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Abstract We prove upper and lower bounds on the ground-state energy of the ideal
two-dimensional anyon gas. Our bounds are extensive in the particle number, as for
fermions, and linear in the statistics parameter α. The lower bounds extend to Lieb–
Thirring inequalities for all anyons except bosons.

Keywords Intermediate quantum statistics · Magnetic interaction · Ideal anyon gas ·
Lieb-Thirring inequality
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1 Introduction

The behavior of quantum mechanical systems of particles depends sensitively on the
geometry of the space in which the particles may move. In particular, dimension-
ality plays a significant role, and it is a geometric fact that only two fundamental
types of identical particles naturally occur in three-dimensional space—bosons and
fermions, fromwhose basic statistical propertiesmany collective quantum phenomena
follow.More exotic possibilities of quantum statistics may be realized by confining the
particles’ motion and thereby effectively lowering the dimensionality. In two spatial
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dimensions, which we will be concerned with here, the richer topology allows for a
family of hypothetical quantum particles known as anyons.

Recall that the state of a quantum system of N particles is described in terms of a
Schrödinger wave function,� : (R2)N → C, whose amplitude |�(x)|2 represents the
probability density of finding the particles at positions x = (x1, . . . , xN ), x j ∈ R

2.
If the particles are indistinguishable, one must impose that the density is symmetric
under particle exchange, i.e.,

|�(x1, . . . , x j , . . . , xk, . . . , xN )|2 = |�(x1, . . . , xk, . . . , x j , . . . , xN )|2, j �= k.

This leaves the possibility for an exchange phase:

�(x1, . . . , x j , . . . , xk, . . . , xN ) = eiαπ�(x1, . . . , xk, . . . , x j , . . . , xN ), j �= k.
(1.1)

In the case of bosons (α = 0) or fermions (α = 1), one has eiαπ = ±1, so that a double
exchange is trivial. However, by clarifying in topological terms what exactly should be
meant by the exchange (1.1) (say a simple counterclockwise continuous exchange of
two particles), it is possible to allow for any phase eiαπ ∈ U (1) or statistics parameter
α ∈ R, thereby defining a system of anyons.1 Such possibilities have been known
since the 1970s and have been studied extensively in the physics literature during the
following decades, with notable proposals for concrete realizations and applications,
such as for quasi-particles in the fractional quantumHall effect, rotating cold quantum
gases, as well as for future prospects of quantum information storage and computation.
We refer to [3,7,9–11,13,23,29–33] for reviews.

Mathematically, anyons can be realized by viewing � as a multi-valued function
or a section of a complex line bundle over a nontrivial configuration manifold, an
approach known in the literature as the anyon gauge picture [4]. Alternatively, one can
start with the usual quantum-mechanics setup, taking the familiar bosons or fermions
as a reference system, and adding to these magnetic interactions of Aharonov–Bohm
type [22,24,26]. Here we shall follow this latter approach, known as the magnetic
gauge picture.

Many basic questions concerning the behavior of many-particle systems of anyons
have remained open since their discovery. This is true even for ideal anyons, i.e.,
particleswithout any interactions in addition to the ones forced by statistics.While non-
interacting bosons and fermions admit a description solely in terms of the spectrum and
eigenstates of the corresponding one-body problem, allowing for the properties of the
ideal quantumBose andFermi gases to beworkedout easily, anyonswith 0 < α < 1do
not admit such a simplification and must be treated within the full many-body context.
Even their ground-state properties are thus difficult to determine. In contrast, recall
that ideal bosons at zero temperature display complete Bose–Einstein condensation
into a single one-body state of lowest energy, while fermions are distributed over the
N lowest one-body states to satisfy the Pauli exclusion principle, leading in particular
to the extensivity of the fermionic ground-state energy.

1 More precisely, these are abelian anyons. Non-abelian anyons may be defined by replacing complex
phase factors by unitary matrices [9,30].
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We show in this work that the ground-state energy of the ideal anyon gas has a
similar extensivity as the one for fermions, for all values of α except for zero (i.e.,
bosons). In fact, we shall derive upper and lower bounds that interpolate linearly in α

between bosons at α = 0 and fermions at α = 1. This improves on previous results
which only applied to particular rational values ofα. Viawell-knownmethods, our new
bounds imply that also the celebrated Lieb–Thirring inequality holds for all anyons
except for bosons.

2 Model and main results

In the magnetic gauge formulation, the kinetic energy operator for N ideal (i.e., point-
like) anyons in R

2 with statistics parameter α ∈ R is given by2

T̂α :=
N∑

j=1

D2
j ,

with the magnetically coupled momenta

Dj := −i∇x j + αA j , A j :=
N∑

k=1
k �= j

(x j − xk)−⊥,

where

x−⊥ := x⊥

|x|2 = (−y, x)

x2 + y2
for x = (x, y) ∈ R

2 ,

is the magnetic potential of an Aharonov–Bohm flux of magnitude 2π at the origin,
satisfying curl x−⊥ = 2πδ0(x). Since we demand that α = 0 represents bosons in
accordance with (1.1), we take the N -particle Hilbert space to be H = L2

sym(R2N ),

the permutation-symmetric square-integrable functions. The operators Dα = (Dj )
N
j=1

and T̂α then act as unbounded operators onH and, because of the singular nature of the
vector potentialsA j /∈ L2

loc, some care is needed to properly define their domains. One
can in fact show [26, Theorem 5] that on R

2N the minimal and maximal realizations
of Dα coincide and hence induce a natural form domain DN

α = dom(Dα) ⊂ H for
the kinetic energy T̂α . This choice is then taken to model ideal anyons. Indeed α = 0
yields free bosons, while α = 1 corresponds to fermions, with their domains being the
Sobolev spaces DN

0 = H1
sym, dom(T̂0) = H2

sym and DN
1 = U−1H1

asym, dom(T̂1) =
U−1H2

asym, respectively. Here, the unitary map U : L2
sym/asym → L2

asym/sym,

(U�)(x1, . . . , xN ) :=
∏

1≤ j<k≤N

z j − zk
|z j − zk |�(x1, . . . , xN ), z j := x j + iy j ,

2 We choose units such that h̄ = 1 = 2m, with m the particle mass.
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transforms bosons with attached unit magnetic flux into free fermions, and vice versa.
In general, the gauge equivalence

Dα+2n = U−2nDαU
2n, DN

α+2n = U−2nDN
α , n ∈ Z,

with U 2n : H → H, implies that the entire spectrum of T̂α is 2Z-periodic in α. It is
also symmetric under the reflection α 	→ −α, by complex conjugation � 	→ �̄. Note
that these properties are all in line with the periodicity of the exchange phase (1.1). In
particular, it suffices to consider the case 0 ≤ α ≤ 1 only, which we will do from now
on.

When restricting to finite domains� ⊂ R
2 the operator T̂α and its spectrumdepends

on the choice of boundary conditions. We may naturally define a Neumann realization
via the nonnegative quadratic form

〈�, T̂�,N
α �〉 =

N∑

j=1

∫

�N
|Dj�|2, � ∈ DN

α ,

and a Dirichlet realization T̂�,D
α by considering the same form for � ∈ DN

α with
compact support in �. In particular, let us define the Neumann ground-state energy
for N anyons on a domain � ⊂ R

2 as

EN
N (α;�) := inf spec T̂�,N

α = inf

⎧
⎨

⎩

N∑

j=1

∫

�N
|Dj�|2 : � ∈ DN

α ,

∫

�N
|�|2 = 1

⎫
⎬

⎭

and likewise for the Dirichlet ground-state energy ED
N (α;�) = inf spec T̂�,D

α .
For the special case of � equal to the unit square Q0 = [0, 1]2, we will drop � in

the notation for simplicity, and simply write EN
N (α) and ED

N (α), respectively. Note
that for a general square Q ⊂ R

2, we have

EN/D
N (α; Q) = |Q|−1EN/D

N (α), (2.1)

due to the homogeneous scaling property of Dα . In particular, in the thermody-
namic limit N → ∞, |Q| → ∞ with the density ρ = N/|Q| of the gas kept
fixed, the energy per particle is equal to ρ times an α-dependent constant, given by
limN→∞ N−2EN/D

N (α).
The case α = 1 corresponds to ideal fermions, where the ground state energy is

obtained by simply adding up the N lowest eigenvalues of the one-body operator,
i.e., the Laplacian −�

N/D
Q0

. From the Weyl asymptotics, one obtains

EN/D
N (1) = 2πN 2 + o(N 2) as N → ∞.
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On the other hand, for ideal bosons, i.e., α = 0,

EN
N (0) = 0 and ED

N (0) = 2π2N ,

which equals N times the infimum of the spectrum of the Laplacian −�
N/D
Q0

. In the
case 0 < α < 1 of proper anyons, there is no simplification to a one-body problem,
however; the system must be treated as a fully interacting many-body system.

Our main result is to show that for anyons with 0 < α < 1 and confined to the
unit square, EN/D

N (α) ∼ N 2, as in the fermionic case, with a prefactor that is of
order α both in the upper and lower bounds. In this sense, the ideal anyon gas behaves
fermionic, for any α > 0. Since ED

N (α) ≥ EN
N (α), it is natural to derive an upper

bound on ED
N (α) and a lower bound on EN

N (α).
Our main result is as follows:

Theorem 2.1 (Bounds for the ideal anyon gas) There exist constants 0 < C1 ≤ C2 <

∞ such that for any 0 ≤ α ≤ 1,

C1αN
2
(
1 − O(N−1)

)
≤ EN

N (α) ≤ ED
N (α) ≤ C2αN

2 + O(N ) as N → ∞.

(2.2)
Moreover, in the limit α → 0,

lim inf
N→∞

EN
N (α)

N 2 ≥ π

4
α
(
1 − O(α1/3)

)
. (2.3)

These results should be compared with previous results in [12] and [25], respec-
tively. In [25] the upper bound

ED
N (α)/N 2 ≤ 2π2 + O(N−1/2) independently of α

was derived (the constant was not made explicit however). In [12, Theorem 1.5],
lower bounds were given utilizing methods developed in [24–26] to bound the anyon
interaction in terms of an effective pair interaction, which is of long range and has
a coupling strength that depends on number-theoretic properties of α. Namely, for
rational α of the form of a reduced fraction α = μ/ν with μ, ν ∈ N, ν ≥ 2 and μ

odd, one defines α∗ := 1/ν, and α∗ := 0 otherwise. Note that α∗ > 0 if and only if α

is an odd-numerator rational. The result of [12, Theorem 1.5] is that

lim inf
N→∞

EN
N (α)

N 2 ≥
{
C̃1α∗ for some constant C̃1 > 0
πα∗

(
1 − O(α

1/3∗ )
)

as α∗ → 0.

While our lower bound (2.3) is weaker by a factor 4 for small α if α = α∗, it is valid
for all α, not just odd-numerator rationals.

Theorem 2.1 answers a question raised in [24,25] whether for α∗ = 0 (and α �= 0)
the energy EN/D

N (α) could be of lower order in N than the one for fermions or anyons
with α∗ > 0. It shows that the behavior of the ground-state energy is fermionic, for
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any α �= 0. However, it still leaves open the possibility that the exact energy in the
thermodynamic limit may be smaller around even-numerator rational α than around
α with relatively large α∗, i.e., odd-numerator rationals with small denominator. In
particular, it is not knownwhether it depends smoothly, or even continuously, on α.We
refer to [1,2,20,21,25] for further discussion on the α-dependence of the ground-state
energy.

The improved lower bounds in Theorem 2.1 can be used to show the validity of a
Lieb-Thirring inequality for anyons on the full space R2, extending the result derived
in [24]. Originally, Lieb and Thirring considered fermions in the context of stability
of interacting Coulomb systems [15,16] (see also [14]), and proved a uniform bound
for the kinetic energy of any fermionic many-body wave function � in terms of an
L p-norm of its one-body density, defined as


�(x) := N
∫

R2(N−1)
|�(x, x2, . . . , xN )|2

∏

k≥2

dxk, (2.4)

(in fact, p = 2 in two dimensions) thereby combining the uncertainty and Pauli
exclusion principles of quantum mechanics into a single powerful bound. In [24,
Theorem 1], an inequality of this type was proved to hold for anyons in case α∗ > 0,
with a quadratic dependence onα∗, andwas later improved in [12, Theorem 1.6] where
a linear dependence in α∗ was obtained. Here we extend these results to all anyons
except for bosons, i.e., any 0 < α ≤ 1.

Theorem 2.2 (Lieb–Thirring inequality for ideal anyons) There exists a constant C >

0 such that for any 0 ≤ α ≤ 1, N ≥ 1 and � ∈ DN
α

N∑

j=1

∫

R2N
|Dj�|2 ≥ Cα

∫

R2

�(x)2 dx .

One simple consequence of Theorem 2.2 concerns the ground-state energy of T̂α +
V̂ , where V̂ (x1, . . . , xN ) := ∑N

j=1 V (x j ) for a one-body potential V : R2 → R. One
gets

inf spec
(
T̂α + V̂

)
≥ − 1

4Cα

∫

R2
V−(x)2 dx (2.5)

independently of N , where V− := max{−V, 0} denotes the negative part of V . Apply-
ing this, e.g., to V (x) = |x|2 − μ and optimizing over μ > 0 gives the lower bound
4
3N

3/2√Cα/π on the ground-state energy of the ideal anyon gas in a harmonic oscil-
lator potential.

The bound (2.5) may for example be applied in a physically relevant setting involv-
ing several species of charged particles subject to Coulomb interactions and confined
to a very thin two-dimensional layer. Taking one of the species of particles in the
layer to be anyons, as was previously considered in [26, Theorem 21], our result
proves that such a system is thermodynamically stable for any type of anyon except
for bosons. Our method of proof also clarifies that, at least in two dimensions, stability
is a consequence solely of the local two-particle repulsive properties of any of the
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component species, in the sense that all that is required is a strictly positive energy
EN
2 (α), generalizing the Pauli exclusion principle.

3 Upper bounds

A key tool for obtaining upper bounds is to use the fact that interactions between par-
ticles with wave functions supported on disjoint sets can be gauged away, as described
in [25]. In fact, we have the following subadditivity property for the Dirichlet energy
ED
N (α;�) on a general domain � ⊂ R

2.

Lemma 3.1 (Subadditivity) If �1 and �2 are disjoint and simply connected subsets
of R2, then

ED
N1+N2

(α;�1 ∪ �2) ≤ ED
N1

(α;�1) + ED
N2

(α;�2)

for any 0 ≤ α ≤ 1 and N1, N2 ≥ 1.

Proof Let �1(x1, . . . , xN1) be a function inD
N1
α supported on �

N1
1 , and similarly for

�2 supported on �
N2
2 . As a trial state for the N1 + N2 particle problem, we can take

�(x) = S
[
�1(x1, . . . , xN1)�2(xN1+1, . . . , xN1+N2)

∏

1≤ j≤N1<k≤N1+N2

e−iαφ jk

]

where

φ jk = arg
z j − zk
|z j − zk | , z j := x j + iy j , (3.1)

and S denotes symmetrization. The phase factor φ jk is a priori only defined modulo
2π , but can be chosen in a smooth way for z j ∈ �1, zk ∈ �2 due to our assumptions
on these domains. A simple calculation shows that

N1+N2∑

j=1

∫

(�1∪�2)
N1+N2

|Dj�|2 =
N1∑

j=1

∫

�
N1
1

|D′
j�1|2 +

N2∑

j=1

∫

�
N2
2

|D′′
j�2|2

where D′
j = −i∇ j + α

∑
1≤k≤N1, k �= j (x j − xk)−⊥ and likewise for D′′

j (involving
only the particles in �2). The claimed bound readily follows. ��

The following lemma gives an upper bound on ED
N (α) that is linear in α for small α.

It is restricted to small particle number, however. The bound follows from a calculation
using a trial state similar to the one introduced by Dyson in [5] to obtain an upper
bound on the ground-state energy of the hard-sphere Bose gas.

Lemma 3.2 (Upper bound à la Dyson) If 8παN < 1, then

ED
N (α) ≤ 2π2N + 9π

2
N (N − 1)α

1 + ( 4
3

)3
20π(N − 2)α

(1 − 8παN )2
. (3.2)
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Furthermore, if 2παN < 1 then

EN
N (α) ≤ 2πN (N − 1)α

1 + 20
3 π(N − 2)α

(1 − 2παN )2
. (3.3)

Proof We choose as a trial state a real-valued function �, in which case

N∑

j=1

∫

QN
0

|Dj�|2 =
N∑

j=1

∫

QN
0

(|∇ j�|2 + α2|A j |2�2), (3.4)

which is the energy of an N -body Bose gas with two- and three-body interactions of
the form

N∑

j=1

|A j |2 =
N∑

j=1

∑

k �= j

∑

l �= j

(x j − xk)−⊥ · (x j − xl)−⊥

=
∑

j �=k

|x j − xk |−2 +
∑

j �=k �=l �= j

(x j − xk)−⊥ · (x j − xl)−⊥.

It is well known that the minimum of the right side of (3.4) over all functions � is
the same as the one over only bosonic � (see, e.g., [14, Corollary 3.1]), hence we
may choose a � that is not permutation-symmetric. In particular, we can use a Dyson
ansatz [5,17,18] of the form

�(x1, . . . , xN ) =
N∏

j=1

ϕ(x j ) f (x j − y j (x j ; x1, . . . , x j−1)) (3.5)

where we take ϕ(x) = 2 sin(πx) sin(πy) to be the L2-normalized ground state
of the Dirichlet Laplacian on Q0, f is a nonnegative radial function bounded by
1, and y j (x j ; x1, . . . , x j−1) denotes the nearest neighbor of x j among the points
{x1, . . . , x j−1}. A straightforward generalization of the calculation in [5,17,18] leads
to the upper bound

ED
N (α) ≤ ‖�‖−2

N∑

j=1

∫

QN
0

(|∇ j�|2 + α2|A j |2�2)

≤ 2π2N + N (N − 1)‖ϕ‖44
∫
R2 |∇ f |2 + α2

∫
B | f (x)|2|x|−2

(
1 − N‖ϕ‖2∞

∫
R2(1 − f 2)

)2

+ N (N − 1)(N − 2)‖ϕ‖4∞
2
3

(∫
R2 f |∇ f |)2 + α2

(∫
B | f (x)|2|x|−1

)2
(
1 − N‖ϕ‖2∞

∫
R2(1 − f 2)

)2 ,

assuming that the term in parentheses in the denominators is strictly positive. Here
B denotes the ball of radius

√
2 centered at the origin. Note that ‖ϕ‖44 = 9/4 and

‖ϕ‖2∞ = 4. We shall choose
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f (x) = min
{(

|x|/√2
)α

, 1
}

in which case
∫

R2
|∇ f |2 = α2

∫

B
f (x)2|x|−2 = πα

as well as

∫

R2
f |∇ f | = α

∫

B
f (x)2|x|−1 =

√
8πα

1 + 2α
and

∫

R2
(1 − f 2) = 2πα

1 + α
.

This leads to the claimed upper bound (3.2).
The same strategy can be used to obtain the upper bound (3.3) on the Neumann

energy EN
N (α). In this case, one simply chooses ϕ = 1 in (3.5). ��

A combination of Lemmas 3.1 and 3.2 leads to the following result, which imme-
diately implies the upper bound claimed in (2.2) in Theorem 2.1.

Proposition 3.3 (Global upper bound) There exists a constant C > 0 such that for
any 0 ≤ α ≤ 1 and any N ≥ 1 we have

ED
N (α) ≤ C

(
N + αN 2

)
.

Proof We shall divide the unit square Q0 into disjoint smaller boxes and place a fixed
number n ≥ 1 particles in each box. More precisely, we divide Q0 into M2 smaller
boxes (squares) {Qq}M2

q=1 of side length M−1, with M = �(N/n)1/2�. We place n
particles into as many boxes as possible, and fewer than n in the remaining ones, if
necessary. Denoting the number of particles in Qq by nq , and using the subadditivity
in Lemma 3.1 as well as the scaling property (2.1), we obtain

ED
N (α) ≤ M2

M2∑

q=1

ED
nq (α). (3.6)

We shall distinguish three cases. First, if 16πα ≥ 1, we shall use (3.6) for n = 1.
Since ED

1 (α) = 2π2, we obtain

ED
N (α) ≤ 2π2M2N ≤ 2π2N

(
N 1/2 + 1

)2
.

In the opposite case 16πα < 1, we shall choose n such that 8παn < 1, in which case
we can apply the bound of Lemma 3.2 to ED

nq (α), and obtain

ED
N (α) ≤ M2

(
2π2N + 9π

2
Nnα

1 + ( 4
3

)3
20πnα

(1 − 8παn)2

)
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2532 D. Lundholm, R. Seiringer

using nq ≤ n on each box. Now if also 16παN < 1, we take n = N , i.e., M = 1,
and obtain

ED
N (α) ≤ 2π2N + 2πN 2α

(
9 + 80

3

)
.

Finally, if 16πα < 1 and 16παN ≥ 1, we take n = � 1
16πα

� so that 16παn ≤ 1. Then
M ≤ �(32παN )1/2� ≤ 3

2 (32παN )1/2, hence

ED
N (α) ≤ 72παN 2

(
2π2 + 9

8
+ 10

3

)
.

This completes the proof of the proposition. ��

4 Lower bounds

As in [12,24–26], the key ingredient in the strategy to obtain lower bounds is to
first prove a lower bound for the local Neumann energy that is linear in the particle
number N . By splitting the original domain suitably, one may then lift such a bound
to one that is quadratic in N . This method and local bound, referred to as a “local
exclusion principle”, goes back to the way Dyson and Lenard incorporated the Pauli
exclusion principle for fermions in their original proof of stability of matter [6], and
was further developed in [24,26–28] for interacting bosonic gases and in [8] for a
model of fermions with point interactions.

4.1 Preliminaries

We start by recalling some of the previously obtained lower bounds which shall also
turn out to be useful in deriving the new bounds. The simplest one is the usual dia-
magnetic inequality which is also valid for anyons [26, Lemma 4] and tells us that
their kinetic energy is always at least as big as the one of bosons:

Lemma 4.1 (Diamagnetic inequality) For any 0 ≤ α ≤ 1, N ≥ 1, � ⊂ R
2 and

� ∈ DN
α one has the inequality

N∑

j=1

∫

�N
|Dj�|2 ≥

N∑

j=1

∫

�N

∣∣∇ j |�|∣∣2.

Next we consider a certain analog of Lemma 3.1 for the Neumann energy, where
subadditivity becomes superadditivity.

Lemma 4.2 (Superadditivity) For K ≥ 2, let {�q}Kq=1 be a collection of disjoint,

simply connected subsets of R2. For �n ∈ N
K
0 with

∑
q nq = N, let 1�n denote the
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Fermionic behavior of ideal anyons 2533

characteristic function of the subset ofR2N where exactly nq of the points {x1, . . . , xN }
are in �q , for all 1 ≤ q ≤ K. Let

W (x1, . . . , xN ) :=
∑

�n

K∑

q=1

EN
nq (α;�q)1�n(x1, . . . , xN ). (4.1)

With � := ∪q�q , we have

N∑

j=1

∫

�N
|Dj�|2 ≥

∫

�N
W |�|2 (4.2)

for any � ∈ DN
α . In particular,

EN
N (α;�) ≥ min

�n

K∑

q=1

EN
nq (α;�q). (4.3)

Proof We start by noting that if x j ∈ � for all 1 ≤ j ≤ N , then 1 =∑
�n 1�n(x1, . . . , xN ). Moreover, for any given �n, we can further divide the support

of 1�n into sets corresponding to a labeling of what particles are in what subset. Specif-
ically, for any � ∈ DN

α

N∑

j=1

∫

�N
|Dj�|2 dx =

∑

{Ak }

K∑

q=1

∫

(�\�q )N−|Aq |

∑

j∈Aq

∫

�
|Aq |
q

|Dj�|2 dxAq dxAc
q
,

where the sum runs over all partitions of the particles into the sets �q , i.e., over
collections of disjoint subsets Ak ⊆ {1, 2, . . . , N } such that |A1| + · · · + |AK | = N .
We have introduced the notation dxA = ∏

j∈A dx j . Note that, for given q, all the
particles with labels in Aq are located in �q , while the others are located in �\�q .
The interaction of particles inside and outside �q can then be gauged away, as in the
proof of Lemma 3.1, explicitly by writing �̃ = ∏

j∈Aq ,k∈Ac
q
eiαφ jk�, with φ jk defined

in (3.1):

∑

j∈Aq

∫

�
|Aq |
q

|Dj�|2 dxAq

=
∑

j∈Aq

∫

�
|Aq |
q

|D′
j �̃|2 dxAq ≥ EN|Aq |(α;�q)

∫

�
|Aq |
q

|�̃|2 dxAq ,

where D′
j = −i∇ j + α

∑
k∈Aq , k �= j (x j − xk)−⊥. Since |�̃| = |�| we thus arrive at

the desired lower bound (4.2). ��
With the aid of the previous two lemmas, we can obtain the following bound, which

is an adaptation of [19, Proposition 2].
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2534 D. Lundholm, R. Seiringer

Lemma 4.3 (A priori bounds in terms of EN
2 (α)) For any 0 ≤ α ≤ 1 and N ≥ 3 we

have

EN
N (α) ≥ π2

(N
2

) ( 3
4

)N−2
EN
2 (α)

(
π + 4

√
EN
2 (α)

)2

+ EN
2 (α)

(N
2

) ( 3
4

)N−2
(4.4)

Proof Let us split Q0 into four equally large squares, Q0 = Q1 � Q2 � Q3 � Q4.
Lemma 4.2 implies that

N∑

j=1

∫

QN
0

|Dj�|2 ≥
∫

QN
0

W |�|2

with W defined in (4.1) (with K = 4 and �q = Qq for 1 ≤ q ≤ 4). If we keep only
the terms in (4.1) where nq = 2, we obtain the lower bound

W (x1, . . . , xN ) ≥ W2(x1, . . . , xN ) := 4EN
2 (α)

∑

�n

4∑

q=1

(nq = 2)1�n(x1, . . . , xN ),

where we have introduced the convenient notation (P) = 1 if the statement P is true
and (P) = 0 otherwise, and used the scaling property EN

2 (α; Qq) = 4EN
2 (α) for

1 ≤ q ≤ 4. The average value of W2 can be computed to be

∫

QN
0

W2 = EN
2 (α)

(
N

2

)(
3

4

)N−2

by counting the probability that exactly two particles are in a given square.
In order to estimate the expectation value of the potential W2 in a ground state �,

we borrow a bit of kinetic energy and use the diamagnetic inequality of Lemma 4.1.
That is, for arbitrary κ ∈ [0, 1] we write

T̂ Q0,N
α = κ T̂ Q0,N

α + (1 − κ)T̂ Q0,N
α ≥ κ T̂ Q0,N

α + (1 − κ)W2 .

The diamagnetic inequality then implies that

EN
N (α) = inf spec T̂ Q0,N

α ≥ inf spec
[
−κ�N

QN
0

+ (1 − κ)W2

]
,

with �N
QN
0
denoting the Neumann Laplacian on QN

0 . Consider the projection P0 :=
u0〈u0, ·〉 onto its normalized ground state u0 ≡ 1, and the orthogonal complement
P⊥
0 = 1 − P0, for which we have

−�N
QN
0

≥ π2P⊥
0 .
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Since W2 ≥ 0, the Cauchy–Schwarz inequality implies that

W2 = (P0 + P⊥
0 )W2(P0 + P⊥

0 ) ≥ (1 − ε)P0W2P0 + (1 − ε−1)P⊥
0 W2P

⊥
0 ,

for arbitrary ε ∈ (0, 1). We have

P0W2P0 = P0

∫

QN
0

W2 .

By using also the simple bound

P⊥
0 W2P

⊥
0 ≤ P⊥

0 ‖W2‖∞ ≤ P⊥
0 24EN

2 (α),

we obtain

−κ�N
QN
0

+ (1 − κ)W2 ≥
(
κπ2 − (1 − κ)(ε−1 − 1)24EN

2 (α)
)
P⊥
0

+ (1 − κ)(1 − ε)

(
N

2

)(
3

4

)N−2

EN
2 (α) P0.

The optimal choice of κ is to make the prefactors in front of the two projections on
the right side equal, i.e.,

κ =
24(ε−1 − 1)EN

2 (α)
[
1 + ε

(N
2

) 3N−2

4N

]

π2 + 24(ε−1 − 1)EN
2 (α)

[
1 + ε

(N
2

) 3N−2

4N

] .

This choice leads to the bound

EN
N (α) ≥ π2(1 − ε)

(N
2

) ( 3
4

)N−2
EN
2 (α)

π2 + 24(ε−1 − 1)EN
2 (α)

[
1 + ε

(N
2

) 3N−2

4N

] .

Optimizing over 0 < ε < 1 then yields the claimed bound. ��
Remark 4.4 Lemma 4.3 implies, in particular, that EN

N (α) is bounded below by a
strictly positive, N -dependent constant times EN

2 (α). In fact, by localizing the two
particles in different halves of the unit square Q0 (following the proof of Lemma 3.1),
one readily checks that EN

2 (α) ≤ 2π2 independently of α. Using this in the denomi-
nator in (4.4) leads to the simpler (but worse) bound

EN
N (α) ≥

(N
2

) ( 3
4

)N−2

(
1 + 4

√
2
)2 + 2

(N
2

) ( 3
4

)N−2
EN
2 (α).

123



2536 D. Lundholm, R. Seiringer

Note that while this gives a nonzero bound for all N ≥ 2, the constant appearing on
the right side is exponentially small as N → ∞. Moreover, from (3.3) we deduce that
EN
2 (α) ≤ 4πα(1 + O(α)) for small α, hence (4.4) implies that

EN
N (α) ≥

(
N

2

)(
3

4

)N−2

EN
2 (α)

(
1 − O(

√
α)

)

for small α.

As a final step in this subsection, we shall give a lower bound on EN
2 (α). The

following bound is actually contained in [12, Lemma 5.3].

Lemma 4.5 (Lower bound on EN
2 (α)) For ν > 0 let j ′ν denote the first positive zero

of the derivative of the Bessel function Jν , satisfying

√
2ν ≤ j ′ν ≤ √

2ν(1 + ν),

and j ′0 := 0 for continuity. There exists a function f : [0, ( j ′1)2] → R+ satisfying

t/6 ≤ f (t) ≤ 2π t and f (t) = 2π t
(
1 − O(t1/3)

)
as t → 0,

such that

EN
2 (α) ≥ f

(
( j ′α)2

)

holds for any 0 ≤ α ≤ 1.

In fact, the function f in Lemma 4.5 is defined as

f (t) := 1

2
sup

κ∈(0,1)
inf∫

Q2
0

|ψ |2=1

∫

Q2
0

(
κ
(|∇1|ψ |∣∣2 + ∣∣∇2|ψ |∣∣2)

+ (1 − κ)t
1Bδ(X)

(r)

δ(X)2
|ψ |2

)
dx1dx2,

where Br denotes the ball of radius r centered at the origin, and

r = (x1 − x2)/2, X = (x1 + x2)/2, δ(x) := dist(x, ∂Q0) .

Note that in combination with the upper bound (3.3) of Lemma 3.2, Lemma 4.5
determines the two-particle energy for small α:

Proposition 4.6 For the 2-anyon Neumann energy

EN
2 (α) = 4πα

(
1 + O(α1/3)

)
as α → 0. (4.5)
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Remark 4.7 The bound in [12, Lemma 5.3] is actuallymore general thanwhat is stated
here. It gives a lower bound, for any N ≥ 2, in terms of the ‘fractionality’ of α [24,
Proposition 5] defined as

αN := min
p∈{0,1,...,N−2}min

q∈Z |(2p + 1)α − 2q|, α∗ = inf
N≥2

αN = lim
N→∞ αN .

Note that α2 = α for 0 ≤ α ≤ 1. One has, in fact, for any α ∈ R and N ≥ 1 the
bound

EN
N (α) ≥ f

(
( j ′αN

)2
)
(N − 1)+ .

For α∗ > 0, the right side grows linearly in N .

4.2 New bounds

Our improved lower bounds are due to the following lemma, which utilizes the scale
invariance of the problem:

Lemma 4.8 (N -linear bound in terms of few-particle energies) For any 0 ≤ α ≤ 1
and N ≥ 2 we have

EN
N (α) ≥ N

4
min

{
EN
2 (α), EN

3 (α), EN
4 (α)

}
. (4.6)

Proof Without loss of generality we can assume N ≥ 5, since for N ∈ {2, 3, 4} the
bound (4.6) trivially holds. We may also assume α > 0, so that EN

N (α) > 0 for all
N ≥ 2 by Lemmas 4.3 and 4.5. Let us proceed similarly as in the proof of Lemma 4.3
and split Q0 = Q1 � Q2 � Q3 � Q4 into four equally large squares. The bound (4.3)
together with the scaling property (2.1) implies

EN
N (α) ≥ 4min

�n

4∑

q=1

EN
n j

(α).

For any partition �n of the N particles into the four squares there must be at least
one square with at least N/4 particles. Dropping the other terms, we thus obtain the
recursive bound

EN
N (α) ≥ 4 min

k=�N/4�,...,N EN
k (α). (4.7)

Let us define, for k ≥ 0,

ek := min
n=4k+1,4k+2,...,4k+1

EN
n (α),

and observe that by (4.7)

ek ≥ 4 min
n=4k+1,...,4k+1

min
p=�n/4�,...,n E

N
p (α) ≥ 4 min

n=4k−1+1,...,4k+1
EN
n (α) = 4min{ek−1, ek}
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for any k ≥ 1. Then, since ek > 0 for all k, we have

ek ≥ 4ek−1 ≥ · · · ≥ 4ke0.

Finally, writing any N ≥ 5 uniquely as N = 4k + l with 1 ≤ l ≤ 3 · 4k , we have
k ≥ 1, N ≤ 4k+1, and

EN
N (α) ≥ ek ≥ 4ke0 ≥ N

4
e0,

with e0 = min{EN
2 (α), EN

3 (α), EN
4 (α)}. This proves the statement of the lemma. ��

The previous lemma gives a lower bound on EN
N (α) that is linear in N , at least for

N ≥ 2, for all α > 0. The following bound (which also appeared in slightly different
formulations in the earlier works; see [8,12,19]) lifts any linear growth in the particle
number N to a quadratic one.

Lemma 4.9 (Quadratic bounds) If there exists an integer k ≥ 1 and a function c(α) ≥
0 such that EN

N (α) ≥ c(α)(N − k)+ for all N ≥ 1, then in fact

EN
N (α) ≥ c(α)

N 2

4k

(
1 − O(k/N )

)
as N → ∞.

Proof Given an integer K ≥ 1, we split Q0 into K 2 disjoint and equally large squares
{Qq}K 2

q=1, and associate with any L
2-normalized symmetric wave function� the prob-

abilities

pn(q) :=
(
N

n

)∫

(Qc
q )N−n×Qn

q

|�|2

of finding exactly n particles on a square Qq . Lemma 4.2 implies that

N∑

j=1

∫

QN
0

|Dj�|2 ≥
K 2∑

q=1

N∑

n=0

EN
n (α; Qq) pn(q) = K 2

K 2∑

q=1

N∑

n=0

EN
n (α) pn(q)

≥ K 2
K 2∑

q=1

N∑

n=0

c(α)(n − k)+ pn(q) = c(α)K 4
N∑

n=0

(n − k)+γn,

where the average distribution of particle numbers γn := K−2 ∑K 2

q=1 pn(q) satisfies

N∑

n=0

γn = 1 and
N∑

n=0

nγn = N/K 2 =: ρQ,
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the expected number of particles on any square. Hence, by convexity of x 	→ (x−k)+,

N∑

j=1

∫

QN
0

|Dj�|2 ≥ c(α)K 4

(
N∑

n=0

nγn − k

)

+
= c(α)N 2ρ−2

Q (ρQ − k)+.

In order to maximize the right side, the optimal choice of K would be such as to make
ρQ = 2k, in which case the desired bound would be obtained exactly. However, we
have to take into account the constraint that ρQ = N/K 2 with K ∈ N. Thus, taking
K := �√N/(2k)� we obtain

2k

(1 + √
2k/N )2

≤ ρQ ≤ 2k

and

EN
N (α) ≥ c(α)

N 2

4k

(
2(1 + √

2k/N )2 − (1 + √
2k/N )4

)

+ ,

which proves the lemma. ��
The proof of the lower bounds of Theorem 2.1 now follows in a straightforward

manner. For any α ∈ R and N ≥ 2, we have by Lemma 4.8

EN
N (α) ≥ c(α)N with c(α) := 1

4
min

{
EN
2 (α), EN

3 (α), EN
4 (α)

}
. (4.8)

In particular,
EN
N (α) ≥ c(α)(N − 1)+ (4.9)

for all N ≥ 1, and therefore by Lemma 4.9

EN
N (α) ≥ c(α)

4
N 2(1 − O(N−1)

)

for large N .
From Lemma 4.3, one can deduce that

c(α) ≥ 1

4
min{EN

2 (α), 0.147} (4.10)

where the number 0.147 is really the positive root of (π + 4
√
x)2 + 9

4 x = 9
4π

2, i.e.,

x = π2 877 − 96
√
69

5329
≈ 0.147.

In combination with Lemma 4.5 and (4.5), this concludes the proof.
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4.3 Lieb–Thirring inequality

Finally, we explain how the above bounds lead to improvements in the local exclusion
principle and thus the Lieb–Thirring inequality introduced for anyons in [24]. Namely,
define for any L2-normalized N -anyon wave function � ∈ DN

α and domain � ⊆ R
2

the local kinetic energy on �

T�
α [�] :=

N∑

j=1

∫

RdN
|Dj�|2 1�(x j ) dx1 · · · dxN ,

where 1� denotes the characteristic function of �. Applying the bound (4.8)–(4.9) as
in [24, Lemma 8] we then obtain the following:

Lemma 4.10 (Local exclusion principle) For any square Q ⊂ R
2, any N ≥ 1 and

L2-normalized � ∈ DN
α with one-particle density ρ� (defined in (2.4)), we have

T Q
α [�] ≥ c(α)

|Q|
(∫

Q

�(x) dx − 1

)

+
,

where c(α) := 1
4 min

{
EN
2 (α), EN

3 (α), EN
4 (α)

}
satisfies (4.10).

By applying the method of [24] (see also [20] for a more detailed exposition),
replacing [24, Lemma 8] by the above bound and using (4.10) and Lemma 4.5, one
directly obtains the Lieb–Thirring inequality of Theorem 2.2 for some universal con-
stant C > 0.
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