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� We characterize a density-dependent game theoretical dynamics.

� Payoffs determine carrying capacities of phenotypes.
� We demonstrate similarities and differences between our framework and the classical approach.
� For certain parameter combinations, limit cycles can emerge.
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The basic idea of evolutionary game theory is that payoff determines reproductive rate. Successful
individuals have a higher payoff and produce more offspring. But in evolutionary and ecological
situations there is not only reproductive rate but also carrying capacity. Individuals may differ in their
exposure to density limiting effects. Here we explore an alternative approach to evolutionary game
theory by assuming that the payoff from the game determines the carrying capacity of individual
phenotypes. Successful strategies are less affected by density limitation (crowding) and reach higher
equilibrium abundance. We demonstrate similarities and differences between our framework and the
standard replicator equation. Our equation is defined on the positive orthant, instead of the simplex, but
has the same equilibrium points as the replicator equation. Linear stability analysis produces the classical
conditions for asymptotic stability of pure strategies, but the stability properties of internal equilibria can
differ in the two frameworks. For example, in a two-strategy game with an internal equilibrium that is
always stable under the replicator equation, the corresponding equilibrium can be unstable in the new
framework resulting in a limit cycle.

& 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction

Evolutionary game theory studies frequency dependent selection.
The fitness values of different phenotypes are not constant but depend
on the frequencies of phenotypes in the population (Hofbauer and
Sigmund, 1988, 1998, 2003; Maynard Smith, 1982; Nowak, 2006;
Traulsen et al., 2007; Weibull, 1997). Reproductive success is often a
linear function of the frequencies. The coefficients in this function are
the entries of the payoff matrix. Evolutionary game theory was
introduced as a framework for studying animal behavior (Maynard
r Ltd.

k).

Open access under CC BY license.
Smith, 1979; Maynard Smith and Price, 1973), but in the meanwhile
has been extended to awide array of applications ranging fromviruses
to humans (Archetti and Scheuring, 2011; Bshary et al., 2008; Damore
and Gore, 2012; Doebeli and Knowlton, 1998; Dreber et al., 2008;
Dugatkin and Reeve, 1998; Fowler and Christakis, 2010; Fu et al., 2008;
Helbing, 2011; Milinski, 1987; Nowak et al., 2010; Ostrom, 1990;
Pfeiffer et al., 2001; Rand et al., 2009; Rockenbach and Milinski,
2006; Turner and Chao, 1999; Wedekind and Milinski, 2000). There is
much fruitful interaction between evolutionary and economic game
theory (Alger and Weibull, 2010; Berger, 2011; Bergstrom et al., 1986;
Binmore, 1994; Camerer, 2003; Cressman, 2003; Fudenberg and Tirole,
1991; Harsanyi and Selten, 1988; Nowak et al., 2004; Osborne and
Rubinstein, 1994; Samuelson, 1997; Sigmund, 2010; Sigmund et al.,
2010; Skyrms, 1996; Weibull, 1997). Constant selection, which is a
special case, describes how populations adapt on constant fitness
landscapes (see for example Eigen and Schuster, 1977). In evolutionary
game theory the fitness landscape changes as the population moves
over it (Nowak and Sigmund, 2004).
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The standard approach for studying deterministic evolutionary
game dynamics in infinitely large, well-mixed populations is the
replicator equation (Hofbauer et al., 1979; Hofbauer and Sigmund,
1988; Taylor and Jonker, 1978; Zeeman, 1981). The basic assumption
is that the payoff from the game determines the reproductive rate of
individuals. The total population size is held constant by a variable
death rate. The replicator equation for n strategies is given by

_yi ¼ yiðf i−f Þ i¼ 1;…;n: ð1Þ

Here, yi is the frequency of strategy i and _yi is the time derivative of
this quantity. The payoff of strategy i is f i ¼∑n

j ¼ 1aijyj. The coefficients
aij∈R are the entries of the n�n payoff matrix with aij denoting the
payoff for strategy i when interacting with strategy j. The average
payoff of the population is f ¼∑n

j ¼ 1f jyj. We have ∑n
i ¼ 1yi ¼ 1 at all

times. Thus, the replicator equation is defined on the simplex Sn. The
interior of the simplex and all its faces are invariant under the
replicator dynamics.

Hofbauer and Sigmund (1988) proved that a replicator equation
for n strategies is equivalent to a Lotka–Volterra equation for n−1
species, thereby proving an interesting link between evolutionary
game theory and a fundamental equation of theoretical ecology
(May, 1973; Okubo and Levin, 2002).

An important consideration in ecological models is density
limiting effects. Reproductive rates can depend on population size.
A typical idea is that the reproductive rates decline as the
population size increases. In the game-theoretical context, this
concept was studied in, e.g., Cressman (1990a), Cressman (1990b),
Cressman (1992), Cressman and Dash (1987), and Cressman and
Garay (2003)). In this paper, we focus on a concrete case of
density-dependent growth functions where the payoff from the
game affects the susceptibility of individuals to density limiting
effects. The association between payoff and density limitation
seems entirely natural: successful individuals (with high payoff)
may be stronger in fighting off competitors, may be more resistant
to adverse effects of crowding, may thrive on lower energy supply,
or may be more efficient in utilizing resources for reproduction.

We propose to study the evolutionary dynamics of the follow-
ing equation:

_xi ¼ rixi 1−
xT
Ki

� �
i¼ 1;…;n: ð2aÞ

Here, xi is the abundance of strategy i and _xi is its time derivative.
The total population size, xT ¼∑n

i ¼ 1xi, is not constant, the para-
meters ri40 denote the net reproductive rates of phenotype i in
the absence of density limitation, and Ki describes the carrying of
capacity phenotype i. We assume that the ri parameters are
constant, while the Ki parameters depend on the frequencies and
the payoffs as follows:

Ki ¼ ∑
n

j ¼ 1
aij

xj
xT

: ð2bÞ

Note that yj ¼ xj=xT is the frequency of strategy j in the population.
Similar to before, aij40 is the payoff for strategy i versus j, but we
require these values to be positive such that the Ki can be
interpreted as carrying capacities.

In our system, we want to separate growth rates (at low abun-
dance) and carrying capacities (equilibrium abundances); the payoff
from the game only affects the latter, but not the former. In addition,
the ri values do not affect equilibrium abundances. Furthermore, the
dynamics given by Eqs. (2) has the property that, in isolation,
phenotype i has carrying capacity aii40, and — since ri40 — that
all trajectories are driven away from zero, so the population does not
go extinct. In the following, we will call the origin, xi¼0 for all i, the
trivial equilibrium of Eqs. (2). All other equilibria will be denoted
as non-trivial equilibria. Monomorphic equilibria are equilibria with
exactly one strategy present, i.e., exactly one xi is positive, and internal
equilibria have all strategies present, i.e., xi40 for all i.

Our main results are as follows:
1.
 We show that the equilibria and the stability conditions of the
monomorphic equilibria in the new model, Eqs. (2), coincide to
those of the well-known replicator equation dynamics, Eq. (1),
apart from the additional, trivial equilibrium xi¼0 for all i,
which is unstable.
2.
 For two strategies (n¼2) with equal growth rates (r1 ¼ r2) we
show that, along with the equilibria and the stability conditions
of the monomorphic equilibria, the stability analysis of the
internal equilibrium also coincides with the replicator equation
dynamics.
3.
 For two strategies with unequal growth rates (r1≠r2), the
analysis differs from the replicator equation dynamics. While
the equilibria and the stability conditions of the monomorphic
equilibria are the same, the stability analysis of the internal
equilibria is different. For example, in a two-strategy game with
an internal equilibrium that is always stable in the replicator
equation, the corresponding equilibrium can be unstable in our
new framework resulting in a limit cycle. Furthermore, we
present a complete characterization of the stability analysis for
the two-strategy case based on the trace and the determinant
of the Jacobian at the internal equilibrium.
2. Equilibria and stability conditions of monomorphic
equilibria

In this section, we consider the model described by Eqs. (2) for n
strategies and show that the equilibrium densities do not depend
on the growth rates ri. Furthermore, strategy frequencies at non-
trivial equilibria and stability conditions of the monomorphic
equilibria are identical to those known from the replicator equation.
In particular, the stability conditions of the monomorphic equilibria
are independent of the growth rates ri.

Equilibria characterization. For the equilibria characterization,
we reformulate Eqs. (2) as

_xi ¼
ri
Ki

xiðKi−xT Þ i¼ 1;…;n: ð3Þ

We see from Eq. (3) that all strategies present at equilibrium have
the same payoff, i.e., Ki ¼ xT for every strategy i with non-zero
abundance. Thus, at equilibrium all payoffs are equal to the
average payoff, which is the exact same condition as for the
replicator equation. Therefore, the number of non-trivial equilibria
and the relative strategy frequencies at equilibrium are identical
for both dynamics, Eqs. (1) and (2). In particular, equilibrium
values are independent of ri.

Stability of monomorphic equilibria. We now show that the
linear stability conditions for monomorphic equilibria are identical
to those known from the replicator equation (and hence, inde-
pendent of ri). A monomorphic equilibrium is given by Ei ¼ aiiei,
where ei is the i-th unit vector. With only one strategy present (i.e.,
n¼1), E1 is a stable population size for the one-dimensional
dynamics Eqs. (2). The Jacobian matrix at Ei is a triangular matrix,
hence its eigenvalues can be read from its diagonal. The j-th
diagonal entry, and thus the j-th eigenvalue, is given by

−ri if j¼ i;

−rj
aii
aji
−1

� �
if j≠i:

8><
>: ð4Þ

The i-th eigenvalue reflects the fact that Ei is a stable population
size if only strategy i is present. The remaining eigenvalues assert
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that strategy j cannot invade at Ei if aii4aji. Therefore, Ei is
asymptotically stable if aii4aji for all j≠i.

We summarize our results in the following theorem.

Theorem 1 (Equilibria and stability of monomorphic equilibria). Con-
sider the evolutionary dynamics for n≥2 strategies given by Eqs. (2):
(i)
Fig.
(b),
The number of non-trivial equilibria and the relative strategy
frequencies at any non-trivial equilibrium are identical to those
known from the replicator equation.
(ii)
 The monomorphic equilibrium xi40, xj¼0 for j≠i, is asymptoti-
cally stable if aii4aji for every strategy j≠i.
Note that Maynard Smith defined an evolutionarily stable
strategy (ESS) of a game as “a strategy such that, if all the members
of a population adopt it, no mutant strategy can invade” (Maynard
Smith, 1982). His definition is stationary in the sense that it is
based on a payoff matrix and hence is independent of any
dynamics. If PðS1; S2Þ denotes the payoff of strategy S1 against
strategy S2, then Sn is evolutionarily stable if

PðSn; SnÞ4PðS; SnÞ or
PðSn; SnÞ ¼ PðS; SnÞ and PðSn; SÞ4PðS; SÞ

for all strategies S different from Sn. In particular, this definition
contains the case where the linearization around equilibria has
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1. Phase portraits of classical games with r1 ¼ r2 ¼ 1. In the Prisoners' dilemma, (a),
the two strategies coexist. The Stag hunt game, (c), is bistable. The dashed lines in
vanishing eigenvalues and includes invasion by mixed strategies.
Therefore, we only deal with asymptotic stability of equilibria of
our dynamics, Eqs. (2).

It can be shown that every ESS is an asymptotically stable
equilibrium of the replicator equation, Eq. (1). Conversely, not every
asymptotically stable equilibrium is an ESS. For games with density
dependent payoffs, aij ¼ aijðxT Þ, the notion of a density dependent
evolutionarily stable strategy (DDESS) exists (Cressman, 1990a,b)
and has been extended to nonlinear payoff functions (Cressman,
1988). Similarly to the density-independent case, there is a strong
relationship between a DDESS and an asymptotically stable equili-
brium of the dynamics _xi ¼ xif iðxT Þ, where f iðxT Þ ¼∑n

j ¼ 1aijðxT Þxi=xT .
However, our model is structurally different since payoffs deter-
mine carrying capacity instead of reproductive rate. A characteriza-
tion of evolutionarily stable strategies for our dynamics, Eqs. (2),
will be considered in future work.
3. Two strategies with equal growth rates

In this section, we consider the case of two strategies with
equal growth rates. We first illustrate the result of Theorem 1 in
this special case below. Set n¼2, r1 ¼ r2 ¼ r, and write the payoff
matrix as A¼ ð ac bd Þ. Then, solving for internal equilibria produces

x̂1 ¼
ðd−bÞðad−bcÞ
ða−c þ d−bÞ2

; x̂2 ¼
ða−cÞðad−bcÞ
ða−cþ d−bÞ2

;

3 4
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strategy 2 (defection) dominates strategy 1 (cooperation). In the Hawk–Dove game,
(b) and (c), given by x2=x1 ¼ ða−cÞ=ðd−bÞ, are invariant under the dynamics.
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x̂T ¼ K1 ¼ K2 ¼
ad−bc

a−c þ d−b
:

Thus, ŷ1 ¼ x̂1=x̂T ¼ ðd−bÞ=ða−c þ d−bÞ. From Theorem 1, we con-
clude that the monomorphic equilibrium with only strategy
1 present is asymptotically stable if a4c, or a¼c and b4d, and
similarly for strategy 2. It is easy to see that the internal
equilibrium exists if a≠c, d≠b, and sgnða−cÞ ¼ sgnðd−bÞ. Straightfor-
ward linear stability analysis shows that it is an attractor if this
sign is negative. Because there is an invariant line connecting the
trivial equilibrium (0,0) with the internal equilibrium, we can
exclude the existence of limit cycles and hence the attractor is
global. The system is bistable for a−c40 and d−b40. Therefore,
equilibrium frequencies and stability conditions in that case match
those from the replicator equation (Hofbauer and Sigmund, 1998).

Another simple calculation shows that for any given Δ∈ð0; ∞Þ,
the per-capita growth rate _yi does not change its sign along the
line x2 ¼Δx1 and equals zero along x2=x1 ¼ ða−cÞ=ðd−bÞ; thus, the
line connecting the origin (0,0) with the internal fixed point (given
its existence) is invariant. This indicates that the two-dimensional
dynamics can be projected on one dimension without losing the
essential information—indeed, the dynamics for the frequencies
reduces to the one-dimensional problem

_y1 ¼ y1y2ðK1−K2ÞC1: ð5Þ
The expression C1 ¼ rxT=ðK1K2Þ is always positive; the standard
replicator equation corresponds to the case C1≡1. Therefore, Eq. (5)
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Fig. 2. Phase portraits of classical games with r1 ¼ 1 and r2 ¼ 2. The payoff values and th
hunt game are the same as in Fig. 1. However, the trajectories are different and the das
behaves exactly like a replicator equation apart from the fact that the
speed of the trajectories is modified by the influence of population
density xT. Consequently, phase portraits behave as expected, see
Fig. 1. In the Prisoners' dilemma, defection wins over cooperation
(Fig. 1a), in the Hawk–Dove game, the two strategies coexist (Fig. 1b),
and in the Stag hunt game, the system is bistable (Fig. 1c).

Theorem 2 (Two strategies with equal growth rates). Consider the
evolutionary dynamics given by Eqs. (2) for n¼2 strategies with
r1 ¼ r2. In addition to the statements in Theorem 1, the stability
conditions for the internal equilibrium are identical to those from the
replicator equation. The projection of the dynamics on strategy
frequencies, Eq. (5), exhibits the same equilibria and stability condi-
tions as the replicator equation dynamics, Eq. (1).

Note that it is standard to rewrite any system of the form
_xi ¼ xiFiðx1;…; xnÞ in terms of frequencies and total population size
(Hofbauer and Sigmund, 1998), i.e., to split up the dynamics into
evolutionary and ecological dynamics (Cressman and Garay, 2003).
The expression Eq. (5) is the evolutionary component of our
dynamics, Eqs. (2). The ecological component reads

_xT ¼ xT ∑
2

i ¼ 1
ryi 1−

xT
Ki

� �
;

but can be omitted since it does not critically influence the
frequency dynamics. This is not so straightforward in the case of
3 4
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e qualitative behavior in (a) Prisoners' dilemma, (b) Hawk–Dove game, and (c) Stag
hed lines in (b) and (c), given by x2=x1 ¼ ða−cÞ=ðd−bÞ, are not invariant as in Fig. 1.
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more strategies or unequal growth rates ri≠rj, as we will see in the
following section.
4. Two strategies with unequal growth rates

In this section we consider the general case of two strategies,
n¼2, but the growth rates r1 and r2 are not equal. By the results of
Section 2, we know that the equilibria and the stability conditions
of monomorphic equilibria coincide with the well-known repli-
cator equation. We will focus on the stability of internal equilibria
and present a complete characterization of the stability analysis
which shows a contrast as compared to the replicator equation.
4.1. The effect of different growth rates

In the general case, when the growth rates are different (r1≠r2)
the picture is different from the special case of equal growth rates
considered in Section 3. As shown in Section 2, equilibria and
stability conditions of monomorphic equilibria remain unchanged,
independent of r1 and r2. Nevertheless, we cannot reduce our
model to a single equation as we did in Section 3 (to Eq. (5)), since
the sign of the change in strategy frequencies depends on the
absolute population size. In other words, the relative per-capita
growth rate, _yi, can change its sign along straight lines, x2 ¼ κx1
(κ40), as can be seen in Fig. 2. Accordingly, the projection on
relative frequencies to obtain the evolutionary dynamics (Cressman
and Garay, 2003, see above) reveals an analogue of the replicator
equation with nonlinear payoffs that depend on the population
size xT

_yi ¼ y1y2 r1 1−
xT
K1

� �
−r2 1−

xT
K2

� �� �
:

As an example, consider a game with uniform payoffs, a11 ¼
a12 ¼ a21 ¼ a22 ¼ a. Then, every point on x1 þ x2 ¼ a is an equili-
brium, no matter how growth rates are chosen. For a¼10, r1 ¼ 50,
and r2 ¼ 1, the corresponding phase portrait is depicted in Fig. 3a. It
shows that even with very disparate growth rates the stability
properties of the pure equilibria cannot be changed in the degenerate
case aij≡const. Thus, the effect of a large discrepancy in growth rates
is neutral with respect to equilibria, but leads to nearly horizontal
trajectories in strategy density space, such that effectively only the
fast-growing strategy changes its abundance when the dynamics
converges to a continuum of equilibria. However, the slightest change
in payoffs breaks the symmetry, such that the curve of equilibria
collapses and the equilibrium with the higher payoff is approached,
see Fig. 3b. Trajectories move towards a slow manifold in a short
initial phase, during which strategy 2 hardly changes in abundance.
When population size is saturated, the difference in growth rates
becomes effective, such that strategy 1 is able to out-compete
strategy 2 (compare the concepts of r- and K-selection, MacArthur
and Wilson, 1967). Thus, even a highly increased growth rate cannot
make up for a slightly worse payoff in the long run.
4.2. The internal equilibrium

In this section, we consider the case that a unique internal fixed
point exists, i.e., the expressions a−c and d−b have the same sign
(it follows that the sign of ad−bc is the same as that of a−c and
d−b). Note that under the replicator equation, the internal fixed
point is the global attractor if a−co0 and d−bo0, and the system
is bistable if a−c40 and d−b40 (Hofbauer and Sigmund, 1998).

Notations: Characteristic polynomial of the Jacobian. For the
internal equilibrium, we calculate the characteristic polynomial,
g, of the Jacobian matrix at the internal fixed point, J

gðλÞ ¼ λ2−trðJÞ � λþ detðJÞ;
where the trace tr(J) and the determinant det(J) are as follows:

trðJÞ ¼−
ðd−bÞα1r1 þ ða−cÞα2r2
ða−c þ d−bÞðad−bcÞ ;

detðJÞ ¼ −
ða−cÞðd−bÞr1r2

ad−bc
;

where

α1 ¼ ad−bc þ ða−cÞðb−aÞ;
α2 ¼ ad−bc þ ðd−bÞðc−dÞ:

We omit the expression of the matrix J since it is not needed here and
its derivation is straightforward. According to the Routh–Hurwitz
criterion (Hurwitz, 1895; Routh, 1877), an internal equilibrium x̂ is
stable if trðJÞo0 and detðJÞ40. Obviously, detðJÞ40 if a−co0 and
d−bo0 (hence also ad−bco0). Therefore, the critical quantity is tr(J).

Analysis of tr(J). For a given payoff matrix, we interpret
trðJÞ ¼ trðJÞðr1; r2Þ as a function of the growth rates r140 and
r240. Straightforward calculations show that trðJÞð0;0Þ ¼ 0 and
the derivatives are

∂ trðJÞðr1; r2Þ
∂r1

¼ −
ðd−bÞα1

ða−c þ d−bÞðad−bcÞ ; ð6aÞ

∂ trðJÞðr1; r2Þ
∂r2

¼ −
ða−cÞα2

ða−c þ d−bÞðad−bcÞ : ð6bÞ

For fixed payoff values, these derivatives do not change their signs.
Furthermore, we calculate

∂ trðJÞðr1; r2Þ
∂r1

þ ∂ trðJÞðr1; r2Þ
∂r2

¼ −
bða−cÞ þ cðd−bÞ

ðad−bcÞ o0: ð7Þ

Thus, along the diagonal r1 ¼ r2, the function tr(J) is strictly
decreasing and therefore negative for r1 ¼ r240.

For the analysis of tr(J), we have the following cases:
�
 Case1: α140 and α240.
If sgnða−cÞ ¼ sgnðd−bÞ ¼ 1, then tr(J) is negative for every
choice of growth rates r1; r240. The case that sgnða−cÞ
¼ sgnðd−bÞ ¼ −1 cannot occur, since then both entries of
the gradient of tr(J), Eqs. (6), are positive, which contradicts
Eq. (7).
�
 Case2: α1α2o0.
If α1 and α2 have different signs, then the sign of tr(J)
depends on the choice of r1 and r2, i.e., there are pairs of
growth rates for which tr(J) has different signs. More
precisely the sign of

ðd−bÞα1r1 þ ða−cÞα2r2;
determines the sign of tr(J).
�
 Case3: α1o0 and α2o0.
The case that sgnða−cÞ ¼ sgnðd−bÞ ¼ 1 is not possible due to
an argument analogous to the one in Case 1. If
sgnða−cÞ ¼ sgnðd−bÞ ¼ −1, then tr(J) is negative for every
choice of growth rates r1; r240.

Overall, we have shown:

Proposition 1. Consider the evolutionary dynamics for n¼2 strate-
gies given by Eqs. (2) with the payoff matrix given by A¼ ð ac bd Þ, such
that an internal fixed point x̂ exists, i.e., sgnða−cÞ ¼ sgnðd−bÞ. Then
the following assertions hold:
1.
 (Determinant). The sign of the determinant, det(J), of the char-
acteristic polynomial of the Jacobian at x̂ is independent of the
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Fig. 3. With very disparate growth rates, essentially only the fast-growing strategy changes its abundance until carrying capacity is reached. At carrying capacity, the
difference in growth rates becomes ineffective, such that the structure of the payoff matrix, A, determines the dynamics. (a) If all payoffs are the same,
a11 ¼ a12 ¼ a21 ¼ a22 ¼ 10, then the dotted line x1 þ x2 ¼ 10 is a continuum of equilibria. Thus, starting with an initial population composition, x1 remains more or less
constant and x2 adjusts such that carrying capacity is reached—given that x1 is not too low and x2 not too high, initially. (b) If the complete symmetry in the payoffs is broken,
a11 ¼ 9:9 and a12 ¼ a21 ¼ a22 ¼ 10, all trajectories move to a slow manifold (bold line) close to x1 þ x2 ¼ 10 relatively quickly. Trajectories are nearly horizontal since x1 grows
much faster than x2. At this manifold, they slowly converge to the global attractor (0,10), because the payoff configuration favors strategy 2.

S. Novak et al. / Journal of Theoretical Biology 334 (2013) 26–34 31
growth rates r1 and r2. If a−co0 and d−bo0, then det(J) is
positive, if a−c40 and d−b40, then det(J) is negative.
2.
 (Trace). Let α1 ¼ ad−bc þ ða−cÞðb−aÞ and α2 ¼ ad−bc þ ðd−bÞðc−dÞ.
Then, we have the following characterization:

(i) If α1α240, then the sign of tr(J), the trace of the char-
acteristic polynomial of the Jacobian at x̂, is negative,
independent of the growth rates r1 and r2 and

(ii) if α1α2o0, then
(a) trðJÞo0 if ðd−bÞα1r1 þ ða−cÞα2r240 and
(b) trðJÞ40 if ðd−bÞα1r1 þ ða−cÞα2r2o0.
Hence, the sign of tr(J) depends on the choice of r1 and r2.

4.3. Interpretation of the results

In this section we analyze the case of two strategies with
unequal growth rates and compare them to the dynamics of the
well-studied replicator equation, see Hofbauer and Sigmund
(1998). We will show the following:
�
 Case (i): a4c and dob (or vice versa).
There is no internal fixed point under the replicator
equation, strategy 1 (or strategy 2, in case of reversed
inequalities) dominates over the other strategy. The same
holds true for our model. All trajectories converge to the
respective boundary equilibrium.
�
 Case (ii): a4c and d4b.
Under the replicator equation, the system is bistable.
There is an unstable, internal fixed point and, depending
on the initial condition, one strategy dominates the other.
In our model, the same behavior can be observed, with
the internal equilibrium being a saddle point. Apart from
those starting on a separatrix connecting the origin with
the internal fixed point (which is a straight line for equal
growth rates r1 ¼ r2, see Section 3), all trajectories con-
verge to one of the boundary equilibria. This is indepen-
dent of the signs of α1 and α2, as argued below.
�
 Case (iii): aoc and dob.
Under the replicator equation, the internal fixed point is
asymptotically stable. In our model, the coexistence of
the two strategies is guaranteed, but the situation is more
complicated. The internal fixed point can lose stability
and stable limit cycles can emerge (see below for the
detailed analysis).
Detailed analysis. The fact that the trace of the Jacobian at the
internal fixed point is the sum of its eigenvalues

trðJÞ ¼ λ1 þ λ2;

and that its determinant is the product of its eigenvalues

detðJÞ ¼ λ1λ2;

allows for a more detailed analysis.
Analysis of Case (ii). In Case (ii), the determinant of the Jacobian

at the internal equilibrium, det(J), is negative by Proposition 1.
Hence, the eigenvalues of the Jacobian must have different signs
and, in particular, they must be real (otherwise, they would be
complex conjugates that have a positive product). Therefore, the
internal equilibrium is a saddle point; it is not necessary to
consider the trace tr(J) in this case.

Analysis of Case (iii) Assume that aoc and dob, such that the
determinant of the Jacobian at the internal fixed point, det(J), is
positive. Therefore, the real parts of the eigenvalues of J have the
same sign.
(a)
 If α1α240, then trðJÞo0 by Proposition 1 and hence both
eigenvalues of J have negative real parts. Hence, the internal
equilibrium is asymptotically stable.
(b)
 Now assume that α1 and α2 have different signs, α1α2o0.
D1: If ðd−bÞα1r1 þ ða−cÞα2r240, it is easy to see from the

expression of tr(J) that trðJÞo0. Since the trace of the
Jacobian is the sum of its eigenvalues, both eigenvalues
have negative real parts. Therefore, the internal equili-
brium x̂ is asymptotically stable.

D2: If ðd−bÞα1r1 þ ða−cÞα2r2o0, then trðJÞ40. Hence, both
eigenvalues of J have positive real parts and the internal
equilibrium x̂ is repelling.
When traversing from domain D1 into domain D2, both
eigenvalues simultaneously cross the imaginary axis and neither
vanishes, because det(J) is nonzero. Hence, a supercritical Hopf
bifurcation occurs (Kuznetsov, 2004), which leads to an attracting
limit cycle.
Example 1. An example of an attracting limit cycle is illustrated in
Fig. 4. Fig. 5 shows the real parts (solid) and imaginary parts
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Fig. 5. Eigenvalues of the internal equilibrium for a¼0.8, b¼10, c¼1, d¼9, r1 ¼ 1,
and r2∈ð1;5Þ. The real parts of the eigenvalues are depicted by the solid curves,
their imaginary parts by the dashed curves. Eigenvalues turn complex at r2≈2:01,
the Hopf bifurcation occurs at r2≈4:46.
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(dashed) of the eigenvalues along a path γðzÞ ¼ ðr1; zÞ. First, they
collide on the negative real axis and become complex, thereby
transforming the internal equilibrium into an oscillatory attractor.
Then, they cross the imaginary axis, turning the fixed point into a
repellor and creating a limit cycle. This example also shows that
indeed both scenarios, D1 and D2, are feasible: For instance, with
a¼0.8, b¼10, c¼1, d¼9, r1 ¼ 1 and r2 ¼ 2, the internal equilibrium
x̂≈ð1:94;0:39Þ is asymptotically stable, whereas with r2 ¼ 5, it is
repelling (see Fig. 4).
In summary, we characterized the system of Eqs. (2) for two

strategies:
Theorem 3 (Characterization for n¼2). Consider the evolutionary
dynamics for n¼2 strategies given by Eqs. (2), let the payoff matrix be
A¼ ð ac bd Þ and define

α1 ¼ ad−bc þ ða−cÞðb−aÞ;
α2 ¼ ad−bc þ ðd−bÞðc−dÞ:
Then, the dynamics can be characterized as follows:

(i)
Fig. 4
trajec
curve
They
If either aoc and d4b, or a4c and dob, then there is no
internal fixed point; one strategy dominates the other.
(ii)
 If a4c and d4b, then the internal fixed point is a saddle point;
the system is bistable.
(iii)
 If aoc and dob, then the system is permanent, i.e., no strategy
becomes extinct. There are two possibilities:
(a) α1α240: The internal equilibrium is asymptotically stable

for every choice of growth rates r140 and r240.
(b) α1α2o0:

D1: If ðd−bÞα1r1 þ ða−cÞα2r240, the internal equilibrium is
asymptotically stable.

D2: If ðd−bÞα1r1 þ ða−cÞα2r2o0, the internal equilibrium is
a repellor and there is a stable limit cycle.

Both cases, D1 and D2, can occur, as demonstrated in
Example1.
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5. An alternative model

Our results derived in this paper, Proposition 1 and Theorems
1–3, are not unique to the proposed model, Eqs. (2). Consider the
system

_xi ¼ xi
βi

1þ ηixT
−1

� �
i¼ 1;…;n: ð8aÞ
0 1 2 3
0

2

4

6

8

0

x1

rtrait of Eqs. (2) for a¼0.8, b¼10, c¼1, d¼9, r1 ¼ 1, and r2 ¼ 5. All
verge to an attracting limit cycle. Two exemplary trajectories (bold
near the monomorphic equilibria (0.8,0) and (0,9), were simulated.
a stable limit cycle around the internal equilibrium.
The parameters βi41 denote the birth rates of phenotype i in the
absence of density limitation, death rates have been normalized to
1 for all strategies, and ηi describes the effect of density limitation
on phenotype i. We assume that the βi parameters are constant,
while the ηi parameters depend on frequencies and payoffs as
follows:

ηi ¼
βi−1
Ki

; ð8bÞ

where, as before, Ki ¼∑n
j ¼ 1aijxj=xT . Note that Eqs. (8) is analogous

to Eqs. (2) for a specific choice of density and payoff dependent
growth rates.

For this model, the precise same statements from Theorems
1–3 and Proposition 1 can be derived, and the phase portraits are
very similar (results not shown). It is surprising that the conditions
on the payoff values are identical for both models. In particular,
the reappearance of the expressions α1 and α2, and the exact same
conditions on their signs are worth noting. There is, however, a
difference in the growth rate pairs that lead to limit cycles. For
Eqs. (8) with aoc, dob, and α1α2o0, the separatrix in
β1�β2�space, dividing configurations which exhibit limit cycles
from those that do not, is given by a nonlinear equation (compare
Case 2 in Section 4.2). Appendix A presents a more detailed
analysis of this alternative model.

Overall, it is interesting to see that our results are not specific to
a single model, and that games affecting carrying capacity can lead
to unexpected behavior, namely the destabilization of internal
equilibria.
6. Conclusion

The dominant assumption of evolutionary game theory of the
last 40 years was that payoff affects reproductive rate: successful
individuals are faster at producing offspring. But this is not the only
possibility. In ecological and evolutionary processes there are other
aspects of competition; an important one is density limitation.

In this paper we have studied a simple model, where the payoff
from the game affects the exposure to density limiting effects.
Successful individuals are less susceptible to density limitation.
They thrive at larger population size, may be better at fighting off
competitors, may resist the adverse affects of crowding, and may
be able to grow more efficiently on lower food and energy supply.
This extension of evolutionary game theory seems entirely natural
and should have consequences that will affect both stochastic and
spatial games (Antal et al. (2009a,b), Hauert et al., 2008; Imhof
and Nowak, 2010; Killingback and Doebeli, 1996; Nowak and May,
1992; Nowak et al., 2004; Ohtsuki et al., 2006; Perc, 2009; Santos
et al., 2006; Szabó and Fath, 2007; Tarnita et al., 2009; Van Veelen
et al., 2012). In particular, it can be seen as an implementation of
carrying capacity into the replicator dynamics. The comparison of
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different implementations, including exogenously fixed carrying
capacities, will be considered for future work.

Here we have explored a deterministic, non-spatial system. We
have found interesting similarities with the traditional replicator
equation, but also important differences. For each non-trivial
equilibrium of our equation there exists a corresponding equili-
brium for the replicator equation, where each strategy has the
same frequency and the same payoff. The linear stability condi-
tions of pure strategies are the same for the two frameworks, but
the stability conditions of internal equilibria can vary. Using our
equation for a game where two strategies coexist, the internal
equilibrium can become unstable resulting in limit cycles if the
two strategies differ in their intrinsic reproductive rates.
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Appendix A. Technical supplement

The model Eqs. (8) can be reformulated as

_xi ¼ xiðβi−1Þ
Ki−xT

Ki þ ðβi−1ÞxT
:

From this, it is obvious that the equilibria are identical to those
from Eqs. (2). The Jacobian matrix at Ei ¼ aiiei is triangular, its
diagonal entries being

−
bi−1
bi

if j¼ i;

−
ajiðbj−1Þ

aji þ aiiðbj−1Þ
aii
aji
−1

� �
if j≠i;

8>>><
>>>:
where the expressions ðbi−1Þ=bi and ajiðbj−1Þ=ðaji þ aiiðbj−1ÞÞ are
positive. Hence, comparison to Eq. (4) shows that the linear
stability conditions of the monomorphic equilibria are identical
for the two models, Eqs. (2) and (8).

For two strategies and equal birth rates, β1 ¼ β2 ¼ β, the
projection on strategy frequencies is

_y1 ¼ y1y2ðK1−K2ÞC2:

Since C2 ¼ ðβðβ−1ÞxT Þ=½ð1þ η1xT Þð1þ η2xT ÞK1K2� is positive, the
exact same conclusions from Section 3 hold true. If the growth
rates are different, the projection is

_y1 ¼ y1y2
β1K1

K1 þ ðβ1−1ÞxT
−

β2K2

K2 þ ðβ2−1ÞxT

� �
:

Again, this can be interpreted as an analogue of the replicator
equations with nonlinear payoffs that depend on population size xT.

For the stability analysis of the internal equilibrium, we obtain
for the characteristic polynomial of the Jacobian at the internal
fixed point, ~J

gðλÞ ¼ λ2−trð~J Þ � λþ detð~J Þ;
where

trð~J Þ ¼−
ða−c þ d−bÞ½bða−cÞ þ cðd−bÞ�β1β2−ða−cÞα2β1−ðd−bÞα1β2

ða−cþ d−bÞðad−bcÞβ1β2
;

detð~J Þ ¼−
ða−cÞðd−bÞðβ1−1Þðβ2−1Þ

ðad−bcÞβ1β2
;

with α1 ¼ ad−bc þ ða−cÞðb−aÞ and α2 ¼ ad−bcþ ðd−bÞðc−dÞ. In
analogy to Section 4.2, the critical quantity is trð~JÞ, which we
interpret as a function of β1 and β2. Obviously, trð~JÞð1;1Þ ¼ 0. The
gradient of trð~J Þ is given by

∂ trð~JÞðβ1; β2Þ
∂β1

¼ −
ðd−bÞα1

ða−cþ d−bÞðad−bcÞβ21
;

∂ trð~JÞðβ1; β2Þ
∂β2

¼ −
ða−cÞα2

ða−cþ d−bÞðad−bcÞβ22
;

and along the diagonal, β1 ¼ β2 ¼ β, we have

∂ trðJÞðβ; βÞ
∂β1

þ ∂ trðJÞðβ; βÞ
∂β2

¼−
bða−cÞ þ cðd−bÞ

ðad−bcÞβ2 o0:

Thus, we recover the exact same cases as in Section 4.2; hence,
Proposition 1, and therefore also Theorem 3 hold for Eqs. (8) with
modified domains D1 and D2.
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