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Abstract

We consider partially observable Markov decision proce¢B®©MDPSs) withw-regular conditions
specified as parity objectives. The classwefegular languages extends regular languages to infinite
strings and provides a robust specification language toesspall properties used in verification, and
parity objectives are canonical forms to expresgegular conditions. The qualitative analysis problem
given a POMDP and a parity objective asks whether there rategly to ensure that the objective is satis-
fied with probability 1 (resp. positive probability). Whilke qualitative analysis problems are known to
be undecidable even for very special cases of parity obstive establish decidability (with optimal
complexity) of the qualitative analysis problems for POMDWith all parity objectives under finite-
memory strategies. We establish asymptotically optimgbdeential) memory bounds and EXPTIME-
completeness of the qualitative analysis problems undée{inemory strategies for POMDPs with
parity objectives.

Keywords: Markov decision processes; partially obsergalilarkov decision processes (POMDPs);
regular conditions; parity objectives; finite-memory sagies.

1 Introduction

Partially observable Markov decision processes (POMDPs)Markov decision processes (MDPaije
standard models for probabilistic systems that exhibil fpobbabilistic and nondeterministic behavior [19].
MDPs have been used to model and solve control problemsdohastic systems [16]: nondeterminism
represents the freedom of the controller to choose a coattmin, while the probabilistic component of the
behavior describes the system response to control actiongerfect-observation (or perfect-information)
MDPs (PIMDPs}he controller can observe the current state of the systemmaose the next control actions,
whereas impartially observable MDPs (POMDPghe state space is partitioned according to observations
that the controller can observe i.e., given the currenesthe controller can only view the observation of
the state (the partition the state belongs to), but not theige state [27]. POMDPs provide the appropriate
model to study a wide variety of applications such as in caadpmnal biology [15], speech processing [26],
image processing [13], software verification [6], robotpleng [22], reinforcement learning [20], to name a
few. In verification of probabilistic systems, MDPs havebadopted as models for concurrent probabilis-
tic systems [12], probabilistic systems operating in opevirenments [33], under-specified probabilistic
systems [4], and applied in diverse domains [3, 24]. POMD$&s subsume many other powerful compu-
tational models such as probabilistic automata [30, 28fc€sprobabilistic automata (aka blind POMDPS)
are a special case of POMDPs where there is only a singlevatbiger).



The class ofw-regular objectives. An objective specifies the desired set of behaviors (or pditnshe
controller. In verification and control of stochastic sysgean objective is typically aw-regular set of
paths. The class af-regular languages extends classical regular language8rtibe strings, and provides

a robust specification language to express all commonly spedifications, such as safety, reachability,
liveness, fairness, etc [35]. In a parity objective, eveayesof the MDP is mapped to a non-negative integer
priority (or color) and the goal is to ensure that the minimpinarity visited infinitely often is even. Parity
objectives are a canonical way to define suekegular specifications (e.g., all specifications in vesiiion
expressed as a linear-time temporal logic (LTL) formula bantranslated to a parity objective). Thus
POMDPs with parity objectives provide the theoretical feavork to study problems such as the verification
and control of stochastic systems.

Qualitative and quantitative analysis. The analysis of POMDPs with parity objectives can be classifi
into qualitative and quantitative analysis. Given a POMDiEhwva parity objective and a start state, the
gualitative analysisasks whether the objective can be ensured with probabil{sirhost-sure winningor
positive probability positive winning;, whereas theuantitative analysigsks whether the objective can be
satisfied with probability at least for a given threshold € (0, 1).

Importance of qualitative analysis. The qualitative analysis of MDPs is an important problemernifica-
tion that is of interest independent of the quantitativelysis problem. There are many applications where
we need to know whether the correct behavior arises withgimtity 1. For instance, when analyzing a ran-
domized embedded scheduler, we are interested in whetbgr #wead progresses with probability 1 [14].
Even in settings where it suffices to satisfy certain spettifios with probability\ < 1, the correct choice
of X\ is a challenging problem, due to the simplifications intrmetl during modeling. For example, in the
analysis of randomized distributed algorithms it is quitencnon to require correctness with probability 1
(see, e.g., [29, 23, 34]). Furthermore, in contrast to qtaive analysis, qualitative analysis is robust to
numerical perturbations and modeling errors in the trasiprobabilities. Thus qualitative analysis of
POMDPs with parity objectives is one of the most fundametitabretical problems in verification and
analysis of probabilistic systems.

Previous results. On one hand POMDPs with parity objectives provide a rich frasork to model a wide
variety of practical problems, on the other hand, most gzl results established for POMDPs asga-
tive (undecidability) results. There are several deep undbiiyaresults established for the special case of
probabilistic automata (that immediately imply undecitligbfor the more general case of POMDPSs). The
basic undecidability results are for probabilistic autteraver finite words (that can be considered as a spe-
cial case of parity objectives). The quantitative analgszblem is undecidable for probabilistic automata
over finite words [30, 28, 11]; and it was shown in [25] thatrevee following approximation version is
undecidable: for any fixed < ¢ < % given a probabilistic automaton and the guarantee thagre{t) all
words are accepted with probability at ledst ¢; or (ii) all words are accepted with probability at mest
decide whether it is case (i) or case (ii). The almost-swesp(r positive) problem for probabilistic automata
over finite words reduces to the non-emptiness questionieérgal (resp. non-deterministic) automata over
finite words and is PSPACE-complete (resp. solvable in potyial time). However, another related deci-
sion question whether for eveey> 0 there is a word that is accepted with probability at ldaste (called

the value 1 problem) is undecidable for probabilistic awtarover finite words [17]. Also observe that all
undecidability results for probabilistic automata oveitéirwords carry over to POMDPs where the con-
troller is restricted to finite-memory strategies. For ga#le analysis of POMDPs with parity objectives,
deep undecidability results were established even for special cases of parity objectives (even in the
special case of probabilistic automata). It was shown ir2]that the almost-sure (resp. positive) problem
is undecidable for probabilistic automata with coBiiclisfs. Biichi) objectives which are special cases of



parity objectives that use only two priorities. In summadrg thost important theoretical results are negative
in the sense that they establish undecidability results.

Our contributions. For POMDPs with parity objectives, all questions relatedjtantitative analysis are
undecidable, and the qualitative analysis problems aie wislecidable in general. However, the unde-
cidability proofs for the qualitative analysis of POMDPsghwparity objectives crucially require the use of
infinite-memorystrategies for the controller. In all practical applicagp the controller must be faite-
statecontroller to be implementable. Thus for all practical pggs the relevant question is the existence of
finite-memory controllers. The quantitative analysis feaibremains undecidable even under finite-memory
controllers as the undecidability results are establigshegrobabilistic automata over finite words. In this
work we study the most prominent remaining theoretical apegstion (that is also of practical relevance)
for POMDPs with parity objectives that whether the quairatanalysis of POMDPs with parity objec-
tives is decidable or undecidable for finite-memory strigedi.e., finite-memory controllers). Our main
result is thepositiveresult that qualitative analysis of POMDPs with parity albipes isdecidableunder
finite-memory strategies. Moreover, for qualitative asayf POMDPs with parity objectives under finite-
memory strategies we establish asymptotically optimalmerity bounds both for strategy complexity as
well as computational complexity. The details of our cdnitions are as follows:

1. (Strategy complexity)Our first result shows thdielief-basedstrategies are not sufficient (where a
belief-based strategy is based on the subset construttareémembers the possible set of current
states): we show that there exist POMDPs with coBiichi abgs where finite-memory almost-sure
winning strategy exists but there exists no randomizeabbhsed almost-sure winning strategy. All
previous results about decidability for almost-sure wignin sub-classes of POMDPs crucially relied
on the sufficiency of randomized belief-based strategiasdhowed standard techniques like subset
construction to establish decidability. However, our dem@xample shows that previous techniques
based on simple subset construction (to construct an erfiahgize PIMDP) are not adequate to
solve the problem. Before the result for parity objectiwes,consider a slightly more general form of
objectives, called Muller objectives. For a Muller objgeta setF of subsets of colors is given and the
set of colors visited infinitely often must belongf We show our main result that given a POMDP
with |.S| states and a Muller objective withcolors (priorities), if there is a finite-memory almost-sur
(resp. positive) winning strategy, then there is an alnsase (resp. positive) winning strategy that
uses at mosMem* = 2215/ . (22")IS| memory. Developing on our result for Muller objectives, for
POMDPs with parity objectives we show that if there is a fimtemory almost-sure (resp. positive)
winning strategy, then there is an almost-sure (resp. ipegitvinning strategy that uses at most
2315 memory. Our exponential memory upper bound for parity dhbjes is asymptotically optimal
as it has been already established in [8] that almost-sureimg strategies require at least exponential
memory even for the very special case of reachability olvjestin POMDPs.

2. (Computational complexity)We present an exponential time algorithm for the qualitatinalysis
of POMDPs with parity objectives under finite-memory stgis, and thus obtain an EXPTIME
upper bound. The EXPTIME-hardness follows from [8] for tpedal case of reachability and safety
objectives, and thus we obtain the optimal EXPTIME-comgtaimputational complexity result.

In Table 1 and Table 2 we summarize the results for strategyptexity and computational complexity,
respectively.

Technical contributionsThe key technical contribution for the decidability regslas follows. Since belief-
based strategies are not sufficient, standard subset gotistr techniques do not work. For an arbitrary



finite-memory strategy we construct a projected strategiydbllapses memory states based on a projection
graph construction given the strategy. The projectedegiyaat a collapsed memory state plays uniformly
over actions that were played at all the corresponding mestates of the original strategy. The projected
strategy thus plays more actions with positive probabiliiyhe key challenge is to show the bound on
the size of the projection graph, and to show that the prefestrategy, even though plays more actions,
does not destroy the structure of the recurrent classeseobrilginal strategy. For parity objectives, we
show a reduction from general parity objectives to paritjectives with two priorities on a polynomially
larger POMDP and from our general result for Muller objeegiwbtain the asymptotically optimal memory
complexity bounds for parity objectives. For the compuwtadl complexity result, we show how to construct
an exponential size special class of POMDPs (which we céiéfbébservation POMDPs where the belief
is always the current observation) and present polynorinie &lgorithms for the qualitative analysis of the
special belief-observation POMDPs of our construction.

Objectives Almost—sgre Positive_ Quantita_tive
Inf. Mem. | Fin. Mem. Inf. Mem. | Fin. Mem. Inf. Mem. | Fin. Mem.
Bichi UB: Exp. 258
Exp. (belief- Exp. Inf. mem. LB: Exp. Inf. mem. | No bnd.
based) (belief-based) reg. (belief not req.
sufficient)
coBlichi UB: Exp. 26181 UB: Exp. UB: Exp.
Inf. mem. LB: Exp. LB: Exp. LB: Exp. Inf. mem. | No bnd.
reg. (belief not (belief not (belief not reg.
sufficient) sufficient) sufficient)
Parity UB: Exp. 23'418I UB: Exp. 23'418I
Inf. mem. LB: Exp. Inf. mem. LB: Exp. Inf. mem. | No bnd.
reg. (belief not reqg. (belief not req.
sufficient) sufficient)

Table 1: Strategy complexity for POMDPs with parity objeeti, wherdS| is the size of state space, and
d the number of priorities, (UB denotes upper bound and LB teEnlmwer bound). The results in boldface
are new results included in the present papetr.

Obijectives Almost—su.rg Positive. ' Quantitativ'e.
Inf. Mem. Finite Mem. Inf. Mem. Finite Mem. | Inf. Mem. Finite
Mem.
Buchi EXP-complete| EXP-complete Undec. EXP-complete | Undec. Undec.
coBchi Undec. EXP-complete | EXP-complete| EXP-complete| Undec. Undec.
Parity Undec. EXP-complete Undec. EXP-complete | Undec. Undec.

Table 2: Computational complexity for POMDPs with parityjestiives. The results in boldface are new

results included in the present paper.




2 Definitions

In this section we present the basic definitions of POMDRategiies (policies)y-regular objectives, and
the winning modes.

Notations. Given a finite sefX, we denote byP(X) the set of subsets of, i.e., P(X) is the power set of
X. A probability distributionf on X is a functionf : X — [0,1] suchthad __ f(x) = 1, and we denote
by D(X) the set of all probability distributions oi. For f € D(X) we denote bysupp(f) = {z € X |
f(x) > 0} the support off.

Definition 1 (POMDP) A Partially Observable Markov Decision Process (POMORha tupleG =
(S,A,6,0,7,s0) where:

e S is a finite set of states;

A is afinite alphabet ofictions

0:SxA— D(S)isaprobabilistic transition functiothat given a state and an actioru € A gives
the probability distribution over the successor states, d(s, a)(s’) denotes the transition probability
from states to states’ given actiona;

O is a finite set ofobservations

e v: S — (O is anobservation functiothat maps every state to an observation; and
e 5g is the initial state.

Givens, s’ € S anda € A, we also writed(s'|s, a) for §(s,a)(s’). For an observation, we denote by
7o) = {s € S| v(s) = o} the set of states with observationFor a seU C S of states and) C O of
observations we denotgU) = {o € O | 3s € U. y(s) = o} andy(0) = U, 7 *(0).

Remark 1. For technical convenience we have assumed that there is ignesmitial state and we will
also assume that the initial statg has a unique observation, i.¢y~*(v(s¢))| = 1. In general there is an
initial distribution « over initial states that all have the same observation, $&pp(a) C v~1(0), for some
o € O. However, this can be modeled easily by adding a new init&#ks,,.., with a unique observation
such that in the first step gives the desired initial prob&pitlistribution «, i.e., 6(spew,a) = « for all

actionsa € A. Hence for simplicity we assume there is a unique initialestg with a unique observation.

Plays, cones and belief-updates. A play (or a path) in a POMDP is an infinite sequence
(s0,ap, s1,a1,s2,az,...) of states and actions such that for al>> 0 we haved(s;,a;)(s;+1) > 0. We
write Q2 for the set of all plays. For a finite prefix € (S - A)* - S of a play, we denote bfone(w) the set

of plays withw as the prefix (i.e., the cone or cylinder of the prefix and denote byast(w) the last state
of w. For afinite prefixw = (so, ag, $1,a1, - .., s,) we denote byy(w) = (v(so), a0, ¥(s1), a1, ---,7(sn))
the observation and action sequence associatedwvitRor a finite sequence = (og, ag, 01,a1,...,0p)

of observations and actions, thelief 5(p) after the prefixp is the set of states in which a finite prefix
of a play can be after the sequene®f observations and actions, i.8(p) = {s, = Last(w) | w =
(s0,a0,81,a1,...,5,),wis a prefix of a play, and for all < i < n. v(s;) = 0;}. The belief-updates asso-
ciated with finite-prefixes are as follows: for prefixendw’ = w - a - s the belief update is defined induc-

tively asB(y(w')) = (UsleB(’y(w)) Supp(d(s1, a))) Ny~ Y(s), i.e., the SGI(USleg(,Y(w)) Supp(d(s1, a)))



denotes the possible successors given the b8{igfw)) and actiors, and then the intersection with the set
of states with the current observatiofs) gives the new belief set.

Strategies. A strategy (or a policy)is a recipe to extend prefixes of plays and is a function (S -

A)* - S — D(A) that given a finite history (i.e., a finite prefix of a play) s#tea probability distribution
over the actions. Since we consider POMDPs, strategiestes@rvation-based.e., for all historiesw =
(s0,@0, 51,01, -.,0n_1, Sy) @andw’ = (sg, ao, s, a1,...,an—1, s),) such that for alld < i < n we have
v(s:) = ~(s}) (i.e., v(w) = v(w')), we must haver(w) = o(w’). In other words, if the observation
sequence is the same, then the strategy cannot distingeisfedn the prefixes and must play the same. We
now present an equivalent definition of observation-basedegjies such that the memory of the strategy is
explicitly specified, and will be required to present fimi@mory strategies.

Definition 2 (Strategies with memory and finite-memory strategiegs)strategywith memory is a tuple
o = (o, on, M,mg) where:

e (Memory set).M is a denumerable set (finite or infinite) of memory elememtm@mory states).

e (Action selection function)The functiors,, : M — D(A) is theaction selection functiothat given
the current memory state gives the probability distribataver actions.

e (Memory update function)The functioro,, : M x O x A — D(M) is thememory update function
that given the current memory state, the current obsermasind action, updates the memory state
probabilistically.

¢ (Initial memory). The memory statey, € M is the initial memory state.

A strategy is &finite-memorystrategy if the sef\/ of memory elements is finite. A strategypigre (or
deterministic)if the memory update function and the action selection fancre deterministic, i.eq,, :
MxOxA— Mando, : M — A. Itwas shown in [7] that in POMDPs pure strategies are as pdules
randomized strategies, hence in sequel we omit discusalomst pure strategies. A strategyriemoryless
(or stationary)if it is independent of the history but depends only on theeturobservation, and can be
represented as a function: O — D(A).

Probability measure. Given a strategy, the unique probability measure obtained giveis denoted as
P?(-). We first define the measupe’(-) on cones. Fow = sy we havep’(Cone(w)) = 1, and for
w = s wheres # sy we haveu?(Cone(w)) = 0; and forw’ = w - a - s we haveu?(Cone(w')) =
u?(Cone(w)) - o(w)(a) - (Last(w), a)(s). By Caratheddary’s extension theorem, the funcfiéft) can be
uniquely extended to a probability measiifg-) over Borel sets of infinite plays [5].

Objectives. An objectivein a POMDPG is a Borel setp C 2 of plays in the Cantor topology dn [21]. All
objectives we consider in this paper lie in the fi¥gk-levels of the Borel hierarchy. We specifically consider
the parity objective, which is a canonical form to expressalegular objectives [35]. Thus parity objectives
provide a robust specification language to express all camymgsed properties in verification and system
analysis. For a play = (s, ao, 51,a1,s2...), we denote bynf(p) = {s € S |Vi>0-3j >i:s; = s}
the set of states that occur infinitely oftendnWe consider the following objectives.

e Reachability and safety objective§iven a set7 C S of target states, theeachability objective
Reach(7) = {(so, a0, s1,a1,s2...) € Q| Ik > 0: s, € T } requires that a target statednis visited
at least once. Dually, theafetyobjectiveSafe(7") = {(so, ag, s1,a1,82...) € Q| VE>0:s, € T}
requires that only states ih are visited.



e Bichi and coBichi objectives.Given a setZ’ C S of target states, thBuchi objectiveBuchi(7) =
{p € Q| Inf(p) N'T # 0} requires that a state i is visited infinitely often. Dually, theoBichi
objectivecoBuchi(7) = {p € Q | Inf(p) C T} requires that only states {f are visited infinitely
often.

e Parity objectives.Ford € N, letp : S — {0,1,...,d} be apriority functionthat maps each state
to a non-negative integer priority. Thmarity objective Parity(p) = {p € Q | min{p(s) | s €
Inf(p)} is ever} requires that the smallest priority that appears infinitétgn is even.

e Muller objectives.Let D be a set of colors, anebl : S — D be a color mapping function that maps
every state to a color. A Muller objectivE consists of a set of subsets of colors and requires that the
set of colors visited infinitely often belongs 1, i.e., 7 € P(P(D)) andMuller(F) = {p € Q|
{col(s) | s € Inf(p)} € F}

Note that a reachability objectivieeach(7") can be viewed as a special case of Bichi as well as coBuchi
objectives, (assuming w.l.0.g. that all target states7 areabsorbing i.e.,d(s,a)(s) = 1 for all a € A)

and analogously safety objectives are also special cadeaatii and coBiichi objectives. The objectives
Buchi(7") and coBuchi(7") are special cases of parity objectives defined by respeptieeity functions
p1,p2 such thatp;(s) = 0 andpa(s) = 2if s € 7, andpi(s) = pa(s) = 1 otherwise. Given a set
U C S we will denote byp(U) the set of priorities of the sét given by the priority functiorp, i.e.,
p(U) = {p(s) | s € U}, and similarlycol(U) = {col(s) | s € U}. Also observe that parity objectives are
a special case of Muller objectives, however, given a POMMR arMuller objective with color seD, an
equivalent POMDP withS| - | D|! states and a parity objective with|? priorities can be constructed using
the well-known latest appearance record (LAR) constractib[18] for conversion of Muller objectives to
parity objectives. An objective is visible if for all playsp andp’ that have the same observation sequence
we havep € ¢ iff p' € ¢.

Winning modes. Given a POMDP, an objective, and a clas§ of strategies, we say that:

e astrategy € C is almost-sure winningf P? () = 1;

e astrategy € C is positive winningf P?(¢) > 0;

e the POMDP idimit-sure winningif for all ¢ > 0 there exists a strategy € C for player1 such that
P7(¢) > 1 —¢; and

e astrategy € C is quantitative winningfor a threshold\ € (0, 1), if P7(p) > A.

Theorem 1 (Decidability and complexity under general strategies, [88, 11, 17, 10, 1, 2, 31, 32, 8])
The following assertions hold for POMDPs with the cl@ssf all infinite-memory (randomized or pure)
strategies:

1. The quantitative winning problem is undecidable for safieachability, Bichi, coRichi, parity, and
Muller objectives.

2. The limit-sure winning problem is EXPTIME-complete fafety objectives; and undecidable for
reachability, Bichi, coBichi, parity, and Muller objectives.

3. The almost-sure winning problem is EXPTIME-completestdety, reachability, and i&hi objec-
tives; and undecidable for ca@hi, parity, and Muller objectives.
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4. The positive winning problem is PTIME-complete for resility objectives, EXPTIME-complete for
safety and coBchi objectives; and undecidable foilghi, parity, and Muller objectives.

Explanation of the previous results and implications unfileite-memory policiesAll the undecidability
results follow from the special case of probabilistic ausban the undecidability of the quantitative problem
for probabilistic automata follows from [30, 28, 11]; thedatidability of the limit-sure winning for finite
words and reachability objectives was established in [0F (the undecidability of limit-sure reachability
also implies undecidability for Biichi, coBuchi and pgigbjectives); the undecidability for positive winning
for Buichi and almost-sure winning for coBuichi objectivess established in [1, 2]. For the decidable results,
the optimal complexity results for safety objectives carob&ined from the results of [31, 32] and all the
other results follow from [8, 2]. If the classes of strategae restricted to finite-memory strategies, then
the undecidability results for quantitative winning arit-sure winning still hold, as they are established
for reachability objectives and for reachability objeesviinite-memory suffices. The most prominent and
important open question is whether the almost-sure andiyesgiinning problems are decidable for parity
and Muller objectives in POMDPs under finite-memory striggAll the lower bounds (i.e., hardness and
undecidability) results have been established for thescaben the objectives are restricted to be visible.

3 Strategy Complexity for Muller Objectives under Finite-memory Strate-
gies

In this section we will first show that randomized beliefbadstrategies are not sufficient for finite-memory
almost-sure winning strategies in POMDPs with coBlchieotiyes; and then present the upper bound
on memory size required for finite-memory almost-sure argltipe winning strategies in POMDPs with
Muller objectives. Our proofs will use many basic resultshdarkov chains and we start with them in the
following subsection.

3.1 Basic properties of Markov chains

Since our proof relies heavily on Markov chains we start witime basic definitions and properties related
to Markov chains that are essential for our proofs.

Markov chains, recurrent classes, and reachability.A Markov chainG = (?, 3) consists of a finite set

S of states and a probabilistic transition functién S — D(S). Given the Markov chain, we consider
the directed grapS, E) whereE = {(3,5") | §(3' | 3) > 0}. A recurrent classC' C S of the Markov
chain is a bottom strongly connected component (scc) in taphy S, E) (a bottom scc is an scc with
no edges out of the scc). We denote Rac(G) the set of recurrent classes of the Markov chain, i.e.,
Rec(G) = {C | Cis arecurrent clags Given a state and a selU of states, we say thaf is reachable
from 3 if there is a path fron® to some state i/ in the graph(S, F). Given a states of the Markov
chain we denote bRRec(G)(3) C Rec(G) the subset of the recurrent classes reachable framG. A
state is recurrent if it belongs to a recurrent class. THevahg standard properties of reachability and the
recurrent classes will be used in our proof:

1. Property 1.(a) For a sef” C S, if for all statess € S there is a path t@ (i.e., for all states there is a
positive probability to reaclt’), then from all states the sétis reached with probability 1. (b) For all
statess, if the Markov chain starts & then the sef’ = Jzcgeccs) C is reached with probability 1,
i.e., the set of recurrent classes are reached with pratyahil



2. Property 2.If 3is recurrent and it belongs to a recurrent cl@sshenRec(G)(3) = {C}.

3. Property 3.For a recurrent class, for all statess € C, if the Markov chain starts &, then all states
t € C are visited infinitely often with probability 1.

4. Property 4.1f ' is reachable frorg, thenRec(G)(3') C Rec(G)(3).

5. Property 5.For all’s we haveRec(G)(5) = U5 5 Rec(G)(3).
The following lemma is an easy consequence of the above girege

Lemma 1. Given a Markov chainG = (S,0) with Muller objective Muller(F) (or a parity objec-
tive Parity(p)), a states is almost-sure winning (resp. positive winning) if for allcurrent classes
C € Rec(G)(3) (resp. for some recurrent clags € Rec(G)(3)) reachable frons we havecol(C) € F

(min(p(C)) is even for the parity objective).

Proof. Froms the set of recurrent classes reachable fmis reached with probability 1 (Property 1 (b)),
and every recurrent class reachable is reached with pagitigbability. In every recurrent clags the
minimum priority visited infinitely often with probabilityt is the minimum priority of”’ (Property 3). Also
in every recurrent class the set of colors visited infinitely often with probabilityidexactly the setol(C)
(Property 3). The desired result follows. O

Markov chains under finite memory strategies.We now define Markov chains obtained by fixing a finite-
memory strategy in a POMDR&. A finite-memory strategy = (o, 0, M, mg) induces a Markov chain
(S x M,J,), denotedG | o, with the probabilistic transition functiod, : S x M — D(S x M): given
s,s' € Sandm,m’ € M, the transitions, ((s’,m’) | (s,m)) is the probability to go from states, m) to
state(s’, m’) in one step under the strategy The probability of transition can be decomposed as foliows

e First an actioru € A is sampled according to the distributien (m);
e then the next state is sampled according to the distributiéfs, a); and

e finally the new memoryn’ is sampled according to the distributian (m,v(s'),a) (i.e., the new
memory is sampled according, given the old memory, new observation and the action).

More formally, we have:

5o ((s',m") [ (s,m)) =D an(m)(a) - 6(s,a)(s') - ou(m,¥(s'), a)(m).
a€A
Givens € S andm € M, we write(G [ o), ., for the finite state Markov chain induced shx M by the
transition functiorv,,, given the initial state igs, m).

3.2 Belief-based strategies are not sufficient

For all previous decidability results for almost-sure witgnin POMDPs, the key was to show tHadlief-
basedrandomized strategies are sufficient. A strategy is béléefed if its memory relies only on the subset
construction where the subset denotes the possible custes, i.e., the strategy plays only depending on
the set of possible current states of the POMDP, which igdaklief In POMDPs with Biichi objectives,
belief-based randomized strategies are sufficient for sireore winning. We now show with an example
that there exist POMDPs with coBuichi objectives, wherddimemory randomized almost-sure winning
strategies exist, but there exists no belief-based rarmkmhalmost-sure winning strategy.
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POMDPG

Q

(on

Rec {X,X".Y,Y',Z,2'} Rec {X,X".Y,Y',Z,2'}

Figure 1: Belief is not sufficient

Rec:{Xa, X'b} Rec:{Z'a, Zb}

Figure 2: The Markov chait | o4.

Example 1. We consider a POMDP with state spat®), X, X',Y,Y’, Z, Z'} and action sef{a,b}, and
let U = {X,X")Y,Y', Z, Z'}. From the initial states, all the other states are reached with uniform
probability in one-step, i.e., foral' € U = {X, X', Y,Y’, Z, Z'} we haved(sg, a)(s") = d(so,b)(s') =

%. The transitions from the other states are as follows (shewhigure 1): (i) §(X,a)(X’) = 1 and
(X, 0)(Y) =1; (i) 6(X',a)(Y) =1andd(X',b)(X) = 1; (iii) 6(Z,a)(Y)=1anddé(Z,b)(Z') = 1;
(iv)6(Z',a)(Z) =1andd(Z',b)(Y') =1; (V) 6(Y,a)(X) = 6(Y,b)(X) =0(Y,a)(Z) =6(Y,b)(Z) = %;
and (vi)s(Y’,a)(X') = 6(Y",b)(X') = 6(Y’,a)(Z") = 6(Y',b)(Z') = 5. All states inU have the same
observation. The cdRhi objective is given by the target e, X', Z, 7'}, i.e.,Y and Y’ must be visited
only finitely often.

The belief initially after one-step is the st = {X, X', YY"’ , Z, Z'} since froms, all of them are
reached with positive probability. The belief is always #®U since every state has an input edge for
every action, i.e., if the current beliefis (i.e., the set of states that the POMDP is currently in witkipee
probability is U), then irrespective of whether or b is chosen all states di are reached with positive
probability and hence the belief set is agdih There are three belief-based strategies: «j)that plays
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Rec {X,X'.Y,Y',Z, 7' B} Rec {X,X'.Y,Y',Z, 7' B}

Figure 3: Belief is not sufficient

alwaysa; (ii) o that plays alway$; or (iii) o3 that plays bothw andb with positive probability. The Markov
chainsG | o1 (resp.oy andos) are obtained by retaining the edges labeled by actigresp. actiorp, and
both actionse andb). For all the three strategies, the Markov chains obtainedéthe whole st as the
recurrent class, and hence bathandY” are visited infinitely often with probability 1 violatingatcoBichi
objective. The Markov chain§ | oy andG | o4 are also shown in Figure 1, and the graph@f| o3 is
the same as the POMDP (with edge labels removed). The gjratethat plays actiorw and b alternately
gives rise to the Markov chai@ | o4 (shown in Figure 2) where the recurrent classes do not ietersvith
Y orY’, and is a finite-memory almost-sure winning strategy. O

In Example 1 the coBilichi objective is not a visible objegtiMn the following example we modify
Example 1 to show that randomized belief-based strategesa sufficient even if we consider visible
coBiichi objectives.

Example 2. We consider the POMDP shown in Figure 3: the transition edgedhe setU =
{X,X")Y,Y' Z 7'} are exactly the same as in Figure 1, and the transition praligs are always uni-
form over the support set. We add a new stBtend from the state” and Y’ add positive transition
probabilities (probability%) to the stateB for both actionsa andb. Recall thatY” and Y’ were the bad
states in Example 1. From stafe all states inU are reached with positive probability for both actions
andb. All states inU have the same observation (denotedba} and the stateB has a new and different
observation (denoted ag;). The coBichi objective is to visit only states with observatigninfinitely often
(i.e., to avoid to visit staté3 infinitely often). Note that the objective is a visible olijge Since we retain
all edges as in Figure 1 and frol8 all states inUU are reached with positive probability in one step, when-
ever the current observation ig;, then the belief is the sét. As in Example 1 there are three belief-based
strategies €1, o2 andos) in beliefU, and the Markov chains undet; ando, are shown in Figure 3, and the
Markov chain under; has the same edges as the original POMDP. For all the bekbekld strategies the
recurrent class contains the stai& and henceB is visited infinitely often with probability 1 violating the
coBuchi objective. The strategy, that alternates actions andb is a finite-memory almost-sure winning
strategy and the Markov chain obtained giwenis shown in Figure 4. Also note that our example shows
that belief-based strategies are also not sufficient foitp@swinning for coBichi objectives.



Rec:{Xa, X'b}

Rec:{Z'a, Zb}

Figure 4: The Markov chait | o4.

Remark 2. In Example 2 we have shown that randomized belief-basetibgtes are not sufficient for finite-
memory almost-sure and positive winning strategies in P@gWith coRichi objectives. In contrast, for
almost-sure winning for 8chi objectives in POMDPs, randomized belief-based giateare sufficient [9]
(both for finite-memory and infinite-memory strategies) e Tact that randomized belief-based strategies
are not sufficient for finite-memory positive winning stgigs in POMDPs with Bchi objectives can be
obtained from a simple modification of Example 2 as follows:cansider the POMDP in Example 2 and
change the stat® to an absorbing state. TheliBhi objective is to visit the observatiog infinitely often,
and for all the three belief-based strategieg o2, and o3 the Markov chain has only one recurrent class
consisting of the absorbing stat& The strategy, ensures that with positive probability a recurrent class is
contained inoyy and is a finite-memory positive winning strategy. Finalby, fositive winning in POMDPs
with coHichi objectives, the EXPTIME-complete computational derify result was obtained with the
following straight forward observation [8]: given a POMD& with a coBichi objectivecoBuchi(7), let
Sw be the set of statessuch that ifs is the starting state (i.e., initial belief iss}), then almost-sure safety
can be ensured for the target set (i.8afe(7") can be ensured almost-surely). Then positive winning for
coBuchi coincides with positive reachability to the s8f because as soon &y is reached, then the
current belief contains a state ifiyr, and then with positive probability the strategy can assuna¢ the
current state is a state %y and play the almost-sure safety strategy and the strategyres that the
coBulchi objective is satisfied with positive probability. Cersely it was also shown that a positive winning
strategy for the coBchi objective must ensure positive probability reachiibiio Sy [8]. Hence positive
winning for coBichi objectives can be ensured by solving almost-sureysafet positive reachability, and
thus we obtain the EXPTIME-complete result from resultslimfoat-sure safety and positive reachability.
However, from the previous construction it was not clear tivee belief-based strategies are sufficient or
not, and Example 2 shows that belief-based strategies drsufficient.

3.3 Upper bound on memory of finite-memory strategies

For the following of the section, we fixa POMOP= (S, A, §, O, v, so), with a Muller objectiveMuller(F)
with the setD of colors and a color mapping functienl. We will denote by® the powerset of the powerset
of the setD of colors, i.e.® = P(P(D)); and note that®| = 22, whered = |D|. The goal of the section
is to prove the following fact: given a finite-memory almasire (resp. positive) winning strategyon G
there exists a finite-memory almost-sure (resp. positiiaping strategy’ on G, of memory size at most
Mem* = 2151 2181 . |9 |I5],
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Overview of the proof. We first present an overview of our proof structure.

e Given an arbitrary finite-memory strategywe will consider the Markov chaid | o arising by
fixing the strategy.

e Given the Markov chain we will define a projection graph thepends on the recurrent classes of the
Markov chain. The projection graph is of size at migkim™.

e Given the projection graph we will construct a projectedtsyy with memory size at modtem*
that preserves the recurrent classes of the Markov ahdir.

Notations. Given Z € ®!! and givens € S, we write Z(s) (which is in® = P(P(D))) for the s-
component ofZ. For two setd/; andU,; andU C U; x U, we denote byProj, (U) the projection of/

on the first component, formallProj, (U) = {u1 € Uy | Jug € Us.(u1,u2) € U}; and the definition of
Proj,(U) for the projection on the second component is analogous.

Basic definitions for the projection graph. We now introduce notions associated with the finite Markov
chainG | o that will be essential in defining the projection graph.

Definition 3 (Recurrence set functions) et o be a finite-memory strategy with memavg on G for the
Muller objective with the seb of colors, and letn € M.

e (Function set recurrence)The functionSetRec,(m) : S — © maps every state € S to the
projections of colors of recurrent classes reachable femn) in G | o. Formally,SetRec, (m)(s) =
{col(Proj;(U)) | U € Rec(G | o)((s,m))}, i.e., we consider the sBec(G | o)((s,m)) of recurrent
classes reachable from the state m) in G | o, obtain the projections on the state spageand
consider the colors of states in the projected set. We wabiquel conside$etRec,(m) € I8l

e (Function boolean recurrencehe functionBoolRec,(m) : S — {0, 1} is such that for alls € S,
we haveBoolRec,(m)(s) = 1 if there existd/ € Rec(G | o)((s,m)) such that(s, m) € U, and0 if
not. Intuitively,BoolRec,(m)(s) = 1if (s,m) belongs to a recurrent class id [ o and0 otherwise.
In sequel we will consideBoolRec, (m) € {0,1}41,

We first define the projection graph and then present a simpfgepty ofSetRec, (m) function related
to the reachability property.

Definition 4 (Projection graph) Let o be a finite-memory strategy. We define gmejection graph
PrGr(o) = (V, E) associated to as follows:

o (Vertex set). The set of vertices i¥ = {(U, BoolRec,(m),SetRec,(m)) | U C S and m € M}.
Note thatV’ C P(S) x {0, 1}/l x D1, and hencéV'| < Mem*.

e (Edge labels)The edges of the graph are labeled by actionsglin

e (Edge set)LetU C S, m € M anda € Supp(o,(m)). LetU = U, ., Supp(d(s, a)) denote the set
of possible successors of statedirgiven actiona. We add the following set of edgesih Given
(U',m’) such that there exists € O with y~1(0) NU = U’ andm’ € Supp(o(m, o0,a)), we add
the edggU, BoolRec, (m), SetRec, (m)) % (U’, BoolRec, (m'), SetRec, (m’)) to E. Intuitively, the
update fromlJ to U’ is the update of the belief, i.e., if the previous belief esgbtl of states, and the
current observation is, then the new belief i§”’; the update ofn to m’ is according to the support
of the memory update function; and tBeolRec and SetRec functions for the memories are given by
the strategy.
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e (Initial vertex). Theinitial vertexof PrGr(c) is the vertex{so}, BoolRec,(my), SetRec, (my)).
For the rest of this section we fix an arbitrary finite-memdrategyo that uses memory/.

Lemma 2. Lets,s’ € S andm,m’ € M be such tha{s’,m’) is reachable from(s,m) in G | o. Then
SetRec,(m')(s") C SetRec,(m)(s).

Proof. Since(s’,m’) is reachable frongs, m) in G | o, it follows by simple properties of Markov chains
and recurrent classes that we h&&(G | 0)((s’,m')) C Rec(G | o)((s,m)) (Property 4 of Markov
chains). ThecC relation is preserved under the projections on states,lemdonsidering the color mapping.
Hence the result follows. O

In the following two lemmas we establish the connection oicfionsBoolRec, (m) andSetRec,(m)
with the edges of the projection graph. The intuitive dggimn of the first lemma is as follows: it shows
that if BoolRec is set to 1 for a vertex of the projection graph, then for aticessors according to the edges
of the projection graphBoolRec is also 1 for the successors. The second lemma shows a sieslalt
for the projection graph showing that tBetRec functions are subsets for each component for successor
vertices.

Lemma 3. Let(V, E) = PrGr(c) be the projection graph af. Let(U, B, L) % (U’, B, L) be an edge in
E,whereU,U’ C S, B,B' € {0,1}/%l, andL, L’ € ®!°|. Then for alls € U ands’ € Supp((s,a)) the
following assertion holds: iB(s) = 1, thenB’(s’) = 1.

Proof. We first note that i{U, B, L) % (U’, B’, L) is an edge in&, then there exists memory stateand

m’ such that (i)B = BoolRec,(m) andL = SetRec,(m); (i) B’ = BoolRec,(m’) andL’ = SetRec,(m');

(i) @ € Supp(o,(m)) andm’ € Supp(o,(m,y(s’),a)). Hence it follows that(s’,m’) is reachable
in one step from(s,m) in G | o. Now, if (s, m’) is reached with positive probability frorts, m) in

G | o and if (s,m) is a recurrent state of | o, then(s’,m’) is also recurrent and lies in the same
recurrent class as, m) (since both(s, m) and(s’, m") would lie in the same bottom scc of the graph of the
Markov chain). Thus iBoolRec,(m)(s) = 1, thenBoolRec,(m')(s’) = 1. SinceB = BoolRec,(m) and

B’ = BoolRec,(m’), the desired result follows. O

Lemma 4. Let(V, E) = PrGr(c) be the projection graph of. Let(U, B, L) % (U’, B', L') be an edge in
E,whereU,U’ C S, B,B' € {0,1}!5], andL, L’ € ®°|. Then for alls € S and all s’ € Supp(4(s, a)),
we havel’(s") C L(s).

Proof. By definition of PrGr(o) (as in the proof of Lemma 3), there exist, ' € M such that (i)B =
BoolRec,(m) and L = SetRec,(m); (i) B’ = BoolRec,(m’) andL’ = SetRec,(m’). Moreover,a €
Supp(oy,(m)), and(U’,m’) is such that there existse O with U’ = (., Supp(d(s,a)) Ny ~* (o) and
m’ € Supp(oy,(m,o,a)). This implies thats’, m’) is reachable fronfs,m) in G | 0. As a consequence
Rec(G [ o)((s',m')) C Rec(G | o)((s,m)) (Property 4), and as relation is preserved by the projection
on the states and then on the colors, it follows h#t’) C L(s). O

We now define the notion of projected strategies: intuijivible projected strategy collapses memory
with sameBoolRec andSetRec functions, and at a collapsed memory state plays unifortrdyunion of the
actions played at the corresponding memory states.

Definition 5 (Projected strategyroj (o) of a finite-memory strategy)LetPrGr(c) = (V, E) be the projec-
tion graph ofo. We define the following projected strategy= proj (o) = (o1, 0., M', m{):

uwr ¥ no
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e (Memory set). The memory set gfroj(c) is M’ = V = {(U, BoolRec,(m), SetRec,(m)) | U C
Sandm e M}.

e (Initial memory). The initial memory state gfroj (o) ismy = ({so}, BoolRec,(my), SetRec, (my)).

e (Memory update).Letm = (U,B,L) € M',0 € O anda € A. Theno/,(m,o0,a) is the uniform
distribution over the sefm’ = (U', B, L) € M' | m % m/ € EandU’ C v 1(0)}.

e (Action selection).Givenm € M’, the action selection functiom,(m) is the uniform distribution
over{ac A|3Im' € M’ st. m % m' € E}.

Markov chain of the projected strategy. For the following of the section, we fix a finite-memory state
o on G, let (V, E) = PrGr(o) be the projection graph, and let = proj(o) be the projected strategy.
The finite-memory strategy’ = (o/,,0,,, M’, m;) induces a probability transition function dx M’

givens, s’ € Sandm,m’ € M’ letd, ((s',m’) | (s,m)) be the probability to go from state, m) to state
(s’,m’) in one step if we use strategy. Formally,

60 (s, m') | (s,m)) = D o (m)(a) - 8(s,a)(s) - o7, (m, 7(s), @) ().

acA

The chainG | ¢’ is a finite state Markov chain, with state spate M, which is a subset of x P(S) x
{0,115 x ®I81, GivenXx € 8,Y C S, C € {0,1}1%, andZ € D9, let Succ, ((X,Y, C, Z)) denote the
set of states of the Markov chain reachable in one step fremstiite( X, Y, C, 7).

Random variable notations. For alln > 0 we write X,,.Y,,, C,,, Z,,, W,, for the random variables which
correspond respectively to the projection of théh state of the Markov chai@ | o’ on theS component,
the P(S) component, th¢0, 1115/ component, thé !5l component, and the-th action, respectively.

Run of the Markov chain G | ¢/. ArunonG | ¢’ is a sequence
r = (Xo, Yo, Co, Zo) 2% (X1,%1,C1, 1) 2 ...

such that each finite prefix of is generated with positive probability on the chain, i.er, &ll i > 0,
we have (i)W; € Supp(o,,(Y;, Ci, Zi)); (i) Xit1 € Supp(6(X;, W5)); and (iii) (Yig1, Cit1, Ziv1) €
Supp(al,((Yi, Cs, Z;),v(Xi11), Ws)). In the following three lemmas we establish crucial prapsrof the
Markov chain obtained from the projected strategy.

Lemmabs. LetX € S,Y C S, C € {0,1}/%l, andZ € ©!°!. Then:

Z(X) = U Z'(X").

(X',Y',C",Z")eSucct ((X,Y,C,Z))

Proof. This follows from the following basic property of finite Mask chains: given a state of a finite
Markov chain, the set of recurrent classes reachable framthe union of the set of recurrent classes
reachable from the set of states reachable fsdmone step (Property 5 of Markov chains). The relation is
preserved by projection on the colors of states. O

Lemma 6. Leto’ = proj(o) be the projected strategy ef Givens,s’ € S andm,m’ € M, if (s';m/)

is reachable from(s,m) in G | o, then for allY” C S such that(s, Y, BoolRec,(m), SetRec,(m)) is

a state ofG | o/, there exists’ C S such that(s’, Y’, BoolRec, (m’), SetRec,(m')) is reachable from
(s,Y,BoolRec,(m), SetRec,(m)) in G | o’

15



Proof. Suppose first thats’, m’) is reachable fron{s,m) in G | o in one step. Lef” C S be such
that (s, Y, BoolRec, (m), SetRec,(m)) is a state ofG | ¢’. Then there exists an edge in the projec-
tion graph ofo from (Y, BoolRec, (m), SetRec, (m)) to another vertexY”’, BoolRec, (m'), SetRec, (m')).

As a consequence, there exi3ts C S such that(s’, Y’, BoolRec, (m’), SetRec,(m’)) is reachable from
(s,Y, BoolRec,(m), SetRec,(m)) in G | o’

We conclude the proof by induction: (&', m’) is reachable fronfs, m) in G | o, then there exists a
sequence of couplgsy,m1), (s2,m2), ..., (85, m;) such that(s;,my) = (s,m), (s;,m;) = (s/,m’), and
forall j € {1,...,i — 1} we have thats;;1,m;1) is reachable fronfs;, m;) in one step. Using the proof
for an elementary step (or one step) inductively on such aesexg, we get the result. O

Lemma 7. Let Xy € S, Yy € P(S), Co € {0,1}!5! and Z, € D15, and letr = (X0, Yo, Co, Zo) 2

(X1,Y1,C1, Zy) Wi . bearunonG I o' with a starting statg Xy, Y, Co, Zp). Then for alln > 0 the
following assertions hold:

1. X141 € Supp(6(Xn, Wh)).

2. Z,(X,) is not empty.

3. Zni1(Xny1) C Zn(X5).

4. (Y, Crny Z) 2 (Yys1, Cos1, Zngr) is an edge inE, where(V, E) = PrGr(o).

5. IfC(X,) = 1,thenC,1(X,11) = 1.

6. If Cp(X,) =1, then|Z,(X,)| = 1. f {Z} = Z,(X,,), then for allj > 0 we havecol(X,,4;) € Z.
Proof. We prove all the points below.

1. The first point is a direct consequence of the definitiorhefMarkov chain.

2. The second point follows also from the definition of theiokas from every state of a Markov chain
at least one recurrent class is reachable and hence thet@njen colors is not empty.

3. The third point follows from the first point of the lemma dreimma 4.

4. For the fourth point: givelX,,,Y,, Cy, Z,), the strategy,, samplesi¥,, with uniform probability
among the elements of the set:

{ac A|Ime M st (Yy,,Cpn, Zy) % me E}.

OnceW,, has been chosen, thet)((Y,,, Cy, Z,), 7(Xn+1), W) samplesY,,+1, Cr41, Zn+1) UNi-
formly among the elements of the set:

{(U,B,L) € P(S) x {0,115 x @I85 | (v;,,C, Zo) 2 (U, B, L) € EandU C v (4(Xns1))}-

This proves thatY,,, C,, Z,) We (Ynt1,Cnt1, Zn41) IS an edge irk.

5. The fifth point follows from the fourth point and Lemma 3.
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6. SupposéX,,Y,,Cy, Z,) is such thaC,,(X,,) = 1. Letm € M be an arbitrary memory state such
that C,, = BoolRec,(m) andZ,, = SetRec,(m). By hypothesis, sinc€’,(X,,) = 1, it follows that
(Xn,m) is a recurrent state in the Markov chaih| o. As a consequence, only one recurrent class
R C S x M of G | ois reachable fron{.X,,,m), and(X,,, m) belongs to this class (Property 2 of
Markov chains). Hencé&,,(X,,) = {col(Proj;(R))}, and thu§Z,(X,)| = 1. It also follows that all
states(X’, m’) reachable in one step froX,,, m) also belong to the recurrent clags It follows
that X,, 11 € Proj;(R) and henceol(X,,+1) € col(Proj;(R)). By induction for allj > 0 we have
col(Xp+j) € col(Proj; (R)).

The desired result follows. O

We now introduce the final notion that is required to complké&eproof. The notion is that of a pseudo-
recurrent state. Intuitively a stat&’, Y, C, Z) is pseudo-recurrent i contains exactly one recurrent subset,
X belongs to the subset and it will follow for some memaetyc M (of certain desired property)X, m)
is a recurrent state in the Markov chaih [ . The important property that will be useful is that once a
pseudo-recurrent state is reached, theend Z remain invariant. We now formally define pseudo-recurrent
states.

Definition 6 (Pseudo-recurrent stated)et X € S, Y C S, C € {0,1}/*l, andZ € ©!5I. Then the state
(X,Y,C, Z) is called pseudo-recurrerif there existsZ., C D such that:

() Z(X) = {Zoxo}, (i) col(X) € Zoo, and (iii) C'(X) = 1.

The following lemma shows that in the Markov chaih | ¢/, all states reachable from a pseudo-
recurrent state are also pseudo-recurrent.

Lemma 8. Let(X,Y, C, Z) be a pseudo-recurrent state.(lK’, Y’,C’, Z') is reachable from{ X, Y, C, Z)
inG | o, then(X',Y',C’, Z") is also a pseudo-recurrent state add( X') = Z(X).

Proof. Let(X,Y, C, Z) be a pseudo-recurrent state, anddgt C D be such thaZ (X ) = {Z}, col(X) €
Zs, andC(X) = 1. By Lemma 7 (fifth point), ifC(X) = 1, thenC’(X’) = 1. By Lemma 7 (third point)
also, Z'(X') = {Z}, sinceZ'(X') is a non empty subset ¢f(X). Finally, the fact thatol(X') € Z
follows from the last (sixth) point of Lemma 7. O

In the following lemma we show that with probability 1 a psetrécurrent state is reachedGh| o’.

Lemma9. LetX € S,Y € P(S), C € {0,1}/%, andZ € ®!5|. Then almost-surely (with probability 1) a
run onG | ¢’ from any starting stat¢X, Y, C, Z) reaches a pseudo-recurrent state.

Proof. We show that giver(X,Y,C, Z) there exists a pseudo-recurrent sta¥ .Y’ C’, Z’) which is
reachable from{X,Y,C,Z) in G | o’. First let us consider the Markov chafi | o obtained from the
original finite-memory strategy with memory M. Letm € M be such that' = BoolRec,(m) and
Z = SetRec,(m). We will now show that the result is a consequence of Lemmarst Wwe know that there
existst € S andm’ € M such thatt, m’) is recurrent and reachable franX, m) with positive probability
inG | 0. Let R C S x M be the unique recurrent class such tftatn’) € R, andZ., = {col(Proj,(R))}.
By Lemma 6, this implies that frorX, Y, C, Z) we can reach a statX’, Y’, C’, Z’) such that:

o X' =1t
o Z'(X') ={Zx};
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e col(X') € Z; and
o C'(X') =1.

Hence(X', Y’ ,C’, Z') is a pseudo-recurrent state. This shows that from all steitespositive probability
a pseudo-recurrent state is reached, and since it hold4d &iates with positive probability, it follows that
it holds for all states with probability 1 (Property 1 (a)). O

In the following three lemmas we establish the required erigs of pseudo-recurrent states.

Lemma 10. Let(X,Y, C, Z) be a state of7 | ¢/, and letZp € Z(X). Then there exists a pseudo-recurrent
state(X’,Y’,C’, Z’) which is reachable froniX, Y, C, Z) and such thatz’(X') = {Zp}.

Proof. The proof is of similar flavor as Lemma 9. Consider the Markbgio G | o arising by fixing the
original finite-memory strategy. Letm € M such thatC' = BoolRec,(m) andZ = SetRec,(m). We
haveZp € SetRec,(m)(X), henceZp = col(Proj;(R)) for some recurrent clasB of the chainG | o
reachable from{X,m). Lett € S andm’ € M be such thatt,m’) is reachable fron{X,m)in G | o
andRec(G | o)((t,m")) = {R}, thenSetRec,(m’)(t) = {Zp}. By Lemma 6, there exist8”, C’ such
that (¢,Y’, C’, SetRec,(m')) is reachable from{X,Y, C,SetRec,(m)) in G | o’ from the starting state
(X,Y,C, Z). The desired result follows. O

Lemma 11. Let (X, Y, C, Z) be a pseudo-recurrent state, atd, C D such thatZ(X) = {Z.}. Then
for all colors ¢ € Z,, there exists a stateX’, Y, C’, Z’) which is reachable i | ¢’ from (X,Y,C, Z)
and such thatol(X') = /.

Proof. We again consider the Markov chaii | . Letm € M be such thaC = BoolRec,(m) and
Z = SetRec,(m). Let R be the unique recurrent class @ | o such that(X,m) € R, thenZ, =
col(Proj;(R)). For everyl € Z., there exist§ X’,m’) € R such thatcol(X') = ¢. As (X',m/) is
reachable fron{X, m) in G | o, by Lemma 6, there exists’, C’, Z' such tha{ X', Y’, C’, Z') is reachable
inG | o from (X,Y,C, Z). O

Lemma 12. Let (X, Y, C, Z) be a pseudo-recurrent state, then we ha\{e&) = SetRec,/(m’)(X), where
m’ = (Y,C, Z). In other words, if we consider a pseudo-recurrent statel #ren consider the projection
on the state space of the POMDOPof the recurrent classes reachable and consider the cotbemn they
coincide withZ (X).

Proof. Let (X,Y,C, Z) be a pseudo-recurrent state, and4gt be such thatZ(X) = {Z.}. First, by
Lemma 8, we know that ifX’,Y’,C’, Z') is reachable fron{X,Y,C, Z) in G | ¢/, thencol(X') € Z.
This implies that for allZp € SetRec,/ (m')(X), wherem’ = (Y,C, Z), we haveZp C Z,,. Second,
by Lemma 11, if( X', Y’,C’, Z') is reachable fron{X,Y,C, Z) in G | ¢/ and? € Z.,, then there exists
(X", Y",C", Z") reachable from{ X', Y’, C’, Z") such thatcol(X") = ¢. This implies that for allZp €
SetRec,/(m')(X), wherem’ = (Y,C, Z), we haveZ,, C Zp. Thus,SetRec,/(m')(X) = {Zs} =
Z(X). O

We are now ready to prove the main lemma which shows that tloe sets of the projections of the
recurrent classes on the state space of the POMDP coingaidediod the projected strategy = proj (o).
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Lemma 13. Consider a finite-memory strategy = (o, 0,, M, mg) and the projected strategy’ =
proj (o) = (o), 0, M',m{). Then we have

SetRec,(my)(s0) = SetRec, (mq)(s0);

i.e., the colors of the projections of the recurrent classéshe two strategies on the state space of the
POMDPG coincide.

Proof. For the proof, letX = so, Y = {so}, C = BoolRec,(myg), Z = SetRec,(mp). We need to show
thatSetRec,’ (m()(X) = Z(X), wherem(, = (Y, C, Z). We show inclusion in both directions.

e First inclusion:(Z(X) C SetRec,/(my)(X)). Let Zp € Z(X). By Lemma 10, there exists a state
(X',Y',C’, Z") which is reachable iG | ¢’ from (X,Y,C, Z), which is pseudo-recurrent, and
such thatZ'(X’) = {Zp}. By Lemma 12, we haveZ/(X') = SetRec,(m')(X’) wherem' =
(Y',C",Z"). By Lemma 2, we havBetRec, (m')(X’) C SetRec,(m()(X). This proves thaZp €
SetRec, (my) (X).

e Second inclusion:SetRec, (m)(X) C Z(X)). Conversely, e/ € SetRec, (m()(X). SinceG |
o' is a finite Markov chain, there exists a stéfé’, Y’ , C’, Z’) which is reachable froniX,Y, C, 7)
in G | o’ such that:

— {Zp} = SetRec,/ (m')(X"), wherem’ = (Y',C", Z").
— For all (X", Y" C" Z") reachable from(X',Y',C',Z’) in G | ¢ we have{Zp} =
SetRec,/(m”)(X") wherem” = (Y",C", Z").

The above follows from the following property of a finite Markchain: given a state of a finite
Markov chain and a recurrent clagsreachable froms, from all statest of R the recurrent class
reachable front is R only (Property 2 of Markov chains). The condition is preseiby a projection
on colors of states irk.

By Lemma 9, there exists a pseudo-recurrent st&€,Y” C” Z") which is reachable from
(X, Y',C',Z") in G | ¢/. By Lemma 12, we know thaZ”(X") = SetRec, (m")(X") where
m” = (Y",C",Z"). SinceSetRec,,(m")(X") = {Zp}, and since by Lemma 7 (third point) we
haveZ”(X") C Z'(X') C Z(X), we get that/p € Z(X).

The desired result follows. O

Theorem 2. Given a POMDRG and a Muller objectiveéMuller(F) with the setD of colors, the following
assertions hold:

1. If there is a finite-memory almost-sure winning strategyhen the projected strategyroj (o), with
memory of size at mobtem* = 22151 |9|!5I (where® = P(P(D))), is also an almost-sure winning
strategy.

2. If there is a finite-memory positive winning strategythen the projected strategyroj(o), with
memory of size at mobem?®, is also a positive winning strategy.

3. Finite-memory almost-sure (resp. positive) winningtgigies require at least exponential memory
in general, and randomized belief-based strategies aresnfficient in general for finite-memory
almost-sure and positive winning strategies.
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Proof. Consider a finite-memory strategywith memoryM and initial memorymg and the Markov chain
G | 0. Also recall that the number of memory states usegy (o) is at mostMem™.

1. By Lemma 1 ifo is almost-sure winning, then for all recurrent clasSeseachable frongsg, mg) in
G | o we havecol(Proj; (C)) € F; and by Lemma 13 it follows that in the Markov cha&h[ proj (o)
for all recurrent classe§” reachable fronisg, my,), wherem is the initial memory ofproj (o), we
havecol(Proj, (C")) € F. It follows from Lemma 1 thaproj (o) is an almost-sure winning strategy.

2. By Lemma 1ifs is positive winning, then there exists some recurrent elassachable frontsg, mg)
in G | o with col(Proj, (C)) € F; and by Lemma 13 it follows that in the Markov chaih| proj (o)
there exists some recurrent claSs reachable from(sg, my), wheremy, is the initial memory of
proj (o), with col(Proj,(C")) € F. It follows from Lemma 1 thaproj(o) is a positive winning
strategy.

3. The exponential memory requirement follows from the ltesaf [8] that shows exponential memory
requirement for almost-sure winning strategies for rebitifyaobjectives and positive winning strate-
gies for safety objectives. The fact that randomized bdlafed strategies are not sufficient follows
from Example 1.

The desired result follows. O

4 Strategy Complexity for Parity Objectives under Finite-memory Strate-
gies

In this section we will establish the exponential upper lasuior almost-sure (resp. positive) winning strate-
gies in POMDPs with parity objectives under finite-memomatgigies. Observe that Bichi and coBiichi
objectives are parity (hence also Muller) objectives ifpriorities (or colors) (i.e.d = 2), and from The-
orem 2 we already obtain an upper boun@®f°! on memory size for them. However, applying the general
result of Theorem 2 for Muller objectives to parity objeesvwe obtain a double exponential bound, and
we will establish the exponential memory bound. Formallywitk establish Theorem 3: for item (1), in
Section 4.1 we present a reduction that for positive wingivgn a POMDP with S| states and a parity
objective with2 - d priorities constructs an equivalent POMDP with |S| states with Buchi objectives
(and thus applying Theorem 2 we obtain &SI upper bound); for item (2), in Section 4.2 we present
a reduction that for almost-sure winning given a POMDP wWithstates and a parity objective with- d
priorities constructs an equivalent POMDP with |.S| states with a coBuchi objective (and thus applying
Theorem 2 we obtain th#*#IS| upper bound); and item (3) follows as in the proof of Theorem 2

Theorem 3. Given a POMDRG and a parity objectivéarity (p) with the setD of d priorities, the following
assertions hold:

1. If there is a finite-memory positive winning strategy,ntlieere is a positive winning strategy with
memory of size at mogt 415!,

2. If there is a finite-memory almost-sure winning stratéggn there is an almost-sure winning strategy
with memory of size at mogt |51,

3. Finite-memory almost-sure (resp. positive) winningt&gies require exponential memory in general,
and randomized belief-based strategies are not sufficiergfeneral for finite-memory almost-sure
(resp. positive) winning strategies.
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4.1 Positive parity to positive Bichi

Given aPOMDR~ = (S, A, 4,0, v, s¢) and a parity objectiv®arity (p) with priority setD = {0,...,2-d},
we will construct a POMDRY = (57, A,40', 0,4/, s;,) together with a Biichi objectivBuchi(7") such that
positive winning under finite-memory strategies is presdrvLet! denote the sef0, ..., d}. Intuitively,
in the construction of?” we form a copyG; of the POMDPG for each: € I. There will be a positive
probability of going from the newly added initial staif to every copyG;. The transition probabilities in
the copyG; will mimic the transition probability of> for states with priority at leat- 7, and for states with
priority strictly smaller thar2 - 7 it mimics the transitions ofr with probability 12> and with probability/
goes to a newly added absorbing stateNote that the construction will ensure that for any finitermory
strategy, in the copy+; there are no recurrent classes that contain prioritiestigtsmaller thar - 7 as the
absorbing state, is always reached with positive probability from such stigteith priority strictly smaller
than2 - 7). Note that every recurrent class that intersects with @oriing state must consists only of the
absorbing state, since there are no transitions from therlaipg state to any other state. In the cagy
states with priority2 - ¢ are assigned priority 0, and all other states are assigriedtyrl. Formally the
construction is as follows:

o 8= (SxI)U{s),ss}.
e We define the probabilistic transition functiéhas follows:

1. §'(sp,a)((s, i) = ‘5(50’] ,foralla € Aandalli € I, i.e., with positive probability we move
to copyG; for aII 1€ }
d(s,a)(s") if p(s)>2-1;

2. 8'((s,4),a)((s', 1)) =

M otherwise;
3. if p(s) < 2-1i, then we also havé((s,i),a)(sy) = 3
4. §'(sf,a)(sy) =1forall a € A(i.e., sy is an absorbing state).
o O'=0U{sy}.
e 7'((s,1)) =(s),7(s0) = 7(s0) andy'(sy) = sy.
We define the priority functiop’ for the Biichi objective as follows:
1. p'(sp) = 1;

0 ifp(s)=2-4
1 otherwise;

2. p/((s,i)) = {

3. p(sy) =1

The Biichi objective fo6:’ is Buchi(p’~1(0)), i.e., the target séf is the set of states with priority 0 according
top'.

Lemma 14. If there exists a finite-memory positive winning strateggzifor the parity objectiveParity(p),
then there exists a finite-memory positive winning strateigly the same memory statesah for the objec-
tive Buchi(p'~1(0)).
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Proof. Let 0 = (oy, 0, M, mp) be a finite-memory positive winning strategy in the POMDHFor the
objectiveParity(p). We define the strategy = (0., 0},, M, mg) in the POMDPG’ as follows: the strategy
plays aso for all states other than;, and o, ({s¢},m,a)(m) for all a € A. As the only state in the
observations; is the absorbing state;, no matter what the strategy plays, is not left. The rest of the
components is the same as in the strategy et G denote the Markov Chaity | ¢ and G’ the Markov
chainG’ | o'.

Reachability. We first show that if(s’, m’) is reachable fron{s, m) in G for s, s’ € S andm,m’ € M,
then for alli € T we have thats’,i,m’) is reachable fronts, i, m) in G'. We prove the fact inductively.
Let (s,m) — (s, m’) be an edge it©7, then there exists an actianc A such that (i)s' € Supp(d(s, a)),
(i) a € Supp(o,(m)), and (iii)m’ € Supp(oy(m,~(s’),a)). By definition of the transition functioty this
implies that(s’, i) € Supp(d’((s,4),a). Sinces’ plays the same as, it follows that(s,i,m) — (s',4,m’)
is an edge irG’. As the state spaces of the Markov chains are finite, this)dsté reachability by simple
induction.

Recurrent classSinceos is a positive winning strategy, there must exist a recurckadsC' reachable from
(s0,mo) in G such that the minimal prioritynin(p(Proj, (C))) is even. Let that minimal priority be - i.
Consider the copy=; of G in G': it contains all states frorRroj, (C), and moreover as the minimal priority
of the states iProj; (C) is 2 - i (according tgp), the transition functiod’ matches the transition function
J for states inProj; (C') and all actions: € A. As the strategy’ does not know, due to the observation
definition, in which copy it is and plays as the strateggloes inG, the setC’ = {(s,i,m) | (s,m) € C'}
of states forms a recurrent classGh

Finally we need to show that’ is reachable fronis}), m) in G'. SinceC is reachable fronfsg, my) in
G, there exists a state, m) that is reachable in one step frd@y, mg) andC is reachable fronfs, m). The
state(s, i, m) is reachable in one step frofs,, mo) in G’ (from the initial statey(, all copies are reached with
positive probability), and reachability t@’ from (s, i, m) follows from the argument above for reachability.
As the setProj; (C’) contains a state with p(s) = 2 - i, we have thap’((s,7)) = 0, i.e., a target state
belongs toC". It follows thato” is a finite-memory positive winning strategy @f for Buchi(p’~1(0)) and
the desired result follows. O

Lemma 15. If there exists a finite-memory positive winning strateggirior the objectiveBuchi(p'~1(0)),
then there exists a finite-memory positive winning strateitly the same memory stategGitfor the objective
Parity(p).

Proof. Given a finite-memory positive winning strategy= (o, 0, M, mq) in the POMDPG’ we show
thato is also positive winning in the POMD@E&. Similar to the previous lemma we fix the strategin G
and obtain a Markov Chai@ = G | o andG’ = G’ | o.

Reachability. We show that if(s’, i, m’) is reachable fronis,i,m) in G’ for s, s’ € S, m,m’ € M, and

i € I, then(s’,m’) is reachable fronfs, m) in G. This follows from the fact that (i) if there is an edge
(s,1) % (s,9)in G (i.e.,8' ((s,),a)((s',7)) > 0), then we have an edge® s’ in G (i.e.,8(s,a)(s") > 0);
and (i) the strategy is the same for both POMDPs.

Recurrent classAs o is a positive winning strategy i6”, there exists a recurrent clas§$ reachable from
(sh,mo) in G’ which satisfieroj, (C')Np/~1(0) is non-empty. Note that there must existian I such that
all the states of the recurrent classare elements from the s6tx {i} x M, i.e., the class is included in some
copy G; (since there are no transitions between copies and thelabgatate has priority). As C’ forms

a recurrent class in copyit follows that all the states iRroj, (C”) have priority at leas? - i according tg
(since states with priority strictly smaller than according tg have positive transition probability tgr).
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Consider the set of stat€s= {(s,m) | (s,i,m) € C'} in G. As the strategies we consider are the sathe,
forms a recurrent class i@ with the minimal priority at leas? - i. Moreover, sincéroj, (C") N p'~1(0) is
non-empty, it follows that the minimal priority @' is exactly2 - 4, i.e.,min(p(Proj,(C))) is 2 - i and even.
Finally, it remains to show that' is reachable from the initial state 6f. SinceC’ is reachable from
(sp, ™mo), it must be reachable from some stétei, m) of copy G; and (s, 4, m) is reachable in one step
from (s}, mo) in G'. Then it follows that the statgs, m) is reachable fronsy, m) in one step inG, and the
reachability ofC' from (s, m) follows from the fact that’’ is reachable fronfs, i, m) and the argument for
reachability above. Hence, is a positive winning strategy for the objectiParity(p) in G and the desired
result follows. O

Lemma 14 and Lemma 15 establishes item (1) of Theorem 3.

4.2 Almost-sure parity to almost-sure coBichi

For almost-sure winning the reduction from parity objeegito coBiichi objectives will be achieved in two
steps: (1) First we show how to reduce POMDPs with parity cihjes to POMDPs with parity objectives
with priorities in{0, 1, 2}; and (2) then show how to reduce POMDPs with prioritie§(inl, 2} to coBuchi
objectives, for almost-sure winning.

4.2.1 Almost-sure parity to almost-sure parity with three griorities

Given a POMDRG = (5, A, 0,0, 7, sp) and a parity objectiv®arity(p) with priority setD = {0,...,2-

d + 1}, we will construct a POMDRS = (S, 4,9,0,7,3) together with a parity objectiv@arity(p)
which assigns priorities from the sf, 1,2} such that almost-sure winning under finite-memory strategi
is preserved. Lef denote the sef0, . . ., d}. Intuitively to construct we form a copyG; of the POMDPG
for eachi € I. The game starts in the initial state of the c@py. The transition probabilities in the cogy;
are as follows: for states with priority at lea&st i it mimics the transition of~; and for states with priority
strictly smaller thar? - 4 it mimics the transition oz with probability 1> and with probabilityl/2 moves to
the copy:i — 1 (i.e., toG;_1). In G;, states with priority2 - s and2 - i + 1 are assigned priorities 0 and 1,
respectively, and all other states are assigned prioriy&@now present the formal construction(@f

e S=S5x1I
e We define the transition functionin two steps; for a statés, i) € S x I and an actiom € A:

1. 0((s,4),a)((s',1)) = {M) if p(s) >2-i

5 otherwise
2. 5((s,i),a)((s',i — 1)) = 20D i 6) < 2.4
e 7((s,7)) = ~(s);
e 50 = (s0,4d).
The new parity objectiv®arity(p) assigning prioritieq0, 1, 2} is defined as follows:
0 ifp(s)=2-14;

P((s,9)) =<1 if p(s) =2-i+1;
2 otherwise;
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Lemma 16. If there exists a finite-memory almost-sure winning stiaiaghe POMDRPG for the objective
Parity(p), then there exists a finite-memory almost-sure winningegsawith the same memory states in the
POMDPG for the objectiveParity(p) with three priorities.

Proof. Let 0 = (o, 0n, M, mp) be a finite-memory almost-sure winning strategy in the POMDRr
the objectiveParity(p) andG the Markov ChainG? I 0. We show that the strategy is also almost-sure
winning in the POMDPG. Consider the Markov Chait! = G I 0. We need to show that for every
recurrent clas€' reachable from the starting state, d, mg) we have thaiin(p(Proj, (C))) is even to
show thatr is an almost-sure winning strategyGh We will show that if there is a reachable recurrent class
in G’ with minimum priority odd, then there is a reachable reaurtass inG with minimum priority odd
contradicting thatr is an almost-sure winning strategy G

Assume towards contradiction that there exists a recuctassC reachable fronfs, d, mg) in G’ such
that the minimal priority is odd, i.emin(p(Proj,(C))) is odd (i.e.,C contains a priority 1 state but no
priority O state). By the construction ¢f, for every copyG;, there are transitions only to the states in the
copy G; or to the lower copyG;_;. Hence there are no transitions from a lower copy to a higbpy.c
Hence every recurrent class@# must be contained in some copy. Let the recurrent efabe contained in
copyi, i.e.,C C S x {i} x M. Also note that by construction, every state with priorifycsly smaller than
2 - i (by priority functionp) has positive probability transition to a lower copy and ¢eruch states do not
belong to the recurrent class. Sineén(p(Proj; (C))) is odd it follows thatC' does not contain a state with
priority 0 by 7 (i.e., priority 2 - i by p) but contains some state with priorityby 7 (i.e., priority 2 - i + 1 by
p),i-e., ()C C ((Ujs2,p(5)) x {i} x M) (C'is contained in the copg; and the priorities of the states
in C are at leask -4); (i) CN (p~*(2-i) x {i} x M) = 0 (C contains no priority O state accordinggth and
(i) Cn(p~t(2-i+1) x {i} x M) # () (C contains some priority 1 state accordingp)o Observe that due
to the definition of observations whenever a state, m) is reachable irfG’ we have that the state, m)
is also reachable ity (since memories of the strategies are the same and the abisarfunction cannot
distinguish between copies). It follows that the set ofestét = {(s,m) | (s,i,m) € C} are reachable
from (sg,mg) In G. Moreover as transition probabilities for states;) with j > 2 - i are not modified in
the copyG; it follows thatC is a recurrent class reachable(in Thus we have a recurrent claSgeachable
from (so, mo) in G such thal' N (p~(2-7) x M) = BandC'N (p1(2-i+1) x M) # 0, i.e., the minimum
priority is 2 - i + 1 and odd. This contradicts thatis an almost-sure winning strategy @for Parity(p).
Hence it followso is an almost-sure winning strategy@hfor Parity(p) and the desired result follows.[]

Lemma 17. If there exists a finite-memory almost-sure winning straieghe POMDPG for the objective
Parity(p) with three priorities, then there exists a finite-memory @strsure winning strategy with the same
memory states in the POMD® for the objectiveParity(p).

Proof. As in the previous lemma let = (o, 0., M, mq) be a finite-memory almost-sure winning strategy
in the POMDPG for the objectiveParity(p) and G’ the Markov ChainGy [ 0. We show that the strategy
o is also almost-sure winning in the POMIP We consider the Markov Chaii = G [ 0. We need to
show that for all recurrent classésreachable irG from (s0, mp) the minimal priority is even.

Assume towards contradiction that there exists a reachablerent clas€ from (sg, mg) in G with
minimal priority odd, and let the minimal priority b&- i + 1. We need to show that this implies that there
exists a reachable recurrent class frosg, d, mg) in G’ with minimal priority odd (as we consider only
priorities 0, 1, 2, the minimal priority is1). Consider the subset of stai€s= {(s,i,m) | (s,m) € C}. The
minimal priority of the set i is 1 sinceC' does not contain any state with priority strictly smalleri + 1
and has some state with prioriyi + 1. The transition functiod matches the transition functignon states
of Proj, (C) for any actiona € A. Therefore,C forms a recurrent class i@’. It remains to show thal’
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is reachable from the initial state 6f. Let (s,i,m) be a state irC such thafp(s) = 1: the state(s,m) is
reachable irG from (sq, mg) since(s,m) is a state in the recurrent clagsreachable fron{sg, mg) in G.
Then for the starting copgs; we have thats, d, m) is reachable frontsg, d, mg) in G'. We now present
two simple facts:

1. For all stategs’,m’) € C we have thats, m) is reachable fronis’,m’) in G (sinceC is a recurrent
class and botlis’, m’) and(s, m) belong toC'), and it follows that for allj € I we have thats, j,m)
is reachable fronfs’, j, m’) in the copyj.

2. Sincep((s,i,m)) = 1 we have thap(s) = 2-i + 1, and for allj > 4, in G; if the state(s, j, m) is
reached, then with positive probability we reach the cppyl (some statés’, j — 1, m’)). Moreover,
since(s,m) € C, for all j > i, from (s, j, m) we reach a statgs’, j — 1,m’) such that(s’,m’) € C.

From the above two facts it follows that for gll> i we have(s, j — 1,m) is reachable fronts, j, m).
It follows that (s, i, m) is reachable fronts, d, m) and since(s, d, m) is reachable fronfsg, d, mg) it fol-
lows that(s,i,m) is reachable fron{sg,d, mq). HenceC is reachable fron{s,d, mg) and we have a
contradiction to the fact that is an almost-sure winning strategy @hfor Parity(p). It follows thato is an
almost-sure winning strategy @ for Parity(p) and the desired result follows. O

Lemma 16 and Lemma 17 gives us the following lemma.

Lemma 18. If there exists a finite-memory almost-sure winning strategn the POMDPG with the ob-
jective Parity(p), theno is an almost-sure winning strategy in the POMDPwith the objectiveParity (p)
with three priorities; and vice versa.

Next we show how to reduce the problem of almost-sure winfongparity objectives with priorities
from the set{0, 1,2} to the problem of almost-sure winning for coBuichi objeetivin POMDPs.

4.2.2 Almost-sure parity with three priorities to almost-aure coBichi

Consider a POMDF; = (S, A4,5,0,7,3,) with a parity objectiveParity(p) assigning priorities from the
set{0,1,2}. We construct a POMDE! = (S, 4,4, 0,7, 3) with a coBiichi objectiveoBuchi(T)), where
the set of state® is going to be defined g5 1 (2) for a functionp assigning priorities from the sét., 2}.
Intuitively, for states with priorityl and2, the transition functiom mimics the transitions of; and for states
with priority 0, the transition functiod mimics the transitions of with probability 1/» and with probability
15 goes to a newly added absorbing state that is assignedtpi2oriFormally the POMDR is defined as
follows:

e S=SU{5};
e ¢ is defined for all states € S and all actions: € A as follows:

5 )(S,):{S(s,a)(s,) if B(s) € {1,2};

1. 6(s,a $(s.a)(s' _
B it p(s) = 0

(s,a)(8r) = Y2 if p(s) = 0;

2.0
3. 6(3,,a)(5,) = 1, i.e.,5, is an absorbing state;
e O =0U{5,}ie., the additional state is a new observation;
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Sy if s =73,

~ F(s) ifseS
. 5(s) = {7( )
The coBiichi objective is defined by a priority functignthat is defined as:

_ {To(s) if p(s) € {1,2}

2 ifp(s)=00rs=3,

The objective inG is coBuchi(p~1(2)).

Lemma 19. If there exists a finite-memory almost-sure winning strategn the POMDPG with the ob-
jective Parity (p) with three priorities, therw is an almost-sure winning strategy in the POMDPwith the
objectivecoBuchi(p~!(2)) and vice versa.

Proof. We start with the first direction. Let = (o, 0, M, mg) be a finite-memory almost-sure winning
strategy inG, we claim thato is also almost-sure winning i@. Assume towards contradiction that there
exists a reachable recurrent cl@$s the Markov chain7 | ¢ such that the minimal priority in the class is
1. ThenC cannot contain the newly added absorbing sat@sp(s,) = 2 and if a recurrent class contains
the absorbing stat€, then it contains only the statg as there is no edge going frosn to a different state
in the POMDPG. It follows that the seC is reachable iri | o, and due to the definition of the transition
functions forms a recurrent class. Sir€eontains a state with priority p(s) = 1, we have thap(s) is also
1, so there is a state with priorityin C. It remains to rule out the possibility that contains states’ with
priority p(s’) = 0, but that follows from the fact that whenever there was astath priority 0, no matter
what action was played, there was a positive probabilityeathings,.. SoC contains a state with priority
1 and all the other states have prioritpr 2. It follows that there exists a reachable recurrent clags jno,
where the minimal priority is odd. This contradicts our asption thato is almost-sure winning .

In the second direction assume that no finite-memory syagegimost-sure winning ;. Therefore,
for every finite-memory strategy there exists a reachable recurrent class the Markov ChainG' | o,
such that the minimal priority in the classlisi.e., there exists a state with priorityand there are no states
with priority 0 in C. In the Markov Chair? | o the transition functiong allows every transition available
in 4. It follows that the set is reachable with positive probability i | 0. Since there is no state with
priority 0 in C' it follows that the transition functiod matches the transition functianfor all states inC
and all actions: € A. It follows thatC' is a recurrent class in the POMOP | o. As all the priorities of
the states i’ are preserved in the priority functign there exists a reachable recurrent class with minimal
priority 1. It follows that there is no finite-memory almost-sure wimstrategy in the POMDE:'. O

Lemma 18 and Lemma 19 establish item (2) of Theorem 3.

5 Computational Complexity for Parity Objectives

In this section we will present an exponential time alganitto solve almost-sure winning in POMDPs
with coBuichi objectives under finite-memory strategiexd(the polynomial time reduction of Section 4 for
parity objectives to coBlichi objectives allows our resuti carry over to parity objectives). The results
for positive Bichi is similar and the almost similar prosf amitted. The naive algorithm would be to
enumerate over all finite-memory strategies with memoryned by26'15!, this leads to an algorithm that

runs in double-exponential time. Instead our algorithmsigis of two steps: (1) first constructing a special
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kind of POMDPs where the restriction is to randomized menessy strategies; and (2) then show how
to solve the special kind of POMDPs in time polynomial in timesof the POMDP. We first introduce the
special kind of POMDPs which we call belief-observation PDIR& which intuitively satisfy that the current
belief is always the set of states with current observation.

Definition 7 (Belief-observation POMDP)A POMDP G = (S, A,0,0,7,so) is a belief-observation
POMDPIff for every finite prefixu = (s, ag, s1,a1,...,S,) With the observation sequenge= ~(w),
the beliefB(p) is equal to the set of states with the observatjos, ), i.e.,B(p) = {s € S| v(s) = v(sn)}-

In other words, belief-observation POMDPs are the spediaés of POMDPs where the current belief can
be directly obtained from the current observation.

5.1 Construction of belief-observation POMDPs for finite-nemory strategies

POMDPs to belief-observation POMDPs.The goal of this section is given a POMI@Pwith a coBiichi
objectivecoBuchi(p™ 1(2)), and a priority function with priority sef1, 2}, to construct a belief-observation
POMDPG such that if there exists a finite- -memory almost-sure wigrsitiategy inG, then there exists a
randomized memoryless almost-sure winning strategy for another coBiichi objectiveoBuchi(p—1(2))
and vice-versa. Since we are interested in coBuchi obgstifor the sequel of this section we will denote
by M = 25 x {0,1}15 x ©I51, i.e., all the possible beliefS, BoolRec andSetRec functions (recall thaD is
P(P({1,2})) for coBuchi objectives). If there exists a finite-memorgnakt-sure winning strategy, then
the projected strategy’ = proj (o) is also a finite-memory almost-sure winning strategy (bycram 2)
and will use memon)M’ C M. The size of the constructed POMDPwill be exponential in the size of the
original POMDPG and polynomial in the size of the memory $ét(and|M| = 265! is exponential in the
size of the POMDR~). We define the set/.,guchi € M as the memory elements, where for all stat@s
the belief component of the memory, the SetRec(s) contains only a set with priority two, i.e., there is no
state with priorityl in the reachable recurrent classes accordir§et®ec. Formally,

Meoguchi = {(Y, B, L) € M | forall s € Y we haveL(s) = {{2}}}

Construction of the new POMDP. Given a POMDPG = (S, A,4§,0,~,sp) with a coBuchi objec-
tive coBuchi(p~ ( )), represented by priority functiop : S — {1,2}, we construct a new POMDP
G = (S A3, (’),’y,so) with a coBiichi objectivecoBuchi(p~!(2)), for some priority functionp_as-

signing to states ib priorities from the sef1,2}. We refer to the newly constructed POMDP as

AlmostCoBuchiRed(G).

e The set of states = S U Sp U {S0,5} , will consist of action- selectiorstatesS, C S x M;
memory- selectlostatesS C S x 25 x M x A; 5y is an additional initial state; and the staigs a
new absorbing state.

e The observation set is as follow®: = (M) U (25 x M x A) U {5} U {5}
e The initial state of the POMDP ig,.

e The observation mapping is defined naturgllys,m)) = m, 3((s,Y,m,a)) = (Y,m,a), 7(59) =
{S0}, and¥(5,) = {sp}. In other words, except the statasands, the strategy cannot observe the
first component of the state.

e The actions arel = A U M, i.e., the actions from the POMD® or memory elements from the set
M.
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e We define the transition functiahin the following steps. First we will introduce a notion alfowed
actions observe that for the computation of almost-sure winnindenrfinite-memory strategies the
precise transition probabilities do not matter and theeefio the following step we will specify only
the edges of the POMDP graph, and all transition probadslitire uniform over the support set.

We call an actioru € A allowedin observation(Y, B, L) € O if for all statess € Y, there exists
asetZ, C {1,2} such that ifB(s) = 1, L(5) = {Zx}, andp(s) € Z, then for all states
s’ € Supp(4(s,a)) we havep(s') € Z. Intuitively this condition enforces that once a state that
corresponds to a pseudo-recurrent state is reached in thEDPQ@ in the next step only states with
priority in the setZ,, can be visited. Similarly we call an actiqiy’, B’,L’) € M allowed in
observationY’, (Y, B, L), a) if both of the following conditions are satisfied: (i) for aliatess € Y/,

if B(s) =1, then for all state§’ € Supp(4(s,a)) we have that3’(s) = 1, intuitively the condition
says that if theBoolRec function is set to 1, then for all successors BwlRec function remains 1
(recall by Lemma 7 fifth point the property is ensured for pob¢d strategies); and (ii) ¥ € S and

§' € Supp(d6(s,a)), we have that’/(s") C L(s). Intuitively the condition says the functidetRec
must not increase with respect to set inclusion along theessors (recall by Lemma 7 third point
the property is ensured for projected strategies).

1. 59 & (so,m) for all m € Meogueni N {({s0}, B, L) | B € {0,1}°,L € ©°}, i.e., from the
initial state all memory elements froMl g, that are consistent with the starting state can
be chosen (in other words, it consists of all the ways a ptefestrategy of a finite-memory
almost-sure winning strategy could start);

2. (s,(Y,B,L)) % (s,Y',(Y, B, L), a) iff all of the following conditions are satisfied:

— s’ € Supp(d(s,a)); and
— Y’ is the belief update in POMDE from beliefY” under observation = ~(s’) and action
a,i.e.Y = Usey Supp(d(5,a)) N v~ 1(0); and
— actiona is allowed in observatioqY, B, L).
3. If an actiona is not allowed in observatioflY, B, L), then we add a transitiofs, (Y, B, L))
sp, i.e., if the conditions are not satisfied the action leadthtostates;, that will be a loosing
absorbing state in the POMDP.

4. (s, Y',(Y,B,L),a) (v"BLL) (s',(Y’,B’, L") iff the action(Y’, B’, L") is allowed in the ob-

servation(Y’, (Y, B, L), a). Again if an action is not allowed, then the transition leady to
Sb-

5. The stats), is an absorbing state, i.6;, > 3, for all actionsa € A.

Intuitively, G allows all possible ways that a projected strategy of a fimimory almost-sure winning
strategy could possibly play i6. We define the coBuichi objectiveoBuchi(p~1(2)) with the priority
function for the POMDRG asp((s,m)) = p((s,Y, m,a)) = p(s). The priority for the initial statg(s)
may be set to an arbitrary priority frodi, 2} as the initial state will be visited only once. The priority
for the states;, is set tol, i.e., p(s,) = 1. We will refer to the above construction AsmostCoBuchiRed
construction, i.e.(; = AlmostCoBuchiRed(G). We first argue that? is a belief-observation POMDP.

Lemma 20. The POMDPG is a belief-observation POMDP.
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Proof. Note that the observations are defined in a way that the firepooent cannot be observed. Given
a sequence’ of states and actions i@ with the observation sequenge= (@) we will show that the
possible first components of the states in the bdigf) are equal the updated belief componeritsn the
observation. Intuitively the proof holds as tiiecomponent is the belief and the belief already represents
exactly the set of states in which the POMDP can be with pesjirobability. We now present the formal
argument. Let us denote WBroj,(B(p)) C S the projection on the first component of the states in the
belief. One inclusion is trivial since for every reachaltite(s, (Y, B, L)) we haves € Y (resp. for states
(s',Y' (Y,B, L),a) we have that’ € Y”). Therefore we haveroj,(B(p)) C Y (resp.Y’).

We prove the second inclusion by induction with respect édémgth of the play prefix:

e Base caseWe show the base case for prefixes of lengnd2. The first observation is alway$ }
which contains only a single state, so there is nothing tegr&imilarly the second observation in
the game is of the form{so}, B, L) for someB € {0,1}°, L € ®°, and the argument is the same.

e Induction step: Let us a consider a prefi®’ = @ - a - (s',Y’, (Y, B, L),a) wherea € A and the
last transition ig(s, (Y, B, L)) = (s',Y",(Y, B, L),a) in the POMDPG. By induction hypothesis
we have thaB(7(w)) = {(s, (Y, B, L)) | s € Y}. The new belief is computed (by definition) as

— | Supp(3((5. (V. B, L)), a)) N3~ ((Y", (Y, B, L), a)).
sey

Let sy, be a state inY”’, we want to show thatsy,,Y’, (Y, B, L),a) |s in B(y(w')). Due to the
definition of the belief update there exists a stataén Y such thatsy % sy~ and(sy, (Y,B,L)) €

B(H(w)). As~y(syr) = ~(s'), it follows that (sy, Y, (Y, B, L), a) € Usepsay) Supp(4(5, a)) and
as(sy,Y',(Y,B,L),a) € 7 *((Y’',(Y, B, L), a)), the result follows.

The case when the prefix is extended with an memory actiog M is simpler as the first two
components do not change during the transition.

The desired result follows. O

The proof of the following two lemmas will use some desiredparties of the projected strategy of a
finite-memory strategy and thH&oolRec andSetRec functions established in Section 3. The properties are
as follows:

1. (Property A forBoolRec functions). For every run of the Markov chain obtained from the POMDP
and a projected strategyroj (o) of a finite-memory strategy, if BoolRec is set to 1, then for all
successorBoolRec remains 1 (follows from the fifth point of Lemma 7).

2. (Property B forSetRec functions).For every run of the Markov chain obtained from the POMDP and
a projected strategyroj (o) of a finite-memory strategy, SetRec functions are non-increasing along
the steps of the run (follows from the third point of Lemma 7).

3. (Property C forBoolRec andSetRec functions).For every run of the Markov chain obtained from the
POMDP and a projected strategyoj (o) of a finite-memory strategy, if BoolRec is set to 1 for a
states, then all reachable states from that point have a priorityetRec,,,,; (- (s) (follows from the
sixth point of Lemma 7).
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Lemma 21. If there exists a finite-memory almost-sure winning straieghe POMDPG for the coBichi
objectivecoBuchi(p~1(2)), then there exists a randomized memoryless almost-surengistrategy in the
belief-observation POMDP; for the coRichi objectivecoBuchi(p—1(2)).

Proof. Assume there exists a finite-memory almost-sure winniragegjiyo, then by Theorem 2 there exists
a finite-memory almost-sure winning strategy = proj(c), which uses memory/’ C M. Leto’ =
(o), 00, M', ({s0, }, Bo, Lo)) be the almost-sure winning strategy in the POMGP We fix the strategy

o' in the POMDPG and obtain a Markov Chait';, = G [ o’. We define a randomized memoryless
observation-based strategy: © — D(A) in the POMDPG as follows:

e The deterministic action in the initial observation#g{sy}) = ({so}, Bo, Lo)-
e In the action-selection observati¢l, B, L) we defines((Y, B, L)) = o, ((Y, B, L)).

¢ In the memory-selection observati¢i”’, (Y, B, L),a) we definea((Y’, (Y, B, L),a)) to play uni-
formly actions from the setupp((o/,((Y, B, L), ', a))), whereo' is the unique observation such that
all states inY”’ have observation’ in G.

¢ In the observation of the absorbing stéfg} no matter what actions are played the s&tis not left.

We fix the memoryless strategyin the POMDPG and obtain a Markov chaifs = G | &. For sim-
plicity we will write (s, (Y, B, L)) — (¢, (Y', B, L’)) whenever(s, (Y, B, L)) — (s, Y',(Y,B,L),a) —
(s',(Y',B’, L)) for somea € A in G5. Note that omitting the intermediate state does not affezobjec-
tive asp((s', Y, (Y, B,L),a)) = p((¢', (Y', B, L"))).

The strategys will in the first step select thé{so}, By, Lo) action and reach stateo, ({so}, Bo, Lo))
in G2. We will show that the two Markov chains reachable from aistate(so, ({so}, Bo, Lo)) in G; and
(so, ({so}, Bo, Lo)) in G5 are isomorphic (when considering the simplified edges4dn

o Let (s,(Y,B, L)) — (¢,(Y',B',L")) be an edge inG;, then there exists (i) an actiom €
Supp(c’,((Y, B, L))), such thats’ € Supp(d(s,a)), (i) Y is the belief update fromy” under ob-
servationy(s’) and actiona, and (i) (Y’, B’, L") € Supp(o’.((Y, B, L),v(s'),a)). First we show
that there is a transitiofs, (Y, B, L)) % (s,Y',(Y,B,L),a) in the POMDPG. We verify three
properties of the transition functiors The property that’ € Supp(d(s,a)) and thatY” is the belief
update follows from the facts (i) and (ii) mentioned aboveexiN\we show that action is allowed
in observation(Y, B, L), i.e., we need to verify that for all statése Y such thatB(s) = 1, and
there is a subset of prioritie8,, C {1,2} such thatL(s) = {Z.}, andp(s) € Z,, we have that
all states reachable in one st€pe Supp(d(s, a)) satisfyp(s’) € Z.,. Consider an arbitrary state
s € Y such thatB(s) = 1, L(s) = {Z} andp(s) € Z. Note that(s, (Y, B, L)) is a reachable
pseudo-recurrent state in the Markov ch@insinceB(s) = 1, L(S) = {Z} andp(s) € Z. Asthe
strategyo’ is almost-sure winning it follows that all recurrent classeachable frons, (Y, B, L))
contain only states with priorit i.e., Z., = {2}. Moreover by property A and C it follows that
only states with priority inZ., (i.e, with priority 2) are reachable frons, (Y, B, L)) in G;. It fol-
lows that actiora is allowed in statgs, (Y, B, L)). By the definition of the strategy this action
is played with positive probability and therefofe, (Y, B, L)) — (s¢',Y',(Y, B, L),a) is an edge

in Go. Similarly, we show that there is a transiti¢s(, Y, (Y, B, L), a) VB (s',(Y',B', L")
in G. To show thatY’, B’, L') is an allowed action in observatidqy”, (Y, B, L),a) we consider
all statess € Y, such thatB(s) = 1, and all reachable staté$ € Supp(é(s,a)), and want to
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show thatB’(s’) = 1. As the state(s, (Y, B, L)) is reachable and’ is a projected strategy of an
almost-sure winning strategy, it follows by property B andfCBoolRec and SetRec functions of
the projected strategy/, i.e., point three and five in Lemma 7, that all the memoriethénmemory
updateSupp(c’, ((Y, B, L),~(s"),a)) of the projected strategy satisfy th&t(s’) = 1. The second
property of the non-increasir§etRec function is proved similarly. It follows that the action ssdies
the requirements of item (4) of the transition functi@nAs before(Y’, B’, L') is played with posi-
tive probability and hencés’,Y’, (Y, B, L),a) — (s',(Y’, B’,L’)) is an edge irG». It follows that
(s,(Y,B,L)) — (s',(Y',B’, L)) is an edge in the simplified graph 6%.

e In the other direction let us consider an edge(Y, B, L)) — (s',(Y’,B’, L)) in the simplified
graph ofG», it follows that there exists an action such that there are edgeés (Y, B, L)) —
(s, Y',(Y,B,L),a) — (s,(Y',B',L") in the full graphGs. By the definition of the POMDP
G we get thats’ € Supp(d(s,a)) and Y’ is the belief update from” under observationy(s’)
and actiona. As actiona was played with positive probability it follows by the defion of the
strategyo thata € Supp(c’,,((Y, B, L))) and similarly(Y’, B’, L") being played by> we get that
(Y',B', L") € Supp(c’.((Y, B, L),~v(s'),a)). Hence we get thdts, (Y, B, L)) — (s',(Y’',B’, L))
is an edge ir7;.

The desired result follows. O

Lemma 22. If there exists a randomized memoryless almost-sure wgrstmategy in the belief-observation
POMDP G for the coRichi objectivecoBuchi(p~1(2)), then there exists a finite-memory almost-sure win-
ning strategy in the POMDF for the coRichi objectivecoBuchi(p™'(2)).

Proof. Given a memoryless strategyin G, we define the finite-memory strategy= (o4, 0y, M, mg) in
G as follows:

e 0u((Y, B.1)) = 5((Y. B, L))

e 0,((Y,B,L),0,a) update uniformly to elements from the Setpp(c((Y’, (Y, B, L),a))), whereY”’
is the belief update fror™ under observation and action.

e my = d({50}). Note that this can be in general a probability distributiddince we require the
initial memory to be deterministic, we can model this praypday adding an additional initial state
and memory state from which the required randomized memuaate is performed.

We fix the finite-memory strategy in the POMDPG to obtain a Markov Chaitz; = G | o and
similarly fixing the memoryless strategyin the POMDPG to obtain a Markov Chailiy = G lo.

As in the previous lemma we will consider a simplified gragh and write (s, (Y,B,L)) —
(s',(Y',B',L")) whenever(s, (Y,B,L)) — (s,Y',(Y,B,L),a) — (¢, (Y’,B’, L)) for somea € A in
G2. We show that the two graphs reachable from stéies({so}, Bo, Lo)) in G1 and(so, ({s0}, Bo, Lo))
in G5 are isomorphic. Note that the absorbing statés not reachable in the Markov chadi,, otherwise
there would be reachable recurrent clas&/incontaining the stat@, and no other state (follows from the
fact thats;, is an absorbing state). As the priorifys;) is 1 it follows that there would be a reachable
recurrent class with minimal priority and contradicting the assumption tlzats an almost-sure winning
strategy.

o Let (s,(Y,B,L)) — (s,(Y',B’,L")) be an edge inG;, then there exists an actiom €
A such that (i)a € Supp(a((Y,B,L)), (i) s € Supp(d(s,a)), and (i) (Y',B',L') €
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Supp(c(Y’, (Y, B, L),a)). Therefore there are edgés, (Y,B,L)) — (s',Y',(Y,B,L),a) and
(s, Y' (Y,B,L),a) — (s, (Y',B', L") in Gs.

e In the other direction let there be an edgés,(Y,B,L)) — (¢,(Y,B L))
in the simplified graph of G2, then there exists an actiom € A such that
(s,(Y,B,L))—(s,Y' (Y,B,L),a)—(s,(Y',B',L")) are transitions in the full graph of7s.
By the definition of the POMDRG and the strategyr we get that (i)s’ € Supp(d(s,a)),
(i) a € Supp(o,((Y,B,L))) and (iii) (Y',B', L") € Supp(ou((Y,B,L),v(s'),a)). Therefore
(s,(Y,B,L)) — (s',(Y',B’, L)) is an edge in the graph ¢f;.

The desired result follows. O

5.2 Polytime algorithm for belief-observation POMDPs

In this section we will present a polynomial time algorithar the computation of the almost-sure winning
set for the belief-observation POMDP for coBiichi objectives under randomized memorylessegias.
The algorithm will use solutions of almost-sure winningssier safety and reachability objectives.

POMDPs with available actions. For simplicity in presentation we will consider POMDPs with avail-
able action function that maps to every observation the fsatailable actions for the observation, i.e., we
consider POMDPs as tuplés, A, 5,0, T, v, so), where the functio : © — 24\ () maps every observa-
tion to a non-empty set of available actions. Note that thifor simplicity in presentation, as if an action
is not available for an observation, then a new state can tedatthat is loosing and for every unavailable
action transitions can be added to the newly added loosatg &hus making all actions available).

Almost-sure winning observations. For an objectivep, we denote byAlmost(p) = {o € O |
there exists a randomized memoryless strateguch that for alk € v=1(0). PJ(¢) = 1} the set of ob-
servations such that there is a randomized memorylesegyr&t ensure winning with probability 1 from
all states of the observation. Our goal is to complit@ost(coBuchi(p~*(2))). Also note that since we
consider belief-observation POMDPs we can only considieflsehat correspond to all states of an obser-
vation. First we introduce one necessary notation:

e (Allow). Given a seD C O of observations and an observatior O we define byAllow(o, O) the
set of actions that when playeddrensures that the next observation i€ini.e., more formally:

Allow(o,0) = {a € T'(0) | U ~v(Supp(d(s,a))) C O}.

s€771(0)

We will consider the POMDRS = AlmostCoBuchiRed(G) obtained by the construction for reduction to
belief-observation POMDPs.

Definition 8. Given the POMDR?, for a setF C S of states, if{so} € Almost(Safe(F)), we define a
POMDP Gsufe(ry = (S, A, §, Aimost (Safe(F)), I',7, s) as follows:

e The set of states iS = v~ ! (Almost(Safe(F)));

¢ the available actions are restricted as foIIovxECa) = Allow(o, Almost(Safe(F))); and

¢ the observation mapping functioiis) = ~(s).
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Lemma 23. The POMDP@Safe(F) is a belief-observation POMDP.
Proof. Follows directly from the fact that is a belief-observation POMDP. O

Almost-sure winning for coBtichi objectives. In this part we will show how to decide whether an ob-
servationo € O is an almost-sure winning observation for the coBuchi clbje coBuchi(p™ 1(2)) in the
belief-observation POMDF (i.e., whethelo € Almost(coBuchi(p(2)))). We will show that the com-
putation can be achieved by computing almost-sure winréggpns for safety and reachability objectives.
The steps of the computation are as follows:

1. (Step 1).Let F = S\ §, and we first comput€is, . r). This step requires the computation of the
almost-sure winning for safety objectives.

2. (Step 2). Let §wpr C S denote the subset of states that intuitively correspondinming pseudo-
recurrent (wpr)states, i.e., formally it is defined as follows:

Supr = {(s,(Y, B, L)) | B(s) =1, L(s) = {{2}} andj(s) = 2}.

In the restricted POMD@Safe( F) We compute the set of observations = AImost(Reach(Swpr))
We will show thati?’s = Almost(coBuchi(p~1(2))). This step requires the computation of the almost-
sure winning for reachability objectives.

In the following two lemmas we establish the two required lusmns to show W, =
Almost(coBuchi(p~1(2))).

Lemma 24. W5 C Almost(coBuchi(p—1(2))).

Proof. Let o € W5 be an observation imls, and we show how to construct a randomized memoryless
almost-sure winning strategy ensuring thate Almost(coBuchi(p~!(2))). Let o be the strategy pro-
duced by the computatlon dﬂmost(Reach(Swpr)). We will show that the same strategy ensures also
Almost(coBuchi(p~1(2))). As in every observation the strategyr plays only a subset of actions that are
in Allow(o, Almost (Safe(F")) (to ensure safety ifr'), whereF’ = S\ S, the absorbing staf®, is not reach-
able. Also with probabilityl the setSwp,, is reached. We show that for all states(Y, B, L)) € Swp,,

that all the states reachable fram (Y, B, L)) have priority2 according top. Therefore ensuring that all
recurrent classes reachable frcimp,, have minimal priority2. Due to the construction of the POMDP,

the only actions allowed in a state, (Y, B, L)) satisfy that for all states € Y if B(5) = 1, L(5) = {Zx }
andp(s) € Z for someZ,, C {1,2}, then for all states’ € Supp(d(s,a)) we have thap(s') € Z.

As all states in(s, (Y, B, L)) € §W haveL(s) = {{2}}, it follows that any state reachable in the next
step has priorit2. Let (s',Y”’, (Y, B, L), a) be an arbitrary state reachable frgm (Y, B, L)) in one step.

By the previous argument we have that the priofitys’,Y’, (Y, B, L),a)) = 2. Similarly the only al-
lowed memory-update actiori¥”, B’, L') from state(s’, Y’, (Y, B, L), a) satisfy that whenevet € Y and
B(5) = 1, then for alls’ € Supp(4(s, a)), we have thaf3’(s’) = 1 and similarly we have that/(s') is a
non-empty subset df(s), i.e.,L'(s") = {{2}}. Therefore the next reachable stait (Y’, B’, L')) is again

in §wp,,. In other words, from stategs, (Y, B, L)) in §pr in all future steps only states with priority 2 are
visited, i.e. Safe(p~1(2)) is ensured which ensures the coBiichi objective. As the$ta§wpr are reached
with probability 1 and from them all recurrent classes reachable have onlgssthat have priorit?, the
desired result follows. O

Lemma 25. Almost(coBuchi(p~1(2))) C Wa.
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Proof. Assume towards contradiction that there is an observatiom O \ Wy such thato €
Almost(coBuchi(p~1(2))). The observatiom belongs toAlmost(Safe(F')) as there is no winning strat-
egy from observations outsid&lmost(Safe(F')), where F' = 5 \ . Consider a randomized memory-
less strategys satisfying the coBuichi objective from all observationsAitinost(coBuchi(p~1(2))). By
Lemma 22 there exists a finite-memory almost-sure winnirggegyo in the POMDPG. Let us consider
the almost-sure winning projected stratedy= proj (o) in the POMDPG. Recall that by Lemma 9 the set
of pseudo-recurrent states is reached with probability the Markov chainG | ¢’. By Lemma 12, for a
pseudo-recurrent stafe, (Y, B, L)) there exists reachable recurrent class with the priorityasé(s), and
sinceo’ is an almost-sure winning strategy every recurrent classt imave only priority 2, and hence for
every reachable pseudo-recurrent stateY, B, L)) we must havel(s) = {{2}}. And by the definition
of pseudo-recurrent states we also have fat) = 1 andp(s) € {2}. Asp(s, (Y, B, L)) = p(s) we have
that (s, (Y, B, L)) € Swpr This implies that every pseudo-recurrent state reachalaestate mSW We
want to show that in the construction described in Lemmal&imemoryless almost-sure winning strategy
o’ constructed from the projected strategfywill ensure reaching the séAL,Jpr in the Markov chain I o’
with probability 1. In the proof of Lemma 21 we have already established thahedality is preserved,
i.e., if (s, (Y’,B’,L’)) is reachable fronis, (Y, B, L)) in G | ¢’ then(s',(Y’', B’, L")) is reachable from
(s,(Y,B,L))in G [ o’'. As by Lemma 9 from every state a pseudo-recurrent statedheel with positive
probablllty and (as argued above every reachable psexmiorent state is |Swpr) we have that from every
state inG | o/ a state mS‘W is reachable. As this is true for every state we have thatethefStatesSwp,,

is reached with probability in G o’ (Property 1 (a)). Therefore we have that the observatibelongs to
AImost(Reach(Swpr)). But this contradicts that does not belong tdl’; and the desired result follows.]

To complete the computation for almost-sure winning for ¢dld objectives we now present polynomial
time solutions for almost-sure safety and almost-surehBaisjectives (that implies the solution for almost-
sure reachability) in belief-observation POMDPs for ramited memoryless strategies. We start with a few
notations below:

e (Pre). The predecessor function given a set of observat@reelects the observationsc O such
thatAllow(o, O) is non-empty , i.e.,

Pre(O) = {o € O | Allow(o,0O) # 0}.

e (Apre).Given a sety’ C O of observations and a sét C S of states such thaX C y~1(Y), the set
Apre(Y, X) denotes the states fromm ! (Y) such that there exists an action that ensures that the next
observation is irt” and the selX is reached with positive probability, i.e.,:

Apre(Y, X) = {s € v 1Y) | Ja € Allow(~(s),Y") such thaBupp(5(s,a)) N X # (0}.

e (ObsCover)ForasetU C S of states we define th@bsCover(U) C O to be the set of observations
o such that all states with observatiotis in U, i.e.,ObsCover(U) = {o € O | y~!(0o) C U}.

Using the above notations we present the solution of almas-winning for safety and Blichi objectives.

Almost-sure winning for safety objectives.Given a safety objectivBafe(F'), for a setF’ C S of states, let
Or = ObsCover(F) denote the set of observatioasuch thaty~1(0) C F, i.e., for all states € v~1(0)
belong toF'. We denote by X the greatest fixpoint and hyX the least fixpoint. Let

Y* =vY.(Op NPre(Y)) = vY.(ObsCover(F) N Pre(Y))
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be the greatest fixpoint of the functigitY’) = Or N Pre(Y’). Then the seY™ is obtained by the following
computation:

1. Yy «— Op; and
2. repeat;;; < Pre(Y;) until a fixpoint is reached.
We show that™ = Almost(Safe(F")).
Lemma 26. For every observation € Y* we haveAllow(o, Y*) # 0 (i.e., Allow(o, Y*) is non-empty).

Proof. Assume towards contradiction that there exists an observatc Y* such thatAllow(o, Y*) is
empty. Thervo ¢ Pre(Y*) and hence the observation must be removed in the next d@eratithe algorithm.
This impliesPre(Y™*) # Y*, we reach a contradiction th&t* is a fixpoint. O

Lemma 27. The sefy* is the set of almost-sure winning observations for the gafbjectiveSafe(F'), i.e.,
Y* = Almost(Safe(F)), and can be computed in linear time.

Proof. We prove the two desired inclusions: (I C Almost(Safe(F")); and (2)Almost(Safe(F')) C Y*.

1. (First inclusion). By the definition ofY; we have thaty~'(Y;) C F. AsY;,; C Y; we have that
v~ 1(Y*) C F. By Lemma 26, for all observations € Y* we haveAllow(o, Y*) is non-empty. A
pure memoryless that plays some action frAtlow(o, Y*) in o, for o € Y*, ensures that the next
observation is i*. Thus the strategy ensures that only states fsorh(Y*) C F are visited, and
therefore is an almost-sure winning strategy for the safbjgctive.

2. (Second inclusion)We prove that there is no almost-sure winning strategy f€édR™ by induction:

e (Base case).There is no almost-sure winning strategy from observations Y,. Note that
Yy = Op. In every observation € O \ Y there exists a statec v~ (o) such thats ¢ F. As
G is a belief-observation POMDP there is a positive probghilf being in states, and therefore
not being inF'.

¢ (Inductive step). We show that there is no almost-sure winning strategy froseolations in
O\ Yi41. LetY;y1 # Y;ando € Y; \ Yy (or equivalently(O \ Yi41) \ (O \ V7). As the
observatioro is removed fromY; it follows that Allow(o,Y;) = 0. It follows that no matter
what action is played, there is a positive probability ofrigein a states € v~!(o) such that
playing the action would leave the sgt!(Y;) with positive probability, and thus reaching the
observation®)\ Y; from which there is no almost-sure winning strategy by induchypothesis.

This shows that™ = Almost(Safe(F')), and the linear time computation follows from the straigirifard
computation of greatest fixpoints. The desired result fedlo O

We now present one simple lemma that was implicitly usedendstriction of the POM DP! to almost-
sure safety that a randomized memoryless strategies miygplag action in theAllow set.

Lemma 28. Let 0 be a randomized memoryless almost-sure winning strategy lelief-observation
POMDPG for the safety objectivBafe(F'). ThenSupp(c (o)) € Allow(o, Almost(Safe(F))).
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Proof. Assume that the strategyplays an actiom € A\ Allow(o, Almost(Safe(F))) after an observation
o. Then there is a positive probability of being in a state 4! (o) such that playing the actiomin that
state would leave the observatioAnost(Safe(F")) with positive probability. As there is no randomized
almost-sure winning strategy i \ Almost(Safe(F")) (by definition), this contradicts the fact thatis
almost-sure winning. O

Almost-sure winning for Biichi objectives. Consider a sef’ C S of target states, and the Biichi objective
Buchi(7"). We will show that:

Almost(Buchi(T)) = vZ.0bsCover(uX.((T Ny~ 1(Z) n~y~1(Pre(2))) U Apre(Z, X))).

Let Z* = vZ.0ObsCover(uX.((T Ny~4(Z) Nny~(Pre(Z))) U Apre(Z, X))). In the following two
lemmas we show the two desired inclusions, i¥émost(Buchi(7')) € Z* and then we show that* C
Almost(Buchi(T)).

Lemma 29. Almost(Buchi(T")) C Z*.

Proof. Let W* = Almost(Buchi(T")). We first show that¥* is a fixpoint of the function
f(Z) = ObsCover(uX.(T Ny~ (Z) Ny~ 1 (Pre(2))) U Apre(Z, X))),

i.e., we will show thatiV’* = ObsCover(uX.((T Ny~ Y{(W*) Ny~ L(Pre(W*))) U Apre(W*, X))) . As
Z* is the greatest fixpoint it will follow thatl’* C Z*.
Let
X* = (pX.((T Ny~ (W) Ny~ (Pre(W*))) U Apre(W*, X)),

andX* = ObsCover(X*). Note that by definition we hav&* C v~1(W*) as the inner fixpoint computa-
tion only computes states that belongyto' (W*). Assume towards contradiction tHat* is not a fixpoint,

i.e., X* is a strict subset of’*. For all statess € 4~*(W*) \ X*, for all actionsa € Allow(y(s), W*)

we haveSupp(d(s,a)) C (y~1(W*) \ X*). Consider any randomized memoryless almost-sure winning
strategyc™ from W* and we consider two cases:

1. Suppose there is a state v~1(W*)\ X* such that an action that does not belongllow(~(s), W*)
is played with positive probability by*. Then with positive probability the observations fram*
are left (because from some state with same observatisamsbservation in the complementldf*
is reached with positive probability). Since from the coempént ofili* there is no randomized mem-
oryless almost-sure winning strategy (by definition), ihicadicts that™ is an almost-sure winning
strategy fromidv/*.

2. Otherwise for all statese v~ (W*)\ X* the strategy* plays only actions illow(v(s), W*), and
then the probability to reach * is zero, i.e.Safe(y~1(W*) \ X*) is ensured. Since all target states
in v~1(W*) belong toX* (they get included in iteration 0 of the fixpoint computajidtrfollows that
(v Y(W*)\ X*)NT = 0, and henc&afe(y~*(W*) \ X*) N Buchi(T) = ), and we again reach a
contradiction that™ is an almost-sure winning strategy.

It follows that W * is a fixpoint, and thus we get th&@t™ C Z*. O

Lemma 30. Z* C Almost(Buchi(T")).
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Proof. We define a randomized memoryless strategjjor the objectiveAlmost(Buchi(7")) as follows: for
an observatiom € Z*, play all actions from the s&tllow(o, Z*) uniformly at random. Since the strategy
o* plays only actions imllow(o, Z*), for o € Z*, it ensures that the set of states!(Z*) is not left,
(i.e., Safe(y~1(Z*)) is ensured). We now analyze the computation of the inner iiitpoe., analyze the
computation ofu X.((T Nvy~1(Z*) Nn~~1(Pre(Z*))) U Apre(Z*, X))) as follows:

o Xo = (TN} (Z*) Ny~ (Pre(Z*))) UApre(2*,0))) = TNy~ (2*) Ny~ (Pre(2*)) C T (since
Apre(Z*,()) is emptyset);

e Xy = (TN771(Z%) Ny (Pre(2%))) U Apre(Z*, X))

Note that we haveX, C T'. For every state; € X the set of played action&llow(v(s;), Z*) contains

an actiona such thatSupp(d(s;,a)) N X;_1 is non-empty. LeC' be an arbitrary reachable recurrent class
in the Markov Chain | o reachable from a state i1 !(Z*). SinceSafe(y~1(Z*)) is ensured, it follows
thatC C y~1(Z*). Consider a state i that belongs toX; \ X;_; for j > 1. Since the strategy ensures
that for some action played with positive probability we must haSepp(d(s;,a)) N X;_1 # 0, it follows
thatC N X;_; # (. Hence by inductiorC' N Xy, # 0. It follows C' N T # (. Hence all reachable recurrent
classes intersect with the target set and thus the strategynsures thai’ is visited infinitely often with
probability 1. Thus we havg™* C Almost(Buchi(7")). O

Lemma 31. The setAlmost(Buchi(7")) and Almost(Reach(7")) can be computed in quadratic time for
belief-observation POMDPs, for target SEtC S.

Proof. For Almost(Buchi(7")) it follows directly from Lemma 29 and Lemma 30. The result for
Almost(Reach(T")) follows from the fact thaReach(T") is a special case @uchi(T") (by converting states
in the target sef’ to absorbing states). O

The EXPTIME-completeness.In Section 4 we have established a polynomial time reduafd@OMDPs
with parity objectives to POMDPs with coBiichi objectives flmost-sure winning under finite-memory
strategies. In this section we first showed that given a POMD#th a coBiichi objective we can construct
an exponential size belief-observation POMDRand the computation of the almost-sure winning set for
coBiichi objectives reduced to the computation of the atraose winning set for safety and reachability
objectives, for which we established linear and quadratie talgorithms respectively. This gives us an
20051d) time algorithm to decide (and construct if one exists) thisterce of finite-memory almost-sure
winning strategies in POMDPs with parity objectives wittpriorities. The EXPTIME-hardness follows
from the results of [8] that shows deciding the existencerofdimemory almost-sure winning strategies in
POMDPs with reachability objectives is EXPTIME-hard. Tksuilts for positive winning goes via reduction
to Buchi objectives and is similar. We have the followingui.

Theorem 4. The following assertions hold:

1. Given a POMDRG with |S| states and a parity objective with priorities, the existence (and the
construction if one exists) of a finite-memory almost-suesp. positive) winning strategy can be
achieved irR®(5I'9) time,

2. The decision problem of given a POMDP and a parity objectiether there exists a finite-memory
almost-sure (resp. positive) winning strategy is EXPTIbtEAplete.
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Remark 3. Note that our EXPTIME-algorithm for parity objectives, atite LAR reduction of Muller
objectives to parity objectives [18] give @9 (@4*I5]) time algorithm for Muller objectives with colors

for POMDPs with|S| states, i.e., the algorithm is exponential| B| and double exponential i@. Note that
the Muller objective specified by the sEtmaybe in general itself double exponentiakiin
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