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Tracking Surfaces with Evolving Topology

Figure 1: Our method recovers a high-quality, temporally coherent triangle mesh from any sequence of closed surfaces with arbitrarily
changing topology. We can reliably extract correspondences from a level set and track textures backwards through a fluid simulation.

Abstract1

We present a method for recovering a temporally coherent, deform-2

ing triangle mesh with arbitrarily changing topology from an inco-3

herent sequence of static closed surfaces. We solve this problem us-4

ing the surface geometry alone, without any prior information like5

surface templates or velocity fields. Our system combines a proven6

strategy for triangle mesh improvement, a robust multi-resolution7

non-rigid registration routine, and a reliable technique for changing8

surface mesh topology. We also introduce a novel topological con-9

straint enforcement algorithm to ensure that the output and input10

always have the same topology. We apply our technique to a series11

of diverse input data from video reconstructions, physics simula-12

tions, and artistic morphs. The structured output of our algorithm13

allows us to efficiently track information like colors and displace-14

ment maps, recover velocity information, and solve PDEs on the15

mesh as a post process.16

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional17

Graphics and Realism—Animation;18

Keywords: mesh deformation, non-rigid tracking, Implicit sur-19

faces, fluid simulation20

1 Introduction21

Robust computational representations of deforming surfaces are22

considered indispensable within many scientific and industrial23

fields. Medical scientists deduce clues about the human body from24

the level sets of time-varying voxel data, physicists extract geo-25

metric information from simulations and acquisitions of fluid in-26

terfaces, and computer graphics professionals generate animations27

and capture performances in order to entertain audiences. As tools28

that generate time-evolving surfaces become increasingly com-29

monplace, it is essential that we, as computer graphics researchers,30

provide better tools for the analysis and computational processing31

of these forms of animated geometry.32

One particular class of evolving surface, namely surfaces that33

change topology through time, is particularly difficult to deal with.34

Because these surfaces are able to bend, split apart, reconnect them-35

selves, and disappear through time, it is impossible to make any36

convenient assumptions about their shape and connectivity. For this37

reason, implicit surfaces such as contoured voxel data and meta-38

balls, are extremely popular for representing such time-evolving39

surfaces. Unfortunately, these implicit surfaces are poorly suited40

for many important geometric tasks, such as mapping how surface41

points at one particular time correspond to surface points sometime42

later.43

In this paper, we provide a general, robust method for tracking cor-44

respondence information through time for an arbitrary sequence of45

closed input surfaces. We do not require any context clues such46

as velocity information or shape priors, and we allow the surfaces47

to change topology through time. We solve this problem by com-48

bining a robust non-rigid registration algorithm, a reliable method49

for computing topology changes in triangle meshes, and a mesh-50

improvement routine for guaranteeing numerical accuracy and sta-51

bility. The output of our method is a series of temporally coherent52

triangle meshes, as well as a mesh event list that tracks how surface53

vertices correspond through time.54

We apply our method to data sets generated by different meth-55

ods, such as physics simulations using two separate surfacing al-56

gorithms, morphing surfaces generated by implicit surfaces, and57

performance capture data reconstructed from videos. We show that58

we can reliably extract correspondence information that was absent59

from the original geometry, and we utilize this information to sig-60

nificantly enhance the input data. Using our algorithm, we are able61

to preserve important surface features, apply textures and displace-62

ment maps, simulate partial differential equations on the surface,63

and even propagate visual information backwards in time. When64

applied to dynamic shape reconstruction problems, we are able to65

reliably track the input without making any assumptions about how66

the data was generated. One can argue that this template-free track-67

ing is an important tool for scientific experiments where it is essen-68

tial to remove bias from the tools used for information discovery.69

The contributions of our work are as follows:70

• We provide the first comprehensive framework for tracking71

time-varying closed surfaces where topology can change.72

• Our algorithm is able to greatly enhance existing datasets with73

valuable temporal correspondence information. Some exam-74

ples include displacement mapping of fluid simulations and75

texture mapping of level set morphs.76

• We introduce a novel topology-aware wave simulation algo-77

rithm for enhancing the appearance of existing liquid simula-78

tions while significantly reducing the noise present in similar79

approaches.80

• Because our method robustly extracts surface information81

from input data alone, we provide a reliable way to automat-82

ically track markerless performance capture data without the83

need for a template.84
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2 Related Work85

Our work is closest to a recent publication of Stam and86

Schmidt [2011]. They showed that, by examining the input param-87

eters for an implicit surface algorithm, one can derive the surface88

velocity to create motion blur and more coherent surface anima-89

tions. By integrating surface velocity through time, they presented90

a method to approximate point-to-point correspondences which can91

be used to track texture information. This inspirational work in-92

troduced some exciting applications for tracking correspondences93

through complicated deformations, and we believe that it brought94

the community a significant step closer to solving the general prob-95

lem of tracking a topology-evolving surface. Our method is dif-96

ferent from theirs in a number of ways. Firstly, we wish to solve97

the more general problem of tracking an arbitrary input surface se-98

quence, so we do not assume that we know the parameters behind99

the surface dynamics. Secondly, their correspondence information100

is only as accurate as their velocity integration, so it is prone to nu-101

merical drift (especially with the first order integrators commonly102

used in graphics applications — more accurate Runge-Kutta inte-103

grators would pose the additional constraint that we have the ability104

to evaluate the input parameters with random access in time). Our105

method uses a nonlinear shape matching optimization to minimize106

this drift, and the difference is especially apparent in the presence107

of large rotations.108

To the best of our knowledge, our method is the first to provide109

a solution to the problem of registration combined with topology110

change. For the remainder of this section, we divide the works most111

related to ours into two camps: those related to deformable shape112

matching and registration, and those related to surface evolution113

with topology changes.114

Deformable Shape Matching and Registration The field of115

dynamic geometry processing is actively involved in the problem116

of automatic correspondence extraction from inconsistent dynamic117

meshes [Chang et al. 2010]. Dense, inter-frame surface correspon-118

dences describe a space curve for each surface sample and provide119

rich information for temporal mesh analysis and surface tracking—120

hence their importance in modern data capture problems such as121

marker-free human performance tracking and dynamic shape re-122

construction from incomplete 3D scan sequences. Time-varying123

data processing typically involves special treatment and considera-124

tion of temporal coherency. We will therefore focus our discussion125

on methods that take sequences of meshes or point clouds as input.126

Most methods that establish full surface correspondences through127

time rely on an existing template model or construct it in a separate128

step. With a fixed topology and known geometric state, template129

models are popular since they significantly simplify the reconstruc-130

tion problem of geometry and motion. Mitra et al. [2007] intro-131

duced a registration method that aggregates scan sequences into a132

4D space-time surface to build a more complete template. While133

inter-frame correspondences can be estimated from kinematic sur-134

face properties, this technique is limited to fairly small deforma-135

tions in the input data and does not allow scans to change topolo-136

gies. To handle more complex deformations, the work of [Süßmuth137

et al. 2008] tracks a pre-extracted template shape using a rigidity138

maximizing deformation model, but is still sensitive to topology-139

varying input data. The statistical framework introduced by Wand140

et al. [2007] and later improved in [Wand et al. 2009] estimates a141

globally consistent template model with a fix topology from real-142

time acquisitions of input point clouds. While being restricted to143

slowly-varying surface deformations, their methods can identify144

topology variations in the input data. The geometry and motion re-145

construction technique described in [Li et al. 2009] uses a rough ge-146

ometric approximation of a pre-constructed template model to pre-147

vent wrong topology estimations during dynamic shape tracking.148

Although the topology of the reconstruction is static, this purely ge-149

ometry based technique includes a particularly robust non-rigid reg-150

istration algorithm that can handle significantly larger deformations151

than previous methods. While highly disruptive motions are explic-152

itly treated in the global framework of Tevs et al. [2012], highly in-153

complete acquisition data can still damage the template extraction.154

Due to the difficulty of constructing a consistent template model155

from incomplete data, several recent research have focussed in in-156

troducing structural priors such as skeletons [Zheng et al. 2010] or157

explicit parameters for joint positions and skinning weights [Chang158

and Zwicker 2011]. These methods are particularly reliable for ar-159

ticulated subjects but are not suitable for scenarios such as clothed160

human performances.161

While correspondences are desirable for many geometric analysis162

and manipulation purposes, several state-of-the-art shape comple-163

tion methods skip this requirement and do not extract a template164

model in order to achieve a drift-free treatment of topology varying165

input data. The technique presented in [Sharf et al. 2008] is able166

to produce a watertight surface sequence from extremely noisy in-167

put scans using a volumetric incompressible flow prior but suffers168

from significant flickering in the reconstruction. In the context of169

fluid capture, Wang et al. [2009] demonstrated a framework to fill in170

holes in partially captured liquid surfaces using a physically guided171

model. Their method achieves time-coherent reconstructions of dy-172

namic surfaces but are restricted to fluid simulations since frame-173

to-frame correspondences are guided by the velocity of a fluid sim-174

ulation. Lately, Li et al. [2012] demonstrated a shape completion175

framework for temporally coherent hole filling of incomplete and176

flickering affected scans of human performances. Their method177

makes minimal assumptions about the surface deformation by es-178

tablishing correspondences within a small time window but side179

steps the extraction of globally consistent correspondences through180

time.181

The proposed technique is able to establish full correspondences182

across time-series of input meshes and is not limited to a fixed183

topology like template-based methods. Our method is grounded184

on a general purpose non-rigid registration algorithm similar to [Li185

et al. 2009; Li et al. 2012] and can therefore be applied widely,186

ranging from fluid surface dynamics, human body performances,187

and arbitrary shape morphings.188

Surface Evolution with Topology Changes Several methods189

exist for tracking topology-changing surfaces through time with the190

aid of prescribed motions or velocity fields. Level set methods [Os-191

her and Fedkiw 2003] and particle level set methods [Enright et al.192

2002] are a popular method for representing a dynamic implicit193

surface. These methods consider the zero level set of a voxelized194

signed distance function, and they integrate velocity information in195

order to move the function. This integration displaces the zero set196

of the function, resulting in a moving surface. Müller [2009] used197

a strategy of repeatedly re-sampling an evolving Lagrangian trian-198

gle mesh in order to provide fast surface tracking for fluid surfaces.199

Semi-Lagrangian contouring [Bargteil et al. 2006a] also utilizes La-200

grangian information in the form of extracted surface geometry in201

order to improve surface tracking. Bargteil et al [2006b] and Kwa-202

tra et al. [2007] illustrate the ability to track texture information in203

a fluid simulation, enhance their animations by synthesizing new204

texture as the surface evolves. Dinh et al. [Dinh et al. 2005] also205

tracks texture information on a topology-changing implicit surface206

by solving an optimization problem over space and time.207

The surface evolvers most similar to ours are mesh-based surface208

tracking methods [Du et al. 2006; Wojtan et al. 2010; Brochu et al.209

2010]. The idea behind these techniques is to evolve a triangle mesh210
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Figure 2: A morphing example where surface textures are tracked.
Unlike existing techniques, our method does not exhibit ghosting
artifacts.

according to a velocity field, which allows for better preservation of211

geometric features and correspondence information than using an212

implicit surface. These mesh-based methods go hand-in-hand with213

robust numerical methods for changing mesh topology [Brochu and214

Bridson 2009; Wojtan et al. 2009; Campen and Kobbelt 2010; Za-215

harescu et al. 2007; Pons and Boissonnat 2007]. Within our frame-216

work, we use a method similar to Wojtan et al. [2009] for changing217

mesh topology, because of its speed and versatility (Further details218

are explained in §4.3).219

While each of these works on surface evolution certainly helped220

inspire ours, we would like to remind the reader that our method221

solves a significantly different problem of tracking without any ve-222

locity information. In this light, we do not perceive our method as a223

competitor to existing fluid simulation techniques, but as a power-224

ful enhancement tool — it allows a user to convert the output from225

any simulation type into a temporally coherent deforming mesh se-226

quence. Our tracked surfaces are a great improvement over implicit227

surfaces in the information they provide, the details they preserve,228

and the useful applications that they aid.229

3 Problem Statement230

This paper is concerned with the problem of taking a series of231

closed surfaces through time as input, and then replacing these sur-232

faces with a single, temporally coherent deforming triangle mesh.233

We wish to allow these input surfaces to have arbitrary shapes and234

topology, and these shapes and topology are allowed to change sig-235

nificantly from one surface to the next. Because such data can come236

from a range of diverse sources in practice, we cannot assume any237

specific domain knowledge, nor can we assume that we are given238

additional information such as velocity fields. While surface track-239

ing and registration is a widely studied problem, we are unaware240

of any tracking methods that are both robust to large deformations241

and arbitrarily complicated topology changes while retaining cor-242

respondence information. This is unfortunate, because frequent243

topology changes result from many common sources such as fluid244

dynamics, morphing, and erroneous scanned data.245

To adequately solve this problem, we must define what it means246

for two shapes to correspond in the presence of topology changes247

and find the most appropriate mapping between consecutive pairs248

of input surfaces. This correspondence information should grace-249

fully propagate through changes in surface topology. We require250

our method to handle arbitrarily large plastic deformations through251

time while keeping the computation tractable.252

Figure 3: Our method can turn a temporally incoherent mesh (up-
per left) into a coherent one (upper right). We use this tracked mesh
to add displacement maps as a post-process without having to re-
simulate any physics.

4 Method253

Our algorithm consists of several interwoven operations: mesh254

improvement (§4.1), non-rigid alignment (§4.2), and topological255

change (§4.3). The mesh improvement operation ensures that our256

output mesh retains high quality triangles while only minimally re-257

sampling geometry. The non-rigid alignment step ensures that our258

output mesh actually conforms to the desired shapes through time,259

and the topology change step ensures that the topology of our out-260

put mesh conforms to that of the desired input shapes in each frame.261

We show that these three operations alone are enough to generate a262

smoothly deforming mesh with high quality geometry. However, in263

order to utilize these deforming meshes to their full extent, we also264

record correspondence information along the way (§4.4). Finally,265

we explain how to use the recorded correspondence information to266

efficiently propagate information forward and backwards through267

time as a post-process (§4.6).268

4.1 Mesh Improvement269

A detailed surface mesh with well-shaped triangles is essential for270

a wide variety of beneficial computations. In addition to enhancing271

numerical stability in our non-rigid registration solver (§4.2) as well272

as the geometric intersection code in our topology change routine273

(§4.3), a triangle mesh free from degeneracies is necessary for such274

basic operations as interpolation, ray tracing, and collision detec-275

tion. As we explain later in §5, the guaranteed mesh quality from276

our algorithm allows us to densely sample complex textures, gen-277

erate displacement maps which are less prone to self-intersections,278

and solve partial differential equations on a deforming mesh using279

a finite element method.280

In our framework, we follow the mesh improvement procedures281

outlined by Wojtan et al. [2011]. When edges become too long,282

we split them in half by adding a new vertex at the midpoint. When283

edges become too short, or when triangle interior angles or dihedral284

angles become too small, we perform an edge collapse by replac-285

ing an edge with a single vertex. Although we did not implement286

them for this project, edge flips are also another excellent mesh re-287

sampling operation.288

When improving a dynamically-deforming mesh, the main chal-289

lenge is to find the right balance between high quality triangles290
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Forward Texture Propagation

Backward Texture Propagation

Figure 4: These animations show how we can use our algorithm to propagate a texture both forwards and backwards through time. In the
bottom animation, the fluid simulation naturally splashes around as it settles into on a checker texture.

and excessive vertex re-sampling. Though we are free to customize291

these mesh improvement parameters however we like, we used sim-292

ilar parameters for all of the examples in this paper. We used a293

minimum interior angle of 10 degrees, a minimum dihedral angle294

of 45 degrees, and a maximum:minimum edge length ratio of 4:1.295

For a more in depth discussion on choosing parameters for these296

operations, please see [Wojtan et al. 2011].297

4.2 Non-Rigid Registration298

In a continuous space-time setting, it is impossible to establish one-299

to-one correspondences (i.e., creating a diffeomorphism) between300

consecutive meshes with unrelated topology. However, to con-301

struct a natural mapping between discrete surfaces that smoothly302

deform and change topology, we define correspondences between303

consecutive frames as those that warp the source shape onto the tar-304

get while minimizing surface distance and shape distortion (scaling305

and stretching). The rationale behind this classic non-rigid registra-306

tion approach is to maximize geometric shape compatibility since307

it is the only available information. To account for the large res-308

olutions and deformation complexity of our examples, we adapted309

the state-of-the-art bi-resolution registration algorithm introduced310

in [Li et al. 2009] to compute accurate correspondences efficiently.311

While the original technique is designed to handle pairs of partial312

scans where only a sub-region contains correspondences (part-in-313

part matching), our setting is easier in that two complete shapes are314

available (whole-in-whole matching). Hence, assuming that every315

source point has a target allows us to improve convergence of the316

two-stage optimization with minimal changes as illustrated next:317

Coarse-level Non-Linear Optimization. We first estimate cor-318

respondences between two shapes by bringing them into alignment319

using a sampled warp field that maximizes local rigidity. As shown320

in [Li et al. 2009], this non-linear problem can be effectively solved321

using a non-rigid iterative closest point (ICP) algorithm. The idea322

is to iterate between closest point estimations and surface deforma-323

Figure 5: Our mesh is augmented with deformation graph for a ro-
bust coarse-level non-rigid registration. We use geodesic distances
to construct the graph to avoid edge connections between discon-
nected components.

tion where rigidity is gradually decreased whenever convergence of324

the optimization is detected. Instead of computing closest points as325

in previous work, our method uses correspondence estimates pro-326

jected in the surface normal directions. Since ideally we wish to327

create a bijective mapping between two complete shapes, we found328

that this heuristic significantly reduces target surface regions that329

do not correspond with the source. We only prune correspondences330

that have surface normals that are more than 60 degrees apart.331

Similar to the rigidity-maximizing deformation model described in332

[Li et al. 2009], we augment the high-resolution mesh with a lower333

complexity deformation graph and solve for the affine transforma-334

tion (Ai,bi) of every graph node instead of the vertices. The affine335

transformations are then transferred to the vertices via linear blend336

skinning. In particular, we describe the motion of each vertex by337

a linear combination of the transformations of the k = 4 nearest338

nodes, weighted by the inverse of the geodesic distance to each339

node. This choice of using geodesic distances is important for two340
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reasons: Firstly, geodesic distances avoid graph edge connections341

between disconnected but nearby surfaces. Secondly, they allow342

vertex motions to ignore graph nodes that are close in Euclidean343

distance but far in geodesic distance. Because we wish to handle344

arbitrary deformations like fluids, we simply use a high-resolution345

uniformly sampled graph where the distance between nodes is 4346

times larger than the average edge length of the underlying mesh.347

Once the deformation graph is constructed and the mesh vertices348

weighted, we solve for the optimal transformation of the graph349

nodes that minimizes a fitting energy combining a point-to-plane350

and point-to-point distance for each mesh vertex: Efit = Eplane +351

0.1 Epoint. To achieve a smooth as-rigid-as-possible regulariza-352

tion in the deformation, we minimize the deviation of Ai from a353

true rotation and only allow nodes to affect their edge-connected354

neighbors. These two components form the regularization term355

Ereg = Erigid + 0.1Esmooth. The total energy Etot = αfitEfit + αregEreg356

is solved using a standard Gauss-Newton solver based on Cholesky357

decomposition. We alternate between correspondence point estima-358

tion and surface deformation until convergence and gradually relax359

the regularization by dividing αreg by 10. For each pair of con-360

secutive frames we initialize the optimization with αfit = 0.1 and361

αreg = 1000.362

Fine-Scale Linear Optimization. While multiple iterations of363

the coarse level optimization make sure that large deformations be-364

tween source and target shape are recovered, a second warping step365

uses a more efficient (but rotation sensitive) linear mesh deforma-366

tion technique to capture the full geometric details of the raw input367

meshes. The optimization uses the same fitting term Efit as de-368

scribed before and solves for the displacement of each vertex by369

minimizing the difference between adjacent vertex displacements370

and the variation in edge lengths usingEreg = Edisp +Eedge. To avoid371

self intersections, we prune correspondences that are further than a372

threshold σ = 0.1. Finally, we synthesize fine-scale details from373

the target on the pre-aligned mesh by minimizing Etot = Efit +Ereg374

using an efficient conjugate gradient solver. Despite the robustness375

of the proposed non-rigid registration approach, we do not guaran-376

tee that every target surface region will have a corresponding source377

point. Such cases require a change in topology.378

4.3 Topological Change379

This paper considers a more general class of input deformations380

than most previous methods — we aim to track surfaces that are381

not only highly deformable, but that may change topology arbitrar-382

ily through time. For example, we allow new surface components383

to appear from nowhere in the middle of an animation, and we ex-384

pect that entirely disparate surface regions may suddenly merge to-385

gether. In order to accurately track such extreme behavior in the in-386

put data, we build new tools to constrain the topology of our mesh387

to that of an arbitrary closed input surface.388

We base our topology change method on that of Wojtan et al. [2009]389

with subdivision stitching [2010] as explained in their SIGGRAPH390

course [2011]. This method begins by comparing a mesh M to391

its voxelized signed distance function ΦSDF (M). Then, wherever392

there are local topological differences betweenM and ΦSDF (M),393

the method replaces triangles from the input mesh with triangles394

from the extracted isosurface of ΦSDF (M). This strategy effec-395

tively forces the explicit triangle mesh to change such that its topol-396

ogy matches that of its voxelized signed distance function.397

We chose to use this method primarily because of its flexibility and398

robustness. We would like the surface to change topology not only399

when the mesh intersects itself, but also whenever the input geome-400

try happens to change its own topology. Furthermore, because this401

method is independent of surface velocity, it adds another layer of402

robustness to our algorithm; in the event that our registration routine403

produces inaccurate displacement information, the topology algo-404

rithm will correct the final shape by drawing new surface geometry405

directly from the input.406

To do this, we generalize the idea of Wojtan et al.; instead of con-407

straining the topology of the input mesh to match that of its own408

signed distance function, we constrain the input mesh to match409

the topology of any voxelized implicit surface. We simply vox-410

elize an arbitrary implicit surface Θ, and replace the signed dis-411

tance function ΦSDF (M) in the original with our new function412

Θ. The algorithm then compares the topology of the mesh M413

to the topology of Θ, and replaces M’s triangles with triangles414

from the extracted isosurface of Θ whereverM and Θ have a dif-415

ferent local topology. We can refer to this generalized topology416

change routine as ConstrainTopology(M,Θ). Using this terminol-417

ogy, the original algorithm of Wojtan et al. can be executed by418

calling ConstrainTopology(M,ΦSDF (M)).419

Within our deformation framework, we use this generalized420

topology change algorithm in two ways: first to ensure that421

the deforming mesh changes topology if it intersects itself,422

and second, to ensure that the deforming mesh has the same423

topology as the target input data. These actions can be424

computed by calling ConstrainTopology(M,ΦSDF (M)) and425

ConstrainTopology(M,ΦSDF (T )), respectively, where T is the426

target mesh from the input data. We will specify the exact order in427

which to call these functions in section §4.5.428

4.4 Recording Correspondence Information429

Throughout the computation of our deforming meshM, we want430

to track how its correspondences evolve through time. The previ-431

ously mentioned mesh modification routines can cause significant432

changes in correspondence information, and we must track how433

these changes occur.434

The mesh deformation algorithm described in §4.2 is Lagrangian in435

nature, so it moves individual vertices to their new locations at each436

frame in the animation sequence. Consequently, the vast majority437

of vertex locations in our mesh at a given frame number correspond438

exactly to the location of that same vertex at earlier and later frames439

numbers. For these vertices, information about their corresponding440

position at different points in the sequence is implicit; vertex vi at441

frame number j corresponds exactly with vi at frame j + 1.442

The only vertices which do not have this trivial correspondence with443

vertices in different frames are the few vertices which were created444

or destroyed due to re-sampling. Within our framework, the only445

way to create new vertices is via topological change (§4.3) or edge446

and triangle subdivision (§4.1). The only way for us to destroy ver-447

tices is via topological change (§4.3) or edge collapse (§4.1). Note448

that some other potential mesh improvement procedures like mesh449

fairing [Jiao 2007; Brochu and Bridson 2009; Stam and Schmidt450

2011] improve triangle quality at the expense of re-sampling cor-451

respondence information by diffusing it along the surface. For this452

reason, we did not use such fairing procedures in §4.1.453

For each transition between two frames, we track these re-sampling454

events (edge subdivision, triangle subdivision, edge collapse, topol-455

ogy change) in what we call an event list. The event list456

stores detailed information about each re-sampling event, and457

it is sorted by the order in which the re-sampling events took458

place. Each event in the list records information of the form459

(Vin, Vout, f(Vin), g(Vout)), where Vin is a set of the input ver-460

tices, Vout is a set of the output vertices, f(Vin) is a function that461

assigns information to Vout as a function of Vin, in case we want462
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to propagate information forwards. Similarly, g(Vout) is a function463

that assigns information to Vin as a function of Vout, in case we464

want to propagate information backwards.465

When we subdivide an edge in the mesh, a vertex vnew is cre-466

ated at a location somewhere in between two endpoints vA and467

vB . The event list records ({vA,vB}, {vA,vB vnew},vnew :=468

(vA + vB)/2,null). For a triangle subdivision event, we469

insert a new vertex vnew inside the triangle and split470

the triangle into three pieces. The event list records:471

({vA,vB ,vC}, {vA,vB ,vC ,vnew},vnew := αvA + βv2 +472

γv3,null), where α, β, and γ are barycentric coordinates. When473

we collapse an edge in our mesh with endpoints vA and vB , we474

remove the edge endpoints from the mesh and place a new vertex475

vnew at the center of the collapsed edge. The event list records:476

({vA,vB},vnew,vnew := (vA + vB)/2,vA := vB := vnew}.477

When a topological change occurs, surfaces can split wide open478

and entire patches of new geometry can be created. For each patch479

of new geometry after the topology change, we propagate informa-480

tion from the vertices on the boundary of the patch inward, using a481

breadth-first graph marching algorithm (similar to Yu et al. [2012]).482

Though several propagation strategies are valid at this point (dur-483

ing the marching algorithm, each new vertex could simply copy484

information from its nearest neighbor, it could distribute informa-485

tion evenly throughout the patch, e.g. by solving an elliptic PDE,486

etc.), we chose a strategy of each vertex taking the average of the in-487

formation from its visited neighbors during the breadth-first march.488

For each new vertex that is created, our event list records the list489

of boundary vertices, the new vertex, and the linear combination490

of boundary vertices that results from this marching and averaging.491

There is no backward correspondence assignment for these vertices.492

Lastly, vertices can be deleted in a topological merge. We treat such493

operations the same way that we treat new vertices that result from494

a topology change, but in reverse: before the patch of vertices is de-495

stroyed, we march inward from the boundary of the patch of deleted496

vertices and propagate information using the same averaged vertex497

scheme. For each vertex that is deleted, our event list records the498

list of boundary vertices, the new vertex, a null forward operation,499

and the linear combination of boundary vertices that results from500

the marching and averaging operation.501

4.5 Summary of the Tracking Algorithm502

We review the steps of our tracking method in Algorithm 1. Our503

method begins by initializing a triangle meshM to the first frame504

T0 of a mesh sequence. We then immediately call our mesh im-505

provement routine (§4.1), which ensures that M consists of high506

quality geometry. Next, we enter the main loop of our algorithm,507

which visits each of the input meshes Tj in turn. For each input508

mesh, we use our course non-rigid registration routine (§4.2) to509

align the low-resolution features ofM as closely as possible with510

those of Tj . Once this coarse alignment has terminated, we per-511

form a fine-scale linearized registration in order to ensure that all512

of the high-resolution details ofM line up with Tj . At this point513

in the algorithm, we have deformed our meshM such that it lines514

up with the input data frame Tj . This deformation may cause the515

triangles ofM to stretch and compress arbitrarily, so we again per-516

form a mesh improvement in order to clean up the overly deformed517

elements ofM.518

Next, we must account for the fact that our mesh M may have519

changed topology. We execute the basic topology change algorithm520

in §4.3 by first computing a voxelized signed distance function near521

the surface ofM and then ensuring thatM has the same topology522

as the zero isosurface of this function. This step mainly cleans up523

any large self-intersections in the mesh by merging surface patches524

1: MeshM = LoadTargetMesh(T0)
2: ImproveMesh(M)
3: for frame j = 1→ n do
4: LoadTargetMesh(Tj)
5: CoarseNonRigidRegistration(M, Tj)
6: FineLinearRegistration(M, Tj)
7: ImproveMesh(M)
8: ΦSDF(M) = CalculateSignedDistance(M)
9: ConstrainTopology(M,ΦSDF(M))

10: ΦSDF(Tj) = CalculateSignedDistance(Tj)
11: ConstrainTopology(M,ΦSDF(Tj))
12: ImproveMesh(M)
13: SaveEventListToDisk(j)
14: SaveMeshToDisk(M)
15: end for

algorithm 1: Pseudocode for our mesh-tracking algorithm.

together. Next, we execute a topology change algorithm again, but525

this time we constrainM to match the topology of the input mesh526

Tj . This step ensures that we split apart any surfaces inM which527

stretches over gaps in Tj , as well as merging any separate regions528

ofM that are actually merged in the input data. This extra topology529

constraint also acts as a fail-safe by re-sampling parts ofM in the530

rare event that the registration algorithm was unable to find good531

matches betweenM and Tj .532

At this point in the algorithm, our meshM can consist of triangles533

with arbitrarily poor aspect ratios, because the topological sewing534

algorithm only cares about the connectivity of the mesh and not the535

condition of the individual mesh elements. We therefore call our536

mesh improvement routine once again to ensure that the mesh is fit537

for another round of tracking the input data. Note that throughout538

this entire algorithm, we document any re-sampling operations that539

occur (potentially in lines 2, 7, 9, 11, and 12 of Algorithm 1) and540

add them to our event list (§4.4). In the final two steps of this loop,541

we save our event list and the meshM itself to disk. We then start542

the loop again with the next frame of animation Tj+1.543

4.6 Propagating Information as a Post-Process544

After we have finished tracking the input geometry (after all of the545

steps in §4.5 have run until completion), we have a series of tem-546

porally coherent animation frames of a meshM that deforms and547

changes topology. Furthermore, we also have a per-frame event list548

that describes exactly how correspondences propagate throughout549

the animation. We can use this list to pass information like sur-550

face texture and surface velocity from one frame to the next. To551

pass information forward in time, we run through the event list in552

the order that each event took place, and, using the notation from553

section 4.4, we pass information to re-sampled vertices using the554

function f(Vin). Similarly, we pass information backwards in time555

by running backwards through the event list and using g(Vout).556

5 Applications557

Having detailed our method for obtaining a temporally coherent pa-558

rameterization of an arbitrary sequence of closed manifold meshes559

(§4), we shift our focus to applications. We show how we can apply560

our method to track a broad range of different incoherent surfaces561

and how we can exploit extracted correspondence information to562

significantly enhance the meshes in variety of different ways.563

Displacement Maps. Our first example shows three viscoelas-564

tic balls dropping on top of each other (Figure 3) generated565

6



Online Submission ID: 0325

by a physically-based Eulerian simulator with a periodically re-566

sampling surface tracker similar to [Müller 2009]. Our method567

faithfully conforms to the target shape in every frame with mini-568

mal re-sampling.569

We showcase our temporally coherent parameterization, free of no-570

ticeable drift, and high mesh quality, by applying two different571

sets of displacement maps to the simulation as a post-process. A572

displacement map consist of a per-vertex scalar, designating the573

amount to displace the vertex in the normal direction. We use our574

data structure (§4.6) to propagate displacements applied in the first575

frame to all later frames. Compared to tracking the simulation, this576

is almost instantaneous, taking only takes a few seconds for the en-577

tire animation. Swapping in different a different displacement map578

is fast and effortless. Compare this to the state of the art without579

our method, where an animator instead would have to re-simulate580

everything to change the geometry.581

Color. Our second example shows a splashy liquid scene (Fig-582

ure 4). This animation comes from a standard Eulerian solver us-583

ing the Level Set Method [Osher and Fedkiw 2003] to track the584

free-surface. We track an incoherent sequence of marching cubes585

reconstructions of level sets from the simulation.586

Similar to displacement maps, we may propagate colors applied in587

the first frame to all later frames. Our accompanying video shows588

a checkerboard pattern and a lava texture propagated through time.589

Further exploiting our temporal data structure, we also propagate a590

colors applied in the last frame backwards in time to the first frame591

(Figure 4). This technique allows us to enhance the splashy anima-592

tion with an interesting artistic expression where an image is slowly593

revealed as the dynamics settle (Figure 1).594

Wave simulation. Our third example improves the fidelity of the
level set simulation by adding an extra layer of dynamics as a post-
process (Figure 7). Because our method yields particularly high
quality surface triangles with minimal re-sampling, we are able to
use the resulting mesh to solve partial differential equations. In-
spired by recent fluid animation research [Thürey et al. 2010; Yu
et al. 2012], we augment our surfaces with a time-varying displace-
ment map, computed as the solution to a second order wave equa-
tion:

∂2h

∂t2
= c2∇2h. (1)

Here, h is wave displacement in the normal direction,∇2 is the dis-595

crete Laplace operator computed with cotangent weights [Botsch596

et al. 2010], and c is a user-chosen wave speed. We use our transi-597

tion graph to transfer the state variables (wave heights h and veloc-598

ities in the normal direction v) from one frame to the next, and we599

integrate the system using symplectic Euler integration with several600

sub-cycled time steps per input frame. One may optionally choose601

to add artificial damping to the simulation for artistic reasons by602

multiplying h by a (1 − ε) factor each step. No artificial damping603

was used in our simulations.604

Our wave simulation method is novel in that it retains tight con-605

trol over wave energy sources. We only add wave heights pre-606

cisely at the locations in space-time where topological changes oc-607

cur. This stands in opposition to previous work, which recomputes608

wave heights every time step based on surface geometry. The result609

of this distinction is that our simulations are much less likely to in-610

troduce energy due to numerical errors. Our simulations have a dra-611

matically high signal-to-noise ratio – we can clearly see interesting612

wave interference patterns persist throughout the entire simulation.613

raw input meshes from [Li et al. 2012]

forward tracking (resampled vertices in green)

reconstruction results of [Tevs et al. 2012]

Figure 6: Top: While being a closed manifold, our input perfor-
mance capture data does have consistent vertices across frames
and exhibits difficult topological variations. Middle: our method
seamlessly handles topology changes and ensures high quality tri-
angles. Resampled vertices from our mesh improvement algorithm
are marked in green. Bottom: In addition to being expensive, the
state-of-the-art animation reconstruction method of Tevs et al. fails
at capturing the correct motion.

Morph. Another application of our method is transferring col-614

ors through morphs that change topology between arbitrary genera615

(Figure 2). We use a simple linear blend between signed distance616

functions to create the morph and subsequently obtain a coherent617

mesh by tracking it with our framework. We start by propagating618

color backwards from the final frame propagation, and then we use619

the colors which were propagated to the first frame to obtain a base620

texture. In this way an artist can see where important feature points621

end up on the target shape to aid in creating a more natural morph.622

To obtain a really high quality morph we may additionally blend623

between the two forward and backward propagated colors.624

Performance Capture. One final application of our method is in625

performance capture. Unlike previous methods, we are able track626

captured data that has topology changes due to occlusion while ob-627

taining temporally coherent correspondences (Figure 6). We apply628

a texture in the first frame and propagate it forward. Regions that629

are unoccluded throughout the sequence are tracked faithfully.630

6 Evaluation631

We performed an extensive series of tests to evaluate our method.632

We used the viscoelastic simulation input (Figure 3) as a testbed633

while we varied parameters, turned off various parts of our code,634

and attempted alternative approaches. Please see our accompanying635

video for visualizations of these tests.636

In Figure 9, we show how our method compares to the naı̈ve ap-637
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Figure 7: Our framework allows us to synthesize high-frequency
details of a separate wave simulations (right) on top of a lower
resolution pre-simulated fluid surface (left).

full pipeline

without topology constraints

without linear deformation

half the graph sampling distance

Figure 8: Comparison between our full pipeline and leaving out
individual stages our surface tracking framework.

proach of simply projecting our tracked meshM onto the input T638

each frame. Tangential drift is severe even in the case of simple639

translation. We compared our method to one that ignores fine-scale640

registration (line 6 of Algorithm 1). Since the graph-based reg-641

istration works on a coarse scale and only influences vertices in642

M through linear blend weights, this modified method is unable to643

correctly register small features. Such errors accumulate over time,644

causing a rough, lumpy surface and ignoring the fine-scale details645

of the input. Our full algorithm clearly does not exhibit these prob-646

lems, exhibiting why the fine-scale optimization in Section 4.2 is647

necessary.648

Our tests also show that the topology constraint (§4.3, line 11 of649

Algorithm 1) is essential for robust tracking. The tests in our video650

illustrate how a method without this constraint is unable to cope651

with drastic changes in input topology. An obvious example in the652

elastic simulation is the sudden introduction of new components653

in later frames — when the topology constraint is turned off, the654

nonrigid registration algorithm was unable to recognize these com-655

ponents without manually creating a template. Another important656

Visc Splash Morph Perf

Vertices 60-300 280-380 77-96 60-73
Frames 400 500 100 111
Frame time 45-153s 105-220s 17-21s 97-101s
Coarse reg. 87-93% 81-89% 67-73% 86-88%
Fine reg. 3-8% 11-18% 19-23% 10-12%

Table 1: Summery of statistics for our application examples. Ver-
tices are listed in thousands. Time spent on mesh improvement and
topology changes is negligible compared to registration, so is omit-
ted in the table. Timings exclude file I/O.

feature of the topology constraint is that it acts as a convenient fail-657

safe. Should the registration routine fail to fully conform to the658

target shape, the topology constraint fills in regions of mismatched659

geometry. As a result, our full algorithm is quite robust to poor660

parameter choices for the alignment, and poor alignment leads to661

additional re-sampling (as opposed to an unrecoverable failure).662

Non-rigid alignment (§4.2, line 6 of Algorithm 1) dominates the663

time complexity of our method. The sampling density of the de-664

formation graph is the parameter that has the biggest impact on665

the runtime, because it dictates the number of variables in the non-666

linear optimization problem. We examined the sensitivity of our667

algorithm to different sampling densities in our video. Instead of668

choosing the sampling density used to generate Figure 3, we low-669

ered the sampling distance by a factor of one half and one quar-670

ter, then re-ran our algorithm. Our video shows that these reduced671

sampling densities lead to increased mesh re-sampling, but the re-672

sult remains similar to our high quality tracking. Conveniently, this673

allows us to use lowered sampling densities to get a fast approxi-674

mation of our algorithm’s output before committing to solving with675

a high sampling density.676

The memory complexity of our algorithm is similarly dominated677

by the non-rigid alignment. However, because we only do pair-678

wise alignment between M and T , our memory consumption is679

independent of the length of the sequence of input data. In other680

words the space complexity scales with the number of vertices in681

the source mesh.682

We have also gathered statistics for all of our application examples.683

We summarize these results in table 1. All measurements were all684

performed on a standard PC with an Intel i7-2600K processor and685

16 GB of memory. We note that our implementation has not been686

optimized for performance and is mostly sequential.687

Comparison to other methods. As detailed in section 2 the688

method of Stam et. al [Stam and Schmidt 2011] is significantly dif-689

ferent from ours. While this is an admittedly biased comparison, we690

show how our method performs with their example of three blended691

blobs rotating about the origin (see Figure 10). Our algorithm ex-692

plicitly solves for the globally most rigid deformation, so we obtain693

practically perfect tracking whereas Stam et al. show slight tangen-694

tial drift and color diffusion. We imagine their problem would be695

exacerbated with larger time steps, while ours remains accurate.696

Limitations. Our biggest limitation is the fact that we are cur-697

rently limited to closed manifold surfaces due to the method we use698

to performing topology changes. This method assumes that for any699

arbitrary point in space we must unambiguously decide whether it700

is inside out outside the surface.701

Because our method is based on shape matching, we are unable to702

track surfaces invariant under our energy functions; a surface with703
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Figure 9: The difference between projection (left) and our nonrigid
registration technique (right). Simple projection causes severe dis-
tortion of the surface, while our registration reliably provides accu-
rate correspondences.

Figure 10: Stam and Schmidt introduced shape as a benchmark
for evaluating the accuracy of an implicit surface tracking algo-
rithm. After one complete rotation, our algorithm’s output (right)
is virtually identical to the analytical solution (left).

no significant geometric features (like a rotating sphere) will not704

be tracked accurately. However, it would be easy to augment our705

method with additional priors such as velocity information in order706

to handle such featureless cases.707

7 Discussion708

Relying exclusively on the geometry, our proposed framework for709

tracking topology evolving surfaces faithfully establishes consis-710

tent correspondences throughout entire sequences for arbitrary in-711

put mesh animations. It naturally converts any sequences of de-712

forming implicit surfaces to a topology aware dynamic mesh data713

structure, making it a powerful and general tracking tool for a wide714

variety of examples ranging from pre-simulated fluids, performance715

capture data, to topology changing morphings. While exciting new716

applications (such as bi-directional texture tracking, wave simula-717

tions as post-processing, and performance data analysis) are made718

possible, we have shown that a simple combination of non-rigid719

registration, mesh improvement, and topology handling is not only720

effective in propagating correspondences through topology varying721

surfaces, but also, permits unrestricted shape variations in the in-722

put data (e.g., variations in surface area, volume, incoherent shape723

deformation).724

Since our tracking approach is sequential and not relying on higher725

level deformation priors, we do not guarantee drift free track-726

ing. For purposes such as tracking extended performance capture727

recordings, dynamic body shape statistics and elastic deformation728

models could be incorporated to prevent accumulations of tracking729

errors. Nevertheless, our performance capture example did not ex-730

hibit any noticeable drifts when propagating the texture from the731

first frame to the end despite the drastic topology variations and732

large deformations in the input data.733

Future Directions We wish to explore several directions to re-734

solve the aforementioned limitations. To expand the applicability735

of our approach, it would be desirable handle non-closed mani-736

fold such as dynamic 3D scans obtained from a single view sensor.737

The ability to parameterize dynamic surface with varying topology738

would also allows us to design novel texture synthesis strategies739

and extend our fine-scale wave simulation to not only use topol-740

ogy information to spawn waves. In particular, our method has741

the potential to use arbitrary criteria to introduce or remove wave742

energies which opens the door for improved artistic controls for dy-743

namic surface textures. We believe that our tracking framework can744

also serve as tool for accurate validations of physical models used745

in fluid simulations when processing data captured from the phys-746

ical world. Finally, with the increasing availability of 3D sensing747

technologies, we plan to investigate its effectiveness for the analysis748

and collection of human motions without templates.749
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