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Abstract

POMDPs are standard models for probabilistic planning problems, where an
agent interacts with an uncertain environment. We study the problem of almost-sure
reachability, where given a set of target states, the question is to decide whether there
is a policy to ensure that the target set is reached with probability 1 (almost-surely).
While in general the problem is EXPTIME-complete, in many practical cases
policies with a small amount of memory suffice. Moreover, the existing solution to
the problem is explicit, which first requires to construct explicitly an exponential
reduction to a belief-support MDP. In this work, we first study the existence of
observation-stationary strategies, which is NP-complete, and then small-memory
strategies. We present a symbolic algorithm by an efficient encoding to SAT and
using a SAT solver for the problem. We report experimental results demonstrating
the scalability of our symbolic (SAT-based) approach.

1 Introduction
The de facto model for dynamic systems with probabilistic and nondeterministic behav-
ior are Markov decision processes (MDPs) [27]. MDPs provide the appropriate model to
solve control and probabilistic planning problems [26, 39], where the nondeterminism
represents the choice of the control actions for the controller (or planner), while the
stochastic response of the system to control actions is represented by the probabilistic
behavior. In perfect-observation (or perfect-information) MDPs, to resolve the nonde-
terministic choices among control actions the controller observes the current state of the
system precisely, whereas in partially observable MDPs (POMDPs) the state space is
partitioned according to observations that the controller can observe, i.e., the controller
can only view the observation of the current state (the partition the state belongs to), but
not the precise state [36]. POMDPs are widely used in several applications, such as in
computational biology [23], speech processing [35], image processing [22], software
verification [12], robot planning [31, 28], reinforcement learning [29], to name a few.
Reachability objectives and their computational problems. We consider POMDPs with
one of the most basic and fundamental objectives, namely, reachability objectives. Given
a set of target states, the reachability objective requires that some state in the target set is

1



visited at least once. The main computational problems for POMDPs with reachability
objectives are as follows: (a) the quantitative problem asks for the existence of a policy
(that resolves the choice of control actions) that ensures the reachability objective with
probability at least 0 < λ ≤ 1; and (b) the qualitative problem is the special case of the
quantitative problem with λ = 1 (i.e., it asks that the objective is satisfied almost-surely).
Significance of qualitative problems. The qualitative problem is of great importance as
in several applications it is required that the correct behavior happens with probability 1,
e.g., in the analysis of randomized embedded schedulers, the important question is
whether every thread progresses with probability 1. Also in applications where it might
be sufficient that the correct behavior happens with probability at least λ < 1, the
correct choice of the threshold λ can be still challenging, due to simplifications and
imprecisions introduced during modeling. For example, in the analysis of randomized
distributed algorithms it is common to require correctness with probability 1 (e.g., [38]).
Finally, it has been shown recently [13] that for the important problem of minimizing
the total expected cost to reach the target set [6, 10, 30] (under positive cost functions),
it suffices to first compute the almost-sure winning set, and then apply any finite-
horizon algorithm for approximation. Besides its importance in practical applications,
almost-sure convergence, like convergence in expectation, is a fundamental concept in
probability theory, and provides the strongest probabilistic guarantee [24].
Previous results. The quantitative analysis problem for POMDPs with reachability
objectives is undecidable [37] (and the undecidability result even holds for any approxi-
mation [33]). In contrast, the qualitative analysis problem is EXPTIME-complete [15, 2].
The main algorithmic idea to solve the qualitative problem (that originates from [16]) is
as follows: first construct the belief-support MDP explicitly (which is an exponential size
perfect-information MDP where every state is the support of a belief), and then solve
the qualitative analysis on the perfect-information MDP. Solving the qualitative analysis
problem on the resulting MDP can be done using any one of several known polynomial-
time algorithms, which are based on discrete graph theoretic approaches [19, 18, 17].
This yields the EXPTIME upper bound for the qualitative analysis of POMDPs, and the
EXPTIME lower bound has been established in [15].
Drawbacks. There are two major drawbacks of the present solution for the qualitative
problem for POMDPs with reachability objectives. First, the algorithm requires to
explicitly construct an exponential-size MDP, and there is no symbolic algorithm (that
avoids the explicit construction) for the problem. Second, even though in practice a
small amount of memory in policies might suffice, the construction of the belief-support
MDP always searches for an exponential size policy (which is only required in the worst
case). There is no algorithmic approach for small-memory policies for the problem.
Our contributions. In this work our main contributions are as follows. First, we consider
the qualitative analysis problem with respect to the special case of observation-stationary
(i.e., memoryless) policies. This problem is NP-complete. Motivated by the impressive
performance of state-of-the-art SAT solvers in applications from AI as well as many
other fields [7, 41, 8], we present an efficient reduction of our problem to SAT. This
results in a practical, symbolic algorithm for the almost-sure reachability problem in
POMDPs. We then show how our encoding to SAT can be extended to search for
policies that use only a small amount of memory. Thus we present a symbolic SAT-
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based algorithm that determines the existence of small-memory policies in POMDPs
that can ensure that a target set is reached almost-surely. Our encoding is efficient: in
the worst case it uses a quadratic number of variables and a cubic number of clauses, as
compared to a naive encoding that uses a quartic (fourth power) number of clauses; and
in practice our encoding uses just a linear number of variables and a quadratic number of
clauses. Moreover, our encoding is incremental (it incrementally searches over lengths
of paths), which may be further exploited by incremental SAT solvers (see Remark 1 for
details). An important consequence of our result is that any improvement in SAT-solvers
(improved solvers or parallel solvers), which is an active research area, carries over
to the qualitative problem for POMDPs. We have implemented our approach and our
experimental results show that our approach scales much better, and can solve large
POMDP instances where the previous method fails.
Comparison with contingent or strong planning. We consider the qualitative analysis
problem which is different as compared to strong or contingent planning [34, 21, 1]. The
strong planning problem has been also considered under partial observation in [5, 40, 11].
The key difference of strong planning and qualitative analysis is as follows: in contingent
planning the probabilistic aspect is treated as an adversary, whereas in qualitative
analysis though the precise probabilities do not matter, still the probabilistic aspect needs
to be considered. For a detailed discussion with illustrative examples see Appendix A.
Comparison with strong cyclic planning. The qualitative analysis problem is equivalent
to the strong cyclic planning problem. The strong cyclic problem was studied in the
perfect information setting in [21] and later extended to the partial information setting
in [4]. However, there are two crucial differences of our work wrt [4]: (i) We consider
the problem of finding small strategies as compared to general strategies. We show
that our problem is NP-complete. In contrast, it is known that the qualitative analysis
problem for POMDPs with general strategies is EXPTIME-complete [15, 2]. Thus
the strong cyclic planning with general strategies considered in [4] is also EXPTIME-
complete, whereas our problem is NP-complete. Thus there is a significant difference in
the complexity of the problem we consider. (ii) The work of [4] presents a BDD-based
implementation, whereas we present a SAT-based implementation. Note that since [4]
considers an EXPTIME-complete problem in general there is no efficient reduction to
SAT. (iii) Finally, the equivalence of strong cyclic planning and qualitative analysis
of POMDPs imply that our results present an efficient SAT-based implementation to
obtain small strategies in strong cyclic planning (also see Appendix B for a detailed
discussion).

2 Preliminaries
Definition 1 POMDPs. A Partially Observable Markov Decision Process (POMDP) is
defined as a tuple P = (S,A, δ,Z,O, I) where:
• (i) S is a finite set of states;
• (ii) A is a finite alphabet of actions;
• (iii) δ : S ×A → D(S) is a probabilistic transition function that given a state s

and an action a ∈ A gives the probability distribution over the successor states,
i.e., δ(s, a)(s′) denotes the transition probability from s to s′ given action a;
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• (iv) Z is a finite set of observations;
• (v) I ∈ S is the unique initial state;
• (vi)O : S → Z is an observation function that maps every state to an observation.

For simplicity w.l.o.g. we consider that O is a deterministic function (see [14,
Remark 1]).

Plays and Cones. A play (or a path) in a POMDP is an infinite sequence
(s0, a0, s1, a1, s2, a2, . . .) of states and actions such that s0 = I and for all i ≥ 0
we have δ(si, ai)(si+1) > 0. We write Ω for the set of all plays. For a finite pre-
fix w ∈ (S · A)∗ · S of a play, we denote by Cone(w) the set of plays with w
as the prefix (i.e., the cone or cylinder of the prefix w), and denote by Last(w)
the last state of w. For a finite prefix w = (s0, a0, s1, a1, . . . , sn) we denote by
O(w) = (O(s0), a0,O(s1), a1, . . . ,O(sn)) the observation and action sequence asso-
ciated with w.
Strategies (or policies). A strategy (or a policy) is a recipe to extend prefixes of plays
and is a function σ : (S · A)∗ · S → D(A) that given a finite history (i.e., a finite prefix
of a play) selects a probability distribution over the actions. Since we consider POMDPs,
strategies are observation-based, i.e., for all histories w = (s0, a0, s1, a1, . . . , an−1, sn)
and w′ = (s′0, a0, s

′
1, a1, . . . , an−1, s

′
n) such that for all 0 ≤ i ≤ n we have O(si) =

O(s′i) (i.e., O(w) = O(w′)), we must have σ(w) = σ(w′). In other words, if the
observation sequence is the same, then the strategy cannot distinguish between the
prefixes and must play the same. Equivalently, we can define a POMDP strategy as a
function σ : (Z · A)∗ · Z → D(A).
Observation-Stationary (Memoryless) Strategies. A strategy σ is observation-
stationary (or memoryless) if it depends only on the current observation, i.e., whenever
for two histories w and w′, we have O(Last(w)) = O(Last(w′)), then σ(w) = σ(w′).
Therefore, a memoryless strategy is just a mapping from observations to a distribution
over actions: σ : Z → D(A). We may also define a memoryless strategy as a mapping
from states to distributions over actions (i.e., σ : S → D(A)), as long as σ(s) = σ(s′)
for all states s, s′ ∈ S such that O(s) = O(s′). All three definitions are equivalent, so
we will use whichever definition is most intuitive. We define the set of states that can be
reached using a memoryless strategy recursively: I ∈ Rσ, and if s ∈ Rσ then s′ ∈ Rσ
for all s′ such that there exists an action a where δ(s, a)(s′) > 0 and σ(s)(a) > 0. Let
πk(s, s′) = (s1, a1, ..., sk) be a path of length k from s1 = s to sk = s′. We say that
πk(s, s′) is compatible with σ if σ(si)(ai) > 0 for all 1 ≤ i < k.
Strategies with Memory. A strategy with memory is a tuple σ = (σu, σn,M,m0)
where: (i) M is a finite set of memory states. (ii) The function σn : M → D(A) is
the action selection function that given the current memory state gives the probability
distribution over actions. (iii) The function σu : M ×Z ×A → D(M) is the memory
update function that given the current memory state, the current observation and action,
updates the memory state probabilistically. (iv) The memory state m0 ∈M is the initial
memory state.
Probability Measure. Given a strategy σ and a starting state I , the unique probability
measure obtained given σ is denoted as PσI (·). We first define a measure ρσI (·) on
cones. For w = I we have ρσI (Cone(w)) = 1, and for w = s′ where I 6= s′ we have

4



ρσI (Cone(w)) = 0; and for w′ = w · a · s we have ρσI (Cone(w′)) = ρσI (Cone(w)) ·
σ(w)(a) · δ(Last(w), a)(s). By Carathéodory’s extension theorem, the function ρσI (·)
can be uniquely extended to a probability measure PσI (·) over Borel sets of infinite
plays [9].

Given a set of target states, the reachability objective requires that a target state is
visited at least once.

Definition 2 Reachability Objective. Given a set T ⊆ S of target states, the reachabil-
ity objective is Reach(T ) = {(s0, a0, s1, a1, ...) ∈ Ω|∃i ≥ 0 : si ∈ T}.

In the remainder of the paper, we assume that the set of target states contains a single
goal state, i.e., T = {G} ⊆ S. We can assume this w.l.o.g. because it is always possible
to add an additional state G with transitions from all target states in T to G.

Definition 3 Almost-Sure Winning. Given a POMDP P and a reachability objective
Reach(T ), a strategy σ is almost-sure winning iff PσI (Reach(T )) = 1.

In the sequel, whenever we refer to a winning strategy, we mean an almost-sure winning
strategy.

3 Almost-Sure Reachability with Memoryless Strate-
gies

In this section we present our results concerning the complexity of almost-sure reachabil-
ity with memoryless strategies. First, we show that memoryless strategies for almost-sure
reachability take a simple form. The following proposition states that it does not matter
with which positive probability an action is played.

Proposition 1 A POMDP P with a reachability objective Reach(T ) has a memoryless
winning strategy if and only if it has a memoryless winning strategy σ such that for all
a, a′ ∈ A and s ∈ S, if σ(s)(a) > 0 and σ(s)(a′) > 0 then σ(s)(a) = σ(s)(a′).

Intuitively, σ only distinguishes between actions that must not be played, and therefore
have probability 0, and those that may be played (having probabilities > 0). This
proposition implies that we do not need to determine precise values for the positive
probabilities when designing a winning strategy. In the following, we will for simplicity
slightly abuse terminology: when we refer to a strategy or distribution as being uniform,
we actually mean a distribution of this type.

The following result shows that determining whether there is a memoryless winning
strategy reduces to finding finite paths from states to the target set.

Proposition 2 A memoryless strategy σ is a winning strategy if and only if for each
state s ∈ Rσ , there is a path πk(s,G) compatible with σ, for some finite k ≤ |S|.
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Intuitively, the strategy must prevent the agent from reaching a state from which
the target states can not be reached. It follows that determining whether there exists
a memoryless, almost-sure winning strategy is in the complexity class NP. An NP-
hardness result was established for a similar problem, namely, memoryless strategies in
two-player games with partial-observation, in [20, Lemma 1]. The reduction constructed
a game that is a DAG (directed acyclic graph), and replacing the adversarial player with
a uniform distribution over choices shows that the almost-sure reachability problem
under memoryless strategies in POMDPs is also NP-hard.

Theorem 1 The problem of determining whether there exists a memoryless, almost-sure
winning strategy for a POMDP P and reachability objective Reach(T ) is NP-complete.

The complexity of the almost-sure reachability problem for memoryless strategies
suggests a possible approach to solve this problem in practice. We propose to find a
memoryless winning strategy by encoding the problem as an instance of SAT, and then
executing a state-of-the-art SAT solver to find a satisfying assignment or prove that no
memoryless winning strategy exists.

3.1 SAT Encoding for Memoryless Strategies
Next, we show how to encode the almost-sure reachability problem for memoryless
strategies as a SAT problem. We will define a propositional formula Φk for an integer
parameter k ∈ N, in Conjunctive Normal Form, such that Φk (for a sufficiently large
k) is satisfiable if and only if the POMDP P has a memoryless, almost-sure winning
strategy for reachability objective Reach(G).

By Propositions 1 and 2, we seek a function from states to subsets of actions,
σ : S → P(A) (where P(A) is the powerset of actions) such that for each state s ∈ Rσ ,
there is a path πk(s,G) compatible with σ for some k ≤ |S|. The value of k will be
a parameter of the SAT encoding. If we take k to be sufficiently large, e.g., k = |S|
then one call to the SAT solver will be sufficient to determine if there exists a winning
strategy. If k = |S| and the SAT solver determines that Φk is unsatisfiable, it will imply
that there is no memoryless winning strategy.

We describe the CNF formula Φk by first defining all of its Boolean variables,
followed by the clausal constraints over those variables.
Boolean Variables. The Boolean variables of Φk belong to three groups, which are
defined as follows:

1. {Aij}, 1 ≤ i ≤ |S|, 1 ≤ j ≤ |A|. The Boolean variable Aij is the proposition
that the probability of playing action j in state i is greater than zero, i.e., that
σ(i)(j) > 0.

2. {Ci}, 1 ≤ i ≤ |S|. The Boolean variable Ci is the proposition that state i is
reachable using σ (i.e, these variables define Rσ).

3. {Pij}, 1 ≤ i ≤ |S|, 0 ≤ j ≤ k. The Boolean variable Pij represents the
proposition that from state i ∈ S there is a path to the goal of length at most j,
that is compatible with the strategy.
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Logical Constraints. The following clause is defined for each i ∈ S, to ensure that at
least one action is chosen in each state:∨

j∈A
Aij

To ensure that the strategy is observation-based, it is necessary to ensure that if two
states have the same observations, then the strategy behaves identically. This is achieved
by adding the following constraint for all pairs of states i 6= j such that O(i) = O(j),
and all actions r ∈ A:

Air ⇐⇒ Ajr

The following clauses ensure that the {Ci} variables will be assigned True, for all
states i that are reachable using the strategy defined by the {Aij} variables:

¬Ci ∨ ¬Aij ∨ C`

Such a clause is defined for each pair of states i, ` ∈ S and action j ∈ A for which
δ(i, j)(`) > 0. Furthermore, the initial state is reachable by the strategy, which is
expressed by adding the single clause:

CI

We introduce the following unit clauses, which say that from the goal state, the goal
state is reachable using a path of length at most 0:

(PG,j) for all 0 ≤ j ≤ k

For each state i ∈ S, we introduce the following clause that ensures if i is reachable,
then there is a path from i to the goal that is compatible with the strategy.

(¬Ci ∨ Pik)

Finally, we use the following constraints to define the value of the {Pij} variables
in terms of the chosen strategy.

Pij ⇐⇒
∨
a∈A

Aia ∧
 ∨
i′∈S:δ(i,a)(i′)>0

Pi′,j−1


This constraint is defined for each i ∈ S, and 1 ≤ j ≤ k. We translate this constraint

to clauses using the standard Tseitin encoding [45], which introduces additional variables
in order to keep the size of the clausal encoding linear.

The conjunction of all clauses defined above forms the CNF formula Φk.

Theorem 2 If Φk is satisfiable, for any k, then a memoryless winning strategy σ :
S → D(A) can be extracted from the truth assignment to the variables {Aij}. If Φk is
unsatisfiable for k = |S| then there is no memoryless winning strategy.
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The number of variables in Φk is O(|S| · |A|+ |S| · k), and the number of clauses is
O(|S|2 · |A| · k). Note that the number of actions, |A|, is usually a small constant, while
the size of the state space, |S|, is typically large. The number of variables is quadratic in
the size of the state space, while the number of clauses is cubic (recall k ≤ |S|).

Remark 1 A naive SAT encoding would introduce a Boolean variable Xij` for each
i, ` ∈ S, 1 ≤ j ≤ k, to represent the proposition that the jth state along a path from
state i to the goal is ` ∈ S. However, using such variables to enforce the existence
of paths from every reachable state to the goal, instead of the variables {Pij} which
we used above, results in a formula with a cubic number of variables and a quartic
(fourth power) number of clauses. Thus our encoding has the theoretical advantage of
being considerably smaller than the naive encoding. Our encoding also offers two main
practical advantages. First, it is possible to find a winning strategy, if one exists, using
k � |S|, by first generating Φk for small values of k. If the SAT solver finds Φk to
be unsatisfiable, then we can increase the value of k and try again. Otherwise, if the
formula is satisfiable, we have found a winning strategy and we can stop immediately.
In this way, we are usually able to find a memoryless winning strategy (if one exists)
very quickly, using only small values of k. So in practice, the size of Φk is actually
only quadratic in |S|. Second, our encoding allows to take advantage of SAT solvers
that offer an incremental interface, which supports the addition and removal of clauses
between calls to the solver (though this is not exploited in our experimental results).

4 Almost-Sure Reachability with Small-Memory
Strategies

For some POMDPs, a memoryless strategy that wins almost-surely may not exist.
However, in some cases giving the agent a small amount of memory may help. We
extend our SAT approach to the case of small-memory strategies in this section.

Definition 4 A small-memory strategy is a strategy with memory, σ = (σu, σn,M,m0),
such that |M | = µ for some small constant µ.

We will refer to the number of memory states, µ, as the size of the small-memory
strategy. Propositions 1 and 2 and Theorem 1 carry over to the case of small-memory
strategies.

Proposition 3 A POMDP P with reachability objective Reach(T ) has a small-memory
winning strategy of size µ if and only if it has a small-memory winning strategy of size
µ where both the action selection function and the memory update function are uniform.

We must modify the definition of a compatible path in the case of small-memory
strategies, to also keep track of the sequence of memory states. Let πk(s,m, s′,m′) =
(s1,m1, a1, ..., sk,mk, ak) be a finite sequence where s = s1, m = m1, s′ = sk and
m′ = mk, and for all 1 ≤ i ≤ k, si ∈ S, mi ∈ M and ai ∈ A. Then we say that
πk(s,m, s′,m′) is a path compatible with small-memory strategy σ if for all 1 ≤ i < k,
we have δ(si, ai)(si+1) > 0, σn(mi)(ai) > 0, and σu(mi,O(si), ai)(mi+1) > 0.
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Let Rσ be the set of all pairs (s,m) ∈ S ×M such that there exists a finite-length
path πk(I,m0, s,m) that is compatible with σ.

Proposition 4 A small-memory strategy σ is winning if and only if for each (s,m) ∈
Rσ there is a path πk(s,m,G,m′) for some k ≤ |S| · |M | and some m′ ∈M , that is
compatible with σ.

Theorem 3 The problem of determining whether there exists a winning, small-memory
strategy of size µ, where µ is a constant, is NP-complete.

Therefore, we may also find small-memory winning strategies using a SAT-based
approach. We remark that Theorem 3 holds even if µ is polynomial in the size of the
input POMDP.

4.1 SAT Encoding for Small-Memory Strategies
The SAT encoding from Section 3.1 can be adapted for the purpose of finding small-
memory winning strategies. Given a POMDP P , reachability objective Reach(G), a
finite set of memory states M of size µ, an initial memory state m0 ∈ M , and a path
length k ≤ |S| · |M |, we define the CNF formula Φk,µ as follows.
Boolean Variables. We begin by defining variables to encode the action selection
function σn. We introduce a Boolean variable Ama for each memory-state m ∈M and
action a ∈ A, to represent that action a is among the possible actions that can be played
by the strategy, given that the memory-state is m, i.e., that σn(m)(a) > 0.

The next set of Boolean variables encodes the memory update function. We introduce
a Boolean variable Mm,z,a,m′ for each pair of memory-states m,m′ ∈M , observation
z ∈ Z and action a ∈ A. If such a variable is assigned to True, it indicates that if the
current memory-state is m, the current observation is z, and action a is played, then it is
possible that the new memory-state is m′, i.e., σu(m, z, a)(m′) > 0.

Similarly to the memoryless case, we also introduce the Boolean variables Ci,m for
each state i ∈ S and memory state m ∈M , that indicate which (state, memory-state)
pairs are reachable by the strategy.

We define variables {Pi,m,j} for all i ∈ S, m ∈M , and 0 ≤ j ≤ k, similarly to the
memoryless case. The variable Pi,m,j corresponds to the proposition that there is a path
of length at most j from (i,m) to the goal, that is compatible with the strategy.
Logical Constraints. We introduce the following clause for each m ∈ M , to ensure
that at least one action is chosen for each memory state:∨

j∈A
Amj

To ensure that the memory update function is well-defined, we introduce the follow-
ing clause for each m ∈M , a ∈ A and z ∈ Z .∨

m′∈M
Mm,z,a,m′
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The following clauses ensure that the {Ci,m} variables will be assigned True, for all
pairs (i,m) that are reachable using the strategy.

¬Ci,m ∨ ¬Am,a ∨ ¬Mm,z,a,m′ ∨ Cj,m′

Such a clause is defined for each pair of memory-states m,m′ ∈M , each pair of states
i, j ∈ S, each observation z ∈ Z , and each action a ∈ A, such that δ(i, a)(j) > 0 and
z = O(j).

Clearly, the initial state and initial memory state are reachable. This is enforced by
adding the single clause:

(CI,m0)

We introduce the following unit clause for each m ∈ M and 0 ≤ j ≤ k, which
says that the goal state with any memory-state is reachable from the goal state and that
memory-state, using a path of length at most 0:

(PG,m,j)

Next, we define the following binary clause for each i ∈ S and m ∈ M , so that
if the (state, memory-state) pair (i,m) is reachable, then the existence of a path from
(i,m) to the goal is enforced.

¬Ci,m ∨ Pi,m,k
Finally, we use the following constraints to define the value of the Pi,m,j variables

in terms of the chosen strategy.

Pi,m,j ⇐⇒

∨
a∈A

Ama ∧


∨
m′∈M,z∈Z,

i′∈S:δ(i,a)(i′)>0
andO(i′)=z

[Mm,z,a,m′ ∧ Pi′,m′,j−1]




This constraint is defined for each i ∈ S, m ∈ M and 1 ≤ j ≤ k. We use the

standard Tseitin encoding to translate this formula to clauses. The conjunction of all
clauses defined above forms the CNF formula Φk,µ.

Theorem 4 If Φk,µ is satisfiable then there is a winning, small-memory strategy of size
µ, and such a strategy is defined by the truth assignment to the {Ama} and {Mm,z,a,m′}
variables. If Φk,µ is unsatisfiable, and k ≥ |S|·µ, then there is no small-memory strategy
of size µ that is winning.

The number of variables in Φk,µ is O(|S| · µ · k + µ2 · |Z| · |A|). The number of
clauses is O(|S|2 · µ2 · |Z| · |A| · k). The number of actions, |A|, and the number of
observations, |Z|, are usually constants. We also expect that the number of memory
states, µ, is small. Since k ≤ |S| ·µ, the number of variables is quadratic and the number
of clauses is cubic in the size of the state space, as for memoryless strategies.

The comments in Remark 1 also carry over to the small-memory case. In practice,
we can often find a winning strategy with small values for k and µ (see Section 5).
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Remark 2 Our encoding can be naturally extended to search for deterministic strate-
gies, for details see Appendix C.

5 Experimental Results
In this section we present our experimental results, which show that small-memory
winning strategies do exist for several realistic POMDPs that arise in practice. Our
experimental results clearly demonstrate the scalability of our SAT-based approach,
which yields good performance even for POMDPs with large state spaces, where the
previous explicit approach performs poorly.

We have implemented the encoding for small-memory strategies, described in
Section 4.1, as a small python program. We compare against the explicit graph-based
algorithm presented in [14]. This is the state-of-the-art explicit POMDP solver for
almost-sure reachability based on path-finding algorithms of [18] with a number of
heuristics. We used the SAT solver Minisat, version 2.2.0 [25]. The experiments were
conducted on a Intel(R) Xeon(R) @ 3.50GHz with a 30 minute timeout. We do not
report the time taken to generate the encoding using our python script, because it runs
in polynomial time, and more efficient implementations can easily be developed. Also,
we do not exploit incremental SAT in our experimental results (this will be part of
future work). We consider several POMDPs that are similar to well-known benchmarks.
We generated several instances of each POMDP, of different sizes, in order to test the
scalability of our algorithm.
Hallway POMDPs. We considered a family of POMDP instances, inspired by the
Hallway problem introduced in [32] and used later in [43, 42, 10, 14]. In the Hallway
POMDPs, a robot navigates on a rectangular grid. The grid has barriers where the robot
cannot move, as well as trap locations that destroy the robot. The robot must reach
a specified goal location. The robot has three actions: move forward, turn left, and
turn right. The robot can see whether there are barriers around its grid cell, so there
are two observations (wall or no wall) for each direction. The actions may all fail, in
which case the robot’s state remains the same. The state is therefore comprised of the
robot’s location in the grid, and its orientation. Initially, the robot is randomly located
somewhere within a designated subset of grid locations, and the robot is oriented to the
south (the goal is also to the south). We generated several Hallway instances, of sizes
shown in Table 1. The runtimes for the SAT-based approach and the explicit approach
are also given in the table. Timeouts (of 30 minutes) are indicated by “-”. In all cases,
the number of memory states required for there to be a winning strategy is 2. Therefore,
the runtimes reported for µ = 1 correspond to the time required by the SAT solver to
prove that Φk,µ is unsatisfiable, while runs where µ = 2 resulted in the SAT solver
finding a solution. We set k to a sufficiently large value by inspection of the POMDP
instance.
Escape POMDPs. The problem is based on a case study published in [44], where the
goal is to compute a strategy to control a robot in an uncertain environment. Here, a
robot is navigating on a square grid. There is an agent moving around the grid, and the
robot must avoid being captured by the agent, forever. The robot has four actions: move
north, move south, move east, move west. These actions have deterministic effects, i.e.,
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Name Grid # States Explicit Minisat (s)
(s) UNSAT SAT

k µ = 1 k µ = 2

HW1 11× 8 3573 128.9 14 0.1 14 0.6
HW2 11× 9 4189 - 16 0.1 16 0.9
HW3 11× 10 4981 - 18 0.2 18 2.0
HW4 15× 12 9341 - 22 0.6 22 10.4
HW5 19× 14 15245 - 30 2.0 30 81.9
HW6 23× 16 22721 - 35 5.9 35 244.6
HW7 27× 18 31733 - 40 18.0 40 635.7
HW8 29× 20 39273 - 45 55.4 45 1157.1
HW9 31× 22 47581 - 50 127.9 50 -

Table 1: Results of the explicit algorithm and our SAT-based approach, on the Hallway
instances.

they always succeed. The robot can observe whether or not there are barriers in each
direction, and it can also observe the position of the agent if the agent is currently on an
adjacent cell. The agent moves randomly. We generated several instances of the Escape
POMDPs, of sizes shown in Table 2. The runtimes for the SAT-based approach and the
explicit approach are also given in the table, with timeouts indicated by “-”. The number
of memory states was set to µ = 5, which is sufficient for there to be a small-memory
winning strategy. For these POMDPs, there is always a path directly to the goal state, so
setting k = 2 was sufficient to find a winning strategy. In order to prove that there is no
smaller winning strategy, we increased k to 8 = 2× µ, where µ = 4. The runtimes for
the resulting unsatisfiable formulas are also shown in Table 2.
RockSample POMDPs. We consider a variant of the RockSample problem introduced
in [42] and used later in [10, 14]. The RockSample instances model rover science
exploration. The positions of the rover and the rocks are known, but only some of the
rocks have a scientific value; we will call these rocks good. The type of the rock is
not known to the rover, until the rock site is visited. Whenever a bad rock is sampled
the rover is destroyed and a losing absorbing state is reached. If a sampled rock is
sampled for the second time, then with probability 0.5 the action has no effect. With
the remaining probability the sample is destroyed and the rock needs to be sampled one
more time. An instance of the RockSample problem is parametrized with a parameter
[n]: n is the number of rocks on a grid of size 3× 3. The goal of the rover is to obtain
two samples of good rocks. In this problem we have set µ = 2 and k = 8, which is
sufficient to find a winning strategy for each instance. However, memoryless strategies
are not sufficient as in some situations sampling is prohibited whereas in other situations
it is required (hence we did not consider µ = 1). The results are presented in Table 3.

Remark 3 In the unsatisfiable (UNSAT) results of the Hallway and Escape POMDPs,
we have computed, based on the diameter of the underlying graph and the number of
memory elements µ, a sufficiently large k to disprove the existence of an almost-sure
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Name Grid # States Explicit (s) Minisat (s)
UNSAT SAT
k µ = 4 k µ = 5

Escape3 3× 3 84 0.4 8 0.4 2 0.2
Escape4 4× 4 259 0.9 8 1.56 2 1.0
Escape5 5× 5 628 6.8 8 5.0 2 3.3
Escape6 6× 6 1299 20.9 8 15.8 2 9.0
Escape7 7× 7 2404 89.2 8 36.2 2 19.5
Escape8 8× 8 4099 238.6 8 63.4 2 47.1
Escape9 9× 9 6564 688.6 8 113.5 2 60.2
Escape10 10× 10 10003 - 8 212.6 2 113.1
Escape11 11× 11 14644 - 8 303.3 2 210.4
Escape12 12× 12 20739 - 8 535.4 2 505.1

Table 2: Results of the explicit algorithm and our SAT-based approach, on the Escape
instances.

Name # States Explicit (s) Minisat (s)

RS[4] 351 0.4 0.06
RS[5] 909 1.6 0.24
RS[6] 2187 3.4 0.67
RS[7] 5049 14.3 1.58
RS[8] 11367 50.6 4.59
RS[9] 25173 197.3 79.1

Table 3: Results of the explicit algorithm and our SAT-based approach, on the Rock-
Sample instances.

winning strategy of the considered memory size. It follows, that there is no memoryless
strategy for the Hallway POMDPs, and no almost-sure winning strategy for the Escape
POMDPs, that uses only 4 memory elements.

Memory requirements. In all runs of the Minisat solver, at most 5.6 GB of memory
was used. The runs of the explicit solver consumed around 30 GB of memory at the
timeout.

6 Conclusion and Future Work
In this work we present the first symbolic SAT-based algorithm for almost-sure reach-
ability in POMDPs. We have illustrated that the symbolic algorithm significantly out-
performs the explicit algorithm, on a number of examples similar to problems from the
literature. In future work we plan to investigate the possibilities of incremental SAT
solving. Incremental SAT solvers can be beneficial in two ways: First, they may improve
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the efficiency of algorithms to find the smallest almost-sure winning strategy. Such an
approach can be built on top of our encoding. Second, incremental SAT solving could
help in the case that the original POMDP is modified slightly, in order to efficiently
solve the updated SAT instance. Investigating the practical impact of incremental SAT
solvers for POMDPs is the subject of future work.
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A Appendix: Detailed comparison of qualitative analy-
sis and contingent planning.

We present examples that distinguish almost-sure winning from contingent planning. We
first explain the conceptual difference and then illustrate the difference with examples.
In the contingent planning setting it is required that all paths reach the goal state. In
other words, contingent planning treats the probabilistic choice as an adversarial choice.
In almost-sure winning, although it is true that the precise probabilities do not matter, it
is still different than treating the probabilistic choice as adversarial. We first illustrate
the difference with examples of Markov chains.

Example 1 (Markov chains.) In Figure 1 we depict a Markov Chain M1 (which is a
perfect-information MDP with a single action) with two states: the initial state s0 and
the goal state G. The probabilistic transition function in state s0 selects the next state
to be s0 with probability 1

2 , and the goal state G with the remaining probability 1
2 . In

this example, the probability to reach G in n steps is
∑n
i=1( 1

2 )i. Since we consider the
infinite-horizon setting, by taking the limit of n to∞ we obtain that the probability of
eventually reaching the goal state G is 1, i.e,

lim
n→∞

n∑
i=1

(
1

2

)i
= lim
n→∞

(1− 1

2n
) = 1

Hence in this example, the goal state is reached almost-surely (with probability 1).
However, in the contingent planning setting, there is no plan, since there exists a path
that stays in s0 forever (namely, sω0 ) that does not reach the goal state G. Hence the
answers are different: the answer to almost-sure winning is YES, whereas the answer to
contingent planning is NO. Note that in the Markov chain example, if the probabilities
change from ( 1

2 ,
1
2 ) to ( 2

3 ,
1
3 ) or ( 3

4 ,
1
4 ) the answer to the almost-sure winning still

remains same (the probability to reach within n steps changes to (1 − ( 2
3 )n) and

(1 − ( 3
4 )n), respectively, however the limits are still 1). For almost-sure winning the

precise probability values of transitions do not matter, nevertheless this is still different
from treating the probabilistic choices as adversarial choice (as considered in contingent
planning).

s0 G

1
2

Figure 1: Markov Chain M1

Next we consider the example M2 shown in Figure 2, where from s0, the next state
is one of the three states L, G, and s0, with probabilities 1

3 for each. Here, the answer
to both the almost-sure winning and contingent planning questions is NO. However, the
path sω0 that stays in s0 forever is a witness to show that the answer to the contingent
planning problem is NO, but the same witness is not valid for almost-sure winning. In
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other words, even when the answers to almost-sure winning and contingent planning
are the same, a witness to show that the answer for contingent planning is NO, is not
necessarily a witness to show the answer to almost-sure winning is NO.

s0 GL

1
3

Figure 2: Markov Chain M2

Example 2 (Perfect Information MDPs.) We now illustrate the situation in a perfect-
information MDP. Note that the situation would be only more complicated in the general
POMDP setting. Consider the MDP shown in Figure 3. The initial state is s0, and there
are two actions available at s0, to either go to state V with action a or to state U with
action b. In state V , with probability 1

3 the next state is U , s0, or G (irrespective of
the actions). In state U , with probability 1

2 the next state is U or s0 (irrespective of the
actions). In this example, a strategy that always chooses action a at s0 is an almost-sure
winning strategy, but there is no strategy that ensures that the answer to the contingent
planning problem is YES. Also note that in this example, a strategy that always chooses
b at s0 is not an almost-sure winning strategy. Thus even when almost-sure winning
strategies exist, not all strategies are almost-sure winning.

s0 V GU a

b
1
3
, a, b

1
2
, a, b

Figure 3: MDP M3

In summary, the above examples illustrate the following:
1. The answer to the almost-sure winning question on a given input can be very dif-

ferent from contingent planning, even in very special cases of POMDPs, namely,
in perfect-information Markov chains.

2. Even in cases when the answer to the almost-sure winning and contingent planning
questions is the same, not every witness for the contingent planning problem is a
valid witness for the almost-sure winning problem (even for Markov chains).

3. In case of perfect-information MDPs, the almost-sure winning strategy construc-
tion can be quite involved, and different from contingent planning.

The key difference of the two setting is as follows: in the contingent planning since the
requirement is for all paths, this effectively means treating the probabilistic choice as
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an adversary. For almost-sure winning, if a probabilistic choice is available infinitely
often, then it must be chosen infinitely often. Note that almost-sure winning is the clas-
sical probability theory counterpart of almost-sure convergence, which is the strongest
probabilistic guarantee, yet it does not require convergence for all points.

B Appendix: Detailed comparison of qualitative analy-
sis and strong cyclic planning.

The qualitative analysis problem is equivalent to the strong cyclic planning problem.
The strong cyclic problem was studied in the perfect information setting in [21] and
later extended to the partial information setting in [4]. However, there are two crucial
differences of our work wrt [4]:

1. We consider the problem of finding small strategies as compared to general
strategies. We show that our problem is NP-complete. In contrast, it is known
that the qualitative analysis problem for POMDPs with general strategies is
EXPTIME-complete [15, 2]. Thus the strong cyclic planning with general strate-
gies considered in [4] is also EXPTIME-complete, whereas we establish that our
problem is NP-complete. Thus there is a significant difference in the complexity
of the problem finding small strategies as compared to general strategies.

2. The work of [4] presents a BDD-based implementation, whereas we present a
SAT-based implementation. Note that since [4] considers an EXPTIME-complete
problem in general there is no efficient (polynomial-time) reduction to SAT.
In contrast not only we show that our problem is NP-complete, we present an
efficient (cubic for constant-size memory) reduction to SAT.

To the best of our knowledge, there is no publicly available implementation for strong
cyclic planning under partial observation.

MDP POMDP

Strong planning SAT-based algorithm MBP BDD-based
[3] [21]

Strong cyclic planning

SAT-based algorithm BDD-based
[3] [4]

MBP BDD-based SAT-based for small strategies
[21] Theorem 3

Table 4: Comparison of existing algorithms

Significance of our result. Finally, the equivalence of strong cyclic planning and qualita-
tive analysis of POMDPs implies a greater significance of our result. First, our results
become applicable also for strong cyclic planning. Second, our approach gives a way to
compute small strategies (if they exist) for strong cyclic planning. Finally, we present
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an an efficient SAT-based implementation to obtain small strategies in strong cyclic
planning. Previous works consider BDD-based approach to compute general strategies.
Developing fast SAT-solvers (or incremental SAT-solvers) is an active research area, and
our results imply that faster solvers for SAT can then be used both for qualitative analysis
of POMDPs as well as for strong cyclic planning, for computing small strategies when
they exist. In Table 4 we present the comparison of the existing approaches for strong
planning and strong cyclic planning for MDPs (perfect-information setting) as well as
POMDPs. Note that as described in the previous section, the strong planning problem is
different from the qualitative analysis of POMDPs (or strong cyclic planning). In the
perfect-information setting there exists SAT-based solvers both for strong planning as
well as strong cyclic planning, whereas for general strategies in POMDPs there exists no
SAT-based implementation. We present the first SAT-based implementation to compute
small strategies for strong cyclic planning in the partial information setting.

C Appendix: Deterministic Strategies
In this part we present a simple extension of our encoding that handles the case for
deterministic strategies.
Deterministic Strategies. A strategy with memory σ = (σu, σn,M,m0) is determin-
istic if both functions σn and σu assign only Dirac probability distributions and can be
written as:

• The action selection function is of type σn : M → A.

• The memory update function is of type σu : M ×Z ×A →M .

We will present the modification only for the more complicated case of small-
memory strategies, the modifications for the memoryless case are analogous.
Next-action Selection Function. The part of the encoding that codes for the next-action
selection function σn is: ∨

j∈A
Amj

It ensures for every m ∈ M , that at least one variable Amj is set to true, i.e., at
least one action is chosen. In a deterministic strategy the requirements are stronger, it is
required that exactly one action is chosen. This can be enforced by adding the following
clause for every memory element m, and two distinct actions i, j:

Ami ⊕Amj

Memory Update Function. The part of the encoding that codes for the memory update
function σu is: ∨

m′∈M
Mm,z,a,m′
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As in the previous case, it is sufficient to add the following clause for every memory
element m, observation z, action a, and two distinct memory element m′ and m”:

Mm,z,a,m′ ⊕Mm,z,a,m”
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