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The initial amount of pathogens required to start an infection within
a susceptible host is called the infective dose and is known to vary
to a large extent between different pathogen species. We investi-
gate the hypothesis that the differences in infective doses are ex-
plained by the mode of action in the underlying mechanism of patho-
genesis: pathogens with locally acting mechanisms tend to have
smaller infective doses than pathogens with distantly acting mech-
anisms. While empirical evidence tends to support the hypothesis,
a formal theoretical explanation has been lacking. We give simple
analytical models to gain insight into this phenomenon, and also
investigate a stochastic, spatially explicit, mechanistic within-host
model for toxin-dependent bacterial infections. The model shows
that pathogens secreting locally acting toxins have smaller infec-
tive doses than pathogens secreting diffusive toxins, as hypothe-
sised. While local pathogenetic mechanisms require smaller infec-
tive doses, pathogens with distantly acting toxins tend to spread
faster and may cause more damage to the host. The proposed model
can serve as a basis for the spatially explicit analysis of various vir-
ulence factors also in the context of other problems in infection dy-
namics.
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The dose of pathogens needed to start an infection in an
individual host varies between different pathogen species.

The minimum amount is usually called the infective dose,
though smaller doses are not guaranteed safe (1). The variation
in infective doses is especially large between different bacterial
pathogens (2, 3). Pathogens also vary in their pathogenetic
mechanisms, that is, the ways in which they evade the immune
defenses, utilise the nutrient-rich environment within the host,
and eventually cause disease (4–8). A rough distinction can
be made between pathogens that exert their effects locally,
for example, via membrane contact with (a certain target on)
the host cells, and pathogens that produce diffusible toxins
which may have their target at a distance from the invading
pathogen (2–5). Microbial pathogens are well represented in
both categories.

Schmid-Hempel and Frank (2) proposed that the differences
in the infective dose among pathogen species are explained
by their mechanism of pathogenesis. Namely, locally acting
pathogenetic mechanisms are linked to smaller infective doses
than mechanisms that depend on diffusible toxins, which may
act at a distance from their source. Indeed, many pathogens,
such as Shigella, that exert their harmful effect by contact
to host cells or by entering host cells are highly infectious,
requiring only tens or hundreds of bacteria to cause disease
(9). Conversely, many toxin-producing bacterial pathogens
have infective doses ranging from 104 (e.g. Bacillus anthracis)
to 106 cells (e.g. Vibrio cholerae) (10, 11).

However, insight into the underlying reasons for the ob-

served variation is lacking (7, 12). While the dose-response
hypothesis of Schmid-Hempel and Frank (2) held against sta-
tistical testing for 43 human pathogens in a study by Leggett et
al. (3), so far there has been no theoretical model to elucidate
why the mode of action produces variation in the infective dose.
In this work, we present mathematical models that explain
this phenomenon. Furthermore, Schmid-Hempel and Frank
(2) also hypothesised that pathogens with distantly acting
pathogenetic mechanisms are more virulent in the sense that
they cause more damage to the host; but Leggett et al. (3)
found no support for this relationship. We also address this
hypothesis.

Studying the mechanism of pathogenesis in relation to the
infective dose and damage to the host requires accounting for
the interactions between the invading pathogens and the im-
mune effectors of the host, which can be extremely complex (8).
The pathogen–immune system interaction has been modelled
in both simplistic (13, 14) and detailed (15, 16) settings. How-
ever, prior models rarely take into account the spatial aspects
of pathogenesis explicitly (but see e.g. (17)). Indeed, while
the importance of spatial effects has been widely recognized in
ecology and evolutionary biology, much of the work in spatial
epidemiological models has focused on between-host interac-
tions (18–21); the spatial aspects of within-host interactions
has received less attention, although spatial interactions of
microbial communities have been investigated (22–25).

Microbes affect their environments in various ways via dif-
fusible metabolites (6, 7) and employ a wide array of strategies
for defending themselves against the host immune system (4–
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8). Many bacteria, such as Yersinia pestis and Helicobacter
pylori, secrete toxins which target the host’s immune system
to suppress or modulate it (5). With this in mind, we focus
on bacterial pathogens with toxins that inhibit the immune
response of the host (2, 6, 7).

In this work, we develop three models of toxin-dependent
pathogenesis: a non-spatial model, a spatial diffusion model,
and a stochastic individual-based model. We consider micro-
organisms that have the ability to harm the host when spread-
ing. However, our models do not make an explicit distinction
between parasites (organisms that have adapted to live and
feed on a host organism) and pathogens (micro-organisms ca-
pable of causing damage to the host) in general. We model
the following scenario: the initial dose of the pathogen en-
ters to a small inoculation area, from where it can spread
out to the available space within the host we call the focal
area. The pathogen reproduces by consuming the host’s tis-
sue (nutrients) and thereby causes damage to the host. Once
the immune system detects the pathogens, immune effectors
attempt to eliminate them. We assume that the host had no
prior exposure to the pathogen, and limit our attention to the
initial phases of the pathogenesis in which the host’s innate
immunity reacts, but its acquired immune response has not yet
developed. If the pathogen is cleared out quickly, then little
damage is inflicted upon the host; if the pathogen manages to
overcome the innate immune defenses and consumes most of
the nutrients in the focal area, then the infection may proceed
to further stages of pathogenesis and cause disease. In general,
virulence is an elusive concept with a multitude of different
definitions (2, 26–28). In the eco-evolutionary sense, it can
refer to the pathogen-induced decrease in host fitness (28),
but also simply to the relative capacity to inflict damage in
the host (26, 27). We use the latter definition and quantify
virulence as the amount of tissue consumed by the pathogen.

One of the key benefits of our models is that we can exam-
ine the influence of the different spatial scales in the toxin’s
mode of action, from local (e.g. the pathogen transmits toxins
to host cells on membrane contact) to distant action (the
pathogen secretes diffusible systemic toxins), while keeping
all other properties of both the host and the pathogen the
same. Obviously, this would be difficult – if not impossible –
to achieve in empirical work. Moreover, our individual-based
stochastic model accounts for demographic stochasticity (29)
causing random variation in the outcome of an infection. By
recording the distribution of outcomes, we can estimate the
risk of serious infection in different scenarios.

Our spatial models support the first hypothesis: increasing
the spatial scale of toxin diffusion increases the infective dose.
Regarding the second hypothesis, the stochastic model exhibits
a threshold phenomenon: given a high enough initial dose,
a pathogen with a diffusible toxin can spread faster and can
eventually consume (marginally) more of the host tissue than
a locally acting pathogen. We also investigate how the spatial
aggregation of the initial inoculum influences the difference
between locally and distantly acting pathogens.

Modelling toxin-dependent pathogenesis

First, we start with a simple analytical model and extend it
into a spatial diffusion model. These models show that the
pathogen dynamics exhibit an Allee effect, and that increasing
dilution and diffusion of the toxin increases the infective dose.

Next, we consider an individual-based simulation model which
allows us to examine the effects of demographic stochastic-
ity, incorporate explicit resource-consumer dynamics for the
pathogen, and model the immune response more mechanisti-
cally.

Simple analytical models. Suppose that the pathogen (P ) fol-
lows logistic population dynamics in the absence of the immune
system (due to nutrient-limited growth) with intrinsic growth
rate b and carrying capacity scaled to 1. Immune effectors
(I) eliminate the pathogens at rate k. To fight the immune
system, the pathogens secrete toxin molecules at rate s, which
are removed from the host system at a constant rate m. The
toxin particles decapacitate the immune effectors at rate e.
When decapacitated, the immune effectors cannot eliminate
any pathogen until they recover, which happens at rate r.
Finally, we assume that the total amount of immune effec-
tors I0 remains constant such that the amount of active and
decapacitated immune effectors are I and I0 − I, respectively.

Non-spatial model. Assuming that the toxin and immune ef-
fectors reach a fast quasi-equilibrium (see SI Appendix for
details), the pathogen dynamics are given by

dP

dt
= bP

[
1− P − ξ

1 + χP

]
where ξ = kI0

b
and χ = es

rm
are dimensionless parameters. If

ξ < 1, the pathogen grows even when the immune system
is fully activated, and the pathogen can invade the system
without the toxin. On the other hand, if ξ > 1 and χ >
χ0(ξ), where χ0 depends only on ξ, the model exhibits an
Allee effect. If the initial density of the pathogen is below
the Allee threshold, the pathogen goes extinct; above the
threshold, the pathogens collectively produce enough toxin
to facilitate growth. Moreover, the Allee threshold increases
with decreasing χ, i.e., with increasing the removal rate m.
Thus, the more the toxin dilutes or leaks out of the system,
the higher initial dose the pathogen requires to spread; and
if m is higher than a critical value, χ > χ0(ξ) is violated and
the spread of the pathogen becomes impossible.

Diffusion model. The above model can be extended into a
spatial reaction-diffusion model. We consider the limiting
cases of slow and fast toxin diffusion in one-dimensional space
to show (see SI Appendix) that (i) with slow diffusion, the
spread or extinction of the pathogen is independent of the
initial dose assuming that the pathogen attains a travelling
wave solution; and (ii) with fast diffusion, the initial dose
must exceed a threshold for the pathogen to invade the host.
A highly diffusing toxin leaks to parts of the host where the
pathogen is not yet present. A high initial dose is then needed
to overcome the dilution effect found in the nonspatial model.

Stochastic individual-based spatial model. The diffusion
model captures key characteristics of within-host infection
dynamics, but it is confined to travelling wave solutions in
one dimension and considers only the limiting cases of slow
and fast toxin diffusion; it neglects demographic stochasticity,
which is important for initially small pathogen populations;
and it oversimplifies the reaction of the immune system. To
overcome these limitations, we constructed a more realistic
spatiotemporal point process model to simulate the dynam-
ics of toxin-dependent pathogen infection. The model is a
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continuous-time Markov process, where the state of the system
at any time t is given by the spatial locations (in continuous
space) of every individual particle.

Elementary reactions. In the individual-based model, the en-
tity types are as follows: pathogens (P), toxin (T), tissue
(H), and immune effectors in seeking (IS), killing (IK), and
decapacitated (ID) states. The dynamics of the pathogen and
toxin are given by the following reactions:

P + H b−→ P + P pathogens consume tissue and reproduce,

P + IK k−→ IK immune effectors eliminate pathogens,

P s−→ P + T pathogens secrete toxins,

T m−→ ∅ toxins become inactive and are removed,

where the symbols above the arrows indicate the rates at which
the reaction occurs and ∅ denotes that the reaction does not
produce any new particles.

The immune response is typically not immediate but grad-
ual, as the immune system needs time to react to a new threat.
To model this, we assume a two-tier activation mechanism,
where the active immune effectors can be in two different states:
‘seek’ (initial stage of activation, IS) and ‘kill’ (second stage
of activation, IK). The toxin reacts with immune effectors
in the initial stage of activation, sending them to an inactive
or ‘decapacitated’ state (ID). The response dynamics of the
immune system are governed by the following reactions:

IS + P a−→ IK + P IEs detect pathogens and go to “kill” state,

IK q−→ IS IEs in “kill” state switch to “seek” state,

T + IS e−→ ID toxins decapacitate immune effectors,

ID r−→ IS decapacitated immune effectors recover.

Spatial interactions. Each individual particle is characterised
by its location x in the focal area H and a mark denoting
its type. The state of the system at time t ≥ 0 is given by
the set of locations ΩX(t) of each particle type X. Reactions
occur only if the particles are sufficiently close to each other,
and when a new pathogen or toxin particle is produced, it
is placed in the neighbourhood of its parent. In general, a
kernel K : H × H → [0,∞) describes how the locations of
two particles influence the reaction rate. We used tophat
kernels, which assign a constant rate for points that are within
distance ` from each other and zero otherwise (see Materials
and Methods and the SI Appendix for further information).

Movement. The tissue particles and the decapacitated im-
mune effectors are immobile, all other particles move by jump
processes such that a particle of type X at location x moves
to a small neighbourhood of point y at rate DX(x,y) per
unit area. The maximum distance of a single jump is given
by the length scale parameter `X of the tophat kernel DX ;
in other words, particles jump randomly to a point within
radius `X . We assumed that jumps occur for each mobile
particle at total rate 1, but the particles differ in the length
of their jumps. We took `P = `IK = 1 and `IS = 10 such
that the seeking immune effectors move fast to locate the
pathogens, and once they encounter pathogens, they “slow
down” to eliminate them. To investigate local versus distant
action in pathogenesis, we varied the length scale parameter `T
of toxin movement; increasing `T yields more distantly acting
mechanisms.

Local action 
low dose

Distant action 
low dose

Distant action 
high dose

t = 10 t = 30 t = 50 t = 100

Local action 
high dose

Fig. 1. Snapshots of four simulation experiments at four different time points. The low
dose was 200 and high dose was 10000 pathogens inoculated at time t = 0 onto
a circle of radius κ = 1. Local action denotes a toxin movement scale of `T = 1
and global action refers to `T = 32. The grey dots represent tissue particles, red
points pathogens, green points toxin particles, blue points activated immune effectors
that are consuming the pathogens, and black points immune effectors that have been
decapacitated by a toxin particle.

Results

The experimental setup. In our experiments, we varied (a) the
initial dose of the pathogen, (b) the mode of action (local
versus distant) of the pathogen via the toxin movement scale
parameter `T, and (c) the radius κ of the initial inoculation
area. All other parameters were kept constant; the SI Ap-
pendix gives the parameter values used (see Table S2) and a
sensitivity analysis of the model. Prior to the inoculation, the
focal area (a torus of size 100× 100) was occupied only by tis-
sue particles and immune effectors in seek state. The dynamics
of the model were simulated until either all pathogens were
eliminated (by the immune system) or all of the tissue was
consumed (by the pathogen). For each combination of the ini-
tial dose (21 different doses ranging from 1 to 105 pathogens),
inoculation area (radii 1, 4, 8 and 16), and toxin movement
scale (1, 2, 4, 8, 16, or 32), we ran at least 2000 simulation
replicates for the first 20 doses and 1000 replicates for the
highest dose of 105 pathogens. Fig 1 illustrates how the model
evolves over time.

We measured the total number of tissue particles consumed
by the pathogen by the end of the simulation. Note that this
also gives the total number of pathogens produced during
the infection, as each consumed tissue particle yields one new
pathogen individual in our model. We then analysed the
distribution of the outcomes and calculated dose-response
relationships for the infective dose and tissue consumption.

Local versus distant action. Fig 2 and Fig 3A summarise the
results of this experiment for the smallest inoculation area
(κ = 1). The experiment clearly demonstrated a strong effect
of the initial dose and the mode of action on the infection
process. With local action (toxin movement scale `T = 1),
the amount of tissue consumed by the pathogen is high and
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Fig. 2. The dose-response relationships for different modes of action. The toxin
movement scale `T quantifying the mode of action increases across the panels. The
radius of the inoculation area is κ = 1. The logarithm of the initial dose of the
pathogen is on the horizontal axis, the vertical axis shows the fraction of available
tissue particles consumed by the pathogen during the course of the infection. The
contour plots show the distribution of the stochastic outcomes; for a particular dose,
darker areas indicate more typical outcomes. The lines give the average dose-
response curve fitted to the Hill equation f(x) = a+ b · (x/c)p

1+(x/c)p . At low doses,
local action (panel A) leads to a higher tissue consumption on average than the more
distantly acting mechanisms (panels B–F); at high doses, the situation is reversed.
For locally acting mechanisms, almost all doses lead to a high response, whereas
with distant mechanisms, only high doses lead consistently to a high response. The
dotted line shows the dose for which at least 75% of tissue is consumed on average.
Below this dose, most infections with distant mechanisms fail, whereas above this
dose, most infections invade the host (cf. shading).

not very sensitive to the initial dose. In contrast, with distant
action (high `T), there is a threshold effect. With low initial
doses, most infections die out without consuming much of the
tissue, and the average fraction of tissue consumed is low; with
high initial dose, however, most infections spread such that
the pathogen consumes most of the host tissue, indicating a
severe infection. As the curves in Fig 2 and Fig 3A show,
the expected amount of tissue consumed increases drastically
when the initial dose exceeds a threshold. For distantly acting
toxin (`T = 32), the expected fraction of tissue consumed
exceeds 0.5 only if there are several thousand pathogens in
the initial inoculum.

The strong difference between the local and distant mech-
anisms is also evident when we look at the dynamics of the
system. Fig 1 gives examples of four simulations that illustrate
how the infection develops under two different initial doses

A. Radius 1 B. Radius 4 C. Radius 8 D. Radius 16

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

Initial dose (log10)

T
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ed Toxin scale

1
2
4
8
16
32

Fig. 3. Effects of spatial aggregation on the dose-response. Each panel shows the
fraction of tissue particles consumed by the pathogen, averaged over all simulation
replicates, as a function of the initial dose, for different toxin movement scales. The
spatial aggregation of the initial dose decreases (the radius of the inoculation area κ
increases) from left to right across the panels.

and modes of action; the Supplementary Videos S1–S4 give
animated versions of these scenarios. Fig 1 shows that a 50-
fold increase in the initial dose does not drastically change the
qualitative behaviour of the system with a locally acting toxin.
However, for distant action, there are substantial differences
in the progress of the infection; the immune system readily
clears the pathogen in low-dose scenarios, whereas in high-dose
scenarios, the pathogen spreads out.

Notice that pathogens with local action do not always con-
sume more tissue (and thus reproduce more) than pathogens
with distant action. While at low initial doses a locally acting
toxin clearly outperforms distant action, the trend reverses at
high initial doses; with an initial dose of 104, all but the most
distantly acting toxin provides on average better pathogen
growth than the most locally acting toxin (Fig 3A).

Effects of spatial aggregation. Varying the size of the inocu-
lation area (κ) demonstrates that spatial aggregation has a
strong effect; increasing the initial inoculation area leads to
more tissue consumed on average for all toxin movement scales
and all initial doses (naturally with the exception of the ini-
tial dose of a single pathogen; Fig 3A–D). The dose-response
curves change such that the difference between locally and dis-
tantly acting toxins is diminished by spreading out the initial
inoculum. It however remains true that for distantly acting
toxins, most infections lead to little tissue consumed when
the initial dose is below a threshold, whereas most infections
spread well when the initial dose is above the threshold; the
threshold shifts towards smaller initial doses with increasing κ
(see Figs S7–S9 in the SI Appendix).

A large inoculation area implies less competition between
the pathogens in the early phase of the infection, when demo-
graphic stochasticity critically affects the outcome. With a
large inoculation area, the pathogens behave to some extent
as if there were several independent inocula, and if one of
these manages to spread, the infection takes hold. This bene-
fits pathogens with both locally and distantly acting toxins.
Pathogens with locally acting toxins, however, lose the benefit
of high local toxin concentration. As a result, pathogens with
distant action benefit more from decreasing spatial aggregation
and thus get closer to pathogens with local action in Fig 3.

Speed of infection. The speed at which the pathogen spreads
in the host depends on both the initial dose and the mode
of action (Fig 4). In high-dose scenarios, pathogens utilis-
ing a distant mechanisms tend to spread more quickly than
pathogens with a local mechanism, whereas the opposite holds
in low-dose scenarios.

A. 50% consumed B. 90% consumed

0 1 2 3 4 5 0 1 2 3 4 5

100

150

200

250

300

Initial dose (log10)

T
im

e

Toxin scale
1
2
4
8
16
32

Fig. 4. Progression of the infection as a function of the initial dose and the mode of
action (toxin movement scale). The plots show the mean time until 50% (left panel)
and 90% (right panel) of the initial tissue is consumed (with inoculation radius κ = 1),
averaged over replicates where the infection spreads as far.
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Discussion

Schmid-Hempel and Frank (2) hypothesised that the variation
in observed infective doses is explained by the pathogen’s mode
of action, that is, whether the underlying mechanism of patho-
genesis is locally acting or distantly acting. Leggett et al. (3)
showed that empirical evidence supports the hypothesis, but
the mechanism behind the phenomenon has not been shown
previously. Our models demonstrate that the mode of action
can give rise to the variation in infective doses: all else being
equal, pathogens with locally acting toxins have smaller infec-
tive doses than pathogens with highly diffusive toxins. The
empirical evidence in prior studies (2, 3) relies on data from
various different pathogen species and strains with varying
phenotypes and pathogenetic mechanisms, whereas our models
show that the effect can emerge from varying the diffusibility
of the toxin while keeping all other properties of the pathogen
and the host the same. The analytical models show that when
the toxin is highly diffusive, the initial pathogen population
grows and establishes only if the initial dose is sufficiently
high; with a low initial dose, the pathogen is eliminated by
the initial immune response. In contrast, with low diffusion,
the pathogen can grow also if the initial dose is small. In the
individual-based simulation model we observe similar results:
at low initial doses, pathogens with locally acting toxins inflict
on average more damage (Fig 2 and Fig 3). Assuming that
more damage in the early phase of the infection implies a
higher chance to develop symptomatic disease, this yields that
pathogens with locally acting mechanisms have lower infective
doses than pathogens with highly diffusive toxins.

The way in which the toxin benefits the pathogen induces
an Allee effect (30–32), because the toxin concentration has to
be sufficiently high to protect the pathogen from the immune
system. Toxin production is thus a cooperative defense mecha-
nism (7, 33, 34) for the pathogen. All else being equal, a highly
diffusible toxin spreads to a large area and has a less concen-
trated effect, thus not protecting a small initial inoculum of
the pathogen effectively. The Allee effect yields a threshold for
the initial dose that increases with the diffusibility of the toxin
especially when the initial inoculum is aggregated (Fig 3). For
distant action the dose-response exhibits a switch between the
initial inoculum typically failing to typically spreading (Fig 2
and Figs S7–S9 in the SI Appendix).

The benefit from a locally acting toxin is more or less imme-
diate, but with distant action, the benefits are not realised until
the pathogens manage to spread far enough. A small initial
pathogen population may simply die out before reaching far,
but the diffusible toxin may speed up the pathogen’s spread
if the infection takes hold (Fig 4). Our model predicts that
the infective dose decreases when the pathogens are initially
more spread out, and this is particularly so in case of distant
action (Fig 3 and Figs S7–S9 in the SI Appendix). Typically,
the initial dose of the pathogen is clumped, but the degree of
aggregation can vary depending on the route of infection (skin
wound, digestion, inhalation, and so on). Pathogens that are
initially scattered over a large area may invade the host easier,
especially in case of distantly acting toxins.

Schmid-Hempel and Frank (2) also suggested that
pathogens with distantly acting mechanisms, and thus high
infective doses, tend to be more virulent. While this may
at first sound tautological, since a higher dose of a certain
pathogen can readily be expected to increase the severity of

the infection, this need not be so across different pathogenic
species. In our stochastic model, the amount of harm to the
host (3, 27) can be identified with the amount of host tissue
consumed. Therefore, we can examine the second hypothesis of
Schmid-Hempel and Frank (2) in this sense. We observed that
the expected amount of tissue consumed as a function of the
initial dose increases strongly for distantly acting pathogens; at
high initial doses, it (marginally) surpasses the locally acting
pathogens (Fig 3). We also observed that once the initial dose
passes a threshold, distantly acting pathogens spread faster
than those with local action (Fig 4). Inflicting more damage
and, in particular, spreading faster may hinder adequate host
defences (such as the development of the specific immune re-
sponse) before the infection spreads beyond the focal area (e.g.
before a skin infection becomes systemic). This can lead to
more harm, so that the second hypothesis of Schmid-Hempel
and Frank (2) is in this way supported by our model. Note,
however, that the empirical study of Leggett et al. (3) found
no support for the second hypothesis.

More work is needed to understand how the mode of action
influences the epidemiology of pathogens by e.g. developing
models that link within-host dynamics to between-host dy-
namics (35). Our models do not consider the life history traits,
ecology or evolution of the pathogen species, thus cannot
answer the question why do pathogens exhibit such vastly
different strategies of local versus distant action (7, 12). In-
deed, a locally acting mechanism may at first seem to be more
beneficial to the pathogen, since the gains from the toxin are
immediate and the infective dose can be small. This can even
be seen as a “stealth attack strategy” (5), as localised mecha-
nisms may lower the chances of the immune system detecting
the pathogen. Our model suggests that while pathogens with
distantly acting toxins have higher infective doses, they can
spread faster than a locally acting pathogens with the same
initial dose given that the dose is sufficiently high.

In general, locally acting toxins can be seen to resemble non-
shareable private goods, whereas diffusible toxins are shareable
public goods. Indeed, bacteria produce various kinds of public
goods, that is, benefical diffusible factors and metabolites,
into their surrounding environment (6). There is evidence
that habitat structure may drive the selection between the
use of private or public goods (24, 36, 37). Moreover, many
pathogenetic bacteria with distantly acting toxins are envi-
ronmentally transmitted (e.g. Vibrio cholerae), opportunistic
or facultative (e.g. Staphylococcus aureus), or coincidentally
pathogenic (e.g. Clostridium tetani), and therefore can be sub-
ject to different selective forces than obligate parasites. This
suggests that some species with distantly acting toxins may
be in general less adapted to an obligate parasitic lifestyle.

Our model treats the host immune system-pathogen inter-
actions in a simplistic way; we exclude many known bacterial
defenses (5, 7, 8) and ignore the vast complexity of the im-
mune system. Nevertheless, our model captures many general
properties of an immune response where the immune system
gradually identifies and eliminates the pathogens. The way
immune effectors act in our model best resembles the role of
macrophages in the innate immune response. Despite the sim-
plifications, we observe that the growth of the initial inoculum
strongly depends on its size when the toxin acts distantly, i.e.,
when the pathogen depends on a public good. The impor-
tance of intra- and interspecific cooperation in overcoming
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the immune system has been postulated in several experimen-
tal (7, 38) and modelling studies (39–41). Our results indicate
that pathogens with distant action depend more on coopera-
tive effort in infection formation, but locally acting pathogens
may cause severe infections starting from a few individuals.

Understanding the underlying mechanisms of pathogenesis
and host-parasite interactions has been identified as one of
the key issues in evolutionary ecology and immunology (5, 7),
which can potentially help in developing novel therapeutic
agents and combat increasing antibiotic resistance. Our work
shows that techniques from spatial ecology can illuminate the
within-host dynamics of pathogens with different pathogenetic
mechanisms.

Materials and Methods

The focal area, i.e., the spatial domain H was a torus of size 100×
100. The initial state of the system at time t = 0 consisted of tissue
particles and immune effectors in seek state, whose distribution
followed complete spatial randomness with densities ρH = 3/2 and
ρIS = 1/2 per unit area, respectively. The initial inoculum of the
pathogen was spatially aggregated, a total of B pathogens were
randomly distributed within the inoculation area, a disk of radius κ.
All other particle types were absent at t = 0.

For the spatial reactions and movement, we used tophat kernels,
which assign the value h/(π`2) for points that are within distance
` from each other and 0 otherwise; here h is the total rate, i.e.,
b, k, s, e, a for the reactions and 1 for the movement of all mobile
particles (tissue and decapacitated immune effectors are immobile).

Specifically, a pathogen at location x ∈ ΩP(t) consumes a tissue
particle at location y ∈ ΩH(t) at the rate given by the consumption
kernel C(x,y). Once a pathogen consumes a tissue particle, it
immediately produces a new pathogen, whose location is determined
by the pathogen movement kernel DP. The immune effectors in
kill state eliminate pathogens in their vicinity according to the
kernel K, such that a pathogen at location x ∈ ΩP(t) is killed at
rate

∑
y∈ΩIK(t)K(x,y). To counteract the immune system, the

pathogens secrete toxins according to the kernel S, such that the
rate at which toxin particles are secreted to the vicinity of point
y is

∑
x∈ΩP(t) S(x,y) per unit area. The toxin is inactivated and

disappears at rate m. A toxin particle at y ∈ ΩT(t) decapacitates
an immune effector in seek state at x ∈ ΩIS(t) at rate E(x,y). The
toxin particle is consumed when it decapacitates an immune effector.
An immune effector in seek state at x ∈ ΩIS(t) transitions into the
kill state at rate

∑
y∈ΩP(t) A(x,y), where A is the activation kernel.

The immune effectors in kill state revert to the seek state at the
per-capita rate q and decapacitated immune effectors recover back
to the seek state at rate r. Note that if there are many pathogens
nearby, an immune effector in the seek state transitions to the kill
state at a high rate.

The simulations were based on a Gillespie-style algorithm (42)
adapted to spatial point processes. Each simulation replicate was
run until either all pathogens or all tissue particles disappeared.
We recorded the particle locations ΩX(t) of each particle type X
every ∆t = 1 time units. The source code for the implementation
is available online∗. See the SI Appendix for further details.
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