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Abstract. Static program analyzers are increasingly effective in check-
ing correctness properties of programs and reporting any errors found,
often in the form of error traces. However, developers still spend a signif-
icant amount of time on debugging. This involves processing long error
traces in an effort to localize a bug to a relatively small part of the pro-
gram and to identify its cause. In this paper, we present a technique for
automated fault localization that, given a program and an error trace,
efficiently narrows down the cause of the error to a few statements. These
statements are then ranked in terms of their suspiciousness. Our tech-
nique relies only on the semantics of the given program and does not
require any test cases or user guidance. In experiments on a set of C
benchmarks, we show that our technique is effective in quickly isolat-
ing the cause of error while out-performing other state-of-the-art fault-
localization techniques.

1 Introduction

In recent years, program analyzers are increasingly applied to detect errors in
real-world software. When detecting an error, static (or dynamic) analyzers often
present the user with an error trace (or a failing test case), which shows how
an assertion can be violated. Specifically, an error trace refers to a sequence of
statements through the program that leads to the error. The user then needs
to process the error trace, which is often long for large programs, in order to
localize the problem to a manageable number of statements and identify its
actual cause. Therefore, despite the effectiveness of static program analyzers
in detecting errors and generating error traces, users still spend a significant
amount of time on debugging.

Our Approach. To alleviate this situation, we present a technique for auto-
mated fault localization, which significantly reduces the number of statements
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that might be responsible for a particular error. Our technique takes as input
a program and an error trace, generated by a static analyzer, and determines
which statements along the error trace are potential causes of the error. We
identify the potential causes of an error by checking, for each statement along
the error trace, whether there exists a local fix such that the trace verifies. We
call this technique semantic fault localization because it exclusively relies on the
semantics of the given program, without for instance requiring any test cases or
guidance from the user.

Although there is existing work that also relies on program semantics for
fault localization, our technique is the first to semantically rank the possible
error causes in terms of suspiciousness. On a high level, we compute a suspi-
ciousness score for a statement by taking into account how much code would
become unreachable if we were to apply a local fix to the statement. Specifically,
suspiciousness is inversely proportional to the amount of unreachable code. The
key insight is that developers do not intend to write unreachable code, and thus
the cause of the error is more likely to be a statement that, when fixed, renders
fewer parts of the program unreachable.

Our experimental evaluation compares our technique to six fault-localization
approaches from the literature on the widely-used TCAS benchmarks (of the
Siemens test suite [19]). We show that in 30 out of 40 benchmarks, our technique
narrows down the cause of the error more than any of the other approaches and is
able to pin-point the faulty statement in 14 benchmarks. In addition, we evaluate
our technique on several seeded bugs in SV-COMP benchmarks [5].

Contributions. We make the following contributions:

– We present an automated fault-localization technique that is able to quickly
narrow down the error cause to a small number of suspicious statements.

– We describe an effective ranking mechanism for the suspicious statements.
– We implement this technique in a tool architecture for localizing and

ranking suspicious statements along error traces reported by the Ultimate
Automizer [16] software model checker.

– We evaluate the effectiveness of our technique on 51 benchmarks.

2 Guided Tour

This section uses a motivating example to give an overview of our technique for
semantic fault localization and suspiciousness ranking.

Example. Let us consider the simple program on the left of Fig. 1. The state-
ment on line 2 denotes that y is assigned a non-deterministic value, denoted by �.
The conditional on line 3 has a non-deterministic predicate, but in combination
with the assume statements (lines 4 and 7), it is equivalent to a conditional of
the following form:

if (y < 3) { x := 0; } else { x := 1; }
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Fig. 1. The running example (left) and its control-flow graph (right).

The assertion on line 10 fails when program execution takes the then branch of
the if statement, and thus, it cannot be verified by a (sound) static analyzer.
The error trace that is generated by a static analyzer for this program is

x := 2; y := � ; assume y < 3; x := 0; assume x ≤ 0; assert false

and we mark it in bold on the control-flow graph of the program, which is shown
on the right of Fig. 1. Statement assume x ≤ 0 indicates that the error trace
takes the failing branch of the assertion on line 10 of the program. The assert
false statement denotes that this trace through the program results in an error.

Fault Localization. From such an error trace, our technique is able to deter-
mine a set of suspicious assignment statements, which we call trace-aberrant
statements. Intuitively, these are statements along the error trace for which there
exists a local fix that makes the trace verify. An assignment statement has a local
fix if there exists an expression that may replace the right-hand side of the assign-
ment such that the error becomes unreachable along this error trace. (In Sect. 5,
we explain how our technique is able to identify other suspicious statements,
apart from assignments.)

For example, statement x := 0 of the error trace is trace-aberrant because
there exists a value that may be assigned to variable x such that the trace veri-
fies. In particular, when x is assigned a positive value, assume x ≤ 0 terminates
execution before reaching the error. Statement y := � is trace-aberrant for sim-
ilar reasons. These are all the trace-aberrant statements along this error trace.
For instance, x := 2 is not trace-aberrant because the value of x is over-written
by the second assignment to the variable, thus making the error reachable along
this trace, regardless of the initial value of x.

Suspiciousness Ranking. So far, we have seen that, when given the above error
trace and the program of Fig. 1, semantic fault localization detects two trace-
aberrant statements, y := � and x := 0. Since for real programs there can be
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many trace-aberrant statements, our technique computes a semantic suspicious-
ness score for each of them. Specifically, the computed score is inversely propor-
tional to how much code would become unreachable if we applied a local fix to
the statement. This is because developers do not intentionally write unreachable
code. Therefore, when they make a mistake, they are more likely to fix a state-
ment that renders fewer parts of the program unreachable relatively to other
suspicious statements.

For example, if we were to fix statement x := 0 as discussed above (that
is, by assigning a positive value to x), no code would become unreachable. As
a result, this statement is assigned the highest suspiciousness score. On the
other hand, if we were to fix statement y := � such that 3 ≤ y holds and the
trace verifies, the then branch of the if statement would become unreachable.
Consequently, y := � is assigned a lower suspiciousness score than x := 0.

As we show in Sect. 6, this ranking mechanism is very effective at narrowing
down the cause of an error to only a few lines in the program.

Fig. 2. A simple programming language.

3 Semantic Fault Localization

As mentioned in the previous section, our technique consists of two steps, where
we determine (trace-)aberrant statements in the first step and compute their
suspiciousness ranks in the next one.

3.1 Programming Language

To precisely describe our technique, we introduce a small programming language,
shown in Fig. 2. As shown in the figure, a program consists of a statement, and
statements include sequencing, assignments, assertions, assumptions, condition-
als, and loops. Observe that conditionals and loops have non-deterministic pred-
icates, but note that, in combination with assumptions, they can express any
conditional or loop with a predicate p. To simplify the discussion, we do not
introduce additional constructs for procedure definitions and calls.

We assume that program execution terminates as soon as an assertion or
assumption violation in encountered (that is, when the corresponding predicate
evaluates to false). For simplicity, we also assume that our technique is applied
to one failing assertion at a time.
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3.2 Trace-Aberrant Statements

Recall from the previous section that trace-aberrant statements are assignments
along the error trace for which there exists a local fix that makes the trace verify
(that is, the error becomes unreachable along this trace):

Definition 1 (Trace aberrance). Let τ be a feasible error trace and s an
assignment statement of the form v := � or v := e along τ . Statement s is trace-
aberrant iff there exists an expression e′ that may be assigned to variable v such
that the trace verifies.

To determine which assignments along an error trace are trace-aberrant, we
first compute, in the post-state of each assignment, the weakest condition that
ensures that the trace verifies. We, therefore, define a predicate transformer WP
such that, if WP(S ,Q) holds in a state along the error trace, then the error
is unreachable and Q holds after executing statement S. The definition of this
weakest-precondition transformer is standard [9] for all statements that may
appear in an error trace:

– WP(s1; s2, Q) ≡ WP(s1 ,WP(s2 ,Q))
– WP(v := �,Q) ≡ ∀v′.Q[v := v′],where v′ /∈ freeVars(Q)
– WP(v := e,Q) ≡ Q[v := e]
– WP(assert false, Q) ≡ false
– WP(assume p,Q) ≡ p ⇒ Q

In the weakest precondition of the non-deterministic assignment, v′ is fresh in
Q and Q[v := v′] denotes the substitution of v by v′ in Q.

To illustrate, we compute this condition in the post-state of each assignment
along the error trace of Sect. 2. Weakest precondition

WP(assume x ≤ 0;assert false, true) ≡ 0 < x

should hold in the pre-state of statement assume x ≤ 0, and thus in the post-
state of assignment x := 0, for the trace to verify. Similarly, 3 ≤ y and false
should hold in the post-state of assignments y = � and x := 2, respectively.
Note that condition false indicates that the error is always reachable after assign-
ment x := 2.

Second, we compute, in the pre-state of each assignment along the error trace,
the strongest condition that holds when executing the error trace until that state.
We define a predicate transformer SP such that condition SP(P ,S ) describes
the post-state of statement S for an execution of S that starts from an initial
state satisfying P . The definition of this strongest-postcondition transformer is
also standard [10] for all statements that may appear in an error trace:

– SP(P, s1; s2) ≡ SP(SP(P , s1 ), s2 )
– SP(P, v := �) ≡ ∃v′.P [v := v′],where v′ /∈ freeVars(P )
– SP(P, v := e) ≡ ∃v′.P [v := v′] ∧ v = e[v := v′],

where v′ /∈ freeVars(P ) ∪ freeVars(e)
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– SP(P, assert false) ≡ false
– SP(P, assume p) ≡ P ∧ p

In the strongest postcondition of the assignment statements, v′ represents the
previous value of v.

For example, strongest postcondition

SP(true, x := 2) ≡ x = 2

holds in the post-state of assignment x := 2, and therefore in the pre-state of
y := �. Similarly, the strongest such conditions in the pre-state of assignments
x := 2 and x := 0 along the error trace are true and x = 2∧y < 3, respectively.

Third, our technique determines if an assignment a (of the form v := � or
v := e) along the error trace is trace-aberrant by checking whether the Hoare
triple [17] {φ} v := � {ψ} is valid. Here, φ denotes the strongest postcondition
in the pre-state of assignment a, v the left-hand side of a, and ψ the negation
of the weakest precondition in the post-state of a. If this Hoare triple is invalid,
then assignment statement a is trace-aberrant, otherwise it is not.

Intuitively, the validity of the Hoare triple implies that, when starting from
the pre-state of a, the error is always reachable no matter which value is assigned
to v. In other words, there is no local fix for statement a that would make
the trace verify. Consequently, assignment a is not trace-aberrant since it can-
not possibly be the cause of the error. As an example, consider statement
x := 2. For this assignment, our technique checks the validity of the Hoare triple
{true} x := � {true}. Since any value for x satisfies the true postcondition,
assignment x := 2 is not trace-aberrant.

If, however, the Hoare triple is invalid, there exists a value for variable v such
that the weakest precondition in the post-state of a holds. This means that there
is a local fix for a that makes the error unreachable. As a result, statement a
is found to be trace-aberrant. For instance, for statement x := 0, we construct
the following Hoare triple: {x = 2 ∧ y < 3} x := � {x ≤ 0}. This Hoare triple
is invalid because there are values that may be assigned to x such that x ≤ 0
does not hold in the post-state. Assignment x := 0 is, therefore, trace-aberrant.
Similarly, for y := �, the Hoare triple {x = 2} y := � {y < 3} is invalid.

3.3 Program-Aberrant Statements

We now define program-aberrant statements; these are assignments for which
there exists a local fix that makes every trace through them verify:

Definition 2 (Program aberrance). Let τ be a feasible error trace and s
an assignment statement of the form v := � or v := e along τ . Statement s
is program-aberrant iff there exists an expression e′ that may be assigned to
variable v such that all traces through s verify.

Based on the above definition, the trace-aberrant assignments in the program
of Fig. 1 are also program-aberrant. This is because there is only one error trace
through these statements.
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As another example, let us replace the assignment on line 8 of the program by
x := -1. In this modified program, the assertion on line 10 fails when program
execution takes either branch of the if statement. Now, assume that a static
analyzer, which clearly fails to verify the assertion, generates the same error
trace that we described in Sect. 2 (for the then branch of the if statement). Like
before, our technique determines that statements y := � and x := 0 along this
error trace are trace-aberrant. However, although there is still a single error trace
through statement x := 0, there are now two error traces through y := �, one
for each branch of the conditional. We, therefore, know that x := 0 is program-
aberrant, but it is unclear whether assignment y := � is.

To determine which trace-aberrant assignments along an error trace are also
program-aberrant, one would need to check if there exists a local fix for these
statements such that all traces through them verify. Recall that there exists a fix
for a trace-aberrant assignment if there exists a right-hand side that satisfies the
weakest precondition in the post-state of the assignment along the error trace.
Therefore, checking the existence of a local fix for a program-aberrant statement
involves computing the weakest precondition in the post-state of the statement
in the program, which amounts to program verification and is undecidable.

Identifying which trace-aberrant statements are also program-aberrant is
desirable since these are precisely the statements that can be fixed for the pro-
gram to verify. However, determining these statements is difficult for the reasons
indicated above. Instead, our technique uses the previously-computed weakest
preconditions to decide which trace-aberrant assignments must also be program-
aberrant, in other words, it can under-approximate the set of program-aberrant
statements. In our experiments, we find that many trace-aberrant statements
are must-program-aberrant.

To compute the must-program-aberrant statements, our technique first iden-
tifies the trace-aberrant ones, for instance, y := � and x := 0 for the modified
program. In the following, we refer to the corresponding error trace as ε.

As a second step, our technique checks whether all traces through the trace-
aberrant assignments verify with the most permissive local fix that makes ε
verify. To achieve this, we instrument the faulty program as follows. We replace a
trace-aberrant statement ai of the form v := e by a non-deterministic assignment
v := � with the same left-hand side v. Our technique then introduces an assume
statement right after the non-deterministic assignment. The predicate of the
assumption corresponds to the weakest precondition that is computed in the
post-state of the assignment along error trace ε1. We apply this instrumentation
separately for each trace-aberrant statement ai, where i = 0, . . . , n, and we refer
to the instrumented program that corresponds to trace-aberrant statement ai

as Pai
. (Note that our technique uses this instrumentation for ranking aberrant

statements in terms of suspiciousness, as we explain in Sect. 4.) Once we obtain
a program Pai

, we instrument it further to add a flag that allows the error to

1 Any universal quantifier appearing in the weakest precondition can be expressed
within the language of Fig. 2 by using non-deterministic assignments.
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manifest itself only for traces through statement ai (as per Definition 2). We
denote each of these programs by P †

ai
.

For example, the light gray boxes on the right show
the instrumentation for checking whether statement x
:= 0 of the modified program is program-aberrant (the
darker boxes should be ignored). Lines 8–9 constitute
the instrumentation that generates program Px := 0.
As explained in Sect. 3.2, when the computed weakest
precondition holds on line 9, it implies that trace ε ver-
ifies. Consequently, this instrumentation represents a
hypothetical local fix for assignment x := 0. Lines 1,
10, and 15 block any program execution that does not
go through statement x := 0. As a result, the asser-
tion may fail only due to failing executions through
this statement. Similarly, when considering the dark
gray boxes in addition to lines 1 and 15 (and ignor-
ing all other light boxes), we obtain P †

y := �. Line 4
alone constitutes the instrumentation that generates
program Py := �.

Third, our technique runs the static analyzer on each of the n instrumented
programs P †

ai
. If the analyzer does not generate a new error trace, then state-

ment ai must be program-aberrant, otherwise we do not know. For instance,
when running the static analyzer on P †

x := 0 from above, no error is detected.
Statement x := 0 is, therefore, program-aberrant. However, an error trace is
reported for program P †

y := � (through the else branch of the conditional). As
a result, our technique cannot determine whether y := � is program-aberrant.
Notice, however, that this statement is, in fact, not program-aberrant because
there is no fix that we can apply to it such that both traces verify.

3.4 k-Aberrance

So far, we have focused on (trace- or program-) aberrant statements that may
be fixed to single-handedly make one or more error traces verify. The notion
of aberrance, however, may be generalized to sets of statements that make the
corresponding error traces verify only when fixed together:

Definition 3 (k-Trace aberrance). Let τ be a feasible error trace and s̄ a set
of assignment statements of the form v := � or v := e along τ . Statements s̄ are
|s̄|-trace-aberrant, where |s̄| is the cardinality of s̄, iff there exist local fixes for
all statements in s̄ such that trace τ verifies.

Definition 4 (k-Program aberrance). Let τ̄ be the set of all feasible error
traces through any assignment statement s in a set s̄. Each statement s is of
the form v := � or v := e along an error trace τ in τ̄ . Statements s̄ are |s̄|-
program-aberrant, where |s̄| is the cardinality of s̄, iff there exist local fixes for
all statements in s̄ such that all traces τ̄ verify.



234 M. Christakis et al.

For example, consider the modified version of the program in Fig. 1 that
we discussed above. Assignments x := 0 and x := -1 are 2-program-aberrant
because their right-hand side may be replaced by a positive value such that both
traces through these statements verify.

Our technique may be adjusted to compute k-aberrant statements by explor-
ing all combinations of k assignments along one or more error traces.

4 Semantic Suspiciousness Ranking

In this section, we present how aberrant statements are ranked in terms of their
suspiciousness. As mentioned earlier, the suspiciousness score of an aberrant
statement is inversely proportional to how much code would become unreachable
if we applied a local fix to the statement.

First, for each aberrant statement ai, where i =
0, . . . , n, our technique generates the instrumented
program Pai

(see Sect. 3.3 for the details). Recall that
the trace-aberrant statements for the program of Fig. 1
are y := � and x := 0.

Second, we check reachability of the code in each of
these n instrumented programs Pai

. Reachability may
be simply checked by converting all existing assertions
into assumptions and introducing an assert false
at various locations in the program. An instrumenta-
tion for checking reachability in Px := 0 is shown on
the right; all changes are highlighted. In particular,
we detect whether the injected assertion on line 7 is
reachable by passing the above program (without the dark gray box) to an off-
the-shelf analyzer. We can similarly check reachability of the other assertion. In
the above program, both assertions are reachable, whereas in the corresponding
program for assignment y := �, only one of them is. The number of reachable
assertions in a program Pai

constitutes the suspiciousness score of statement ai.
As a final step, our technique ranks the aberrant statements in order of

decreasing suspiciousness. Intuitively, this means that, by applying a local fix to
the higher-ranked statements, less code would become unreachable in comparison
to the statements that are ranked lower. Since developers do not typically intend
to write unreachable code, the cause of the error in P is more likely to be a higher-
ranked aberrant statement. For our running example, trace-aberrant statement
x := 0 is ranked higher than y := �.

As previously discussed, when modifying the program of Fig. 1 to replace
assignment x := 1 by x := -1, our technique determines that only x := 0
must be program-aberrant. For the error trace through the other branch of the
conditional, we would similarly identify statement x := -1 as must-program-
aberrant. Note that, for this example, must program aberrance does not miss
any program-aberrant statements. In fact, in our experiments, must program
aberrance does not miss any error causes, despite its under-approximation.
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5 Implementation

We have implemented our technique in a toolchain for localizing and ranking sus-
picious statements in C programs. We used UAutomizer in the Ultimate analysis
framework to obtain error traces (version 0.1.23).UAutomizer is a softwaremodel
checker that translates C programs to Boogie [4] and then employs an automata-
basedverification approach [16].Our implementation extendsUAutomizer to iden-
tify (trace- or program-) aberrant statements along the generated error traces, as
we describe in Sect. 3. Note that, due to abstraction (for instance, of library calls),
UAutomizer may generate spurious error traces. This is an orthogonal issue that
we do not address in this work.

To also identify aberrant expressions, for instance, predicates of conditionals
or call arguments, we pre-process the program by first assigning these expressions
to temporary variables, which are then used instead. This allows us to detect
error causes relating to statements other than assignments.

Once the aberrant statements have been determined, we instrument the
Boogie code to rank them (see Sect. 4). Specifically, our implementation inlines
procedures and injects an assert false statement at the end of each basic block
(one at a time). Instead of extending the existing support for “smoke checking”
in Boogie, we implemented our own reachability checker in order to have more
control over where the assertions are injected. While this might not be as effi-
cient due to the larger number of Boogie queries (each including the time for pars-
ing, pre-processing, and SMT solving), one could easily optimize or replace this
component.

6 Experimental Evaluation

We evaluate the effectiveness of our technique in localizing and ranking suspi-
cious statements by applying our toolchain to several faulty C programs. In the
following, we introduce our set of benchmarks (Sect. 6.1), present the experimen-
tal setup (Sect. 6.2), and investigate four research questions (Sect. 6.3).

6.1 Benchmark Selection

For our evaluation, we used 51 faulty C programs from two independent sources.
On the one hand, we used the faulty versions of the TCAS task from the Siemens
test suite [19]. The authors of the test suite manually introduced faults in several
tasks while aiming to make these bugs as realistic as possible. In general, the
Siemens test suite is widely used in the literature (e.g., [14,20,22,25–28]) for
evaluating and comparing fault-localization techniques.

The TCAS task implements an aircraft-collision avoidance system and con-
sists of 173 lines of C code; there are no specifications. This task also comes with
1608 test cases, which we used to introduce assertions in the faulty program ver-
sions. In particular, in each faulty version, we specified the correct behavior as
this was observed by running the tests against the original, correct version of the
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code. This methodology is commonly used in empirical studies with the Siemens
test suite, and it was necessary for obtaining an error trace from UAutomizer.

On the other hand, we randomly selected 4 correct programs (with over 250
lines of code) from the SV-COMP software-verification competition [5], which
includes standard benchmarks for evaluating program analyzers. We automati-
cally injected faults in each of these programs by randomly mutating statements
within the program. All SV-COMP benchmarks are already annotated with
assertions, so faults manifest themselves by violating the existing assertions.

6.2 Experimental Setup

We ran all experiments on an Intel R© Core i7 CPU @ 2.67 GHz machine with
16 GB of memory, running Linux. Per analyzed program, we imposed a timeout
of 120 s and a memory limit of 6 GB to UAutomizer.

To inject faults in the SV-COMP benchmarks, we developed a mutator that
randomly selects an assignment statement, mutates the right-hand side, and
checks whether the assertion in the program is violated. If it is, the mutator
emits a faulty program version. Otherwise, it generates up to two additional
mutations for the same assignment before moving on to another.

6.3 Experimental Results

To evaluate our technique, we consider the following research questions:

– RQ1: How effective is our technique in narrowing down the cause of an error
to a small number of suspicious statements?

– RQ2: How efficient is our technique?
– RQ3: How does under-approximating program-aberrant statements affect

fault localization?
– RQ4: How does our technique compare against state-of-the-art approaches

for fault localization in terms of effectiveness and efficiency?

RQ1 (Effectiveness). Tables 1 and 2 summarize our experimental results on
the TCAS and SV-COMP benchmarks, respectively. The first column of Table 1
shows the faulty versions of the program, and the second column the number
of trace-aberrant statements that were detected for every version. Similarly, in
Table 2, the first column shows the program version2, the second column the
lines of source code in every version, and the third column the number of trace-
aberrant statements. For all benchmarks, the actual cause of each error is always
2 A version is denoted by <correct-program-id>.<faulty-version-id>. We mutate the

following correct programs from SV-COMP: 1. mem slave tlm.1 true-unreach-

call false-termination.cil.c (4 faulty versions), 2. kundu true-unreach-call

false-termination.cil.c (4 faulty versions), 3. mem slave tlm.2 true-unreach-

call false-termination.cil.c (2 faulty versions), and 4. pc sfifo 1 true-un

reach-call false-termination.cil.c (1 faulty version). All versions are at:
https://github.com/numairmansur/SemanticFaultLocalization Benchmarks.

https://github.com/numairmansur/SemanticFaultLocalization_Benchmarks
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Table 1. Our experimental results for the TCAS benchmarks.

included in the statements that our technique identifies as trace-aberrant. This
is to be expected since the weakest-precondition and strongest-postcondition
transformers that we use for determining trace aberrance are known to be sound.

The fourth column of Table 1 and the fifth column of Table 2 show the suspi-
ciousness rank that our technique assigns to the actual cause of each error. For
both sets of benchmarks, the average rank of the faulty statement is 3, and all
faulty statements are ranked in the top 6. A suspiciousness rank of 3 means that
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users need to examine at least three statements to identify the problem; they
might have to consider more in case multiple statements have the same rank.

To provide a better indication of how much code users have to examine to
identify the bug, the eighth column of Table 1 and the seventh column of Table 2
show the percentage reduction in the program size. On average, our technique
reduces the code size down to 5% for TCAS and less than 1% for SV-COMP.

RQ2 (Efficiency). The sixth column of Table 1 shows the time that our tech-
nique requires for identifying the trace-aberrant statements in a given error trace
as well as for ranking them in terms of suspiciousness. This time does not include
the generation of the error trace by UAutomizer. As shown in the table, our
technique takes only a little over 2 min on average to reduce a faulty program
to about 5% of its original size.

Table 2. Our experimental results for the SV-COMP benchmarks.

Prg
LoSC

Abr stmts Rank Rdc (%)
ver trc prg trc prg trc prg

1.1 1336 34 29 4 2 0.4 0.2
1.2 1336 34 28 4 2 0.4 0.2
1.3 1336 34 31 2 1 0.2 0.1
1.4 1336 34 30 3 1 0.4 0.1
2.1 630 23 10 3 2 1.3 0.3
2.2 630 16 8 1 1 0.3 0.3
2.3 630 22 9 3 2 1.3 0.3
2.4 630 27 25 4 3 1.2 1.1
3.1 1371 37 33 3 1 0.3 0.2
3.2 1371 37 32 3 1 0.3 0.1
4.1 360 18 8 4 2 3.3 0.8

Average 28.7 22.0 3.0 1.6 0.8 0.3

Note that most of this time (98.5% on average) is spent on the suspiciousness
ranking. The average time for determining the trace-aberrant statements in an
error trace is only 1.7 s. Recall from Sect. 5 that our reachability analysis, which is
responsible for computing the suspiciousness score of each aberrant statement, is
not implemented as efficiently as possible (see Sect. 5 for possible improvements).

RQ3 (Program aberrance). In Sect. 3.3, we discussed that our technique can
under-approximate the set of program-aberrant statements along an error trace.
The third, fifth, seventh, and ninth columns of Table 1 as well as the fourth, sixth,
and eighth columns of Table 2 show the effect of this under-approximation.

There are several observations to be made here, especially in comparison
to the experimental results for trace aberrance. First, there are fewer aberrant
statements, which is to be expected since (must-)program-aberrant statements
may only be a subset of trace-aberrant statements. Perhaps a bit surprisingly, the
actual cause of each error is always included in the must-program-aberrant state-
ments. In other words, the under-approximation of program-aberrant statements
does not miss any error causes in our benchmarks. Second, the suspiciousness
rank assigned to the actual cause of each error is slightly higher, and all faulty
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statements are ranked in the top 5. Third, our technique requires about 1.5 min
for fault localization and ranking, which is faster due to the smaller number of
aberrant statements. Fourth, the code is reduced even more, down to 4.3 for
TCAS and 0.3% for SV-COMP.

RQ4 (Comparison). To compare our technique against state-of-the-art fault-
localization approaches, we evaluated how five of the most popular [35] spectrum-
based fault-localization (SBFL) techniques [20,24,34] perform on our bench-
marks. In general, SBFL is the most well-studied and evaluated fault-localization
technique in the literature [26]. SBFL techniques essentially compute suspicious-
ness scores based on statement-execution frequencies. Specifically, the more fre-
quently a statement is executed by failing test cases and the less frequently it is
executed by successful tests, the higher its suspiciousness score. We also compare
against an approach that reduces fault localization to the maximal satisfiability
problem (MAX-SAT) and performs similarly to SBFL.

The last eight columns of Table 1 show the comparison in code reduction
across different fault-localization techniques. Columns A, B, C, D, and E refer to
the SBFL techniques, and in particular, to Tarantula [20], Ochiai [2], Op2 [24],
Barinel [1], and DStar [34], respectively. The last column (F) corresponds to
BugAssist [21,22], which uses MAX-SAT. To obtain these results, we imple-
mented all SBFL techniques and evaluated them on TCAS using the existing
test suite. For BugAssist, we used the published percentages of code reduction
for these benchmarks [22]. Note that we omit version 38 in Table 1 as is common
in experiments with TCAS. The fault is in a non-executable statement (array
declaration) and its frequency cannot be computed by SBFL.

The dark gray boxes in the table show which technique is most effective
with respect to code reduction for each version. Our technique for must program
aberrance is the most effective for 30 out of 40 versions. The light gray boxes in
the trace-aberrance column denote when this technique is the most effective in
comparison with columns A–F (that is, without considering program aberrance).
As shown in the table, our technique for trace aberrance outperforms approaches
A–F in 28 out of 40 versions. In terms of lines of code, users need to inspect 7–9
statements when using our technique, whereas they would need to look at 13–15
statements when using other approaches. This is a reduction of 4–8 statements,
and every statement that users may safely ignore saves them valuable time.

Regarding efficiency, our technique is comparable to SBFL (A–E); we were
not able to run BugAssist (F), but it should be very lightweight for TCAS. SBFL
techniques need to run the test suite for every faulty program. For the TCAS
tests, this takes 1 min 11 s on average on our machine. Parsing the statement-
execution frequencies and computing the suspiciousness scores takes about
5 more seconds. Therefore, the average difference with our technique ranges
from a few seconds (for program aberrance) to a little less than a minute (for
trace aberrance). There is definitely room for improving the efficiency of our
technique, but despite it being slightly slower than SBFL for these benchmarks,
it saves the user the effort of inspecting non-suspicious statements. Moreover,
note that the larger the test suite, the higher the effectiveness of SBFL, and the
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longer its running time. Thus, to be as effective as our technique, SBFL would
require more test cases, and the test suite would take longer to run. We do not
consider the time for test case generation just like we do not consider the running
time of the static analysis that generates the error traces.

7 Related Work

Among the many fault-localization techniques [35], SBFL [20,24,34] is the most
well-studied and evaluated. Mutation-based fault localization (MBFL) [23,25]
is almost as effective as SBFL but significantly more inefficient [26]. In general,
MBFL extends SBFL by considering, not only how frequently a statement is
executed in tests, but also whether a mutation to the statement affects the test
outcomes. So, MBFL generates many mutants per statement, which requires
running the test suite per mutant, and not per faulty program as in SBFL.
Our local fixes resemble mutations, but they are performed symbolically and
can be seen as applying program-level abductive reasoning [6,11,12] or angelic
verification [8] for fault localization.

The use of error invariants [7,13,18,29] is a closely-related fault-localization
technique. Error invariants are computed from Craig interpolants along an error
trace and capture which states will produce the error from that point on. They
are used for slicing traces by only preserving statements whose error invariants
before and after the statement differ. Similarly, Wang et al. [32] use a syntactic-
level weakest-precondition computation for a given error trace to produce a
minimal set of word-level predicates, which explain why the program fails. In
contrast, we use the novel notion of trace aberrance for this purpose and compute
a suspiciousness ranking to narrow down the error cause further.

Griesmayer et al. [14] use an error trace from a bounded model checker to
instrument the program with “abnormal predicates”. These predicates allow
expressions in the program to take arbitrary values, similarly to how our tech-
nique replaces a statement v := e by a non-deterministic one. Unlike our
technique, their approach may generate a prohibitively large instrumentation,
requires multiple calls to the model checker, and does not rank suspicious state-
ments.

Several fault-localization algorithms leverage the differences between faulty
and successful traces [3,15,27,36]. For instance, Ball et al. [3] make several calls
to a model checker and compare any generated counterexamples with successful
traces. In contrast, we do not require successful traces for comparisons.

Zeller [36] uses delta-debugging, which identifies suspicious parts of the input
by running the program multiple times. Slicing [31,33] removes statements that
are definitely not responsible for the error based on data and control dependen-
cies. Shen et al. [30] use unsatisfiable cores for minimizing counterexamples. Our
technique is generally orthogonal to these approaches, which could be run as a
pre-processing step to reduce the search space.
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8 Conclusion

We have presented a novel technique for fault localization and suspiciousness
ranking of statements along an error trace. We demonstrated its effectiveness in
narrowing down the error cause to a small fraction of the entire program.

As future work, we plan to evaluate the need for k-aberrance by analyzing
software patches and to combine our technique with existing approaches for
program repair to improve their effectiveness.
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