∩ [τ − η0, τ + η0] = ∅

a.w.o.p.

(ii) Let E ..= {τ ∈ [−NC , NC ] : (Nη0)−1 ≥ N εΦ(τ + iη0)} for some C > 0 and ε > 0.

Furthermore, suppose that η0 ≥ N−c for some c > 0 and (7.4.48) holds uniformly

for all τ ∈ E. Then Spec(H) ∩ E = ∅ a.w.o.p.

We now finish the proof of Theorem 7.4.7. In fact, by (7.4.41) we have a ≲ Nκ7+1/2,

thus we work in the regime |E| ≤ Nκ7+1. We choose

Φ(z) ..= ρ(z) + max{1, d−P
ρ (z)}

( 1
N

+ 1
(N Im z)2

)
and η0

..= N−2/3.

For small enough δ and γ, we can assume that η0 ≥ N−1+γ(1 + dist(τ + iη0, supp ρ)−p)

for dist(τ, supp ρ) ≥ N−δ. Consider first the case when ∥A∥2 ≤ κ4, then H(1)
out and H(2)

out

are complements of each other, see the remark at (7.4.46), and then (7.4.48) is satisfied

by (7.4.45) for any τ with |τ | ≤ Nκ7+1. Moreover, owing to (7.3.12), we have

Φ(E + iη0) ≲
N2δ

N2/3 +NPδ
( 1
N

+ 1
N2/3

)
for all E ∈ Aδ ∩ [−a, a]. Therefore, by possibly reducing δ > 0 and introducing a suf-

ficiently small ε > 0, we can assume N εΦ(E + iη0) ≤ N−1/3 = (Nη0)−1. Thus, from

Lemma 7.4.10 we infer that H does not have any eigenvalues in Aδ ∩ [−a, a] a.w.o.p.

Combined with the argument preceding Lemma 7.4.10, which excludes a.w.o.p. eigenval-

ues of H in Aδ \ [−a, a], this proves (7.4.40) if ∥A∥2 ≤ κ4. Under the weaker assumption

∥A∥2 ≤ Nκ7 the same argument works but only for E ∈ H(2)
out since (7.4.45) was proven

only in this regime. □
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Proof of Lemma 7.4.10. For the proof of part (i), we compute

1
N

Im TrG(τ + iη) = 1
N

∑
i

η

(λi − τ)2 + η2 .

Estimating the maximum from above by the sum, we obtain from the previous identity

and the assumption that

1
N

max
i

η0

(λi − τ)2 + η2
0
≺ Φ ≤ N−ε

Nη0
. (7.4.49)

We conclude that mini|λi − τ | ≥ η0 a.w.o.p. and hence (i) follows.

The part (ii) is an immediate consequence of (i) and a union bound argument using

the Lipschitz-continuity in τ on E of the left-hand side of (7.4.49) with Lipschitz-constant

bounded by N3(C+c) and the boundedness of E , i.e., E ⊂ [−NC , NC ]. □

7.5. Fluctuation Averaging: Proof of Proposition 7.4.6

In this section, we prove the Fluctuation Averaging which was stated as Proposi-

tion 7.4.6 in the previous section.

Proof of Proposition 7.4.6. We fix an even p ∈ N and use the abbreviation

Zi ..= ciQi
1
Gii

mi .

We will estimate the p-th moment of 1
N

∑
i Zi. For a p-tuple i = (i1, . . . , ip) ∈ {1, . . . , N}p

we call a label il a lone label if it appears only once in i. We denote by JL all tuples

i ∈ {1, . . . , N}p with exactly L lone labels. Then we have

E
⏐⏐⏐⏐ 1
N

N∑
i=1

Zi

⏐⏐⏐⏐p ≤ 1
Np

p∑
L=0

∑
i∈JL

|EZi1 . . . Zip/2Zip/2+1 . . . Zip| . (7.5.1)

For i ∈ JL we estimate

|EZi1 . . . Zip/2Zip/2+1 . . . Zip | ≺ Φp+L. (7.5.2)
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Before verifying (7.5.2) we show this bound is sufficient to finish the proof. Indeed, using

|JL| ≤ C(p)N (L+p)/2 and (7.5.2) in (7.5.1) yields

E
⏐⏐⏐⏐ 1
N

N∑
i=1

Zi

⏐⏐⏐⏐p ≺ p∑
L=0

N−(p−L)/2Φp+L ≺
(

max
{ 1√

N
,Φ
}

Φ
)p
.

This implies (7.4.38).

The rest of the proof is dedicated to showing (7.5.2). Since the complex conjugates do

not play any role in the following arguments, we omit them in our notation. Furthermore,

by symmetry we may assume that {i1, . . . , iL} are the lone labels in i.

We we fix ℓ ∈ {0, . . . , L} and l ∈ {1, . . . , p}. For any K ∈ N0 we call a pair

(t,T ) with t = (t1, . . . , tK−1) , T = (T0, T01, T1, T12, . . . , TK−1, TK−1K , TK) ,

an l-factor (at level ℓ) if for all k ∈ {1, . . . , K − 1} and all k′ ∈ {1, . . . , K − 2} the entries

of the pair satisfy

tk ∈ {i1, . . . , iℓ}, Tk, Tk′k′+1 ⊆ {i1, . . . , iℓ} ,

tk′ ̸= tk′+1 , tk ̸∈ Tk , tk′ , tk′+1 ̸∈ Tk′k′+1 , t1 ̸= il , , tK−1 ̸= il , il ̸∈ T0 ∪ TK+1 .

(7.5.3)

Then we associate to such a pair the expression

Zt,T ..= cil Qil

[ 1
GT0
ilil

GT01
ilt1

1
GT1
t1t1

GT12
t1t2

1
GT2
t2t2

. . .
1

G
TK−1
tK−1tK−1

G
TK−1K

tK−1il

1
GTK
ilil

]
mil . (7.5.4)

In particular, for K = 0 we have

Z∅,(T0)
..= cil Qil

1
GT0
ilil

mil , Z∅,(∅)
..= Zil .

We also call

d(t,T ) ..= K ,

the degree of the l-factor (t,T ).

By induction on ℓ we now prove the identity

EZi1 . . . Zip =
∑

(t,T )∈Iℓ

(±)EZt1,T 1 . . . Ztp,T p , (7.5.5)
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where the sign (±) indicates that each summand may have a coefficient +1 or −1 and the

sum is over a set Iℓ that contains pair of p-tuples t = (t1, . . . , tp) and T = (T 1, . . . ,T p)

such that (tl,T l) for all l = 1, . . . , p is an l-factor at level ℓ. Furthermore, for all ℓ ∈

{0, . . . , L} the size of Iℓ and the maximal degree of the l-factors (tl,T l) are bounded by

a constant depending only on p and
p∑
i=1

max{1, d(tl,T l)} ≥ p+ ℓ , (t,T ) ∈ Iℓ . (7.5.6)

The bound (7.5.2) follows from (7.5.5) and (7.5.6) for ℓ = L because

|Zt,T | ≺ Φmax{1,d(t,T )}, (7.5.7)

for any l-factor (t,T ). We postpone the proof of (7.5.7) to the very end of the proof of

Proposition 7.4.6.

The start of the induction for the proof of (7.5.5) is trivial since for ℓ = 0 we can

chose the set Iℓ to contain only one element with (tl,T l) = (∅, (∅)) for all l = 1, . . . , p.

For the induction step, suppose that (7.5.5) and (7.5.6) have been proven for some ℓ ∈

{1, . . . , L− 1}. Then we expand all l-factors (tl,T l) with l ̸= ℓ+ 1 within each summand

on the right-hand side of (7.5.5) in the lone index iℓ+1 by using the formulas

GT
ij = G

T∪{k}
ij +GT

ik

1
GT
kk

GT
kj , i, j /∈ {k} ∪ T , (7.5.8a)

1
GT
ii

= 1
G
T∪{k}
ii

− 1
GT
ii

GT
ik

1
GT
kk

GT
ki

1
G
T∪{k}
ii

, i /∈ {k} ∪ T , (7.5.8b)

for k = iℓ+1. More precisely, for all l ̸= ℓ + 1 we use (7.5.8) on each factor on the

right-hand side of (7.5.4) with (t,T ) = (tl,T l); (7.5.8a) for the off-diagonal and (7.5.8b)

for the inverse diagonal resolvent entries. Multiplying out the resulting factors, we write

EZt1,T 1 . . . Ztp,T p as a sum of

2
∑

l ̸=ℓ+1 2d(tl,T l)+1

summands of the form

EZ
t̃1,T̃ 1

. . . Z
t̃p,T̃ p

, (7.5.9)
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where for all l = 1, . . . , p the pair (t̃l, T̃ l) is an l-factor at level ℓ + 1. Note that we did

not expand the ℓ + 1-factor Ztℓ+1,T ℓ+1 . In particular, the only nontrivial conditions for

(t̃l, T̃ l) to be an l-factor at level ℓ + 1 (cf. (7.5.3)), namely tk ̸= tk+1, t1 ̸= iℓ+1 and

tK−1 ̸= iℓ+1, are satisfied because iℓ+1 does not appear as a lower index on the right-hand

side of (7.5.4) when on the left-hand side (t,T ) = (tl,T l).

Moreover all but one of the summands (7.5.9) satisfy
p∑
i=1

d(t̃l, T̃ l) ≥ p+ ℓ+ 1 ,

because the choice of the second summand in both (7.5.8a) and (7.5.8b) increases the

number of off-diagonal resolvent elements in the l-factor that is expanded. The only

exception is the summand (7.5.9) for which in the expansion in all factors always the

first summand of (7.5.8a) and (7.5.8b) is chosen. However, in this case all Z
t̃l,T̃ l

with

l ̸= ℓ + 1 are independent of iℓ+1 because this lone index has been completely removed

from all factors. We conclude that this particular summand vanishes identically. Thus

(7.5.6) holds with ℓ replaced by ℓ+ 1 and the induction step is proven.

It remains to verify (7.5.7). For d(t,T ) = 0 we use that⏐⏐⏐⏐Qil

1
Gilil

mil

⏐⏐⏐⏐ ≤ ⏐⏐⏐⏐ 1
Gilil

mil − 1

⏐⏐⏐⏐ ≺ Φ ,
⏐⏐⏐⏐ 1
GT
ilil

mil −
1

Gilil

mil

⏐⏐⏐⏐ ≺ Φ2 . (7.5.10)

The first bound in (7.5.10) simply uses the assumption (7.4.37) while the second bound

uses the expansion formulas (7.5.8) and (7.4.37). For K = d(t,T ) > 0 we realize that

K encodes the number of off-diagonal resolvent entries GT
ij in (7.5.4). In the factors of

(7.5.4) we insert the entries of M so that (7.4.37) becomes usable, i.e., we use

1
GTk
tktk

G
Tkk+1
tktk+1 = 1

GTk
tktk

mtk

1
mtk

G
Tkk+1
tktk+1 .

Then similarly to (7.5.10) we use⏐⏐⏐⏐ 1
mtk

Gtktk+1

⏐⏐⏐⏐ ≺ Φ ,

⏐⏐⏐⏐ 1
mtk

G
Tkk+1
tktk+1 −

1
mtk

Gtktk+1

⏐⏐⏐⏐ ≺ Φ2 ,

where again the first bound follows from (7.4.37) and the second bound from (7.5.8)

and (7.4.37). □
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7.6. Non-Hermitian Kronecker matrices and proof of Theorem 7.2.4

Since Spec(X) ⊂ Specε(X) (cf. (7.2.8)) for all ε > 0, Theorem 7.2.4 clearly follows

from the following lemma.

Lemma 7.6.1 (Pseudospectrum of X contained in self-consistent pseudospectrum). Un-

der the assumptions of Theorem 7.2.4, we have that for each ε ∈ (0, 1], ∆ > 0 and D > 0,

there is a constant Cε,∆,D > 0 such that

P( Specε(X) ⊂ Dε+∆) ≥ 1− Cε,∆,D
ND

. (7.6.1)

Proof. Let Hζ be defined as in (7.4.1). Note that ζ ∈ Specε(X) if and only if

dist(0, Spec(Hζ)) ≤ ε. We set

Ã ..=
N∑
i=1

ãi ⊗ Eii. (7.6.2)

We first establish that Specε(X) is contained in D(0, N) ..= {w ∈ C : |w| ≤ N} a.w.o.p.

Similarly, as in (7.4.47), using an analogue of (7.4.4) for X instead of H , we get

max
ζ∈SpecX

|ζ|2 ≤ Tr(X∗X) =
N∑

i,j=1
Tr ((PijX)∗(PijX)) ≲

N∑
i,j=1
|PijX|2 ≺ (1 + ∥Ã∥2

2)N.

Thus, all eigenvalues of X have a.w.o.p. moduli smaller than (1 + ∥Ã∥2)
√
N ≤ N . The

above characterization of Specε(X) and ε ≤ 1 yield Specε(X) ⊂ D(0, N) a.w.o.p.

We now fix an ε ∈ (0, 1] and for the remainder of the proof the comparison relation ≲ is

allowed to depend on ε without indicating that in the notation. In order to show that the

complement of Specε(X) contains Dc
ε+∆ ∩D(0, N) a.w.o.p. we will apply Theorem 7.4.7

to Hζ for ζ ∈ Dc
ε+∆ ∩D(0, N). In particular, here we have

A = Aζ ..=
∑
i

aζi ⊗ Eii ,

where aζi is defined as in (7.2.5).

Now, we conclude that Spec(Hζ) ∩ [−ε − ∆/2, ε + ∆/2] = ∅ a.w.o.p. for each

ζ ∈ Dc
ε+∆ ∩D(0, N). If ζ is bounded, hence Aζ is bounded, we can use (7.4.40) and we

need to show that [−ε − ∆/2, ε + ∆/2] ⊂ {τ ∈ R : dist(τ, supp ρζ) ≥ N−δ} but this is

straightforward since ζ ∈ Dc
ε+∆ implies dist(0, supp ρζ) ≥ ε+ ∆ by its definition.
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For large ζ we use part (ii) of Theorem 7.4.7 and we need to show that [−ε−∆/2, ε+

∆/2]+iη ⊂ H(2)
out for any small η. Take z ∈ H with |z| ≤ ε+∆/2. If |ζ| ≥ ∥Ã∥+2∥S ∥1/2+

2, then dist(z, Spec(Aζ)) ≥ 2∥S ∥1/2 + 1, so the first condition in the definition (7.4.44b)

of H(2)
out is satisfied. The second condition is straightforward since for large ζ and small z,

both ∥Aζ − z1∥2 and σmin(Aζ − z1) are comparable with |ζ|.

Hence, Theorem 7.4.7 is applicable and we conclude that Spec(Hζ)∩ [−ε−∆/2, ε+

∆/2] = ∅ a.w.o.p. for all ζ ∈ Dc
ε+∆. If λ1(ζ) ≤ . . . ≤ λ2LN(ζ) denote the ordered eigen-

values of Hζ then λi(ζ) is Lipschitz-continuous in ζ by the Hoffman-Wielandt inequality.

Therefore, introducing a grid in ζ and applying a union bound argument yield

sup
ζ∈Dc

ε+∆∩D(0,N)
dist(0, Spec(Hζ)) ≤ ε a.w.o.p.

Since ζ ∈ Specε(X) if and only if dist(0, Spec(Hζ)) ≤ ε we obtain Specε(X) ∩ Dc
ε+∆ ∩

D(0, N) = ∅ a.w.o.p. As we proved Specε(X) ∩ D(0, N)c = ∅ a.w.o.p. before this

concludes the proof of Lemma 7.6.1. □

7.7. An alternative definition of the self-consistent ε-pseudospectrum

Instead of the self-consistent ε-pseudospectrum Dε introduced in (7.2.7) one may

work with the deterministic set D̃ε from (7.2.14) when formulating our main result, The-

orem 7.2.4. The advantage of the set D̃ε is that it only requires solving the Hermitized

Dyson equation (7.2.6) for spectral parameters z along the imaginary axis. The follow-

ing lemma shows that Dε and D̃ε are comparable in the sense that for any ε we have

Dε1 ⊆ D̃ε ⊆ Dε2 for certain ε1, ε2.

Lemma 7.7.1. Let m be the solution to the Hermitized Dyson equation (7.2.6) and

suppose Assumptions 7.2.3 are satisfied. There is a positive constant c, depending only

on model parameters, such that for any ε ∈ (0, 1) we have the inclusions

D̃ε ⊆ D√
ε , Dcε27 ⊆ D̃ε ,

where Dε is the self-consistent ε-pseudospectrum from (7.2.7) and D̃ε is defined in (7.2.14).

Proof. The inclusion D̃ε ⊆ D√
ε is trivial because mζ

j is the Stieltjes transform of vζj .

So we concentrate on the inclusion Dcε27 ⊆ D̃ε. We fix ζ ∈ C\D̃ε and suppress it from
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our notation in the following, i.e., m = mζ , vj = vζj , etc. Recall that by assumption we

have (cf. (7.6.2))

∥Ã∥ ≲ 1 .

Since any large enough ζ is contained in both sets C \ D̃ε and C \Dε by (7.3.32a) and the

upper bound in (7.3.11b), we may assume that |ζ| ≲ 1. We use the representation of mi

as the Stieltjes transform of vi and that vi has bounded support to see

|⟨x,mi(z)y⟩| ≤
1
2

∫
R

⟨x, vi(dτ)x⟩+ ⟨y , vi(dτ)y⟩
|τ − z|

≲
1
η

(⟨x, Immi(z)x⟩+ ⟨y , Immi(z)y⟩) ,

for any x, y ∈ CK , where K = 2L. In particular

|mi(z)| ≲
|Immi(z)|

η
. (7.7.1)

Fix an η ∈ (0, 1) for which the inequality

1
η
∥Imm(iη)∥ ≤ 2

ε
(7.7.2)

holds true. Since ζ ∈ C \ D̃ε such an η can be chosen arbitrarily small. Then we have

∥m(iη)∥ ≲
1
ε
, ∥m(iη)−1∥ ≲

1
ε
, η ≲ Immi(iη) ≲

η

ε
. (7.7.3)

The first inequality follows from (7.7.1) and (7.7.2), the second inequality from (7.3.11c)

and the third from (7.7.2) and the bounded support of vi. In particular, by the formula

(7.3.17) for the norm of F we have

1− ∥F(iη)∥sp ≳ ε4 . (7.7.4)

To see (7.7.4) we simply follow the calculation in the proof of Lemma 7.3.6 but instead

of using the bounds (7.3.11a), (7.3.11c) and (7.3.11b) on ∥m∥ and ∥m−1∥ and Immi we

use (7.7.3). Similarly we find

∥CW∥∥C−1
W ∥ ≲

1
ε3 , ∥C√

ImM∥∥C
−1√

ImM
∥ ≲

1
ε
.

By (7.3.15) we conclude

∥L−1∥sp ≲
1
ε8 .



240 CHAPTER 7. LOCATION OF THE SPECTRUM OF KRONECKER RANDOM MATRICES

Using (7.3.23) and the bound on ∥m∥ in (7.7.3) we improve this bound on the ∥·∥sp-norm

to a bound on the ∥·∥-norm,

∥L−1∥ ≲
1
ε12 .

We are therefore in the linear stability regime of the Dyson equation and from the stability

equation (cf. (7.3.14)) for the difference ∆ ..= m(z)−m(iη), i.e., from

L [∆] = (z − iη)m(iη)2 + 1
2
(
m(iη)S [∆]∆ + ∆S [∆]m(iη)

)
, (7.7.5)

we infer

∥m(z)−m(iη)∥ ≲ ∥L−1∥∥m∥2|z − iη| ≲ |z − iη|
ε14 ,

for any z ∈ H with

|z − iη| ≤ C

∥L−1∥2∥m∥3 ≲ ε27 ,

where C ∼ 1 is a constant depending only on model parameters. Note that in (7.7.5)

we symmetrized the quadratic term in ∆ which can always be done since every other

term of the equation is invariant under taking the Hermitian conjugate. In fact, we see

that m can be extended analytically to an ε27-neighborhood of iη. Since η can be chosen

arbitrarily small we find an analytic extension of m to all z ∈ C with |z| ≤ cε27 for

some constant c ∼ 1. We denote this extension by the same symbol m = (m1, . . . ,mN)

as the solution to the Dyson equation. By definition of D̃ε we have Immi(0) = 0 and

it is easy to see by the following argument that for any z ∈ R the imaginary part still

vanishes as long as we are in the linear stability regime. Thus ρζ([−cε27, cε27]) = 0:

The stability equation (7.7.5) evaluated at η = 0 and z ∈ R is an equation on the

space {∆ ∈ (CK×K)N : ∆∗
i = ∆i, i = 1, . . . , N}, i.e., for any ∆ in this space both

sides of the equation remain inside this space. Thus by the implicit function theorem

applied within this subspace of (CK×K)N we conclude that the solution to (7.7.5) satisfies

∆ = ∆∗, or equivalently Im ∆ = 0, for z ∈ R inside the linear stability regime. Since

ρζ([−cε27, cε27]) = 0 we thus obtain ζ ∈ C \Dcε27 which yields the missing inclusion. □
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7.8. Proofs of Theorem 7.2.7 and Lemma 7.4.8

For the reader’s convenience, we now state and prove the local law forH , Lemma 7.8.1

below. Its first part is designed for all spectral parameters z, where the Dyson equation,

(7.3.26), is stable and its solution m is bounded; here the local law holds down to the

scale η = Im z ≥ N−1+γ that is optimal near the self-consistent spectrum. The second

part is valid away from the self-consistent spectrum; in this regime the Dyson equation

is always stable and the local law holds down to the real line, however the dependence

of our estimate on the distance from the spectrum is not optimized. For the proof of

Lemma 7.4.8, the second part is sufficient, but we also give the first part for completeness.

For simplicity we state the first part under the condition that A = ∑
i ai⊗Eii is bounded;

in the second part we relax this condition to include the assumptions of Lemma 7.4.8.

From now on, we will also consider κ4, . . . , κ9 from (7.4.41), (7.4.44a), (7.4.44b) and

(7.8.1) below, respectively, as model parameters.

Lemma 7.8.1 (Local law). Fix K ∈ N. Let A = ∑N
i=1 ai ⊗ Eii be a deterministic

Hermitian matrix. Let H be a Hermitian random matrix as in (7.4.2) satisfying As-

sumptions 7.4.1, i.e., (7.2.9), (7.2.10) and (7.3.27) hold true.

(i) (Stable regime) Let γ, κ4, κ5, κ6 > 0. Assume that ∥A∥2 ≤ κ4 and define

Hstab
..=
{
w ∈ H : sup

s≥0
∥m(w + is)∥ ≤ κ5,

sup
s≥0
∥L −1(w + is)∥sp ≤ κ6 and Imw ≥ N−1+γ

}
.

(7.8.1)

Then, we have

Nmax
i,j=1
|Gij(z)−mi(z)δij| ≺

1
1 + η

√
∥Imm(z)∥

Nη
+ 1

(1 + η2)
√
N

+ 1
(1 + η2)Nη

(7.8.2)

uniformly for z ∈ Hstab. Moreover, if c1, . . . , cN ∈ CK×K are deterministic and

satisfy maxNi=1|ci| ≤ 1 then we have

⏐⏐⏐ 1
N

N∑
i=1

[ci (Gii(z)−mi(z))]
⏐⏐⏐ ≺ 1

1 + η

( 1
Nη

+ 1
N

)
(7.8.3)
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uniformly for z ∈ Hstab.

(ii) (Away from the spectrum) Let κ7, κ8, κ9 > 0 be fixed. Assume that (7.4.41) holds

true and H(1)
out and H(2)

out are defined as in (7.4.44). Then there are universal

constants δ > 0 and P ∈ N such that

Nmax
i,j=1
|Gij(z)−mi(z)δij| ≺ max

{ 1
d2
ρ(z)

,
1

dPρ (z)

} 1√
N

(7.8.4)

uniformly for z ∈ (H(1)
out ∩ {w ∈ H : dρ(w) ≥ N−δ}) ∪H(2)

out.

Moreover, if c1, . . . , cN ∈ CK×K are deterministic and satisfy maxNi=1|ci| ≤ 1

then we have
⏐⏐⏐ 1
N

N∑
i=1

[ci (Gii(z)−mi(z))]
⏐⏐⏐ ≺ max

{ 1
d2
ρ(z)

,
1

dPρ (z)

} 1
N

(7.8.5)

uniformly for z ∈ (H(1)
out ∩ {w ∈ H : dρ(w) ≥ N−δ}) ∪H(2)

out.

The local laws (7.8.4) and (7.8.5) hold as stated with the alternative definitions of the

sets H(1)
out and H(2)

out given after Lemma 7.4.8.

Proof of Theorem 7.2.7. Let m be the unique solution of (7.3.26) with positive

imaginary part, where αµ ..= α̃µ, βν ..= 2β̃ν = β̃ν + γ̃∗
ν and aj ..= ãj. Defining ρN

as in (7.3.34), it is now a standard exercise to obtain (7.2.17) from (7.8.5), since z ↦→

(NL)−1 Tr((HN − z1)−1) is the Stieltjes transform of µHN
. □

Proof of Lemma 7.8.1. We start with the proof of part (i). For later use, we will

present the proof for all spectral parameters z in a slightly larger set than Hstab, namely

in the set

H′
stab

..=
{
w ∈ H : sup

s≥0
(1 + ∥A− w − is∥2)∥m(w + is)∥ ≤ κ5,

sup
s≥0
∥L −1(w + is)∥sp ≤ κ6 and Imw ≥ N−1+γ

}
.

(7.8.6)

Under the condition ∥A∥2 ≤ κ4, it is easy to see Hstab ⊂ H′
stab perhaps with somewhat

larger κ-parameters. Furthermore, we relax the condition ∥A∥2 ≤ κ4 to ∥A∥2 ≤ Nκ7 with

some positive constant κ7. We also restrict our attention to the regime |E| ≤ Nκ7+1 since

the complementary regime will be covered by the regime (7.4.44b) in part (ii). Let φ and

ψ be defined as in part (iii) of Lemma 7.4.4 and recall the definition of ϑ from (7.4.28).
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Proof of (7.8.2): We first show that

Λ(E + iη) ≺ φ (7.8.7)

uniformly for E + iη ∈ H′
stab and |E| ≤ Nκ7+1.

We start with some auxiliary estimates. By the definition of H′
stab in (7.8.6) and

setting a ..= (a1, . . . , aN), we have

∥m(z)∥ ≲
1

1 + ∥a− z1∥ ≲ 1, (7.8.8)

uniformly for z ∈ H′
stab. We remark that ∥a∥ = ∥A∥2.

We now verify that, uniformly for z ∈ H′
stab, we have

∥m(z)∥∥m−1(z)∥ ≲ 1. (7.8.9)

Applying ∥ · ∥ to (7.3.26) as well as using (7.3.35) and (7.8.8), we get that

∥m−1(z)∥ ≲ ∥a− z1∥+ 1 ≲ 1 + |z|+ ∥a∥ (7.8.10)

for z ∈ H′
stab. Thus, combining the first bounds in (7.8.8) and in (7.8.10) yields (7.8.9).

From the definition of H′
stab in (7.8.6), using (7.8.8), (7.3.23) and (7.3.37), we obtain

∥L −1∥ ≲ 1, ∥(L −1)∗∥ ≲ 1, (7.8.11)

where the adjoint is introduced above (7.4.34).

We will now use part (iii) of Lemma 7.4.4 to prove (7.8.7). To check the condition

ψ(η) ≤ N−δ in that lemma, we use (7.8.8), (7.8.11) and (7.8.9) to obtain ψ(η) ≲ 1/(Nη).

Hence, ψ(η) ≤ N−γ/2 for η ≥ N−1+γ and we choose δ = γ/2 in (7.4.29).

We now estimate φ and ϑ in our setting. From (7.8.9), (7.8.8) and (7.8.11), we

conclude that φ ≲ ∥m∥Ψ, where we introduced the control parameter

Ψ ..=
√
∥Imm∥
Nη

+ ∥m∥√
N

+ ∥m∥
Nη

.

We note that the factor ∥m∥ is kept in the bound φ ≲ ∥m∥Ψ and the definition of Ψ to

control ∥m−1∥ factors via (7.8.9) later and to track the correct dependence of the right-

hand sides of (7.8.2) and (7.8.3) on η. For the second purpose, we will use the following
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estimate. Combined with (7.3.11a), the bound (7.8.8) yields

∥m∥ ≲
1

1 + dρ(z)
. (7.8.12)

For ϑ, we claim that

ϑ ≳ (1 + |z|+ ∥a∥)−1, ϑ ≳ ∥m∥. (7.8.13)

Indeed, for the first bound, we apply (7.3.35), (7.8.8), (7.8.11) and the second bound in

(7.8.10) to the definition of ϑ, (7.4.28). Using (7.8.9) instead of (7.8.8) and (7.8.10) yields

the second bound.

Now, to prove (7.8.7), we show that 1(Λ ≤ ϑ) = 1 a.w.o.p. for η ≥ N−1+γ on

the left-hand side of (7.4.29). The first step is to establish Λ ≤ ϑ for large η. For

η ≥ max{1, |E|, ∥A∥2}, we have Λ ≺ η−2 by (7.4.26). By (7.8.13), we have ϑ ≳ η−1 for

η ≥ max{1, |E|, ∥A∥2}. Therefore, there is κ > κ7 + 1 such that Λ(η) ≤ ϑ(η) a.w.o.p. for

all η ≥ Nκ. Together with (7.4.29), this proves (7.8.7) for η ≥ Nκ.

The second step is a stochastic continuity argument to reduce η for the domain of

validity of (7.8.7). The estimate (7.4.29) asserts that Λ cannot take on any value between

φ and ϑ with very high probability. Since η ↦→ Λ(η) is continuous, Λ remains bounded

by φ for all values of η as long as φ is smaller than ϑ. The precise formulation of this

procedure is found e.g. in Lemma A.2 of [7] and we leave the straightforward check of its

conditions to the reader. The bound (7.8.7) yields (7.8.2) in the regime |E| ≤ Nκ7+1.

Proof of (7.8.3): We apply Lemma 7.4.5 with Φ ..= ∥m−1∥φ. The condition (7.4.32) is

satisfied by the definition of Φ and (7.8.7). Since Φ ≲ Ψ it is easily checked that all terms

on the right-hand side of (7.4.33) are bounded by ∥m∥max{N−1/2,Ψ}Ψ. Therefore,

using (7.8.11) and (7.8.12), the averaged local law, (7.4.33), yields

⏐⏐⏐ 1
N

N∑
i=1

ci(Gii −mi)
⏐⏐⏐ ≺ ∥m∥max

{ 1√
N
,Ψ
}
Ψ

≲
1

1 + dρ(z)
(∥Imm(z)∥

Nη
+ 1
N

+ 1
1 + d2

ρ(z)
1

(Nη)2

) (7.8.14)

for any c1, . . . , cN ∈ CK×K such that maxi|ci| ≤ 1. Owing to ∥Imm∥ ≲ 1 by (7.8.8), the

bound (7.8.3) follows.
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We now turn to the proof of (ii) which is divided into two steps. In the first step,

we show Lemma 7.4.8. Therefore, we will follow the proof of (7.8.14) with the bounds

(7.8.12) and (7.8.11) replaced by their weaker analogues (7.8.15) and (7.8.16) below that

deteriorate as dρ(z) becomes small. After having completed Lemma 7.4.8, we immediately

get Theorem 7.4.7 via the proof given in Section 7.4.2. Finally, in the second step,

proceeding similarly as in the proof of (i), the bounds (7.8.4) and (7.8.5) will be obtained

from Theorem 7.4.7.

Step 1: Proof of Lemma 7.4.8. We first give the replacements for the bounds

(7.8.12) and (7.8.11) that served as inputs for the previous proof of part (i). The replace-

ment for (7.8.12) is a direct consequence of (7.3.11a):

∥m∥ ≤ 1
dρ(z)

. (7.8.15)

The replacement of (7.8.11) is the bound

∥L −1∥+ ∥(L −1)∗∥ ≲ 1 + 1
d26
ρ (z) , (7.8.16)

which is obtained by distinguishing the regimes ∥M∥2
2∥S∥ > 1/2 and ∥M∥2

2∥S∥ ≤ 1/2.

In the first regime, we conclude from (7.3.22) and (7.3.23) that

∥L−1∥+ ∥(L−1)∗∥ ≲ 1 + ∥M∥2
2 + ∥M∥

9
2∥M−1∥9

2
∥M∥4

2d
8
ρ(z)

≲ 1 + 1
d26
ρ (z) ,

where we used the lower bound on M given by the definition of the regime and ∥S∥ ≲ 1

as well as the bound ∥M∥2∥M−1∥2 ≲ 1/d2
ρ(z) that is proven as (7.8.17) below. In the

second case, we use the simple bound ∥L−1∥+∥(L−1)∗∥ ≤ 2/(1−∥M∥2
2∥S∥) ≤ 4. Thus,

(7.3.37) yields (7.8.16).

Next, we will check that the following weaker version of (7.8.9) holds

∥m(z + is)∥∥m−1(z + is)∥ ≲ 1 + 1
d2
ρ(z + is) (7.8.17)

for all z ∈ H(1)
out ∪ H(2)

out and s ≥ 0. This is straightforward for z ∈ H(1)
out since in this case

|z|, ∥A∥2 and supp ρ all remain bounded (see (7.3.32a)), so similarly to (7.8.10) we have

∥m−1(z+ is)∥ ≲ 1 + s+ ∥m(z+ is)∥. For |s| ≤ C (7.8.17) directly follows from (7.8.15),
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while for large s we have ∥m(z + is)∥ ≲ s−1 and ∥m−1(z + is)∥ ≲ s, so (7.8.17) also

holds.

Suppose now that z ∈ H(2)
out. In this regime z is far away from the spectrum of A, so

by (7.3.32a) we know that dist(z + is, SpecA) ∼ dist(z + is, supp ρ) ≥ 1. This means

that

∥m(z + is)∥ ≲ 1
dist(z + is, supp ρ) ∼

1
dist(z + is, SpecA) = 1

σmin(A− (z + is)1) ,

(7.8.18)

and hence from the Dyson equation
 1
m(z + is)

 ≤ ∥A− (z + is)1∥2 + ∥S∥ ≲ ∥A− (z + is)1∥2. (7.8.19)

Since A is Hermitian, we have the bound

∥A− (z + is)1∥2

σmin(A− (z + is)1) ≤
∥A− z1∥2

σmin(A− z1) ≤ κ9 (7.8.20)

for any s ≥ 0, where the first inequality comes from the spectral theorem and the second

bound is from the definition of H(2)
out. Therefore σmin(A− (z + is)1) ∼ ∥A− (z + is)1∥2,

and thus (7.8.17) follows from (7.8.18) and (7.8.19).

Now we can complete Step 1 by following the proof of part (i) but using (7.8.15),

(7.8.16) and (7.8.17) instead of (7.8.12), (7.8.11) and (7.8.9), respectively. It is easy to

see that only these three estimates on ∥m∥, ∥m∥∥m−1∥ and ∥L −1∥ were used as inputs

in this argument. The resulting estimates are weaker by multiplicative factors involving

certain power of 1 + 1/dρ(z). We thus obtain a version of (7.8.14) for η ≥ N−1+γ(1 +

d−p
ρ (z)) with (1 + dρ(z))−1 replaced by max{1, d−P

ρ (z)} for some explicit p, P ∈ N. Thus,

applying (7.3.11b) to estimate Imm in (7.8.14) instead of ∥Imm∥ ≲ 1 and possibly

increasing P yields (7.4.45). □

Step 2: Continuing the proof of part (ii) of Lemma 7.8.1, we draw two conse-

quences from Theorem 7.4.7 and the fact that G is the Stieltjes transform of a posi-

tive semidefinite matrix-valued measure VG supported on SpecH with VG(SpecH) = 1.

Let δ > 0 be chosen as in Theorem 7.4.7. Since the spectrum of H is contained in
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{ω ∈ R : dist(ω, supp ρ) ≤ N−δ} a.w.o.p. by Theorem 7.4.7, we have

∥G∥2 ≲
1

dρ(z)
, ImG ≲

η

d2
ρ(z)

1

a.w.o.p. for all z ∈ H satisfying dρ(z) ≥ N−δ/2. Therefore, (7.4.30) implies for all z ∈ H

satisfying dρ(z) ≥ N−δ/2 that

Λhs + Λw ≺
1

dρ(z)
√
N
. (7.8.21)

Since M is the Stieltjes transform of VM defined in (7.3.33) and VM (R) = 1 and G

is the Stieltjes transform of VG we conclude that there is κ > 0 such that

Λ ≲ ∥G−M∥2 ≲ |z|−2 (7.8.22)

a.w.o.p. uniformly for all z ∈ H satisfying |z| ≥ Nκ. Here, we used that suppVM ⊂ supp ρ

and hence diam(suppVM ) ≲ Nκ7+1 by (7.4.41) and (7.3.32a) as well as diam(suppVG) ≤

diam(SpecH) ≲ Nκ7+1 a.w.o.p. by Theorem 7.4.7.

Hence, owing to (7.8.13) and (7.8.22), by possibly increasing κ > 0, we can assume

that Λ ≤ ϑ a.w.o.p. for all z ∈ H(1)
out ∪ H(2)

out satisfying |z| ≥ Nκ. Thus, to estimate

∥g −m∥ we start from (7.4.27) and use (7.8.16), (7.8.15), (7.8.21) and (7.8.9) to obtain

an explicit P ∈ N such that ∥g−m∥ ≺ ∥m∥max{d−1
ρ (z), d−P

ρ (z)}N−1/2 a.w.o.p. For the

offdiagonal terms of G, we apply (7.8.21) to (7.4.13). This yields

Λ ≺ ∥m∥max
{ 1
dρ(z)

,
1

dPρ (z)

} 1√
N

(7.8.23)

for z ∈ H(1)
out ∪ H(2)

out satisfying |z| ≥ Nκ. Employing the stochastic continuity argument

from Lemma A.2 in [7] as before, we obtain (7.8.23) for all z ∈ H(1)
out ∪ H(2)

out satisfying

dρ(z) ≥ N−δ/2. We use (7.8.15) in (7.8.23), replace P by P + 1 and δ by δ/2. Thus,

we have proven (7.8.4) for all z ∈ H(1)
out ∪ H(2)

out satisfying dρ(z) ≥ N−δ. Notice that this

argument covers the case |E| ≥ Nκ7+1 as well that was left open in Step 1.

For the proof of (7.8.5), we set Φ ..= (dρ(z)
√
N)−1 and apply Lemma 7.4.5. Its

assumption Λ ≺ Φ/∥m−1∥ is satisfied by (7.8.23) and (7.8.9). Using (7.8.16), (7.8.15),

(7.8.9) and (7.8.21), this proves (7.8.5) and hence concludes the proof of Lemma 7.8.1. □





CHAPTER 8

The Dyson equation with linear self-energy: spectral bands,

edges and cusps

The current chapter contains the preprint [15] which is joint work with László Erdős

and Torben Krüger. We study the unique solution m of the Dyson equation

−m(z)−1 = z1− a+ S[m(z)]

on a von Neumann algebra A with the constraint Imm ≥ 0. Here, z lies in the complex

upper half-plane, a is a self-adjoint element of A and S is a positivity-preserving linear

operator on A. We show that m is the Stieltjes transform of a compactly supported A-

valued measure on R. Under suitable assumptions, we establish that this measure has a

uniformly 1/3-Hölder continuous density with respect to the Lebesgue measure, which is

supported on finitely many intervals, called bands. In fact, the density is analytic inside

the bands with a square-root growth at the edges and internal cubic root cusps whenever

the gap between two bands vanishes. The shape of these singularities is universal and

no other singularity may occur. We give a precise asymptotic description of m near the

singular points. These asymptotics play a key role in Chapter 9 below, where the Tracy-

Widom universality for the edge eigenvalue statistics for correlated random matrices is

proven. We also show that the spectral mass of the bands is topologically rigid under

deformations and we conclude that these masses are quantized in some important cases.

8.1. Introduction

An important task in random matrix theory is to determine the eigenvalue distribution

of a random matrix as its size tends to infinity. Similarly, in free probability theory,

the scalar-valued distribution of operator-valued semicircular elements is of particular

249
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interest. In both cases, the distribution can be obtained from a Dyson equation

−m(z)−1 = z1− a+ S[m(z)] (8.1.1)

on some von Neumann algebra A with a unit 1 and a tracial state ⟨ · ⟩. Here, z ∈

H ..= {w ∈ C : Imw > 0}, a = a∗ ∈ A and S : A → A is a positivity-preserving linear

operator. There is a unique solution m : H → A of (8.1.1) under the assumption that

Imm(z) ..= (m(z) − m(z)∗)/(2i) is a strictly positive element of A for all z ∈ H [96].

For suitably chosen a and S as well as A, this solution characterizes the distributions

in the applications mentioned above. In fact, in both cases, the distribution will be the

measure ρ on R whose Stieltjes transform is given by z ↦→ ⟨m(z)⟩. The measure ρ is

called the self-consistent density of states and its support is the self-consistent spectrum.

This terminology stems from the physics literature on the Dyson equation, where z is

often called spectral parameter and S is the self-energy operator. The linearity of S is a

distinctive feature of our setup.

We first explain the connection between the eigenvalue density of a large random

matrix and the Dyson equation in more detail. Let H ∈ Cn×n be a Cn×n-valued random

variable, n ∈ N, such that H = H∗. A central objective is now the analysis of the

empirical spectral measure µH ..= n−1∑n
i=1 δλi

, or its expectation, the density of states,

for large n, where λ1, . . . , λn are the eigenvalues of H. An easy computation shows

that n−1 Tr(H − z)−1 is the Stieltjes transform of µH at z ∈ H. Therefore, the resolvent

(H−z)−1 is commonly studied to obtain information about µH . In fact, for many random

matrix ensembles, it turns out that the resolvent (H−z)−1 is well approximated for large n

by the solution m(z) of the Dyson equation (8.1.1). Here, we choose A = Cn×n equipped

with the operator norm induced by the Euclidean distance on Cn and the normalized

trace ⟨ · ⟩ = n−1 Tr( · ) as tracial state as well as

a ..= EH, S[x] ..= E[(H − a)x(H − a)], x ∈ Cn×n. (8.1.2)

If (H − z)−1 is well approximated by m(z) for large n then µH will be well approximated

by the deterministic measure ρ, whose Stieltjes transform is given by z ↦→ ⟨m(z)⟩. The

importance of the Dyson equation (8.1.1) for random matrix theory has been realized
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by many authors on various levels of generality [20, 34, 84, 99, 131, 156], see also the

monographs [82, 119] and the more recent works [6, 7, 56, 94, 101] as well as Chapters 4,

5 and 7.

Secondly, we relate the Dyson equation to free probability theory by noticing that the

Cauchy transform of a shifted operator-valued semicircular element is given by m. More

precisely, let B be a unital C∗-algebra, A ⊂ B be a C∗-subalgebra with the same unit 1

and E : B → A is a conditional expectation (we refer to Chapter 9 in [115] for notions

from free probability theory). Pick an a = a∗ ∈ A and an operator-valued semicircular

element s = s∗ ∈ B then G(z) ..= E[(z − s − a)−1] is the Cauchy-transform of s + a.

In this case, m(z) = −G(z) satisfies (8.1.1) with S[x] ..= E[sxs] for all x ∈ A [154].

If A is a von Neumann algebra with a tracial state, then our results yield information

about the scalar-valued distribution ρ = ρs+a of s + a with respect to this state. The

study of qualitative regularity properties for this distribution has a long history in free

probability. For example, the question of whether ρ has atoms or not is intimately

related to noncommutative identity testing (see [79, 110] and references therein) and the

notions of free entropy and Fischer information (see [151, 152] and the survey [153]).

We also refer to the recent preprint [111], where the distribution of rational functions

in noncommutative random variables is studied with the help of linearization ideas from

[86, 87] and [95]. Under strong assumptions, our results provide extremely detailed

information about the regularity properties of ρ, thus complementing these more general

insights. In particular, we show that ρs is absolutely continuous with respect to the

Lebesgue measure away from zero for any operator-valued semicircular element s. For

other applications of the Dyson equation (8.1.1) in free probability theory, we refer to

[96, 137, 154, 155] and the recent monograph [115].

In this paper, we analyze the regularity properties of the self-consistent density of

states ρ in detail. More precisely, under suitable assumptions on S, we show that the

boundedness of m already implies that ρ has a 1/3-Hölder continuous density ρ(τ) with

respect to the Lebesgue measure. We provide a broad class of models for which the

boundedness of m is ensured. Furthermore, the set where the density is positive, {τ :

ρ(τ) > 0}, splits into finitely many connected components, called bands. The density
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is real-analytic inside the bands with a square root growth behavior at the edges. If

two bands touch, however, a cubic root cusp emerges. These are the only possible types

of singularities. In fact, m(z) is the Stieltjes transform of a positive operator-valued

measure v and we establish the properties mentioned above for v as well. We also provide

a novel formula for the masses that ρ assigns to the bands. We use it to infer a certain

quantization of the band masses that we call band rigidity, because it is invariant under

small perturbations of the data a and S of the Dyson equation. In particular, we extend

a quantization result from [86] and [132] to cover limits of Kronecker random matrices.

We remark that in the context of random matrices the analogous phenomenon was coined

as “exact separation of eigenvalues” in [23].

In the commutative setup, the band structure and singularity behavior of the density

have been obtained in [4, 5], where a detailed analysis of the regularity of ρ was initiated.

In the special noncommutative situation A = Cn×n and ⟨ · ⟩ = n−1 Tr( · ), it has been

shown that ρ is Hölder-continuous and real-analytic wherever it is positive [6]. The main

novelty of the current work is to give an effective regularity analysis for the general

noncommutative case, including a precise description of all singularities, i.e., edges and

cusps. One of the main applications is the proof of the eigenvalue rigidity on optimal

scale and the Tracy-Widom universality of the local spectral statistics near the spectral

edges for random matrices with general correlation structure (cf. Chapter 9 below).

The key strategy behind the current paper as well as its predecessors [4, 5, 6] is a

refined stability analysis of the Dyson equation (8.1.1) against small perturbations. It

turns out that the equation is stable in the bulk regime, i.e., where ρ(Re z) is separated

away from zero, but is unstable near the points, where the density vanishes. Even the

stability in the bulk requires an unconventional idea; it relies on rewriting the stability

operator, i.e., the derivative of the Dyson equation with respect to m, through the use

of a positivity-preserving symmetric map, called the saturated self-energy operator, F .

We then extract information on the spectral gap of F by a Perron-Frobenius argument

using the positivity of Imm [4, 5]. In the noncommutative setup this transformation

was based on a novel balanced polar decomposition formula [6]. In the small density

regime, in particular near the edges, the stability deteriorates due to an unstable direction,
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which is related to the Perron-Frobenius eigenvector of F . The analysis boils down to a

scalar quantity, Θ, the overlap between the solution and the unstable direction. For the

commutative case in [4, 5], it is shown that Θ approximately satisfies a cubic equation.

The structural property of this cubic equation is its stability, i.e., that the coefficients of

the cubic and quadratic terms do not simultaneously vanish. This guarantees that higher

order terms are negligible and the order of any singularity is either cubic root or square

root.

Now we synthesize both analyses in the previous works to study the small density

regime in the most general setup. The major obstacle is the noncommutativity that

already substantially complicated the bulk analysis in [6] but there the saturated self-

energy operator, F , governed all estimates. However, near the edges the unstable di-

rection is identified via the top eigenvector of a non-symmetric operator that coincides

with the symmetric F only in the commutative case. Thus we need to perform a non-

symmetric perturbation expansion that requires precise control on the resolvent of the

non-self-adjoint stability operator in the entire complex plane. We still work with a cubic

equation for Θ, but the analysis of its coefficients is considerably more involved. Along all

estimates, the noncommutativity is a permanent enemy; in some cases it can be treated

perturbatively, but for the most critical parts new non-perturbative proofs are needed.

Most critically, the stability of the cubic equation is proven with a new method.

Another novelty of the current paper, in addition to handling the noncommutativity

and lack of symmetry, is that we present the cubic analysis in a conceptually clean way

that will be used in future works. Our analysis strongly suggests that our cubic equation

for Θ is the key to any detailed singularity analysis of Dyson-type equations and its

remarkable structure is responsible for the universal behavior of the singularities in the

density.

8.2. Main results

Let A be a finite von Neumann algebra with unit 1 and norm ∥·∥. We recall that a

von Neumann algebra A is called finite if there is a state ⟨ · ⟩ : A → C which is (i) tracial,

i.e., ⟨xy⟩ = ⟨yx⟩ for all x, y ∈ A, (ii) faithful, i.e., ⟨x∗x⟩ = 0 for some x ∈ A implies x = 0,

and (iii) normal, i.e., continuous with respect to the weak∗ topology. In the following,
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⟨ · ⟩ will always denote such state. The tracial state defines a scalar product A×A → C

through

⟨x, y⟩ ..= ⟨x∗y⟩ (8.2.1)

for x, y ∈ A. The induced norm is denoted by ∥x∥2
..= ⟨x, x⟩1/2 for x ∈ A. Clearly,

∥x∥2 ≤ ∥x∥ for all x ∈ A. We follow the convention that small letters are elements of A

while capital letters denote linear operators on A. The spectrum of x ∈ A is denoted by

Specx, i.e., Specx = C \ {z ∈ C : (x− z)−1 ∈ A}.

For an operator T : A → A, we will work with three norms. We denoted these norms

by ∥T∥, ∥T∥2 and ∥T∥2→∥ · ∥ if T is considered as an operator (A, ∥ · ∥) → (A, ∥ · ∥),

(A, ∥ · ∥2)→ (A, ∥ · ∥2) or (A, ∥ · ∥2)→ (A, ∥ · ∥), respectively.

We denote by Asa the self-adjoint elements of A, by A+ the cone of positive definite

elements of A, i.e.,

Asa
..= {x ∈ A : x∗ = x}, A+

..= {x ∈ Asa : x > 0},

and by A+, the ∥ · ∥-closure of A+, the cone of positive semidefinite elements (or positive

elements). We now introduce two classes of linear operators on A that preserve the

cone A+. Such operators are called positivity-preserving (or positive maps). We define

Σ ..=
{
S : A → A : S is linear, symmetric wrt. (8.2.1) and S[A+] ⊂ A+

}
, (8.2.2a)

Σflat
..=

{
S ∈ Σ : ε1 ≤ inf

x∈A+

S[x]
⟨x⟩

≤ sup
x∈A+

S[x]
⟨x⟩

≤ ε−11 for some ε > 0
}
. (8.2.2b)

Moreover, if S : A → A is a positivity-preserving operator, then S is bounded, i.e., ∥S∥

is finite (see e.g. Proposition 2.1 in [120]).

Let a ∈ Asa be a self-adjoint element and S ∈ Σ. For the data pair (a, S), we consider

the associated Dyson equation

−m(z)−1 = z1− a+ S[m(z)] , (8.2.3)

with spectral parameter z ∈ H ..= {w ∈ C : Imw > 0}, for a function m : H → A such

that its imaginary part is positive definite,

Imm(z) = 1
2i(m(z)−m(z)∗) ∈ A+ .
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There always exists a unique solutionm to the Dyson equation (8.2.3) satisfying Imm(z) ∈

A+ [96]. Moreover, this solution is holomorphic in z [96]. For Dyson equations in the

context of renormalization theory, a is called the bare matrix and S the self-energy (op-

erator). In applications to free probability theory, S is usually denoted by η and called

the covariance mapping or covariance matrix [115].

We now introduce positive operator-valued measures with values in A+. If v maps

Borel sets on R to elements of A+ such that ⟨x, v( · )x⟩ is a positive measure for all x ∈ A

then we say that v is a measure on R with values in A+ or an A+-valued measure on R.

First, we list a few propositions that are necessary to state our main theorem. They

will be proven in Section 8.3, Section 8.4.2 and Section 8.4.3, respectively.

Proposition 8.2.1 (Stieltjes transform representation). Let (a, S) ∈ Asa × Σ be a data

pair and m the solution to the associated Dyson equation. Then there exists a measure v

on R with values in A+ such that v(R) = 1 and

m(z) =
∫
R

v(dτ)
τ − z

(8.2.4)

for all z ∈ H. The support of v and the spectrum of a satisfy the following inclusions

supp v ⊂ Spec a+ [−2∥S∥1/2, 2∥S∥1/2], (8.2.5a)

Spec a ⊂ supp v + [−∥S∥1/2, ∥S∥1/2]. (8.2.5b)

Furthermore, if a = 0 then, for any z ∈ H, m(z) satisfies the bound

∥m(z)∥2 ≤
2
|z|

. (8.2.6)

Our goal is to obtain regularity results for the measure v. We first present some regu-

larity results on the self-consistent density of states introduced in the following definition.

Definition 8.2.2 (Density of states). Let (a, S) ∈ Asa×Σ be a data pair, m the solution

to the associated Dyson equation, (8.2.3), and v the A+-valued measure of Proposi-

tion 8.2.1. The positive measure ρ = ⟨v⟩ on R is called the self-consistent density of

states or short density of states.



256 CHAPTER 8. DYSON EQUATION: SPECTRAL BANDS, EDGES AND CUSPS

We have supp ρ = supp v due to the faithfulness of ⟨ · ⟩. Moreover, the Stieltjes

transform of ρ is given by ⟨m⟩ since, by (8.2.3), for any z ∈ H, we have

⟨m(z)⟩ =
∫
R

ρ(dτ)
τ − z

.

Proposition 8.2.3 (Regularity of density of states). Let (a, S) be a data pair with S ∈

Σflat and ρa,S the corresponding density of states. Then ρa,S has a uniformly Hölder-

continuous, compactly supported density with respect to the Lebesgue measure,

ρa,S(dτ) = ρa,S(τ)dτ .

Furthermore, there exists a universal constant c > 0 such that the function ρ : Asa ×

Σflat × R→ [0,∞), (a, S, τ) ↦→ ρa,S(τ) is locally Hölder-continuous with Hölder exponent

c and analytic whenever it is positive, i.e., for any (a, S, τ) ∈ Asa × Σflat × R such that

ρa,S(τ) > 0 the function ρ is analytic in a neighbourhood of (a, S, τ). Here, Asa and Σflat

are equipped with the metrics induced by ∥ · ∥ on A and its operator norm on A → A,

respectively.

The following proposition is stated under a boundedness assumption on m (see (8.2.7)

below). In the random matrix context, in Section 8.9, we provide a sufficient condition

for this assumption to hold purely expressed in terms of a and S for a large class of

random matrix models.

Proposition 8.2.4 (Regularity of m). Let (a, S) be a data pair with S ∈ Σflat and m

the solution to the associated Dyson equation. Suppose that for a nonempty open interval

I ⊂ R we have

lim sup
η↓0

sup
τ∈I
∥m(τ + iη)∥ < ∞ . (8.2.7)

Then m has a 1/3-Hölder continuous extension (also denoted by m) to any closed interval

I ′ ⊂ I, i.e.,

sup
z1,z2∈I′×i[0,∞)

∥m(z1)−m(z2)∥
|z1 − z2|1/3 < ∞ . (8.2.8)

Moreover, m is real-analytic in I wherever ρ is positive.

The purpose of the interval I in Proposition 8.2.4 (see also Theorem 8.2.5 below) is

to demonstrate the local nature of these statements and their proofs; if m is bounded on
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I in the sense of (8.2.7) then we will prove regularity of m and later its behaviour close

to singularities on a genuine subinterval I ′ ⊂ I. At first reading, the reader may ignore

this subtlety and assume I ′ = I = R.

In Proposition 8.4.7 below, we provide a quantitative version of (8.2.8) under slightly

weaker conditions than those of Proposition 8.2.4. The bound in this quantitative version

only depends on a few basic parameters of the model.

For the following main theorem, we remark that if m has a continuous extension to

an interval I ⊂ R then the restriction of the measure v from (8.2.4) to I has a density

with respect to the Lebesgue measure, i.e., for each Borel set A ⊂ I, we have

v(A) = 1
π

∫
A

Imm(τ)dτ. (8.2.9)

The existence of a continuous extension can be guaranteed by (8.2.7) in Proposition 8.2.4.

Theorem 8.2.5 (Imm close to its singularities). Let (a, S) be a data pair with S ∈

Σflat and m the solution to the associated Dyson equation. Suppose m has a continuous

extension to a nonempty open interval I ⊂ R. Then any τ0 ∈ supp ρ ∩ I with ρ(τ0) = 0

belongs to exactly one of the following cases:

Edge: The point τ0 is a left/right edge of the density of states, i.e., there is some ε > 0

such that Imm(τ0 ∓ ω) = 0 for ω ∈ [0, ε] and for some v0 ∈ A+ we have

Imm(τ0 ± ω) = v0ω
1/2 +O(ω) , ω ↓ 0 .

Cusp: The point τ0 lies in the interior of supp ρ and for some v0 ∈ A+ we have

Imm(τ0 + ω) = v0 |ω|1/3 +O(|ω|2/3) , ω → 0 .

Moreover, supp ρ ∩ I = supp v ∩ I is a finite union of closed intervals with nonempty

interior.

Theorem 8.2.5 is a simplified version of our more detailed and quantitative Theo-

rem 8.7.1 below. We can treat all small local minima of ρ on supp ρ ∩ I – not only

those ones, where ρ vanishes – and provide precise expansions corresponding to those in

Theorem 8.2.5 which are valid in some neighbourhood of τ0. Moreover, the coefficients v0

in Theorem 8.2.5 are bounded from above and below in terms of the basic parameters of
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the model. By applying ⟨ · ⟩ to the results of Theorem 8.2.5 and Theorem 8.7.1, we also

obtain an expansion of the self-consistent density of states ρ near small local minima in

Theorem 8.7.2 below.

Finally, we present our quantization result.

Proposition 8.2.6 (Band mass formula). Let (a, S) ∈ Asa×Σ be a data pair and m the

solution to the associated Dyson equation, (8.2.3). We assume that there is a constant

C > 0 such that S[x] ≤ C⟨x⟩1 for all x ∈ A+. Then we have

(i) For each τ ∈ R\supp ρ, there is m(τ) ∈ Asa such that limη↓0 ∥m(τ+iη)−m(τ)∥ =

0. Moreover, m(τ) determines the mass of (−∞, τ) and (τ,∞) with respect to ρ

in the sense that

ρ((−∞, τ)) = ⟨1(−∞,0)(m(τ))⟩, (8.2.10)

where 1(−∞,0) denotes the characteristic function of the interval (−∞, 0).

(ii) If π : A → Cn×n is a faithful representation such that ⟨x⟩ = n−1 Tr(π(x)) for all

x ∈ A and J ⊂ supp ρ is a connected component of supp ρ then we have

nρ(J) ∈ {1, . . . , n}.

In particular, supp ρ has at most n connected components.

We will prove Proposition 8.2.6 in Section 8.8 below. A result similar to part (ii) has

been obtained by a different method in [86], see also [132]. In fact, we will use the band

mass formula, (8.2.10), in Corollary 8.9.4 below to strengthen the quantization result

in (ii) for a large class of random matrices (Kronecker matrices, see Section 8.9). In

Section 8.10, we study the stability of the Dyson equation, (8.2.3), under small general

pertubations of the data pair (a, S).

rα = 1

1α

α

Figure 8.1. Structure of
rα ∈ Cn×n.

8.2.1. Examples. We now present some examples

that show the different types of singularities described by

Theorem 8.2.5. These examples are obtained by considering

the Dyson equation, (8.2.3), on Cn×n with ⟨ · ⟩ = n−1 Tr for
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large n and choosing a = 0 as well as S = Sα, where

Sα[x] ..= 1
n

diag(rα diag(x))

for any x ∈ Cn×n. Here, for x ∈ Cn×n, diag(x) denotes the vector of diagonal entries,

rα ∈ Cn×n is the symmetric block matrix from Figure 8.1 with α ∈ (0,∞). All elements in

each block are the indicated constants. Moreover, we write diag(v) with v ∈ Cn to denote

0 0.5 1 1.50

0.2

0.4

0.6

0.8

τ

ρ

(a) α = 0.14

0 0.5 1 1.50

0.2

0.4

0.6

0.8

τ

ρ

(b) α = 0.2

0 0.5 1 1.50

0.2

0.4

0.6

0.8

τ
ρ

(c) α = 0.23

Figure 8.2. Examples of the self-consistent density of states ρ from
(8.2.11) for δ = 0.1 and several values of α.

the diagonal matrix in Cn×n with v on its diagonal. In fact, this example can also be

realized on C2 with entrywise multiplication. Here, we choose ⟨(x1, x2)⟩ = δx1 +(1−δ)x2,

where δ is the relative block size of the small block in the definition of rα. In this setup

on C2, the Dyson equation can be written as

−

⎛⎜⎝m−1
1

m−1
2

⎞⎟⎠ = z

⎛⎜⎝1

1

⎞⎟⎠+Rα

⎛⎜⎝m1

m2

⎞⎟⎠ , Rα =

⎛⎜⎝αδ 1− δ

δ α(1− δ)

⎞⎟⎠ (8.2.11)

for (m1,m2) ∈ C2. We remark that Rα is symmetric with respect to the scalar product

(8.2.1) induced by ⟨ · ⟩. Figure 8.2 contains the graphs of some self-consistent densities of

states ρ obtained from (8.2.11) for δ = 0.1 and different values of α. As the self-consistent

density of states is symmetric around zero in these cases, only the part of the density

on [0,∞) is shown. The density in Figure 8.2 (a) has a small internal gap with square

root edges on both sides of this gap. Figure 8.2 (b) contains a cusp which is transformed,
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by increasing α, into an internal nonzero local minimum in Figure 8.2 (c). This nonzero

local minimum is covered by Theorem 8.7.1 (d) below.

8.2.2. Main ideas of the proofs. In this subsection, we informally summarize

several key ideas in the proofs of Proposition 8.2.4 and Theorem 8.2.5.

Hölder-continuity of m. To simplify the notation, we assume in this outline that

∥m(z)∥ ≲ 1 for all z ∈ H, i.e., we assume (8.2.7) with I = R. We first show that

Imm(z) is 1/3-Hölder continuous and then conclude the same regularity for m = m(z).

To that end, we now control ∂zImm(z) by differentiating the Dyson equation, (8.2.3),

with respect to z. This yields

2i∂zImm = (Id− CmS)−1[m2].

Here, Id denotes the identity map on A and Cm : A → A is defined by Cm[x] ..= mxm

for any x ∈ A.

In order to control the norm of the stability operator (Id−CmS)−1, we rewrite it in a

more symmetric form. We find an invertible V with ∥V ∥, ∥V −1∥ ≲ 1, a unitary operator

U and a self-adjoint operator T acting on A such that

Id− CmS = V −1(U − T )V.

The Rotation-Inversion Lemma from [5] (see Lemma 8.4.4 below) is designed to control

(U−T )−1 for a unitary operator U and a self-adjoint operator T with ∥T∥2 ≤ 1. Applying

this lemma in our setup yields ∥(Id− CmS)−1∥ ≲ ∥Imm∥−2.

Since ∥m∥ ≲ 1, we thus obtain

∥∂zImm∥ ≲ ∥Imm∥−2. (8.2.12)

This bound implies that (Imm)3 : H→ A+ is uniformly Lipschitz-continuous. Hence, we

can extend Imm to a 1/3-Hölder continuous function on R ∪H and we obtain

m(z) = 1
π

∫
R

Imm(τ)dτ
τ − z

.

This also implies that m is uniformly 1/3-Hölder continuous on R ∪ H. Furthermore,

m(τ) and Imm(τ) are real-analytic in τ around τ0 ∈ R, wherever ρ(τ0) is positive.
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Behaviour of Imm where it is not analytic. Owing to (8.2.12), some unstable

behaviour of the Dyson equation is expected close to points τ0 ∈ R, where Imm(τ0)

is zero or small. In order to analyze this behaviour of Imm(τ), we compute ∆ ..=

m(τ0 +ω)−m(τ0) from the Dyson equation, (8.2.3). Since m has a continuous extension

to R, (8.2.3) holds true for z ∈ R as well. We evaluate (8.2.3) at z = τ0 and z = τ0 + ω

and obtain the quadratic A-valued equation

B[∆] = mS[∆]∆ + ωm∆ + ωm2, B ..= Id− CmS. (8.2.13)

The blow-up of the stability operator B−1 close to τ0 requires analyzing the contributions

of ∆ in the unstable direction of B−1 separately. In fact, B possesses precisely one un-

stable direction denoted by b since we will show that ∥T∥2 is a non-degenerate eigenvalue

of T . We decompose ∆ into ∆ = Θb+ r, where Θ is the scalar contribution of ∆ in the

direction b and r lies in the spectral subspace of B complementary to b.

We view τ0 as fixed and consider ω ≪ 1 as the main variable. Projecting (8.2.13)

onto b and its complement yield the scalar-valued cubic equation

ψΘ(ω)3 + σΘ(ω)2 + πω = O(|ω||Θ(ω)|+ |Θ(ω)|4) (8.2.14)

with two parameters ψ ≥ 0 and σ ∈ R. In fact, the 1/3-Hölder continuity of m implies

Θ = O(|ω|1/3) and, hence, the right-hand side of (8.2.14) is indeed of lower order than

the terms on the left-hand side. Analyzing (8.2.14) instead of (8.2.13) is a more tractable

problem since we have reduced a quadratic A-valued equation, (8.2.13), to the scalar-

valued cubic equation, (8.2.14).

The essential feature of the cubic equation (8.2.14) is its stability. By this, we mean

that there exists a constant c > 0 such that

ψ + σ2 ≥ c.

This bound will follow from the structure of the Dyson equation and prevents any sin-

gularities of higher order than ω1/2 or ω1/3. Obtaining more detailed information about

Θ from (8.2.14) requires applying Cardano’s formula with an error term. Therefore, we

switch to normal coordinates, (ω,Θ(ω)) → (λ,Ω(λ)), in (8.2.14). We will study four
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normal forms, one quadratic Ω(λ)2 + Λ(λ) = 0, and three cubics, Ω(λ)3 + Λ(λ) = 0 and

Ω(λ)3 ± 3Ω(λ) + 2Λ(λ) = 0, where Λ(λ) is a perturbation of the identity map λ ↦→ λ.

The first case corresponds to the square root singularity of the isolated edge, the second

is the cusp. The last two cases describe the situation of almost cusps, see later.

The correct branches in Cardano’s formula are identified with the help of four selection

principles for the solution Ω(λ) corresponding to Θ of the cubic equation in normal form

(see SP1 to SP4’ at the beginning of Section 8.7.2 below). These selection principles

are special properties of Ω which originate from the continuity of m, Imm ≥ 0 and the

Stieltjes transform representation, (8.2.4), of m. Once the correct branch is chosen, we

obtain the precise behaviour of Imm around τ0, where τ0 ∈ supp ρ satisfies ρ(τ0) = 0 or

even ρ(τ0)≪ 1, from Cardano’s formula and careful estimates of r in the decomposition

∆ = Θb+ r (see Theorem 8.7.1 below).

8.3. The solution of the Dyson equation

In this section, we first introduce some notations used in the proof of Proposition 8.2.1,

then prove the proposition and finally give a few further properties of m.

For x, y ∈ A, we introduce the bounded operator Cx,y : A → A defined through

Cx,y[h] ..= xhy for h ∈ A. We set Cx ..= Cx,x. For x, y ∈ A, the operator Cx,y satisfies the

simple relations

C∗
x,y = Cx∗,y∗ , C−1

x,y = Cx−1,y−1 ,

where C∗
x,y is the adjoint with respect to the scalar product defined in (8.2.1). Here, the

second identity holds if x and y are invertible in A. In fact, Cx,y is invertible if and only

if x and y are invertible in A.

In the following, we will often use the functional calculus for normal elements of A.

As we will explain now, our setup allows for a direct way to represent A as a subalgebra

of the bounded operators on a Hilbert space. Therefore, one can think of the functional

calculus being performed on this Hilbert space. The Hilbert space is the completion of

A equipped with the scalar product defined in (8.2.1) and denoted by L2. In order to

represent A as subalgebra of the bounded operators B(L2) on L2, we denote by ℓx for

x ∈ A the left-multiplication on L2 by x, i.e., ℓx : L2 → L2, ℓx(y) = xy for y ∈ L2. The
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inclusion A ⊂ L2 and the Cauchy-Schwarz inequality yield the well-definedness of ℓx and

ℓx ∈ B(L2), the bounded linear operators on L2. In fact,

A → B(L2), x ↦→ ℓx

defines a faithful representation of A as a von Neumann algebra in B(L2) [138, Theo-

rem 2.22].

We now introduce the balanced polar decomposition of m. If w = w(z) ∈ A, q =

q(z) ∈ A and u = u(z) ∈ A are defined through

w ..= (Imm)−1/2(Rem)(Imm)−1/2 + i1, q ..= |w|1/2(Imm)1/2, u ..= w

|w|
(8.3.1)

via the spectral calculus of the self-adjoint operator (Imm)−1/2(Rem)(Imm)−1/2 then we

have

m(z) = Rem(z) + iImm(z) = q∗uq. (8.3.2)

Here, u is unitary and commutes with w. The decomposition m = q∗uq was already

introduced and also called balanced polar decomposition in [6] in the special setting of

matrix algebras. The operators |w|1/2, q and u correspond to W, W
√

Im M and U∗ in

the notation of [6], respectively. With the definitions in (8.3.1), (8.2.3) reads as

− u∗ = q(z − a)q∗ + F [u], (8.3.3)

where we introduced the saturated self-energy operator

F ..= Cq,q∗SCq∗,q. (8.3.4)

It is positivity-preserving as well as symmetric, F = F ∗, and corresponds to the saturated

self-energy operator F in [6].

Proof of Proposition 8.2.1. The existence of v will be a consequence of the fol-

lowing lemma which will be proven in Section 8.11 below.

Lemma 8.3.1. Let A be a von Neumann algebra with unit 1 and a tracial, faithful,

normal state ⟨ ⟩ : A → C. If h : H→ A is a holomorphic function satisfying Im h(z) ∈ A+
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for all z ∈ H and

lim
η→∞

iηh(iη) = −1 (8.3.5)

then there exists a unique measure v : B → A on the Borel sets B of R with values in A+

such that

h(z) =
∫
R

v(dτ)
τ − z

(8.3.6)

for all z ∈ H and v(R) = 1.

In order to apply Lemma 8.3.1, we have to verify (8.3.5) for h = m. To that end, we

take the imaginary part of (8.2.3) and use Imm ≥ 0 as well as S ∈ Σ to conclude

− Imm−1(z) = Im z1 + S[Imm] ≥ Im z1.

Hence, ∥m(z)∥ ≤ (Im z)−1 as for any x ∈ A we have ∥x∥ ≤ 1 if x is invertible and

Im x−1 ≥ 1. Therefore, evaluating (8.2.3) at z = iη, η > 0, and multiplying the result by

m from the left yield

iηm(iη) = −1 +m(iη)a−m(iη)S[m(iη)]→ −1

for η → ∞ as S is bounded. Hence, Lemma 8.3.1 implies the existence of v, i.e., the

Stieltjes transform representation of m in (8.2.4).

This representation has the following well-known bounds as a direct consequence

(e.g. [4, 6] or Chapter 7).

Lemma 8.3.2. Let v be the measure in Proposition 8.2.1 and ρ = ⟨v⟩. Then, for any

z ∈ H, we have

∥m(z)∥ ≤ 1
dist(z, supp ρ) , Imm(z) ≤ Im z

dist(z, supp ρ)21. (8.3.7)

□

For the proofs of (8.2.5a) and (8.2.5b), we refer to the proofs of Proposition 2.1 in [6]

and (7.3.4) in Chapter 7 in the matrix setup, the same argument works for our general

setup as well.
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We now prove (8.2.6) and hence assume a = 0. Taking the imaginary part of the

Dyson equation, (8.3.3), yields

Im u = (Im z)qq∗ + F [Im u] ≥ max{(Im z)qq∗, F [Im u]} .

Thus, Im u ≥ (Im z)∥(qq∗)−1∥−11. We remark that qq∗ is invertible since Imm(z) > 0 for

z ∈ H. Therefore, the following Lemma 8.3.3 with h = Im u/∥Im u∥2 implies ∥F∥2 ≤ 1.

Lemma 8.3.3. Let T : A → A be a positivity-preserving operator which is symmetric

with respect to (8.2.1). If there are h ∈ A and ε > 0 such that h ≥ ε1 and Th ≤ h then

∥T∥2 ≤ 1.

Proof. The argument in the proof of Lemma 4.6 in [4] also yields this lemma in our

current setup. □

We rewrite the Dyson equation (8.3.3) in the form

qq∗ = −1
z

(u∗ + F [u]) . (8.3.8)

We take the ∥ · ∥2-norm on both sides of (8.3.8) and use that ∥u∥2 = 1 (since it is unitary)

and ∥F∥2 ≤ 1 to find

∥qq∗∥2 ≤
2
|z|

. (8.3.9)

Then we take the ∥ · ∥2-norm of m and use the balanced polar decomposition m = q∗uq

again,

∥m∥2
2 = ⟨m∗m⟩ = ⟨q∗u∗qq∗uq⟩ = ⟨qq∗ , Cu∗,u[qq∗]⟩ ≤ ∥qq∗∥2

2 ,

where the operator Cu∗,u is unitary with respect to the scalar product (8.2.1). With

(8.3.9) we conclude (8.2.6).

From now on until the end of Section 8.4.2, we will always assume that S is flat, i.e.,

S ∈ Σflat (cf. (8.2.2b)). In fact, all of our estimates will be uniform in all data pairs (a, S)

that satisfy

c1⟨x⟩1 ≤ S[x] ≤ c2⟨x⟩1, ∥a∥ ≤ c3 (8.3.10)
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for all x ∈ A+ with the some fixed constants c1, c2, c3 > 0. Therefore, the constants

c1, c2, c3 from (8.3.10) are called model parameters and we introduce the following con-

vention.

Convention 8.3.4 (Comparison relation). Let x, y ∈ Asa. We write x ≲ y if there is

c > 0 depending only on the model parameters c1, c2, c3 from (8.3.10) such that cy − x is

positive definite, i.e., cy − x ∈ A+. We define x ≳ y and x ∼ y accordingly. We also use

this notation for scalars x, y. Moreover, we write x = y +O(α) for x, y ∈ A and α > 0

if ∥x− y∥ ≲ α.

We remark that we will choose a different set of model parameters later and redefine

∼ accordingly (cf. Convention 8.4.6).

Proposition 8.3.5 (Properties of the solution). Let (a, S) be a data pair satisfying

(8.3.10) and m be the solution to the associated Dyson equation, (8.2.3). We have

∥m(z)∥2 ≲ 1, (8.3.11)

∥m(z)∥ ≲
1

⟨Imm(z)⟩+ dist(z, supp ρ) , (8.3.12)

∥m(z)−1∥ ≲ 1 + |z|, (8.3.13)

⟨Imm(z)⟩1 ≲ Imm(z) ≲ (1 + |z|2)∥m(z)∥2⟨Imm(z)⟩1 (8.3.14)

uniformly for z ∈ H.

These bounds are immediate consequences of the flatness of S exactly as in the proof

of Proposition 4.2 in [6] using supp ρ = supp v by the faithfulness of ⟨ · ⟩. We omit the

details.

Note that (8.3.13) implies a lower bound ∥m(z)∥ ≳ (1 + |z|)−1 since ∥m∥∥m−1∥ ≥ 1.

8.4. Regularity of the solution and the density of states

In this section, we will prove Proposition 8.2.3 and Proposition 8.2.4. Their proofs are

based on a bound on the stability operator (Id−CmS)−1 of the Dyson equation, (8.2.3),

which will be given in Proposition 8.4.1 below.
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8.4.1. Linear stability of the Dyson equation. For the formulation of the fol-

lowing proposition, we introduce the harmonic extension of the density of states ρ defined

in Definition 8.2.2 to H. The harmonic extension at z ∈ H is denoted by ρ(z) and given

by

ρ(z) ..= 1
π
⟨Imm(z)⟩.

Proposition 8.4.1 (Linear Stability). There is a universal constant C > 0 such that,

for the solution m to (8.2.3) associated to any a ∈ Asa and S ∈ Σ satisfying (8.3.10), we

have

∥(Id− Cm(z)S)−1∥2 ≲ 1 + 1
(ρ(z) + dist(z, supp ρ))C (8.4.1)

uniformly for all z ∈ H.

Before proving Proposition 8.4.1, we will explain how the linear stability yields the

Hölder-continuity and analyticity of ρ in Proposition 8.2.3. Indeed, assuming that m

depends differentiably on (z, a, S), we can compute the directional derivative ∇(δ,d,D) at

(z, a, S) of both sides in (8.2.3). The result of this computation is

(Id− CmS)[∇(δ,d,D)m] = m(δ − d+D[m])m.

Using the bound in Proposition 8.4.1 and ρ(z) = π−1⟨Imm(z)⟩, we conclude from (8.3.12)

that

|∇(δ,d,D)ρ| ≤
1
ρC

(|δ|+ ∥d∥+ ∥D∥) (8.4.2)

with a possibly larger C. Therefore, it is clear that the control on (Id− CmS)−1 will be

the key input in the proof of Proposition 8.2.3.

In order to prove Proposition 8.4.1, we will use the representation

Id− CmS = Cq∗,qCu(C∗
u − F )C−1

q∗,q, (8.4.3)

where q, u and F were defined in (8.3.1) and (8.3.4), respectively. This representation

has the advantage that C∗
u is unitary and F is symmetric. Hence, it is much easier to

obtain some spectral properties for C∗
u − F compared to Id − CmS. Now, we will first

analyze q and F in the following two lemmas and then use this knowledge to verify

Proposition 8.4.1.



268 CHAPTER 8. DYSON EQUATION: SPECTRAL BANDS, EDGES AND CUSPS

Lemma 8.4.2. If (8.3.10) holds true then we have

∥q(z)∥ ≲ (1 + |z|)1/2∥m(z)∥, ∥q(z)−1∥ ≲ (1 + |z|)∥m(z)∥1/2

uniformly for z ∈ H.

Proof. For q = q(z), we will show below that

A1/2

B1/2∥m(z)−1∥−11 ≤ q∗q ≤ B1/2

A1/2 ∥m(z)∥1 (8.4.4)

if A1 ≤ Imm(z) ≤ B1 for some A,B ∈ (0,∞) and z ∈ H. Choosing A and B according

to (8.3.14), using the C∗-property of ∥ · ∥, ∥q∗q∥ = ∥q∥2, and (8.3.13), we immediately

obtain Lemma 8.4.2.

For the proof of (8.4.4), we set g ..= Rem and h ..= Imm. Using the monotonicity of

the square root, we compute

q∗q = h1/2
(
1 + h−1/2gh−1gh−1/2

)1/2
h1/2

≤ A−1/2h1/2
(
h−1/2(h2 + g2)h−1/2

)1/2
h1/2

≤ ∥m∥A−1/2h1/2.

Here, we employed h−1 ≤ A−11 as well as 1 ≤ A−1h in the first step and (Rem)2 +

(Imm)2 = (m∗m + mm∗)/2 ≤ ∥m∥2 in the second step. Thus, h ≤ B1 yields the upper

bound in (8.4.4). Similar estimates using 1 ≥ B−1h and ∥m−1∥−2 ≤ (m∗m + mm∗)/2

prove the lower bound in (8.4.4) which completes the proof of the lemma. □

Lemma 8.4.3 (Properties of F ). If the bounds in (8.3.10) are satisfied then ∥F∥2 is a

simple eigenvalue of F : A → A defined in (8.3.4). Moreover, there is a unique eigenvector

f ∈ A+ such that F [f ] = ∥F∥2f and ∥f∥2 = 1. This eigenvector satisfies

1− ∥F∥2 = (Im z) ⟨f , qq
∗⟩

⟨f , Im u⟩
. (8.4.5)

In particular, ∥F∥2 ≤ 1. Furthermore, the following properties hold true uniformly for

z ∈ H satisfying |z| ≤ 3(1 + ∥a∥+ ∥S∥1/2) and ∥F (z)∥2 ≥ 1/2:

(i) The eigenvector f has upper and lower bounds

∥m∥−41 ≲ f ≲ ∥m∥41. (8.4.6)
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(ii) The operator F has a spectral gap ϑ ∈ (0, 1] satisfying ϑ ≳ ∥m∥−28 and

Spec(F/∥F∥2) ⊂ [−1 + ϑ, 1− ϑ] ∪ {1}. (8.4.7)

Proof. The definition of F in (8.3.4), (8.3.10) and Lemma 8.4.2 imply

(1 + |z|)−4∥m(z)∥−2⟨a⟩1 ≲ F [a] ≲ (1 + |z|)2∥m(z)∥4⟨a⟩1 (8.4.8)

for all a ∈ A+ and all z ∈ H. We will use Lemma 8.12.1 (ii) from Section 8.12 below. The

condition (8.12.1) with T = F is satisfied by (8.4.8) with constants depending on ∥m∥

and |z|. Hence, Lemma 8.12.1 (ii) implies the existence and uniqueness of the eigenvector

f . We compute the scalar product of f with the imaginary part of (8.3.3). Since F is

symmetric, this immediately yields (8.4.5).

We now assume that z ∈ H satisfies |z| ≤ 3(1 + ∥a∥ + ∥S∥1/2) and ∥F (z)∥2 ≥ 1/2.

Then |z| ≲ 1 and, by using this in (8.4.8), we thus obtain (8.4.6) and (8.4.7) from

Lemma 8.12.1 (ii) since ∥m∥ ≳ 1 by (8.3.13). □

The following proof of Proposition 8.4.1 proceeds similarly to the one of Proposi-

tion 4.4 in [6].

Proof of Proposition 8.4.1. We will distinguish several cases. If |z| ≥ 3(1 + κ)

with κ ..= ∥a∥ + 2∥S∥1/2 then we conclude from (8.2.4) and supp ρ ⊂ [−κ, κ] by (8.2.5a)

that ∥m(z)∥ ≤ (|z| − κ)−1. Thus,

∥Cm(z)S∥2 ≤
∥S∥2

(|z| − κ)2 ≤
∥S∥

4(1 + κ)2 ≤
1
4 .

Here, we used ∥S∥2 ≤ ∥S∥ since S is symmetric and κ ≥ ∥S∥1/2. This shows (8.4.1) for

large |z|.

Next, we assume |z| ≤ 3(1 + κ). In this regime, we use the alternative representation

of Id−CmS in (8.4.3) and the spectral properties of F from Lemma 8.4.3. Indeed, from

(8.4.3) and Lemma 8.4.2, we conclude

∥(Id−CmS)−1∥2 ≲ ∥m∥3∥(C∗
u−F )−1∥2 ≲

1
(ρ(z) + dist(z, supp ρ))3∥(C

∗
u−F )−1∥2 (8.4.9)
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as u ∈ A is unitary. Here, we used (8.3.12) in the last step. If ∥F (z)∥2 ≤ 1/2 then this

immediately yields (8.4.1) as ∥Cu∥2 = 1. We now assume ∥F (z)∥2 ≥ 1/2. In this case,

we will use the following lemma.

Lemma 8.4.4 (Rotation-Inversion Lemma). Let U be a unitary operator on L2 and T a

symmetric operator on L2. We assume that there is a constant θ > 0 such that

SpecT ⊂ [−∥T∥2 + θ, ∥T∥2 − θ] ∪ {∥T∥2}

with a non-degenerate eigenvalue ∥T∥2 ≤ 1. Then there is a universal constant C > 0

such that

∥(U − T )−1∥2 ≤
C

θ|1− ∥T∥2⟨t , U [t]⟩| ,

where t ∈ L2 is the normalized, ∥t∥2 = 1, eigenvector of T corresponding to ∥T∥2.

The proof of this lemma is identical to the proof of Lemma 5.6 in [5], where a result

of this type was first applied in the context of vector Dyson equations.

We start from the estimate (8.4.9), use the Rotation-Inversion Lemma, Lemma 8.4.4,

with U = C∗
u and T = F as well as (8.4.7) and (8.3.12) and obtain

∥(Id− CmS)−1∥2 ≲
(ρ(z) + dist(z, supp ρ))−31

|1− ∥F∥2⟨f , C∗
u[f ]⟩| ≤ (ρ(z) + dist(z, supp ρ))−31

max{1− ∥F∥2, |1− ⟨fC∗
u[f ]⟩|} .

In order to complete the proof of (8.4.1), we now show that

max{1− ∥F∥2, |1− ⟨fC∗
u[f ]⟩|} ≳ (ρ(z) + dist(z, supp ρ))C (8.4.10)

for some universal constant C > 0. We first prove auxiliary upper and lower bounds on

Im u = (q∗)−1(Imm)q−1. We have

ρ(z)(ρ(z) + dist(z, supp ρ))21 ≲ Im u ≲
Im z∥m∥

dist(z, supp ρ)21. (8.4.11)

For the lower bound, we used the lower bound in (8.3.14), Lemma 8.4.2 and (8.3.12). The

upper bound is a direct consequence of (8.3.7) as well as Lemma 8.4.2. Since ⟨f , qq∗⟩ ≥

∥(qq∗)−1∥−1⟨f⟩ ≳ ∥m∥⟨f⟩ by Lemma 8.4.2, the relation (8.4.5) and the upper bound in

(8.4.11) yield

1− ∥F∥2 ≳ dist(z, supp ρ)2.
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As 1− ⟨fCReu[f ]⟩ ≥ 0 and ⟨f 2⟩ = 1, we obtain from the lower bound in (8.4.11) that

|1− ⟨fC∗
u[f ]⟩| ≥ Re [1− ⟨fC∗

u[f ]⟩] = 1− ⟨fCReu[f ]⟩+ ⟨fCImu[f ]⟩

≳ ρ(z)2(ρ(z) + dist(z, supp ρ))4.
(8.4.12)

This completes the proof of (8.4.10) and hence of Proposition 8.4.1. □

8.4.2. Proof of Proposition 8.2.3. The following proof of Proposition 8.2.3 is

similar to the one of Proposition 2.2 in [6].

Proof of Proposition 8.2.3. We first show that ρ : H → (0,∞) has a uniformly

Hölder-continuous extension to H, which we will also denote by ρ. This extension re-

stricted to R will be the density of the measure ρ from Definition 8.2.2. Since Id−CmS is

invertible for each z ∈ H by (8.4.1), the implicit function theorem allows us to differentiate

(8.2.3) with respect to z. This yields

(Id− CmS)[∂zm] = m2. (8.4.13)

Since z ↦→ ⟨m(z)⟩ is holomorphic on H as remarked below (8.2.3), we have 2πi∂zρ(z) =

2i∂zIm ⟨m(z)⟩ = ∂z⟨m(z)⟩. Thus, we obtain from (8.4.13) that

|∂zρ| ≲ ∥∂zm∥2 ≤ ∥(Id− CmS)−1∥2∥m∥2 ≲ ρ−(C+2) (8.4.14)

Here, we used (8.4.1), ρ(z) ≲ ∥m(z)∥2 ≲ 1 by (8.3.11) and (8.3.12) in the last step. Hence,

ρC+3 is a uniformly Lipschitz-continuous function on H. Therefore, ρ defines uniquely a

uniformly 1/(C + 3)-Hölder continuous function on R which is a density of the measure

ρ from Definition 8.2.2 with respect to the Lebesgue measure on R.

Next, we show the Hölder-continuity with respect to a and S. As before in (8.4.2),

we compute the derivatives and use (8.3.12) and (8.4.1) to obtain

|∇(d,D)ρ(a,S)(z)| ≲ |⟨∇(d,D)m⟩| ≲
∥d∥+ ∥D∥

ρC+3 .

Since the constants in (8.4.1) and (8.3.12) depend on the constants in (8.3.10), we con-

clude that ρ is also a locally 1/(C + 4)-Hölder continuous function of a and S.

We are left with showing that ρ is real-analytic in a neighbourhood of (τ0, a, S) if

ρa,S(τ0) > 0. Since ρ(τ0) > 0, we can extend m to τ0 by (8.4.14). Moreover, m(τ0) is
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invertible as Imm(τ0) > 0 and, thus, solves (8.2.3) with z = τ0. Since (8.2.3) depends

analytically on z = τ , a and S in a small neighbourhood of (τ0, a, S), the solution m and

thus ρ will depend analytically on (τ, a, S) in this neighbourhood by the implicit function

theorem. This completes the proof of Proposition 8.2.3. □

8.4.3. Proof of Proposition 8.2.4. For I ⊂ R and η∗ > 0, we define

HI,η∗
..= {z ∈ H : Re z ∈ I, Im z ∈ (0, η∗]} (8.4.15)

and its closure HI,η∗ .

Assumptions 8.4.5. Let m be the solution of (8.2.3) for a = a∗ ∈ A satisfying ∥a∥ ≤ k1

with a positive constant k1 and S ∈ Σ satisfying ∥S∥2→∥ · ∥ ≤ k2 for some positive constant

k2. For an interval I ⊂ R and some η∗ ∈ (0, 1], we assume that

(i) There are positive constants k3, k4 and k5 such that

∥m(z)∥ ≤ k3, (8.4.16)

k4⟨Imm(z)⟩1 ≤ Imm(z) ≤ k5⟨Imm(z)⟩1, (8.4.17)

uniformly for all z ∈ HI,η∗ .

(ii) The operator F ..= Cq,q∗SCq∗,q has a simple eigenvalue ∥F∥2 with eigenvector

f ∈ A+ that satisfies (8.4.5) for all z ∈ HI,η∗ . Moreover, (8.4.7) holds true and

there are positive constants k6, k7 and k8 such that

k61 ≤ f ≤ k71, ϑ ≥ k8. (8.4.18)

uniformly for all z ∈ HI,η∗ .

We remark that S ∈ Σflat is not necessarily required in Assumptions 8.4.5. In fact,

we will show in Lemma 8.4.8 below that S ∈ Σflat and (8.4.16) imply all other conditions

in Assumptions 8.4.5.

Convention 8.4.6 (Model parameters, Comparison relation). For the remainder of the

Section 8.4 as well as Section 8.5 and Section 8.6, we will only consider k1, . . . , k8 as

model parameters and understand the comparison relation ∼ from Convention 8.3.4 with

respect to this set of model parameters.



8.4. REGULARITY OF THE SOLUTION AND THE DENSITY OF STATES 273

We remark that all of our estimates will be uniform in η∗ ∈ (0, 1]. Therefore, η∗ is

not considered a model parameter. At the end of this section, we will directly conclude

Proposition 8.2.4 from the following proposition.

Proposition 8.4.7 (Regularity of m). Let Assumptions 8.4.5 hold true on an interval

I ⊂ R for some η∗ ∈ (0, 1].

Then, for any θ ∈ (0, 1], m can be uniquely extended to Iθ ..= {τ ∈ I : dist(τ, ∂I) ≥ θ}

such that it is uniformly 1/3-Hölder continuous, indeed,

∥m(z1)−m(z2)∥ ≲ θ−4/3|z1 − z2|1/3 (8.4.19)

for all z1, z2 ∈ Iθ × i[0,∞). Moreover, if ρ(τ0) > 0, τ0 ∈ I, then m is real-analytic in a

neighbourhood of τ0 and

∥∂τm(τ0)∥ ≲ ρ(τ0)−2. (8.4.20)

We remark that the bound in (8.4.20) will be extended to higher derivatives in

Lemma 8.5.7 below.

In the following lemma, we establish a very helpful consequence of (i) in Assump-

tions 8.4.5. Moreover, part (ii) of the following lemma shows that all conditions in

Assumptions 8.4.5 are satisfied if we assume (8.4.16) and the flatness of S.

Lemma 8.4.8. Let m be the solution to (8.2.3) for some data pair (a, S) ∈ Asa×Σ. We

have

(i) Let ∥a∥ ≲ 1, ∥S∥ ≲ 1 and U ⊂ H such that sup{|z| : z ∈ U} ≲ 1. If (8.4.16)

and (8.4.17) hold true uniformly for z ∈ U then, uniformly for z ∈ U , we have

∥q∥, ∥q−1∥ ∼ 1, Im u ∼ ⟨Im u⟩1 ∼ ρ1. (8.4.21)

(ii) Let I ⊂ [−C,C] for some C ∼ 1 and (8.4.16) hold true uniformly for all z ∈

HI,η∗. If S ∈ Σflat and ∥a∥ ≲ 1 then ∥S∥2→∥ · ∥ ≲ 1, (8.4.17) holds true uniformly

for all z ∈ HI,η∗ and part (ii) of Assumptions 8.4.5 is satisfied.

(iii) If Assumptions 8.4.5 hold true then, uniformly for z ∈ HI,η∗, we have

∥(Id− Cm(z)S)−1∥2 + ∥(Id− Cm(z)S)−1∥ ≲ ρ(z)−2. (8.4.22)
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Proof of Lemma 8.4.8. For the proof of (i), we use ∥a∥ ≲ 1, ∥S∥ ≲ 1 and (8.2.3)

to show ∥m(z)−1∥ ≲ 1 uniformly for all z ∈ U . Thus, following the proof of Lemma 8.4.2

immediately yields the estimates on q and q−1 in (8.4.21) due to (8.4.16) and (8.4.17).

Thus, as ∥q∥, ∥q−1∥ ∼ 1, we obtain the missing relations in (8.4.21) from (8.4.17) since

Im u = (q∗)−1(Imm)q−1 ∼ Imm ∼ ⟨Imm⟩ ∼ ⟨Im u⟩.

We now show (ii). By Lemma 8.12.2 (i), the upper bound in the definition of flatness,

(8.3.10), implies ∥S∥2→∥ · ∥ ≲ 1. Owing to (8.4.16) and (8.3.13), we have ∥m(z)∥ ∼ 1

for all z ∈ HI,η∗ . Hence, (8.4.17) follows from (8.3.14) since |z| ≤ C + 1 for z ∈ HI,η∗ .

Moreover, (ii) in Assumptions 8.4.5 is a consequence of Lemma 8.4.3.

To prove (8.4.22), we follow the proof of Proposition 8.4.1 and replace the use of

(8.3.12) as well as (8.4.6) and (8.4.7) from Lemma 8.4.3 by (8.4.16) and (8.4.18), respec-

tively. This yields

∥(Id− CmS)−1∥2 ≲ 1 + |1− ∥F∥2⟨fC∗
u[f ]⟩|−1 ≲ |1− ∥F∥2⟨fC∗

u[f ]⟩|−1, (8.4.23)

where we used in the last step that (8.4.16) implies ρ(z) ≲ 1 on HI,η∗ . Since Im u ∼ ρ by

(8.4.21) and ∥F∥2 ≤ 1 by (8.4.5) that holds under Assumptions 8.4.5 (ii), we conclude

|1− ∥F∥2⟨fC∗
u[f ]⟩|−1 ≲ |1− ⟨fC∗

u[f ]⟩|−1 ≲ ρ−2

as in (8.4.12) in the proof of Proposition 8.4.1. This shows ∥(Id − CmS)−1∥2 ≲ ρ(z)−2.

Using ∥S∥2→∥ · ∥ ≲ 1 and Lemma 8.12.2 (ii), we obtain the missing ∥ · ∥-bound in (8.4.22).

This completes the proof of Lemma 8.4.8. □

Proof of Proposition 8.4.7. Similarly to the proof of Proposition 8.2.3, we ob-

tain

∥∂zImm(z)∥ ≲ ∥∂zm(z)∥ ≤ ∥(Id− CmS)−1∥∥m(z)∥2 ≲ ρ(z)−2 ∼ ∥Imm(z)∥−2 (8.4.24)

for z ∈ HI,η∗ from (8.4.16), (8.4.22) and (8.4.17). By the submultiplicativity of ∥ · ∥,

(Imm(z))3 : HI,η∗ → (A, ∥ · ∥) is a uniformly Lipschitz-continuous function. Hence,

Imm(z) is uniformly 1/3-Hölder continuous on HI,η∗ (see e.g. Theorem X.1.1 in [35])

and, thus, has a uniformly 1/3-Hölder continuous extension to HI,η∗ . We conclude that
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the measure v restricted to I has a density with respect to the Lebesgue measure on I,

i.e., (8.2.9) holds true for all measurable A ⊂ I. Now, (8.11.3) in Lemma 8.11.1 implies

the uniform 1/3-Hölder continuity of m on Iθ× i(0,∞). In particular, m can be uniquely

extended to a uniformly 1/3-Hölder continuous function on Iθ× i[0,∞) such that (8.4.19)

holds true.

To prove the analyticity of m, we refer to the proof of the analyticity of ρ in Propo-

sition 8.2.3. The bound (8.4.20) can be read off from (8.4.24). This completes the proof

of the proposition. □

Proof of Proposition 8.2.4. By (8.2.7), there are C0 > 0 and η∗ ∈ (0, 1] such

that ∥m(τ + iη)∥ ≤ C0 for all τ ∈ I and η ∈ (0, η∗]. Hence, by Lemma 8.4.8 (ii), the

flatness of S implies Assumptions 8.4.5 on I ∩ [−C,C] for C ..= 3(1 + ∥a∥+ ∥S∥1/2), i.e.,

C ∼ 1. Therefore, Proposition 8.4.7 yields Proposition 8.2.4 on I ∩ [−C,C].

Owing to (8.3.7) and supp v = supp ρ, we have dist(τ, supp v) ≥ 1 for τ ∈ I satisfying

τ /∈ [−C + 1, C − 1]. Hence, for these τ , the Hölder-continuity follows immediately

from (8.11.4) in Lemma 8.11.1. By (8.2.5a), we have Imm(τ) = 0 for τ ∈ I satisfying

τ /∈ [−C,C]. Therefore, the statement about the analyticity is trivial outside of [−C,C].

This completes the proof of Proposition 8.2.4. □

8.5. Spectral properties of the stability operator for small self-consistent

density of states

In this section, we study the stability operator B−1, where B = B(z) ..= Id−Cm(z)S,

when ρ = ρ(z) is small and Assumptions 8.4.5 hold true. Note that we do not require S

to be flat, i.e., to satisfy (8.3.10). We will view B as a perturbation of the operator B0,

which we introduce now. We define

s ..= sign Reu, B0
..= Cq∗,q(Id− CsF )C−1

q∗,q,

E ..= (Cq∗sq − Cm)S = Cq∗,q(Cs − Cu)FC−1
q∗,q,

(8.5.1)

with u and q defined in (8.3.1). Note B0 = Id − Cq∗sqS, i.e., in the definition of B, u in

m = q∗uq is replaced by s. Thus, we have B = B0+E. Under Assumptions 8.4.5, (8.4.21)

holds true which we will often use in the following. Since 1−|Reu| = 1−
√
1− (Im u)2 ≤
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(Im u)2 ≲ ρ2, we also obtain

Reu = s+O(ρ2), Im u = O(ρ) , Rem = q∗sq +O(ρ2) (8.5.2)

and with Cs − Cu = O(∥s− u∥) = O(ρ) we get

E = O(ρ) . (8.5.3)

Here, we use the notation R = T + O(α) for operators T and R on A and α > 0 if

∥R− T∥ ≲ α. We introduce

fu ..= ρ−1Im u. (8.5.4)

By the functional calculus for the normal operator u, Reu, s and fu commute. Hence,

Cs[fu] = fu. From the imaginary part of (8.3.3) and (8.4.21), we conclude that

(Id− F )[fu] = ρ−1Im zqq∗ = O(ρ−1Im z). (8.5.5)

In the following, for z ∈ C and ε > 0, we denote by Dε(z) ..= {w ∈ C : |z − w| < ε} the

disk in C of radius ε around z.

Lemma 8.5.1 (Spectral properties of stability operator). Let T ∈ {Id−F, Id−CsF, B0,

B, Id − Cm∗,mS}. If Assumptions 8.4.5 are satisfied on an interval I ⊂ R for some

η∗ ∈ (0, 1], then there are ρ∗ ∼ 1 and ε ∼ 1 such that

∥(T − ω Id)−1∥2 + ∥(T − ω Id)−1∥+ ∥(T ∗ − ω Id)−1∥ ≲ 1 (8.5.6)

uniformly for all z ∈ HI,η∗ satisfying ρ(z) + ρ(z)−1Im z ≤ ρ∗ and for all ω ∈ C with

ω ̸∈ Dε(0) ∪ D1−2ε(1). Furthermore, there is a single simple (algebraic multiplicity 1)

eigenvalue λ in the disk around 0, i.e.,

Spec(T ) ∩Dε(0) = {λ} and rankPT = 1 ,

where PT ..= − 1
2πi

∫
∂Dε(0)

(T − ωId)−1dω .
(8.5.7)

If Assumptions 8.4.5 are satisfied on I for some η∗ ∈ (0, 1] then we have

fu = ρ−1Im u ∼ 1. (8.5.8)
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uniformly for z ∈ HI,η∗ due to (8.4.21). This fact will often be used in the following

without mentioning it.

Proof. First, we introduce the bounded operators Vt : A → A for t ∈ [0, 1] interpo-

lating between Id and Cs by

Vt ..= (1− t)Id + tCs .

We will perform the proof one by one for the choices T = Id − F, Id − VtF,B0, B, Id −

Cm∗,mS in that order. The operator Id−F has a spectral gap above the single eigenvalue

around 0, so for this choice the statements are easy. Then we perform two approximations.

First, we interpolate between Id−F and Id−CsF via Id−VtF . This gives Lemma 8.5.1

for T = B0. Then we use perturbation theory to get the results for T = B = B0 +

O(ρ) and for T = Id − Cm∗,mS = B0 + O(ρ). Note that for all these choices of T the

bound ∥Id − T∥2→∥ · ∥ ≲ 1 holds due to ∥S∥2→∥ · ∥ ≲ 1, (8.4.16) and (8.4.21). Hence, the

invertibility of T − ω Id as an operator on A and on L2 are therefore closely related by

Lemma 8.12.2 (ii). In particular, it suffices to show (8.5.7) and the ∥·∥2-norm bound

∥(T − ω Id)−1∥2 ≲ 1 , (8.5.9)

for ω ̸∈ Dε(0)∪D1−2ε(1) in (8.5.6) to establish the lemma. For T = Id−F both of these

assertion are true due to Lemma 8.4.3. In particular, we find

f = ∥fu∥−1
2 fu +O(ρ−1Im z) , (8.5.10)

where f is the single top eigenvector of F , Ff = ∥F∥2f (see Lemma 8.4.3). The proof of

(8.5.10) follows from (8.5.5) and ∥F∥2 = 1 +O(ρ−1Im z) (cf. (8.4.5)) by straightforward

perturbation theory of the simple isolated eigenvalue ∥F∥2.

Now we consider the choice T = Tt = Id − VtF . Once (8.5.9), and with it (8.5.6),

is established for Tt, the statement about the single isolated eigenvalue (8.5.7) follows.

Indeed, assuming (8.5.6) for T = Tt, we obtain that Tt and, hence, the rank of PTt

is a continuous function of t on [0, 1]. Hence, the rank of PTt is constant along this

interpolation. On the other hand, rankPT0 = 1 by Lemma 8.4.3. Therefore, for each

t ∈ [0, 1], Spec(Tt) ∩ Dε(0) consists of precisely one simple eigenvalue. We are thus left

with establishing (8.5.9) for Tt. As ∥Vt∥2 ≤ 1 and ∥F∥2 ≤ 1 the bound (8.5.9) is certainly
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satisfied for |ω| ≥ 3. Thus, we now assume |ω| ≤ 3. In order to conclude (8.5.9), we now

show a lower bound on ∥((1 − ω)Id − VtF )[x]∥2 for all normalized, ∥x∥2 = 1, elements

x ∈ A. We decompose x ∈ L2 as x = αf + y, where y ⊥ f and α ∈ C. Then

∥((1− ω)Id− VtF )[x]∥2
2 = |α|2|ω|2 + ∥((1− ω)Id− VtF )[y]∥2

2 +O(ρ−1Im z) , (8.5.11)

because of ∥F∥2 = 1 + O(ρ−1Im z), Vt[fu] = fu together with (8.5.10), and because the

mixed terms are negligible due to

⟨f , VtF [y]⟩ = ⟨FVtf , y⟩ = O(∥y∥2 ρ
−1Im z) .

Using the spectral gap ϑ ∼ 1 of F from (8.4.7) and y ⊥ f we infer (8.5.9) from (8.5.11)

by estimating

∥((1− ω)Id− VtF )[y]∥2
2 ≥ dist(ω,D1−ϑ(1))∥y∥2

2 ≥ (ϑ− ε)(1− |α|2),

optimizing in α and choosing δ ≤ ϑ/2. This shows the lemma for T = Id− VtF .

Since B0 is related by the similarity transform (8.5.1) to Id − V1F = Id − CsF and

∥q∥∥q−1∥ ≲ 1 (cf. (8.4.21)), the operator B0 inherits the properties listed in the lemma

from Id − CsF . Finally, we can perform analytic perturbation theory for the simple

isolated eigenvalue in Dε(0) of B0 to verify the lemma for T = B = B0+E with E = O(ρ)

(cf. (8.5.3)) and T = Id − Cm∗,mS = B0 + E∗ with E∗ = O(ρ) if ρ∗ is sufficiently small.

Here, we introduced

E∗
..= (Cq∗sq − Cm∗,m)S = Cq∗,q(Cs − Cu∗,u)FC−1

q∗,q

and used Cs − Cu∗,u = O(∥s− u∥) = O(ρ) due to (8.5.2). □

If z ∈ HI,η∗ satisfies ρ(z) + ρ(z)−1Im z ≤ ρ∗ for ρ∗ ∼ 1 from Lemma 8.5.1 then

we denote by Ps,F the spectral projection corresponding to the isolated eigenvalue of

Id−CsF , i.e., Ps,F equals PT in (8.5.7) with T = Id−CsF . We also set Qs,F
..= Id−Ps,F .

Moreover, for such z, we define ψ and σ by

ψ(z) ..= ⟨sf 2
u , (Id + F )(Id− CsF )−1Qs,F [sf 2

u ]⟩, σ(z) ..= ⟨sf 3
u⟩. (8.5.12)
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Corollary 8.5.2. Let z ∈ HI,η∗ satisfy ρ(z) + ρ(z)−1Im z ≤ ρ∗ for ρ∗ ∼ 1 from Lem-

ma 8.5.1. Let (β0, b0, l0) and (β, b, l) be the triple of eigenvalue, right and left eigenvec-

tor for the operators B0 and B corresponding to the isolated eigenvalue in Dε(0) from

Lemma 8.5.1, respectively. Then with a properly chosen normalization of the eigenvectors

we have

b0 = Cq∗,q[fu] +O(ρ−1Im z), l0 = C−1
q,q∗ [fu] +O(ρ−1Im z), (8.5.13a)

β0 = Im z

ρ

π

⟨f 2
u⟩

+O(ρ−2(Im z)2) = O(ρ−1Im z) , (8.5.13b)

as well as

b = b0 + 2iρCq∗,q(Id− CsF )−1Qs,F [sf 2
u ] +O(ρ2 + Im z) , (8.5.14a)

l = l0 − 2iρC−1
q,q∗(Id− FCs)−1Q∗

s,FF [sf 2
u ] +O(ρ2 + Im z) , (8.5.14b)

β⟨l , b⟩ = πρ−1Im z − 2iρσ + 2ρ2
(
ψ + σ2

⟨f 2
u⟩

)
+O(ρ3 + Im z + ρ−2(Im z)2) . (8.5.14c)

Furthermore, let P0 and P be the spectral projections corresponding to the isolated eigen-

value of B0 and B, respectively. Then with Q0
..= Id− P0 and Q ..= Id− P we have

∥B−1Q∥+ ∥B−1Q∥2 + ∥B−1
0 Q0∥ ≲ 1. (8.5.15)

Moreover, we have

∥b∥ ≲ 1, ∥l∥ ≲ 1. (8.5.16)

For later use, we record some identities here. From (8.5.10) in the proof of Lemma 8.5.1

with Cs[fu] = fu, we obtain the first relation in

Ps,F = ⟨fu , · ⟩
⟨f 2
u⟩

fu +O(ρ−1Im z),

P ∗
s,F = Ps,F +O(ρ−1Im z), Q∗

s,F = Qs,F +O(ρ−1Im z).
(8.5.17)

This first relation together with fu = f ∗
u implies the second and third one. Moreover, the

definitions of B0 and Q0 yield

B−1
0 Q0 = Cq∗,q(Id− CsF )−1Qs,FC

−1
q∗,q. (8.5.18)
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By a direct computation starting from the definitions of fu in (8.5.4) and u in (8.3.1), we

obtain

⟨fuqq∗⟩ = ρ−1⟨Imm⟩ = π. (8.5.19)

Proof. Using (8.5.5) and Cs[fu] = fu, we see that

B∗
0C

−1
q,q∗ [fu] = ρ−1(Im z)1 , B0Cq∗,q[fu] = O(ρ−1Im z) . (8.5.20)

We set b0
..= P0Cq∗,q[fu] and l0 ..= P ∗

0C
−1
q,q∗ [fu] which amounts to a normalization as β0 is a

nondegenerate eigenvalue. The representations of b0 and l0 in (8.5.13a) follow by simple

perturbation theory because β0 is a nondegenerate isolated eigenvalue. The expression

for β0 in (8.5.13b) is seen by taking the scalar product with b0 in the first identity of

(8.5.20) as well as using (8.5.13a) and (8.5.19).

The expansions (8.5.14) follow by analytic perturbation theory. Indeed, b = b0 +

b1 +O(ρ2) and l = l0 + l1 +O(ρ2) with b1
..= −(B0 − β0Id)−1Q0E[b0] and l1 ..= −(B∗

0 −

β̄0Id)−1Q∗
0E

∗[l0] (cf. Lemma 8.13.1 with E satisfying (8.5.3)). Here the invertibility of

B0 − β0Id on the range of Q0 is seen from the second part of Lemma 8.5.1 with T = B0.

In fact,

(B0 − β0Id)−1Q0 = B−1
0 Q0 +O(β0). (8.5.21)

Furthermore, we use (8.5.13a) and obtain the first equalities below:

E[b0] = Cq∗,q(Cs − Cu)F [fu] +O(Im z)

= −2iρCq∗,q[sf 2
u ] + 2ρ2Cq∗,q[f 3

u ] +O(ρ3 + Im z),
(8.5.22a)

E∗[l0] = C−1
q,q∗F (Cs − C∗

u)[fu] +O(Im z)

= 2iρC−1
q,q∗F [sf 2

u ] + 2ρ2C−1
q,q∗F [f 3

u ] +O(ρ3 + Im z).
(8.5.22b)

For the second equality in (8.5.22a), we used (8.5.5), ∥Cs−Cu∥ = O(ρ) and (Cs−Cu)[fu] =

2(Im u−iReu)(Im u)fu = −2iρsf 2
u+2ρ2f 3

u+O(ρ3) due to (8.5.2). For the second equality

in (8.5.22b), we applied (Cs − C∗
u)[fu] = 2iρsf 2

u + 2ρ2f 3
u +O(ρ3).

For the proof of (8.5.14c), we start from (8.13.3), use E = O(ρ) and obtain

β⟨l , b⟩ = β0⟨l0 , b0⟩+ ⟨l0 , E[b0]⟩ − ⟨l0 , EB0(B0 − β0Id)−2Q0E[b0]⟩+O(ρ3). (8.5.23)
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Each of the terms on the right-hand side is computed individually. For the first term, we

use ⟨l0 , b0⟩ = ⟨f 2
u⟩+O(ρ−1Im z) due to (8.5.13a) and thus obtain from (8.5.13b) that

β0⟨l0 , b0⟩ = πρ−1Im z +O(ρ−2(Im z)2).

Using (8.5.13a) and (8.5.22) yields for the second term

⟨l0 , E[b0]⟩ = −2iρ⟨sf 3
u⟩+ 2ρ2⟨f 4

u⟩+O(ρ3 + Im z)

= −2iρσ + 2ρ2
(
σ2

⟨f 2
u⟩

+ ⟨sf 2
u , Qs,F [sf 2

u ]⟩
)

+O(ρ3 + Im z),

where we used Id = Ps,F +Qs,F and ⟨sf 2
u , Ps,F [sf 2

u ]⟩ = σ2/⟨f 2
u⟩+O(ρ−1Im z) by (8.5.17)

in the last step.

For the third term, we use (8.5.13b) and E = O(ρ) which yields

⟨l0 , EB0(B0 − β0Id)−2Q0E[b0]⟩ = ⟨E∗[l0] , (B0 − β0Id)−1Q0E[b0]⟩+O(β0∥E∥2)

= ⟨E∗[l0] , B−1
0 Q0E[b0]⟩+O(ρIm z)

= −4ρ2⟨sf 2
u , F (Id− CsF )−1Qs,F [sf 2

u ]⟩+O(ρIm z + ρ3).

Here, we used (8.5.21) in the second step and (8.5.22) as well as (8.5.18) in the last

step. Collecting the results for the three terms in (8.5.23) and using Cs = C∗
s as well as

Cs[sf 2
u ] = sf 2

u yield (8.5.14c).

The bounds in (8.5.15) and (8.5.16) follow directly from the analytic functional cal-

culus and Lemma 8.5.1. □

Corollary 8.5.3 (Improved bound on B−1). Let Assumptions 8.4.5 hold true on an

interval I ⊂ R for some η∗ ∈ (0, 1]. Then, uniformly for all z ∈ HI,η∗, we have

∥B−1(z)∥2 + ∥B−1(z)∥ ≲
1

ρ(z)(ρ(z) + |σ(z)|) + ρ(z)−1Im z
. (8.5.24)

Proof. If ρ ≥ ρ∗ for some ρ∗ ∼ 1 then (8.5.24) have been shown in (8.4.22) as

|σ| ≲ 1. Therefore, we prove (8.5.24) for ρ ≤ ρ∗ and a sufficiently small ρ∗ ∼ 1. By

∥S∥2→∥ · ∥ ≲ 1 and Lemma 8.12.2 (ii), it suffices to show the bound for ∥ · ∥2. We follow

the proof of (8.4.22) until (8.4.23). Hence, for the improved bound, we have to show that

|1− ∥F∥2⟨fC∗
u[f ]⟩| ≳ ρ(ρ+ |σ|) + ρ−1Im z. (8.5.25)
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We have |1−∥F∥2⟨fC∗
u[f ]⟩| ≳ max{1−∥F∥2, |1− ⟨fC∗

u[f ]⟩|} ≳ ρ−1Im z+ |1− ⟨fC∗
u[f ]⟩|

by (8.4.5). We continue

|1−⟨fC∗
u[f ]⟩| = |1−⟨fu∗fu∗⟩| ≳ ⟨f Im uf Im u⟩+|⟨f Im ufReu⟩| ≳ ρ2+ρ|σ|+O(ρ3+Im z).

Here, we used 1 ≥ ⟨fReufReu⟩ due to ∥f∥2 = 1, (8.4.21) as well as ⟨f Im ufReu⟩ =

ρ∥fu∥−2
2 ⟨f 3

us⟩ + O(ρ3 + Im z) by (8.5.10) and (8.5.2). By possibly shrinking ρ∗ ∼ 1, we

thus obtain (8.5.25). This completes the proof of (8.5.24). □

The remainder of this section is devoted to several results about the behaviour of

ρ(z), σ(z) and ψ(z) close to the real axis. They will be applied in the next section. We

now prepare these results by extending q, u, fu and s to the real axis.

Lemma 8.5.4 (Extensions of q, u, fu and s). Let I ⊂ R be an interval, θ ∈ (0, 1] and

Assumptions 8.4.5 hold true on I for some η∗ ∈ (0, 1]. We set Iθ ..= {τ ∈ I : dist(τ, ∂I) ≥

θ}. Then we have

(i) The functions q, u and fu have unique uniformly 1/3-Hölder continuous exten-

sions to HIθ,η∗.

(ii) The function z ↦→ ρ(z)−1Im z has a unique uniformly 1/3-Hölder continuous

extension to HIθ,η∗. In particular, we have

lim
z→τ0

ρ(z)−1Im z = 0 (8.5.26)

for all τ0 ∈ supp ρ ∩ Iθ. Moreover, for z ∈ HIθ,η∗, we have

dist(z, supp ρ) ≳ 1 ⇐⇒ ρ(z)−1Im z ≳ 1.

(iii) There is a threshold ρ∗ ∼ 1 such that s = sign(Reu) has a unique uniformly

1/3-Hölder continuous extension to {w ∈ HIθ,η∗ : ρ(w) ≤ ρ∗}.

Proof. For the proof of (i), we will show below that

fm(z) ..= ρ(z)−1Imm(z)
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is uniformly 1/3-Hölder continuous on HIθ,η∗ . Indeed, this suffices to obtain the Hölder-

continuity of q and u since their definitions in (8.3.1) can be rewritten as

q = |h−1/2gh−1/2 + i1|1/2h1/2 =
(
ρ(z)21 + f−1/2

m gf−1
m gf−1/2

m

)1/4
f 1/2
m ,

u = ρ(z)w
|ρ(z)w| = iρ(z)1 + f−1/2

m gf−1/2
m

|iρ(z)1 + f
−1/2
m gf

−1/2
m |

,
(8.5.27)

where g = Rem, h = Imm, w is defined in (8.3.1) and z ∈ H is arbitrary. Since

|ρ(z)w| ∼ 1 and fm ∼ 1 on HIθ,η∗ by (8.4.21) as well as (8.4.17) and m, hence ρ and Rem

are Hölder-continuous on Iθ × i[0,∞) (Proposition 8.4.7), it thus suffices to show that

fm is uniformly Hölder-continuous to conclude from (8.5.27) that q and u are Hölder-

continuous. As fu = ρ−1Im u = (q∗)−1fmq
−1, the Hölder-continuity of fm, the Hölder-

continuity of q and the upper and lower bounds on q from (8.4.21) imply that fu can be

extended to a 1/3-Hölder continuous function on HIθ,η∗ .

Therefore, we now complete the proof of (i) by showing the 1/3-Hölder continuity of

fm. To that end, we distinguish three subsets of HIθ,η∗ .

Case 1: On the set {z ∈ HIθ,η∗ : ρ(z) ≥ ρ∗} for any ρ∗ ∼ 1, the uniform 1/3-

Hölder continuity of fm follows from ρ(z) ≳ 1 and the 1/3-Hölder continuity of m from

Proposition 8.4.7.

Case 2: In order to analyze fm on the set {z ∈ HIθ,η∗ : ρ(z) ≤ ρ∗} for some ρ∗ ∼ 1 to

be chosen later, we take the imaginary part of the Dyson equation, (8.2.3), at z ∈ H and

obtain

B∗[Imm] = (Im z)m∗m, B∗
..= Id− Cm∗,mS, (8.5.28)

where m = m(z). We follow the proof of (8.5.24) in Corollary 8.5.3 and use

Id− Cm∗,mS = Cq∗,qCu∗,u(Cu,u∗ − F )C−1
q∗,q

instead of (8.4.3) to see the invertibility of B∗ for each z ∈ HI,η∗ and

∥B−1
∗ (z)∥2 + ∥B−1

∗ (z)∥ ≲ 1
ρ(z)(ρ(z) + |σ(z)|) + ρ(z)−1Im z

(8.5.29)

for all z ∈ HI,η∗ . Since B∗ is invertible for any z ∈ HI,η∗ , we conclude from (8.5.28) that

fm(z) = π
Imm(z)
⟨Imm(z)⟩ = π

B−1
∗ [m∗m]

⟨B−1
∗ [m∗m]⟩ (8.5.30)
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for all z ∈ HIθ,η∗ .

On the set {z ∈ HIθ,η∗ : ρ(z)−1Im z ≥ ρ∗} for any ρ∗ ∼ 1, B−1
∗ [m∗m] is uniformly

1/3-Hölder continuous due to (8.5.29) and the 1/3-Hölder continuity of m. Moreover,

from (8.4.5) and Im u ∼ ρ1, we see that 1 − ∥F∥2 ∼ 1 if ρ(z)−1Im z ≳ 1. Hence,

by Lemma 8.12.3 in Appendix 8.12 below, (Id − Cu∗,uF )−1 is positivity-preserving and

satisfies

(Id− Cu∗,uF )−1[xx∗] ≥ xx∗ (8.5.31)

for any x ∈ A. We conclude that B−1
∗ = Cq∗,q(Id−Cu∗,uF )−1C−1

q∗,q is positivity-preserving.

Together with (8.4.21), (8.5.31) implies ⟨B−1
∗ [m∗m]⟩ ≳ 1 as ∥m(z)−1∥ ≲ 1 by ∥a∥ ≲ 1,

∥S∥ ≲ 1 and (8.2.3). Thus, (8.5.30) yields the uniform 1/3-Hölder continuity of fm on

{z ∈ HIθ,η∗ : ρ(z)−1Im z ≥ ρ∗} for any ρ∗ ∼ 1.

Case 3: We now show that fm is Hölder-continuous on {z ∈ HIθ,η∗ : ρ(z)+ρ(z)−1Im z ≤

ρ∗} for some sufficiently small ρ∗ ∼ 1. In fact, Lemma 8.5.1 applied to T = B∗ yields the

existence of a unique eigenvalue β∗ of B∗ of smallest modulus. Inspecting the proof of

Corollary 8.5.2 for B reveals that this proof only used B = B0 +O(ρ) about B. There-

fore, the same argument works if B is replaced by B∗ since B∗ = B0 + O(ρ) (compare

the proof of Lemma 8.5.1). We thus find a right eigenvector b∗ and a left eigenvector l∗
of B∗ associated to β∗, i.e.,

B∗[b∗] = β∗b∗, (B∗)∗[l∗] = β∗l∗,

which satisfy

b∗ = b0 +O(ρ) = q∗fuq +O(ρ+ ρ−1Im z), (8.5.32a)

l∗ = l0 +O(ρ) = q−1fu(q∗)−1 +O(ρ+ ρ−1Im z), (8.5.32b)

β∗⟨l∗ , b∗⟩ = πρ−1Im z +O(ρ+ ρ−2(Im z)2). (8.5.32c)

Moreover, we have

∥B−1
∗ Q∗∥+ ∥B−1

∗ Q∗∥2 ≲ 1, (8.5.33)

where Q∗ denotes the spectral projection of B∗ to the complement of the spectral subspace

of β∗.
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Therefore, as β∗ ̸= 0 (cf. (8.5.29)) if Im z > 0, we obtain

Imm = (Im z)B−1
∗ [m∗m] = (Im z)

(
β−1

∗
⟨l∗ ,m∗m⟩
⟨l∗ , b∗⟩

b∗ +B−1
∗ Q∗[m∗m]

)
.

Consequently, as Imm > 0, we have

Imm

⟨Imm⟩
= ⟨l∗ ,m∗m⟩b∗ + β∗⟨l∗ , b∗⟩B−1

∗ Q∗[m∗m]
⟨l∗ ,m∗m⟩⟨b∗⟩+ β∗⟨l∗ , b∗⟩⟨B−1

∗ Q∗[m∗m]⟩ , (8.5.34)

which together with (8.5.30) shows that fm is uniformly 1/3-Hölder continuous on {z ∈

HIθ,η∗ : ρ(z) + ρ(z)−1Im z ≤ ρ∗}. Here, we used that B∗ and, thus, β∗, l∗, b∗ and B−1
∗ Q∗

are 1/3-Hölder continuous and the denominator in (8.5.34) is ≳ 1 due to

⟨l∗ ,m∗m⟩ = ⟨q−1fu(q∗)−1q∗u∗qq∗uq⟩+O(ρ+ ρ−1Im z)

= ρ−1Im ⟨q∗uuu∗q⟩+O(ρ+ ρ−1Im z) = π +O(ρ+ ρ−1Im z)

by (8.5.32a) and (8.5.32b) as well as ⟨b∗⟩ = π+O(ρ+ρ−1Im z) by (8.5.19). Here, we also

used (8.5.32c) and (8.5.33). This completes the proof of (i).

For the proof of (ii), we multiply (8.5.28) by ρ(z)−1(m∗m)−1 which yields

ρ(z)−1Im z = (m∗m)−1B∗[fm].

Owing to m∗m ≥ ∥m−1∥−2 ≳ 1 as well as the 1/3-Hölder continuity of m, B∗ and fm,

we obtain the same regularity for z ↦→ ρ(z)−1Im z. Since limη↓0 ρ(τ + iη)−1η = 0 for

τ ∈ supp ρ∩ Iθ satisfying ρ(τ) > 0, the continuity of ρ(z)−1Im z directly implies (8.5.26).

If dist(z, supp ρ) ≳ 1 then ρ(z)−1Im z ≳ 1 as ρ(z) ≤ Im z/ dist(z, supp ρ)2 which can be

seen by applying ⟨ · ⟩ to the second bound in (8.3.7). Conversely, if dist(z, supp ρ) ≲ 1

then the Hölder-continuity of ρ(z)−1Im z and (8.5.26) imply ρ(z)−1Im z ≲ 1.

We now turn to the proof of (iii). Owing to the first relation in (8.5.2), there is

ρ∗ ∼ 1 such that |Reu| ≥ 1
21 if z ∈ HIθ,η∗ satisfies ρ(z) ≤ ρ∗. Therefore, we find a

smooth function φ : R → [−1, 1] such that φ(t) = 1 for all t ∈ [1/2,∞), φ(t) = −1 for

all t ∈ (−∞,−1/2] and s(z) = sign(Reu(z)) = φ(Reu(z)) for all z ∈ HIθ,η∗ satisfying

ρ(z) ≤ ρ∗. Since φ is smooth, we conclude that φ is an operator Lipschitz function [8,

Theorem 1.6.1], i.e., ∥φ(x) − φ(y)∥ ≤ C∥x − y∥ for all self-adjoint x, y ∈ A. Hence, we
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conclude

∥s(z1)− s(z2)∥ = ∥φ(Reu(z1))− φ(Reu(z2))∥ ≲ ∥z1 − z2∥1/3,

where we used that φ is operator Lipschitz and u is 1/3-Hölder continuous in the last

step. This completes the proof of Lemma 8.5.4. □

Lemma 8.5.5 (Properties of ψ and σ). Let I ⊂ R be an interval and θ ∈ (0, 1]. If m

satisfies Assumptions 8.4.5 on I for some η∗ ∈ (0, 1] then there is a threshold ρ∗ ∼ 1 such

that, with

Hsmall
..= {w ∈ HIθ,η∗ : ρ(w) + ρ(w)−1Imw ≤ ρ∗},

we have

(i) The functions σ and ψ defined in (8.5.12) have unique uniformly 1/3-Hölder

continuous extensions to {z ∈ HIθ,η∗ : ρ(z) ≤ ρ∗} and Hsmall, respectively.

(ii) Uniformly for all z ∈ Hsmall, we have

ψ(z) + σ(z)2 ∼ 1. (8.5.35)

Proof. For the proof of (i), we choose ρ∗ ∼ 1 so small that all parts of Lemma 8.5.4

are applicable. Thus, Lemma 8.5.4 and σ = ⟨sf 3
u⟩ yield (i) for σ. Similarly, since q is

now defined on HIθ,η∗ , we can define F via (8.3.4) on this set as well. Moreover, owing

to the uniform 1/3-Hölder continuity of q from Lemma 8.5.4, F is uniformly 1/3-Hölder

continuous on HIθ,η∗ . Hence, using Lemma 8.5.1 for T = Id−CsF , the Hölder-continuity

of s and fu, the function ψ has a unique 1/3-Hölder continuous extension to Hsmall. This

completes the proof of (i) for ψ.

We now turn to the proof of (ii). In fact, we will show (8.5.35) only on {w ∈

HIθ,η∗ : ρ(w) + ρ(w)−1Imw ≤ ρ∗}, where ρ∗ ∼ 1 is chosen small enough such that Lem-

ma 8.5.1 is applicable. By the continuity of σ and ψ, the bound (8.5.35) immediately

extends to Dρ∗,θ. Instead of (8.5.35), we will prove that

⟨x, (Id + F )(Id− CsF )−1Qs,F [x]⟩+ ⟨fu , x⟩2 ∼ ∥x∥2
2 (8.5.36)

for all x ∈ A satisfying Cs[x] = x and x = x∗. Since these conditions are satisfied by

x = sf 2
u , (8.5.36) immediately implies (8.5.35). In fact, the upper bound in (8.5.36)
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follows from ∥(Id − CsF )−1Qs,F∥2 ≲ 1 by Lemma 8.5.1, ∥F∥2 ≤ 1 and fu ∼ 1 due

to (8.5.8).

From Cs[x] = x, we conclude

⟨x, (Id + F )(Id− CsF )−1Qs,F [x]⟩ = ⟨x, (Id + CsF )(Id− CsF )−1Qs,F [x]⟩

= ⟨x, ((CsF − Id) + 2Id)(Id− CsF )−1Qs,F [x]⟩

= ⟨x, (−Id + 2(Id− CsF )−1)Qs,F [x]⟩.
(8.5.37)

Using (8.5.17) and Cs[fu] = fu, we see that

CsPs,F [x] = Ps,F [x] +O(ρ−1Im z), CsQs,F [x] = Qs,F [x] +O(ρ−1Im z) (8.5.38)

for x ∈ A satisfying Cs[x] = x.

When applied to (8.5.37), the expansion (8.5.38) and (Id− FCs)−1 = Cs(Id−CsF )−1Cs

yield

⟨x, (Id + F )(Id− CsF )−1)Qs,F [x]⟩

= ⟨Qs,F [x] , (−Id + (Id− CsF )−1 + (Id− FCs)−1)Qs,F [x]⟩+O(∥x∥2
2ρ

−1Im z)

= ⟨Qs,F [x] , (Id− FCs)−1(Id− F 2)(Id− CsF )−1Qs,F [x]⟩+O(∥x∥2
2ρ

−1Im z)

= ⟨(Id− CsF )−1Qs,F [x] , Qf (Id− F 2)Qf (Id− CsF )−1Qs,F [x]⟩+O(∥x∥2
2ρ

−1Im z)

≳ ∥Qf (Id− CsF )−1Qs,F [x]∥2
2 +O(∥x∥2

2ρ
−1Im z)

≳ ∥Qs,F [x]∥2
2 +O(∥x∥2

2ρ
−1Im z).

(8.5.39)

Here, in the first step, we also used the second and third relation in (8.5.17). In the third

step, we then defined the orthogonal projections Pf ..= ⟨f , ·⟩f and Qf
..= Id− Pf , where

Ff = ∥F∥2f (cf. Assumptions 8.4.5 (ii)), and inserted Qf using

PfQs,F = O(ρ−1Im z) (8.5.40)

which follows from (8.5.10) and (8.5.17). We also used that Qs,F commutes with (Id −

CsF )−1. The fourth step is a consequence of (8.4.7) and (8.4.18). In the last step, we

employed QfQs,F = Qs,F +O(ρ−1Im z) by (8.5.40) and ∥Id− CsF∥2 ≤ 2.
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By (8.5.17), we have ∥Ps,F [x]∥2
2 = ⟨fu , x⟩2+O(∥x∥2

2ρ
−1Im z) if x = x∗. Combining this

observation with (8.5.39) proves (8.5.36) up to terms of order O(∥x∥2
2ρ

−1Im z). Hence,

possibly shrinking ρ∗ ∼ 1 and requiring ρ(z)−1Im z ≤ ρ∗ complete the proof of the

lemma. □

Remark 8.5.6 (Auxiliary quantities as functions ofm). Inspecting the proofs of Lemma 8.5.4

and Lemma 8.5.5 reveals that q, u, fu and s as well as σ and ψ are Lipschitz-continuous

functions of m. More precisely, we define

M ..=
{
m ∈ A : m satisfies (8.2.3) for some data pair (a, S) and some z ∈ H

such that |z| ≤ k9, Imm ∈ A+ and m, a, S satisfy Assumptions 8.4.5 at z
}
.

for some k9 > 0. Then we have

(i) The functions q, u and fu are uniformly Lipschitz-continuous functions of m on

M.

(ii) There is ρ∗ ∼ 1 such that the functions s and σ are uniformly Lipschitz-

continuous as functions of m on {m ∈M : ⟨Imm⟩ ≤ πρ∗}.

(iii) There is ρ∗ ∼ 1 such that the function ψ is uniformly Lipschitz-continuous

as function of m on {m ∈ M : ⟨Imm⟩ + π2⟨Imm⟩−1Im z ≤ πρ∗, where z ∈

H is the spectral parameter in (8.2.3)}.

Here, we also consider k9 in the definition of M a model parameter in addition to those

introduced in Convention 8.4.6.

The careful analysis of the operator B and its inverse allows for the precise bounds

on the derivatives of m in the following lemma.

Lemma 8.5.7 (Derivatives of m). Let I ⊂ R be an open interval and θ ∈ (0, 1]. If

Assumptions 8.4.5 hold true on I for some η∗ ∈ (0, 1] then there is C ∼ 1 such that

∥∂kzm(τ)∥ ≲ Ck

ρ(τ)3k−1

uniformly for all τ ∈ Iθ satisfying ρ(τ) > 0 and all k ∈ N satisfying k ≥ 1.
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Proof. To indicate the mechanism, we first prove that

∥∂zm(τ)∥ ≲ ρ(τ)−2, ∥∂2
zm(τ)∥ ≲ ρ(τ)−5, ∥∂3

zm(τ)∥ ≲ ρ(τ)−8 (8.5.41)

for all τ ∈ Iθ satisfying ρ(τ) > 0.

Since ρ(τ) > 0, m is real analytic around τ by Proposition 8.4.7 and we can differenti-

ate the Dyson equation, (8.2.3), with respect to z and evaluate at z = τ . Differentiating

(8.2.3) iteratively yields

B[∂zm] = m2, B[∂2
zm] = 2(∂zm)m−1(∂zm),

B[∂3
zm] = −6(∂zm)m−1(∂zm)m−1(∂zm) + 3(∂2

zm)m−1(∂zm) + 3(∂zm)m−1(∂2
zm)
(8.5.42)

where B = Id−CmS and m ..= m(τ). Since ρ(τ) > 0, B is invertible by (8.5.24), (8.5.26)

and the 1/3-Hölder continuity of m by Proposition 8.4.7.

We set ρ ..= ρ(τ). If ρ > ρ∗ for some ρ∗ ∼ 1 then (8.5.41) follows trivially from

(8.5.42), ∥B−1∥ ≲ 1 by (8.5.24) and ∥m∥+ ∥m−1∥ ≲ 1.

We now prove (8.5.41) for ρ ≤ ρ∗ and some sufficiently small ρ∗ ∼ 1. Under this

assumption, Lemma 8.5.1 and Corollary 8.5.2 are applicable. In the remainder of this

proof, the eigenvalue β, the eigenvectors l and b as well as the spectral projections P and

Q are understood to be evaluated at τ . We will now estimate the image of B−1 applied

to the right-hand sides of (8.5.42) in order to prove (8.5.41).

Inserting P +Q = Id on the right-hand side of the first identity in (8.5.42), inverting

B and using

P = ⟨l , · ⟩
⟨l , b⟩

b

as well as B−1[b] = β−1b yield

∂zm = ⟨l ,m
2⟩

β⟨l , b⟩
b+B−1Q[m2]. (8.5.43)

We will now estimate ⟨l ,m2⟩ and β⟨l , b⟩. From m = q∗sq + O(ρ) by (8.5.2), (8.5.13a),

(8.5.14b) and (8.5.26), we obtain

⟨l ,m2⟩ = ⟨fusqq∗s⟩+O(ρ) = π +O(ρ), (8.5.44)
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where we used sfus = fus
2 = fu and (8.5.19) in the last step.

From (8.5.14c) and (8.5.26), we conclude

β⟨l , b⟩ = −2iρσ + ρ2
(
ψ + σ2

⟨f 2
u⟩

)
+O(ρ3). (8.5.45)

Here and in the remainder of the proof, σ, ψ, fu, q and s are understood to be evaluated

at τ .

Since σ and ψ are real, we conclude |β⟨l , b⟩| ∼ ρ(ρ+ |σ|) for ρ∗ ∼ 1 sufficiently small.

As ∥B−1Q∥ ≲ 1 and ∥b∥ ≲ 1, we thus obtain ∥∂zm∥ ≲ ρ−2 from (8.5.43).

Using (8.5.42), ∥∂zm∥ ≲ ρ−2 and ∥B−1∥ ≲ ρ−2 yield

∂2
zm = 2⟨l ,m

2⟩2⟨l , bm−1b⟩
(β⟨l , b⟩)3 b+O(ρ−4) = O(ρ−5).

Here, in the last step, we used ∥b∥ ≲ 1 and |⟨l , bm−1b⟩| ≲ |σ|+ ρ due to the expansion

⟨l , bm−1b⟩ = ⟨q−1fu(q∗)−1q∗fuqq
−1s(q∗)−1q∗fuq⟩+O(ρ) = σ +O(ρ) (8.5.46)

as well as |β⟨l , b⟩| ∼ ρ(ρ+ |σ|) and ⟨l ,m2⟩ = O(1). The proof of (8.5.46) is a consequence

of (8.5.13a), (8.5.14a), (8.5.14b), (8.5.26), m−1 = q−1s(q∗)−1 +O(ρ) by (8.5.2) as well as

q ∼ 1.

Similarly, owing to (8.5.42), we obtain

∂3
zm = 12⟨l ,m

2⟩3⟨l , bm−1b⟩2

(β⟨l , b⟩)5 b+O(ρ−8) = O(ρ−8).

We now estimate ∂kzm(z) for k > 3. To that end, we will fix a parameter α > 1 and

prove that there are ρ∗ ∼ 1, C1 ∼α 1 and C2 ∼α 1 such that, for k ∈ N, we have

m(k) ..= ∂kzm = βkb+ qk, (8.5.47)

where m = m(τ) for τ ∈ Iθ satisfying ρ ..= ρ(τ) ≤ ρ∗ and βk ∈ C and qk ∈ ranQ satisfy

|βk| ≤
k!C1C

k−1
2

kα
ρ−3k+1, ∥qk∥ ≤

k!C1C
k−1
2

kα
ρ−3k+2. (8.5.48)

Here, ∼α indicates that the constants in the definition of the comparison relation ∼ will

depend on α.
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Before we prove (8.5.47) below, we note two auxiliary statements. First, as ∂zm−1 =

−m−1(∂zm)m−1 it is easy to check the following version of the usual Leibniz-rule:

∂kzm
−1 =

k∑
n=1

∑
a1+...+an=k

1≤ai≤k

k!
a1! . . . an! (−1)nm−1m(a1)m−1m(a2) . . .m−1m(an)m−1 (8.5.49)

for any k ∈ N. Here, in the sum over a1 + . . .+ an = k, the order of a1, . . . , an has to be

taken into account since m−1 and m(a) do not commute in general.

We prove (8.5.49) by induction on k: The case k = 1 is trivial. For the induction

step, we obtain

∂k+1
z m−1 =

k∑
n=1

k+1∑
j=1

∑
a1+...+an+1=k+1

1≤ai≤k
aj=1

k!
a1! . . . an+1!

(−1)n+1m−1m(a1) . . .m(an+1)m−1

+
k∑

n=1

∑
a1+...+an=k

1≤ai≤k

n∑
j=1

k!
a1! . . . an! (−1)nm−1m(a1) . . .m(aj+1) . . .m(an)m−1

=
k+1∑
j=1

k!(−1)k+1m−1m(1)m−1 . . .m−1m(1)m−1

+
k∑

n=2

n∑
j=1

( ∑
a1+...+an=k+1

1≤ai≤k+1
aj=1

+
∑

a1+...+an=k+1
1≤ai≤k+1
aj≥2

)
k!aj

a1! . . . an! (−1)nm−1m(a1) . . .m(an)m−1

+ (k + 1)!
(k + 1)!(−1)1m−1m(k+1)m−1

=
k+1∑
n=1

∑
a1+...+an=k+1

1≤ai≤k+1

k!
a1! . . . an! (−1)nm−1m(a1) . . .m(an)m−1.

Here, we used the product rule in the first step, where the first summand originates from

differentiating the m−1 factors and the second summand from differentiating m(aj). In

the last step, we employed a1 + . . .+ an = k + 1. This completes the proof of (8.5.49).

Second, we also have the following auxiliary bound. For all k ∈ N, n ∈ N with n ≤ k

and α > 1, we have ∑
a1+...+an=k

1≤ai≤k

1
aα1 · · · aαn

≤ (2α+1ζ(α))n−1

kα
, (8.5.50)

where ζ(α) = ∑∞
n=1 n

−α is Riemann’s zeta function.
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We now prove (8.5.50) by induction on n and remark that the case n = 1 is trivial

as the left- and right-hand side of (8.5.50) agree in this case. For the induction step, we

assume n+ 1 ≤ k and obtain

∑
a1+...+an+1=k

1
aα1 . . . a

α
n+1

=
k∑
a=1

1
aα

∑
a1+...+an=k−a

1
aα1 . . . a

α
n

≤
k∑
a=1

(2α+1ζ(α))n−1

aα(k − a)α

≤ 2
k/2∑
a=1

(2α+1ζ(α))n−1

aα(k/2)α

≤ (2α+1ζ(α))n
kα

for α > 1. Here, we used the induction hypothesis in the second step and a(k−a) ≥ ak/2

for 1 ≤ a ≤ k in the third step. This completes the proof of (8.5.50).

We now show (8.5.47) and (8.5.48) by induction on k. The initial step of the induction

with k = 1 has been established in (8.5.43) with β1 = ⟨l ,m2⟩/(β⟨l , b⟩), q1 = B−1Q[m2]

and some sufficiently large C1 ∼ 1. Next, we establish the induction step by proving

(8.5.47) and (8.5.48) under the assumption that they hold true for all derivatives of lower

order. From the induction hypothesis, we conclude

∥m(a)∥ ≤ k!C1C
a−1
2

kαρ3a−1 (∥b∥+ ρ) (8.5.51)

for all a ∈ N satisfying 1 ≤ a ≤ k − 1.

For k ≥ 2, we differentiate (8.2.3) k-times and obtain

B[∂kzm] = rk ..= ∂kzm+m
(
∂kzm

−1
)
m. (8.5.52)

By separating the contributions for n = 1 and n ≥ 2 in (8.5.49), we conclude

rk =
k∑

n=3

∑
a1+...+an=k

1≤ai<k−1

k!
a1! . . . an! (−1)nm(a1)m−1 . . .m−1m(an)

+
k−1∑
a=1

k!
a!(k − a)!m

(a)m−1m(k−a).

(8.5.53)
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Since n is at least 3 in the first sum, we obtain from (8.5.51) and (8.5.50) that

k∑
n=3

∑
a1+...+an=k

1≤ai<k−1

k!
a1! . . . an!∥m

(a1)m−1 . . .m−1m(an)∥ ≤ k!
kαρ3k−3 (∥b∥+ ρ)

k∑
n=3

Cn
1M

n−1
α Ck−n

2 ,

(8.5.54)

where Mα
..= 2α+2ζ(α)∥m−1∥(∥b∥+ ρ). A similar argument yields

k−1∑
a=1

k!
a!(k − a)!∥m

(a)m−1m(k−a)∥ ≤ k!
kαρ3k−2 (∥b∥+ ρ)C2

1MαC
k−2
2 .

Thus, we choose C2 ≥ 2MαC1 and conclude

∥rk∥ ≤
k!

kαρ3k−2
(∥b∥+ ρ)MαC

2
1C

k
2

C2
2(1−MαC1/C2)

.

Therefore, we obtain the bound on ∥qk∥ in (8.5.48) for C2 ∼ 1 sufficiently large since

qk = Q[∂kzm] = B−1Q[rk] and ∥B−1Q∥ ≲ 1.

Moreover, βk = ⟨l , rk⟩/(β⟨l , b⟩). Hence, by using the decomposition of rk in (8.5.53)

and (8.5.54), we obtain

|βk| ≤
k!C1C

k−1
2

kαρ3k−1
∥l∥ρ2

|β⟨l , b⟩|
(∥b∥+ ρ)C2

1M
2
α

C2
2(1−MαC1/C2)

+
k−1∑
a=1

k!
a!(k − a)!

|⟨l ,m(a)m−1m(k−a)⟩|
|β⟨l , b⟩|

We use (8.5.47) for m(a) and m(k−a) in the argument of the last sum, which yields

1
a!(k − a)!

|⟨l ,m(a)m−1m(k−a)⟩|
|β⟨l , b⟩|

≤ |βa|
a!
|βk−a|

(k − a)!
|⟨l , bm−1b⟩|
|β⟨l , b⟩|

+ C2
1C

k−2
2

aα(k − a)αρ3k−1
ρ2∥l∥∥m−1∥
|β⟨l , b⟩|

(2∥b∥+ ρ)

≤ C2
1C

k−2
2

aα(k − a)αρ3k−1
ρ2

|β⟨l , b⟩|

×
(
|⟨l , bm−1b⟩|ρ−1 + ∥l∥∥m−1∥(2∥b∥+ ρ)

)
Here, we applied (8.5.48) to estimate qa and qk−a as well as βa and βk−a. Since |β⟨l , b⟩| ≳

ρ2 as shown below (8.5.45) and |⟨l , bm−1b⟩| ≲ ρ due to (8.5.46), we obtain the bound

on |βk| in (8.5.48) by using (8.5.50) to perform the summation over a. This completes

the induction argument, which yields (8.5.47) and (8.5.48) for all k ∈ N by possibly

increasing C2 ∼ 1. By choosing, say, α = 2, we immediately conclude Lemma 8.5.7 for

τ ∈ Iθ satisfying ρ(τ) ≤ ρ∗. If ρ(τ) > ρ∗ then ∥B−1∥ ≲ 1. Hence, a simple induction
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argument using (8.5.52) and (8.5.53), which hold true for ρ(τ) > ρ∗ as well, yields some

C ∼ 1 such that

∥∂kzm(τ)∥ ≲ k!Ck

for all k ∈ N satisfying k ≥ 1. Since ρ(τ) ≲ 1 for all τ ∈ Iθ, we obtain Lemma 8.5.7 in

the missing regime. □

8.6. The cubic equation

The following Proposition 8.6.1 is the main result of this section. It asserts that m is

determined by the solution to a cubic equation, (8.6.3) below, close to points τ0 ∈ supp ρ

of small density ρ(τ0). In Section 8.7, this cubic equation will allow for a classification of

the small local minima of τ ↦→ ρ(τ). To have a short notation for the elements of supp ρ

of small density, we introduce the set

Dε,θ
..= {τ ∈ supp ρ ∩ I : ρ(τ) ∈ [0, ε], dist(τ, ∂I) ≥ θ}

for ε > 0 and θ > 0.

The leading order terms of the cubic and quadratic coefficients in (8.6.3) are given

by ψ(τ0) and σ(τ0), respectively. For their definitions, we refer to Lemma 8.5.5 (i) and

(8.5.12).

Proposition 8.6.1 (Cubic equation for shape analysis). Let I ⊂ R be an open interval

and θ ∈ (0, 1]. If Assumptions 8.4.5 hold true on I for some η∗ ∈ (0, 1] then there are

thresholds ρ∗ ∼ 1 and δ∗ ∼ 1 such that, for all τ0 ∈ Dρ∗,θ, the following hold true:

(a) For all ω ∈ [−δ∗, δ∗], we have

m(τ0 + ω)−m(τ0) = Θ(ω)b+ r(ω), (8.6.1)

where Θ: [−δ∗, δ∗]→ C and r : [−δ∗, δ∗]→ A are defined by

Θ(ω) ..=
⟨

l

⟨b , l⟩
, m(τ0 + ω)−m(τ0)

⟩
,

r(ω) ..= Q[m(τ0 + ω)−m(τ0)].
(8.6.2)
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Here, l = l(τ0), b = b(τ0) and Q = Q(τ0) are the eigenvectors and spectral

projection of B(τ0) introduced in Corollary 8.5.2. We have b = b∗ + O(ρ) and

l = l∗ +O(ρ) as well as b+ b∗ ∼ 1 and l+ l∗ ∼ 1 with ρ = ρ(τ0) = ⟨Imm(τ0)⟩/π.

(b) The function Θ satisfies the cubic equation

µ3Θ3(ω) + µ2Θ2(ω) + µ1Θ(ω) + ωΞ(ω) = 0 (8.6.3)

for all ω ∈ [−δ∗, δ∗]. The complex coefficients µ3, µ2, µ1 and Ξ in (8.6.3) fulfill

µ3 = ψ +O(ρ), (8.6.4a)

µ2 = σ + iρ
(

3ψ + σ2

⟨f 2
u⟩

)
+O(ρ2), (8.6.4b)

µ1 = 2iρσ − 2ρ2
(
ψ + σ2

⟨f 2
u⟩

)
+O(ρ3), (8.6.4c)

Ξ(ω) = π(1 + ν(ω)) +O(ρ), (8.6.4d)

where σ = σ(τ0) as well as ψ = ψ(τ0). For the error term ν(ω), we have

|ν(ω)| ≲ |Θ(ω)|+ |ω| ≲ |ω|1/3. (8.6.5)

for all ω ∈ [−δ∗, δ∗]. Uniformly for τ0 ∈ Dρ∗,θ, we have

ψ + σ2 ∼ 1. (8.6.6)

(c) Moreover, Θ(ω) and r(ω) are bounded by

|Θ(ω)| ≲ min
{ |ω|
ρ2 , |ω|

1/3
}
, (8.6.7a)

∥r(ω)∥ ≲ |Θ(ω)|2 + |ω|, (8.6.7b)

uniformly for all ω ∈ [−δ∗, δ∗].

(d1) If ρ > 0 then Θ and r are differentiable in ω at ω = 0.

(d2) If ρ = 0 then we have

Im Θ(ω) ≥ 0,

|Im ν(ω)| ≲ Im Θ(ω), ∥Im r(ω)∥ ≲ (|Θ(ω)|+ |ω|)Im Θ(ω),
(8.6.8)
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for all ω ∈ [−δ∗, δ∗] and Re Θ is non-decreasing on the connected components of

{ω ∈ [−δ∗, δ∗] : Im Θ(ω) = 0}.

(e) The function σ : Dρ∗,θ → R is uniformly 1/3-Hölder continuous.

The previous proposition is the analogue of Lemma 9.1 in [4]. The cubic equation for

Θ, (8.6.3), will be obtained from an A-valued quadratic equation for ∆ ..= m(τ0 + ω) −

m(τ0) and the results of Section 8.5. In fact, we have

(Id− CmS)[∆] = ωm2 + ω

2
(
m∆ + ∆m

)
+ 1

2
(
mS[∆]∆ + ∆S[∆]m

)
, (8.6.9)

where τ0, τ0 + ω ∈ Iθ ..= {τ ∈ I : dist(τ, ∂I) ≥ θ} and m ..= m(τ0) (see the proof of

Proposition 8.6.1 in Section 8.6.3 below for a derivation of (8.6.9)). Projecting (8.6.9)

onto the direction b and its complement, where b is the unstable direction of B defined

in Corollary 8.5.2, yields the cubic equation, (8.6.3), for the contribution Θ of ∆ parallel

with b. In the next subsection, this derivation is presented in a more abstract and

transparent setting of a general A-valued quadratic equation. After that, the coefficients

of the cubic equation are computed in Lemma 8.6.3 in the setup of (8.6.9) before we

prove Proposition 8.6.1 in Section 8.6.3.

8.6.1. General cubic equation. Let B, T : A → A be linear maps, A : A×A → A

a bilinear map and K : A × A → A a map. For ∆, e ∈ A, we consider the quadratic

equation

B[∆]− A[∆,∆]− T [e]−K[e,∆] = 0 . (8.6.10)

We view this as an equation for ∆, where e is a (small) error term. This quadratic

equation is a generalization of the stability equation (8.6.9) for the Dyson equation,

(8.2.3) (see (8.6.23) and (8.6.28) below for the concrete choices of B,T , A and K in the

setting of (8.6.9)).

Suppose that B has a non-degenerate isolated eigenvalue β and a corresponding eigen-

vector b, i.e., B[b] = βb and Dr(β) ∩ Spec(B) = {β} for some r > 0. We denote the

spectral projection corresponding to β and its complementary projection by P and Q,
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respectively, i.e.,

P ..= − 1
2πi

∮
∂Dr(β)

(B − ωId)−1dω = ⟨l , · ⟩
⟨l , b⟩

b , Q ..= Id− P . (8.6.11)

Here, l ∈ A is an eigenvector of B∗ corresponding to its eigenvalue β, i.e., B∗[l] = βl. In

the following, we will assume that

∥B−1Q[x]∥ ≲ ∥x∥, |⟨l , b⟩|−1 + ∥b∥+ ∥l∥ ≲ 1, ∥A[x, y]∥ ≲ ∥x∥∥y∥,

∥T [e]∥ ≲ ∥e∥, ∥K[e, y]∥ ≲ ∥e∥∥y∥
(8.6.12)

for all x, y ∈ A and the e ∈ A from (8.6.10). The guiding idea is that the main contribu-

tion in the decomposition

∆ = Θb+Q[∆], Θ ..= ⟨l ,∆⟩
⟨l , b⟩

(8.6.13)

is given by Θ, i.e., the coefficient of ∆ in the direction b, under the assumption that ∆ is

small. If A = K = 0 then this would be a simple linear stability analysis of the equation

B[∆] = small around an isolated eigenvalue of B. The presence of the quadratic terms

in (8.6.10) requires to follow second and third order terms carefully. In the following

lemma, we show that the behaviour of Θ is governed by a scalar-valued cubic equation

(see (8.6.14) below) and that Q[∆] is indeed dominated by Θ. The implicit constants in

(8.6.12) are the model parameters in Section 8.6.1.

Lemma 8.6.2 (General cubic equation). Let β be a non-degenerate isolated eigenvalue of

B. Let ∆ ∈ A and e ∈ A satisfy (8.6.10), Θ be defined as in (8.6.13) and the conditions

in (8.6.12) hold true. Then there is ε ∼ 1 such that if ∥∆∥ ≤ ε then Θ satisfies the cubic

equation

µ3 Θ3 + µ2 Θ2 + µ1 Θ + µ0 = ẽ, (8.6.14)

with some ẽ = O(|Θ|4 + |Θ|∥e∥+ ∥e∥2) and with coefficients

µ3 = ⟨l , A[b, B−1QA[b, b]] + A[B−1QA[b, b], b]⟩,

µ2 = ⟨l , A[b, b]⟩,

µ1 = −β⟨l , b⟩,

µ0 = ⟨l , T [e]⟩.

(8.6.15)
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Moreover, we have

Q[∆] = B−1QT [e] +O(|Θ|2 + ∥e∥2). (8.6.16)

If we additionally assume that Im ∆ ∈ A+, l = l∗ and b = b∗ as well as

B[x]∗ = B[x∗], A[x, y]∗ = A[x∗, y∗], T [e]∗ = T [e], K[e, y]∗ = K[e, y∗] (8.6.17)

for all x, y ∈ A then there are ε ∼ 1 and δ ∼ 1 such that ∥∆∥ ≤ ε and ∥e∥ ≤ δ also imply

∥ImQ[∆]∥ ≲ (|Θ|+ ∥e∥)Im Θ, (8.6.18a)

|Im ẽ| ≲ (|Θ|3 + ∥e∥)Im Θ. (8.6.18b)

Proof. Setting r ..= Q[∆], the quadratic equation (8.6.10) reads as

Θβb+Br = T [e] + A[∆,∆] +K[e,∆]. (8.6.19)

By applying Q and afterwards B−1 to the previous relation, we conclude that

r =B−1QT [e] + Θ2B−1QA[b, b] + e1,

e1
..= ΘB−1Q(A[b, r] + A[r, b]) +B−1QA[r, r] +B−1QK[e,∆].

(8.6.20)

We have ∥e1∥ ≲ ∥r∥|Θ|+ ∥r∥2 + ∥e∥∥∆∥ and ∥r∥ ≲ ∥e∥+ |Θ|2 + ∥e1∥. From the second

bound in (8.6.12), we conclude ∥P∥+ ∥Q∥ ≲ 1 and, thus, ∥r∥ ≲ ∥∆∥. By choosing ε ∼ 1

small enough, assuming ∥∆∥ ≤ ε and using ∥r∥ ≲ ∥∆∥, we obtain

∥r∥ ≲ |Θ|2 + ∥e∥, ∥e1∥ ≲ |Θ|3 + ∥e∥|Θ|+ ∥e∥2. (8.6.21)

This proves (8.6.16). Defining e2
..= e1 +B−1QT [e] yields ∆ = Θb+ Θ2B−1QA[b, b] + e2.

By plugging this into (8.6.19) and computing the scalar product with ⟨l , · ⟩, we obtain

Θβ⟨l , b⟩ = ⟨l , T [e]⟩+ Θ3⟨l , A[b, B−1QA[b, b]] + A[B−1QA[b, b], b]⟩

+ Θ2⟨l , A[b, b]⟩ − ẽ,
(8.6.22a)

ẽ ..= − ⟨l,K[e,∆] + Θ4A[B−1QA[b, b], B−1QA[b, b]]

+ A[∆, e2] + A[e2,∆]− A[e2, e2]⟩.
(8.6.22b)
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Since ∥e2∥ ≲ |Θ|3 + ∥e∥ and ∥∆∥ ≲ |Θ| + ∥e∥ by (8.6.21) and (8.6.16), we conclude ẽ =

O(|Θ|4 + |Θ|∥e∥+∥e∥2). Therefore, Θ satisfies (8.6.14) with the coefficients from (8.6.15).

For the rest of the proof, we additionally assume that the relations in (8.6.17) hold

true. Taking the imaginary part of (8.6.20) and arguing similarly as after (8.6.20) yield

∥Im e1∥ ≲ (∥r∥+ |Θ|+ ∥e∥)(Im Θ + ∥Im r∥), ∥Im r∥ ≲ |Θ|Im Θ + ∥Im e1∥.

Hence, (8.6.18a) and ∥Im e1∥ ≲ (|Θ| + ∥e∥)Im Θ follow for ∥∆∥ ≤ ε and ∥e∥ ≤ δ with

some sufficiently small ε ∼ 1 and δ ∼ 1. From this and taking the imaginary part in

(8.6.22b), we conclude (8.6.18b) as ∥Im ∆∥ ≲ Im Θ by (8.6.18a) and Im e2 = Im e1. This

completes the proof of Lemma 8.6.2. □

8.6.2. Cubic equation associated to Dyson stability equation. Owing to (8.6.15),

the coefficients µ3, µ2 and µ1 are completely determined by the bilinear map A and the

operator B. For analyzing the Dyson equation, (8.2.3), owing to (8.6.9), the natural

choices for A and B are

B ..= Id− CmS, A[x, y] ..= 1
2(mS[x]y + yS[x]m) (8.6.23)

with x, y ∈ A. In particular, Q in (8.6.11) has to be understood with respect to B =

Id − CmS. In the next lemma, we compute µ3, µ2 and µ1 with these choices. This

computation involves the inverse of Id− CsF .

In order to directly ensure its invertibility, we will assume Im z > 0. This assumption

will be removed in the proof of Proposition 8.6.1 in Section 8.6.3 below.

Lemma 8.6.3 (Coefficients of the cubic for Dyson equation). Let A and B be defined as

in (8.6.23). If Assumptions 8.4.5 hold true on an interval I ⊂ R for some η∗ ∈ (0, 1] then

there is a threshold ρ∗ ∼ 1 such that, for z ∈ HI,η∗ satisfying ρ(z) + ρ(z)−1Im z ≤ ρ∗, the
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coefficients of the cubic (8.6.14) have the expansions

µ3 = ψ +O(ρ+ ρ−1Im z), (8.6.24a)

µ2 = σ + iρ
(

3ψ + σ2

⟨f 2
u⟩

)
+O(ρ2 + ρ−1Im z), (8.6.24b)

µ1 = −πρ−1Im z + 2iρσ − 2ρ2
(
ψ + σ2

⟨f 2
u⟩

)
+O(ρ3 + Im z + ρ−2(Im z)2). (8.6.24c)

Moreover, we also have

⟨l ,mS[b]b⟩ = σ + iρ
(

3ψ + σ2

⟨f 2
u⟩

)
+O(ρ2 + ρ−1Im z). (8.6.25)

Proof. In this proof, we use the convention that concatenation of maps on A and

evaluation of these maps in elements of A are prioritized before the multiplication in A,

i.e.,

AB[b]c ..= (A[B[b]])c

if A and B are maps on A and b, c ∈ A. We will obtain all expansions in (8.6.24) from

(8.6.15) by using the special choices for A and B from (8.6.23). Before starting with the

proof of (8.6.24a), we establish a few identities. Recalling m = q∗uq from (8.3.2) and

(8.3.4), we first notice the following alternative expression for A

A[x, y] = 1
2Cq

∗,q

[
uFC−1

q∗,q[x]C−1
q∗,q[y] + C−1

q∗,q[y]FC−1
q∗,q[x]u

]
(8.6.26)

with x, y ∈ A. Owing to (8.4.21), the operators Cq∗,q and C−1
q∗,q are bounded. We choose

ρ∗ ∼ 1 small enough so that Lemma 8.5.1 is applicable. By using u = s+ iIm u+O(ρ2)

due to (8.5.2) as well as (8.5.4), (8.5.5) and (8.5.13a) in (8.6.26), we obtain

A[b0, b0] = Cq∗,q[sf 2
u + iρf 3

u ] +O(ρ2 + ρ−1Im z). (8.6.27)

Combining (8.6.27) and (8.5.18) implies

B−1
0 Q0A[b0, b0] = Cq∗,q(Id− CsF )−1Qs,F [sf 2

u ] +O(ρ+ ρ−1Im z).

We now prove the expansion (8.6.24a) for µ3 by starting from (8.6.15) and using l =

l0 +O(ρ), b = b0 +O(ρ) by (8.5.14), B−1Q = B−1
0 Q0 +O(ρ) due to B = B0 +O(ρ) and
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Lemma 8.5.1 and the previous identities. This yields

µ3 = ⟨l0 , A[B−1
0 Q0A[b0, b0], b0] + A[b0, B

−1
0 Q0A[b0, b0]]⟩+O(ρ)

= ⟨fu , uF (Id− CsF )−1Qs,F [sf 2
u ]fu + uF [fu](Id− CsF )−1Qs,F [sf 2

u ]⟩+O(ρ+ ρ−1Im z)

= ⟨sf 2
u , (Id + F )(Id− CsF )−1Qs,F [sf 2

u ]⟩+O(ρ+ ρ−1Im z).

Here, we also used F [fu] = fu +O(ρ−1Im z) by (8.5.5) and u = s+O(ρ) by (8.5.2). This

shows (8.6.24a).

In order to compute µ2, we define

b1
..= 2iρCq∗,q(Id− CsF )−1Qs,F [sf 2

u ], l1 ..= −2iρC−1
q,q∗(Id− FCs)−1Q∗

s,FF [sf 2
u ].

Then we use (8.5.14a) as well as (8.5.14b) and obtain

⟨l , A[b, b]⟩ = ⟨l0 , A[b0, b0]⟩+ ⟨l1 , A[b0, b0]⟩+ ⟨l0 , A[b1, b0]⟩+ ⟨l0 , A[b0, b1]⟩+O(ρ2 + Im z)

= ⟨sf 3
u⟩+ iρ⟨f 4

u⟩+ 2iρ⟨sf 2
u , (Id + 2F )(Id− CsF )−1Qs,F [sf 2

u ]⟩+O(ρ2 + ρ−1Im z)

=σ + iρ
(

3ψ + σ2

⟨f 2
u⟩

)
+O(ρ2 + ρ−1Im z).

Here, in the second step, we used (8.5.13a), (8.6.27) and the definition of l1 to compute

the first and second term, (8.5.13a), the definition of b1 and (8.6.26) to compute the third

and fourth term. In the last step, we then employed

⟨f 4
u⟩+ ⟨sf 2

u , 2(Id + 2F )(Id− CsF )−1Qs,F [sf 2
u ]⟩

= ⟨sf 2
u , (Id + 2(Id + 2F )(Id− CsF )−1)Qs,F [sf 2

u ]⟩+ ⟨sf 2
u , Ps,F [sf 2

u ]⟩

= 3⟨sf 2
u , (Id + F )(Id− CsF )−1Qs,F [sf 2

u ]⟩+ σ2

⟨f 2
u⟩

+O(ρ−1Im z).

Here, we applied (8.5.17), Cs = C∗
s and Cs[sf 2

u ] = sf 2
u . Since µ2 = ⟨l , A[b, b]⟩ by

(8.6.15), this completes the proof of (8.6.24b). A similar computation as the one for

µ2 yields (8.6.25).

Since µ1 = −β⟨l , b⟩ by (8.6.15), the expansion in (8.5.14c) immediately yields (8.6.24c).

This completes the proof of the lemma. □
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8.6.3. The cubic equation for the shape analysis. In this subsection, we will

prove Proposition 8.6.1 by using Lemma 8.6.2 and Lemma 8.6.3. Therefore, in addition

to the choices of A and B in (8.6.23), we choose ∆ = m(τ0 + ω)−m(τ0), τ0, τ0 + ω ∈ I,

e = ω1 and

T [x] = xm2, K[x, y] = 1
2(xmy + ymx) (8.6.28)

for x, y ∈ A with m = m(τ0) in (8.6.10).

Proof of Proposition 8.6.1. We choose ρ∗ ∼ 1 such that Lemma 8.5.1 and Corol-

lary 8.5.2 are applicable. We fix τ0 ∈ Dρ∗,θ and set m = m(τ0). The statements about l

and b in (a) of Proposition 8.6.1 follow from Corollary 8.5.2. In particular, |⟨l , b⟩| ∼ 1.

Thus, the conditions in (8.6.12) are a direct consequence of Assumptions 8.4.5, (8.4.21),

Lemma 8.5.1 and Corollary 8.5.2. Furthermore, if ρ = 0 then we have m = m∗ and,

thus, (8.6.17) follows. For ω ∈ [−δ∗, δ∗], δ∗
..= θ/2, we set ∆ = m(τ0 + ω) − m. Since

Θ(ω)b = P [∆], r(ω) = Q[∆] and P + Q = Id, we immediately obtain (8.6.1). This

proves (a).

Next, we derive (8.6.9) for ∆ ..= m(z0 +ω)−m(z0) and m ..= m(z0) with z0
..= τ0 + iη,

τ0 ∈ Dρ∗,θ, ω ∈ [−δ∗, δ∗] and η ∈ (0, η∗]. We subtract (8.2.3) evaluated at z = z0 from

(8.2.3) evaluated at z = z0 + ω and obtain (8.6.9) with ∆ and m defined at z0 = τ0 + iη.

Directly taking the limit η ↓ 0 yields (8.6.9) with the original choices of ∆ and m at

z0 = τ0 by the Hölder-continuity of m on HI′,η∗ , I ′ ..= {τ ∈ I : dist(τ, ∂I) ≥ θ/2}, due to

Proposition 8.4.7.

Lemma 8.6.2 is applicable for |ω| ≤ δ∗ with some sufficiently small δ∗ ∼ 1 since this

guarantees ∥∆∥ ≤ ε owing to the Hölder-continuity of m. Hence, Lemma 8.6.2 yields

a cubic equation for Θ as defined in (8.6.2) with l = l(z0), b = b(z0) and z0 = τ0 + iη.

The coefficients of this cubic equation are given in Lemma 8.6.2. Owing to the uniform

1/3-Hölder continuity of z ↦→ m(z) on HI′,η∗ , we conclude from the definition of Θ and

r ..= Q[∆] in (8.6.2), the boundedness of Q and B−1Q as well as (8.6.16) that |Θ(ω)| ≲

|ω|1/3, i.e., the second bound in (8.6.7a), and (8.6.7b) uniformly for η ∈ [0, η∗].

We now compute the coefficients of the cubic in (8.6.3) for τ0 ∈ Dρ∗,θ. Set z0
..= τ0 +iη.

Note that for η = Im z0 > 0 these coefficients were already given in (8.6.24), so the only

task is to check their limit behaviour as η ↓ 0. Owing to (8.5.26), the expansions in
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(8.6.4a), (8.6.4b) and (8.6.4c) follow from (8.6.24a), (8.6.24b) and (8.6.24c), respectively,

using the continuity of σ, ψ and fu on Hsmall by Lemma 8.5.5 and Lemma 8.5.4, respec-

tively. We now show (8.6.4d). With the definitions of ẽ and µ0 from Lemma 8.6.2

(see (8.6.22b) and (8.6.15), respectively), we set Ξ(ω) ..= ω−1(µ0 − ẽ) for arbitrary

|ω| ≤ δ∗. Since l = C−1
q,q∗ [fu] + O(ρ + ρ−1η) due to (8.5.13a) and (8.5.14b), as well

as m2 = (Rem)2 +O(ρ) = Cq∗,qCs[qq∗] +O(ρ) due to Imm ∼ ρ1 and (8.5.2), we have

ω−1µ0 = ⟨l∗m2⟩ = ⟨fuqq∗⟩+O(ρ+ ρ−1η) = π +O(ρ+ ρ−1η). (8.6.29)

Here, we also used Cs[fu] = fu in the second step and (8.5.19) in the last step. We

set ν(ω) ..= −(ωπ)−1ẽ. We recall e = ω1. Since ẽ = O(|Θ(ω)|4 + |Θ(ω)||ω| + |ω|2) and

|Θ(ω)| ≲ |ω|1/3, we obtain (8.6.5). This yields (8.6.4d) by using (8.5.26) in (8.6.29). Since

(8.5.35) implies (8.6.6), this completes the proof of (b) for τ0 ∈ Dρ∗,θ and we assume η = 0

in the following.

If ρ = ρ(τ0) > 0 then (8.4.20) yields the missing first bound in (8.6.7a) completing

the proof of part (c). Moreover, in this case, the definitions of Θ and r imply their

differentiability at ω = 0 due to Proposition 8.4.7. This shows (d1).

We now verify (d2). Since ρ = 0, we have Imm(τ0) = 0 and thus Im Θ(ω) ≥ 0

by the positive semidefiniteness of Imm(τ0 + ω). Since µ0 is real as l and T [e] are self-

adjoint, we obtain the second bound in (8.6.8) directly from (8.6.18b) and |Θ(ω)| ≲ |ω|1/3.

The third bound in (8.6.8) follows from (8.6.18a) and e = ω1. Since ρ = 0 and hence

b = Cq∗,q[fu] by (8.5.14a) and l = C−1
q,q∗ [fu] by (8.5.14b) are positive definite elements of A,

Re Θ(ω)+ ⟨l ,m(τ0)⟩/⟨l , b⟩ is the real part of the Stieltjes transform of a positive measure

µ evaluated on the real axis. The real part of a Stieltjes transform is non-decreasing on

the connected components of the complement in R of the support of its defining measure.

Therefore, as the support of µ is contained in R \ {ω ∈ [−δ∗, δ∗] : Im Θ(ω) = 0} due to

Imm(τ0) = 0, we conclude that Re Θ(ω) is non-decreasing on the connected components

of {ω ∈ [−δ∗, δ∗] : Im Θ(ω) = 0}.

Lemma 8.5.5 (i) directly implies the Hölder-continuity in (e), which completes the

proof of Proposition 8.6.1. □
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8.7. Cubic analysis

The main result of this section, Theorem 8.7.1 below, implies Theorem 8.2.5 and gives

even effective error terms. Theorem 8.7.1 describes the behaviour of Imm close to local

minima of ρ inside of supp ρ. This behaviour is governed by the universal shape functions

Ψedge : [0,∞)→ R and Ψmin : R→ R defined by

Ψedge(λ) ..=

√
(1 + λ)λ

(1 + 2λ+ 2
√

(1 + λ)λ)2/3 + (1 + 2λ− 2
√

(1 + λ)λ)2/3 + 1
, (8.7.1a)

Ψmin(λ) ..=
√

1 + λ2

(
√

1 + λ2 + λ)2/3 + (
√

1 + λ2 − λ)2/3 − 1
− 1. (8.7.1b)

For the definition of the comparison relation ≲, ≳ and ∼ in the following Theo-

rem 8.7.1, we refer to Convention 8.3.4 and remark that the model parameters in Theo-

rem 8.7.1 are given by c1, c2 and c3 in (8.3.10), k3 in (8.4.16) and θ in the definition of Iθ
in (8.7.2) below.

Theorem 8.7.1 (Behaviour of Imm close to local minima of ρ). Let (a, S) be a data pair

such that (8.3.10) is satisfied. Let m be the solution to the associated Dyson equation

(8.2.3) and assume that (8.4.16) holds true on HI,η∗ for some interval I ⊂ R and some

η∗ ∈ (0, 1]. We write v ..= π−1Imm and, for some θ ∈ (0, 1], we set

Iθ ..= {τ ∈ I : dist(τ, ∂I) ≥ θ}. (8.7.2)

Then there are thresholds ρ∗ ∼ 1 and δ∗ ∼ 1 such that if τ0 ∈ supp ρ ∩ Iθ is a local

minimum of ρ and ρ(τ0) ≤ ρ∗ then

v(τ0 + ω) = v(τ0) + hΨ(ω) +O
(
ρ(τ0)|ω|1/31(|ω| ≲ ρ(τ0)3) + Ψ(ω)2

)
(8.7.3)

for ω ∈ [−δ∗, δ∗]∩D with some h = h(τ0) ∈ A satisfying h ∼ 1. Moreover, the set D and

the function Ψ depend only on the type of τ0 in the following way:

(a) Left edge: If τ0 ∈ (∂ supp ρ) \ {inf supp ρ} is the infimum of a connected com-

ponent of supp ρ and the lower edge of the corresponding gap is in Iθ, i.e.,

τ1
..= sup((−∞, τ0) ∩ supp ρ) ∈ Iθ, then (8.7.3) holds true with v(τ0) = 0,
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D = [0,∞) and

Ψ(ω) = ∆1/3Ψedge

(
ω

∆

)
where ∆ ..= τ0 − τ1. If τ0 = inf supp ρ, or more generally ρ(τ) = 0 for all

τ ∈ [τ0 − ε, τ0] with some ε ∼ 1, then the same conclusion holds true with

∆ ..= 1.

(b) Right edge: If τ0 ∈ ∂ supp ρ is the supremum of a connected component then a

similar statement as in the case of a left edge holds true.

(c) Cusp: If τ0 /∈ ∂ supp ρ and ρ(τ0) = 0 then (8.7.3) holds true with D = R and

Ψ(ω) = |ω|1/3.

(d) Internal minimum: If τ0 /∈ ∂ supp ρ and ρ(τ0) > 0 then there is ρ̃ ∼ ρ(τ0) such

that (8.7.3) holds true with D = R and

Ψ(ω) = ρ̃Ψmin

(
ω

ρ̃3

)
.

If the conditions of Theorem 8.7.1 hold true, i.e., the data pair (a, S) satisfies (8.3.10)

and m satisfies (8.4.16) on HI,η∗ , then Assumptions 8.4.5 are fulfilled on HI,η∗ (compare

Lemma 8.4.8 (ii)). In fact, Theorem 8.7.1 holds true under Assumptions 8.4.5 which will

become apparent from the proof.

Theorem 8.7.1 contains the most important results of the shape analysis. When con-

sidering ρ = ⟨v⟩ instead of v the coefficient in front of Ψ(ω) in (8.7.3) can be precisely

identified as demonstrated in part (i) of Theorem 8.7.2 below. Moreover, Theorem 8.7.2

contains additional information on the size of the connected components of supp ρ and

the distance between local minima; these are collected in part (ii). Note that the same

information were also proven in the commutative setup in Theorem 2.6 of [4] and Theo-

rem 8.7.2 shows that they are also available in our general von Neumann algebra setup.

We remark that Ψmin(ω) = Ψmin(−ω) for ω ∈ R and, for ω > 0, ∆ > 0 and ρ̃ > 0, we

have

∆1/3Ψedge

(
ω

∆

)
∼ min

{
ω1/2

∆1/6 , ω
1/3
}
, (8.7.4a)

ρ̃Ψmin

(
ω

ρ̃3

)
∼ min

{
ω2

ρ̃5 , ω
1/3
}
. (8.7.4b)
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The comparison relations ∼, ≲ and ≳ in the following Theorem 8.7.2 are understood

with respect to the constants k1, . . . , k8 from Assumptions 8.4.5 and θ in the definition

of Iθ in (8.7.2).

Theorem 8.7.2 (Behaviour of ρ close to its local minima; Structure of the set of minima

of ρ). Let I ⊂ R be an open interval and θ ∈ (0, 1]. If Assumptions 8.4.5 hold true on I

for some η∗ ∈ (0, 1] (in particular, if the data pair (a, S) satisfies (8.3.10) and m satisfies

(8.4.16) on HI,η∗) then the following statements hold true

(i) There are thresholds ρ∗ ∼ 1, σ∗ ∼ 1 and δ∗ ∼ 1 such that if τ0 ∈ supp ρ ∩ Iθ
is a local minimum of ρ satisfying ρ(τ0) ≤ ρ∗ then we set Γ ..=

√
27π/(2ψ) with

ψ = ψ(τ0) defined as in Lemma 8.5.5 and have

(a) (Left edge) If τ0 ∈ ∂ supp ρ \ {inf supp ρ} is the infimum of a connected

component of supp ρ, |σ(τ0)| ≤ σ∗ and the lower edge of the gap lies in Iθ,

i.e., τ1
..= sup((−∞, τ0) ∩ supp ρ) ∈ Iθ, then

ρ(τ0 + ω) = (4Γ)1/3Ψ(ω) +O
(
|σ(τ0)|Ψ(ω) + Ψ(ω)2

)
,

Ψ(ω) ..= ∆1/3Ψedge

(
ω

∆

) (8.7.5a)

for all ω ∈ [0, δ∗]. Here, Γ ∼ 1 and ψ ∼ 1.

(b) (Right edge) If τ0 ∈ ∂ supp ρ is the supremum of a connected component

then a similar statement as in the case of a left edge holds true.

(c) (Cusp) If τ0 /∈ ∂ supp ρ and ρ(τ0) = 0 then

ρ(τ0 + ω) = Γ1/3

41/3 |ω|
1/3 +O

(
|ω|2/3

)
(8.7.5b)

for all ω ∈ [−δ∗, δ∗]. Here, Γ ∼ 1 and ψ ∼ 1.
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(d) (Nonzero local minimum) There is ε ∼ 1 such that if τ0 /∈ ∂ supp ρ and

ρ(τ0) > 0 then

ρ(τ0 + ω) = ρ(τ0) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ1/3Ψ(ω)

(
1 +O

(
ρ(τ0)1/2 + |ω|

ρ(τ0)3

))
, if |ω| ≤ ερ(τ0)3,

Γ1/3Ψ(ω)
(

1 +O(Ψ(ω))
)
, if ερ(τ0)3 < |ω| ≤ δ∗,

Ψ(ω) ..= ρ̃Ψmin

(
ω

ρ̃3

)
, ρ̃ ..= ρ(τ0)

Γ1/3

(8.7.5c)

for all ω ∈ R. Here, Γ ∼ 1 and ψ ∼ 1.

(ii) If supp ρ ∩ Iθ ̸= ∅ then supp ρ ∩ Iθ consists of K ∼ 1 intervals, i.e., there are

α1, . . . , αK ∈ ∂ supp ρ ∪ ∂Iθ and β1, . . . , βK ∈ ∂ supp ρ ∪ ∂Iθ, αi < βi < αi+1,

such that

supp ρ ∩ Iθ =
K⋃
i=1

[αi, βi] (8.7.6)

and βi − αi ∼ 1 if βi ̸= sup Iθ and αi ̸= inf Iθ.

For ρ∗ > 0, we define the set Mρ∗ of small local minima τ of ρ which are not

edges of supp ρ, i.e.,

Mρ∗
..= {τ ∈ (supp ρ \ ∂ supp ρ) ∩ Iθ : ρ(τ) ≤ ρ∗,

ρ has a local minimum at τ}.
(8.7.7)

There is a threshold ρ∗ ∼ 1 such that, for all γ1, γ2 ∈Mρ∗ satisfying γ1 ̸= γ2 and

for all i = 1, . . . , K, we have

|γ1 − γ2| ∼ 1, |αi − γ1| ∼ 1, |βi − γ1| ∼ 1. (8.7.8)

The factors 41/3 and 4−1/3 in the cases (a) and (c) of part (i) of Theorem 8.7.2 can be

eliminated by redefining Γ, Ψedge and Ψmin to bring the leading term on the right-hand

sides into the uniform Γ1/3Ψ(ω) form. We have not used these redefined versions of Γ,

Ψedge and Ψmin here in order to be consistent with [4].

We remark that part (i) (a) and (b) of Theorem 8.7.2 cover only the case of τ0 ∈

∂ supp ρ with sufficiently small |σ(τ0)|. We will establish later that the smallness of

|σ(τ0)| corresponds to the smallness of the adjacent gap τ0−τ1 (see Lemma 8.7.14 below).

If |σ(τ0)| is not so small then ρ(τ0 + ω) is well approximated by a rescaled version of
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(ω±)1/2 (positive and negative part of ω for left and right edge, respectively). The precise

statement and scaling are given in Lemma 8.7.16 below.

8.7.1. Shape regular points. In the following definition, we introduce the notion

of a shape regular point which collects the properties of m necessary for the proof of

Theorem 8.7.1. Proposition 8.7.4 below explains how the statements of Theorem 8.7.1

are transferred to this more general setup. In fact, Lemma 8.4.8 (ii) and Proposition

8.6.1 show that, under the assumptions of Theorem 8.7.1, any point τ0 ∈ supp ρ ∩ I of

sufficiently small density ρ(τ0) is a shape regular point for m in the sense of Definition

8.7.3 below. By explicitly spelling out the properties of m really used in the proof of

Theorem 8.7.1 we made our argument modular because a similar analysis around shape

regular points will be applied in later works as well.

This modularity, however, requires to reinterpret the concept of comparison relations.

In earlier sections we used the comparison relation ∼, ≲ and the O-notation introduced

in Convention 8.3.4 to hide irrelevant constants in various estimates that depended only

on the model parameters c1, c2, c3 from (8.3.10), k3 from (8.4.16) and θ from (8.7.2), these

are also the model parameters in Theorem 8.7.1. The model parameters in Theorem 8.7.2

are given by k1, . . . , k8 in Assumptions 8.4.5 and θ in the definition of Iθ.

The formulation of Definition 8.7.3 also involves comparison relations instead of carry-

ing constants; in the application these constants depend on the original model parameters.

When Proposition 8.7.4 is proven, the corresponding constants directly depend on the

constants in Definition 8.7.3, hence they also indirectly depend on the original model

parameters when we apply it to the proof of Theorem 8.7.1. Since these dependences are

somewhat involved and we do not want to overload the paper with different concepts of

comparison relations, for simplicity, for the purpose of Theorem 8.7.1, the reader may

think of the implicit constants in every ∼-relation depending only on the original model

parameters c1, c2, c3, k3 and θ.

Definition 8.7.3 (Admissibility for shape analysis, shape regular points). Let m be the

solution of the Dyson equation (8.2.3) associated to a data pair (a, S) ∈ Asa × Σ.
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(i) Let τ0 ∈ R, J ⊂ R be an open interval with 0 ∈ J , Θ: J → C and r : J → A be

continuous functions and b ∈ A. We say that m is (J,Θ, b, r)-admissible for the

shape analysis at τ0 if the following conditions are satisfied:

(a) The function m : H → A has a continuous extension to τ0 + J , which we

also denote by m. The relation (8.6.1) and the bounds (8.6.7a) as well as

(8.6.7b) hold true for all ω ∈ J .

(b) The function Θ satisfies the cubic equation (8.6.3) for all ω ∈ J with the

coefficients

µ3 = ψ +O(ρ),

µ2 = σ + i3ψρ+O(ρ2 + ρ|σ|),

µ1 = −2ρ2ψ + iκ1ρσ +O(ρ3 + ρ2|σ|),

Ξ(ω) = κ(1 + ν(ω)) +O(ρ),

where ρ ..= ⟨Imm(τ0)⟩/π and ψ, κ ≥ 0 as well as σ, κ1 ∈ R are some pa-

rameters satisfying (8.6.6) and κ, |κ1| ∼ 1. The function ν : J → C satis-

fies (8.6.5).

(c) The element b ∈ A in (8.6.1) fulfils b = b∗ +O(ρ) and b+ b∗ ∼ 1.

(d1) If ρ > 0 then Θ and r are differentiable in ω at ω = 0.

(d2) If ρ = 0 then (8.6.8) holds true for all ω ∈ J and Re Θ is non-decreasing on

the connected components of {ω ∈ J : Im Θ(ω) = 0}.

(ii) Let τ0 ∈ R and J ⊂ R be an open interval with 0 ∈ J . We say that τ0 is a shape

regular point for m on J if m is (J,Θ, b, r)-admissible for the shape analysis at

τ0 for some continuous functions Θ: J → C and r : J → A as well as b ∈ A.

The key technical step in the proof of Theorem 8.7.1 is the following Proposition 8.7.4;

it shows that Theorem 8.7.1 holds under more general weaker conditions, in fact shape

admissibility is sufficient. For the proof of Theorem 8.7.1 we will first check shape reg-

ularity from Proposition 8.6.1 and then we will prove Proposition 8.7.4; both steps are

done in Section 8.7.4 below.
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Proposition 8.7.4 (Theorem 8.7.1 under weaker assumptions; Structure of the set of

minima in supp ρ ∩ I). For the solution m to the Dyson equation (8.2.3), we write v ..=

π−1Imm, ρ = ⟨v⟩.

Then there are thresholds ρ∗ ∼ 1 and δ∗ ∼ 1 such that if ρ(τ0) ≤ ρ∗ and τ0 ∈ supp ρ is

a local minimum of ρ as well as a shape regular point for m on J with an open interval

J ⊂ R satisfying 0 ∈ J then (8.7.3) holds true for all ω ∈ [−δ∗, δ∗] ∩ J ∩D. Here, as in

Theorem 8.7.1, h = h(τ0) ∈ A with h ∼ 1 and D as well as Ψ depend only on the type of

τ0 in the following way:

Suppose that τ0 ∈ ∂ supp ρ is the infimum of a connected component of supp ρ. If

ρ(τ) = 0 for all τ ∈ [τ0 − ε, τ0] with some ε ∼ 1 (e.g. τ0 = inf supp ρ) and |inf J | ≳ 1,

then the conclusion of case (a) in Theorem 8.7.1 holds true with ∆ = 1 and v(τ0) = 0.

If τ0 ̸= inf supp ρ and τ1
..= sup((−∞, τ0) ∩ supp ρ) is a shape regular point for m,

∆ ≲ 1 with ∆ ..= τ0 − τ1 and |σ(τ0) − σ(τ1)| ≲ |τ0 − τ1|ζ for some constant ζ ∈ (0, 1/3]

then the conclusion of case (a) in Theorem 8.7.1 holds true with this choice of ∆ as well

as v(τ0) = 0.

Similarly to (a), the statement of case (b) in Theorem 8.7.1 can be translated to the

current setup. The cases (c) and (d) of Theorem 8.7.1, cusp and internal minimum,

respectively, hold true without any changes.

Furthermore, suppose that τ0 ∈ supp ρ is a shape regular point for m and ρ(τ0) = 0,

then τ0 is a cusp if σ(τ0) = 0 and τ0 is an edge, in particular τ0 ∈ ∂ supp ρ, if σ(τ0) ̸= 0.

Similarly, the following Proposition 8.7.5 is the analogue of Theorem 8.7.2 under the

sole requirement of shape admissibility. Owing to the weaker assumptions, the error

term in (8.7.9) as well as the result in (8.7.10) of Proposition 8.7.5 are weaker than the

corresponding results in Theorem 8.7.2. We will first show Proposition 8.7.5 and then

conclude Theorem 8.7.2 by using extra arguments for the stronger conclusions; both

proofs will be presented in Section 8.7.5 below.

At a shape regular point τ0 ∈ R, we set Γ ..=
√

27κ/(2ψ) (cf. Theorem 8.7.6 (i)

below), where κ = κ(τ0) and ψ = ψ(τ0) are defined as in Definition 8.7.3 (i) (b).

Proposition 8.7.5 (Behaviour of ρ close to minima, set of minima of ρ under weaker

assumptions). Let m be the solution to the Dyson equation, (8.2.3), and ρ = π−1⟨Imm⟩.
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(i) Then there are thresholds ρ∗ ∼ 1, σ∗ ∼ 1 and δ∗ ∼ 1 such that if τ0 ∈ supp ρ is a

shape regular point for m on an open interval J ⊂ R with 0 ∈ J , ρ(τ0) ≤ ρ∗ and

τ0 is a local minimum of ρ then we have

(a) (Left edge) If τ0 ∈ ∂ supp ρ is the infimum of a connected component of

supp ρ, |σ(τ0)| ≤ σ∗ and τ1
..= sup((−∞, τ0) ∩ supp ρ) is a shape regular

point satisfying ∆ ≲ 1 for ∆ ..= τ0 − τ1 and |σ(τ0) − σ(τ1)| ≲ |τ0 − τ1|ζ for

some constant ζ ∈ (0, 1/3] then (8.7.5a) for all ω ∈ [0, δ∗] ∩ J .

(b) (Right edge) If τ0 ∈ ∂ supp ρ is the supremum of a connected component

then a similar statement as in the case of a left edge holds true.

(c) (Cusp) If τ0 /∈ ∂ supp ρ and ρ(τ0) = 0 then (8.7.5b) holds true for all ω ∈

[−δ∗, δ∗] ∩ J .

(d) (Internal minimum) If τ0 /∈ ∂ supp ρ and ρ(τ0) > 0 then

ρ(τ0 + ω) = ρ(τ0) + Γ1/3Ψ(ω) +O
(
|ω|
ρ(τ0)

1(|ω| ≲ ρ(τ0)3) + Ψ(ω)2
)
,

Ψ(ω) ..= ρ̃Ψmin

(
ω

ρ̃3

)
, ρ̃ ..= ρ(τ0)

Γ1/3

(8.7.9)

for all ω ∈ [−δ∗, δ∗] ∩ J .

(ii) Let I ⊂ R be an open interval with supp ρ∩ I ̸= ∅ and |I| ≲ 1 and let m have a

continuous extension to the closure I of I. Let J ⊂ R be an open interval with

0 ∈ J and dist(0, ∂J) ≳ 1 such that J + (∂ supp ρ) ∩ I ⊂ I. We assume that all

points in (∂ supp ρ)∩ I are shape regular points for m on J and all estimates in

Definition 8.7.3 hold true uniformly on (∂ supp ρ)∩I. If |σ(τ0)−σ(τ1)| ≲ |τ0−τ1|ζ

for some ζ ∈ (0, 1/3] and uniformly for all τ0, τ1 ∈ (∂ supp ρ)∩ I then supp ρ∩ I

consists of K ∼ 1 intervals, i.e., there are α1, . . . , αK ∈ ∂ supp ρ ∪ ∂I and

β1, . . . , βK ∈ ∂ supp ρ ∪ ∂I, αi < βi < αi+1, such that (8.7.6) holds true with Iθ

replaced by I and βi − αi ∼ 1 if βi ̸= sup I and αi ̸= inf I.

If Mρ∗ is defined as in (8.7.7) then there is a threshold ρ∗ ∼ 1 such that if, in

addition to the previous conditions in (ii), all points of (Mρ∗ ∪ ∂ supp ρ) ∩ I are

shape regular points for m on J and all estimates in Definition 8.7.3 hold true

uniformly on (Mρ∗ ∪ ∂ supp ρ) ∩ I then, for γ ∈ Mρ∗, we have |αi − γ| ∼ 1 and

|βi − γ| ∼ 1 if αi ̸= inf I and βi ̸= sup I. Moreover, for any γ1, γ2 ∈ Mρ∗, we
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have either

|γ1 − γ2| ∼ 1, or |γ1 − γ2| ≲ min{ρ(γ1), ρ(γ2)}4. (8.7.10)

If ρ(γ1) = 0 or ρ(γ2) = 0 then, for γ1 ̸= γ2, only the first case occurs.

An important step towards Theorem 8.7.1 and Proposition 8.7.4 will be to prove sim-

ilar behaviours for Θ as Im Θ is the leading term in v. These behaviours are collected

in the following theorem, Theorem 8.7.6. It has weaker assumptions than those of Theo-

rem 8.7.1 and those required in Proposition 8.7.4 – in particular, on the coefficient µ1 in

the cubic equation (8.6.3). However, these assumptions will be sufficient for the purpose

of Theorem 8.7.6.

Theorem 8.7.6 (Abstract cubic equation). Let Θ(ω) be a continuous solution to the

cubic equation

µ3Θ(ω)3 + µ2Θ(ω)2 + µ1Θ(ω) + ωΞ(ω) = 0 (8.7.11)

for ω ∈ J , where J ⊂ R is an open interval with 0 ∈ J . We assume that the coefficients

satisfy
µ3 = ψ +O(ρ),

µ2 = σ + 3iψρ+O(ρ2 + ρ|σ|),

µ1 = −2ρ2ψ +O(ρ3 + ρ|σ|),

Ξ(ω) = κ(1 + ν(ω)) +O(ρ)

(8.7.12)

with some fixed parameters ψ ≥ 0, ρ ≥ 0, σ ∈ R and κ ∼ 1. The cubic equation is

assumed to be stable in the sense that

ψ + σ2 ∼ 1. (8.7.13)

Moreover, for all ω ∈ J , we require the following bounds on ν and Θ:

|ν(ω)| ≲ |ω|1/3, (8.7.14a)

|Θ(ω)| ≲ |ω|1/3. (8.7.14b)

Then the following statements hold true:
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(i) (ρ > 0) For any Π∗ ∼ 1, there is a threshold ρ∗ ∼ 1 such that if ρ ∈ (0, ρ∗] and

|σ| ≤ Π∗ρ
2 then we have

Im Θ(ω) = ρΨmin

(
Γ ω
ρ3

)
+O

(
min{ρ−1|ω|, |ω|2/3}

)
, (8.7.15)

with Γ ..=
√

27κ/(2ψ). Note that Γ ∼ 1 if ρ∗ ∼ 1 is small enough.

(ii) (ρ = 0) If ρ = 0 and we additionally assume Im Θ(ω) ≥ 0 for ω ∈ J , Re Θ is

non-decreasing on the connected components of {ω ∈ J : Im Θ(ω) = 0} as well

as

|Im ν(ω)| ≲ Im Θ(ω) (8.7.16)

for all ω ∈ J then we have

(a) If σ = 0 then Im Θ(ω) has a cubic cusp at ω = 0, i.e.,

Im Θ(ω) =
√

3
2

(
κ

ψ

)1/3
|ω|1/3 +O(|ω|2/3). (8.7.17)

(b) If σ ̸= 0 then Im Θ(ω) has a square root edge at ω = 0, i.e., there is c∗ ∼ 1

such that

Im Θ(ω) = c∆̂1/3Ψedge

( |ω|
∆̂

)
+O

(
(|ν(ω)|+ ε(ω))ε(ω)

)
, (8.7.18a)

if signω = sign σ, and

Im Θ(ω) = 0, (8.7.18b)

if signω = − sign σ and |ω| ≤ c∗|σ|3, where ∆̂ ∈ (0,∞), c ∈ (0,∞) and

ε : R→ [0,∞) are defined by

∆̂ ..= min
{ 4

27κ
|σ|3

ψ2 , 1
}
, c ..= 3

√
κ

∆̂1/6

|σ|1/2 ,

ε(ω) ..= min
{ |ω|1/2

∆̂1/6
, |ω|1/3

}
.

(8.7.19)

We have ∆̂ ∼ |σ|3 and c ∼ 1. Moreover, for signω = sign σ, we have

|Θ(ω)| ≲ ε(ω). (8.7.20)
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8.7.2. Cubic equations in normal form. The core of the proof of Theorem 8.7.6

is to bring (8.7.11) into a normal form by a change of variables. We will first explain the

analysis of these normal forms, especially the mechanism of choosing the right branch of

the solution based upon selection principles that will be derived from the constraints on

Θ given in Theorem 8.7.6. Then, in Section 8.7.3, we show how to bring (8.7.11) to these

normal forms.

In the following proposition, we study a special solution Ω(λ) to a one-parameter

family of cubic equations in normal forms with constant term Λ(λ) (or 2Λ(λ)), where

Λ(λ) is a perturbation of the identity map λ ↦→ λ. Here, a priori, the real parameter λ is

always contained in an (possibly unbounded) interval around 0. This range of definition

will not be explicitly indicated in the statements but will be explicitly restricted for their

conclusions. We compare the solution to this perturbed cubic equation with the solution

to the cubic equation with constant term λ. Depending on the precise type of the cubic

equation, the choice of the solution is based on some of the following selection principles

SP1 λ ↦→ Ω(λ) is continuous

SP2 Ω(0) = Ω0 for some given Ω0 ∈ C

SP3 Im (Ω(λ)− Ω(0)) ≥ 0,

SP4’ |Im Λ(λ)| ≤ γ|λ|Im Ω(λ) for some γ > 0 and Re Ω(λ) is non-decreasing on the

connected components of {λ : Im Ω(λ) = 0}.

We use the notation SP4’ to distinguish this selection principle from SP-4 which was

introduced in Lemma 9.9 of [4].

We will make use of the following standard convention for complex powers.

Definition 8.7.7 (Complex powers). We define C \ (−∞, 0)→ C, ζ ↦→ ζγ for γ ∈ C by

ζγ ..= exp(γ log ζ), where log : C \ (−∞, 0) → C is a continuous branch of the complex

logarithm with log 1 = 0.

With this convention, we record Cardano’s formula as follows:
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Proposition 8.7.8 (Cardano). The three roots of Ω3−3Ω+2ζ, ζ ∈ C, are Ω̂+(ζ), Ω̂−(ζ)

and Ω̂0(ζ) which are defined by

Ω̂±(ζ) ..= 1
2(Φ+(ζ) + Φ−(ζ))± i

√
3

2 (Φ+(ζ)− Φ−(ζ)),

Ω̂0(ζ) ..= −(Φ+(ζ) + Φ−(ζ)),
(8.7.21)

where

Φ±(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(ζ ±
√
ζ2 − 1)1/3, if Re ζ ≥ 1,

(ζ ± i
√

1− ζ2)1/3, if |Re ζ| < 1,

−(−ζ ∓
√
ζ2 − 1)1/3, if Re ζ ≤ −1.

Proposition 8.7.9 (Solution to the cubic in normal form). Let Ω(λ) satisfy SP1 and SP2.

(i) (Non-zero local minimum) Let Ω0 =
√

3(i + χ1) in SP2 and Ω(λ) satisfy

Ω(λ)3 + 3Ω(λ) + 2Λ(λ) = 0, Λ(λ) = (1 + χ2 + µ(λ))λ+ χ3, (8.7.22)

with |µ(λ)| ≲ α|λ|1/3, α > 0. Then there exist δ ∼ 1 and χ∗ ∼ 1 such that if

α, |χ1|, |χ2|, |χ3| ≤ χ∗ then

Ω(λ)− Ω0 = Ω̂(λ)− i
√

3 +O
(
(α + |χ2|+ |χ3|) min{|λ|, |λ|2/3}

)
(8.7.23)

for all λ ∈ R satisfying |λ| ≤ δ/α3, where Ω̂(λ) ..= Φodd(λ) + i
√

3Φeven(λ) and

Φodd and Φeven are the odd and even part of the function Φ: C → C, Φ(ζ) ..=

(
√

1 + ζ2 + ζ)1/3, respectively.

Moreover, we have for |λ| ≤ δ/α3 that

|Ω(λ)− Ω0| ≲ min{|λ|, |λ|1/3}. (8.7.24)

In the following, we assume that Ω(λ), in addition to SP1 and SP2, also satisfies SP3
and SP4’.

(ii) (Simple edge) Let Ω0 = 0 in SP2 and Ω(λ) be a solution to

Ω2(λ) + Λ(λ) = 0, Λ(λ) = (1 + µ(λ))λ. (8.7.25)
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If |µ(λ)| ≤ γ2/3|λ|1/3 for the γ > 0 of SP4’ then there is c∗ ∼ 1 such that

Ω(λ) = Ω̂(λ) +O
(
|µ(λ)||λ|1/2

)
,

Ω̂(λ) ..=

⎧⎪⎪⎨⎪⎪⎩
iλ1/2, if λ ∈ [0, c∗γ

−2],

−(−λ)1/2, if λ ∈ [−c∗γ
−2, 0].

(8.7.26)

Moreover, we have Im Ω(λ) = 0 for λ ∈ [−c∗γ
−2, 0].

(iii) (Sharp cusp) Let Ω0 = 0 in SP2, γ ∼ 1 in SP4’ and Ω(λ) be a solution to

Ω3(λ) + Λ(λ) = 0, Λ(λ) = (1 + µ(λ))λ. (8.7.27)

If |µ(λ)| ≲ |λ|1/3 then there is δ ∼ 1 such that

Ω(λ) = Ω̂(λ) +O
(
|µ(λ)||λ|1/3

)
,

Ω̂(λ) ..= 1
2

⎧⎪⎪⎨⎪⎪⎩
(−1 + i

√
3)λ1/3, if λ ∈ (0, δ],

(1 + i
√

3)|λ|1/3, if λ ∈ [−δ, 0].

(8.7.28)

(iv) (Two nearby edges) Let Ω0 = s for some s ∈ {±1} in SP2, γ ∼ 1 in SP4’ and

Ω(λ) be a solution to

Ω(λ)3 − 3Ω(λ) + 2Λ(λ) = 0, Λ(λ) = (1 + µ(λ))λ+ s. (8.7.29)

Then there are δ ∼ 1, ϱ ∼ 1 and γ∗ ∼ 1 such that if |µ(λ)| ≲ γ̂|λ|1/3 for some

γ̂ ∈ [0, γ∗] then

(a) We have

Ω(λ) = Ω̂+(1 + |λ|) +O
(
|µ(λ)|min{|λ|1/2, |λ|1/3}

)
, (8.7.30)

for all λ ∈ s(0, 2δ/γ̂3]. (Recall the definition of Ω̂+ from (8.7.21).) More-

over, for all λ ∈ s(0, 2δ/γ̂3], we have

|Ω(λ)− Ω0| ≲ min
{
|λ|1/2, |λ|1/3

}
. (8.7.31)

(b) For all λ ∈ −s(0, 2− ϱγ̂], we have

Im Ω(λ) ≲ γ̂1/2. (8.7.32)
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(c) We have

Im Ω(−s(2 + ϱγ̂)) > 0. (8.7.33)

The core of each part in Proposition 8.7.9 is choosing the correct cubic root. For the

most complicated part (iv), we state this choice in the following auxiliary lemma. For its

formulation, we introduce the intervals

I1
..= −s[−λ1, 0), I2

..= −s(0, λ2], I3
..= −s[λ3, λ1], (8.7.34)

where we used the definitions

λ1
..= 2 δ

γ̂3 , λ2
..= 2− ϱγ̂, λ3

..= 2 + ϱγ̂. (8.7.35)

These definitions are modelled after (9.105) in [4]. We will choose γ̂ = ∆̂1/3 in the proof of

Theorem 8.7.6 below. Then λ1 corresponds to an expansion range δ in the ω coordinate.

Note that with the above choice of γ̂, we obtain the same λ1 as in (9.105) of [4]. However,

λ2 and λ3 differ slightly from those in [4], where λ2,3 were set to be 2∓ϱ|σ|. Nevertheless,

we will see below that γ̂ ∼ |σ| but they are not equal in general.

For given δ, ϱ ∼ 1, we will always choose γ∗ ∼ 1 so small that γ̂ ≤ γ∗ implies

λ1 ≥ 4, 1 ≤ λ2 < 2 < λ3 ≤ 3.

Therefore, the intervals in (8.7.34) are disjoint and nonempty.

Lemma 8.7.10 (Choice of cubic roots in Proposition 8.7.9 (iv)). Under the assumptions

of Proposition 8.7.9 (iv), there are δ, ϱ, γ∗ ∼ 1 such that if γ̂ ≤ γ∗ then we have

Ω|Ik
= Ω̂+ ◦ Λ|Ik

for k = 1, 2, 3. Here, Ω̂+ is defined as in (8.7.21).

Proof. The proof is the same as the one of Lemma 9.14 in [4] but SP-4 in [4] is

replaced by SP4’ above. In that proof, SP-4 is used only in the part titled “Choice

of a2”. We redo this part here. Recall that a2 = 0,± denoted the index such that

Ω|I2 = Ω̂a2 ◦ Λ|I2 and our goal is to show a2 = +. Similarly as in [4], we assume without

loss of generality s = −1. Since limλ↓−1 Ω̂−(λ) = 2 and Ω(0) = −1 by SP2, we conclude
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a2 ̸= −. (In the corresponding step in [4], there was a typo: Ω̂+(−1 + 0) = 2 should have

been Ω̂−(−1 + 0) = 2, resulting in the choice a2 = +. This conclusion is only used in the

bound (9.137) of [4] which still holds true. The rest of the proof is unaffected.)

We now prove a2 ̸= 0. To that end, we take the imaginary part of the cubic equation,

(8.7.29), and obtain

3((Re Ω)2 − 1)Im Ω = −2λImµ(λ) + (Im Ω)3. (8.7.36)

Suppose that a2 = 0. From the definition of Ω̂0, Λ(λ) = (1 + µ(λ))λ − 1 and |µ(λ)| ≲

γ̂|λ|1/3 we obtain

Re Ω̂0(Λ(λ)) ≤ −1− c|λ|1/2 + Cγ̂1/2λ2/3, |Im Ω̂0(Λ(λ))| ≲ γ̂1/2λ2/3, (8.7.37)

(compare (9.120) in [4]). Thus, from (8.7.36), we conclude

|λ|1/2Im Ω ≲ |λ|Im Ω

for small λ as |Imµ(λ)| ≲ Im Ω by SP4’ and |Im Λ| = |λ||Imµ|. Hence, Im Ω(λ) = 0 for

small enough |λ|. Thus, Re Ω is non-decreasing for such λ by SP4’, but from Ω(0) = −1

and the first bound in (8.7.37) we conclude that Re Ω has to be decreasing if Ω(λ) =

Ω̂0(Λ(λ)). This contradiction shows a2 ̸= 0, hence, a2 = +. The rest of the proof in [4] is

unchanged. □

Proof of Proposition 8.7.9. For the proof of (i), we mainly follow the proof of

Proposition 9.3 in [4] with γ4 = χ1, γ5 = χ2 and γ6 = χ3 in (9.35) and (9.37) of [4].

Following the careful selection of the correct solution of (8.7.22) (cf. (9.36) in [4])

by the selection principles till above (9.50) in [4] yields Ω(λ) = Ω̂(Λ(λ)) and hence, in

particular, Ω̂(χ3) = Ω0 =
√

3(i + χ1). (Ω̂ = Ω̂+ in [4].) By defining

Λ0(λ) ..= (1 + χ2 + µ(λ))λ

and using |µ(λ)| ≲ α|λ|1/3 instead of (9.54) in [4], we obtain

Ω̂(Λ0(λ))− Ω̂(0) = Ω̂(λ)− Ω̂(0) +O
(

(|χ2|+ |µ(λ)|) |λ|
1 + |λ|2/3

)

= Ω̂(λ)− Ω̂(0) +O((α + |χ2|) min{|λ|, |λ|2/3})
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instead of (9.56) in [4]. Thus, (9.57) in the proof of Proposition 9.3 in [4] yields

Ω̂(χ3 + Λ0(λ))− Ω̂(χ3) = Ω̂(λ)− Ω̂(0) +O((α + |χ2|+ |χ3|) min{|λ|, |λ|2/3}).

Thus, we obtain (8.7.23) since Ω̂(χ3) = Ω0 and Ω̂(0) = i
√

3. We remark that (8.7.24) is

exactly (9.53) in [4].

The proof of (ii) resembles the proof of Lemma 9.11 in [4] but we replace assumption

SP-4 of [4] by SP4’. Since Ω(λ) solves (8.7.25), there is a function A : R → {±} such

that Ω(λ) = Ω̃A(λ)(Λ(λ)) for all λ ∈ R. Here, Ω̃± : C→ C denote the functions

Ω̃±(ζ) ..= ±

⎧⎪⎪⎨⎪⎪⎩
iζ1/2, if Re ζ ≥ 0,

−(−ζ)1/2, if Re ζ < 0.

(Note that they were denoted by Ω̂± in (9.78) of [4]). By assumption, there is c∗ ∼ 1

such that |µ(λ)| < 1 for all |λ| ≤ c∗γ
−2. Hence, by SP1, we find a+, a− ∈ {±} such that

A(λ) = a± for λ ∈ ±[0, c∗γ
−2].

For λ ≥ 0, we have

Im Ω̃−(Λ(λ)) = −λ1/2 +O(µ(λ)λ1/2).

Thus, possibly shrinking c∗ ∼ 1, we obtain Im Ω̃−(Λ(λ)) < 0 for λ ∈ (0, c∗γ
−2]. Therefore,

the choice a+ = − would contradict SP3 and we conclude a+ = +.

We now prove that a− = +. Assume to the contrary that a− = −. For small enough

c∗ ∼ 1, we have
Re Ω̃−(Λ(λ)) = |λ|1/2Re (1 + µ(λ))1/2 ∼ |λ|1/2,

Im Ω̃−(Λ(λ)) = |λ|1/2Im ((1 + µ(λ))1/2) ≲ |λ|1/2

for λ ∈ [−c∗γ
−2, 0) by the definition of Ω̃− and Λ. Hence, taking the imaginary part of

(8.7.25) and using SP4’ yield

|λ|1/2Im Ω(λ) ≲ γ|λ|Im Ω(λ)

for λ ∈ [−c∗γ
−2, 0). By possibly shrinking c∗ ∼ 1, we obtain Im Ω(λ) = 0 for λ ∈

[−c∗γ
−2, 0). Thus, SP4’ implies that Re Ω is non-decreasing on [−c∗γ

−2, 0) which con-

tradicts Re Ω̃−(0) = 0 and Re Ω̃−(Λ(λ)) ∼ |λ|1/2 > 0 for λ ∈ [−c∗γ
−2, 0) with small
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enough c∗ ∼ 1. Hence, a− = + which completes the selection of the main term Ω̂ = Ω̃+

in (8.7.26). The error term in (8.7.26) follows by estimating Ω̂(Λ(λ)) directly.

For the proof of (iii), we select the correct root of (8.7.27) as in the proof of Lemma

9.12 in [4] under SP4’ instead of SP-4. Since Ω(λ) solves (8.7.27) there is a function

A : R→ {0,±} such that

Ω(λ) = Ω̃A(λ)(Λ(λ))

for all λ ∈ R. Here, we introduced the functions Ω̃a : C→ C, a = 0,±, defined by

Ω̃0
..= −

⎧⎪⎪⎨⎪⎪⎩
ζ1/3, if Re ζ ≥ 0,

−(−ζ)1/3, if Re ζ < 0,
Ω̃±(ζ) ..= 1∓ i

√
3

2 Ω̃0(ζ).

(Note that they were denoted by Ω̂a, a ∈ {0,±}, in (9.87) of [4].) By SP1, A can

only change its value at λ if Λ(λ) = 0. By choosing δ ∼ 1 small enough and using

|µ(λ)| ≲ |λ|1/3, we have A(λ) = a+ and A(−λ) = a− for some constants a± and for all

λ ∈ (0, δ].

We will now use SP3 and SP4’ to determine the value of a+ and a−. As in (9.91) of

the proof of Lemma 9.12 in [4], we have

±(sign λ)Im Ω̃±(Λ(λ)) =
√

3
2 |λ|

1/3 +O(µ(λ)λ1/3) ≥ |λ|1/3 − C|λ|2/3.

By possibly shrinking δ ∼ 1, we conclude Im Ω̃−(Λ(λ)) < 0 for λ ∈ (0, δ] and Im Ω̃+(Λ(λ)) <

0 for λ ∈ [−δ, 0). Hence, owing to SP3, we conclude a+ ̸= − and a− ̸= +.

Next, we will prove a+ ̸= 0. For λ ≥ 0, we have

Re Ω̃0(Λ(λ)) ≤ −λ1/3 + Cλ2/3, Im Ω̃0(Λ(λ)) ≲ λ2/3.

Thus, assuming Ω(λ) = Ω̃0(Λ(λ)) and estimating the imaginary part of (8.7.27) yield

λ2/3Im Ω(λ) ≲ (Im Ω(λ))3 + |Im Λ(λ)| ≲ |λ|Im Ω(λ).

Hence, we possibly shrink δ ∼ 1 and conclude Im Ω(λ) = 0 for λ ∈ [0, δ]. Therefore,

Re Ω(λ) is non-decreasing on [0, δ] by SP4’. Combined with Ω0 = 0 and Re Ω̃0(Λ(λ)) ≲

−λ1/3, we obtain a contradiction. Hence, this implies a+ ̸= 0, i.e., a+ = +.



8.7. CUBIC ANALYSIS 321

A similar argument excludes a− = 0 and we thus obtain a− = −. Now, (8.7.28) is

obtained from the definition of Ω̂ = Ω̃+, which completes the proof of (iii).

For the proof of (iv), we remark that all estimates follow from Lemma 8.7.10 in

the same way as they followed in [4] from Lemma 9.14 in [4]. Indeed, (8.7.30) is the

same as (9.129) in [4]. The bound (8.7.31) is shown analogously to (9.129) and (9.130)

in [4]. Moreover, (8.7.32) is (9.137) in [4] and (8.7.33) is obtained as (9.109) in [4]. This

completes the proof of Proposition 8.7.9. □

8.7.3. Proof of Theorem 8.7.6. Before we prove Theorem 8.7.6, we collect some

properties of Ψedge and Ψmin which will be useful in the following. We recall that Ψedge

and Ψmin were defined in (8.7.1).

Lemma 8.7.11 (Properties of Ψmin and Ψedge).

(i) Let Ω̂ be defined as in Proposition 8.7.9 (i). Then, for any λ ∈ R, we have

Ψmin(λ) = 1√
3

Im [Ω̂(λ)− Ω̂(0)]. (8.7.38)

(ii) Let Ω̂+ be defined as in (8.7.21). Then, for any λ ≥ 0, we have

Ψedge(λ) = 1
2
√

3
Im Ω̂+(1 + 2λ). (8.7.39)

(iii) There is a function Ψ̃ : [0,∞) → R with uniformly bounded derivatives and

Ψ̃(0) = 0 such that, for any λ ≥ 0, we have

Ψedge(λ) = λ1/2

3 (1 + Ψ̃(λ)), |Ψ̃(λ)| ≲ min{λ, λ1/3}. (8.7.40)

(iv) There is ε∗ ∼ 1 such that if |ε| ≤ ε∗ then, for any λ ≥ 0, we have

Ψedge((1 + ε)λ) = (1 + ε)1/2Ψedge(λ) +O(εmin{λ3/2, λ1/3}). (8.7.41)

We remark that (8.7.39) was present in (9.127) of [4] but the coefficient 1/(2
√

3) was

erroneously missing there. The relation in (8.7.41) is identical to (9.145) in [4]. Moreover,

we use the proof of [4].

Proof. The parts (i), (ii) and (iii) are direct consequences of the definitions of Ψmin,

Ω̂, Ψedge and Ω̂+.
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For the proof of (iv), we choose ε∗ ≤ 1/2 such that 1+ε ∼ 1 for |ε| ≤ ε∗. If 0 ≤ λ ≲ 1

then (8.7.41) follows from (8.7.40). For λ ≳ 1, we choose ε∗ = 1/3 and then (8.7.41) is

a consequence of (8.7.39) above as well as the stability of Cardano’s solutions, (9.111) in

Lemma 9.17 of [4]. □

In the following proof of Theorem 8.7.6, we will choose appropriate normal coordinates

Ω and Λ in each case such that (8.7.11) turns into one of the cubic equations in normal

form from Proposition 8.7.9. This procedure has been similarly performed in the proofs

of Proposition 9.3, Lemma 9.11, Lemma 9.12 and Section 9.2.2 in [4]. However, owing to

the weaker error bounds here, we include the proof for the sake of completeness.

Proof of Theorem 8.7.6. We start with the proof of part (i) (cf. Proposition 9.3

in [4]). Owing to (8.7.14b) and |Ψmin(λ)| ≲ |λ|1/3, the statement of (8.7.15) is trivial for

|ω| ≳ 1 since the error term dominates. Therefore, it suffices to prove (8.7.15) for |ω| ≤ δ

with some δ ∼ 1.

By possibly shrinking ρ∗ ∼ 1, we can assume that |σ| ≤ Π∗ρ
2
∗ is small enough such

that ψ ∼ 1 by (8.7.13). In the following, we will choose ω-independent complex numbers

γν , γ0, γ1, . . . , γ7 ∈ C such that certain relations hold. For each choice, it is easily checked

that |γk| ≲ ρ for k = ν, 0, 1, . . . , 7. We divide (8.7.11) by µ3 and obtain

Θ3 + i3ρ(1 + γ2)Θ2 − 2ρ2(1 + γ1)Θ + (1 + γ0 + (1 + γν)ν(ω))κ
ψ
ω = 0, (8.7.42)

where γν , γ0, γ1 and γ2 are chosen such that
µ2

µ3
= i3ρ(1 + γ2),

µ1

µ3
= −2ρ2(1 + γ1),

κ(1 + ν(ω)) +O(ρ)
µ3

= κ

ψ
(1 + γ0 + (1 + γν)ν(ω)).

With these choices, we obtain γν , γ0, γ1, γ2 = O(ρ), since µ3 = ψ+O(ρ), µ2 = i3ρψ+O(ρ2)

and µ1 = −2ρ2 +O(ρ3) owing to (8.7.12), |σ| ≤ Π∗ρ
2, ψ ∼ 1 and |µ3| ∼ 1 for sufficiently

small ρ∗ ∼ 1. We introduce the normal coordinates

λ ..= Γ ω
ρ3 , Ω(λ) ..=

√
3
[
(1 + γ3)

1
ρ

Θ
(
ρ3

Γ λ
)

+ i + γ4

]
, (8.7.43)
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where Γ ..=
√

27κ/(2ψ). Note that Γ ∼ 1 since ψ ∼ 1. We choose γ3 and γ4 such that the

coefficient of the quadratic term of the cubic equation, (8.7.42), in normal coordinates

vanishes while the coefficient of the linear term equals to 3. This amounts to the relations

−γ4 + iγ2 + iγ3 + iγ2γ3 = 0,

3(i + γ4)2 − i6(i + γ4)(1 + γ2)(1 + γ3)− 2(1 + γ1)(1 + γ3)2 = 1.

Expressing γ4 by γ3 (and γ2 which has already been chosen) via the first equation and

plugging the result into the second equation yield a quadratic equation for γ3 in terms of

γ1 and γ2. In this quadratic equation the order one term cancels and hence γ3 = O(ρ).

This also implies γ4 = O(ρ). Thus, a straightforward computation starting from (8.7.42)

shows that Ω(λ) and Λ(λ) satisfy (8.7.22) with

Λ(λ) ..= (1 + γ5 + µ(λ))λ+ γ6, µ(λ) ..= (1 + γ7)ν
(
ρ3

Γ λ
)
,

i.e., χ2 = γ5, χ3 = γ6 and α = ρ by (8.7.14a).

Here, we chose

γ5 = (1 + γ3)3(1 + γ0)− 1,

γ6 =
√

27(−(i + γ4)3 + i3(1 + γ2)(1 + γ3)(i + γ4)2 + 2(1 + γ1)(1 + γ3)2(i + γ4)),

γ7 = (1 + γ3)3(1 + γν)− 1.

Since γν , γ0, . . . , γ4 = O(ρ), we conclude γ5, γ6, γ7 = O(ρ). Hence, from (8.7.23) and

(8.7.43), we obtain δ ∼ 1 and χ∗ ∼ 1 such that

Im Θ(ω) = Im ρ

1 + γ3

1√
3

[Ω(λ)− Ω0]

= ρΨmin

(
Γ ω
ρ3

)
+O

(
ρ2 min{|λ|, |λ|1/3}+ ρ2 min{|λ|, |λ|2/3}

)
for |λ| ≤ δ/ρ3 if ρ ≤ min{χ∗, ρ∗}. Here, we also used (8.7.24) to expand ρ/(1 + γ3)

and (8.7.38). By employing (8.7.43) again and replacing ρ∗ by min{χ∗, ρ∗}, we con-

clude (8.7.15).
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We now turn to the proof of part (ii) of Theorem 8.7.6. Since ρ = 0, the cubic

equation (8.7.11) simplifies to the following equation

ψΘ(ω)3 + σΘ(ω)2 + κ(1 + ν(ω))ω = 0. (8.7.44)

We now prove Theorem 8.7.6 (ii) (a), i.e., the case σ = 0 (cf. Lemma 9.12 in [4]). For

any δ ∼ 1, the assertion is trivial for |ω| ≥ δ since the error term dominates |ω|1/3 and

Im Θ(ω) in this case (compare (8.7.14b)). Therefore, it suffices to prove the lemma for

|ω| ≤ δ with some δ ∼ 1. We choose the normal coordinates

λ ..= ω, Ω(λ) ..=
(
ψ

κ

)1/3
Θ(λ),

and notice that the cubic equation (8.7.44) becomes (8.7.27) with µ(λ) = ν(λ). The

bound (8.7.14a) implies |µ(λ)| ≲ |λ|1/3. Thus, (8.7.17) is a consequence of Proposi-

tion 8.7.9 (iii). This completes the proof of (ii) (a).

For the proof of Theorem 8.7.6 (ii) (b), we first show the following auxiliary lemma

(cf. Lemma 9.11 in [4]).

Lemma 8.7.12 (Simple edge). Let the assumptions of Theorem 8.7.6 (ii) hold true. If

σ ̸= 0 then there is c∗ ∼ 1 such that, for |ω| ≤ c∗|σ|3, we have

Im Θ(ω) =

⎧⎪⎪⎨⎪⎪⎩
√
κ
⏐⏐⏐ω
σ

⏐⏐⏐1/2
+O

((
|ν(ω)|+ |σ|−1|Θ(ω)|

)⏐⏐⏐ω
σ

⏐⏐⏐1/2)
, if signω = sign σ,

0, if signω = − sign σ.
(8.7.45)

Moreover, we have |Θ(ω)| ≲ |ω/σ|1/2 for |ω| ≤ c∗|σ|3.

Proof. Dividing (8.7.44) by κσ yields(
1 + ψ

σ
Θ(ω)

)Θ(ω)2

κ
+ (1 + ν(ω))ω

σ
= 0. (8.7.46)

We introduce λ, Ω(λ) and µ(λ) defined by

λ ..= ω

σ
, Ω(λ) ..= 1√

κ
Θ(σλ), µ(λ) ..= 1 + ν(σλ)

1 + ψσ−1Θ(σλ) − 1.

In the normal coordinates λ and Ω(λ), (8.7.46) viewed as a quadratic equation, fulfills

(8.7.25) with the above choice of µ(λ). Since |ψσ−1Θ(σλ)| ≲ |σ|−2/3|λ|1/3 by (8.7.14b),
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there is c∗ ∼ 1 such that

|µ(λ)| ≲ |ν(σλ)|+ |σ|−1|Θ(σλ)| ≲ |σ|−2/3|λ|1/3, |Imµ(λ)| ≲ |σ|−1Im Θ(σλ) (8.7.47)

for |λ| ≤ c∗|σ|2 by (8.7.14a), (8.7.14b) and (8.7.16). Hence, we apply Proposition 8.7.9

(ii) with γ ∼ |σ|−1 in SP4’ and obtain (8.7.45) with an error term O(|µ(λ)||λ|1/2) instead,

as well as |Θ(ω)| ≲ |σ|−1/2|ω|1/2. Thus, the first bound in (8.7.47) completes the proof

of (8.7.45). □

From the second case in (8.7.45), we conclude the second case in (8.7.18). The first

case in (8.7.18) and (8.7.20) are trivial if |ω| ≳ 1 due to (8.7.14b) and (8.7.4a). Hence, it

suffices to prove this case for |ω| ≤ δ with some δ ∼ 1. If |σ| ≳ 1 then the first case in

(8.7.18) also follows from (8.7.45) with δ ..= c∗|σ|3. Indeed, from (8.7.40), we conclude

√
κ
⏐⏐⏐⏐ωσ
⏐⏐⏐⏐1/2

= c∆̂1/3Ψedge

( |ω|
∆̂

)
+O(|ω|3/2),

where c and ∆̂ are defined as in (8.7.19). Since |ω| ≲ ε(ω) for |ω| ≤ δ and ε(ω) defined as

in (8.7.19) we obtain the first case in (8.7.18) if |σ| ≳ 1. Similarly, |Θ(ω)| ≲ |ω/σ|1/2 by

Lemma 8.7.12 yields (8.7.20) if |ω| ≤ δ and |σ| ≳ 1. Hence, it remains to show the first

case in (8.7.18) and (8.7.20) if |σ| ≤ σ∗ for some σ∗ ∼ 1. In fact, we choose σ∗ ∼ 1 so small

that ψ ∼ 1 by (8.7.13) and ∆̂ < 1 for |σ| ≤ σ∗. In order to apply Proposition 8.7.9 (iv),

we introduce

λ ..= 2
∆̂
ω, Ω(λ) ..= 3 ψ

|σ|
Θ
(∆̂

2 λ
)

+ sign σ, µ(λ) ..= ν
(∆̂

2 λ
)

(8.7.48)

(cf. (9.96) and (9.99) in [4]). The cubic (8.7.44) takes the form (8.7.29) in the normal

coordinates λ and Ω(λ) with the above choice of µ(λ) and s = sign σ in (8.7.29). By

(8.7.14a), we have |µ(λ)| ≲ ∆̂1/3|λ|1/3. We set γ̂ ..= ∆̂1/3. Therefore, Proposition 8.7.9

(iv) and (8.7.39) yield δ ∼ 1 and possibly smaller σ∗
..= min{σ∗, γ∗} ∼ 1 such that the

first case in (8.7.18) holds true for |σ| ≤ σ∗ and |ω| ≤ δ as µ(λ) = ν(ω) and ∆̂ ∼ |σ|3.

Moreover, (8.7.31) implies (8.7.20) for |ω| ≤ δ. This completes the proof of (ii) (b) and

hence of Theorem 8.7.6. □

8.7.4. Proof of Theorem 8.7.1 and Proposition 8.7.4. In this section, we prove

Theorem 8.7.1 and Proposition 8.7.4. Some parts of the following proof resemble the
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proofs of Theorem 2.6, Proposition 9.3 and Proposition 9.8 in [4]. However, owing to the

weaker assumptions, we present it here for the sake of completeness.

Proof of Theorem 8.7.1 and Proposition 8.7.4. We will only prove the state-

ments in Proposition 8.7.4. Theorem 8.7.1 is a direct consequence of this proposition as

well as Lemma 8.4.8 (ii) and Proposition 8.6.1.

Along the proof of Proposition 8.7.4, we will shrink δ∗ ∼ 1 such that (8.7.3) holds true

for all ω ∈ [−δ∗, δ∗] ∩ J ∩ D. We will transfer the expansions of Θ in Theorem 8.7.6 to

expansions of v by means of (8.6.1). To that end, we take the imaginary part of (8.6.1)

and obtain

v(τ0 + ω) = v(τ0) + π−1Re bIm Θ(ω) + π−1Im bRe Θ(ω) + π−1Im r(ω). (8.7.49)

We first establish (8.7.3) at a shape regular point τ0 ∈ (supp ρ) \ ∂ supp ρ which is

a local minimum of τ ↦→ ρ(τ). If ρ = ρ(τ0) = 0, i.e., the case of a cusp at τ0, case (c),

then σ = 0. Indeed, if σ were not 0, then, by the second case in (8.7.18), Im Θ(ω) would

vanish on one side of τ0. By the third bound in (8.6.8), this would imply the vanishing

of ρ as well, contradicting to τ0 ∈ supp ρ \ ∂ supp ρ. Hence, for any δ∗ ∼ 1, (8.7.17) and

(8.7.49) immediately yield (8.7.3) for ω ∈ [−δ∗, δ∗] ∩ J ∩D with h = (2π)−1b
√

3(κ/ψ)1/3

using (8.6.7a), (8.6.7b) and b = b∗ due to ρ = 0.

We now assume ρ > 0 which corresponds to an internal nonzero minimum at τ0,

case (d). Thus, the following lemma implies that the condition |σ| ≤ Π∗ρ
2, σ = σ(τ0),

needed to apply Theorem 8.7.6 (i) is fulfilled. We will prove Lemma 8.7.13 at the end of

this section.

Lemma 8.7.13 (Bound on |σ| at nonzero local minimum). There are thresholds ρ∗ ∼ 1

and Π∗ ∼ 1 such that

|σ(τ0)| ≤ Π∗ρ(τ0)2

for all shape regular points τ0 ∈ supp ρ which are a local minimum of ρ and satisfy

0 < ρ(τ0) ≤ ρ∗.
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Hence, (8.7.15), (8.7.49) and (8.6.7b) yield (8.7.3) with ρ̃ = ρΓ−1/3 and h = π−1Γ1/3Re b.

Here, we also used

ρ|Θ(ω)|+ |Θ(ω)|2 + |ω|+ min{ρ−1|ω|, |ω|2/3} ≲ |ω|
ρ

1(|ω| ≲ ρ3) + Ψ(ω)2, (8.7.50)

which is a consequence of (8.6.7a), (8.7.4b) for |ω| ≲ 1, as well as Re b ∼ 1 and Im b =

O(ρ). This completes the proof of (8.7.3) for shape regular points τ0 ∈ (supp ρ)\∂ supp ρ,

cases (c) and (d).

We now turn to the proof of (8.7.3) at an edge τ0, case (a), i.e., for a shape regular

point τ0 ∈ ∂ supp ρ. We first prove a version of (8.7.3) with ∆̂ in place of ∆, (8.7.51)

below. In a second step, we then replace ∆̂ by ∆ to obtain (8.7.3).

Since τ0 ∈ ∂ supp ρ, we have ρ = ρ(τ0) = 0. Therefore, v(τ0) = 0 since ⟨ · ⟩ is a faithful

trace and v(τ0) is positive semidefinite. As τ0 ∈ ∂ supp ρ, we have σ(τ0) ̸= 0. Indeed,

assuming σ(τ0) = 0, using Theorem 8.7.6 (ii) (a), taking the imaginary part of (8.6.1) as

well as applying the third bound in (8.6.8) and the second bound in (8.6.7a) yield the

contradiction τ0 ∈ (supp ρ) \ ∂ supp ρ. Recalling the definitions of ∆̂ and c from (8.7.19),

(8.7.49) and the first case in (8.7.18) yield

v(τ0 + ω) = π−1cΨ̂(ω)b+O(Ψ̂(ω)2), Ψ̂(ω) ..= ∆̂1/3Ψedge

( |ω|
∆̂

)
(8.7.51)

for any ω ∈ [−δ∗, δ∗] ∩ J ∩D with signω = sign σ and some δ∗ ∼ 1. Here, we also used

b = b∗ ∼ 1, the first bound in (8.6.5), (8.7.20) and ε(ω) ∼ Ψ̂(ω) by (8.7.4b) to obtain

|Θ(ω)|2 + |ω|+ (|Θ(ω)|+ |ω|+ ε(ω))ε(ω) ≲ Ψ̂(ω)2

for any ω ∈ [−δ∗, δ∗] ∩ J ∩D with signω = sign σ and some δ∗ ∼ 1. This means that we

have shown (8.7.3) with Ψ replaced by Ψ̂.

We now replace ∆̂ by ∆ in (8.7.51) to obtain (8.7.3). To that end, we first assume

that |σ| ≳ 1 and ∆ ≲ 1. The second part of (8.7.18) implies |σ|3 ≲ ∆ ≲ 1 and thus

|σ|3 ∼ ∆ ∼ 1. Since |σ|3 ∼ ∆̂ we conclude ∆̂ ∼ ∆. Therefore, we obtain

∆̂1/3Ψedge

( |ω|
∆̂

)
=
(∆

∆̂

)1/6
∆1/3Ψedge

( |ω|
∆

)
+O(min{|ω|3/2, |ω|1/3}).
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Here, we used Ψedge(|λ|) ≲ |λ|1/3 for |λ| ≳ 1 and (8.7.40) otherwise. Applying this

relation to (8.7.51) yields (8.7.3) for ω ∈ [−δ∗, δ∗] ∩ J ∩ D with signω = sign σ, δ∗ ∼ 1

and h ..= π−1c(∆/∆̂)1/6b ∼ 1 for |σ| ≳ 1 and ∆ ≲ 1.

The next lemma shows that |σ| ≳ 1 at the edge of a gap of size ∆ ≳ 1. We postpone

its proof until the end of this section.

Lemma 8.7.14 (σ at an edge of a large gap). Let τ0 ∈ ∂ supp ρ be a shape regular point

for m on J . If |inf J | ≳ 1 and there is ε ∼ 1 such that ρ(τ) = 0 for all τ ∈ [τ0 − ε, τ0]

then |σ| ∼ 1. We also have |σ| ∼ 1 if sup J ≳ 1 and ρ(τ) = 0 for all τ ∈ [τ0, τ0 + ε] and

some ε ∼ 1.

Under the assumptions of the previous lemma, we set ∆ ..= 1 and obtain trivially

∆̂ ∼ 1 ∼ ∆. Thus, (8.7.51) implies (8.7.3) by the same argument as in the case ∆ ≲ 1.

For |σ| ≤ σ∗ with some sufficiently small σ∗ ∼ 1, we will prove below with the help

of the following Lemma 8.7.15 and (8.7.41) that replacing ∆̂ by ∆ in (8.7.51) yields an

affordable error. We present the proof of Lemma 8.7.15 at the end of this section.

Lemma 8.7.15 (Size of small gap). Let τ0, τ1 ∈ ∂ supp ρ, τ1 < τ0, be two shape regular

points for m on J0 and J1, respectively, where J0, J1 ⊂ R are two open intervals with

0 ∈ J0∩J1. We assume |inf J0| ≳ 1 and sup J1 ≳ 1 as well as (τ1, τ0)∩supp ρ = ∅. We set

∆(τ0) ..= τ0−τ1. Then there is σ̃ ∼ 1 such that if |σ(τ0)| ≤ σ̃ and |σ(τ0)−σ(τ1)| ≲ |τ0−τ1|ζ

for some ζ ∈ (0, 1/3] then
∆(τ0)
∆̂(τ0)

= 1 +O(σ(τ0)).

The same statement holds true when τ0 is replaced by τ1 with ∆(τ1) ..= τ0 − τ1.

From Lemma 8.7.15, we conclude that there is γ ∈ C such that |γ| ≲ 1 and ∆ =

(1 + γ|σ|)∆̂. By possibly shrinking σ∗ ∼ 1, we can assume that |γσ| ≤ ε∗ for |σ| ≤ σ∗,

where ε∗ ∼ 1 is chosen as in Lemma 8.7.11 (iv). Thus, (8.7.41) yields

∆̂1/3Ψedge

( |ω|
∆̂

)
=
(∆

∆̂

)1/6
∆1/3Ψedge

( |ω|
∆

)
+O

(
min

{ |ω|3/2

∆5/6 , |ω|
1/3
})
.

Hence, choosing h ..= π−1c(∆/∆̂)1/6b as before and noticing h ∼ 1 yields (8.7.3) in the

missing regime. This completes the proof of Proposition 8.7.4. As we have already

explained, Theorem 8.7.1 follows immediately. □
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The core of the proof of Lemma 8.7.13 is an effective monotonicity estimate on v, see

(8.7.52) below, which is the analogue of (9.20) in Lemma 9.2 of [4]. Owing to the weaker

assumptions on the coefficients of the cubic equation, we need to present an upgraded

proof here. In fact, the bound in (9.20) of [4] contained a typo. It should have read as

(sign σ(τ))∂τv(τ) ≳ 1
⟨v(τ)⟩(1 + |σ(τ)|)

for τ ∈ Dε∗ satisfying Π(τ) ≥ Π∗. However, this does not affect the correctness of the

argument in [4].

Proof of Lemma 8.7.13. In the whole proof, we will use the notation of Defini-

tion 8.7.3. We will show below that there are ρ∗ ∼ 1 and Π∗ ∼ 1 such that

(sign κ1σ(τ))∂τv(τ) ≳ ρ(τ)−1 (8.7.52)

for all τ ∈ R which satisfy ρ(τ) ∈ (0, ρ∗] and |σ(τ)| ≥ Π∗ρ(τ)2 and are admissible points

for the shape analysis.

Now, we first conclude the statement of the lemma from (8.7.52) through a proof by

contradiction. If τ0 satisfies the conditions of Lemma 8.7.13 then ∂τρ(τ0) = 0 as τ0 is a

local minimum of ρ. Assuming |σ(τ0)| ≥ Π∗ρ(τ0)2 and applying ⟨ · ⟩ to (8.7.52) yield the

contradiction ∂τρ(τ0) > 0.

For the proof of (8.7.52) we start by proving a relation for ∂τv(τ). We divide (8.6.1)

by ω, use Θ(0) = 0 and r(0) = 0 as well as take the limit ω → 0 to obtain ∂τm(τ) =

b∂ωΘ(0) + ∂ωr(0). Taking the imaginary part of the previous relation yields

π∂τv(τ) = Im [b∂ωΘ(0)] + Im ∂ωr(0). (8.7.53)

We divide (8.6.7b) by ω, employ the first bound in (8.6.7a) and obtainr(ω)
ω

 ≲ 1 +
⏐⏐⏐⏐Θ(ω)
ω

⏐⏐⏐⏐2 ≲ 1 + |ω|
ρ4 .

By sending ω → 0 and using r(0) = 0, we conclude

∥Im ∂ωr(0)∥ ≲ 1. (8.7.54)
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We divide (8.6.3) by µ1ω, take the limit ω → 0 and use limω→0 Θ(ω) = Θ(0) = 0 to

obtain

∂ωΘ(0) = −Ξ(0)µ̄1

|µ1|2
= (κ+O(ρ))(iκ1ρσ + 2ρ2ψ +O(ρ3 + ρ2|σ|))

4ρ4|ψ +O(ρ+ |σ|)|2 + ρ2|κ1σ +O(ρ2 + ρ|σ|)|2

=κ
ρ

iκ1σ + 2ρψ +O(ρ2 + ρ|σ|)
4ρ2|ψ +O(ρ+ |σ|)|2 + |κ1σ +O(ρ2 + ρ|σ|)|2 ,

(8.7.55)

where we employed |µ1|2 = 4ρ4|ψ+O(ρ+ |σ|)|2 +ρ2|κ1σ+O(ρ2 +ρ|σ|)|2 as ρ, ψ, κ1, σ ∈ R.

Thus, we obtain

ρ|Re ∂ωΘ(0)| ≲ ρ+ ρ|σ|
ρ2|ψ +O(ρ+ |σ|)|2 + |κ1σ +O(ρ2 + ρ|σ|)|2 . (8.7.56)

Therefore, using b = b∗ +O(ρ), b+ b∗ ∼ 1, κ ∼ 1 and |κ1| ∼ 1 yields

(sign κ1σ)Im [b∂ωΘ(0)] ≳ ρ−1|σ|+O(ρ+ |σ|) +O(ρ+ ρ|σ|)
|σ +O(ρ2 + ρ|σ|)|2 + ρ2|ψ +O(ρ+ |σ|)|2 ≳

|σ|
|σ|2 + ρ2

1
ρ
.

Here, in the first step, the error term O(ρ + ρ|σ|) in the numerator originates from the

second term in

(sign κ1σ)Im [b∂ωΘ(0)] = (sign κ1σ)
(
Re bIm ∂ωΘ(0) + Im bRe ∂ωΘ(0)

)
≳ (sign κ1σ)Im ∂ωΘ(0)− ρ|Re ∂ωΘ(0)|

(8.7.57)

and applying (8.7.56) to it. We applied (8.7.55) to the first term on the right-hand side of

(8.7.57). In the last estimate, we used ψ, |σ|, ρ ≲ 1 and |σ| ≥ Π∗ρ
2 for some large Π∗ ∼ 1

as well as ρ ≤ ρ∗ for some small ρ∗ ∼ 1. Employing |σ| ≥ Π∗ρ
2 once more, the factor

|σ|/(|σ|2 +ρ2) on the right-hand side scales like (1 + |σ|)−1 ≳ 1. Hence, we conclude from

(8.7.53) and (8.7.54) that

(sign κ1σ)∂τv(τ) ≳ 1
ρ

+O(1).

By choosing ρ∗ ∼ 1 sufficiently small, we obtain (8.7.52). This completes the proof of

Lemma 8.7.13. □

Proof of Lemma 8.7.14. We prove both cases, ρ(τ) = 0 for all τ ∈ [τ0 − ε, τ0] or

for all τ ∈ [τ0, τ0 + ε], in parallel. We can assume that |σ| ≤ σ̃ for any σ̃ ∼ 1 as the

statement trivially holds true otherwise. We choose (δ, ϱ, γ∗) as in Proposition 8.7.9 (iv),
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∆̂ as in (8.7.19), normal coordinates (λ,Ω(λ)) as in (8.7.48) as well as γ̂ = ∆̂1/3 and

s = sign σ. We set λ3
..= 2 + ϱ∆̂1/3 (cf. (8.7.35)) and ω3

..= ∆̂λ3/2. There is σ̃ ∼ 1

such that ∆̂ ≤ γ3
∗ for |σ| ≤ σ̃ due to ∆̂ ∼ |σ|3 by (8.6.6) and the definition of ∆̂ in

(8.7.19). Hence, ω3 ≤ C|σ|3 and, by possibly shrinking σ̃ ∼ 1, we obtain −ω3 sign σ ∈ J

for |σ| ≤ σ̃ due to the assumption on J (|inf J | ≳ 1 or sup J ≳ 1). From (8.7.33), we

obtain Im Ω(−λ3 sign σ) > 0. Hence, Im Θ(−ω3 sign σ) > 0. From the third bound in

(8.6.8), the second bound in (8.6.7a) and ω3 ≲ |σ|3, we conclude v(−ω3 sign σ) > 0 for

|σ| ≤ σ̃ and sufficiently small σ̃ ∼ 1. Thus, ρ(−ω3 sign σ) > 0 which implies ω3 > ε.

Therefore, |σ|3 ≳ ω3 > ε ∼ 1 which completes the proof of Lemma 8.7.14. □

We finish this section by proving Lemma 8.7.15. It is similarly proven as Lemma 9.17

in [4]. We present the proof due to the weaker assumptions of Lemma 8.7.15. The main

difference is the proof of (8.7.59) below (cf. (9.138) in [4]). In [4], Θ could be explicitly

represented in terms of m, i.e,

Θ(ω) = ⟨f ,m(τ0 + ω)−m(τ0)⟩

(cf. (9.8) and (8.10c) in [4] with α = 0). In our setup, b and r do not necessarily define

an orthogonal decomposition (cf. (8.6.1)).

Proof of Lemma 8.7.15. Let (δ, ϱ, γ∗) be chosen as in Proposition 8.7.9 (iv). We

choose ∆̂ as in (8.7.19) and normal coordinates as in (8.7.48) as well as γ̂ = ∆̂1/3 and

s = sign σ. We assume ∆̂ ≤ γ3
∗ in the following and define λ3 as in (8.7.35). By using

|inf J0| ≳ 1 as in the proof of Lemma 8.7.14, we find σ̃ ∼ 1 such that −ω3 ∈ J0 for

ω3
..= λ3∆̂/2 and |σ| ≤ σ̃. Thus, −∆ = τ1 − τ0 ∈ J0. We set

λ0
..= inf{λ > 0: Im Ω(λ) > 0}

and remark that λ0 = 2∆/∆̂ due to the definition of ∆ and the third bound in (8.6.8).

From (8.7.33), we conclude λ0 ≤ λ3. Thus, ∆ ≤ ∆̂(1 +O(γ̂)) = ∆̂(1 +O(|σ|)) as ϱ ∼ 1

and γ̂ ∼ |σ|. Therefore, it suffices to show the opposite bound,

∆ ≥ ∆̂(1 +O(|σ|)). (8.7.58)
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If λ0 ≥ λ2
..= 2 − ϱ∆̂1/3 (cf. (8.7.35)) then we have (8.7.58) as ∆̂1/3 ∼ |σ| and ϱ ∼ 1. If

λ0 < λ2 then we will prove below that

Im Ω(λ0 + ξ) ≳ ξ1/2 (8.7.59)

for ξ ∈ [0, 1]. From (8.7.32), we then conclude

c0(λ2 − λ0)1/2 ≤ Im Ω(λ2) ≤ C1|σ|1/2

as γ̂ ∼ |σ|. Hence,

λ0 ≥ λ2 − (C1/c0)2|σ| ≥ 2− C|σ|,

where we used λ2 = 2−ϱγ̂ and ϱ ∼ 1 in the last step. This shows (8.7.58) also in the case

λ0 < λ2. Therefore, the proof of the lemma will be completed once (8.7.59) is proven.

In order to prove (8.7.59), we translate it into the coordinates ω relative to τ0 and v.

From λ0 < λ2, we obtain

∆ < (1− ϱ∆̂1/3)∆̂ ≲ |σ|3. (8.7.60)

Since

πv(τ0 −∆− ω̃) = bIm Θ(−∆− ω̃) + Im r(−∆− ω̃),

the bound (8.7.59) would follow from

v(τ0 −∆− ω̃) ≳ ∆̂(τ0)−1/6|ω̃|1/2 (8.7.61)

for sufficiently small ∆ ≲ |σ|3 ≤ σ̃3 and ω̃ ≤ δ̃ due to the third bound in (8.6.8). Since

v(τ1) = 0 and τ1 = τ0 −∆ is a shape regular point, we conclude from (8.7.51) that

v(τ1 − ω̃) ≳ ∆̂(τ1)−1/6|ω̃|1/2

for |ω̃| ≤ δ. Therefore, it suffices to show that

∆̂(τ1) ≲ ∆̂(τ0) (8.7.62)

in order to verify (8.7.61). Owing to |σ(τ0)− σ(τ1)| ≲ ∆ζ and (8.7.60), we have

|σ(τ1)| ≲ |σ(τ0)|+ ∆ζ ≲ |σ(τ0)|3ζ .
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We allow for a smaller choice of σ̃ ∼ 1 and assume ψ(τ1) ∼ ψ(τ0) ∼ 1 by (8.6.6).

Assuming without loss of generality ∆̂(τ0) < 1 and ∆̂(τ1) < 1, we obtain (8.7.62) by the

definition of ∆̂ in (8.7.19). We thus get (8.7.62) and hence (8.7.61). This proves (8.7.59)

and completes the proof of Lemma 8.7.15. □

8.7.5. Proofs of Theorem 8.7.2 and Proposition 8.7.5.

Proof of Proposition 8.7.5. We start with the proof of part (i). We apply ⟨ · ⟩

to (8.7.3), use ρ = ⟨v⟩ and obtain ⟨h⟩ from the definitions of h in the four cases given in

the proof of Proposition 8.7.4. Indeed, by using the relations

⟨b⟩ = π +O(ρ), c3 = 4Γ, (8.7.63)

which are proven below, as well as Lemma 8.7.15 in the cases (a) and (b) and the stronger

error estimate (8.7.50) in case (d), we conclude part (i) of Proposition 8.7.5 up to the

proof of (8.7.63).

The first relation in (8.7.63) follows from applying ⟨ · ⟩ to (8.5.14a) and using (8.5.13a),

Corollary 8.14.2 with τ0 ∈ supp ρ, the cyclicity of ⟨ · ⟩ and (8.5.19). The second relation

in (8.7.63) is a consequence of the definition of c in (8.7.19) and the definition of Γ in

Theorem 8.7.6 (i). This completes the proof of part (i).

We now turn to the proof of part (ii) of Proposition 8.7.5 and assume that all points

of (∂ supp ρ) ∩ I are shape regular for m and all estimates in Definition 8.7.3 hold true

uniformly on this set. As in the proof of Proposition 8.7.4, we conclude σ(τ0) ̸= 0 for

all τ0 ∈ (∂ supp ρ) ∩ I. Owing to dist(0, ∂J) ≳ 1 and the Hölder-continuity of σ on

(∂ supp ρ)∩ I, Proposition 8.7.4 is applicable to every τ0 ∈ (∂ supp ρ)∩ I. Hence, (8.7.4a)

and dist(0, ∂J) ≳ 1 imply the existence of δ1, c1 ∼ 1 such that

ρ(τ0 + ω) ≥ c1|ω|1/2 (8.7.64)

for all ω ∈ − sign σ(τ0)[0, δ1] and τ0 ∈ (∂ supp ρ)∩ I. In particular, τ0− sign σ(τ0)[0, δ1] ⊂

supp ρ for all τ0 ∈ (∂ supp ρ) ∩ I. Since |I| ≲ 1, this implies that supp ρ ∩ I consists

of finitely many intervals [αi, βi] with lengths ≳ 1, and, thus, their number K satisfies

K ∼ 1 as δ1 ∼ 1 and βi − αi ≥ δ1 if βi ̸= sup I and αi ̸= inf I.
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Additionally, we now assume that the elements of Mρ∗ are shape regular points for

m on J and all estimates in Definition 8.7.3 hold true uniformly on Mρ∗ . By possibly

shrinking ρ∗ ∼ 1, we conclude from (8.7.64) that |αi − γ| ∼ 1 and |βi − γ| ∼ 1 for any

i = 1, . . . , K and γ ∈Mρ∗ .

Suppose now that τ0 ∈ Mρ∗ with ρ(τ0) = 0. Then part (i) and dist(0, ∂J) ≳ 1 yield

the existence of δ2, c2 ∼ 1 such that

ρ(τ0 + ω) ≥ c2|ω|1/3

for all |ω| ≤ δ2. By possibly further shrinking ρ∗ ∼ 1, we thus obtain |τ0 − γ| ∼ 1 for all

γ ∈Mρ∗ \ {τ0}. We thus conclude (8.7.10) in this case.

Finally, let γ1, γ2 ∈ Mρ∗ with ρ(γ1), ρ(γ2) > 0. Then applying (i) with τ0 = γ1 and

τ0 = γ2 yields

Ψ1(ω) + Ψ2(ω) ≲ |ω|1/3
(
ρ(γ1)1(|ω| ≲ ρ(γ1)3) + ρ(γ2)1(|ω| ≲ ρ(γ2)3)

)
+ Ψ1(ω)2 + Ψ2(ω)2,

where we defined ω = γ2 − γ1 and

Ψ1(ω) ..= ρ̃1Ψmin

( |ω|
ρ̃3

1

)
, Ψ2(ω) ..= ρ̃2Ψmin

( |ω|
ρ̃3

2

)
with ρ̃1 ∼ ρ(γ1) and ρ̃2 ∼ ρ(γ2) (cf. Corollary 9.4 in [4]). Thus, we obtain either |ω| ∼ 1

or |ω| ≲ min{ρ(γ1), ρ(γ2)}4. This completes the proof of (8.7.10) and hence the one of

Proposition 8.7.5. □

Finally, we use Proposition 8.7.5 and a Taylor expansion of ρ around a nonzero local

minimum τ0 to obtain the stronger conclusions of Theorem 8.7.2.

Proof of Theorem 8.7.2. We start with the proof of part (i). Let τ0 ∈ supp ρ∩Iθ
satisfy the conditions of Theorem 8.7.2 (i). Then, by Proposition 8.6.1, the conditions of

Proposition 8.7.5 (i) are fulfilled and all conclusions in Theorem 8.7.2 (i) apart from the

case |ω| ≤ ερ(τ0)3 in (8.7.5c) follow from Proposition 8.7.5 (i).

For the proof of the missing case, we fix a local minimum τ0 ∈ supp ρ ∩ Iθ of ρ

such that ρ(τ0) ≤ ρ∗. We set ρ ..= ρ(τ0). Owing to the 1/3-Hölder continuity of ρ by

Proposition 8.4.7, there is ε ∼ 1 such that ρ(τ0 + ω) ∼ ρ if |ω| ≤ ερ3. In particular,

ρ(τ0 + ω) > 0 and using Lemma 8.5.7 with k = 2, 3 to compute the second order Taylor
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expansion of ρ around τ0 yields

fτ0(ω) ..= ρ(τ0 + ω)− ρ(τ0) = c

ρ5ω
2 +O

( |ω|3
ρ8

)
(8.7.65)

for all ω ∈ R satisfying |ω| ≤ ερ3, where c = c(τ0) satisfies 0 ≤ c ≲ 1.

On the other hand, τ0 is a shape regular point by Proposition 8.6.1 and a nonzero

local minimum of ρ. Hence, Proposition 8.7.5 (i) (d) implies

fτ0(ω) = ρΨmin

(
Γ ω
ρ3

)
+O

( |ω|
ρ

)
= Γ2

18ρ5ω
2 +O

( |ω|3
ρ8 + |ω|

ρ

)
(8.7.66)

for |ω| ≤ ερ3, where Γ = Γ(τ0). Here, we also used the second order Taylor expansion of

Ψmin defined in (8.7.1b) in the second step. Note that Γ ∼ 1 since ψ+ σ2 ∼ 1 by (8.5.35)

and |σ| ≲ ρ2 by Lemma 8.7.13.

We compare (8.7.65) and (8.7.66) and conclude

c

ρ5ω
2 = Γ2

18ρ5ω
2 +O

( |ω|3
ρ8 + |ω|

ρ

)

for |ω| ≤ ερ3. Choosing ω = ρ7/2 and solving for c yield

c = Γ2

18 +O(ρ1/2). (8.7.67)

By starting from the expansion of fτ0 in (8.7.65), using the Taylor expansion of Ψmin and

(8.7.4b), we obtain (8.7.5c).

We now turn to the proof of (ii) of Theorem 8.7.2. By Proposition 8.6.1, the conditions

of Proposition 8.7.5 (ii) are satisfied on I ′ ..= I∩[−3κ, 3κ], where κ ..= ∥a∥+2∥S∥1/2. Since

∥a∥ ≲ 1 and ∥S∥ ≤ ∥S∥2→∥ · ∥ ≲ 1 by Assumptions 8.4.5, we have |I ′| ≲ 1. Moreover,

supp ρ ⊂ I ′ by (8.2.5a). Hence, by Proposition 8.7.5, it suffices to estimate the distance

|γ1 − γ2|, where γ1, γ2 ∈Mρ∗ satisfy γ1 ̸= γ2.

Let γ1, γ2 ∈ Mρ∗ . By (8.7.10) in Proposition 8.7.5 (ii), we know a dichotomy: either

|γ1 − γ2| ≳ 1 or |γ1 − γ2| ≲ min{ρ(γ1), ρ(γ2)}4. For γ1 ̸= γ2, we now exclude the

second case by using the expansions obtained in the proof of (i). If ρ∗ ∼ 1 is chosen

sufficiently small then c(γ1) ∼ 1 and c(γ2) ∼ 1 by (8.7.67). Hence, by assuming |γ1−γ2| ≲

min{ρ(γ1), ρ(γ2)}4, we obtain ρ(γ2) > ρ(γ1) from the expansion of fτ0(ω) in (8.7.65) with

τ0 = γ1 and ω = γ2 − γ1. Similarly, as c(γ2) ∼ 1, the expansion of fτ0(ω) in (8.7.65) with
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τ0 = γ2 and ω = γ1 − γ2 implies ρ(γ1) > ρ(γ2). This is a contradiction. Therefore, the

distance of two small local minima of ρ is much bigger than min{ρ(γ1), ρ(γ2)}4 and the

dichotomy above completes the proof of (ii). □

8.7.6. Behaviour at a regular edge. We now list a few consequences of the pre-

vious results that will be used in the companion paper on the edge universality [17].

As in [17], in this subsection, we also assume that S is flat and a is bounded, i.e., that

(8.3.10) is satisfied. In particular, owing to Proposition 8.2.3, there is a Hölder continuous

probability density ρ : R→ [0,∞) such that

⟨m(z)⟩ =
∫
R

ρ(τ)
τ − z

dτ,

where m is the solution to the Dyson equation, (8.2.3).

In this subsection, we study ρ and its harmonic extension to the complex upper half-

plane in the vicinity of ∂ supp ρ ⊂ R. We say that τ0 ∈ ∂ supp ρ is a regular edge of ρ if

there is ε ∼ 1 such that ρ(τ) = 0 for all τ ∈ [τ0 − ε, τ0] or τ ∈ [τ0, τ0 + ε]. The following

lemma characterizes regular edges and describes the behaviour of ρ close to them.

Lemma 8.7.16 (Behaviour of ρ close to a regular edge). Let a and S satisfy (8.3.10)

and m be the solution of the corresponding Dyson equation, (8.2.3). Suppose for some

τ0 ∈ ∂ supp ρ, there are m∗ > 0 and δ > 0 such that

∥m(τ + iη)∥ ≤ m∗

for all τ ∈ [τ0 − δ, τ0 + δ] and η ∈ (0, δ]. Then the following implications hold true:

(i) If τ0 is a regular edge then |σ(τ0)| ∼ 1.

(ii) If |σ| ∼ 1, σ ..= σ(τ0), then τ0 is a regular edge. Moreover, there is δ∗ ∼ 1 such

that

ρ(τ0 + ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π1/2

|σ|1/2 |ω|
1/2 +O(|ω|), if signω = sign σ,

0, if signω = − sign σ,

for all ω ∈ [−δ∗, δ∗].
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In this lemma, the comparison relation ∼ is understood with respect to c1, c2, c3 from

(8.3.10) as well as δ and m∗.

Proof. For the entire proof, we remark that, by Lemma 8.4.8 (ii), the conditions

of Proposition 8.6.1 are satisfied. Moreover, ρ(τ0) = 0 due to the continuity of ρ and

τ0 ∈ ∂ supp ρ.

Thus, part (i) follows directly from Lemma 8.7.14 as τ0 is a shape regular point by

Proposition 8.6.1.

We now turn to the proof of (ii). We choose δ∗ ∼ 1 as in Proposition 8.6.1. In

particular, δ∗ ≤ δ. We take the imaginary part of (8.6.1) and apply ⟨ · ⟩ to the result.

This yields

ρ(τ0 + ω) = Im
(
Θ(ω)π−1⟨b⟩

)
+ π−1⟨Im r(ω)⟩ = Im Θ(ω) +O

(
(|Θ(ω)|+ |ω|)Im Θ(ω)

)
for |ω| ≤ δ∗. Here, we used ⟨b⟩ = π by (8.7.63) in the proof of Proposition 8.7.5 as well

as the third bound in (8.6.8) in the second step.

By Proposition 8.6.1 the assumptions of Theorem 8.7.6 (ii) are satisfied with κ = π.

Hence, we conclude (ii) of Lemma 8.7.16 from Lemma 8.7.12 by possibly shrinking δ∗ ∼ 1

due to |σ| ∼ 1, |Θ(ω)| ≲ |ω/σ|1/2 ≲ |ω|1/2 and |ν(ω)| ≲ |Θ(ω)|+ |ω| ≲ |ω|1/2 by the first

bound in (8.6.5). This completes the proof of Lemma 8.7.16. □

The remainder of this section is devoted to understanding the harmonic extension of

ρ to the complex upper half-plane. We denote this extension by ρ(z) for z ∈ H, i.e.,

ρ(z) = ⟨Imm(z)⟩/π for z ∈ H.

The results of this subsection will hold true away from points, where m blows up,

and away from almost cusp points. We now introduce these sets precisely. For a given

m∗ > 0, we define the set Pm ..= Pm∗
m ⊂ H, where ∥m(z)∥ is larger than m∗, i.e.,

Pm∗
m

..= {τ ∈ R : sup
η>0
∥m(τ + iη)∥ > m∗}. (8.7.68)

For τ ∈ R \ supp ρ, let ∆(τ) denote the size of the largest interval that contains τ and is

contained in R \ supp ρ. For ρ∗ > 0 and ∆∗ > 0, we define the set Pcusp = P ρ∗,∆∗
cusp ⊂ R of
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almost cusp points through

P ρ∗,∆∗
cusp

..= {τ ∈ supp ρ \ ∂ supp ρ : τ is a local minimum of ρ, ρ(τ) ≤ ρ∗}

∪{τ ∈ R \ supp ρ : ∆(τ) ≤ ∆∗}.
(8.7.69)

The set of points that are away from Pm and Pcusp is denoted by D. More precisely, for

some δ > 0, we define

D ..= {z ∈ H : dist(z, Pm) ≥ δ, dist(z, Pcusp) ≥ δ}. (8.7.70)

In this subsection, the model parameters are c1, c2 and c3 from (8.3.10) as well as m∗,

ρ∗, ∆∗ and δ from the definitions of Pm, Pcusp and D, respectively.

In the next lemma, we establish the behaviour of ρ(z) and B(z) if z is close to a

regular edge. Here, closeness means that κ(z) + Im z ∼ dist(z, ∂ supp ρ) is sufficiently

small, where z ∈ D and κ(z) ..= dist(Re z, ∂ supp ρ). By definition of D, D ∩ ∂ supp ρ

consists only of regular edges.

Lemma 8.7.17. There is ε∗ ∼ 1 such that if z ∈ D satisfies dist(z, ∂ supp ρ) ≤ ε∗ then

(i) For the harmonic extension of the self-consistent density of states ρ, we have

ρ(z) ∼

⎧⎪⎪⎨⎪⎪⎩
√
κ(z) + Im z, if Re z ∈ supp ρ,

Im z/
√
κ(z) + Im z, if Re z /∈ supp ρ.

(8.7.71a)

ρ(z) + ρ(z)−1Im z ∼
√
κ(z) + Im z, (8.7.71b)

(ii) Let l and b be defined as in Corollary 8.5.2. Setting µ2
..= ⟨l ,mS[b]b+ bS[b]m⟩/2,

we have

|⟨l ,mS[b]b⟩| ∼ 1, |µ2(z)| ∼ 1. (8.7.72)

(iii) Let B ..= Id − CmS and β be its eigenvalue of smallest modulus (cf. Corollary

8.5.2). We have

∥B−1(z)∥+ ∥B−1(z)∥2 ≲ (κ(z) + Im z)−1/2, |β(z)| ∼
√
κ(z) + Im z. (8.7.73)
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Proof. By assumption, z is ε∗-close to a regular edge. Thus, owing to ∥m∥ ≲ 1

by definition of D, Theorem 8.7.1 (a), (b) and (8.7.4a) immediately imply (8.7.71a).

Moreover, (8.7.71b) is a direct consequence of (8.7.71a).

For the proof of (ii), we shrink ε∗ ∼ 1 as well as use (8.7.71a), (8.7.71b) and

dist(z, ∂ supp ρ) ∼ κ+ Im z to guarantee that Lemma 8.5.1 and Corollary 8.5.2 are appli-

cable. Furthermore, we use Lemma 8.7.14 and the definition of D to obtain |σ(τ0)| ∼ 1,

where τ0 ∈ ∂ supp ρ is the point in ∂ supp ρ closest to z. The Hölder-continuity of σ from

Lemma 8.5.5 (i) implies |σ(z)| ∼ 1 if ε∗ is sufficiently small, i.e., z is sufficiently close

to τ0. Therefore, evaluating (8.6.24b) and (8.6.25) at z as well as using |σ(z)| ∼ 1 yield

|µ2(z)| ∼ 1 and |⟨l ,mS[b]b⟩| ∼ 1.

For the proof of (iii), we recall |σ(z)| ∼ 1 from the proof of (ii). Therefore, (8.5.24)

and (8.7.71b) yield the first bound in (8.7.73). Similarly, we obtain the second bound

in (8.7.73) by using |σ(z)| ∼ 1 and (8.7.71b) in (8.5.14c). This completes the proof of

Lemma 8.7.17. □

8.8. Band mass formula – Proof of Proposition 8.2.6

Before proving Proposition 8.2.6, we state an auxiliary lemma which will be proven

at the end of this section.

Lemma 8.8.1. Let (a, S) be a data pair, m the solution of the associated Dyson equation,

(8.2.3), and ρ the corresponding self-consistent density of states. We assume ∥a∥ ≤ k0

and S[x] ≤ k1⟨x⟩1 for all x ∈ A+ and for some k0, k1 > 0. Then we have

(i) If τ ∈ R \ supp ρ then there is m(τ) = m(τ)∗ ∈ A such that

lim
η↓0
∥m(τ + iη)−m(τ)∥ = 0.

Moreover, m(τ) is invertible and satisfies the Dyson equation, (8.2.3), at z = τ .

There is C > 0, depending only on k0, k1 and dist(τ, supp ρ), such that ∥m(τ)∥ ≤

C and ∥(Id− (1− t)Cm(τ)S)−1∥ ≤ C all t ∈ [0, 1].

(ii) Fix τ ∈ R \ supp ρ. Let mt be the solution of (8.2.3) associated to the data pair

(at, St) ..= (a− tS[m(τ)], (1− t)S)
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for t ∈ [0, 1] and ρt the corresponding self-consistent density of states. Then, for

any t ∈ [0, 1], we have

lim
η↓0
∥mt(τ + iη)−m(τ)∥ = 0. (8.8.1)

Moreover, there is c > 0 such that dist(τ, supp ρt) ≥ c for all t ∈ [0, 1].

Proof of Proposition 8.2.6. We start with the proof of (i) and notice that the

existence of m(τ) has been proven in Lemma 8.8.1 (i). In order to verify (8.2.10), we

consider the continuous flow of data pairs (at, St) from Lemma 8.8.1 (ii) and the corre-

sponding solutions mt of the Dyson equation, (8.2.3), and prove

ρt((−∞, τ)) = ⟨1(−∞,0)(mt(τ))⟩ (8.8.2)

for all t ∈ [0, 1]. Note that dist(τ, supp ρt) ≥ c for all t ∈ [0, 1] by Lemma 8.8.1 (ii).

In particular, by Lemma 8.8.1 (ii), mt(τ) = m(τ) is constant along the flow, and with

it the right-hand side of (8.8.2). The identity (8.8.2) obviously holds for t = 1, because

m1(z) = (a − Sm(τ) − z)−1 is the resolvent of a self-adjoint element and m(τ) satisfies

(8.2.3) at z = τ by Lemma 8.8.1 (i). Thus it remains to verify that the left-hand side

of (8.8.2) stays constant along the flow as well. This will show (8.8.2) for t = 0 which

is (8.2.10).

First we conclude from the Stieltjes transform representation (8.2.4) of mt that

ρt((−∞, τ)) = − 1
2πi

∮
⟨mt(z)⟩ dz , (8.8.3)

where the contour encircles [min supp ρt, τ) counterclockwise, passing through the real

line only at τ and to the left of min supp ρt, and we extended mt(z) analytically to a

neighbourhood of the contour (set mt(z̄) ..= mt(z)∗ for z ∈ H and use Lemma 8.14.1 (iv)

close to the real axis to conclude analyticity in a neighbourhood of the contour).

We now show that the left-hand side of (8.8.3) does not change along the flow. Indeed,

differentiating the right-hand side of (8.8.3) with respect to t and writing mt = mt(z)
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yield
d
dt

∮
⟨mt(z)⟩dz =

∮
⟨∂tmt(z)⟩dz

=
∮
⟨(C−1

m∗
t
− St)−1[1] , S[m(τ)]− S[mt]⟩dz

=
∮
⟨(∂zmt)(S[m(τ)]− S[mt])⟩dz

=
∮
∂z

(
⟨mtS[m(τ)]⟩ − 1

2⟨mtS[mt]⟩
)

dz

= 0.

Here, in the second step, we used ∂tmt(z) = (C−1
mt
−St)−1[−S[mt]−S[m(τ)]] obtained by

differentiating the Dyson equation, (8.2.3), for the data pair (at, St) defined in Lemma 8.8.1

(ii) and the definition of the scalar product, (8.2.1). In the third step, we employed

(C−1
m∗

t
− St)−1[1] = (∂zmt(z))∗ which follows from differentiating the Dyson equation,

(8.2.3), for the data pair (at, St) with respect to z. Finally, we used that mt is holomorphic

in a neighbourhood of the contour. This completes the proof of (i) of Proposition 8.2.6.

For the proof of (ii), we fix a connected component J of supp ρ. Let τ1, τ2 ∈ R\ supp ρ

satisfy τ1 < τ2 and [τ1, τ2] ∩ supp ρ = J . By (8.2.10), we have

nρ(J) = n
(
ρ((−∞, τ2))− ρ((−∞, τ1))

)
= Tr(P2)− Tr(P1) = rankP2 − rankP1,

where Pi ..= π(1(−∞,0)(m(τi))) are orthogonal projections in Cn×n for i = 1, 2. Hence,

nρ(J) ∈ Z. Since 0 < nρ(J) ≤ n by definition of supp ρ, we conclude nρ(J) ∈ {1, . . . , n},

which immediately implies that supp ρ has at most n connected components. This com-

pletes the proof of Proposition 8.2.6. □

Proof of Lemma 8.8.1. In part (i), the existence of the limit m(τ) ∈ A follows

immediately from the implication (v) ⇒ (iii) of Lemma 8.14.1. The invertibility of m(τ)

can be seen by multiplying (8.2.3) at z = τ + iη by m(τ + iη) and taking the limit

η ↓ 0. This also implies that m(τ) satisfies (8.2.3) at z = τ . In order to bound ∥(Id− (1−

t)Cm(τ)S)−1∥, we recall the definitions of q, u and F from (8.3.1) and (8.3.4), respectively,

and compute

Id− (1− t)CmS = Cq∗,q(Id− (1− t)CuF )C−1
q∗,q



342 CHAPTER 8. DYSON EQUATION: SPECTRAL BANDS, EDGES AND CUSPS

for m = m(z) with z ∈ H. Hence, by (8.14.1), Lemma 8.4.8 (i) and Lemma 8.12.2, we

obtain ∥(Id−(1−t)CmS)−1∥ ≲ (1−(1−t)∥F∥2)−1 ≤ (1−∥F∥2)−1 ≤ C for all z ∈ τ+iN ,

where the set N ⊂ (0, 1] with an accumulation point at 0 is given in Lemma 8.14.1 (ii).

Taking the limit η ↓ 0 under the constraint η ∈ N and possibly increasing C yield the

desired uniform bound. This completes the proof of (i).

We start the proof of (ii) with an auxiliary result. Similarly as in the proof of (i),

we see that Id − (1 − t)Cm∗,mS is invertible for m = m(z), z ∈ τ + iN with N as

before. Since ∥F (z)∥2 ≤ 1 − C−1 for z ∈ τ + iN by Lemma 8.14.1 (ii), Lemma 8.12.3

implies that (Id − (1 − t)Cu∗,uF )−1, F = F (z), and, thus, (Id − (1 − t)Cm∗,mS)−1 =

Cq∗,q(Id− (1− t)Cu∗,uF )−1C−1
q∗,q are positivity-preserving for z ∈ τ + iN . Taking the limit

η = Im z ↓ 0 in N shows that (Id − (1 − t)Cm(τ)S)−1 is positivity-preserving for any

t ∈ [0, 1]. Moreover, (8.12.10) with x = 1 yields

(Id− (1− t)Cm∗,mS)−1[1] = Cq∗,q(Id− (1− t)Cu∗,uF )−1C−1
q∗,q[1] ≥ 1. (8.8.4)

Since (8.8.4) holds true uniformly for z ∈ τ + iN and t ∈ [0, 1], taking the limit η =

Im z ↓ 0 in N , we obtain

(Id− (1− t)Cm(τ)S)−1[1] ≥ 1 (8.8.5)

for all t ∈ [0, 1].

We fix t ∈ [0, 1]. We write m = m(τ) and define Φt : A× R→ A through

Φt(∆, η) ..= (Id− (1− t)CmS)[∆]− iη
2 (m∆+∆m)− iηm2− 1

2(1− t)(∆S[∆]m+mS[∆]∆)

In order to show (8.8.1), we apply the implicit function theorem (see e.g. Lemma 8.14.4

below) to Φt(∆, η) = 0. It is applicable as Φt(0, 0) = 0 and ∂1Φt(0, 0) = Id− (1− t)CmS

which is invertible by (i). Hence, we obtain an ε > 0 and a continuously differentiable

function ∆t : (−ε, ε) → A such that Φt(∆t(η), η) = 0 for all η ∈ (−ε, ε) and ∆t(0) = 0.

We now show that ∆t(η)+m(τ) = mt(τ +iη) for all sufficiently small η > 0 by appealing

to the uniqueness of the solution to the Dyson equation, (8.2.3), with the choice z = τ+iη,

a = at and S = St = (1− t)S. In fact, m = m(τ) and mt = mt(τ + iη) with η > 0 satisfy
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the Dyson equations

−m−1 = τ − a+ S[m], −m−1
t = τ + iη − a+ tS[m] + (1− t)S[mt] (8.8.6)

and mt is the unique solution of the second equation under the constraint Immt > 0

(compare the remarks around (8.2.3)). A straightforward computation using the first

relation in (8.8.6) and Φt(∆t(η), η) = 0 reveals that ∆t(η) + m(τ) solves the second

equation in (8.8.6) for mt. Moreover, differentiating Φt(∆t(η), η) = 0 with respect to η

at η = 0 yields

∂ηIm ∆t(η = 0) = (Id− (1− t)CmS)−1[m2]

≥ ∥m−1∥−2(Id− (1− t)CmS)−1[1] ≥ ∥m−1∥−21.

Here, we used that (Id− (1− t)CmS)−1 is compatible with the involution ∗ and m = m∗

in the first step. Then we employed the invertibility of m, m2 ≥ ∥m−1∥−21 and the

positivity-preserving property of (Id − (1 − t)CmS)−1 in the second step and, finally,

(8.8.5) in the last step. Hence, Im (∆t(η) + m(τ)) = Im ∆t(η) > 0 for all sufficiently

small η > 0. The uniqueness of the solution to the Dyson equation for mt, the second

relation in (8.8.6), implies ∆t(η) +m(τ) = mt(τ + iη) for all sufficiently small η > 0 and

all t ∈ [0, 1]. Therefore, the continuity of ∆t as a function of η, ∆t(η) → ∆t(0) = 0,

yields (8.8.1).

We now conclude from the implication (iii)⇒ (v) of Lemma 8.14.1 that dist(τ, supp ρt)

≥ ε for some ε > 0. Lemma 8.14.1 is applicable since ∥at∥ ≤ k0 + k1C (cf. Lemma 8.12.2

(i) and Lemma 8.8.1 (i)) and St[x] ≤ S[x] ≤ k1⟨x⟩1 for all x ∈ A+. For any t ∈ [0, 1],

statement (iii) in Lemma 8.14.1 holds true with the same m = m(τ) by (8.8.1) and S

replaced by St = (1 − t)S. By (i), ∥m∥ ≤ C and ∥(Id − (1 − t)CmS)−1∥ ≤ C for all

t ∈ [0, 1]. Hence, owing to Lemma 8.14.1 (v), there is ε > 0 such that dist(τ, supp ρt) ≥ ε

for all t ∈ [0, 1]. The uniformity of ε in t is a consequence of the effective dependence

of the constants in Lemma 8.14.1 on each other (see final remark in Lemma 8.14.1)

and the uniform upper bound on ∥(Id − (1 − t)CmS)−1∥. This completes the proof of

Lemma 8.8.1. □
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8.9. Dyson equation for Kronecker random matrices

In this section we present an application of the theory presented in this work to

Kronecker random matrices, i.e., block correlated random matrices with variance profiles

within the blocks, and their limits. In particular, in Lemma 8.9.1 and Lemma 8.9.3 below,

we will provide some sufficient checkable conditions that ensure the flatness of S and the

boundedness of ∥m(z)∥, the main assumptions of Proposition 8.2.4, Theorem 8.2.5 and

Theorem 8.7.1, for the self-consistent density of states of Kronecker random matrices

introduced in Chapter 7.

8.9.1. The Kronecker setup. We fix K ∈ N and a probability space (X, π) that

we view as a possibly infinite set of indices. We consider the von Neumann algebra

A = CK×K ⊗ L∞(X) , (8.9.1)

with the tracial state

⟨κ⊗ f⟩ = Trκ
K

∫
X
fdπ .

For K = 1 the algebra A is commutative and this setup was previously considered in [4,

5]. Now let (αµ)ℓ1µ=1, (βν)ℓ2ν=1 be families of matrices in CK×K with αµ = α∗
µ self-adjoint

and let (sµ)ℓ1µ=1, (tν)ℓ2ν=1 be families of non-negative bounded functions in L∞(X2) and

suppose that all sµ are symmetric, sµ(x, y) = sµ(y, x). Then we define the self-energy

operator S : A → A as

S(κ⊗ f) ..=
ℓ1∑
µ=1

αµκαµ ⊗ Sµf +
ℓ2∑
ν=1

(βνκβ∗
ν ⊗ Tνf + β∗

νκβν ⊗ T ∗
ν f) , (8.9.2)

where the bounded operators Sµ, Tν , T ∗
ν : L∞(X)→ L∞(X) act as

(Sµf)(x) =
∫
X
sµ(x, y)f(y)π(dy) ,

(Tνf)(x) =
∫
X
tν(x, y)f(y)π(dy) , (T ∗

ν f)(x) =
∫
X
tν(y, x)f(y)π(dy) .

Furthermore we fix a self-adjoint a = a∗ ∈ A. With these data we will consider the Dyson

equation, (8.2.3).
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The following lemma provides sufficient conditions that ensure flatness of S and

boundedness of ∥m(z)∥ uniformly in z up to the real line. We begin with some prepa-

rations. We use the notation x ↦→ vx for x ∈ X and an element v ∈ CK×K ⊗ L∞(X),

interpreting it as a function on X with values in CK×K . We also introduce the functions

γ ∈ L∞(X2) via

γ(x, y) ..=
(∫

X
(|sµ(x, ·)− sµ(y, ·)|2 + |tν(x, ·)− tν(y, ·)|2 + |tν(·, x)− tν(·, y)|2)dπ

)1/2

(8.9.3)

and Γ : (0,∞)2 → L∞(X), (Λ, τ) ↦→ ΓΛ,·(τ) through

ΓΛ,x(τ) ..=
( ∫

X

(1
τ

+ ∥ax − ay∥+ γ(x, y)Λ
)−2

π(dy)
)1/2

. (8.9.4)

Here, we denoted by ∥ · ∥ the operator norm on CK×K induced by the Euclidean norm on

CK . The two functions γ and Γ will be important to quantify the modulus of continuity

of the data (a, S).

Lemma 8.9.1. Let m be the solution of the Dyson equation, (8.2.3), on the von Neumann

algebra A from (8.9.1) associated to the data (a, S) with S defined as in (8.9.2).

(i) Define Γ(τ) ..= CKr ess infx Γ1,x(τ) with CKr
..= 4 + 4K(ℓ1 + ℓ2) maxµ,ν(∥αµ∥2 +

∥βν∥2)1/2, where ΓΛ,x(τ) was introduced in (8.9.4) and assume that for some

z ∈ H the L2-upper bound ∥m(z)∥2 ≤ Λ for some Λ ≥ 1 is satisfied. Then we

have the uniform upper bound

∥m(z)∥ ≤ Γ−1(Λ2)
Λ , (8.9.5)

where we interpret the right-hand side as∞ if Λ is not in the range of the strictly

monotonously increasing function Γ.

(ii) Suppose that the kernels of the operators Sµ and T ν, used to define S in (8.9.2),

are bounded from below, i.e., ess infx,y sµ(x, y) > 0 and ess infx,y tν(x, y) > 0.

Suppose further that

inf
κ

1
Trκ

( ℓ1∑
µ=1

αµκαµ +
ℓ2∑
ν=1

(βνκβ∗
ν + β∗

νκβν)
)
> 0 , (8.9.6)
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where the infimum is taken over all positive definite κ ∈ CK×K. Then S is flat,

i.e., S ∈ Σflat (cf. (8.2.2b)).

(iii) Let S be flat, hence, Λ ..= 1 + supz∈H∥m(z)∥2 <∞. Then (8.9.5) holds true with

this Λ.

(iv) If a = 0 then, for each ε > 0, (8.9.5) holds true on |z| ≥ ε with Λ ..= 1 + 2ε−1.

Proof of Lemma 8.9.1. We adapt the proof of Proposition 6.6 in [4] to our non-

commutative setting in order to prove (i). Recall the definition of γ(x, y) in (8.9.3).

Estimating the norm ∥m∥2 from below, we find

∥m∥2
2 = 1

K
Tr
∫ π(dy)
m−1
y (m∗

y)−1 ≥ Tr
∫
X

C2
Krπ(dy)

m−1
x (m∗

x)−1 + ∥ax − ay∥2 + γ(x, y)2∥m∥2
2

≥ C2
Kr

(
Γ∥m∥2,x(∥mx∥)

)2
,

(8.9.7)

for π-almost all x ∈ X, where we used

1
4m

−1
y (m∗

y)−1 ≤ m−1
x (m∗

x)−1 + (ay − ax)(ay − ax)∗ + ((Sm)x − (Sm)y)((Sm)x − (Sm)y)∗

≤ m−1
x (m∗

x)−1 + ∥ax − ay∥2 +K(ℓ1 + ℓ2) max
µ,ν

(∥αµ∥2 + ∥βν∥2)γ(x, y)2∥m∥2
2 .

(8.9.8)

We conclude Λ ≥ Λ−1Γ(Λ∥mx∥) for any upper bound Λ ≥ 1 on ∥m∥2. In particular,

(8.9.5) follows.

We turn to the proof of (ii). We view a positive element r ∈ A+ as a function

r : [0, 1]→ CK×K with values in positive semidefinite matrices. Then we find

(Sr)x ≥ c
∫
X

( ℓ1∑
µ=1

αµryαµ +
ℓ2∑
ν=1

(βνryβ∗
ν + β∗

νryβν)
)
π(dy) ,

as quadratic forms on CK×K for almost every x ∈ X. The claim follows now immediately

from (8.9.6). Part (iii) is a direct consequence of (i) and (ii) as well as (8.3.11). For the

proof of part (iv), we use part (i) and (8.2.6) if a = 0. □

8.9.2. N×N-Kronecker random matrices. As an application of the general Kro-

necker setup introduced above, we consider the matrix Dyson equation associated to Kro-

necker random matrices. Let Xµ, Yν ∈ CN×N be independent centered random matrices

such that Yν = (yνij) has independent entries and Xµ = (xµij) has independent entries up to
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the Hermitian symmetry constraint Xµ = X∗
µ. Suppose that the entries of

√
NXµ,

√
NYν

have uniformly bounded moments, E(|xµij|p + |yµij|p) ≤ N−p/2Cp and define their variance

profiles through

sµ(i, j) ..= NE|xµij|2 , tν(i, j) ..= NE|yνij|2 .

Then we are interested in the asymptotic spectral properties of the Hermitian Kronecker

random matrix

H ..= A+
ℓ1∑
µ=1

αµ ⊗Xµ +
ℓ2∑
ν=1

(βν ⊗ Yν + β∗
ν ⊗ Y ∗

ν ) ∈ CK×K ⊗ CN×N , (8.9.9)

as N → ∞. Here the expectation matrix A is assumed to be bounded, ∥A∥ ≤ C, and

block diagonal, i.e.

A =
N∑
i=1

ai ⊗ Eii , (8.9.10)

with Eii = (δilδik)Nl,k=1 ∈ CN×N and ai ∈ CK×K . In Chapter 7 it was shown that

the resolvent G(z) = (H − z)−1 of the Kronecker matrix H is well approximated by the

solution M(z) of a Dyson equation of Kronecker type, i.e., on the von Neumann algebra A

in (8.9.1) with self-energy S from (8.9.2) and a = A ∈ A, when we choose X = {1, . . . , N}

and π the uniform probability distribution. In other words, L∞(X) = CN with entrywise

multiplication.

8.9.3. Limits of Kronecker random matrices. Now we consider limits of Kro-

necker random matrices H ∈ CN×N with piecewise Hölder-continuous variance profiles as

N →∞. In this situation we can make sense of the continuum limit for the solution M(z)

of the associated matrix Dyson equation. The natural setup here is (X, π) = ([0, 1], dx).

We fix a partition (Il)Ll=1 of [0, 1] into intervals of positive length, i.e., [0, 1] = ∪̇lIl and

consider non-negative profile functions sµ, tν : [0, 1]2 → R that are Hölder-continuous with

Hölder exponent 1/2 on each rectangle Il × Ik. We also fix a function a : [0, 1]→ CK×K

that is 1/2-Hölder continuous on each Il. In this piecewise Hölder-continuous setup the

Dyson equation on A with data pair (a, S) describes the asymptotic spectral properties

of Kronecker random matrices with fixed variance profiles sµ and tν , i.e., the random
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matrices H introduced in Subsection 8.9.2 if their variances are given by

E|xµij|2 = 1
N
sµ
(
i

N
,
j

N

)
, E|yνij|2 = 1

N
tν
(
i

N
,
j

N

)
,

and the matrices ai in (8.9.10) by ai = a( i
N

).

Lemma 8.9.2. Suppose that a, sµ and tν are piecewise Hölder-continuous with Hölder

exponent 1/2 as described above. The empirical spectral distribution of the Kronecker

random matrix H, defined in (8.9.9), with eigenvalues (λi)KNi=1 converges weakly in proba-

bility to the self-consistent density of states ρ associated to the Dyson equation with data

pair (a, S) as defined in (8.9.2), i.e., for any ε > 0 and φ ∈ C(R) we have

P
(⏐⏐⏐⏐ 1
KN

KN∑
i=1

φ(λi) −
∫
R
φ dρ

⏐⏐⏐⏐ > ε
)
→ 0 , N →∞ .

Proof of Lemma 8.9.2. It suffices to prove convergence of the Stieltjes transforms,

i.e., in probability 1
NK

TrKN G(z)→ ⟨m(z)⟩ for every fixed z ∈ H, whereG(z) = (H−z)−1

is the resolvent of the Kronecker matrix H and m(z) is the solution to the Dyson equation

with data (a, S).

First we use the Theorem 7.2.7 from Chapter 7 to show that

1
KN

TrKN G(z)− 1
N

N∑
i=1

TrKmi(z) → 0

in probability, where MN = (m1, . . . ,mN) ∈ (CK×K)N denotes the solution to a Dyson

equation formulated on the von Neumann algebra CK×K ⊗ CN with entrywise multipli-

cation on vectors in CN as explained in Subsection 8.9.2. We recall that in this setup the

discrete kernels for Sµ and Tν from the definition of S in (8.9.2) are given by NE|xµij|2

and NE|yνij|2, respectively, and a = ∑N
i=1 a( i

N
)⊗ ei. To distinguish this discrete data pair

from the continuum limit over CK×K ⊗ L∞[0, 1], we denote it by (aN , SN). Note that in

Theorem 7.2.7 of Chapter 7 the test functions were compactly supported in contrast to

the function τ ↦→ 1/(τ − z) that we used here. However, by Theorem 7.2.4 of Chapter 7

and since the self-consistent density of states is compactly supported (cf. (8.2.5a) and

∥S∥ ≲ 1) no eigenvalues can be found beyond a certain bounded interval, ensuring that

non compactly supported test function are allowed as well.
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Now it remains to show that ⟨MN⟩ → ⟨m⟩ as N →∞ for all z ∈ H. For this purpose

we embed CN into L∞[0, 1] via Pv ..= ∑N
i=1 vi1[(i−1)/N,i/N). With this identification MN

and m satisfy Dyson equations on the same space CK×K⊗L∞[0, 1]. Evaluating these two

equations at z + iη, for a fixed z ∈ H and any η ≥ 0, and subtracting them from each

other yield

B[∆] =m(SN − S)[m]∆ + Cm(SN − S)[∆] +mSN [∆]∆

+ Cm(SN − S)[m]−m(aN − a)∆− Cm[aN − a],

where m = m(z + iη), MN = MN(z + iη), B = Id− CmS and ∆ = MN −m. Using the

imaginary part of z we have dist(z+iη, supp ρ) ≥ Im z > 0. By (7.3.22), (7.3.23), (7.3.11a)

and (7.3.11c) in Chapter 7 we infer ∥m∥ + ∥B−1∥2 ≤ C for all η ≥ 0 with a constant C

depending on Im z. Note that although the proofs in Chapter 7 were performed on CN×N

all estimates were uniform in N and all algebraic relations in these proof translate to the

current setting on a finite von Neumann algebra. Using ∥SN − S∥2 ≤ ∥SN − S∥ as well

as ∥SN∥ ≤ C and possibly increasing C, we thus obtain

∥∆∥2 ≤ C(ΨN + ∥∆∥2
2), ΨN

..= ∥aN − a∥+ ∥SN − S∥,

where ∆ = ∆(z+iη), for all η ≥ 0. We chooseN0 sufficiently large such that 2ΨNC
2 ≤ 1/4

for all N ≥ N0 and define η∗
..= sup{η ≥ 0: ∥∆(z+iη)∥2 ≥ 2CΨN}. Since ∥MN∥+∥m∥ →

0 for η →∞, we conclude η∗ <∞.

We now prove η∗ = 0. For a proof by contradiction, we suppose η∗ > 0. Then,

by continuity, ∥∆(τ + iη∗)∥2 = 2CΨN . Since 2ΨNC
2 ≤ 1/4, we have ∥∆(z + iη∗)∥2 ≤

4CΨN/3 < 2CΨN = ∥∆(z + iη∗)∥2. From this contradiction, we conclude η∗ = 0.

Therefore, for N ≥ N0, we have

|MN(z)−m(z)| ≤ ∥∆(z)∥2 ≤ 2CΨN = 2C(∥SN − S∥+ ∥aN − a∥) .

Since the right-hand side converges to zero as N → ∞, due to the piecewise Hölder-

continuity of the profile functions, and since z was arbitrary, we obtain ⟨MN⟩ → ⟨m⟩ as

N →∞ for all z ∈ H. This completes the proof of Lemma 8.9.2. □
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The boundedness of the solution to the Dyson equation in L2-norm already implies

uniform boundedness in the piecewise Hölder-continuous setup.

Lemma 8.9.3. Suppose that a, sµ and tν are piecewise 1/2-Hölder continuous and that

supz∈D∥m(z)∥2 < ∞ for some domain D ⊆ H. Then we have the uniform bound

supz∈D∥m(z)∥ <∞.

In particular, if the random matrix H is centered, i.e., a = 0, then m(z) is uniformly

bounded as long as z is bounded away from zero; and if H is flat in the limit, i.e., S is

flat, then supz∈H∥m(z)∥ <∞.

Proof. By (i) of Lemma 8.9.1 the proof reduces to checking that limτ→∞ Γ(τ) =∞

for piecewise 1/2-Hölder continuous data in the special case (X, π) = ([0, 1], dx). But this

is clear since in that case ∥ax − ay∥2 + γ(x, y)2 ≤ C|x − y| implies that the integral in

(8.9.4) is at least logarithmically divergent as τ →∞. □

Corollary 8.9.4 (Band mass quantization). Let ρ be the self-consistent density of states

for the Dyson equation with data pair (a, S) and τ ∈ R \ supp ρ. Then

ρ((−∞, τ)) ∈
{ 1
K

L∑
l=1

kl|Il| : kl = 1, . . . K
}
.

In particular, in the L = 1 case when sµ, tµ and a are 1/2-Hölder continuous on all of

[0, 1]2 and [0, 1], respectively, then ρ(J) is an integer multiple of 1/K for every connected

component J of supp ρ and there are at most K such components.

Proof. Fix τ ∈ R \ supp ρ. We denote by x ↦→ mx(τ) the self-adjoint solution m(τ)

viewed as a function of x ∈ [0, 1] with values in CK×K . As is clear from the Dyson

equation this function inherits the regularity of the data, i.e., it is continuous on each

interval Il. By the band mass formula (8.2.10) we have

ρ((−∞, τ)) = 1
K

L∑
l=1

∫
Il

Tr 1(−∞,0)(mx(τ))dx = 1
K

L∑
l=1

kl|Il| ,

where kl = Tr 1(−∞,0)(mx(τ)) ∈ {0, . . . , K} is continuous in x ∈ Il with discrete values

and therefore does not depend on x. □
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Remark 8.9.5. We extend the conjecture from Remark 2.9 of [5] to the Kronecker set-

ting. We expect that in the piecewise 1/2-Hölder continuous setting of the current section,

the number of connected components of the self-consistent spectrum supp ρ is at most

K(2L− 1).

8.10. Perturbations of the data pair

In this section, as an application of our results in Sections 8.4 to 8.7, we show that

the Dyson equation, (8.2.3), is stable against small general perturbations of the data pair

(a, S) consisting of the bare matrix a and the self-energy operator S. To that end, let

T ⊂ R contain 0, St : A → A, t ∈ T , be a family of positivity-preserving operators and

at = a∗
t ∈ A, t ∈ T , be a family of self-adjoint elements. We set S ..= St=0 and a ..= at=0

and will always assume that there are c1, . . . , c5 > 0 such that

c1⟨x⟩1 ≤ S[x] ≤ c2⟨x⟩1, ∥a∥ ≤ c3, ∥S − St∥ ≤ c4t, ∥a− at∥ ≤ c5t (8.10.1)

for all x ∈ A+ and for all t ∈ T . For any t ∈ T , let mt be the solution to the Dyson

equation associated to the data pair (at, St), i.e.,

−mt(z)−1 = z1− at + St[mt(z)] (8.10.2)

for z ∈ H (cf. (8.2.3)). We also set m ..= mt=0.

The main result of this section, Proposition 8.10.1 below, states that ∥mt(z)−m(z)∥ is

small for sufficiently small t and all z away from points, where m(z) blows up. In the bulk

and away from (almost) cusp points, we obtain stronger estimates on ∥mt(z)−m(z)∥.

We now introduce these concepts precisely. We recall the definition of the set Pm ..=

Pm∗
m ⊂ H, where ∥m(z)∥ is larger than m∗ for a given m∗ > 0, from (8.7.68), i.e.,

Pm∗
m

..= {τ ∈ R : sup
η>0
∥m(τ + iη)∥ > m∗}.

For any fixed m∗ > 0 and δ > 0, we introduce the set Dbdd of points of distance at least

δ from Pm, i.e.,

Dbdd
..= Dm∗,δ

bdd
..= {z ∈ H : dist(z, Pm) ≥ δ}. (8.10.3)
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Note that ∥m(z)∥ ≤ max{m∗, δ
−1} for all z ∈ Dbdd as ∥m(z)∥ ≤ (dist(z, supp ρ))−1 by

(8.3.7).

We now introduce the concept of the bulk. Since S ∈ Σflat, the self-consistent density

of states of m (cf. Definition 8.2.2) has a continuous density ρ : R→ [0,∞) with respect to

the Lebesgue measure (cf. Proposition 8.2.3). We also write ρ for the harmonic extension

of ρ to H which satisfies ρ(z) = ⟨Imm(z)⟩/π for z ∈ H. For ρ∗ > 0 and δs > 0, we denote

those points, where ρ is bigger than ρ∗ or which are at least δs away from supp ρ, by

Dbulk
..= Dρ∗

bulk
..= {z ∈ H : ρ(z) ≥ ρ∗}, Dout

..= Dδs
out

..= {z ∈ H : dist(z, supp ρ) ≥ δs},

respectively. We remark that, for fixed ρ∗ and δs, we have the inclusion Dbulk∪Dout ⊂ Dbdd

for all sufficiently large m∗ and sufficiently small δ by (8.3.12).

For τ ∈ R \ supp ρ, let ∆(τ) denote the size of the largest interval that contains τ

and is contained in R \ supp ρ. We recall the definition of the set of almost cusp points

Pcusp = P ρ∗,∆∗
cusp ⊂ R for ρ∗ > 0 and ∆∗ > 0 from (8.7.69), which reads as

P ρ∗,∆∗
cusp

..= {τ ∈ supp ρ \ ∂ supp ρ : τ is a local minimum of ρ, ρ(τ) ≤ ρ∗}

∪{τ ∈ R \ supp ρ : ∆(τ) ≤ ∆∗}.

For some δc > 0, we denote those points which are at least δc away from almost cusp

points by

Dnocusp
..= {z ∈ H : dist(z, Pcusp) ≥ δc}.

We remark that D = Dbdd ∩ Dcusp with the definition of D in (8.7.70).

In this section, the model parameters are given by c1, . . . , c5 from (8.10.1) as well as

the fixed parameters m∗, δ, ρ∗, δs, ∆∗ and δc from the definitions of Pm, Dbdd, Dbulk,

Dout, Pcusp, and Dnocusp, respectively. Thus, the comparison relation ∼ (compare Conven-

tion 8.3.4) is understood with respect to these parameters throughout this section.

Proposition 8.10.1. If the self-adjoint element a = at=0, at in A and the positivity-

preserving operators S = St=0, St on A satisfy (8.10.1) for each t ∈ T then there is

t∗ ∼ 1 such that
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(a) Uniformly for all z ∈ Dbdd and for all t ∈ [−t∗, t∗] ∩ T , we have

∥mt(z)−m(z)∥ ≲ |t|1/3.

In particular, ∥mt(z)∥ ≲ 1 uniformly for all z ∈ Dbdd and for all t ∈ [−t∗, t∗]∩T .

(b) (Bulk and away from support of ρ) Uniformly for all z ∈ Dbulk ∪Dout and for all

t ∈ [−t∗, t∗] ∩ T , we have

∥mt(z)−m(z)∥ ≲ |t|.

(c) (Away from almost cusps) Uniformly for all z ∈ Dnocusp ∩ Dbdd and for all t ∈

[−t∗, t∗] ∩ T , we have

∥mt(z)−m(z)∥ ≲ |t|1/2.

In order to simplify the notation, we set ∆mt = ∆mt(z) = mt(z) − m(z). The be-

haviour of ∆mt will be governed by a scalar-valued cubic equation (see (8.10.5) below).

This is the origin of the cubic root |t|1/3 in the general estimate on ∥mt(z) − m(z)∥ in

Proposition 8.10.1. In the special cases, z ∈ Dbulk ∪Dout and z ∈ Dnocusp, the cubic equa-

tion simplifies to a linear or quadratic equation, respectively, which yield the improved

estimates |t| and |t|1/2, respectively.

We now define two positive auxiliary functions ξ̃1(z) and ξ̃2(z) for z ∈ Dbdd which

will control the coefficients in the cubic equation mentioned above. For their definitions,

we distinguish several subdomains of Dbdd. The slight ambiguity of the definitions due

to overlaps between these domains does, however, not affect the validity of the following

statements as the different versions of ξ̃1 as well as ξ̃2 are comparable with each other

with respect to the comparison relation ∼ and ξ̃1 as well as ξ̃2 are only used in bounds

with respect to this comparison relation. For ρ∗ ∼ 1 and δ∗ ∼ 1, we define

• Bulk: If z ∈ Dbulk ∪ Dout then we set

ξ̃1(z) ..= ξ̃2(z) ..= 1. (8.10.4a)
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• Around a regular edge: If z = τ0 + ω + iη ∈ Dnocusp ∩ Dbdd with some

τ0 ∈ ∂ supp ρ, ω ∈ [−δ∗, δ∗] and η ∈ (0, δ∗] then we set

ξ̃1(z) ..= (|ω|+ η)1/2, ξ̃2(z) ..= 1. (8.10.4b)

• Close to an internal edge with a small gap: Let α, β ∈ (∂ supp ρ) \ Pm
satisfy β < α and (β, α) ∩ supp ρ = ∅. We set ∆ ..= α − β. If z ∈ Dbdd satisfies

z = α−ω+ iη or z = β +ω+ iη for some ω ∈ [−δ∗,∆/2] and η ∈ (0, δ∗] then we

define

ξ̃1(z) ..= (|ω|+ η)1/2(|ω|+ η + ∆)1/6, ξ̃2(z) ..= (|ω|+ η + ∆)1/3 (8.10.4c)

• Around a small internal minimum: If z = τ0 + ω + iη ∈ Dbdd, where

τ0 ∈ supp ρ \ ∂ supp ρ is a local minimum of ρ with ρ(τ0) ≤ ρ∗, ω ∈ [−δ∗, δ∗] and

η ∈ (0, δ∗] then we define

ξ̃1(z) ..= ρ(τ0)2 + (|ω|+ η)2/3, ξ̃2(z) ..= ρ(τ0) + (|ω|+ η)1/3. (8.10.4d)

We remark that τ0 ∈ ∂ supp ρ is a regular edge if ρ(τ) = 0 for all τ ∈ [τ0 − ε, τ0] or

τ ∈ [τ0, τ0 + ε] for some ε ∼ 1. In fact, Dnocusp ∩ Dbdd ∩ ∂ supp ρ consists only of regular

edges.

In the proof of Proposition 8.10.1, we will use the following two lemmas, whose proofs

we postpone until the end of this section.

Lemma 8.10.2. Let Dbdd be defined as in (8.10.3). Let a, S and (at)t∈T and (St)t∈T
satisfy (8.10.1). Then there is ε1 ∼ 1 such that if ∥∆mt(z)∥ ≤ ε1 for some z ∈ Dbdd,

t ∈ T , then there are l, b ∈ A depending on z such that Θt
..= ⟨l ,∆mt⟩/⟨l , b⟩ satisfies a

cubic inequality

|Θ3
t + ξ2Θ2

t + ξ1Θt| ≲ |t| (8.10.5)

with complex coefficients ξ1 and ξ2 depending on z and t. The function Θt depends

continuously on Im z and we also have |Θt| ≲ ∥∆mt∥ as well as ∥∆mt∥ ≲ |Θt| + |t| for

all t ∈ T .

The coefficients, ξ1 and ξ2, behave as follows: There are δ∗ ∼ 1, ρ∗ ∼ 1 and c∗ ∼ 1

such that, with the appropriate definitions of ξ̃1 and ξ̃2 from (8.10.4), we have
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• If z ∈ Dbdd satisfies the conditions for (8.10.4a) or (8.10.4c) with ω ∈ [c∗∆,∆/2]

then we have

|ξ1(z)| ∼ ξ̃1(z), |ξ2(z)| ≲ ξ̃2(z). (8.10.6a)

• If z ∈ Dbdd satisfies the conditions for (8.10.4b) or (8.10.4c) with ω ∈ [−δ∗, c∗∆]

or (8.10.4d) then we have

|ξ1(z)| ∼ ξ̃1(z), |ξ2(z)| ∼ ξ̃2(z). (8.10.6b)

All implicit constants in this lemma are uniform for any t ∈ T .

Lemma 8.10.3. For 0 < η∗ < η∗ < ∞, let ξ1, ξ2 : [η∗, η
∗] → C be complex-valued func-

tions and ξ̃1, ξ̃2, d : [η∗, η
∗]→ R+ be continuous.

Suppose that some continuous function Θ: [η∗, η
∗]→ C satisfies the cubic inequality

|Θ3 + ξ2Θ2 + ξ1Θ| ≲ d (8.10.7)

on [η∗, η
∗] as well as

|Θ| ≲ min
{
d1/3,

d1/2

ξ̃
1/2
2
,
d

ξ̃1

}
(8.10.8)

at η∗. If one of the following two sets of relations holds true:

1) (i) ξ̃3
2/d, ξ̃3

1/d
2, ξ̃2

1/(dξ̃2) are monotonically increasing functions,

(ii) |ξ1| ∼ ξ̃1, |ξ2| ∼ ξ̃2,

(iii) d2/ξ̃3
1 +dξ̃2/ξ̃

2
1 at η∗ is sufficiently small depending on the implicit constants

in 1) (ii) as well as (8.10.7) and (8.10.8).

2) (i) ξ̃3
1/d

2 is a monotonically increasing function,

(ii) |ξ1| ∼ ξ̃1, |ξ2| ≲ ξ̃
1/2
1 .

then, on [η∗, η
∗], we have the bound

|Θ| ≲ min
{
d1/3,

d1/2

ξ̃
1/2
2
,
d

ξ̃1

}
. (8.10.9)

Proof of Proposition 8.10.1. We start the proof by introducing the control pa-

rameter M(t). Let ξ̃1 and ξ̃2 be defined as in (8.10.4). For t ∈ R, we set

M(t) ..= min{|t|1/3, ξ̃
−1/2
2 |t|1/2, ξ̃−1

1 |t|}. (8.10.10)
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We remark that M also depends on z as ξ̃1 and ξ̃2 depend on z.

We will prove below that there are t∗ ∼ 1 and C ∼ 1 such that, for any fixed

t ∈ [−t∗, t∗] ∩ T \ {0} (if this set is nonempty) and z ∈ Dbdd, we have the implication

∥∆mt(Re z + iη)∥ ≤ ε1 for all η ≥ Im z ⇒ ∥∆mt(z)∥ ≤ CM(t), (8.10.11)

where ε1 ∼ 1 is from Lemma 8.10.2.

Armed with (8.10.11), by possibly shrinking t∗ ∼ 1, we can assume that 2Ct1/3
∗ ≤ ε1.

We fix τ ∈ R and t ∈ [−t∗, t∗] ∩ T \ {0} and set

η∗
..= sup{η > 0 : ∥∆mt(τ + iη)∥ ≥ 2CM(t)}.

Here, we use the convention η∗ = −∞ if the set is empty. Note that ∥∆mt(τ+iη)∥ ≤ 2η−1

since m and mt are Stieltjes transforms. Hence, η∗ <∞ as t ̸= 0.

We prove now that η∗ ≤ inf{Im z : z ∈ Dbdd, Re z = τ}. For a proof by contradiction,

we suppose that there is z∗ ∈ Dbdd such that Re z∗ = τ and Im z∗ = η∗ (note that if

τ + iη ∈ Dbdd then τ + iη′ ∈ Dbdd for any η′ ≥ η). Since ∆mt is continuous in z, we

have ∥∆mt(z∗)∥ = 2CM(t). Thus, ∥∆mt(τ + iη)∥ ≤ 2Ct1/3
∗ ≤ ε1 for all η ≥ η∗ by

the choice of t∗. From (8.10.11), we conclude ∥∆mt(z∗)∥ ≤ CM(t), which contradicts

∥∆mt(z∗)∥ = 2CM(t). Thus, η∗ ≤ inf{Im z : z ∈ Dbdd, Re z = τ}.

As τ was arbitrary, this yields ∥∆mt(z)∥ ≤ 2CM(t) for all z ∈ Dbdd, which proves

part (a) of Proposition 8.10.1 up to (8.10.11). Since ξ̃1(z) ∼ 1 for z ∈ Dbulk ∪ Dout and

ξ̃2(z) ∼ 1 for z ∈ Dnocusp ∩Dbdd, we also obtain part (b) and (c) from the definition of M

in (8.10.10).

Hence, it suffices to show (8.10.11) to complete the proof of Proposition 8.10.1. In

order to prove (8.10.11), we use Lemma 8.10.3 with Θ(η) = Θt(Re z+iη), η ≥ η∗
..= Im z,

d = |t|, and ξ1, ξ2 and ξ̃1, ξ̃2 are chosen as in (8.10.5) of Lemma 8.10.2 and (8.10.4),

respectively. As ∥∆mt(Re z + iη)∥ ≤ ε1 for all η ≥ Im z, we conclude that (8.10.7) is

satisfied with d = |t| due to (8.10.5).

We first consider z ∈ Dbulk∪Dout. If z ∈ Dbulk∪Dout then Re z+iη ∈ Dbulk∪Dout and

ξ1(Re z+iη) = ξ2(Re z+iη) = 1 for all η ≥ η∗ and assumption 2) of Lemma 8.10.3 is always

fulfilled. Since ∥∆mt(Re z + iη)∥ ≤ 2η−1 as remarked above and t ̸= 0, the condition
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in (8.10.8) is met for some sufficiently large η > 0. Hence, by Lemma 8.10.3, there is

C ∼ 1 such that |Θt(z)| ≤ CM(t). Possibly increasing C ∼ 1 and using |t| ≤ t∗ ∼ 1 yield

∥∆mt(z)∥ ≤ CM(t) due to ∥∆mt∥ ≲ |Θt|+ |t| from Lemma 8.10.2.

For each z ∈ Dbdd \Dbulk∪Dout, due to (8.10.6), we have ξ1(zδ) ∼ 1 and ξ2(zδ) ∼ 1 for

zδ ..= Re z+iδ∗, where δ∗ ∼ 1 is as in Lemma 8.10.2. Hence, we conclude |Θt(zδ)| ≤ CM(t)

as for z ∈ Dbulk ∪Dout. For each z ∈ Dbdd \Dbulk ∪Dout, the validity of assumption 1) or

assumption 2) of Lemma 8.10.3 can be read off from (8.10.6). Lemma 8.10.3, thus, implies

|Θt(z)| ≤ CM(t). As before, we conclude ∥∆mt(z)∥ ≤ CM(t) from Lemma 8.10.2. This

completes the proof of (8.10.11) and, hence, the one of Proposition 8.10.1. □

Proof of Lemma 8.10.2. We remark that a straightforward computation starting

from (8.2.3) and (8.10.2) yields

B[∆mt] = A[∆mt,∆mt] +K[∆S,∆a,∆mt] + T [∆S,∆a], (8.10.12)

where B ..= Id− CmS, A[x, y] ..= (mS[x]y + yS[x]m)/2 are defined as in (8.6.23), ∆S ..=

St − S, ∆a ..= at − a and

K[∆S,∆a,∆mt] = 1
2(m∆S[∆mt]∆mt + ∆mt∆S[∆mt]m+m∆S[m]∆mt + ∆mt∆S[m]m)

− 1
2(m∆a∆mt + ∆mt∆am),

T [∆S,∆a] = m∆S[m]m−m∆am.

In the following, we will split Dbdd into two regimes and choose l and b according to

the regime. In both cases, we use the definitions

Θ ..= Θt = ⟨l ,∆mt⟩
⟨l , b⟩

, r = rt ..= Q[∆mt], Q ..= Id− ⟨l , · ⟩
⟨l , b⟩

b. (8.10.13)

In particular, ∆mt = Θb + r. We denote by ρ(z) the harmonic extension of ρ, i.e.,

ρ(z) = ⟨Imm(z)⟩/π.

If z is in the bulk or away from supp ρ then ∆mt(z) is in fact governed by a scalar-

valued linear equation for Θt with l and b chosen appropriately. Similarly, if z is close to

a regular edge or close to an almost cusp point then ∆mt(z) is governed by a quadratic

or cubic equation, respectively. In order to treat these cases uniformly, we will artificially
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write all of these equations as a cubic equation by adding and subtracting apparently

superfluous terms.

Case 1: We first assume that z ∈ Dbdd satisfies ρ(z) ≥ ρ∗ for some ρ∗ ∼ 1 or

dist(z, supp ρ) ≥ δ for some δ ∼ 1, i.e., z ∈ Dρ∗
bulk ∪Dδ

out. This implies that B is invertible

and ∥B−1∥ ≲ 1 due to (8.4.1), ∥S∥2→∥ · ∥ ≲ 1, ∥m(z)∥ ≲ 1 and Lemma 8.12.2 (ii). In this

case, we choose l = b = 1 and apply QB−1 to (8.10.12) to obtain

r = QB−1(A[∆mt,∆mt] +K[∆S,∆a,∆mt] + T [∆S,∆a]) = O(|Θ|2 + ∥r∥∥∆mt∥+ |t|),

where we used that ∥m∥ ≲ 1 on Dbdd as well as ∥∆S∥ + ∥∆a∥ ≲ |t|. Shrinking ε1 ∼ 1,

using ∥∆mt∥ ≤ ε1 and absorbing ∥r∥∥∆mt∥ into the left-hand side yield ∥r∥ ≲ |Θ|2 + |t|.

Thus, ∥∆mt∥ ≲ |Θ|+ |t|. Hence, applying B−1 and ⟨ · ⟩ to (8.10.12) and using ⟨r⟩ = 0 as

well as ∥∆mt∥ ≲ |Θ|+ |t|, we find ξ2 ∈ C such that |ξ2| ≲ 1 = ξ̃2 and

Θ = −ξ2Θ2 +O(|t||Θ|+ |t|) = −ξ2Θ2 +O(|t|).

Adding and subtracting Θ3 on the left-hand side as well as setting ξ1
..= 1 − Θ2 show

(8.10.5) in Case 1 for sufficiently small ε1 ∼ 1 as |Θ| ≲ ∥∆mt∥ ≤ ε1 implies |ξ1| ∼ 1 = ξ̃1.

This completes the proof of (8.10.6a) for z ∈ Dbulk ∪ Dout.

Case 2: We now prove (8.10.5) for z ∈ Dbdd satisfying ρ(z) ≤ ρ∗ and dist(z, supp ρ) ≤

δ with sufficiently small ρ∗ ∼ 1 and δ ∼ 1. For any ε∗ ∼ 1, we find δ ∼ 1 such that

ρ(z)−1Im z ≤ ε∗ for all z ∈ H satisfying dist(z, supp ρ) ≤ δ due to (8.5.26) and the 1/3-

Hölder continuity of z ↦→ ρ(z)−1Im z by Lemma 8.5.4 (ii). Therefore, using ρ(z) ≤ ρ∗,

we see that Lemma 8.5.1 and Corollary 8.5.2 are applicable for sufficiently small ρ∗ ∼ 1

and δ ∼ 1. They yield l, b ∈ A which we use to define Θ and r as in (8.10.13), i.e.,

∆mt = Θb+ r and Θ = ⟨l ,∆mt⟩/⟨l , b⟩.

In order to derive (8.10.5), we now follow the proof of Lemma 8.6.2 applied to (8.10.12)

instead of (8.6.10). Here, ∆a and ∆S play the role of e. In fact, by Lemma 8.5.1 and

Corollary 8.5.2, the first two bounds in (8.6.12) are fulfilled. Owing to ∥m∥ ≲ 1, the third

bound in (8.6.12) is trivially satisfied. Instead of the last two bounds in (8.6.12), we use

∥T [∆S,∆a]∥ ≲ ∥∆S∥+ ∥∆a∥, ∥K[∆S,∆a,∆mt]∥ ≲ (∥∆S∥+ ∥∆a∥)∥∆mt∥,
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due to ∥m∥ ≲ 1 and ∥∆mt∥ ≲ 1. In fact, the last bound in (8.6.12) will not hold true for

a general y ∈ A but in the proof of Lemma 8.6.2 it is only used with the special choice

y = ∆mt. We choose ε1 ≤ ε for ε from Lemma 8.6.2 and obtain the cubic equation (8.6.14)

from Lemma 8.6.2 with µ0 = ⟨l , T [∆S,∆a]⟩ and ∥e∥ replaced by |t| as ∥∆S∥+∥∆a∥ ≲ |t|.

In particular, |µ0| ≲ |t|. We decompose the error term ẽ = O(|Θ|4 + |t||Θ| + |t|2) from

(8.6.14) into ẽ = ẽ1Θ3 + ẽ2 with ẽ1, ẽ2 ∈ C satisfying ẽ1 = O(|Θ|) and ẽ2 = O(|t||Θ|+ |t|2).

With the notation of Lemma 8.6.2, the cubic equation (8.6.14) can be written as

(µ3 − ẽ1)Θ3 + µ2Θ2 + µ1Θ = −µ0 + ẽ2 = O(|t|).

Since A and B introduced above have the same definitions as in (8.6.23) and µ3, µ2 and

µ1 in (8.6.15) depend only on A and B, Lemma 8.6.3 yields the expansions of µ3, µ2 and

µ1 in (8.6.24) for sufficiently small ρ∗ ∼ 1 and δ ∼ 1. By possibly shrinking ε1 ∼ 1, we

find c ∼ 1 such that |µ3− ẽ1|+ |µ2| ≥ 2c as |ẽ1| ≲ |Θ| ≲ ∥∆mt∥ ≤ ε1. Here, we also used

|µ3|+ |µ2| ≳ ψ + |σ| by (8.6.24) as well as (8.5.35).

Consequently, we obtain (8.10.5), where we introduced

ξ2
..=
(
µ2 + (µ3 − ẽ1 − 1)Θ

)
1(|µ2| ≥ c) + µ2

µ3 − ẽ1
1(|µ2| < c),

ξ1
..= µ11(|µ2| ≥ c) + µ1

µ3 − ẽ1
1(|µ2| < c).

Hence, we have |ξ2| ∼ |µ2| and |ξ1| ∼ |µ1| for sufficiently small ε1 ∼ 1 as |ẽ1| ≲ |Θ| and

|Θ| ≲ ∥∆mt∥ ≤ ε1. This completes the proof of (8.10.5) in Case 2.

It remains to show the scaling relations in (8.10.6) for z ∈ Dbdd satisfying ρ(z) ≤ ρ∗

and dist(z, supp ρ) ≤ δ in order to complete the proof of Lemma 8.10.2. Starting from

|ξ1| ∼ |µ1| and |ξ2| ∼ |µ2| proven in Case 2, we conclude as in the proof of (10.6) in [4]

that

|ξ1| ∼ ρ(z)2 + |σ(z)|ρ(z) + ρ(z)−1Im z, |ξ2| ∼ ρ(z) + |σ(z)|,

where σ is defined as in (8.5.12). Here, ξ1 and ξ2 play the role of π1 and π2, respectively, in

[4]. Their definitions differ slightly but this does not affect the straightforward estimates.

Note that the proof in [4] relies on the expansions of µ1, µ2 and µ3 from (8.33) in [4].

These are the exact analogues of (8.6.24), where ρ plays the role of α from [4].
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Based on the singularity analysis of the self-consistent density of states ρ in [4], Corol-

lary A.1 in [4] characterizes the behaviour of the harmonic extension ρ(z) for z ∈ H in the

vicinity of these singularities. For z ∈ Dbdd satisfying ρ(z) ≤ ρ∗ and dist(z, supp ρ) ≤ δ,

following the proof of Corollary A.1 in [4] and using Theorem 8.7.1 above instead of

Theorem 2.6 in [4], we obtain the statements of Corollary A.1 in [4] in our setup as well.

Similarly, the proof of (10.7) in [4] yields

|σ(β)| ∼ |σ(α)| ∼ (α− β)1/3, |σ(τ0)| ≲ ρ(τ0)2,

where α, β ∈ (∂ supp ρ) \ Pm satisfy β < α and (β, α) ∩ supp ρ = ∅ and τ0 ∈ supp ρ \

∂ supp ρ is a local minimum of ρ and ρ(τ0) ≤ ρ∗. Here, we use Lemma 8.7.15 above and

|σ|1/3 ∼ ∆̂ instead of Lemma 9.17 in [4] and Lemma 8.7.13 above instead of Lemma 9.2 in

[4]. We then follow the proof of Proposition 4.3 in [7] and use the 1/3-Hölder continuity

of σ proven in Lemma 8.5.5 (i). This yields the missing scaling relations in (8.10.6) and,

hence, completes the proof of Lemma 8.10.2. □

In the previous proof of Lemma 8.10.2, we have established the following fact.

Remark 8.10.4 (Scaling relations of ρ(z)). The scaling relations of ρ(z) in Corollary A.1

of [4] hold true for z ∈ Dbdd if there are c1, c2, c3 > 0 such that the data pair (a, S) satisfies

c1⟨x⟩1 ≤ S[x] ≤ c2⟨x⟩1, ∥a∥ ≤ c3

for all x ∈ A+.

Proof of Lemma 8.10.3. By dividing the cubic inequality through d and consid-

ering Θ
d1/3 instead of Θ, we may assume that d = 1. We fix ε ∈ (0, 1) sufficiently small.

First we prove the lemma under assumption 1). Owing to the smallness of 1
ξ̃3

1
+ ξ̃2

ξ̃2
1

at

η∗ as well as the monotonicity of ξ̃1 and ξ̃2
1
ξ̃2

there are 0 < η1, η2 < η∗ with the following

properties: (i) ξ̃2 ≥ ε4ξ̃2
1 on [η∗, η1]; (ii) ξ̃2 ≤ ε4ξ̃2

1 on [η1, η
∗]; (iii) εξ̃1 ≤ 1 on [η∗, η2]; (iv)

εξ̃1 ≥ 1 on [η2, η
∗]. Here the intervals [η∗, η2] and [η∗, η1] may be empty. We will now

assume the bound |Θ| ≲ min{1, 1
ξ̃

1/2
2
, 1
ξ̃1
} at the initial value η∗ and bootstrap it down to

η∗. Now we distinguish two cases:

Case 1 (η1 ≥ η2): On [η1, η
∗] we have εξ̃1 ≥ 1 and ξ̃2 ≤ ε4ξ̃2

1 . Thus, by the cubic
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inequality

|Θ| ≲ min
{

1, 1
ξ̃

1/2
2

}
implies |Θ| ≲ 1

ξ̃1
≲ min

{
ε,

ε2

ξ̃
1/2
2

}
.

In particular, there is a gap in the values of |Θ| and by continuity all values lie below the

gap on [η1, η
∗].

The interval [η∗, η1] is split again, [η∗, η1] = [η∗, η3] ∪ [η3, η1], where η3 is chosen such

that (i) ξ̃2ε
2 ≥ 1 on [η3, η1]; (ii) ξ̃2ε

2 ≤ 1 on [η∗, η3]. Here one or both of these intervals

may be empty. Using ξ̃2 ≥ ε4ξ̃2
1 we see that on [η3, η1] the bound

|Θ| ≲ min
{1
ε
,

1
ε3ξ̃1

}
implies |Θ| ≲ 1

ε3/2ξ̃
1/2
2

≲ min
{ 1
ε1/2 ,

1
ε7/2ξ̃1

}
.

Again the gap in the values of |Θ| allows us to infer from the bound |Θ| ≲ min{1, 1
ξ̃

1/2
2
, 1
ξ̃1
}

at η1 that |Θ| satisfies the same bound on [η3, η1] up to an ε-dependent multiplicative

constant.

Finally, on [η∗, η3] we have ξ̃2 ≤ ε−2 and ξ̃2
1 ≤ ε−4ξ̃2 ≤ ε−6. Using the cubic inequality

this immediately implies |Θ|≲ε1≲ε min{1, 1
ξ̃

1/2
2
, 1
ξ̃1
}. Here and in the following, the nota-

tion ≲ε indicates that the implicit constant in the bound is allowed to depend on ε.

Case 2 (η1 ≤ η2): On [η2, η
∗] we have εξ̃1 ≥ 1 and ξ̃2 ≤ ε4ξ̃2

1 . So this regime

is treated exactly as in the beginning of Case 1. On [η∗, η2] we have εξ̃1 ≤ 1 and

ξ̃2 ≤ ξ̃2(η2) ≤ ε4ξ̃1(η2)2 = ε2, which implies |Θ|≲ε1≲ε min{1, 1
ξ̃

1/2
2
, 1
ξ̃1
}.

Now we prove the lemma under assumption 2). In this case we choose 0 < η1 < η∗ such

that (i) εξ̃1 ≥ 1 on [η1, η
∗]; (ii) εξ̃1 ≤ 1 on [η∗, η1]. Here the interval [η∗, η1] may be empty.

On [η1, η
∗] the bound

|Θ| ≲ 1 implies ξ̃1|Θ| ≲ 1+ ξ̃
1/2
1 |Θ|2 ≲ ε−1/2 +ε1/2ξ̃1|Θ| implies |Θ| ≲ 1

√
ε ξ̃1
≤
√
ε .

From the gap in the values of |Θ| and its continuity we infer |Θ| ≲ min{
√
ε, 1√

εξ̃1
}. On

[η∗, η1] we use ξ̃1 ≤ ε−1 and |ξ2| ≲ ξ̃
1/2
1 ≤ ε−1/2 to conclude |Θ|≲ε1≲ε min{1, 1

ξ̃1
}. This

finishes the proof of the lemma. □
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Lemma 8.10.5 (Hölder continuity of σ and ψ with respect to a and S). Let T ⊂ R

contain 0. For each t ∈ T , we assume that the linear operator St : A → A satisfies

c1⟨x⟩1 ≤ St[x] ≤ c2⟨x⟩1 (8.10.14)

for all x ∈ A+ and some c2 > c1 > 0. Moreover, let at = a∗
t ∈ A be self-adjoint such that

St and at satisfy (8.10.1) with a ..= at=0 and S ..= St=0. Let mt be the solution to (8.10.2)

and ρ(z) ..= ⟨Imm0(z)⟩/π for z ∈ H.

If σt and ψt are defined according to (8.5.12), where m is replaced by mt, then there

are ρ∗ ∼ 1 and t∗ ∼ 1 such that

|σt(z1)− σ0(z1)| ≲ |t|1/3, |ψt(z2)− ψ0(z2)| ≲ |t|1/3

for all t ∈ [−t∗, t∗]∩T and all z1, z2 ∈ Dbdd ∩{z ∈ H : |z| ≤ c6} satisfying ρ(z1) ≤ ρ∗ and

ρ(z2) + ρ(z2)−1Im z2 ≤ ρ∗. Here, c6 > 0 is also considered a model parameter.

Proof. We choose t∗ as in Proposition 8.10.1 and conclude from this result that

∥mt(z)∥ ≤ k3 for all t ∈ [−t∗, t∗] ∩ T , all z ∈ Dbdd and some k3 ∼ 1. Hence, owing to

(8.10.1), (8.10.14) and Lemma 8.4.8 (ii), the conditions of Assumptions 8.4.5 are met on

Dbdd ∩ {z ∈ H : |z| ≤ c6}. Therefore, the lemma follows from Remark 8.5.6 (ii) and (iii)

as well as Proposition 8.10.1 (a). □

8.11. Stieltjes transforms of positive operator-valued measures

In this section, we will show some results about the Stieltjes transform of a positive

operator-valued measure on A.

We first prove Lemma 8.3.1 by generalizing existing proofs in the matrix algebra

setup. Since we have not found the general version in the literature, we provide a proof

here for the convenience of the reader. In the proof of Lemma 8.3.1, we will use that a von

Neumann algebra is always isomorphically isomorphic as a Banach space to the dual space

of a Banach space. In our setup, this Banach space and the identification are simple to

introduce which we will explain now. Analogously to L2 defined in Section 8.4, we define

L1 to be the completion of A when equipped with the norm ∥x∥1
..= ⟨(x∗x)1/2⟩ = ⟨|x|⟩ for

x ∈ A. Moreover, we extend ⟨ · ⟩ to L1 and remark that xy ∈ L1 for x ∈ A and y ∈ L1. It
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is well-known (e.g. [138, Theorem 2.18]) that the dual space (L1)′ of L1 can be identified

with A via the isometric isomorphism

A → (L1)′, x ↦→ ψx, ψx : L1 → C, y ↦→ ⟨xy⟩. (8.11.1)

We stress that the existence of this isomorphism requires the state ⟨ · ⟩ to be normal.

Proof of Lemma 8.3.1. From (8.3.5), we conclude that

lim
η→∞

iη⟨x, h(iη)x⟩ = −⟨x, x⟩

for all x ∈ A. Hence, z ↦→ ⟨x, h(z)x⟩ is the Stieltjes transform of a unique finite positive

measure vx on R with vx(R) = ∥x∗x∥1.

For any x ∈ A, we can find x1, . . . x4 ∈ A+ such that x = x1 − x2 + ix3 − ix4. We

define

φB(x) ..= v√
x1(B)− v√

x2(B) + iv√
x3(B)− iv√

x4(B) (8.11.2)

for B ∈ B. This definition is independent of the representation of x. Indeed, for fixed

x ∈ A, any representation x = x1−x2 + ix3− ix4 with x1, . . . , x4 ∈ A+ defines a complex

measure φ·(x) through B ↦→ φB(x) on R via (8.11.2). However, extending h to the lower

half-plane by setting h(z) ..= h(z̄)∗ for z ∈ C with Im z < 0, the Stieltjes transform of

φ·(x) is given by∫
R

φdτ (x)
τ − z

= ⟨√x1 , h(z)√x1⟩ − ⟨
√
x2 , h(z)√x2⟩+ i⟨√x3 , h(z)√x3⟩ − i⟨√x4 , h(z)√x4⟩

= ⟨h(z)x⟩

for all z ∈ C \R. This formula shows that the Stieltjes transform of φ·(x) is independent

of the decomposition x = x1 − x2 + ix3 − ix4. Hence, φB(x) is independent of this

representation for all B ∈ B since the Stieltjes transform uniquely determines even a

complex measure. A similar argument also implies that, for fixed B ∈ B, φB defines a

linear functional on A.
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Since v√
y(R) = ⟨y⟩ for y ∈ A+, we obtain for any x = (Rex)+− (Rex)− + i(Im x)+−

i(Im x)− ∈ A the bound

|φB(x)| ≤ v√(Rex)+
(R) + v√(Rex)−

(R) + v√(Imx)+
(R) + v√(Imx)−

(R)

≤ ⟨(Rex)+ + (Rex)− + (Im x)+ + (Im x)−⟩ ≤ 2∥x∥1,

where we used that (Rex)++(Re x)− = |Rex| and (Im x)++(Im x)− = |Im x|. Therefore,

φB extends to a bounded linear functional on L1 as A is a dense linear subspace of L1.

Using the isomorphism in (8.11.1), for each B ∈ B, there exists a unique v(B) ∈ A such

that

φB(x) = ⟨v(B)x⟩

for all x ∈ A. For y ∈ A, we conclude vy(B) = v√
yy∗(B) = φB(yy∗) = ⟨y , v(B)y⟩ ≥ 0,

where we used that vy = v√
yy∗ since they have the same Stieltjes transform. Since

⟨v(B)y⟩ ≥ 0 for all y ∈ A+, we have v(B) ∈ A+ for all B ∈ B. Moreover, vx = ⟨x, v(·)x⟩,

in particular, ⟨x, v(R)x⟩ = vx(R) = ⟨x, x⟩, for all x ∈ A. The polarization identity yields

that v is an A+-valued measure on B satisfying (8.3.6) and v(R) = 1. This completes

the proof of Lemma 8.3.1. □

Lemma 8.11.1 (Stieltjes transform inherits Hölder regularity). Let v be an A+-valued

measure on R and h : H → A be its Stieltjes transform, i.e., h satisfies (8.3.6) for all

z ∈ H. Let f : I → A+ be a γ-Hölder continuous function on an interval I ⊂ R with

γ ∈ (0, 1) and f be a density of v on I with respect to the Lebesgue measure, i.e.,

∥f(τ1)− f(τ2)∥ ≤ C0|τ1 − τ2|γ, v(A) =
∫
A
f(τ)dτ

for all τ1, τ2 ∈ I, some C > 0 and for all Borel sets A ⊂ I. Moreover, we assume that

∥f(τ)∥ ≤ C1 for all τ ∈ I. Let θ ∈ (0, 1].

Then, for z1, z2 ∈ H satisfying Re z1,Re z2 ∈ I and dist(Re zk, ∂I) ≥ θ, k = 1, 2, we

have

∥h(z1)− h(z2)∥ ≤
( 13C0

γ(1− γ) + 14C1

γθγ
+ 4∥v(R)∥

θ1+γ

)
|z1 − z2|γ. (8.11.3)

Furthermore, for z1, z2 ∈ H satisfying dist(zk, supp v) ≥ θ, k = 1, 2, we have

∥h(z1)− h(z2)∥ ≤
2∥v(R)∥

θ2 |z1 − z2|γ. (8.11.4)
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We remark that the proof of Lemma 8.11.1 is very similar to the proof of Lemma A.7

in [4]. Nevertheless, we present it here for the convenience of the reader.

Proof. We will prove (8.11.3) in two steps: First, we will estimate the left-hand side

of (8.11.3) for Im z1 = Im z2 and then for Re z1 = Re z2. Combining the estimates in these

two special cases, we will then conclude (8.11.3). We set Iθ ..= {τ ∈ I : dist(τ, ∂I) ≥ θ},

i.e., I ⊃ Iθ.

In fact, for ω1, ω2 ∈ Iθ and η > 0, we now prove

∥h(ω1 + iη)− h(ω2 + iη)∥ ≤
( 10C0

γ(1− γ) + 10C1

γθγ
+ 2∥v(R)∥

θ1+γ

)
|ω1 − ω2|γ. (8.11.5)

First, we conveniently decompose h(ω2 + iη)− h(ω1 + iη). For k = 1, 2, we have

h(ωk + iη) = iπf(ωk) + lim
R→∞

(∫
I∩(ω1+[−R,R])

f(τ)− f(ω)
τ − ωk − iη dτ −

∫
(ω1+[−R,R])\I

f(ωk)dτ
τ − ωk − iη

)

+
∫
R\I

v(dτ)
τ − ωk − iη .

Here, we used that

lim
R→∞

∫ R

−R

1
τ − iη dτ = iπ, lim

R→∞

∫
J2\J1

f(ω2)
τ − z2

dτ = lim
R→∞

∫
J1\J2

f(ω2)
τ − z2

dτ = 0,

where J1
..= ω1 + [−R,R] and J2

..= ω2 + [−R,R]. Thus, we obtain the decomposition

h(ω2 + iη)− h(ω1 + iη) = iπ(f(ω2)− f(ω1)) + lim
R→∞

(D1 + . . .+D6) +D7, (8.11.6)

where we introduced

Dk
..= (−1)k

∫
I∩J1

f(τ)− f(ωk)
τ − zk

1(|τ − ω1| ≤ |ω1 − ω2|)dτ, k = 1, 2,

D3
..=
∫
I∩J1

(f(τ)− f(ω2))
( 1
τ − z2

− 1
τ − z1

)
1(|τ − ω1| > |ω1 − ω2|)dτ,

D4
..= (f(ω1)− f(ω2))

∫
J1

1
τ − z1

1(|τ − ω1| > |ω1 − ω2|)dτ,

D5
..=
∫
J1\I

f(ω1)
τ − z1

1(|τ − ω1| ≤ |ω1 − ω2|)dτ −
∫
J1\I

f(ω2)
τ − z2

1(|τ − ω1| ≤ |ω1 − ω2|)dτ,

D6
..= −

∫
J1\I

f(ω2)
( 1
τ − z2

− 1
τ − z1

)
1(|τ − ω1| > |ω1 − ω2|)dτ,

D7
..=
∫
R\I

( 1
τ − z2

− 1
τ − z1

)
v(dτ).
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We remark that D1, . . . , D6 depend on R. However, since the following estimates on

their norms will hold true uniformly for all large R, they will also hold true for the limes

superior of these norms.

In order to estimate ∥D1∥ and ∥D2∥, we pull the norm inside the integral, use the

Hölder-continuity of f , neglect all η’s, extend the domain of integration from I ∩ J1 to R

and compute the remaining integral. This yields

∥D1∥ ≤
2C0

γ
|ω1 − ω2|γ, ∥D2∥ ≤

2C0

γ
|ω1 − ω2|γ.

For the estimate of ∥D3∥, we pull the norm inside the integral, disregard all η’s in⏐⏐⏐⏐ 1
τ − ω2 − iη −

1
τ − ω1 − iη

⏐⏐⏐⏐ ≤ |ω1 − ω2|
|τ − ω1||τ − ω2|

,

use the Hölder-continuity of f and extend the domain of integration from I ∩ J1 to R.

We, thus, obtain

∥D3∥ ≤ C0

∫
R

|ω2 − ω1|1(|τ − ω1| > |ω1 − ω2|)
|τ − ω1||τ − ω1 − (ω2 − ω1)|1−γ dτ ≤ 2C0

γ(1− γ) |ω1 − ω2|γ.

The real part of the integral in the definition of D4 vanishes as J1 and the argument

of the characteristic function are symmetric around ω1. Hence, since the imaginary part

of the integral is bounded by π, the Hölder-continuity of f yields

∥D4∥ ≤ C0π|ω1 − ω2|γ.

To bound ∥D5∥, we pull the norm inside of the integrals and use ω1, ω2 ∈ Iθ and

τ ∈ R \ I to see that θ is a lower bound on |τ − ω1| and |τ − ω2|. Moreover, the

characteristic function in the integrals yields upper bounds on |τ − ω1| and |τ − ω2|,

respectively. Hence, we obtain

∥D5∥ ≤
2∥f(ω1)∥+ 21+γ∥f(ω2)∥

γθγ
|ω1 − ω2|γ.

We now bound ∥D6∥ and ∥D7∥. Computing the difference on the left-hand side,

taking its absolute value to the power γ and using the triangle inequality for the modulus
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of difference to the power 1− γ as well as disregarding all η’s yield⏐⏐⏐⏐ 1
τ − ω1 − iη −

1
τ − ω2 − iη

⏐⏐⏐⏐ ≤ 21−γ|ω2 − ω1|γ

min{|τ − ω1|, |τ − ω2|}1+γ .

Thus, we pull the norms inside the integrals in the definition of D6 and D7, respectively,

use the previous bound as well as τ ∈ R \ I and ωi ∈ Iθ, i.e., |τ − ωi| ≥ θ, and obtain

∥D6∥ ≤
22−γ∥f(ω2)∥

γθγ
|ω1 − ω2|γ, ∥D7∥ ≤

21−γ∥v(R)∥
θ1+γ |ω1 − ω2|γ.

Starting from (8.11.6) and using the Hölder continuity of f for the first term on the

right-hand side of (8.11.6) as well as the previous estimates on ∥D1∥, . . . , ∥D7∥ complete

the proof of (8.11.5).

We now establish the second special case. For ω ∈ Iθ, and η1, η2 > 0, we now show

the bound

∥h(ω + iη1)− h(ω + iη2)∥ ≤
( √8C0

γ(1− γ) + 4C1

γθγ
+ 2∥v(R)∥

θ1+γ

)
|η1 − η2|γ. (8.11.7)

Similarly to the proof of (8.11.6), we obtain the decomposition

h(ω + iη2)− h(ω + iη1) = E1 + E2 + E3,

where we introduced

E1
..=
∫
I
(f(τ)− f(ω))

( 1
τ − ω − iη2

− 1
τ − ω − iη1

)
dτ,

E2
..=
∫
R\I

f(ω)
( 1
τ − ω − iη2

− 1
τ − ω − iη1

)
dτ,

E3
..=
∫
R\I

( 1
τ − ω − iη2

− 1
τ − ω − iη1

)
v(dτ).

Next, we verify the following bounds

∥E1∥ ≤
√

8C0

γ(1− γ) |η2 − η1|γ,

∥E2∥ ≤
22−γ

γθγ
∥f(ω)∥|η2 − η1|γ,

∥E3∥ ≤
21−γ

θ1+γ ∥v(R)∥|η2 − η1|γ.

(8.11.8)
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We, thus, notice that (8.11.7) is proven once the estimates in (8.11.8) are established.

Since

E1 = i
∫
I

(η2 − η1)(f(τ)− f(ω))
(τ − ω − iη1)(τ − ω − iη2)

dτ

we obtain

∥E1∥ ≤ C0

∫
R

|η2 − η1|
|τ − ω|1−γ 1√

2(|τ − ω|+ |η2 − η1|)
dτ ≤ 2

√
2C0

∫ ∞

0

|η2 − η1|dx
x1−γ(x+ |η2 − η1|)

≤
√

8C0

γ(1− γ) |η2 − η1|γ.

For the remaining estimates in the proof of (8.11.8), we remark that⏐⏐⏐⏐ 1
τ − ω − iη2

− 1
τ − ω − iη1

⏐⏐⏐⏐ ≤ |η2 − η1|γ

|τ − ω|2γ
21−γ

|τ − ω|1−γ ≤
21−γ

θ1+γ |η2 − η1|γ. (8.11.9)

Applying the second bound in (8.11.9) to the definition of E2 yields

∥E2∥ ≤ 21−γ∥f(ω)∥|η2 − η1|γ
∫
R\I

1
|τ − ω|1+γ dτ ≤ 22−γ

γθγ
∥f(ω)∥|η2 − η1|γ,

which implies the second bound in (8.11.8). Similarly, we apply the third bound in

(8.11.9) to the definition of E3 and conclude

∥E3∥ ≤
21−γ

θ1+γ ∥v(R)∥|η2 − η1|γ.

This completes the proof of (8.11.8) and, hence, the one of (8.11.7) as well. By combining

(8.11.5) and (8.11.7), we obtain (8.11.3).

The bound in (8.11.4) is a trivial consequence of⏐⏐⏐⏐ 1
τ − z1

− 1
τ − z2

⏐⏐⏐⏐ ≤ 21−γ|z1 − z2|γ

min{|τ − z1|, |τ − z2|}1+γ ≤
2
θ2 |z1 − z2|γ,

where we used τ ∈ supp v and dist(zk, supp v) ≥ θ for k = 1, 2. This completes the proof

of Lemma 8.11.1. □

8.12. Positivity-preserving, symmetric operators on A

Lemma 8.12.1. Let T : A → A be a positivity-preserving, symmetric operator.

(i) If T [a] ≤ C⟨a⟩1 for some C > 0 and all a ∈ A+ then ∥T∥2 ≤ 2C. Moreover,

∥T∥2 is an eigenvalue of T and there is x ∈ A+ \ {0} such that T [x] = ∥T∥2x.
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(ii) We assume ∥T∥2 = 1 and that there are c, C > 0 such that

c⟨a⟩1 ≤ T [a] ≤ C⟨a⟩1 (8.12.1)

for all a ∈ A+. Then 1 is an eigenvalue of T with a one-dimensional eigenspace.

There is a unique x ∈ A+ satisfying T [x] = x and ∥x∥2 = 1. Moreover, x is

positive definite,

cC−1/21 ≤ x ≤ C1. (8.12.2)

Furthermore, the spectrum of T has a gap of size θ ..= c6/(2(c3 + 2C2)C2)), i.e.,

Spec(T ) ⊂ [−1 + θ, 1− θ] ∪ {1}. (8.12.3)

Lemma 8.12.1 is the analogue of Lemma 4.8 in [6]. Here, we explain how to generalize

it to the context of von Neumann algebras. In the proof of Lemma 8.12.1, we will use

the following lemma. We omit its proof since the first part is obtained as in (4.2) of [6]

and the second part as in (5.28) of [4].

Lemma 8.12.2. Let T : A → A be a linear map.

(i) If T is positivity-preserving such that T [a] ≤ C⟨a⟩1 for all a ∈ A+ and some

C > 0 then ∥T∥ ≤ ∥T∥2→∥ · ∥ ≤ 2C.

(ii) If T − ωId is invertible on A for some ω ∈ C \ {0} and ∥(T − ωId)−1∥2 < ∞,

∥T∥2→∥ · ∥ <∞ then we have

∥(T − ωId)−1∥ ≤ |ω|−1
(
1 + ∥T∥2→∥ · ∥∥(T − ωId)−1∥2

)
.

Proof of Lemma 8.12.1. For the proof of (i), we remark that Lemma 8.12.2 (i)

implies ∥T∥2 ≤ ∥T∥2→∥ · ∥ ≤ 2C. Without loss of generality, we assume ∥T∥2 = 1. Since

T is positivity-preserving, we have T [b] ∈ Asa for all b ∈ Asa. It is easy to check that,

for each a ∈ A, one may find b ∈ Asa such that ∥a∥2 = ∥b∥2 and ∥T [a]∥2 ≤ ∥T [b]∥2.

Hence, ∥T |Asa∥2 = ∥T∥2 = 1 and 1 is contained in the spectrum of T : L2
sa → L2

sa, where

L2
sa

..= Asa
∥ · ∥2 , due to the variational principle for the spectrum of self-adjoint operators

and |⟨b , T [b]⟩| ≤ ⟨|b| , T [|b|]⟩ for all b ∈ Asa. This last inequality can be checked easily by

decomposing b = b+ − b− into positive and negative part.
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Hence, due to the symmetry of T , there is a sequence (yn)n of approximating eigen-

vectors in Asa, i.e., yn ∈ Asa, ∥yn∥2 = 1 and T [yn]− yn converges to 0 in L2 for n→∞.

We set xn ..= |yn|. By using ∥T |L2
sa∥2 = 1 and ⟨b , T [b]⟩ ≤ ⟨|b| , T [|b|]⟩ for all b ∈ Asa, we

obtain ∥T [xn]− xn∥2
2 ≤ 2∥yn∥2∥T [yn]− yn∥2 and, thus,

lim
n→∞
∥T [xn]− xn∥2 = 0. (8.12.4)

Since the unit ball in the Hilbert space L2 is relatively sequentially compact in the weak

topology, we can assume by possibly replacing (xn)n by a subsequence that there is x ∈ L2

such that xn ⇀ x weakly in L2. From T [xn] ≤ C⟨xn⟩1, we conclude

xn ≤ (Id− T )[xn] + C⟨xn⟩1.

Multiplying this by √xn from the left and the right and applying ⟨ · ⟩ yields

1 ≤ ⟨xn , (Id− T )[xn]⟩+ C⟨xn⟩2.

Taking the limit n → ∞, we obtain ⟨x⟩ ≥ C−1/2, due to (8.12.4). Hence, x ̸= 0 and we

can replace x by x/∥x∥2 and xn by xn/∥x∥2. For any b ∈ L2, we have

⟨b , (Id− T )[x]⟩ = lim
n→∞
⟨b , (Id− T )[xn]⟩ = 0

due to xn ⇀ x and (8.12.4). Hence, T [x] = x. Since ∥T∥2→∥ · ∥ ≤ 2C, we have T [b] ∈ A

for all b ∈ L2 and thus x = T [x] ∈ A. Owing to xn ⇀ x and xn ∈ A+, we obtain x ∈ A+.

This completes the proof of (i).

We start the proof of (ii) by using (8.12.1) with a = x which immediately yields the

upper bound in (8.12.2). As ⟨x⟩ ≥ C−1/2, the first inequality in (8.12.1) then yields the

lower bound in (8.12.2).

In order to prove the spectral gap, (8.12.3), we remark that ∥T∥2→∥ · ∥ ≤ 2C due to

the upper bound in (8.12.1) and Lemma 8.12.2 (i). Hence, by Lemma 8.12.2 (ii), the

spectrum of T as an operator on A is contained in the union of {0} and the spectrum

of T as an operator on L2. Therefore, we will consider T as an operator on L2 in the

following and exclusively study its spectrum as an operator on L2. Hence, to prove the

spectral gap, it suffices to establish a lower bound on ⟨y , (Id± T )[y]⟩ for all self-adjoint
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y ∈ A satisfying ∥y∥2 = 1 and ⟨x, y⟩ = 0. Fix such y ∈ A. Since y is self-adjoint we have

y = lim
N→∞

yN , yN ..=
N∑
k=1

λNk p
N
k (8.12.5)

for some λNn ∈ R and pNk ∈ A orthogonal projections such that pNk pNl = pNk δk,l. Here, the

convergence yN → y is with respect to ∥·∥. We can assume that ∥yN∥2 = 1 for all N as

well as ⟨pNk ⟩ > 0 for all k and ⟨pN1 + . . .+ pNN⟩ = 1 for all N .

We will now reduce estimating ⟨y , (Id± T )[y]⟩ to estimating a scalar product on

CN . On CN , we consider the scalar product ⟨ · , · ⟩N induced by the probability measure

π(A) = ∑
k∈A⟨pNk ⟩ on [N ], i.e.,

⟨λ, µ⟩N =
n∑
k=1

λkµk⟨pNk ⟩

for λ = (λk)Nk=1, µ = (µk)Nk=1 ∈ CN . The norm on CN and the operator norm on CN×N

induced by ⟨ · , · ⟩N are denoted by ∥ · ∥N and ∥ · ∥, respectively. Moreover, IdN is the

identity map on CN . With this notation, we obtain from (8.12.5) that

⟨y , (Id± T )[y]⟩ = lim
N→∞

N∑
k,l=1

λNk λ
N
l ⟨pNk , (Id± T )[pNl ]⟩ = lim

N→∞
⟨λN , (IdN ± SN)[λN ]⟩N ,

where we introduced λN = (λNk )Nk=1 ∈ CN and the N ×N symmetric matrix SN viewed

as an integral operator on ([N ], π) with the kernel sNkl given by

sNkl = ⟨p
N
k , T [pNl ]⟩
⟨pNk ⟩⟨pNl ⟩

.

Since ∥yN∥2 = 1, we have ∥λN∥N = 1. By the flatness of T , we have

c ≤ sNkl ≤ C. (8.12.6)

In the following, we will omit the N -dependence of λk, skl and pk from our notation.

By the definition of ⟨· , ·⟩N , we have

⟨λ, Sλ⟩N =
N∑

k,l=1
λk⟨pk⟩skl⟨pl⟩λl = ⟨yN , T [yN ]⟩.
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Let s ∈ CN be the Perron-Frobenius eigenvector of S satisfying Ss = ∥S∥s, ∥s∥N = 1.

From (8.12.6), we conclude

c ≤ ⟨e , Se⟩N ≤ ∥S∥ = ⟨s , Ss⟩N ≤ ∥T∥2 = 1, (8.12.7)

where e = (1, . . . , 1) ∈ CN . Since ∥s∥N = 1 and c ≤ ∥S∥, we have

max
i
si = (Ss)i

∥S∥
≤ C

c

N∑
k=1

sk⟨pk⟩ ≤
C

c

(
N∑
k=1
⟨pk⟩

)1/2 ( N∑
k=1

s2
k⟨pk⟩

)1/2

= C

c
.

As infk,l sk,l ≥ c by (8.12.6), Lemma 5.7 in [4] yields

Spec(S) ⊂
[
− ∥S∥+ c3

C2 , ∥S∥ −
c3

C2

]
∪ {∥S∥}.

We decompose λ = (1− ∥w∥2
N)1/2s+ w with w ⊥ s and obtain

|⟨λ, Sλ⟩N | ≤ ∥S∥(1− ∥w∥2
N) +

(
∥S∥ − c3

C2

)
∥w∥2

N ≤ 1− c3

C2∥w∥
2
N , (8.12.8)

where we used ∥S∥ ≤ 1 in the last step. Hence, it remains to estimate ∥w∥N .

Recalling T [x] = x, we set x̃ = (⟨xpk⟩/⟨pk⟩)Nk=1 and compute

⟨x, yN⟩ =
∑
k

λk⟨xpk⟩ = ⟨x̃ , λ⟩N .

Since the left-hand side goes to ⟨x, y⟩ = 0 for N → ∞, we can assume that |⟨x̃ , λ⟩N | ≤√
ε/2 for any fixed ε ∼ 1 and all sufficiently large N . As x̃k ≥ c/

√
C by (8.12.2), we

obtain

(1− ∥w∥2
N)c

2

C

(∑
k

sk⟨pk⟩
)2

≤ (1− ∥w∥2
N)⟨x̃ , s⟩2N = (⟨x̃ , λ⟩N − ⟨x̃ , w⟩N)2

≤ 2∥x̃∥2
N∥w∥2

N + ε.

(8.12.9)

Now, we use c ≤ ⟨s , Ss⟩N from (8.12.7) to get

c ≤ ⟨s , Ss⟩N =
∑
k,l

sksklsl⟨pk⟩⟨pl⟩ ≤ C

(∑
k

sk⟨pk⟩
)2

.
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By plugging this and ∥x̃∥2
N ≤ ∥x∥2∑

k⟨pk⟩ = 1 into (8.12.9), solving the resulting estimate

for ∥w∥2
N and choosing ε = c3/(2C2), we obtain

∥w∥2
N ≥

c3

2(c3 + 2C2) .

Therefore, from (8.12.8), we conclude

|⟨λ, Sλ⟩N | ≤ 1− c6

2(c3 + 2C2)C2

uniformly for all sufficiently large N ∈ N. We thus obtain that

⟨y , (Id± T )[y]⟩ ≥ c6

2(c3 + 2C2)C2

if y ⊥ x and ∥y∥2 = 1. We conclude (8.12.3), which completes the proof of the lemma. □

Lemma 8.12.3. If T : A → A is a positivity-preserving operator such that ∥T∥2 < 1 and

∥T∥2→∥ · ∥ < ∞ then Id − T is invertible as a bounded operator on A and (Id − T )−1 is

positivity-preserving with

(Id− T )−1[x∗x] ≥ x∗x (8.12.10)

for all x ∈ A.

Proof. Since ∥T∥2 < 1, Id− T is invertible on L2 and we conclude the invertibility

of Id− T on A from Lemma 8.12.2 (ii).

Moreover, for y ∈ A with ∥y∗y∥2 < 1, we expand the inverse as a Neumann series

using ∥T∥2 < 1 and obtain

(Id− T )−1[y∗y] = y∗y +
( ∞∑
k=1

T k[y∗y]
)
≥ y∗y.

The series converges with respect to ∥ · ∥2. In the last inequality, we used that T k is a

positivity-preserving operator for all k ∈ N. Hence, by rescaling a general x ∈ A, we see

that (Id− T )−1 is a positivity-preserving operator on A which satisfies (8.12.10). □
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8.13. Non-Hermitian perturbation theory

Let B0 : A → A be a bounded operator with an isolated, single eigenvalue β0 and an

associated eigenvector b0, ∥b0∥2 = 1, i.e.,

B0[b0] = β0b0.

Moreover, we denote by P0 and Q0 the spectral projections corresponding to β0 and

Spec(B0) \ {β0}. Note that P0 + Q0 = Id but they are not orthogonal projections in

general. If l0 is a normalized eigenvector of B∗
0 associated to its eigenvalue β0, then we

obtain

P0 = ⟨l0 , · ⟩
⟨l0 , b0⟩

b0. (8.13.1)

For some bounded operator E : A → A, we consider the perturbation

B = B0 + E.

We assume E to be sufficiently small such that there is an isolated, single eigenvalue β of

B close to β0 and that β and β0 are separated from Spec(B) \ {β} and Spec(B0) \ {β0}

by an amount ∆ > 0. Let P be the spectral projection of B associated to β.

Lemma 8.13.1. We define b ..= P [b0] and l ..= P ∗[l0]. Then b and l are eigenvectors of

B and B∗ corresponding to β and β̄, respectively. Moreover, we have

b = b0 + b1 + b2 +O(∥E∥3), l = l0 + l1 + l2 +O(∥E∥3), (8.13.2)

where we introduced

b1 = −Q0(B0 − β0Id)−1E[b0],

b2 = Q0(B0 − β0Id)−1E(B0 − β0Id)−1Q0E[b0]−Q0(B0 − β0Id)−2EP0E[b0]

− P0EQ0(B0 − β0Id)−2E[b0],

l1 = −Q∗
0(B∗

0 − β̄0Id)−1E∗[l0],

l2 = Q∗
0(B∗

0 − β̄0Id)−1E∗(B∗
0 − β̄0Id)−1Q∗

0E
∗[l0]−Q∗

0(B∗
0 − β0Id)−2E∗P ∗

0E
∗[l0]

− P ∗
0E

∗Q∗
0(B∗

0 − β0Id)−2E∗[l0].
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In particular, we have bi, li = O(∥E∥i) for i = 1, 2. Furthermore, we obtain

β⟨l , b⟩ = β0⟨l0 , b0⟩+ ⟨l0 , E[b0]⟩ − ⟨l0 , EB0(B0 − β0Id)−2Q0E[b0]⟩+O(∥E∥3). (8.13.3)

The implicit constants in the error terms depend only on the separation ∆.

Proof. In this proof, the difference B − ω with an operator B and a scalar ω is

understood as B − ωId. We first prove that

P = P0 + P1 + P2 +O(∥E∥3), (8.13.4)

where we defined

P1
..= − Q0

B0 − β0
EP0 − P0E

Q0

B0 − β0
,

P2
..= P0E

Q0

B0 − β0
E

Q0

B0 − β0
+ Q0

B0 − β0
EP0E

Q0

B0 − β0
+ Q0

B0 − β0
E

Q0

B0 − β0
EP0

− Q0

(B0 − β0)2EP0EP0 − P0E
Q0

(B0 − β0)2EP0 − P0EP0E
Q0

(B0 − β0)2 .

The analytic functional calculus yields that

P = − 1
2πi

∮
Γ

1
B − ω

dω

= 1
2πi

∮
Γ

(
− 1
B0 − ω

+ 1
B0 − ω

E
1

B0 − ω
− 1
B0 − ω

E
1

B0 − ω
E

1
B0 − ω

)
dω

+O(∥E∥3),

(8.13.5)

where Γ is a closed path that encloses only β and β0 both with winding number +1 but no

other element of the spectra of B and B0. Integrating the first summand in the integrand

of (8.13.5) yields P0. In the second and third summand, we expand Id = P0 +Q0 in the

numerators. Applying an analogue of the residue theorem yields P1 and P2 for the second

and third summand, respectively. For example, for the second summand, we obtain

P1 = 1
2πi

∮
Γ

1
B0 − ω

E
1

B0 − ω
dω = − Q0

B0 − β0
EP0 − P0E

Q0

B0 − β0
.

The other two combinations of P0, Q0 vanish. Using a similar expansion for the third

term, we get (8.13.4).
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Starting from (8.13.4) as well as observing bi = Pi[b0] and li = P ∗
i [l0] for i = 1, 2,

the relations (8.13.2) are a direct consequence of the definitions b = P [b0] and l = P ∗[l0]

and (8.13.1).

We will show below that

BP = B0P0 +B1 +B2 +O(∥E∥3), (8.13.6)

where we defined

B1
..= P0EP0 − β0

(
Q0

B0 − β0
EP0 + P0E

Q0

B0 − β0

)
,

B2
..= β0

(
P0E

Q0

B0 − β0
E

Q0

B0 − β0
+ Q0

B0 − β0
EP0E

Q0

B0 − β0
+ Q0

B0 − β0
E

Q0

B0 − β0
EP0

)

− B0Q0

(B0 − β0)2EP0EP0 − P0E
B0Q0

(B0 − β0)2EP0 − P0EP0E
B0Q0

(B0 − β0)2 .

Now, we obtain (8.13.3) by applying (8.13.2) as well as (8.13.6) to β⟨l , b⟩ = ⟨l , BPb⟩.

In order to prove (8.13.6), we use the analytic functional calculus with Γ as defined

above to obtain

BP = − 1
2πi

∮
Γ

ω

B − ω
dω

= 1
2πi

∮
Γ
ω
(
− 1
B0 − ω

+ 1
B0 − ω

E
1

B0 − ω
− 1
B0 − ω

E
1

B0 − ω
E

1
B0 − ω

)
dω

+O(∥E∥3).

Proceeding similarly as in the proof of (8.13.4) yields (8.13.6) and thus completes the

proof of Lemma 8.13.1. □

8.14. Characterization of supp ρ

The following lemma gives equivalent characterizations of supp ρ in terms of m. Note

supp ρ = supp v due to the faithfulness of ⟨ · ⟩. We denote the disk of radius ε > 0

centered at z ∈ C by Dε(z) ..= {w ∈ C : |z − w| < ε}.

Lemma 8.14.1 (Behaviour of m on R \ supp ρ). Let m be the solution of the Dyson

equation, (8.2.3), for a data pair (a, S) ∈ Asa × Σ with ∥a∥ ≤ k0 and S[x] ≤ k1⟨x⟩1 for
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all x ∈ A+ and some k0, k1 > 0. Then, for any fixed τ ∈ R, the following statements are

equivalent:

(i) There is c > 0 such that

lim sup
η↓0

η∥Imm(τ + iη)∥−1 ≥ c.

(ii) There are C > 0 and N ⊂ (0, 1] with an accumulation point 0 such that

∥m(z)∥ ≤ C, ∥m(z)−1∥ ≤ C,

C−1⟨Imm(z)⟩1 ≤ Imm(z) ≤ C⟨Imm(z)⟩1, ∥F (z)∥2 ≤ 1− C−1
(8.14.1)

for all z ∈ τ + iN . (The definition of F was given in (8.3.4).)

(iii) There is m = m∗ ∈ A such that

lim
η↓0
∥m(τ + iη)−m∥ = 0. (8.14.2)

Moreover, there is C > 0 such that ∥m∥ ≤ C and ∥(Id− CmS)−1∥ ≤ C.

(iv) There are ε > 0 and an analytic function f : Dε(τ)→ A such that f(z) = m(z)

for all z ∈ Dε(τ) ∩ H and f(z) = f(z̄)∗ for all z ∈ Dε(τ). In particular,

f(z) = f(z)∗ for z ∈ Dε(τ) ∩ R.

In other words, m can be analytically extended to a neighbourhood of τ .

(v) There is ε > 0 such that dist(τ, supp ρ) = dist(τ, supp v) ≥ ε.

(vi) There is c > 0 such that

lim inf
η↓0

η∥Imm(τ + iη)∥−1 ≥ c.

All constants in (i) – (vi) depend effectively on each other as well as possibly k0, k1 and

an upper bound on |τ |. For example, in the implication (iii)⇒ (v), ε in (v) can be chosen

to depend only on k1 and C in (iii).

We remark that m in (iii) above is invertible and satisfies (8.2.3) at z = τ .

As a direct consequence of the equivalence of (i) and (v), we spell out the following

simple characterization of supp ρ.
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Corollary 8.14.2 (Characterization of supp ρ). Under the conditions of Lemma 8.14.1,

we have

lim
η↓0

η∥Imm(τ + iη)∥−1 = 0. (8.14.3)

if and only if τ ∈ supp ρ(= supp v).

Remark 8.14.3. In the proof of Lemma 8.14.1, the condition S[x] ≤ k1⟨x⟩1 for all

x ∈ A+ is only used to guarantee the following two weaker consequences: First, this

condition implies ∥S∥2→∥ · ∥ ≤ 2k1. Moreover, this condition yields, by Lemma 8.12.1 (i),

that F = F (τ + iη) has an eigenvector f ∈ A+ corresponding to ∥F∥2, Ff = ∥F∥2f , for

any fixed τ ∈ R\supp ρ and any η ∈ (0, 1]. If both of these consequences are verified, then

the condition S[x] ≤ k1⟨x⟩1 may be dropped from Lemma 8.14.1 without any changes in

the proof.

For the proof of Lemma 8.14.1, we need the following quantitative version of the

implicit function theorem.

Lemma 8.14.4 (Quantitative implicit function theorem). Let X, Y, Z be Banach spaces,

U ⊂ X and V ⊂ Y open subsets with 0 ∈ U, V . Let Φ: U × V → Z be continuously

Fréchet-differentiable map such that the derivative ∂1Φ(0, 0) with respect to the first vari-

able has a bounded inverse in the origin and Φ(0, 0) = 0. Let δ > 0 such that BX
δ ⊂ U ,

BY
δ ⊂ V and

sup
(x,y)∈BX

δ
×BY

δ

∥IdX − (∂1Φ(0, 0))−1∂1Φ(x, y)∥ ≤ 1
2 , (8.14.4)

where BX
δ and BY

δ denote the δ-ball around 0 in X and Y , respectively. We also assume

that

∥(∂1Φ(0, 0))−1∥ ≤ C1, sup
(x,y)∈BX

δ
×BY

δ

∥∂2Φ(x, y)∥ ≤ C2

for some constants C1, C2, where ∂2 denotes the derivative of Φ with respect to the

second variable. Then there is a constant ε > 0, depending only on δ, C1 and C2, and

a unique function f : BY
ε → BX

δ such that Φ(f(y), y) = 0 for all y ∈ BY
ε . Moreover, f

is continuously Fréchet-differentiable and if Φ(x, y) = 0 for some (x, y) ∈ BX
δ ×BY

ε then

x = f(y). If Φ is analytic then f will be analytic.

Proof. The proof is elementary and left to the reader. □
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We will apply the implicit function theorem, Lemma 8.14.4, to the function Φx(y, ω)

which we introduce now. For x, y ∈ A and ω ∈ C, we define

Φx(y, ω) ..= (Id− CxS)[y]− ωx2 − ω

2
(
xy + yx

)
− 1

2
(
xS[y]y + yS[y]x

)
. (8.14.5)

We remark that Φm(z)(m(z + ω) − m(z), ω) = 0 for all z ∈ H and z + ω ∈ H

(see (8.6.9)). For the function Φx(y, ω), we have the following consequence of the implicit

function theorem, Lemma 8.14.4.

Lemma 8.14.5. For some x ∈ A, we set Φ(y, ω) ..= Φx(y, ω) for all y ∈ A and ω ∈ C.

If there is κ > 0 such that

∥x∥ ≤ κ, ∥S∥ ≤ κ, ∥(Id− CxS)−1∥ ≤ κ (8.14.6)

then there are δ > 0 and ε > 0, depending only on κ, and an analytic function f : Dε(0)→

BA
δ such that

Φ(f(ω), ω) = 0

for all ω ∈ Dε(0), where Dε(0) ..= {ζ ∈ C : |ζ| < ε} and BA
δ

..= {ỹ ∈ A : ∥ỹ∥ ≤ δ}.

Moreover, f is unique in the following strong sense: if y ∈ BA
δ satisfies Φ(y, ω) = 0 for

some ω ∈ Dε(0) then we have y = f(ω).

Proof. In order to prove Lemma 8.14.5, we apply Lemma 8.14.4, whose assumptions

we check first. For the directional derivative (∂1Φ(y, ω))[h] at (y, ω) with respect to the

first variable in the direction h ∈ A, we obtain

(∂1Φ(y, ω))[h] = (Id− CxS)[h]− ω

2 (xh+ hx)− 1
2(x(S[h]y + S[y]h) + (yS[h] + hS[y])x).

Hence, ∂1Φ(0, 0) = Id − CxS and, owing to the third assumption in (8.14.6), we can

choose C1 = κ in Lemma 8.14.4. Moreover, we also conclude

(Id− (∂1Φ(0, 0))−1∂1Φ(y, ω))[h] = 1
2(Id− CxS)−1

[
ω(xh+ hx) + x(S[y]h+ hS[y])

+ (hS[y] + yS[h])x
]
.

We now determine how to choose δ such that (8.14.4) is satisfied. We estimate the

previous expression under the assumption that ∥y∥ ≤ δ and |ω| ≤ δ for some δ > 0.
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Under this assumption, we obtain

∥(Id− (∂1Φ(0, 0))−1∂1Φ(y, ω))[h]∥ ≤ ∥(Id− CxS)−1∥(δ∥x∥+ 2∥x∥∥S∥δ)∥h∥.

Hence, (8.14.4) is satisfied if

δ <
1

2∥(Id− CxS)−1∥∥x∥(1 + 2∥S∥) .

Therefore, we can choose δ ..= (2κ2(1 + 2κ))−1 in order to meet the condition (8.14.4).

From the definition of Φ in (8.14.5), we obtain that the directional derivative ∂2Φ(y, ω)

at (y, ω) with respect to the second variable is given by

(∂2Φ(y, ω))[σ] = (−x2 − 1
2(xy + yx))σ

for σ ∈ C. Hence, with the choice of δ above, we can choose C2 = κ2+κδ in Lemma 8.14.4.

Therefore, δ, C1 and C2 in Lemma 8.14.4 can be chosen to depend only on κ due to the as-

sumption (8.14.6). Thus, since Φ is analytic due to its definition in (8.14.5), Lemma 8.14.5

follows from the implicit function theorem, Lemma 8.14.4. □

Proof of Lemma 8.14.1. Lemma 8.12.2 (i) yields ∥S∥2→∥ · ∥ ≲ 1 due to S[x] ≤

k1⟨x⟩1 for all x ∈ A+. Therefore, ∥a∥ ≲ 1 and ∥S∥ ≤ ∥S∥2→∥ · ∥ ≲ 1 imply that

supp v = supp ρ is bounded, i.e., sup{|τ | : τ ∈ supp ρ} ≲ 1 by (8.2.5a).

First, we assume that (i) holds true. We set N ..= {η ∈ (0, 1] : η∥Imm(τ + iη)∥−1 ≥

c/2}. By assumption, N is nonempty and has 0 as an accumulation point. In particular,

we have

∥Imm(z)∥ ≤ 2η
c
, η1 ≲ Imm(z) ≲ η

c
1 (8.14.7)

for all z ∈ τ + iN . The first bound is a direct consequence of the definition of N .

The second bound follows from (8.2.4) and the bounded support of v. Moreover, the

first bound immediately implies the third bound. By averaging the two last bounds in

(8.14.7) and using Imm(τ + iη) ≲ η for η ∈ N , we obtain the third and fourth estimates

in (8.14.1). In particular, ρ(z) ∼ ∥Imm(z)∥ for z ∈ τ + iN . Owing to (8.2.4), for any
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z ∈ H and x, y ∈ L2, we have

|⟨x,m(z)y⟩| ≤ 1
2

∫
R

⟨x, v(dτ)x⟩+ ⟨y , v(dτ)y⟩
|τ − z|

≲
1
η

(
⟨x, Imm(z)x⟩+ ⟨y , Imm(z)y⟩

)
≤ 2
c

(
∥x∥2

2 + ∥y∥2
2

)
.

Here, we used that v has a bounded support and (8.2.4) in the second step and the first

bound in (8.14.7) in the last step. This proves the first bound in (8.14.1). The second

estimate in (8.14.1) is a consequence of (8.2.3) as well as ∥a∥ ≲ 1, ∥S∥ ≤ ∥S∥2→∥ · ∥ ≲ 1

and the first bound in (8.14.1). We recall the definitions of q = q(z) and u = u(z) in

(8.3.1). Owing to Lemma 8.4.8 (i), the bounds in (8.14.1) yield

∥q∥ ≲ 1, ∥q−1∥ ≲ 1, Im u ∼ ⟨Im u⟩1 ∼ ρ1 (8.14.8)

uniformly for all z ∈ τ + iN . Thus, for all x ∈ A+ and z = τ + iη and η ∈ N , F = F (z)

satisfies F [x] ≲ ⟨x⟩1 due to S[x] ≲ ⟨x⟩1. Hence, Lemma 8.12.1 (i) yields the existence of

an eigenvector f ∈ A+, i.e., Ff = ∥F∥2f . By taking the imaginary part of (8.3.3) and

then the scalar product with f as well as using the symmetry of F , we get

1− ∥F∥2 = η
⟨f , qq∗⟩
⟨f , Im u⟩

∼ η∥Imm(z)∥−1 ≳ c (8.14.9)

for z = τ + iη and η ∈ N (compare (8.4.5)). Here, we also used f ∈ A+, (8.14.8),

ρ(z) ∼ ∥Imm(z)∥ and the definition of N . This completes the proof of (i) ⇒ (ii).

Next, let (ii) be satisfied. As before, Lemma 8.4.8 (i) implies (8.14.8) for all z ∈ τ+iN

due to the first four bounds in (8.14.1). Thus, inspecting the proofs of Lemma 8.4.8 (iii)

and Proposition 8.4.1 and using ∥S∥2→∥ · ∥ ≲ 1 via Lemma 8.12.2 (ii) yield

∥(Id− Cm(z)S)−1∥ ≲ 1 (8.14.10)

uniformly for all z ∈ τ + iN . Thus, we can apply Lemma 8.14.5, with x = m(τ + iη) for

each η ∈ N . For Φ as defined in (8.14.5), we set Ψη(∆, ω) ..= Φm(τ+iη)(∆, ω) for η ∈ N ,

∆ ∈ A and ω ∈ C. Thus, by Lemma 8.14.5, there are δ > 0, ε > 0 and unique analytic

functions ∆η : Dε(0)→ BA
δ such that Ψη(∆η(ω), ω) = 0 for all ω ∈ Dε(0) and all η ∈ N .

We now explain why ε can be chosen uniformly for all η ∈ N . By (8.14.1) and (8.14.10),

there are bounds on m(z) and (Id − Cm(z)S)−1 which hold uniformly for z ∈ τ + iN .
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Hence, there is a κ > 0, independent of η, such that (8.14.6) holds true uniformly for

all η ∈ N . These uniform bounds yield the uniformity of ε. Since 0 is an accumulation

point of N , there is η0 ∈ N such that η0 < ε. We set z ..= τ + iη0. An easy computation

using (8.2.3) at spectral parameters z and z + ω shows Ψη0(m(ω + z) − m(z), ω) = 0

for all ω ∈ C such that ω + z ∈ H. Owing to the continuity of m, we find ε′ ∈ (0, ε)

such that m(ω + z) − m(z) ∈ BA
δ for all ω ∈ Dε′(0). Thus, by the uniqueness of ∆η0

(cf. Lemma 8.14.5), ∆η0(ω) = m(ω + z)−m(z) for all ω ∈ Dε′(0). As ∆η0 and m(·+ z)

are analytic, owing to the identity theorem, we obtain ∆η0(ω) +m(z) = m(ω + z) for all

ω ∈ Dε(0) satisfying ω + z ∈ H. Using η0 < ε, we set m ..= ∆η0(−iη0) + m(z). For this

choice of m, the continuity of ∆η0(ω) for ω → −iη0 and ∆η0(ω) +m(z) = m(ω + z) yield

(8.14.2). It remains to show that m is self-adjoint. Since (8.14.8) holds true under (ii) as

we have shown above, we obtain

η∥Imm(z)∥−1 ∼ 1− ∥F∥2 ≥ C−1

for z = τ + iη and η ∈ N as in (8.14.9). Thus, lim infη↓0∥Imm(τ + iη)∥ ≤ 0. Hence, we

obtain Imm = 0, i.e., m = m∗. This completes the proof of (ii) ⇒ (iii).

If (iii) holds true then Id−CmS has a bounded linear inverse on A for m. Hence, we

can apply Lemma 8.14.5 with x = m. Therefore, there are δ > 0, ε > 0 and an analytic

function ∆: Dε(0) → BA
δ such that Φm(∆(ω), ω) = 0 for all ω ∈ Dε(0). In particular,

f : Dε(τ)→ A, f(w) ..= ∆(w− τ) +m is analytic. From (8.14.2) and (8.2.3), we see that

m is invertible and satisfies (8.2.3) at z = τ . Thus, a straightforward computation using

(8.2.3) at z = τ and at z = τ + iη yields Φm(m(τ + iη) − m, iη) = 0 for all η ∈ (0, ε].

Therefore, m(τ + iη) = ∆(iη) + m = f(τ + iη) for all η ∈ (0, η∗] and some η∗ ∈ (0, ε]

due to the uniqueness part of Lemma 8.14.5 and (8.14.2). Since m and f are analytic

on Dε(τ) ∩H, the identity theorem implies m(z) = f(z) for all z ∈ Dε(τ) ∩H. A simple

computation shows Φm(∆(ω̄)∗, ω) = Φm(∆(ω̄), ω̄)∗ = 0 for all ω ∈ Dε(0) as m = m∗.

Hence, ∆(ω) = ∆(ω̄)∗ for all ω ∈ Dε(0) by the uniqueness part of Lemma 8.14.5. Thus,

f(w) = f(w̄)∗ for all w ∈ Dε(τ) and f(w) = f(w)∗ for all w ∈ Dε(τ) ∩ R. This proves

(iii) ⇒ (iv). Clearly, (iv) implies (v) by (8.2.4).
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If the statement in (v) holds true then dist(τ, supp ρ) ≥ ε. In particular, by (8.3.7),

we have

lim inf
η↓0

η∥Imm(τ + iη)∥−1 ≥ lim inf
η↓0

dist(τ + iη, supp ρ)2 ≥ ε2

for all η > 0. Here, we used (8.3.7) in the first step. This immediately implies (vi) with

c = ε2. Moreover, (i) is immediate from (vi).

Inspecting the proofs of the implications above shows the additional statement about

the effective dependence of the constants in (i) – (vi). In particular, the application of

Lemma 8.14.5, in the proof of (iv) shows that ε can be chosen to depend only on k1 and

C from (iii). This completes the proof of Lemma 8.14.1. □





CHAPTER 9

Correlated Random Matrices: Band Rigidity and Edge

Universality

The present chapter contains the preprint [17] which was written jointly with László

Erdős, Torben Krüger and Dominik Schröder. We prove edge universality for a general

class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary

expectation. Our theorem also applies to internal edges of the self-consistent density

of states. In particular, we establish a strong form of band rigidity which excludes

mismatches between location and label of eigenvalues close to internal edges in these

general models.

9.1. Introduction

Spectral statistics of large random matrices exhibit a remarkably robust universality

pattern; the local distribution of eigenvalues is independent of details of the matrix ensem-

ble up to symmetry type. In the bulk of the spectrum this was first observed by Wigner

and formalized by Dyson and Mehta [114] who also computed the correlation functions

of the Gaussian ensembles in the 1960’s. At the spectral edges the correct statistics was

identified by Tracy and Widom both in the GUE and GOE ensembles [148, 149] in the

mid 1990’s. Subsequently, a main line of research became to extend universality to more

and more general classes of ensembles with the goal of eventually approaching the grand

vision that predicts GUE/GOE statistics for any sufficiently complex disordered quantum

system in the delocalized phase.

Beyond Gaussian ensembles, the first actual proofs of universality for Wigner ma-

trices took different paths in the bulk and at the edge. While in the bulk only limited

progress was made until a decade ago, the first fairly general edge universality proof by

Soshnikov [136] appeared shortly after the calculations of Tracy and Widom. The main

reason is that edge statistics is still accessible via an ingenious but laborious extension of

385
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the classical moment method. In contrast, the bulk universality required fundamentally

new tools based on resolvents and the analysis of the Dyson Brownian motion developed

in a series of work [58, 59, 62, 64, 68, 71]. This method, called the three-step strategy, is

summarized in [67]. In certain cases parallel results [144, 145] were obtained via the four

moment comparison theorem.

Despite its initial success [74, 136], the moment method seems limited when it comes

to generalizations beyond Wigner matrices with i.i.d. entries; the bookkeeping of the

combinatorics is extremely complicated even in the simplest case. The resolvent approach

is much more flexible. Its primary goal is to establish local laws, i.e., proving that the local

eigenvalue density on scales slightly above the eigenvalue spacing becomes deterministic

as the dimension of the matrix tends to infinity. Refined versions of the local law even

identify resolvent matrix elements with a spectral parameter very close to the real axis.

In contrast to the bulk, at the spectral edge this information can be boosted to detect

individual eigenvalue statistics by comparison with the Gaussian ensemble. These ideas

have led to the proof of the Tracy-Widom edge universality for Wigner matrices with

high moment conditions [71], see also [145] with vanishing third moment. Finally, a

necessary and sufficient condition on the entry distributions was found in [109] following

earlier work in [125] and an almost optimal necessary condition in [21]. Direct resolvent

comparison methods have been used to prove Tracy-Widom universality for deformed

Wigner matrices, i.e., matrices with a deterministic diagonal expectation, [106], even in a

certain sparse regime [107]. The extension of this approach to sample covariance matrices

with a diagonal population covariance matrix at extreme edges [108] has resolved a long

standing conjecture in the statistics literature. Tracy-Widom universality for general

population covariance matrices, including internal edges, was established in [101].

The next level of generality is to depart from the i.i.d. case. While the resolvent

method for proving local laws can handle generalized Wigner ensemble, i.e., matrices

H = (hab) with merely stochastic variance profile ∑b Varhab = 1, the direct comparison

becomes problematic if higher moments vary since they cannot be simultaneously matched

with a GUE/GOE ensemble. The problem was resolved in [43] with a general approach

that also covered invariant β-ensembles. While Dyson Brownian motion did not play a
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direct role in [43], the proof used the addition of a small Gaussian component and the

concept of local ergodicity of the Gibbs state; ideas developed originally in [64, 65] in the

context of bulk universality.

A fully dynamical approach to edge universality, following an earlier development in

the bulk based on the three-step strategy, has recently been given in [103]. In general, the

first step within any three-step strategy is the local law providing a priori bounds. The

second step is the fast relaxation to equilibrium of the Dyson Brownian motion that proves

universality for Gaussian divisible ensembles. The third step is a perturbative comparison

argument to remove the small Gaussian component. Recent advances in the bulk have

crystallized that the only model dependent step in this strategy is the first one. The other

two steps have been formulated as very general “black-box” tools whose only input is the

local law see [66, 103, 104, 105]. Using the three-step approach and [103], edge universality

for sparse matrices was proven in [97] and for correlated Gaussian matrices with a specific

two-scale correlation structure in [1]. All these edge universality results only cover the

extremal edges of the spectrum, while the self-consistent (deterministic) density of states

may be supported on several intervals. Multiple interval support becomes ubiquitous for

Wigner-type matrices [7], i.e., matrices with independent entries and general expectation

and variance profile. The square root singularity in the density, even at the internal edges,

is a universal phenomenon for a very large class of random matrices since it is inherent to

the underlying Dyson equation. This was demonstrated for Wigner-type matrices in [4]

and more recently for correlated random matrices with a general correlation structure in

Chapter 8.

In the current paper we show that the eigenvalue statistics at the spectral edges of the

self-consistent density follow the Tracy-Widom distribution, assuming only a mild decay

of correlation between entries, but otherwise no special structure. We can handle any

internal edge as well. In the literature internal edge universality for matrices of Wigner-

type has first been established for deformed GUE ensembles [129] which critically relied on

contour integral methods, only available for Gaussian models in the Hermitian symmetry

class. We remark that a similar method handled extreme eigenvalues of deformed GUE

[48, 98]. A more general approach for internal edges has been given in [101] that could
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handle any deformed Wigner matrices with general expectation, as long as the variance

profile is constant, by comparing it with the corresponding Gaussian model. Our method

requires neither constant variance nor independence of the matrix elements.

In order to prove our general form of edge universality at all internal edges we used

three key inputs in addition to [103]. First, we rely on a detailed shape analysis of the

self-consistent density of states ϱ from Chapter 8. Secondly, we prove a strong version

of the local law that excludes eigenvalues in the internal gaps. Thirdly, we establish a

topological rigidity phenomenon for the bands, the connected components that constitute

the support of ϱ. This band rigidity asserts that the number of eigenvalues within each

band exactly matches the mass that ϱ predicts for that band. The topological nature

of band rigidity guarantees that this mass remains constant along the deformations of

the expectation and correlation structure of the entries as long as the gaps between the

bands remain open. A similar rigidity (also called “exact separation of eigenvalues”) has

first been established for sample covariance matrices in [23] and it also played a key role

in Tracy-Widom universality proof at internal edges in [101]. Note that band rigidity

is a much stronger concept than the customary rigidity in random matrix theory [71]

that allows for an uncertainty in the location of N ϵ eigenvalues. In other words, there is

no mismatch whatsoever between location and label of the eigenvalues near the internal

edges along the matrix Dyson Brownian motion, the label of the eigenvalue uniquely

determines to which spectral band it belongs.

Our result also highlights a key difference between Wigner-type matrix models and

invariant β-ensembles. For self-consistent densities with multiple support intervals (the

so-called multi-cut regime), the number of particles (eigenvalues) close to some support

interval fluctuates for invariant ensembles with general potentials [41]. As a consequence

internal edge universality results (see e.g. [30, 118]) require a stochastic relabelling of

eigenvalues.

Our setup is a general N ×N random matrix H = H∗ with a slowly decaying corre-

lation structure and arbitrary expectation, under the very same conditions as the recent

bulk universality result from [56]. Regarding strategy of proving the local law, the start-

ing point is to find the deterministic approximation of the resolvent G(z) = (H − z)−1
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with a complex spectral parameter z in the upper half plane. This approximation is given

as the solution M = M(z) to the Matrix Dyson Equation (MDE)

1 + (z − A+ S[M ])M = 0,

where the expectation matrix A ..= EH and the linear map S[R] ..= E(H − A)R(H −

A) on the space of matrices R encode the first two moments of the random matrix.

The resolvent G(z) approximately satisfies the MDE with an additive perturbation term

which was already shown to be sufficiently small in [56]. This fact, combined with a

careful stability and shape analysis of the MDE in Chapter 8 imply that G is indeed

close to M . In order to prove edge universality we use a correlated Ornstein-Uhlenbeck

process Ht which adds a small Gaussian component of size t to the original matrix model,

while preserving expectation and covariance. We prove that the resolvent satisfies the

optimal local law uniformly along the flow and appeal to the recent result from [103]

to prove edge universality for Ht whenever t ≫ N−1/3. In the final step we perform a

Green function comparison together with our band rigidity to show that the eigenvalue

correlation functions of Ht matches those of H as long as t ≪ N−1/6 which yields the

desired edge universality.

After presenting our main results in Section 9.2, we then prove the optimal local law

at regular edges (and in the spectral bulk), as well as eigenvector delocalization and both

types of rigidity in Section 9.3. Section 9.4 is devoted to the proof of edge universality.

Notations. We now introduce some custom notations we use throughout the paper.

For non-negative functions f(A,B), g(A,B) we use the notation f ≤A g if there exist

constants C(A) such that f(A,B) ≤ C(A)g(A,B) for all A,B. Similarly, we write

f ∼A g if f ≤A g and g ≤A f . We do not indicate the dependence of constants on

basic parameters that will be called model parameters later. If the implied constants are

universal, we instead write f ≲ g and f ∼ g. We denote vectors by bold-faced lower

case Roman letters x,y ∈ CN , and matrices by upper case Roman letters A,B ∈ CN×N .

The standard scalar product and Euclidean norm on CN will be denoted by ⟨x,y⟩ and

∥x∥, while we also write ⟨A,B⟩ ..= N−1 TrA∗B for the scalar product of matrices, and

⟨A⟩ ..= N−1 TrA. The usual operator norm induced by the vector norm ∥·∥ will be
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denoted by ∥A∥, while the Hilbert-Schmidt (or Frobenius) norm will be denoted by

∥A∥hs
..=

√
⟨A,A⟩. For random variables X, Y, . . . we denote the joint cumulant by

κ(X, Y, . . . ). For integers n we define [n] ..= {1, . . . , n}.

9.2. Main results

We consider correlated real symmetric and complex Hermitian random matrices of

the form

H = A+W, EW = 0

with deterministic A ∈ CN×N and sufficiently fast decaying correlations among the matrix

elements of W . The matrix entries wab = wα are often labelled by double indices α =

(a, b) ∈ [N ]2. The randomness W is scaled in such a way that
√
Nwα are random variables

of order one1. This requirement ensures that the spectrum of H is kept of order 1, as

N tends to infinity. Our first aim is to prove that, in the bulk and around the regular

edges of the spectrum, the resolvent G = G(z) = (H − z)−1 is well approximated by the

solution M = M(z) to the Matrix Dyson equation (MDE)

1 + (z − A+ S[M ])M = 0, ImM ..= M −M∗

2i > 0, S[R] ..= EWRW, (9.2.1)

with z ∈ H ..= { z ∈ C | Im z > 0 }. We suppress the dependence of G and M , and

similarly of many other quantities, on the spectral parameter z in our notation. Estimates

on z-dependent quantities are always meant uniformly for z in some specified domain.

From the solution M we define the self-consistent density of states

ϱ(E) ..= lim
η↘0

Im ⟨M(E + iη)⟩
π

, E ∈ R,

which approximates the density of states of H increasingly well as N tends to infinity. The

support of ϱ is known to consist of several compact intervals with square root behaviour

at the edges. An edge is called regular if it is well separated from other edges. The

spectral bulk refers to points E where ϱ(E) ≥ ζ with some fixed threshold ζ > 0.

We now list our main assumptions, which are identical to those from [56]. All explicit

and implicit constants in Assumptions (A)–(F) are called model parameters.

1In some previous works, as in [56], the convention H = A + W/
√

N with order one wα was used.
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Assumption (A) (Bounded expectation). There exists some constant C such that

∥A∥ ≤ C for all N .

Assumption (B) (Finite moments). For all q ∈ N there exists a constant µq such that

E|
√
Nwα|q ≤ µq for all α.

Assumption (CD) (Polynomially decaying metric correlation structure). For the k = 2

point correlation we assume a decay of the type

⏐⏐⏐κ(f1(
√
NW ), f2(

√
NW )

)⏐⏐⏐ ≲
√
E|f1(

√
NW )|2

√
E|f2(

√
NW )|2

1 + d(supp f1, supp f2)s
, (9.2.2a)

for some s > 12 and all square integrable functions f1, f2. For k ≥ 3 we assume a decay

condition of the form
⏐⏐⏐κ(f1(

√
NW ), . . . , fk(

√
NW )

)⏐⏐⏐ ≲ ∏
e∈E(Tmin)

|κ(e)| , (9.2.2b)

where Tmin is the minimal spanning tree in the complete graph on the vertices 1, . . . , k

with respect to the edge length dist({i, j}) = d(supp fi, supp fj), i.e., the tree for which

the sum of the lengths dist(e) is minimal, and κ({i, j}) = κ(fi, fj). Here d is the standard

Euclidean metric on the index space [N ]2 and supp f ⊂ [N ]2 denotes the set indexing all

entries in
√
NW that f genuinely depends on.

Remark 9.2.1. All results in this paper and their proofs hold verbatim if Assump-

tion (CD) is replaced by the more general assumptions (C), (D) from [56]. In particular,

the metric structure imposed on the index space [N ]2 is not essential. For details the

reader is referred to [56, Section 2.1].

Assumption (E) (Flatness). There exist constants 0 < c < C such that c ⟨T ⟩ ≤ S[T ] ≤

C ⟨T ⟩ for any positive semi-definite matrix T .

Assumption (F) (Fullness). There exists a constant λ > 0 such that NE |TrBW |2 ≥

λTrB2 for any deterministic matrix B of the same symmetry class (either real symmetric

or complex Hermitian) as H.

Our main technical result is an optimal local law in the spectral bulk and at regular

edges. According to the shape analysis from Chapter 8 it follows that ϱ can also feature
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almost-cusp points which we have to exclude from our spectral domain. For E ∈ R\supp ϱ

we define ∆(E) = ∆ϱ(E) as the length of the largest interval around E in R \ supp ϱ.

Accordingly, we define the set of almost-cusp points Pcusp = P ζ
cusp for small ζ as

Pcusp
..= { E ∈ supp ϱ \ ∂ supp ϱ | E is a local minimum of ϱ, ϱ(E) ≤ ζ }

∪ { E ∈ R \ supp ϱ | ∆(E) ≤ ζ } ,

and dcusp(z) = dζcusp(z) ..= dist(z, Pcusp) denotes the distance from the almost-cusps. We

will always work with spectral parameters z such that the solution M to (9.2.1) remains

bounded in a neighbourhood of z. To define this condition precisely, we fix a large

constant M∗ and define the set PM = PM∗
M as

PM∗
M

..=
{
τ ∈ R

⏐⏐⏐⏐⏐ sup
η>0
∥M(τ + iη)∥ > M∗

}
,

and the distance dM(z) = dM∗
M (z) ..= dist(z, PM) from this set. For ζ, δ,M∗ > 0 we then

define the spectral domain D = Dζ,δ,M∗ away from almost-cusp and large ∥M∥ points by

D ..=
{
z ∈ C

⏐⏐⏐ dcusp(z) ≥ δ, dM(z) ≥ δ, |z| ≤ NC0
}

for some arbitrary fixed C0. We remark that the boundedness of ∥M∥ in a small interval

around the spectral parameter is automatically satisfied in the spectral bulk. At regular

edges, however, the boundedness cannot be guaranteed under our general assumptions

but has to be checked for each concrete model (see Section 8.9 in Chapter 8 for a large

class of models for which ∥M∥ is guaranteed to be bounded). Our goal is to establish an

optimal local law for those spectral parameters z = E+iη whose imaginary part η = Im z

is slightly larger than 1/N , i.e., in the spectral domain

Dγ
..= D ∩

{
z ∈ C

⏐⏐⏐ Im z ≥ N−1+γ
}

for some γ > 0.

Theorem 9.2.2 (Bulk and edge local law). Under Assumptions (A)–(E) and for any

D,M∗, γ, ϵ, δ, ζ > 0, there exists some C < ∞ depending only on these and the model
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parameters such that we have the isotropic local law,

P
(
|⟨x, (G−M)y⟩| ≤ N ϵ ∥x∥ ∥y∥

(√
ϱ

NIm z
+ 1
NIm z

)
in Dγ

)
≥ 1− CN−D

(9.2.3a)

for all deterministic vectors x,y ∈ CN and the averaged local law,

P
(
|⟨B(G−M)⟩| ≤ N ϵ ∥B∥ 1

NIm z
in Dγ

)
≥ 1− CN−D (9.2.3b)

for all deterministic matrices B ∈ CN×N . Moreover, outside the spectrum at a distance2

of κ(z) ..= dist(Re z, ∂ supp ϱ) we have the improved averaged local law for any ω > 0

P
(
|⟨B(G−M)⟩| ≤ N ϵ ∥B∥

N(κ+ Im z)(1 + |z|) in Dout

)
≥ 1− CN−D, (9.2.3c)

with C also depending on ω, where we introduced

Dout
..=
{
z ∈ D

⏐⏐⏐ dist(Re z, supp ϱ) ≥ N−2/3+ω
}
.

We remark that in the spectral bulk Theorem 9.2.2 is identical to the local law in [56].

The novelty of the present paper is the optimal local law and its corollaries at the regular

edges.

Corollary 9.2.3 (No eigenvalues outside the support of the self-consistent density).

Under the assumptions of Theorem 9.2.2 we have for any ω, ζ, δ,D,M∗ > 0

P
(
∃λ ∈ SpecH, dist(λ, supp ϱ) ≥ N−2/3+ω, dcusp(λ) ≥ δ, dM(λ) ≥ δ

)
≤ω,ζ,δ,D,M∗ N

−D.

Corollary 9.2.4 (Delocalization). Under the assumptions of Theorem 9.2.2 it holds for

an ℓ2-normalized eigenvector u corresponding to a non-cusp eigenvalue λ of H that

sup
∥x∥=1

P
(
|⟨x,u⟩| ≥ N ϵ

√
N
, Hu = λu, ∥u∥ = 1, dcusp(λ) ≥ δ, dM(λ) ≥ δ

)
≤ϵ,ζ,δ,D N−D

for any ϵ, ζ, δ,D > 0.

Corollary 9.2.5 (Band rigidity and eigenvalue rigidity). Under the assumptions of The-

orem 9.2.2 the following holds. For any ϵ,D > 0 there exists some C <∞ such that for
2We warn the reader that cumulants and the distance to the boundary of the spectrum are both denoted
by κ. Because cumulants are usually written with explicit random variables in the argument, this should
not create any confusions.
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any E ∈ R\ supp ϱ with dist(E, supp ϱ) ≥ ϵ the number of eigenvalues less than E is with

high probability deterministic, i.e., that

P
(
|SpecH ∩ (−∞, E)| = N

∫ E

−∞
ϱ(x)dx

)
≥ 1− CN−D. (9.2.4a)

We also have the following strong form of eigenvalue rigidity. Let λ1 ≤ · · · ≤ λN be

the ordered eigenvalues of H and denote the classical position of the eigenvalue close to

energy E ∈ supp ϱ by k(E) ..= ⌈N
∫ E

−∞ ϱ(x)dx⌉. It then holds that

P
(

sup
E

⏐⏐⏐λk(E) − E
⏐⏐⏐ ≥ min

{
N ϵ

N dist(E, ∂ supp ϱ)1/2 ,
N ϵ

N2/3

})
≤ϵ,ζ,δ,D N−D (9.2.4b)

for any ϵ, ζ, δ,D > 0, where the supremum is taken over all E ∈ supp ϱ such that

dcusp(E) ≥ δ and dM(E) ≥ δ.

Remark 9.2.6 (Integer mass). Note that (9.2.4a) entails the non trivial fact that for E ̸∈

supp ϱ, N
∫ E

−∞ ϱ(x)dx is always an integer, see Proposition 8.2.6 in Chapter 8. Moreover,

it then trivially implies that N
∫

[a,b] ϱ(x)dx is an integer for each band [a, b], i.e., connected

component of supp ϱ. Finally, (9.2.4a) also shows that the number of eigenvalues in each

band is given by this integer with overwhelming probability. This is in sharp contrast

to invariant β-ensembles where no such mechanism is present. For example, for an odd

number of particles in a symmetric double-well potential, N
∫ 0

−∞ ϱ(x)dx = N/2 is a half

integer.

The main application of the optimal local law from Theorem 9.2.2 is edge universality,

as stated in the following theorem, generalising several previous edge universality results

listed in the introduction. For definiteness we only state and prove the result for regular

right-edges. The corresponding statement for left-edges can be proven along the same

lines.

Theorem 9.2.7 (Edge Universality). Under the Assumptions (A)–(F) the following state-

ment holds true. Assume that E ∈ R is a regular right-edge of ϱ with a gap of size

c for some c > 0, i.e., ϱ([E,E + c]) = {0}. Then we have a square root edge of

the form ϱ(x) = γ3/2
√

(E − x)+/π +O (|E − x|) for some γ > 0. The integer (see

Remark 9.2.6) i0 ..= N
∫ E

−∞ ϱ(x)dx labels the largest eigenvalue λi0 close to the band



9.3. PROOF OF THE LOCAL LAW 395

edge E with high probability. Furthermore, for test functions F : Rk+1 → R such that

∥F∥∞ + ∥∇F∥∞ ≤ C <∞ we have⏐⏐⏐⏐E [F(γN2/3(λi0 − E), . . . , γN2/3(λi0−k − E)
)]

− E
[
F
(
N2/3(µN − 2), . . . , N2/3(µN−k − 2)

)] ⏐⏐⏐⏐ ≲ N−ϵ

for some ϵ > 0. Here µ1, . . . , µN are the eigenvalues of a standard GUE/GOE matrix,

depending on the symmetry class of H.

From Theorem 9.2.7 we can immediately conclude that the eigenvalues of H near the

regular edges follow the Tracy-Widom distribution. We remark that the direct analogue

of Theorem 9.2.7 does not hold true for invariant β-ensembles with a multi-cut density.

This is due to the fact that the number of particles close to a band of the self-consistent

density, commonly known as the filling fraction, is known to be a fluctuating quantity

for general classes of potentials. We refer the reader to [37] for a description of this

phenomenon, to [117, 127] for non-Gaussian linear statistics in the multi-cut regime and

to [41] for results on the fluctuations of filling fractions. Variants of Theorem 9.2.7 which

allow for a relabelling of eigenvalues for invariant β-ensembles can be found in [30, 118].

9.3. Proof of the local law

The proof of a local law consists of three largely separate arguments. The first part

concerns the analysis of the stability operator B ..= 1 −MS[·]M and shape analysis of

the solution M to (9.2.1). The second part is proving that the resolvent G is indeed an

approximate solution to (9.2.1) in the sense that

D ..= 1 + (z − A+ S[G])G = WG+ S[G]G (9.3.1)

is small. Finally, the third part consists of a bootstrap argument starting far away

from the real axis and iteratively lowering the imaginary part η = Im z of the spectral

parameter while maintaining the desired bound on G−M .

For brevity we will carry out the proof of Theorem 9.2.2 for |z| ≲ 1. Following the

very same steps also proves the general result but requires carrying correction terms for
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the large z regime in many estimates. Since the large z-regime is already covered by the

results from [56] we focus on the |z| ≲ 1 regime in the present paper.

9.3.1. Stability. We denote the right-eigenmatrix corresponding to an, in absolute

value, smallest eigenvalue β of B by B, i.e., B[B] = βB, and the corresponding left-

eigenmatrix and spectral projections by P and P = ⟨P, ·⟩B, Q ..= 1−P with ⟨P,B⟩ = 1.

From (9.2.1) and (9.3.1) we have

B[G−M ] = −MD +MS[G−M ](G−M). (9.3.2)

We note that B−1 is unstable in some particular direction near the edge, which is why

we separate this unstable direction and establish bounds in terms of Θ ..= ⟨P,G−M⟩

and D from (9.3.2). This separation is not necessary away the edge, but to keep our

presentation shorter, we refrain from distinguishing these two cases and we just mimic

the edge proof for the bulk as well. We begin by collecting some qualitative [96] and

quantitative (cf. Chapter 8 and [6]) information about the MDE. We recall the definition

of κ = κ(z) in Theorem 9.2.2 as the distance of Re z to ∂ supp ϱ.

Proposition 9.3.1 (Stability of MDE and properties of the solution). The following hold

true under Assumption (A)–(E).

(i) The MDE (9.2.1) has a unique solution M = M(z) for all z ∈ H and moreover

the map z ↦→M(z) is holomorphic.

(ii) The holomorphic function ⟨M⟩ : H→ H is the Stieltjes transform of a compactly

supported probability measure µ on R.

(iii) The measure µ from (ii) is absolutely continuous with respect to the Lebesgue

measure and has a continuous density ϱ : R → [0,∞), called the self-consistent

density of states, which is also real analytic on the open set { ϱ > 0 }.

(iv) If dcusp ≥ δ and dM ≥ δ for some δ > 0 and |z| ≲ 1, then ϱ(z) ∼δ
√
κ+ η for

Re z ∈ supp ϱ, and ϱ(z) ∼δ η/
√
κ+ η for Re z ̸∈ supp ϱ.
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(v) If dcusp ≥ δ and dM ≥ δ for some δ > 0 and |z| ≲ 1, there exist P,B such that

we have the bounds on the stability operator and its unstable directionB−1


hs→hs
≲ 1/

√
κ+ η,

B−1Q


hs→hs
+ ∥B∥+ ∥P∥ ≤δ 1,

|⟨P,MS[B]B⟩|+ |β| ∼δ 1, |β| ∼δ
√
κ+ η.

Proof. Claims (i)–(iii) follow directly from [96] and [6]. In order to conclude (iv)–

(v) from Chapter 8, we specialize its setup by choosing A = CN×N and ⟨ · ⟩ = N−1 Tr in

Chapter 8. Moreover, we note that ϱ, S, P , B, P , Q, B and ∥ · ∥hs→hs are denoted by ρ,

S, l, b, P , Q, B and ∥ · ∥2, respectively, in Chapter 8. We also observe that dcusp ≥ δ,

dM ≥ δ implies that Re z is either in the spectral bulk, close to a regular edge or well

away from supp ϱ. Thus, (iv) follows from (8.7.71a) in Chapter 8. Furthermore, whenever
√
κ+ η ≪ 1, then it follows that |⟨P,MS[B]B⟩| ∼ 1 from (8.7.72) in Chapter 8 by the

normalization from Corollary 8.5.2 in Chapter 8. This yields the third bound in (v). The

first and the last bound in (v) are shown in (8.7.73) in Chapter 8. The second bound in

(v) is a consequence of (8.5.15) and (8.5.16) in Chapter 8. We note that if √κ+ η ≳ 1

then the choice of P,B is of no particular importance as then already ∥B−1∥ ≲ 1. □

We now design a suitable norm following [56]. For cumulants of matrix elements

κ(wab, wcd) we use the short-hand notation κ(ab, cd). We also use the short-hand nota-

tion κ(xb, cd) for the x = (xa)a∈[N ]-weighted linear combination ∑
a xaκ(ab, cd) of such

cumulants. We use the notation that replacing an index in a scalar quantity by a dot

(·) refers to the corresponding vector, e.g. Aa· is a short-hand notation for the vector

(Aab)b∈[N ]. We fix two vectors x,y and some large integer K and define the sets

I0
..= {x,y } ∪ { ea, P ∗

a· | a ∈ [N ] } ,

Ik+1
..= Ik ∪ {Mu | u ∈ Ik } ∪ { κc((Mu)a, b·), κd((Mu)a, ·b) | u ∈ Ik, a, b ∈ [N ] } ,

where κc + κd = κ is a decomposition of κ according to the Hermitian symmetry. Due

to Assumption (CD) such a decomposition exists in a way that the operator norms of

the matrices ∥κd(xa, ·b)∥ and ∥κc(xa, b·)∥, indexed by (a, b), are bounded uniformly in x
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with ∥x∥ ≤ 1. We now define the norm

∥R∥∗ = ∥R∥K,x,y∗
..=

∑
0≤k<K

N−k/2K ∥R∥Ik
+N−1/2 max

u∈IK

∥R·u∥
∥u∥

, ∥R∥I ..= max
u,v∈I

|Ruv|
∥u∥ ∥v∥

.

Remark 9.3.2. We remark that compared to [56], the sets Ik contain some additional

vectors generated by the vectors of the form P ∗
a· in I0. This addition is necessary to

control the spectral projection P in the ∥·∥∗-norm. We note, however, that the precise

form of the sets Ik were not important for the proofs in [56]. It was only used that the

sets contain deterministic vectors, and that their cardinality grows at most as some finite

power |Ik| ≲ NCk of N .

In terms of this norm we obtain the following easy estimate on G −M in terms of

its projection Θ = ⟨P,G−M⟩ onto the unstable direction of the stability operator B.

We remark that if the, in absolute value, smallest eigenvalue of B is of order 1, then this

projection onto the corresponding direction is not necessary.

Proposition 9.3.3. For fixed z such that ∥G−M∥∗ ≲ N−3/K there are deterministic

matrices R1, R2 with norm ≲ 1 such that

G−M = ΘB − B−1Q[MD] + E , ∥E∥∗ ≲ N2/K(|Θ|2 + ∥D∥2
∗), (9.3.3a)

with an error term E, where Θ satisfies the approximate quadratic equation

ξ1Θ + ξ2Θ2 = O
(
N2/K ∥D∥2

∗ + |⟨R1D⟩|+ |⟨R2D⟩|
)

(9.3.3b)

with

|ξ1| ∼
√
η + κ, |ξ1|+ |ξ2| ∼ 1

and any implied constants are uniform in x,y and z ∈ D.

Proof. We begin with an auxiliary lemma about the ∥·∥∗-norm of some important

quantities, the proof of which we defer to Section 9.5 below.
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Lemma 9.3.4. Depending only on the model parameters we have the estimates for any

R ∈ CN×N ,

∥MS[R]R∥∗ ≲ N1/2K ∥R∥2
∗ , ∥MR∥∗ ≲ N1/2K ∥R∥∗ ,

∥Q∥∗→∗ ≲ 1,
B−1Q


∗→∗

≲ 1.

Decomposing G−M = P [G−M ]+Q[G−M ] and inverting B in (9.3.2) on the range

of Q yields

G−M = ΘB +Q[G−M ] = ΘB − B−1Q[MD] +O
(
N1/2K ∥G−M∥2

∗

)
= ΘB − B−1Q[MD] +O

(
N3/2K(|Θ|2 + ∥D∥2

∗)
)
,

where O (·) is meant with respect to the ∥·∥∗-norm and the second equality followed by

iteration, Lemma 9.3.4 and the assumption on ∥G−M∥∗. Going back to the original

equation (9.3.2) we find

βΘB + BQ[G−M ] = −MD +MS[ΘB − B−1Q[MD]](ΘB − B−1Q[MD])

+O
(
N2/K(|Θ|3 + ∥D∥3

∗)
)

and thus by projecting with P we arrive at the quadratic equation

µ0 − µ1Θ + µ2Θ2 = O
(
N2/K(|Θ|3 + ∥D∥3

∗)
)
,

µ0 = ⟨P,MS[B−1Q[MD]]B−1Q[MD]−MD⟩ ,

µ1 = ⟨P,MS[B]B−1Q[MD] +MS[B−1Q[MD]]B⟩+ β,

µ2 = ⟨P,MS[B]B⟩ .

We now proceed by analysing the coefficients in this quadratic equation. We estimate the

quadratic term in µ0 directly by N2/K ∥D∥2
∗, while we write the linear term as ⟨R1D⟩ for

the deterministic R1
..= −M∗P with ∥R1∥ ≲ 1. For the linear coefficient µ1 we similarly

find a deterministic matrix R2 such that ∥R2∥ ≲ 1 and µ1 = ⟨R2D⟩+ β. Finally, we find

from Proposition 9.3.1(v) that |µ2| + |β| ∼ 1 and |β| ∼ √κ+ η. By incorporating the

|Θ|N2/K term into ξ2 we obtain (9.3.3b). □
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9.3.2. Probabilistic bound. We now collect the averaged and isotropic bound on

D from [56]. We first introduce a commonly used (see, e.g., [60]) notion of high-probability

bound.

Definition 9.3.5 (Stochastic Domination). If

X =
(
X(N)(u) |N ∈ N, u ∈ U (N)

)
and Y =

(
Y (N)(u) |N ∈ N, u ∈ U (N)

)
are families of non-negative random variables indexed by N , and possibly some parameter

u, then we say that X is stochastically dominated by Y , if for all ϵ,D > 0 we have

sup
u∈U(N)

P
[
X(N)(u) > N ϵY (N)(u)

]
≤ N−D

for large enough N ≥ N0(ϵ,D). In this case we use the notation X ≺ Y .

It can be checked (see [60, Lemma 4.4]) that≺ satisfies the usual arithmetic properties,

e.g. if X1 ≺ Y1 and X2 ≺ Y2, then also X1+X2 ≺ Y1+Y2 and X1X2 ≺ Y1Y2. To formulate

the result compactly we also introduce the notations

|R| ≺ Λ in D ⇐⇒ ∥R∥K,x,y∗ ≺ Λ unif. in x,y and z ∈ D,

|R|av ≺ Λ in D ⇐⇒ |⟨BR⟩|
∥B∥

≺ Λ unif. in B and z ∈ D
(9.3.4)

for random matrices R and a deterministic control parameter Λ = Λ(z), where B,x,y

are deterministic matrices and vectors. We also define an isotropic high-moment norm,

already used in [56], for p ≥ 1 and a random matrix R,

∥R∥p ..= sup
x,y

(E |⟨x, Ry⟩|p )1/p

∥x∥ ∥y∥
.

Proposition 9.3.6 (Bound on the Error). Under the Assumptions (A)–(E) there exists

a constant C such that for any fixed vectors x,y and matrices B and spectral parameters

|z| ≲ 1, and any p ≥ 1, ϵ > 0,

∥⟨x, Dy⟩∥p
∥x∥ ∥y∥

≤ϵ,p N ϵ

√
∥ImG∥q
NIm z

(
1 + ∥G∥q

)C(
1 +
∥G∥q
Nµ

)Cp
(9.3.5a)

∥⟨BD⟩∥p
∥B∥

≤ϵ,p N ϵ
∥ImG∥q
NIm z

(
1 + ∥G∥q

)C(
1 +
∥G∥q
Nµ

)Cp
, (9.3.5b)
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where q ..= Cp4/ϵ. Here µ > 0 depends on s in Assumption (CD). In particular, if

|G−M | ≺ Λ ≲ 1, then

|D| ≺
√
ϱ+ Λ
Nη

, |D|av ≺
ϱ+ Λ
Nη

. (9.3.5c)

Proof. This follows from combining [56, Theorem 3.1], the following lemma3 from

[56, Lemma 4.4] and ∥M∥ ≤M∗. □

Lemma 9.3.7. Let R be a random matrix and Φ a deterministic control parameter. Then

the following implications hold:

(i) If Φ ≥ N−C, ∥R∥ ≤ NC and |Rxy| ≺ Φ ∥x∥ ∥y∥ for all x,y and some C, then

∥R∥p ≤p,ϵ N ϵΦ for all ϵ > 0, p ≥ 1.

(ii) Conversely, if ∥R∥p ≤p,ϵ N ϵΦ for all ϵ > 0, p ≥ 1, then ∥R∥K,x,y∗ ≺ Φ for any

fixed K ∈ N, x,y ∈ CN .

9.3.3. Bootstrapping. We now fix γ > 0 and start with the proof of Theorem 9.2.2.

Phrased in terms of the ∥·∥∗-norm we will prove

|G−M | ≺ N2/K
(√

ϱ

Nη
+ 1
Nη

)
,

|G−M |av ≺ N2/K

⎧⎪⎪⎨⎪⎪⎩
1
Nη

Re z ∈ supp ϱ
1

N(κ+η) + N2/K

(Nη)2√
κ+η Re z ̸∈ supp ϱ

in D,
(9.3.6)

for D = Dγ and K ≫ 1/γ, i.e., for Kγ sufficiently large. In order to prove (9.3.6) we use

the following iteration procedure.

Proposition 9.3.8. There exists a constant γs > 0 depending only on K and γ such

that (9.3.6) for D = Dγ0 with γ0 > γ implies (9.3.6) also for D = Dγ1 with γ1
..=

max{γ, γ0 − γs}.

3C.f. Remark 9.3.2, where we argue that the proof of [56] about ∥·∥∗ hold true verbatim in the present
case despite the slightly larger sets Ik.
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Proof of (9.3.6) for D = Dγ, assuming Proposition 9.3.8. For D = D1 we have

(9.3.6) by [56, Theorem 2.1]4. We then iteratively apply Proposition 9.3.8 finitely many

times until we have shown (9.3.6) for D = Dγ. □

Proof of Proposition 9.3.8. We now suppose that (9.3.6) has been proven for

some D = Dγ0 and aim at proving (9.3.6) for D = Dγ1 for some γ1 = γ0− γs, 0 < γs ≪ γ.

The proof has two stages. Firstly, we will establish the rough bounds

|Θ| ≺ N−5/K and |G−M | ≺ N−5/K in Dγ1 , (9.3.7)

and then in the second stage improve upon this bound iteratively until we reach (9.3.6)

for D = Dγ1 .

Rough bound. By (9.3.6), Lemma 9.3.7 and monotonicity of the map (0,∞)→ R, η ↦→

η ∥G(E + iη)∥p (see e.g. (77) in [56]) we find ∥G∥p ≤ϵ,p N ϵ+γs ≤ N2γs in Dγ1 . As long as

2γs < µ we thus have

∥D∥p ≤ϵ,p
N ϵ+2Cγs+γs

√
Nη

≤ Nγs(2+2C)
√
Nη

, ∥⟨BD⟩∥p ≤ϵ,p ∥B∥
N ϵ+2γs+2γsC

Nη
≤ ∥B∥ N

γs(3+2C)

Nη
.

We now fix x,y and it follows from (9.3.3b) that

⏐⏐⏐ξ1Θ + ξ2Θ2
⏐⏐⏐ ≺ N2γs(3+2C)+2/K

Nη
in Dγ1

and consequently by Lipschitz continuity of the lhs. with a Lipschitz constant of η−2 ≤ N2,

and choosing K, γs large and respectively small enough depending on γ we find that with

high probability |ξ1Θ + ξ2Θ2| ≤ N−10/K in all of Dγ1 . The following lemma translates

the bound on |ξ1Θ + ξ2Θ2| into a bound on |Θ|.

Lemma 9.3.9. Let d = d(η) be a monotonically decreasing function in η ≥ 1/N and

assume 0 ≤ d ≲ N−ϵ for some ϵ > 0. Suppose that

⏐⏐⏐ξ1Θ + ξ2Θ2
⏐⏐⏐ ≲ d for all z ∈ D, and |Θ| ≲ min

{
d√
κ+ η

,
√
d

}
for some z0,

then also |Θ| ≲ min{d/√κ+ η,
√
d} for all z′ ∈ D with Re z′ = Re z0 and Im z′ < Im z0.

4We remark referring to [56] for the initial bound is purely a matter of brevity and convenience. Equally
well we could also prove (9.3.6) in some initial domain, say, D2 from scratch, where we have the trivial
bound ∥G−M∥ ≤ 2

N . Using this rough bound we could then iteratively improve the bound as detailed
in the paragraph Strong bound below, until (9.3.6) follows in D2.
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Proof. This proof is basically identical to the analysis of the solutions to the same

approximate quadratic equation, as appeared in various previous works, see e.g. [67]. In

the spectral bulk this is trivial since then |ξ1| ∼
√
κ+ η ∼ 1. Near a spectral edge we

observe that (κ+η)/d is monotonically increasing in η. First suppose that (κ+η)/d≫ 1

from which it follows that |Θ| ≲ d/
√
κ+ η ≲

√
d in the relevant branch determined

by the given estimate on Θ at z0. Now suppose that below some η-threshold we have

(κ+η)/d ≲ 1. Then we find |Θ| ≲ √κ+ η+
√
d ≲
√
d ≲ d/

√
κ+ η and the claim follows

also in this regime. □

Since (9.3.7) holds in Dγ0 and 1/Nη ≤ N−100/K , we know

|Θ| ≤ min{N−10/K/
√
κ+ η,N−5/K}

and therefore can conclude the rough bound |Θ| ≺ N−5/K in all of Dγ1 by Lemma 9.3.9

with d = N−10/K . Consequently we have also that

∥G−M∥∗ 1(∥G−M∥∗ ≤ N−3/K) ≺ N−5/K in Dγ1 .

Due to this gap in the possible values for ∥G−M∥∗ it follows from a standard continuity

argument that ∥G−M∥∗ ≺ N−5/K and therefore since x,y were arbitrary, |Θ| ≺ N−5/K

and |G−M | ≺ N−5/K in all of Dγ1 .

Strong bound. All of the following bounds hold uniformly in the domain Dγ1 which is

why we suppress this qualifier. By combining Proposition 9.3.3 and Proposition 9.3.6 we

find for deterministic 0 ≤ θ ≤ Λ ≤ N−3/K under the assumptions |Θ| ≺ θ, |G−M | ≺ Λ,

that

|G−M | ≺ θ +N2/K
√
ϱ+ Λ
Nη

,
⏐⏐⏐ξ1Θ + ξ2Θ2

⏐⏐⏐ ≺ N2/K ϱ+ Λ
Nη

. (9.3.8)

The bound on |G−M | in (9.3.8) is a self-improving bound and we find after iteration

that

|G−M | ≺ θ +N2/K
(

1
Nη

+
√
ϱ+ θ

Nη

)
.

Hence, we have ⏐⏐⏐ξ1Θ + ξ2Θ2
⏐⏐⏐ ≺ N2/K ϱ+ θ

Nη
+N4/K 1

(Nη)2 .
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We now distinguish whether Re z is inside or outside the spectrum. Inside we have ϱ ∼
√
κ+ η, so we fix θ and use Lemma 9.3.9 with d = N2/K(√κ+ η+θ)/(Nη)+N4/K/(Nη)2

to conclude |Θ| ≺ min{d/√κ+ η,
√
d} from the input assumption |Θ| ≺ N2/K/Nη in Dγ0 .

Iterating this bound, we obtain

|Θ| ≺ N2/K 1
Nη

, hence |G−M | ≺ N2/K
(√

ϱ

Nη
+ 1
Nη

)
.

By an analogous argument, outside of the spectrum we have an improved bound on Θ

|Θ| ≺ N2/K 1
N(κ+ η) +N4/K 1

(Nη)2√κ+ η
,

because ϱ ∼ η/
√
κ+ η. Finally, for the claimed bound on |G−M |av we use (9.3.3a) in

order to obtain a bound on |G−M |av in terms of a bound on Θ. □

Due to (9.3.6), we now have all the ingredients to prove the local law, as well as

delocalization of eigenvectors, and the absence of eigenvalues away from the support of ϱ.

Proof of Theorem 9.2.2, Corollary 9.2.3 and Corollary 9.2.4. The local

law inside the spectrum (9.2.3a)–(9.2.3b) follows immediately from (9.3.6). Now we prove

Corollary 9.2.3. If there exists an eigenvalue λ with dist(λ, supp ϱ) > N−2/3+ω, then at,

say, z = λ+ iN−4/5 we have |⟨G−M⟩| ≥ cN−1/5. On the other hand we know from the

improved local law (9.3.6) that with high probability |⟨G−M⟩| ≤ N−1/4 and we obtain

the claim.

We now turn to the proof of Corollary 9.2.4. For the eigenvectors uk and eigenvalues

λk of H we find from the spectral decomposition and the local law with high probability

1 ≳ Im ⟨x, Gx⟩ = η
∑
k

|⟨x,uk⟩|2

(E − λk)2 + η2 ≥
|⟨x,uk⟩|2

η

for z = E + iη and any normalised x ∈ CN , where the last inequality followed assuming

that E is chosen η-close to λk. With the choice η = N−1+γ for arbitrarily small γ > 0

the claim follows. Note that for this proof only (9.2.3a) of Theorem 9.2.2 was used.

Finally, we establish (9.2.3c) and consider z with |z| ≲ 1, dist(Re z, supp ϱ) ≥ N−2/3+ω,

dcusp ≥ δ, dM ≥ δ and x,y, B fixed. We note that the regime |z| ̸≲ 1 was already cov-

ered in [56] and we therefore do not have to track the large |z|-dependence again in the
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present paper. As in the proof of [7, Corollary 1.11], the optimal local law (9.3.6) implies

rigidity up to the edge as formulated in Corollary 9.2.5. The only difference is that this

standard argument proves (9.2.4b) only if the supremum is restricted to E ∈ supp ϱ with

dist(E, ∂ supp ϱ) ≥ N−2/3+ϵ. The cause for this restriction is a possible mismatch of the

labelling of the edge eigenvalues, in other words the precise location of N ϵ eigenvalues

near an internal gap is not established yet; they may belong to either band adjacent

to this gap. This shortcoming will be remedied by the band rigidity in the proof of

Corollary 9.2.5 below. However, for the current argument, the imprecise location of N ϵ

eigenvalues does not matter. In fact, already from this version of rigidity, together with

the delocalisation of eigenvectors (Corollary 9.2.4) and the absence of eigenvalues outside

of the spectrum by Corollary 9.2.3 we have, at z = E+ iη (recall that we consider z with

dcusp ≥ δ, dM ≥ δ and dist(Re z, supp ϱ) ≥ N−2/3+ω),

Im ⟨x, G(z)x⟩ = η
∑
k

|⟨x,uk⟩|2

(E − λk)2 + η2 ≺
1
N

∑
k

η

(E − λk)2 + η2 ≺
∫
R

η ϱ(x)dx
|E − x|2 + η2

for any normalised vector x. From the square root behaviour of ϱ at the edge and

κ(z) ≥ N−2/3+ω we can easily infer ∥ImG∥∗ ≺ η/
√
κ+ η. Therefore it follows from

Proposition 9.3.6 that ∥D∥2
∗+|⟨RD⟩| ≺ 1/(N√κ+ η) and from (9.3.3b) and Lemma 9.3.9

that |Θ| ≺ N2/K−1/(κ+ η). Finally, we thus obtain,

|G−M |av ≺
N2/K

N(κ+ η) + N2/K

N
√
κ+ η

≲ N2/K 1
N(κ+ η)

from (9.3.3a) and (9.2.3c) follows. □

Proof of Corollary 9.2.5. We begin with the proof of (9.2.4a) and consider a

flow that interpolates between H = H0 and a deterministic matrix H1. Fix E ̸∈ supp ϱ

with dist(E, supp ϱ) ≥ ϵ. We set

Ht
..=
√

1− tW + At, At ..= A− tS[M(E)], St ..= (1− t)S, (9.3.9)

for any t ∈ [0, 1]. The MDE corresponding to Ht is 1 + (z − At + St[Mt])Mt = 0 and

is designed in such a way that Mt(E), the solution evaluated in E, is kept constant.

The flow of solutions Mt was considered in the proof of Proposition 8.2.6 in Chapter 8,

where it was shown that the self-consistent spectrum supp ϱt stays away from E uniformly
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along the flow, i.e., that dist(E, supp ϱt) ≥ϵ 1, see Lemma 8.8.1 (ii) in Chapter 8. We will

now show that along the flow, with overwhelming probability, no eigenvalue crosses the

spectral parameter E. More precisely we claim that

P
(
E ∈ SpecHt for some t ∈ [0, 1]

)
≤ϵ N−D (9.3.10)

for any D > 0. Since H0 = H and H1 = A − S[M(E)], (9.3.10) implies that with

overwhelming probability

|SpecH ∩ (−∞, E)| = |Spec(A− S[M(E)]) ∩ (−∞, E)| = N ⟨1(−∞,0)(M(E))⟩ ,

where the last identity used the fact that

M(E) = (A− S[M(E)]− E)−1, (9.3.11)

i.e., thatM(E) is the resolvent ofA−S[M(E)] at spectral parameter E (see Lemma 8.8.1 (i)

in Chapter 8). Now (9.2.4a) follows from Proposition 8.2.6 in Chapter 8, i.e., from

⟨1(−∞,0)(M(E))⟩ =
∫ E

−∞
ϱ(λ)dλ.

It remains to show (9.3.10). We first consider the regime of values t close to 1. Since

E is separated away from supp ϱ, and M(E) is bounded we conclude from (9.3.11) that

the spectrum of A−S[M(E)] is also separated away from E. Moreover, applying Corol-

lary 9.2.3 to H = W yields ∥W∥ ≤ C with overwhelming probability as the corresponding

self-consistent density of states has compact support by Proposition 9.3.1 (ii). Since there-

fore Ht is a small perturbation of A − S[M(E)] as long as t is close to 1, we conclude

that the spectrum of Ht is bounded away from E as well for every fixed t ≥ 1 − c for

some small enough constant c > 0. We are thus left with the regime t ≤ 1− c, where the

flatness condition from Assumption (E) is satisfied. In this regime we use Corollary 9.2.3

with H = Ht. Since dist(E, supp ρt) ≥ϵ 1 this corollary implies that the spectrum of Ht is

bounded away from E with overwhelming probability for every fixed t ≤ 1− c. Applying

a discrete union bound in t together with the Lipschitz continuity of the eigenvalues in t

for the flow (9.3.9) on the set ∥W∥ ≤ C yields (9.3.10).
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Finally, (9.2.4b) follows from the optimal local law as in the proof of Theorem 9.2.2

and Corollary 9.2.3 above. This time, however, (9.2.4a) ensures that there is no mismatch

between location and label of eigenvalues close to internal edges. In the spectral bulk

this potential discrepancy between label and location does not matter as (9.2.4b) allows

for an N ϵ-uncertainty. At the spectral edge, however, neighbouring eigenvalues can lie on

opposite sides of a spectral gap and we need (9.2.4a) to make sure that each eigenvalue

has, with high probability, a definite location with respect to the spectral gap. □

9.4. Proof of Universality

In order to prove Theorem 9.2.7, we define the Ornstein Uhlenbeck (OU) process

starting from H = H0 by

dHt = −1
2(Ht − A)dt+ Σ1/2[dBt], Σ[R] ..= EW Tr(WR), (9.4.1)

where Bt is a matrix of, up to symmetry, independent (real or complex, depending on

the symmetry class of H) Brownian motions and Σ1/2 is the square root of the positive

definite operator Σ : CN×N → CN×N . We note that the same process has already been

used in [6, 49, 56] to prove bulk universality. The proof now has two steps: Firstly, we will

prove edge universality for Ht if t ≫ N−1/3 and then we will prove that for t ≪ N−1/6,

the eigenvalues of Ht have the same k-point correlation functions as those of H = H0.

9.4.1. Dyson Brownian Motion. The process (9.4.1) can be integrated, and we

have

Ht−A = e−t/2(H0−A)+
∫ t

0
e(s−t)/2Σ1/2[dBs],

∫ t

0
e(s−t)/2Σ1/2[dBs] ∼ N (0, (1−e−t)Σ).

The process is designed in such a way that it preserves expectation EHt = A and covari-

ances Cov (htab, htcd) = Cov (hab, hcd) along the flow. Due to the fullness Assumption (F)

there exists a constant c > 0 such that (1 − e−t)Σ − ctΣGUE/GOE ≥ 0 for t ≤ 1, where

ΣGOE/GUE denotes the covariance operator of the GOE/GUE ensembles. It follows that

we can write

Ht = H̃t +
√
ctU, κt = κ− ctκGOE/GUE, EH̃t = A, U ∼ GOE/GUE,
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where κt here denotes the cumulants of H̃t, and U is chosen to be independent of H̃t.

Due to the fact that Gaussian cumulants of degree more than 2 vanish, it is easy to check

that Ht, H̃t satisfy the assumptions of Theorem 9.2.2 uniformly in, say, t ≤ N−1/10. From

now on we fix t = N−1/3+ϵ with some small ϵ > 0.

Since the MDE is purely determined by the first two moments of the corresponding

random matrix, it follows that Gt
..= (Ht − z)−1 is close to the same M in the sense of a

local law for all t. For G̃t
..= (H̃t − z)−1 we have the MDE

1 + (z − A+ St[Mt])Mt = 0, St ..= S − ctSGOE/GUE (9.4.2)

that can be viewed as a perturbation of the original MDE with t = 0. The corresponding

self-consistent density of states is ϱt(E) ..= limη↘0 Im ⟨Mt(E + iη)⟩ /π. The fact that Mt

remains bounded uniformly in t ≤ N−1/10 follows from the MDE perturbation result in

Proposition 8.10.1 in Chapter 8 with at ..= A and St ..= St as St is positivity-preserving

and the condition on St in (8.10.1) in Chapter 8 is obviously satisfied for this choice of St
due to

SGOE/GUE[R]
 ≲ ⟨R⟩ for all positive definite R. In particular the shape analysis

from Chapter 8 also applies to Mt.

The free convolutions of the empirical spectral density of H̃t and ϱt with the semicir-

cular distribution generated by
√
ctU are given implicitly as the unique solutions to the

equations

m̃t
fc(z) = ⟨G̃t(z + ctm̃t

fc(z))⟩ , mt
fc(z) = ⟨Mt(z + ctmt

fc(z))⟩ .

We denote the corresponding right-edges close to E by Ẽt and Et. By differentiating the

defining equations for mt
fc and m̃t

fc we find

(mt
fc)′(z)

1 + ct(mt
fc)′(z) = ⟨M ′

t(ξt(z))⟩ ,
(m̃t

fc)′(z)
1 + ct(m̃t

fc)′(z) = ⟨G̃′
t(ξ̃t(z))⟩ ,

(mt
fc)′′(z)

(1 + ct(mt
fc)′(z))3 = ⟨M ′′

t (ξt(z))⟩ ,
(9.4.3a)

where ξt(z) ..= z + ctmt
fc(z) and ξ̃t(z) ..= z + ctm̃t

fc(z). From the first two equalities in

(9.4.3a) we conclude

1 = ct ⟨M ′
t(ξt(Et))⟩ , 1 = ct ⟨G̃′

t(ξ̃t(Ẽt))⟩ , (9.4.3b)
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by considering the z → Et and z → Ẽt limits and that (mt
fc)′, (m̃t

fc)′ blow up at the edge

due to the well-known square root behaviour of the density along the semicircular flow.

We now compare the edge location and edge slope of the densities ϱtfc and ϱ̃tfc corresponding

to mt
fc and m̃t

fc with that of M . Very similar estimates for deformed Wigner ensembles

have been used in [97]. We split the analysis into four claims.

Claim 1. |Et − E| ≲ t/N . Using that SGUE[R] = ⟨R⟩, SGOE[R] = ⟨R⟩ + Rt/N and

(9.4.2) evaluated at ξt(z), we find using the boundedness of Mt,

1 + (z − A+ S[Mt(ξt(z))])Mt(ξt(z)) = ct
(
SGOE/GUE[Mt(ξt(z))]− ⟨Mt(ξt(z))⟩

)
Mt(ξt(z))

= O
(
t

N

)
.

It thus follows that Mt(ξt(z)) approximately satisfies the MDE for M at z. By using

the first bound in Proposition 9.3.1(v) expressing the stability of the MDE against small

additive perturbations it follows that⏐⏐⏐mt
fc(z)− ⟨M(z)⟩

⏐⏐⏐ = |⟨Mt(ξt(z))−M(z)⟩| ≲ t

N
√
η + dist(Re z, ∂ supp ϱ)

≤ t

N
√

dist(Re z, ∂ supp ϱ)
.

(9.4.4)

Suppose first that E = Et + δ for some positive δ > 0. Then
√
δ ≲ Im ⟨M(Et + δ/2)⟩ ≲

t/N
√
δ, where the first bound follows from the square root behaviour of ϱ at the edge E,

while the second bound comes from (9.4.4) at z = Et + δ/2 and Immt
fc(Et + δ/2) = 0.

We thus conclude δ ≲ t/N . If on the contrary E = Et − δ for some δ > 0, then with a

similar argument
√
δ ≲ Immt

fc(E + δ/2) ≲ t/N and we have δ ≲ t/N also in this case

and the claim follows.

Claim 2. |γt − γ| ≲ (t/N)1/4. From the third equality in (9.4.3a) we can relate the

edge-slope ofmt
fc toM ′′

t . Indeed, if γ3/2
t denotes the slope, i.e., ϱtfc(x) = γ

3/2
t

√
(Et − x)+/π+

O (Et − x), then using the elementary integrals

lim
η→0

η1/2
∫ ∞

0

√
x/π

(x− iη)2 dx = i1/2

2 , lim
η→0

η3/2
∫ ∞

0

√
x/π

(x− iη)3 dx = i3/2

8
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we obtain the precise divergence asymptotics of the derivatives (mt
fc)′(z) and (mt

fc)′′(z)

as z = Et + iη → Et and conclude

2
γ3
t

= lim
z→Et

(ct)3(mt
fc)′′(z)

(1 + ct(mt
fc)′(z))3 = (ct)3 ⟨M ′′

t (ξt(Et))⟩ , i.e, γt = ( ⟨M ′′
t (ξt(Et))⟩ /2)−1/3

ct
.

We now use (9.4.4) at, say, z = x ..= E −
√
t/N . By Claim 1 we have Et − x ∼

√
t/N

and thus

γ
3/2
t = Immt

fc(x)√
Et − x

+O
(
(t/N)1/4

)
= Im ⟨M(x)⟩√

Et − x
+O

(
(t/N)1/4

)
= Im ⟨M(x)⟩√

E − x
+O

(
(t/N)1/4

)
= γ3/2 +O

(
(t/N)1/4

)
,

where we used Claim 1 again in the third equality. This completes the proof of the claim.

Claim 3. |Ẽt − Et| ≺ 1/Nt. Since Mt has a square root edge at some Êt, it follows

from the first equality in (9.4.3b) that ξt(Et) − Êt ∼ t2. Using rigidity in the form of

Corollary 9.2.5 for the matrix H̃t to estimate G̃′
t from below at a spectral parameter

outside of the support, we have the bound

ct = | ⟨G̃′
t(ξ̃t(Ẽt))⟩ |

−1 ≺ |ξ̃t(Ẽt)− Êt|1/2.

Consequently using the local law in the form of Lemma 9.5.1 it follows that

| ⟨M ′
t(ξ̃t(Ẽt))⟩ | = 1/ct+O≺(1/Nt4) ∼ 1/t,

whence ξ̃t(Ẽt) − Êt ∼ t2 where we again used the square root singularity of ⟨Mt⟩ at Êt.

We can conclude, starting from (9.4.3b), that

0 = ⟨M ′
t(ξt(Et))⟩ − ⟨G̃′

t(ξ̃t(Ẽt))⟩ = ⟨M ′
t(ξt(Et))⟩ − ⟨M ′

t(ξ̃t(Ẽt))⟩+ ⟨(M ′
t − G̃′

t)(ξ̃t(Ẽt))⟩

∼ |ξt(Et)− ξ̃t(Ẽt)|/t3 +O≺(1/Nt4),

where we used that |⟨M ′′
t (Êt + rt2)⟩| ∼ t−3 for c < r < C and the improved local

law ⟨G′ −M ′⟩ ≺ 1/Nκ2 at a distance κ ∼ t2 away from the spectrum, as stated in

Lemma 9.5.1. We thus find that |ξt(Et)− ξ̃t(Ẽt)| ≺ 1/Nt. It remains to relate this to an

estimate on |Et − Ẽt|. We have

|Et − Ẽt| ≲ |ξt(Et)− ξ̃t(Ẽt)|+ t|mt
fc(Et)−mt

fc(Ẽt)|+ t|(mt
fc − m̃t

fc)(Ẽt)|,
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where we bounded the second term by t|⟨Mt(ξt(Et))−Mt(ξ̃t(Ẽt))⟩| ≺ 1/Nt using the

bounds in |⟨M ′
t(Êt + rt2)⟩| ∼ 1/t and the third term by t|⟨(Mt − G̃t)(ξ̃t(Ẽt))⟩| ≺ 1/Nt

using the local law t2 away from supp ϱt. Thus we can conclude that |Et − Ẽt| ≺ 1/Nt.

Claim 4. |γt − γ̃t| ≺ 1/Nt3. We first note that γt ∼ 1 follows from |⟨M ′′
t (ξt(Et))⟩| ∼

t−3. Therefore it suffices to estimate

t3|⟨M ′′
t (ξt(Et))− G̃′′

t (ξ̃t(Ẽt))⟩| ≤ t3|⟨M ′′
t (ξt(Et))−M ′′

t (ξ̃t(Ẽt))⟩|

+ t3|⟨M ′′
t (ξ̃t(Ẽt))− G̃′′

t (ξ̃t(Ẽt))⟩|

≺ 1
Nt3

,

as follows from ⟨M ′′′
t (Êt + rt2)⟩ ∼ t−5 for c < r < C and the local law from Lemma 9.5.1

at a distance of κ ∼ t2 away from the spectrum. Thus we have |γt − γ̃t| ≺ 1/Nt3.

We now check that H̃t is η∗-regular in the sense of [103, Definition 2.1] for η∗
..=

N−2/3+ϵ. It follows from the local law that cϱt(z) ≺ Im ⟨G̃t(z)⟩ ≺ Cϱt(z) for some

constants c, C, whenever Im z ≥ η∗. Now (2.4)–(2.5) in [103] follow in high probability

from the assumption that ϱt has a regular edge at Et . Furthermore, the absence of

eigenvalues in the interval [Et + η∗, Et + c/2] with high probability follows directly from

Corollary 9.2.3. Finally, ∥H̃t∥ ≤ N with high probability follows directly from ∥H̃t∥ ≤

(Tr|H̃t|2)1/2. We can thus conclude that with high probability, H̃t is η∗ = N−2/3+ϵ regular

for any positive ϵ > 0.

We denote the eigenvalues of Ht = H̃t+c
√
tU by λt1 ≥ · · · ≥ λtN . Then it follows from

[103, Theorem 2.2] that for N−ϵ ≥ t ≥ N−2/3+ϵ with high probability for test functions

F : Rk+1 → R with ∥F∥∞ + ∥∇F∥∞ ≲ 1 there exists some c > 0 such that⏐⏐⏐⏐E [F(γ̃tN2/3(λti0 − Ẽt), . . . , γ̃tN
2/3(λti0+k − Ẽt)

)
|H̃t

]
− E

[
F
(
N2/3(µ1 − 2), . . . , N2/3(µk+1 − 2)

)] ⏐⏐⏐⏐ ≤ N−c.

(9.4.5)

By combining (9.4.5) with |E−Ẽt| ≺ N−2/3−ϵ, |γ− γ̃t| ≺ N−ϵ from Claims 1–4, we obtain⏐⏐⏐⏐E [F(γN2/3(λti0 − E), . . . , γN2/3(λti0+k − E)
)]

− E
[
F
(
N2/3(µ1 − 2), . . . , N2/3(µk+1 − 2)

)] ⏐⏐⏐⏐ ≲ N−c +N−ϵ
(9.4.6)

for our choice of t = N−1/3+ϵ.
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9.4.2. Green’s Function Comparison. It remains to prove that the local correla-

tion functions of Ht agree with those of H. We will prove that for any fixed xi ∈ R,

lim
N→∞

P
(
N2/3(λti0+i − E) ≥ xi, i = 0, . . . , k

)
is independent of t as long as, say, t ≤ N−1/3+ϵ. We first note that the local law holds

uniformly in t also for Ht. This follows easily from the fact that the assumptions stay

uniformly satisfied along the flow because expectation and covariance are preserved while

higher order cumulants also remain unchanged up to a multiplication with a t-dependent

constant. For l = N−2/3−ϵ/3, η = N−2/3−ϵ, and smooth monotonous cut-off functions Ki

with Ki(x) = 0 for x ≤ i− 1 and Ki(x) = 1 for x ≥ i we have

E
k∏
i=0

Ki0+i

(
Im
π

∫ N−2/3+ϵ

xiN−2/3+l
TrGt(x+ E + iη)dx

)
−O

(
N−ϵ/9

)
≤ P

(
N2/3(λti0+i − E) ≥ xi, i = 0, . . . , k

)
≤ E

k∏
i=0

Ki0+i

(
Im
π

∫ N−2/3+ϵ

xiN−2/3−l
TrGt(x+ E + iη)dx

)
+O

(
N−ϵ/9

)
.

(9.4.7)

We note that the strategy of expressing k-point correlation functions of edge-eigenvalues

through a regularized expression involving the resolvent has already been used in [71,

97, 102, 106] for proving edge universality. The precise formula (9.4.7) has already been

used, for example, in [97, Eq. (4.8)].

In order to compare the expectations in (9.4.7) at times t = 0 and t = N−1/3+ϵ, we

claim that we have the bound

Xy
..= Im

∫ N−2/3+ϵ

yN−2/3±l
TrGt(E + x+ iη)dx,

⏐⏐⏐⏐⏐EdXy

dt

⏐⏐⏐⏐⏐ ≲ N1/6+3ϵ. (9.4.8)

Proof of (9.4.8). We consider general functions f of the random matrix f(Ht) and

find from Itô’s lemma that

E
df(H)

dt = E

⎡⎣−1
2
∑
α

wα(∂αf)(H) + 1
2
∑
α,β

κ(α, β)(∂α∂βf)(H)
⎤⎦ .
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For the second term we use the general neighbourhood cumulant expansion from [56,

Proposition 3.5] to obtain

E
df(H)

dt =E
[
− 1

2
∑

2≤m<R

∑
α

∑
β1,...,βm∈N

κ(α,β)
m! (∂α∂βf)(H)− 1

2Ω((∂αf)(H), α,N )

− 1
2
∑
m<R

∑
α

∑
β1,...,βm∈N

K(wα;wβ)− κ(α,β)
m! (∂α∂βf)(H)

⏐⏐⏐
WN =0

+ 1
2
∑
α

∑
β∈N c

κ(α, β)(∂α∂βf)(H)
]
.

(9.4.9)

Eq. (9.4.9) requires some explanations. The neighbourhood N (α) ∋ α is a neighbourhood

of α of size |N | ≤ N1/2−µ for some constant µ > 0 which is guaranteed to exist by

Assumptions (C), (D) in [56], and thereby by Assumption (CD) in the present paper.

The random variable K(wα;wβ), as defined in [56, Section 3.1], is called the pre-cumulant

which is justified by the fact that EK = κ. In (9.4.9), Ω is an irrelevant error term, defined

in [56, Proposition 3.5]. The central assumption on the correlation decay is that there

exist some nested neighbourhoods N1 ⊂ · · · ⊂ NR = N such that the covariance of f

supported in Nk and g supported in N c
k+1 is of size N−3. The pre-cumulants K have

the property that Cov (K, f) ≲ N−3 whenever f is supported outside N and wα, wβ

split into two groups contained in Nk and N c
k+1. Due to the pigeon-hole principle such

a splitting always occurs. The large integer R is chosen in such a way that R ≫ 1/µ

in which case the second term in (9.4.9) becomes negligible small. For more details the

reader is referred to [56].

We now apply (9.4.9) to Xt. We consider the first term in (9.4.9) as the leading order

term and will first work out the desired bound for

EIm
∫ N−2/3+ϵ

xN−2/3±l

⎡⎣ ∑
2≤m<R

∑
α1

∑
α2,...,αm+1∈N

(m+ 1)κ(α)
2 TrGt∆α1Gt∆α2 . . . Gt∆αm+1Gt

⎤⎦ dx,

(9.4.10)

where Gt = Gt(x+E + iη). For m ≥ 4, we can trivially estimate the corresponding term

from (9.4.10) by

N−2/3+ϵN2−(m+1)/2N sup
|x|≤N−2/3+ϵ

∥Gt∥m+2
m+2 ≲ N−1/6+ϵ
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where we used the local law in the last step to obtain ∥Gt∥p ≲ ∥Mt∥ ≲ 1 and the

summability of cumulants in the form ∑
α2,...,αk

|κ(α1, . . . , αk)| ≲ 1. For m = 2 we write

out and use the local law in the form ∥ImGt∥p ≲ ϱt + ∥Gt −Mt∥p ≲ N−1/3+ϵ to obtain
∑
ai,bi,c

κ(a1b1, a2b2, a3b3)E |(Gt)ca1(Gt)b1a2(Gt)b2a3(Gt)b3c|

≤
∑
ai,bi

κ(a1b1, a2b2, a3b3)E

√
(ImGt)a1a1

√
(ImGt)b3b3

η
|(Gt)b1a2(Gt)b2a3 | ≲ N2−3/2+1/3+2ϵ

and consequently can bound the corresponding term by N1/6+3ϵ. The case m = 3 is very

similar and we obtain a bound of N−1/3+3ϵ.

We now consider the neighbourhood induced error terms in (9.4.9), i.e., the second,

third and fourth term. The treatment of these error terms is rather easy and closely

resembles the argument in [56, Proof of Corollary 2.6]. For the convenience of the reader

we briefly sketch the bounds for all remaining terms but leave the details to the reader.

For the last term we use |κ(α, β)| ≲ N−4 for β ∈ N c to obtain

E
∑
α

∑
β∈N c

κ(α, β)
⏐⏐⏐TrGt∆αGt∆βGt

⏐⏐⏐ ≲ N−4 ∑
abcde

E |(Gt)ab(Gt)cd(Gt)ea|

≲ N

(
ϱt
Nη

)3/2

≲ N3ϵ

for the integrand and can conclude that the term is bounded by N−2/3+4ϵ due to the

integration length. For the third term in (9.4.9) we bound the derivative trivially by N

(coming from the trace), while the cumulant is of size N−(R+1)/2, which compensates for

the summation of size N2 |N |R ≤ N2+R/2−µR and we can choose R = 2/µ large to obtain

a bound of N−1/6+ϵ for the term after integration. Finally, for the fourth term in (9.4.9)

we have a naive bound of size N−2/3+5/2+ϵ, which we can improve to N−7/6+ϵ using the

pigeon-hole principle and the covariance bound (as in [56, Eq. (27)]). □

For the case of general k and smooth functions Kj’s in (9.4.7) we can easily generalise

(9.4.8) to ⏐⏐⏐⏐⏐Eg(Xx0 , . . . , Xxk
)
dXxj

dt

⏐⏐⏐⏐⏐ ≲ N1/6+3ϵ
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for any 0 ≤ j ≤ k and any smooth function g. Then by a routine power counting

argument and Taylor expanding the Kj’s it follows that for any t ≲ N−1/3+ϵ we have
⏐⏐⏐⏐E k∏

i=0
Ki0+i

(
Im
π

∫ N−2/3+ϵ

xiN−2/3±l
TrGt(x+ E + iη)dx

)

− E
k∏
i=0

Ki0+i

(
Im
π

∫ N−2/3+ϵ

xiN−2/3±l
TrG0(x+ E + iη)dx

) ⏐⏐⏐⏐ ≲ 1
N1/6−4ϵ .

Together with (9.4.7) we obtain for any k, xi

P
(
N2/3(λti0+i − E) ≥ xi, i ∈ [k]

)
= P

(
N2/3(λ0

i0+i − E) ≥ xi, i ∈ [k]
)

+O
(
N−ϵ/9

)
.

(9.4.11)

Proof of Theorem 9.2.7. The theorem follows directly from (9.4.6) and (9.4.11).

□

9.5. Auxiliary results

Proof of Lemma 9.3.4. From (70a)–(70b) in [56] we have5

∥MS[R]R∥∗ ≲ N1/2K ∥R∥2
∗ , ∥MR∥∗ ≲ N1/2K ∥R∥∗ (9.5.1a)

and furthermore by a three term geometric expansion also
B−1Q


∗→∗
≤ (1 + ∥Q∥∗→∗)

(
1 + ∥CMS∥∗→∗ + ∥CMS∥∗→hs

B−1Q


hs→hs
∥CMS∥hs→∗

)
.

(9.5.1b)

Since

∥P [R]∥∗ = |⟨P,R⟩| ∥B∥∗ ≤
∥B∥
N

∑
a

|RP ∗
a·a| ≤

∥B∥ ∥R∥∗
N

∑
a

∥P ∗
a·∥ ≤ ∥P∥ ∥B∥ ∥R∥∗

it follows that ∥P∥∗→∗ ≲ 1 and therefore also ∥Q∥∗→∗ ≲ 1. Now, since ∥R∥max ≤ ∥R∥∗ ≤

∥R∥ and according to (73) in [56] also max{∥S∥max→∥·∥ , ∥S∥hs→∥·∥} ≲ 1, the lemma

follows together with ∥B−1Q∥hs→hs ≲ 1 from Proposition 9.3.1(v). □

5C.f. Remark 9.3.2 for the applicability of these bounds in the present setup.
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Lemma 9.5.1. Fix any ϵ, δ > 0 and an integer k ≥ 0. Under the assumptions of

Theorem 9.2.2, for the k-th derivatives of M and G we have the bound
⏐⏐⏐⟨G(k)(z)−M (k)(z)⟩

⏐⏐⏐ ≺ 1
Nκk+1 . (9.5.2)

uniformly in z ∈ D with κ = dist(z, supp ϱ) ≥ N−2/3+ϵ, dcusp ≥ δ, dM ≥ δ.

Proof. We will fix z = x + iη throughout the proof. Let χ : R → R be a smooth

cut-off function such that χ(x′) = 1 for κ′ = dist(x′, supp ϱ) ≤ κ/3 and χ(x′) = 0 for

κ′ ≥ 2κ/3 and let χ̃ be a cut-off function such that χ̃(η′) = 1 for η′ ≤ 1 and χ̃(η′) = 0 for

η′ ≥ 2. We also assume that the cut-off functions have bounded derivatives in the sense

∥χ′∥∞ ≲ 1/κ, ∥χ′′∥∞ ≲ 1/κ2 and ∥χ̃′∥∞ ≲ 1. We now define f(x′) ..= (x′ − z)−kχ(x′) and

the almost analytic extension

fC(z′) = fC(x′ + iη′) ..= χ̃(η′)
[
f(x′) + iη′f ′(x′)

]
,

∂zf
C(z′) = iη′

2 χ̃(η′)f ′′(x′) + i
2 χ̃

′(η′)
[
f(x′) + iη′f ′(x′)

]
.

It follows from the Cauchy Theorem and the absence of eigenvalues outside {χ = 1 } in

the sense of Corollary 9.2.3 that with high probability

⟨G(k)(z)−M (k)(z)⟩ = 2
π

Re
∫
R

∫
R+
∂zf

C(z′) ⟨G(z′)−M(z′)⟩ dη′dx′.

Due to the fact that χ̃′ = 0 for η′ ≤ 1 the second term in ∂zfC only gives a contribution of

1/Nκk+1 even by the local law and the ∥·∥∞ bound for ∂zfC and we now concentrate on

the first term. First, we exclude the integration regime η′ ≲ N−1+γ in which we cannot

use the local law but only the trivial bound ⟨G−M⟩ ≲ 1/η′. For the contribution of this

regime to (9.5.2) we thus have to estimate

N−1+γ
∫
R
|f ′′(x′)| dx′ ≲

1
N

∫
|x−x′|≥2κ/3

[ 1
κ2 |x− x′|k

+ 1
κ |x− x′|k+1 + 1

|x− x′|k+2

]
dx′

≲
Nγ

Nκk+1
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and we have shown that⏐⏐⏐⟨G(k)(z)−M (k)(z)⟩
⏐⏐⏐

≺ Nγ

Nκk+1 +
∫
R

∫ 2

N−1+γ
η′
[

χ(x′)
|x′ − z|k+2 + χ′(x′)

|x′ − z|k+1 + χ′′(x′)
|x′ − z|k

]
|⟨G(z′)−M(z′)⟩| dη′dx′.

We now use the local law of the form |⟨G−M⟩| ≺ 1/N(κ + η′) and that in the second

and third term the integration regime is only of order κ to obtain the final bound of

Nγ/Nκk+1 for any γ > 0. □
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