
QUASY: Quantitative Synthesis Tool

Krishnendu Chatterjee1, Thomas A. Henzinger1,2,
Barbara Jobstmann3, and Rohit Singh4

1 IST Austria 2 EPFL, Switzerland 3 CNRS/Verimag, France 4 IIT Bombay, India

Abstract. We present the tool QUASY, a quantitative synthesis tool. QUASY takes
qualitative and quantitative specifications and automatically constructs a system that
satisfies the qualitative specification and optimizes the quantitative specification, if
such a system exists.
The user can choose between a system that satisfies and optimizes the specifications
(a) under all possible environment behaviors or (b) under the most-likely environ-
ment behaviors given as a probability distribution on the possible input sequences.
QUASY solves these two quantitative synthesis problems by reduction to instances
of 2-player games and Markov Decision Processes (MDPs) with quantitative win-
ning objectives.
QUASY can also be seen as a game solver for quantitative games. Mostnotable,
it can solve lexicographic mean-payoff games with2 players, MDPs with mean-
payoff objectives, and ergodic MDPs with mean-payoff parity objectives.

1 Introduction

Quantitative techniques have been successfully used to measure quantitative properties of
systems, such as timing, performance, or reliability (cf. [1, 9, 2]). We believe that quanti-
tative reasoning is also useful in the classically Boolean contexts of verification and syn-
thesis because they allow the user to distinguish systems with respect to “soft constraints”
like robustness [4] or default behavior [3]. This is particularly helpful in synthesis, where
a system is automatically derived from a specification, because the designer can use soft
constraints to guide the synthesis tool towards a desired implementation.

QUASY1 is the first synthesis tool taking soft constraints into account. Soft constraints
are specified using quantitative specifications, which are functions that map infinite words
over atomic propositions to a set of values. Given a (classical) qualitative specificationϕ
and a quantitative specificationψ over signalsI ∪O, the tool constructs a reactive system
with input signalsI and output signalsO that satisfiesϕ (if such a system exists) and op-
timizesψ either under the worse-case behavior [3] or under the average-case behavior [6]
of the environment. The average-case behavior of the environment can be specified by a
probability distributionµ of the input sequences.

In summary, QUASY is the first tool for quantitative synthesis, both under adversarial
environment as well as probabilistic environment. The underlying techniques to achieve
quantitative synthesis are algorithms to solve two-playergames and MDPs with quantita-
tive objectives. QUASY is the first tool that solves lexicographic mean-payoff games and
ergodic MDPs with mean-payoff parity objectives.

1 http://pub.ist.ac.at/quasy/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2-player lex.
mean-payoff

solver

2-player
mean-payoff

solver

1
1

2
-player

mean-payoff
solver

1
1

2
-player

mean-payoff
parity solver

Safety
automaton

Lex. mean-payoff
automaton

Mean-payoff
automaton

Input
distribution

Parity
automaton

Not realizable/Mealy machine/Two mealy machines

Q
U
A
S
Y

Formula

Goal

Mean-payoff
automaton

. . .

Mean-payoff
automaton

Specification combinatorsQUASY

Fig. 1. Overview of input/output structure

s0 s1

gi w1

¬gi ri w0

¬gi w0
gi w1

¬gi ¬ri w1

Fig. 2.A of quick reaction

k Spec Game System Time(s)

2 4 13 2 0.50
3 8 35 4 0.81
4 16 97 8 1.64
5 32 275 16 3.43
6 64 793 32 15.90
7 128 2315 64 34.28

Fig. 3. Results for MDPs

2 Synthesis from Combined Specifications
QUASY handles several combinations of qualitative and quantitative specifications. We
give a brief description of the input format the tool expects. Then, we summarize the
implemented combinations (see Figure 1 for an overview) andgive some results.
Specifications.QUASY accepts qualitative specifications given as deterministicsafety or
parity automaton in GOAL2 format. LTL properties can be translated into the required for-
mat using GOAL. Quantitative properties are specified by (lexicographic)mean-payoff au-
tomata. A mean-payoff automatonA is a deterministic automaton with weights on edges
that maps a wordv to the average over the weights encountered along the run ofA on v.
Lexicographic mean-payoff automata [3] are a generalization of mean-payoff automata.
They map edges to tuples of weights. Figure 2 shows a mean-payoff automaton in the
accepted format. Labels of the formwk state that the edge has weightk. QUASY can
combine a set of mean-payoff automata to (i) a lexicographicmean-payoff automaton or
(ii) a mean-payoff automaton representing the sum of the weights.
Optimality. The user can choose between two modes: (1) the construction of a worst-case
optimal system, or (2) the construction of an average-case optimal system. In the later
case, the user needs to provide a text file that assigns to eachstate of the specification a
probability distribution over the possible input values. For states that do not appear in the
file, a uniform distribution over the input values is assumed.
Combinations and Results.The tool can construct worst-case optimal systems for mean-
payoff and lexicographic mean-payoff specifications combined with safety specifications.
For the average-case, QUASY accepts mean-payoff specifications combined with safety
and parity specifications. Figure 3 shows (in Column 5) the time needed to construct a
resource controller fork clients that (i) guarantees mutually exclusive access to the re-
source and (ii) optimizes the reaction time in a probabilistic environment, in which clients
with lower id are more likely to send requests than clients with higher id. The quantitative
specifications were built fromk copies of the automaton shown in Figure 2. Column 2-4
in Figure 3 show the size of the specifications, the size of thecorresponding game graphs,
and the size of the final Mealy machines, respectively. Thesespecifications were also
used for preliminary experiments reported in [6]. QUASY significantly improves these
runtimes, e.g., from 5 minutes to 16 seconds for game graphs with 800 states (6 clients).
In the appendix we provide more examples and results for lexicographic mean-payoff and
mean-payoff parity specifications.

2 http://goal.im.ntu.edu.tw/

2

3 Implementation Details

QUASY is implemented in the programming language SCALA 3 with an alternative mean-
payoff MDP solver in C++. It transforms the input specifications into a game graph. States
are represented explicitly. Labels are stored as two pairs of setspos andneg correspond-
ing to the positive and negative literals, respectively, for both input and output alphabets
to facilitate efficient merging and splitting of edges during the game transformations. The
games are solved using one of the game solvers described below. If a game is winning for
the system, QUASY constructs a winning strategy, transforms it into reactivesystem, and
outputs it in GOAL format.

Two-Player Mean-Payoff Games.For two-player games with mean-payoff objectives,
we have implemented the value iteration algorithm of [12]. The algorithm runs in steps. In
every stepk, the algorithm computes for each states the minimal sum of weights player
system can force to obtain within the nextk steps starting from states. Thek-step value
vk, obtained by dividing this sum byk, converges to the actual value of the game. After
n3 ·W steps, wheren is the size of the state space andW is the maximal weight, the
k-step value uniquely identifies the value of the game [12]. Since the theoretical bound
can be large and the value often converges before the theoretical bound is reached, we im-
plemented the followingearly stopping criteria. The actual value of a state is a rationale

d

with d ∈ {1, . . . , n} ande ∈ {1, . . . , d ·W}, and it is always in an·W
k

-neighbourhood
of the approximated valuevk [12]. Therefore, we can fix the value of a state, if, for alld,
there is only one integer in the interval[d · (vk − n·W

k
), d · (vk + n·W

k
)] and the integers

obtained by varyingd correspond to the same rational number. Fixing the value of these
states, leads to a faster convergence. We implemented this criterion alternatively also by
storing all possible values in an array and performing a binary search for a unique value.
This method requires more memory but increases the speed of checking convergence.

Two-Player Lexicographic Mean-Payoff Games.For two-player lexicographic mean-
payoff games, we have implemented three variants of value iterations. First, a straight
forward adaption of the reduction described in [3]: given a lexicographic weight function
−→w with two components−→w |1 and−→w |2, we construct a single weight functionw defined
by w = c · −→w |1 + −→w |2, where the constantc = n2 · W + 1 depends on the maximal
weightW in −→w |2 and the numbern of states of the automaton. The other two variants
keep the components separately and iterate over tuples. In the second version, we add the
tuples component-wise and compare two tuples by evaluatingthem as a sum of successive
division by powers of the basec. This avoids handling large integers but requires high
precision. In the third version, we use the following addition moduloc on tuples to obtain
a correct value iteration:

(

a1
a2

)

+

(

b1
b2

)

=

(

a1 + b1 + ((a2 + b2) div c)
(a2 + b2) modc

)

.

We use lexicographic comparison because in many cases we do not need to compare all
components to decide the ordering between two tuples. Furthermore, it allows us to handle
large state spaces and large weights, which would lead to an overflow otherwise.

3 http://www.scala-lang.org/

3

MDPs with Mean-Payoff and Mean-Payoff-Parity Objective.For ergodic MDPs with
mean-payoff-parity objective, we implemented the algorithm described in [6]. QUASY

produces two mealy machinesA andB as output: (i)A is optimal wrt the mean-payoff
objective and (ii)B almost-surely satisfies the parity objective. The actual system corre-
sponds to a combination of the two mealy machines based on inputs from the environment
switching over from one mealy machine to another based on a counter as explained in [6].
For MDPs with mean-payoff, QUASY implements the strategy improvement algorithm
(cf. [7], Section 2.4) using two different methods to compute an improvement step of the
algorithm: (i) Gaussian elimination that requires the complete probability matrix to be
stored in memory (works well for dense and small game graphs)and (ii) GMRES itera-
tive sparse matrix equation solver (works very well for sparse and large game graphs with
optimizations as explained in [?]). The strategy for parity objective is computed using a
reverse breadth first search from the set of least even-parity states ensuring that in every
state we choose an action which shortens the distance to a least even-parity state.

4 Future Work
We will explore different directions to improve the performance of QUASY. In particular,
a recent paper by Brim and Chaloupka [5] proposes a set of heuristics to solve mean-
payoff games efficiently. It will be interesting to see if these heuristics can be extended to
lexicographic mean-payoff games. Furthermore, Wimmer et al. [11] recently developed
an efficient technique for solving MDP with mean-payoff objectives based on combining
symbolic and explicit computation. We will investigate if symbolic and explicit computa-
tions can be combined for to MDPs with mean-payoff parity objectives as well.

References

1. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Performance evaluation and model
checking join forces.Commun. ACM, 53(9), 2010.

2. G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL im-
plementation secrets. InSymposium on Formal Techniques in Real-Time and Fault Tolerant
Systems, 2002. http://www.uppaal.com/.

3. R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Better quality in synthesis through
quantitative objectives. InCAV, pages 140–156, 2009.

4. R. Bloem, K. Greimel, T. A. Henzinger, and B. Jobstmann. Synthesizing robust systems. In
FMCAD, 2009.

5. L. Brim and J. Chaloupka. Using strategy improvement to stay alive. CoRR, abs/1006.1405,
2010.

6. K. Chatterjee, T. A. Henzinger, B. Jobstmann, and R. Singh. Measuring and synthesizing
systems in probabilistic environments. InCAV, 2010.

7. Eugene A. Feinberg and Adam Shwartz.Handbook of Markov Decision Processes: Methods
and Applications. Springer, 2001.

8. J. Filar and K. Vrieze.Competitive Markov Decision Processes. Springer, 1996.
9. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic verifi-

cation of probabilistic systems. InTACAS, 2006.
10. M. L. Puterman.Markov Decision Processes. John Wiley and Sons, 1994.
11. R. Wimmer, B. Braitling, B. Becker, E. M. Hahn, P. Crouzen, H. Hermanns, A. Dhama, and

O. Theel. Symblicit calculation of long-run averages for concurrent probabilistic systems. In
QEST, 2010. Accepted for publication.

4

12. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.Theor. Comput.
Sci., 158(1-2):343–359, 1996.

5

Appendix : Details of the Tool

1 Dependencies and Architecture

Language, tools and installation. QUASY is written in Scala and uses a C++ based mean-

payoff MDP Solver. All input and output automata can be visualized using the GOAL
1

graphical user interface. For compilation and installation: (a) installations of Scala, Java

and C++ compilers are required; (b) A Scala runtime environment is required (c) installa-

tion of GOAL is required to visualize and manipulate inputs and outputs.

Source Code. The source code is structured in four main groups:

1. Auxilary Datastructures for game graphs and MDPs. Class disjunct provides

an efficient way of representing and performing operations (checking implications

and merging) on propositional disjunctions of both input and output variables (re-

quests and grants) using pos and neg sets of indices corresponding to the pos-

itive and negative literals in the disjunction. E.g., r0¬r2 is represented as dis-

junct(pos:{0},neg:{2}). Classes Edge, Action and State implement generic edges,

actions, and states used in the representations of game graph, automata, Mealy ma-

chines, and MDPs.
2. Classes Game and MDP are used as a generic representation for automaton, games,

and MDPs. They provide:
– methods for building a game or an automaton in memory from the specified

GOAL format file and exporting an automaton or a game to GOAL format files.
– functions for converting an automaton to equivalent game graph with as few

states as possible using merging of Player-0 states with similar transition labels.

This function first creates one Player-1 state for each original state in automaton

and then for each state, and each minterm for input variables (r0, r1, . . .) finds

edges whose input label is implied by this minterm. This map of minterms to sets

of edge IDs is reduced to a map between sets of minterms and sets of edges. A

new Player-0 state is created for each map entry in the final map.
– methods to perform various value iterations and finding an optimal positional

strategy for mean-payoff games, lexicographic mean-payoff games (with three

different evaluation criteria), and discounted payoff games.
– methods for performing mean-payoff MDP policy iteration and stochastic

shortest path algorithm for ergodic parity MDP producing a pair of optimal

positional strategies.
3. Object Main handles Input/Output for the tool in various modes of operation and

provides product functions (prodAPPEND, prodMULT, prodADD, prodSafety etc.)

for combining input specifications as a unified weighted or safety specification.
4. C++ based mean-payoff MDP solver: QUASY can also use an external mean-payoff

MDP solver which utilizes sparse matrix techniques for the strategy improvement

step in case of large game graphs. The implementation uses SparseLib2 to perform

sparse matrix operations efficiently. For this operation, the Scala application exports

and imports the MDP in the format required by the C++ implementation.

1 http://goal.im.ntu.edu.tw/
2 http://www.ing.unitn.it/ bertolaz/4-software/Cpp/docs/sparselib/sparselib.html

1

2 User Manual

In this section we describe the usage of the tool.

Format of files. The file format used by QUASY is based on the format used by GOAL

for both inputs and outputs. The format for input specifications is presented below

<structure label-on="transition" type="fa">

<alphabet type="propositional">

<prop>[r{NUMERIC}|g{NUMERIC}]</prop>
...

</alphabet>

<stateSet>

<state sid="NUMERIC">

[<label>NUMERIC(Parity)</label>]

</state>

...

</stateSet>

<transitionSet>

<transition tid="NUMERIC">

<from>NUMERIC(State ID)</from>

<to>NUMERIC(State ID)</to>

<read>[([¬]r{NUMERIC})∗ ([¬]g{NUMERIC})∗ w{NUMERIC}(v{NUMERIC})∗]</read>
</transition>

...

</transitionSet>

<initialStateSet>

<stateID>NUMERIC</stateID>

</initialStateSet>

<acc type="[buchi|parity]">

<accSet> %For Buchi and parity acceptance conditions

<stateID>NUMERIC(State ID)</stateID>

...

</accSet>

</acc>

</structure>

By convention, we specify the weight on an edge using a label starting with the letter w

followed by v’s separating the components in case of multidimensional weights. In parity

specifications, each state is labeled with its priority. In safety specifications all weights are

assumed to be 1. An input specification represented by a safety or a weighted automaton

can be constructed using GOAL GUI. The top of the screenshot in Figure 1 shows two

weighted automata (w0.gff and w1.gff) rewarding quick grants, and a safety specification

(safe2.gff) ensuring exclusive grants. The outputs of the tool (the game graphs and the

Mealy machines) are also in GOAL format and can be visualized and simplified using

GOAL.

Input Specifications. QUASY accepts qualitative specifications given as determin-

istic safety or parity automaton in GOAL format with atomic propositions from

{r0, r1, . . . , g0, g1, . . . }. By convention ri are input signals and gi are output signals.

We can use the tool GOAL to obtain the input automaton. E.g., the safety automaton in

Figure 1 (on the top right) is obtained from the LTL specification always(¬g0 ∨ ¬g1).
Quantitative properties are specified by (lexicographic) mean-payoff automata. A mean-

payoff automaton (MPA) A is a deterministic automaton with weights on edges that maps

a word v to the average over the weights encountered along the run of A on v. Lexico-

graphic mean-payoff automata (LMPA) are a generalization of mean-payoff automata that

map edges to tuples of weights.

2

Fig. 1. Weighted(w0 and w1) and Safety(safe2) Specifications, and their combinations obtained

using prodADD(w01 from w0 and w1) and prodMULT(Prod from w01 and safe2)

QUASY provides three operations to build larger specifications from smaller ones:

1. prodAPPEND: constructs the product of two LMPAs and appends their weights lexi-

cographically.

2. prodADD: constructs the product of two MPAs and sums their weights.

3. prodMULT: constructs the product of an LMPA and an MPA and multiplies their

weights. Since safety automata are assumed to have edges with weight 1, we use this

operation to make the product of two safety automata.

Deterministic parity specifications can be constructed from LTL formulas or smaller spec-

ifications using GOAL.

Optimality. QUASY can use two definitions for optimality: (1) a system is optimal in the

worst-case, or (2) a system is optimal in the average-case. In the later case, the user needs

to provide a text file that assigns to each state of the specification a probability distribution

over the possible input values. Each line of the file starts with the id of a state followed by

2|I| entries assigning probabilities to all input minterms in lexicographic order. E.g., for

I = {r0, r1}, the line “1 0.4 0.3 0.2 0.1” states that in state 1, the probability of

reading input value r̄0r̄1 is 0.4, input r̄0r1 has a probability of 0.3, P (r0r̄1) = 0.2, and

P (r0r1) = 0.1. States, for which no probability distribution is given, are assumed to have

a uniform distribution over the input values.

Modes of Operation. Table 1 lists and describes the different modes of operation of the

tool.

3

Table 1. Different Modes of Operation

SNo Mode Input Options Description

1 prodADD file1 file2 oFile file1 and file2 are mean-payoff Automata(MPA). Prod-

uct constructed using addition of weights

2 prodAPPEND file1 file2 oFile file1 and file2 are Lexicographic MPA (LMPA). Product

constructed by appending the weights

3 prodMULT file1 file2 oFile file1 is a (L)MPA and file2 is a Safety Automaton. Prod-

uct constructed by multiplication of weights

4 solveMPG file1 file2 oFold file1 is a MPA and file2 is a Safety Automaton. QUASY

optimizes the worst case mean-payoff performance of

the system and outputs an optimal Mealy machine

5 solveDPG file1 file2 λ oFold λ is the discount factor. QUASY optimizes the worst case

discounted performance of the system and outputs an op-

timal Mealy machine

6 solveLMPGr file1 file2 oFold file1 is LMPA. Reduction to solveMPG case using a suit-

able base

7 solveLMPGc file1 file2 oFold file1 is LMPA. Similar to mode SolveLMPGr. Performs

indirect comparison of value vectors using successive di-

vision by the base

8 solveLMPGl file1 file2 oFold file1 is LMPA. Similar to mode SolveLMPGc. Performs

lexicographic comparison and carry shifting

9 solveMDP file1 file2 fdist oFold fdist is the distribution file for input minterms. QUASY

optimizes the average case performance of the system

and outputs an optimal Mealy machine

10 solveMDPP file1 fileP fdist oFold fileP is a Parity Automaton. QUASY optimizes the av-

erage case performance of the system and outputs two

optimal Mealy machines to be combined with a counter

to realize the actual system

11 solveMDPext file1 file2 fdist oFold Similar to mode SolveMDP. Uses the external C++ based

MDP Solver.

12 solveMDPPext file1 fileP fdist oFold Similar to mode SolveMDPP. Uses the external C++

based MDP Solver.

Output of the tool. QUASY synthesizes an optimal Mealy machine (or two Mealy ma-

chines in the case of parity specifications). The output file (listed below) are stored in the

folder that is given as the last argument to the tool:

– Prod.gff : product of the quantitative and qualitative specifications given to the tool.

– Game.gff : 2-player game graph (played between system and environment) obtained

from the product.

– OptimalStrategy.gff : game graph comprising of the edges corresponding to the opti-

mal strategy fixed by the system.

– MealyMachine.gff : an optimal Mealy machine corresponding to mean-payoff (or

discounted payoff) measure. This machine might be optimal with respect to average

case or worst case performance evaluation (decided by the mode of operation).

4

(a) (b) (c) (d)

Fig. 2. (a) Ai of quick reaction; (b) Ai of by default low; (c) Aϕ for mutual exclusion; (d) worst-case

optimal controller

– MealyMachineParity.gff : the Mealy machine corresponding to the shortest stochastic

path from each state to a state with the minimum even priority in the mean-payoff

parity MDP.

– All inputs to the tool (the specifications and the distribution used) are also copied into

this folder for further evaluation.

3 Examples

We use a resource controller to show the different combinations and the input format of

the specifications the tool accepts. The controller uses two input signals r0, r1 and two

output signals g0, g1 to controls the access of two clients to a shared resource. Client i

requests the resource by setting signal ri to high. The controller grants the resource to

Client i by raising the output signal gi.

Basic specifications. Assume we require that the clients have mutually exclusive access

to the resource, i.e., ϕ = always(¬g0 ∨ ¬g1). Assume we would also like to optimize

the reaction time of the controller. We build a quantitative specification by combining

instances of the property ψi that captures the reaction time of the controller to Client i.

E.g., for the property ψi, we give the mean-payoff automaton shown in Figure 2(a) (in the

format accepted by our tool). The automaton assigns to each trace a value corresponding

to the average distance between request ri and gi. The shorter the distance in a trace, the

larger the value of the trace.

Worst-case optimal controller. Assume we aim for a controller that gives priority to

the client with the lowest number. Then, we take an instance of the specification ψi for

each client i and build a lexicographic mean-payoff automaton B using QUASY. Now,

we ask the tool to build a system that satisfy the mutual exclusion property (given by

Aϕ) and is optimal for specification B under an adversary environment. At every step,

the resulting system grants the resource to the highest priority client that either has a

pending grant or is sending a request in this time step. Assume w0.gff and w1.gff are

the files for the automaton A0 and A1 shown in Figure 2(a), and safe2.gff is the file

holding to the mutual exclusion specification for 2 clients (shown in Figure 2(c)). Then,

QUASY produces the Mealy machine shown in Figure 2(d) (and stores it in the output file

results/MealyMachine.gff) if used with following arguments:

scala quasy.Main prodAPPEND ./w0.gff ./w1.gff ./w01.gff

scala quasy.Main solveLMPGr ./w01.gff ./safe2.gff results/

5

Fig. 3. QUASY I/O for 2-client Average-case optimal controller

Building the product specification, solving the game, and constructing the optimal system

takes less than a minute.

Average-case optimal controller. If we want to construct a controller that optimizes the

average-case behavior, we start again with two instances of the quantitative specifica-

tion ψi. We build a mean-payoff automaton B (using QUASY) that computes to the sum

of the weights. The qualitative specification is again the automaton Aϕ ensuring mutually

exclusive grants. We assume that client 0 sends a request with constant probability 0.4
and client 1 with 0.3. This gives the following distribution over the minterm in 2{r0,r1}:

0.42, 0.18, 0.28, and 0.12. The optimal machine constructed by QUASY behaves like a

priority-driven controller that always grants the resource to the client that is more likely

to send a request, if this client is requesting it, otherwise the resource is granted to the

other client. The Mealy machine and the used input specifications are shown in Figure 3.

Average-case optimal fair controller. We require the controller to give mutually exclu-

sive grants and to be fair, i.e., every client that sends a request can eventually access to

the resource. We write this property formally as ∀i : always(ri → eventually(gi))
and use GOAL to translate it into a parity automaton. We aim for a controller that sets

the grant signals to low by default. We build the quantitative specification from instances

of the mean-payoff automaton Ai shown in Figure 2(b). For every client i, we take one

copy of Ai and sum the weights with the input distribution being same as in the previous

example. The Mealy machine and the used input specifications are shown in Figure 4. The

optimal mealy machine for mean payoff does not grant any request at all since this strat-

egy gives maximum reward. The optimal mealy machine for parity specification delays a

request and grants the pending request as soon as possible (state s2 corresponds to pend-

ing request r1 and s3 corresponds to pending request r0). It toggles between which one

to delay after every execution when no request is pending (moving from states s0 to s1

6

Fig. 4. QUASY I/O for 2-client Average-case optimal controller

and back to s0). The actual system is a combination of these two machines with a counter

as mentioned earlier. The synthesis process for 2 clients took around 3 seconds, given the

input specification comprising of 8 states, the MDP with 26 states, producing two mealy

machines comprising of 8 and 4 states respectively. For 3 clients with input specification

of size 22 producing an MDP of size 198, QUASY synthesized the two mealy machines

of sizes 20 and 10 respectively in 15 seconds. Note that however, creating parity speci-

fications using GOAL (intersection of buchi automata followed by determinization) is a

very expensive process and major portion of the time taken by the synthesis process goes

into building such specifications for multiple clients. Once we have such specifications,

QUASY can quickly optimizate the corresponding measure and find the best reactive sys-

tem.

7

