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Abstract: In many social situations, individuals endeavor to find the single best possible
partner, but are constrained to evaluate the candidates in sequence. Examples include the
search for mates, economic partnerships, or any other long-term ties where the choice
to interact involves two parties. Surprisingly, however, previous theoretical work on
mutual choice problems focuses on finding equilibrium solutions, while ignoring the
evolutionary dynamics of decisions. Empirically, this may be of high importance, as
some equilibrium solutions can never be reached unless the population undergoes radical
changes and a sufficient number of individuals change their decisions simultaneously. To
address this question, we apply a mutual choice sequential search problem in an evolutionary
game-theoretical model that allows one to find solutions that are favored by evolution. As
an example, we study the influence of sequential search on the evolutionary dynamics of
cooperation. For this, we focus on the classic snowdrift game and the prisoner’s dilemma
game.

Keywords: mutual choice; sequential search; optional interactions; partner choice;
evolutionary game theory; evolution of cooperation

1. Introduction

The problem of mutual choice was first introduced in the economic literature by [1], who studied how
to pair students with colleges so that the preference of both sides would be satisfied. Their framework,
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further developed in [2–7], assumes that there exists a sort of central processor that carries out the pairing.
In natural populations, and often in human societies, however, the pairing of individuals happens in a
more decentralized and random fashion [8]. For example, the composition of the employee-employer
pair who end up concluding a contract depends on who happens to read the job advertisement and in
which order the applicants come for the interview. To account for this, theoretical work on sequential
and random encounters has been developed and applied to mutual choice problems, such as mate
choice [9–14] and labor markets [15–18]. The main focus in sequential search problems, either with
mutual or one-sided choice (e.g., female choice only) is to find decision rules that determine the
acceptance or rejection of possible partners in such a way that no individual is better off by changing its
rule. Thus, if the search season is finite, individuals must find a balance between waiting for a beneficial
interaction by rejecting unfavorable ones, while not waiting too long so as not to remain without a partner
and no payoff [19–24]. However, if the choice is mutual, the model is not a mere optimization problem,
and so, there may be multiple solutions [12]. The drawback here is that there is no way of knowing which
solution populations will actually reach, if any. That is, we may be able to calculate what individuals
should do, but we do not know the solution followed by evolution.

On the other end of the spectrum, we have evolutionary game theory, which has been specifically
developed to address evolutionary properties of decisions (e.g., whether to cooperate or defect).
However, even though previous work has explored various forms of optional interactions and partner
choice, particularly in the theory of the evolution of cooperation [25–32], trade-offs arising from
sequential search problems have not been studied. In this paper, we address this issue by embedding
a mutual choice sequential search problem to an evolutionary game-theoretical framework, and look for
decisions that are favored by evolution. Moreover, we investigate how such social situations affect the
evolution of cooperation.

We assume that all individuals are one of two types, cooperators or defectors, where each individual
is equipped with a decision rule that dictates throughout the search season whether an encountered
individual will be accepted or rejected for an interaction. The search season is assumed to consist
of discrete time steps, or rounds, such that at each round, all individuals are being paired. Once an
interaction is mutually accepted the interacting individuals drop out of the game pool and will not be
available for future rounds. We look for decisions that are favored by evolution and study, on the one
hand, how costs are associated with the search process and, on the other hand, how mistakes in evaluating
the type of the opponent influence the results. For analytical results, we work out an example where we
consider a search season with two rounds and give conditions for which we find unique, multiple or no
stable dynamic equilibria, in which case, an evolutionary cycling occurs. Furthermore, similarly to the
previous work on optional interactions and partner choice, we find that the option to refuse an interaction
always favors cooperators. Interestingly, if the search for new opponents is considered to be costly, high
levels of cooperation may evolve even in the prisoner’s dilemma, where for obligatory interactions,
defection yields the highest payoff. This is because discriminated defectors have to on average search
longer for an accepted interaction than cooperators and, thus, pay higher costs associated with search.
However, mistakes in evaluating the type of opponent favor defection, because even if defectors are being
discriminated against, they may be accepted by mistake.
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2. The General Model

Consider an infinitely large and well-mixed population where each individual is either a cooperator
(C) or a defector (D). In every generation, each individual is about to enter a maximum of
M ∈ N+ rounds, such that at each round, individuals are pitted against each other and given
a choice to interact. Encountered players are said to interact if they both decide to accept an
offer from each other, in which case their search for new opponents is terminated, and they
receive a strictly positive payoff according to a payoff matrix (see the section below). If,
however, at least one of the two individuals decides not to interact, i.e., she declines the offer
from the opponent, both will move to the next round and will be randomly assigned a new
opponent. If an individual declines all of the offers or if she will be declined, she will receive
a zero payoff. In every generation, all individuals thus participate in at most one interaction
(i.e., play at most one one-shot game). The frequency distribution of the next generation is updated
based on the payoffs received in the parent generation.

2.1. Payoffs

Individuals that engage in an interaction, i.e., accept an offer from each other) receive a payoff
according to their types: if at least one of the two interacting individuals is a cooperator, a benefit 2b

is produced and shared equally (b for each player). A cooperator pays a cost c for his cooperation, which
is divided if both individuals are cooperators, in which case each pays c

2
. Defectors do not pay costs,

but if both individuals are defectors, then no benefit is produced. In addition, we assume that playing a
game, even if against an unfavorable opponent, is more beneficial than remaining without an opponent.
We implement this by considering an additional payoff u (see, e.g., [31]) so that all individuals that play
a game receive a strictly positive payoff. For example, we may think of interactions that themselves have
a value, such as offspring production. Clearly, individuals that produce offspring, even with a defector,
are better off than when not reproducing at all.

By setting c = kb, where k describes how many times the cost of cooperation is greater than the
benefit, we recover the snowdrift game (SD) for 0 < k < 1 ( i.e., 0 < c < b) and the prisoner’s dilemma
(PD) for 1 < k < 2 (i.e., b < c < 2b). The payoff matrix for an accepted game is thus:

C D

C R S

D T P

where T = b, R = b(1− 1
2
k), S = b(1−k), P = 0, with the additional payoff u, so that all the payoffs are

strictly positive. Finally, entering each new round may be costly (e.g., the cost of search), and therefore,
a will be subtracted per each entered (not necessarily accepted) round. Throughout the paper, we will
use k as our main model parameter.
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2.2. Decisions, Types and Strategies

For both games, SD and PD, the ideal opponent is a cooperator (i.e., R > S and T > P ), and so
the best decision, for both types C and D, is to always accept an opponent of type C. The question is
therefore in which rounds an encountered type D should be accepted for the payoff to be maximized.
This is not trivial for two reasons. First, there is a trade-off between interacting with an encountered
type D in the current round and the costs associated with waiting to encounter type C in future rounds.
Second, since interacting individuals drop out of the game pool, the frequency distribution and hence the
expected payoff may change throughout the search season. Therefore, an individual may want to accept
(decline) type D in one round, but decline (accept) him in the next.

A decision may be represented as a vector, where each entry is either zero or one, depending on
whether in that round an opponent of type D is rejected or accepted, respectively. If M is the maximum
number of rounds, then the maximum number of decisions in the population is Ns = 2M . We may
therefore write the complete set of decisions as:

Q = {q1, . . . , qNs}, (1)

where qj = (qj1 , . . . , qjM ) ∈ Q, 1 ≤ j ≤ Ns, is a decision vector and where each element qji is either
a zero or one ( i.e., say no or yes, respectively, to an encountered D) at round 1 ≤ i < M . Each
individual possesses a decision vector, and we will denote with Ci = Cqi and Dj = Dqj types C and D,
respectively, who use decisions qi, qj ∈ Q. We call Ci, Dj strategies that individuals are identified with,
and the set of all strategies we denote with S.

2.3. Expected Payoffs and Game Probabilities

Consider maximum M rounds per generation. The expected payoff per generation for strategies
Cj, Dj ∈ S may be written as:

ECj
= R

∑
qi∈Q

πCjCi
+ S

∑
qi∈Q

πCjDi
− anCj

, 1 ≤ j ≤ Ns (2a)

EDj
= T

∑
qi∈Q

πDjCi
+ P

∑
qi∈Q

πDjDi
− anDj

, 1 ≤ j ≤ Ns, (2b)

where nCj
, nDj

are the expected number of rounds that strategies Cj, Dj , respectively, have entered and
πCjCi

is the probability that strategy Cj will play against Ci. The expected number of rounds may be
expressed as:

nA = 1 · (1− rA,1) + 2 · rA,1(1− rA,2) + · · · =
M∑
i=1

(
i(1− rAi

)
i−1∏
j=1

rA,j

)
, A ∈ S, (3)

where rA,i is the probability that in round i, strategy A ∈ S does not play a game, that is strategy
A encounters an opponent who is either not going to be accepted by A and/or who would not accept
strategy A. We may write this as:
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rA,i =
∑
B∈S

pB,ivAB,i (4)

where pB,i is the frequency of B ∈ S in round i and vAB,i is the probability that in round i, upon an
encounter between A and B, either strategy A does not accept strategy B and/or B does not accept
strategy A (notice that vAB,i = vBA,i). This depends on the decision vector, but also on how accurately
an individual evaluates the type of opponent. This is model dependent and may, for example, be a
function of the reputation of the individuals type or the quality of the signal. In the next section, we
analyze a model where in each round, there is a fixed probability ε that a mistake is made in correctly
evaluating the type of the opponent (C vs. D). If there is a strictly positive probability ε > 0 that a
mistake is made, we say that the signal of the opponent is imperfect. We assume that the opponent’s
decision qi ∈ Q is unknown to the individual.

As indicated in Equation (4), frequencies of C and D change from round to round. This is because in
each round, some players may accept each other for an interaction and, thus, drop out of the game pool.
Since rA,i in Equation (4) can also be interpreted as the fraction of A in round i who enter round i + 1,
we can write the frequency of A ∈ S at round i+ 1, where 1 ≤ i < M , as:

pA,i+1 = pA,i
rA,i
p̄

(5)

where p̄ =
∑

B∈S pB,irB,i is the mean absolute frequency. We may now write out the probability that a
game is played between strategies A ∈ S and B ∈ S:

πAB = pB,1(1− vAB,1) + rA,1pB,2(1− vAB,2) + rA,1rA,2pB,3(1− vAB,3) + . . .

=
M∑
i=1

(
pB,i(1− vAB,i)

i−1∏
j=1

rA,j

)
.

(6)

2.4. Replicator Equation

We study the evolution of strategies A ∈ S by applying replicator equations:

ṗA = pA
(
EA − Ē

)
, A ∈ S, (7)

where the dot represents a time derivative, Ē =
∑

B∈S pBEB is the mean expected payoff and∑
A pA = 1. Notice, that the dynamical system Equation (7) is fully characterized by the functions

vAB,i. After vAB,i has been found, we can simply substitute it into Equations (2)–(6), and the system
Equation (7) is obtained. Furthermore, note that the frequencies at the start of each generation are the
frequencies in the first round of the game, i.e., pA = pA,1.

3. The Results

In this section, we look for (pure) strategies Ci, Dj , as well as their frequencies pCi
, pDj

that are
favored by evolution. We analyze the existence of strategies that are uninvadable (evolutionarily-stable
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strategies or ESS) or that can only be invaded by neutral drift. Since, in the latter case, no other strategy
has a selective advantage, i.e., strictly positive growth rate, we call it a best selective strategy (BSS).
Jointly with ESS, we call them best strategies. We define a best strategy solution as the frequency
distribution over a set of strategies, such that no deviation from this state increases individuals’ payoff.
In other words, when the population is at the best strategy solution, no individual is (strictly) better off by
changing its strategy. Note that this concept satisfies the conditions of a Nash equilibrium. Moreover, we
are interested whether choosy decisions ( i.e., decisions where individuals decline interactions) evolve,
which best strategy solution, if any, is reached and whether evolution increases the level of cooperation.

To facilitate the analytical treatment, we focus on generations with two rounds (M = 2). In the final
Section 4, we discuss what happens when this assumption is relaxed. Because every mutually-accepted
interaction yields a strictly positive payoff (see the payoff matrix in Section 2.1) and declined interaction
yields a zero payoff, then at least in the final round, all individuals should accept their opponent.
This reduces the number of decisions to only two decisions: either accept or decline a D at Round
1 and accept everyone at Round 2, i.e., q1 = (1, 1) and q2 = (0, 1). There are thus only four
strategies C(1,1), D(1,1), C(0,1) and D(0,1), and we write for short C1, D1, C0 and D0, respectively, so that
S = {C1, D1, C0, D0}. The dynamical model we will study is:

ṗC1 = pC1

(
EC1 − Ē

)
ṗD1 = pD1

(
ED1 − Ē

)
ṗC0 = pC0

(
EC0 − Ē

)
ṗD0 = pD0

(
ED0 − Ē

) (8)

with
∑

A pA = 1 and where the expected payoffs EA are obtained from Equation (2) by first calculating
vAB,i and then substituting this into Equations (3)–(6). Since, in the last round, everyone is accepted, we
have vAB,2 = 0, and for vAB,1, we find:

vC1C1 = 0

vC1C0 = ε

vC1D1 = 0

vC1D0 = ε

vD1C1 = 0

vD1C0 = 1− ε
vD1D0 = 1− ε
vD1D1 = 0

vC0C1 = ε

vC0C0 = 1− (1− ε)2

vC0D0 = 1− ε(1− ε)
vC0D1 = 1− ε

vD0C1 = ε

vD0C0 = 1− ε(1− ε)
vD0D0 = 1− ε2

vD0D1 = 1− ε

(9)

where vAB = vAB,1.
The best strategies are found by calculating the (dynamic) equilibria of system Equation (8) and

analyzing their stability. Asymptotically-stable equilibria are the uninvadable strategies (ESS), and
stable, but not asymptotically-stable equilibria are the best selective strategies (BSS). In our model,
all BSS are stable, but not asymptotically stable, because they form a (continuous) line of equilibria,
so that the dynamics is neutral in one direction of the phase plane, but asymptotically stable in all
other directions. We will denote equilibrium frequencies with p̂(·), such that, for example, p̂C1D0 =

(0, pC1 , pD0 , 0) denotes an equilibrium where only strategiesC1 andD0 have strictly positive frequencies.
If there is more than one equilibrium, we enumerate them.

To study whether an evolutionary trajectory converges to a particular best strategy solution, we
assume that a new strategy appearing in the population is a much rarer event than other demographic
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processes, such as strategy inheritance. We thus assume that the population settles at an attractor before
a new strategy is introduced into the population. An evolutionary trajectory is thus a sequence of
successful invasion events, which we simply call an invasion-substitution sequence. We assume that
each invasion-substitution sequence starts from a population where everyone uses non-choosy decisions
q1 = (1, 1). Since all individuals accept the first encountered interaction, we obtain as the initial state the
solutions of the one-shot snowdrift game and the prisoner’s dilemma: for the snowdrift game 0 < k < 1,
the initial frequency distribution is:

p̂C1D1 =

(
2

1− k
2− k

,
k

2− k

)
(10a)

and for the prisoner’s dilemma 1 < k < 2, it is:

p̂D1 = 1. (10b)

In Section 3.1, we analyze a basic model, which assumes no search costs and where the type of
opponent is evaluated correctly (a = 0, ε = 0). In Section 3.2, we relax the assumptions by considering
the effect of imperfect signals (ε > 0, with a = 0), and in Section 3.3, we consider the effect of search
costs (a > 0, with ε = 0). Lastly, in Section 3.4, we discuss the full model (ε > 0, a > 0). For all
models, we first find analytical conditions for choosy strategies C0 and D0 to invade a population that
uses only non-choosy decisions (see Equation (10)). If choosy strategies are not able to invade, the initial
state given in Equation (10) is the best strategy solution. Next, we find all of the (remaining) best strategy
solutions, and investigate to which best strategy solution invasion-substitution sequence converges. The
results are summarized in Figures 1–4, where each model has its own figure and where each panel gives
a simplex spanned by strategies in S with arrows that indicate the direction of the evolutionary dynamics.
In addition, we draw grey dashed arrows for each qualitatively different invasion-substitution sequence
that our model contains. See the captions, Sections 3.1–3.4 and the Appendix for further explanations
and discussions.

3.1. (A) The Basic Model

In the basic model, we suppose that entering a new round is not costly, a = 0, and that the type of
the opponent (C vs. D) is evaluated correctly, ε = 0. This model can be fully analyzed analytically.
Figure 1 summarizes the results (see Appendix for the full analysis).

Our general finding is that if the benefit from mutual cooperation is high enough (parameter k is
not too large), optional interactions favor choosy decisions. This is because by rejecting encountered
defectors in the first round, choosy individuals have a chance to interact with a cooperator in the
second round. For the snowdrift game, the payoff matrix favors choosy cooperators over choosy
(and non-choosy) defectors, and so, cooperation is the winning strategy. In the prisoner’s dilemma,
choosy defectors do better than choosy cooperators, and so, defection takes over, even if initially choosy
cooperators have an advantage over non-choosy defectors.
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pD1=1 pC1=1

pD0=1

pC0=1

A

pD1=1 pC1=1

pD0=1

pC0=1

B

pD1=1 pC1=1

pD0=1

pC0=1

C

p*C0C1

Figure 1. Phase plane analysis for the basic model: Each panel presents a simplex where
each point is a frequency distribution at some point in time with

∑
A pA = 1. With

double-lines, we indicate the set of frequencies where each point is an equilibrium; with
black color, we show which equilibrium is stable (not necessarily asymptotically stable) and
with white color, which equilibria are unstable. Arrows indicate the direction of the dynamics
along each eigenvector. Grey dashed arrows give an example of an invasion-substitution
sequence. See Section 3.1 for the discussion of the evolutionary properties of this model and
the Appendix for the full analytical treatment.

3.1.1. Invasion of Choosy Decisions

Choosy decisions q2 = (0, 1) can evolve if rare choosy strategies C0 and/or D0 can invade a
non-choosy population Equation (10). We find that for all 0 < k < 2, choosy defectors D0 have
a zero growth rate and can thus increase in frequency only via neutral drift (see the Appendix and
Figure 1). This is simply because the only pairs who go to the second round are defectors D0 and D1,
and thus, rejecting a defector in the first round yields no payoff advantage. However, when choosy
cooperators C0 are introduced to the population, then in the second round, half of the individuals are
choosy cooperators (the other half are defectors), and so, rejecting a defector in the first round gives
cooperators an equal chance to eventually interact with a cooperator. We get that C0 can invade the
initial population whenever 0 < k < 4

3
. For 4

3
< k < 2, the initial state given in Equation (10) is the

best strategy solution. Within this parameter range, the benefit from mutual cooperation is too low to
outweigh the fact that with probability one half, a C0 ends up interacting with a D in the second round.

3.1.2. Best Strategies

In this section, we look for best strategy solutions. Each enumeration corresponds to the panels of
Figure 1:
(A) 0 < k < 1: The best selective strategy is a strategy pair (C0, C1) that lies on the line of equilibria
p̂C1C0 with k < pC0 ≤ 1. This line of equilibria exists because C0 has the same payoff against
C1 and vice versa. Interestingly, defectors can invade the strategy pair (C0, C1) if population drifts
past the point p∗C0C1

= k (see Figure 1A). Eventually, however, the dynamics will lead defectors to
extinction, and a mix of cooperative strategies (C0, C1) is again established. This evolutionary cycle,
which relies on the absence of selection on the effect of neutral drift, can be written symbolically as

(C0, C1)
drift→ (C0, C1)

invasion by D0/D1→ (C0, C1). We thus have that a strategy pair (C0, C1) can drift
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from one fully-cooperative equilibrium to another, but after passing a certain threshold value, it can be
temporarily invaded by defectors.
(B) 1 < k < 4

3
: A strategy pair of defectors (D0, D1) that lies on the line of equilibria p̂D1D0 , with

0 < pD0 ≤ 1, is the best selective strategy. This solution can only be escaped if strategy D0 drifts to
complete extinction (pD0 = 0), after which strategy C0 can invade, and the coexistence of (D1, C0) is
established at p̂D1C0 = (pD1 , pC0) = (2(k−1)

2−k , 4−3k
2−k ). However, this state can be invaded by D0, and

the strategy pair (D0, D1) is established again as a BSS, i.e., we have (D0, D1)
drift→ D1

invasion by C0→
(C0, D1)

invasion by D0→ (D0, D1).
(C) 4

3
< k < 2: Any strategy pair (D0, D1) that lies on the line of equilibria p̂D1D0 for all 0 ≤ pD0 ≤ 1

is a BSS.

3.1.3. Evolution of Cooperation and Choosy Decisions

In this section, we describe all of the invasion-substitution sequences (see the Appendix for the full
analysis). As in the previous section, each enumeration corresponds to the panels of Figure 1:
(A) 0 < k < 1: The initial population (C1, D1), indicated by a grey dashed circle, can be (selectively)
invaded by a choosy cooperator C0, but not by a choosy defector D0 (see Section 3.1.1 and Figure 1A).
If C0 succeeds at invading, a strategy pair (C0, C1) at p̂C1C0 , with k < pC0 ≤ 1, is established as a BSS.
The invasion-substitution sequence is thus (C1, D1)

invasion by C0→ (C0, C1) (see the dashed grey trajectory
drawn in Figure 1A). Recall that this solution can be escaped by neutral drift (see Section 3.1.2).
(B) 1 < k < 4

3
: The initial population consist of defectors D1 only. If choosy strategies are introduced,

C0 may invade and can be established at an equilibrium together withD1, at least, untilD0 is introduced,
and a strategy pair of defectors (D0, D1) at p̂D1D0 with 0 < pD0 ≤ 1, will be established as a BSS.
Interestingly, pure defection takes over the coexistence of (C0, D1) at p̂D1C0 only if defectors start to be
choosy against themselves. We have D1

invasion by C0→ (D1, C0)
invasion by D0→ (D1, D0). This solution may be

escaped by drift (see Section 3.1.2).
(C) 4

3
< k < 2: No strategy can selectively invade the initial state p̂D1 = 1. Due to drift, any best

strategy solution on the line of equilibria p̂D1,D0 with 0 ≤ pD1 ≤ 1 may be reached.

3.2. (B) Imperfect Signals

In this model, we suppose that individuals make a mistake with probability ε > 0 in evaluating
whether the encountered opponent is a cooperator or a defector. We suppose there are no search costs,
a = 0.

The basic model unfolds in three ways when ε > 0. Firstly, for 0 < k < 1, the equilibrium p̂C0 = 1

becomes unstable. This is because, when most of the individuals are of type C0, i.e., pC0 is close to one,
and mistakes are being made, then most of the declined individuals are C0’s, but only mistaken as D’s.
Therefore, most of the individuals in the first and second round are C0, and so, defectors, being rare, will
end up playing against the common C. Since the payoff for D against C is always greater than C against
C, i.e., R < T for all 0 < k < 2, defectors can always invade C0 when rare. The reason why this is
not true in the basic model for 0 < k < 1, is that since no mistakes are made and D’s are rare, only the
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defector-cooperator pairs go to the second round. Since D’s play in the second round against D and C
with equal probability, then for 0 < k < 1 we have 1

2
(T + P ) < R, and so, defectors cannot invade C0.

The second unfolding happens at pC1 = 1. In the model with imperfect signals, the equilibrium
p̂C1 = 1 is stable in the direction of pD0 = 1, for 0 < k < ε, whereas in the basic model, this is always
unstable. Because near pC1 = 1, the choosy defectors D0 encounter mainly C1’s, then fraction 1 − ε

is being accepted, and the game is played. However, fraction ε is declined, and so, in the second round
with probability half, the game will be played against another defector. In the basic model, all D0’s play
against C1. Thus, in the imperfect signal model, for 0 < k < ε, the cost of playing against another D is
greater than the benefit of playing against a C, and so, a rare D0 is not able to invade C1.

Finally, numerical analysis shows that an unstable trimorphic equilibrium p̂C1C0D0 exists for
0 < k < 1 (see the Appendix). As it is not the best strategy solution and it does not affect the
invasion-substitution dynamics, it is not drawn in Figure 2.

pD1=1 pC1=1

pD0=1

pC0=1

A

pD1=1 pC1=1

pD0=1

pC0=1

B

pD1=1 pC1=1

pD0=1

pC0=1

C

pD1=1 pC1=1

pD0=1

pC0=1

D

Figure 2. Phase-plane analysis for the model with imperfect signals: see Figure 1 for
explanations. In this slightly more complicated model, arrows are not drawn for the
dimorphic equilibria (equilibria on the edges) that are not best strategy solutions or that do
not affect the invasion substitution sequence. Trimorphic equilibria that are not the best
strategy solutions or that do not affect the invasion-substitution sequence are not drawn
at all. We found no four-morphic equilibria. Grey dashed arrows give an example of an
invasion-substitution sequence. We only draw the sequences that are qualitatively different
from the ones presented in Figure 1. See Section 3.2 for the discussion of the evolutionary
properties of this model and the Appendix for further analysis.
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3.2.1. Invasion of Choosy Decisions

We find that for 0 < k < 1, the initial non-choosy population given in Equation (10) can never be
invaded by D0 because its growth rate is negative. For 1 < k < 2, the strategy D0 has a zero growth rate
and can thus increase in frequency only by neutral drift (Appendix). Strategy C0 can invade p̂C1D1 for
all 0 < k < 1, and it can invade p̂D1 whenever 1 < k < 4

3+ε
.

3.2.2. Best Strategies

All of the best strategy solutions (besides the solution p̂D1; see above) are found numerically (see the
Appendix for the numerical analysis). Below, the enumeration corresponds to the panels of Figure 2.
(A)–(B) 0 < k < 1: Strategy pair (C0, D0) at the equilibrium p̂C0D0 is an ESS. No other best strategy
solutions are found.
(C) 1 < k < 4

3+ε
: A strategy pair (D0, D1) on the line of equilibria p̂D0D1 , for 0 < pD0 ≤ 1, is a BSS and

the only best strategy solution. A population may move between different values of p̂D0,D1 due to drift. If
D0 becomes extinct, aC0 may invade, and the coexistence ofD1 andC0 at p̂D1C0 is established. However,
D0 can invade this state, and the best selective strategy solution (D0, D1) is again established. Neutral
drift may thus cause the following cycle: (D0, D1)

drift→ D1
invasion by C0→ (C0, D1)

invasion by D0→ (D0, D1).
(D) 4

3+ε
< k < 2: A strategy pair (D0, D1) at any point on the line of equilibria p̂D0D1 , 0 ≤ pD0 ≤ 1 is a

BSS and the only best strategy solution.

3.2.3. Evolution of Cooperation and Choosy Decisions

All of the invasion-substitution sequences were found numerically (see the Appendix). The
enumeration corresponds to the panels of Figure 2:
(A)–(B) 0 < k < 1: Of the choosy strategies, only C0 is able to invade the initial resident population
p̂C1D1 , after which a strategy pair (D1, C0) is established at p̂D1C0 . This state can be invaded by D0, and
a stable coexistence of choosy strategies (C0, D0) is established at p̂C0,D0 . As this is an ESS, it is an

evolutionary end point. We have: (C1, D1)
invasion by C0→ (D1, C0)

invasion by D0→ (C0, D0).
(C) 1 < k < 4

3+ε
: Only C0 can selectively invade the initial population p̂D1 = 1, after which D0

can invade, and a BSS solution p̂D0,D1 , with 0 < pD0 ≤ 1, is reached. We have D1
invasion byC0→

(D1, C0)
invasion byD0→ (D1, D0) (the invasion-substitution sequence is qualitatively similar to the one in

Figure 1B). This state can only be escaped by neutral drift (see Section 3.2.2).
(D) 4

3+ε
< k < 2: No strategy can selectively invade the initial state p̂D1 = 1. Due to drift, any BSS at

equilibrium p̂D1,D0 , with 0 ≤ pD1 ≤ 1, may be reached (this case is similar to Figure 1C).

3.3. (C) Search Costs

In this section, we suppose that searching for a new opponent is costly a > 0, but that no mistakes are
made ε = 0. We analyze in detail a case 0 < a < 1

10
b where costs are relatively small compared to the

benefit from cooperation. The effect of higher costs is briefly discussed in the paragraph below. When
analytical treatment was not possible, we resorted to numerical investigations (see the Appendix).
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Search costs bring out a richer bifurcation structure than the basic model (see Figure 3). First of
all, the line of equilibria (pD0 , pD1) unfolds to a one-directional flow towards pD1 = 1. This is simply
because rounds are costly, and so, accepting aD in the first round is better than acceptingD in the second
round. This does not happen to the other line of equilibria with only cooperators, because a population
of cooperators plays only one round (since ε = 0, no cooperators are mistaken for defectors). Secondly,
the non-choosy population p̂C1,D1 for k < 4a

b
cannot be invaded by C0, because the costs of going to

the second round are too high compared to the benefit gain from cooperation. Furthermore, numerical
analysis shows that there are several trimorphic equilibria, but since they are all unstable and they do
not affect the invasion substitution sequence, they are not drawn in Figure 3. We found no four-morphic
equilibria.

pD1=1 pC1=1

pD0=1

pC0=1

A

p*C0C1

pD1=1 pC1=1

pD0=1

pC0=1

B

p*C0C1

pD1=1 pC1=1

pD0=1

pC0=1

C

p*C0C1

pC1=1

pD0=1

pC0=1

p*C0C1

pD1=1 pC1=1

pD0=1

pC0=1

D

p*C0C1

pD1=1 pC1=1

pD0=1

pC0=1

p*C0C1

pD1=1 pC1=1

pD0=1

pC0=1

E

pD1=1 pC1=1

pD0=1

pC0=1

pD1=1 pC1=1

pD0=1

pC0=1

F

pD1=1 pC1=1

pD0=1

pC0=1

Figure 3. Phase-plane analysis for the model with search costs: see Figure 1 for
explanations. In this model, we draw separate phase planes only for qualitatively different
best strategy solutions or invasion-substitution sequences and when the stability of the
monomorphic equilibria changes. Similarly to Figure 2, arrows are not drawn for the
dimorphic equilibria (equilibria on the edges) that are not best strategy solutions or that
do not affect the invasion substitution sequence. Trimorphic equilibria that are not the best
strategy solutions or that do not affect the invasion-substitution sequence are not drawn at
all. We found no four-morphic equilibria. As before, we only draw the invasion-substitution
sequences that are qualitatively different from the ones presented in previous figures. See
Section 3.3 for the discussion of the evolutionary properties of this model and the Appendix
for further analysis.
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We observe from Figure 3 (and the Appendix) that increasing search costs affects the order in which
monomorphic equilibria change stability. In this paper, we present only the case 0 < a < 1

10
b, but

all of the other cases can be derived in a straightforward fashion by swapping the order in which these
bifurcations occur.

3.3.1. Invasion of Choosy Decisions

Rare defectors D0 have for all 0 < k < 2 a negative growth rate and, thus, are not able to invade the
initial population given in Equation (10) (see the Appendix). However, rare cooperators C0 can invade
the initial state p̂C1D1 whenever:

4
a

b
< k < 1,

and the initial state p̂D1 whenever:

1 < k <
4

3

(
1− a

b

)
.

We therefore have that for 0 < k < 4a
b
, the state p̂C1D1 is the best strategy solution and for 4

3

(
1− a

b

)
<

k < 2, the state p̂D1 is the best strategy solution.

3.3.2. Best Strategies

The enumeration corresponds to the panels of Figure 3. We only describe the intervals of k with
qualitatively different best strategies.
(A) 0 < k < 4a

b
: There exist two best strategies: the equilibrium p̂C1,D1 is an ESS, and every equilibrium

p̂C1,C0 where b
b+2a

k < pC0 ≤ 1 is a BSS.
(B)–(D) 4a

b
< k < 1 + 2a

b
: In Figure 3B–D, the only best strategy is a BSS pair (C1, C0) at p̂C1C0 with

b
b+2a

k < pC0 ≤ 1. Interestingly, this cooperative state is the best selective strategy also in the prisoner’s
dilemma when 1 < k < 1 + 2a

b
.

(E) 1 + 2a
b
< k < 4

3
(1− a

b
): There are no best strategies.

(F) 4
3
(1− a

b
) < k < 2: The only best strategy is D1, and it is an ESS.

3.3.3. Evolution of Cooperation and Choosy Decisions

Below, the enumeration corresponds to the panels of Figure 3. We only describe the intervals of k
with qualitatively different invasion-substitution sequences.
(A) 0 < k < 4a

b
: The initial state (C1, D1) at p̂C1D1 is also the evolutionary endpoint.

(B) 4a
b
< k < 1: In Figure 3B–C, a strategy C0 can invade the pair (C1, D1), after which a BSS pair

(C1, C0) at p̂C1C0 with b
b+2a

k < pC0 ≤ 1 gets established. We get (C1, D1)
invasion by C0→ (C1, C0) (this is

similar to Figure 1A).
(C)–(D) 1 < k < 1 + 2a

b
: An initial population D1 can be invaded and substituted by C0, which is at

p̂C0 = 1 a BSS. Neutral drift may establish a pair (C1, C0) at p̂C1C0 with any b
b+2a

k < pC0 ≤ 1 as a BSS.

(E) 1 + 2a
b
< k < 4

3
(1 − a

b
): We get an evolutionary cycle: D1

invasion by C0→ (D1, C0)
invasion byD0→
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D0
invasion by D1→ D1, etc.

(F) 4
3
(1− a

b
) < k < 2: The initial state D1 is also an ESS and, thus, an endpoint of evolution.

3.4. (D) The Full Model: Imperfect Signals and Search Costs

In this section, we discuss the full model for a < 1
7
b and for mistakes that are sufficiently smaller than

the ratio between search costs and benefits, i.e., ε << a
b
. If this assumption is relaxed, it affects the order

in which the stability of monomorphic equilibria changes (of course, other changes in the interior of the
space are possible, as well). To give a complete analysis of this full model is out of the scope of this
paper, and so, in cases where analytical results could not be obtained, we use b = 15, a = 1, ε = 0.01

and where 0 < k < 2.

3.4.1. Invasion of Choosy Decisions

We find that choosy defectors D0 can never invade the initial population given in Equation (10), but
that choosy cooperators C0 can invade p̂C1D1 whenever:

2

b(1− ε)

[
a(1− 3ε) +

√
9a2ε2 − 2abε2 − 6a2ε+ 2abε+ a2)

]
< k < 1 (11)

and p̂D1 whenever:

1 < k <
4

3 + ε

[
1− a

b
(1− ε)

]
. (12)

The opposite conditions say for which parameter values the corresponding initial states are best
strategy solutions.

3.4.2. Best Strategies and the Evolution of Cooperation and Choosy Decisions

In this section, we deal simultaneously with the best solutions and invasion-substitutions sequences.
The enumeration corresponds to the panels of Figure 4:
(A)–(D) 0 < k < ε(1 + 2a

b
): The strategy pair (C1, D1) at p̂C1D1 = (21−k

2−k ,
k

2−k ) is the only ESS and the
end point of evolution.
(E) k(C1D1C0)in < k < k(C1D1C0D0)in: A trimorphic equilibrium p̂C1D1C0 enters the interior of the phase
space by passing through p̂C1D1 , which becomes unstable in the C0-direction. The strategy pair (C1, D1)

can thus be invaded by C0, and a trimorphism (C1, D1, C0) is established at p̂C1D1C0 . Interestingly, D0

can invade this state, but the dynamics will lead the population back to the initial state p̂C1D1 . After D1

becomes completely extinct pD1 = 0, choosy cooperators C0 can invade again, and an evolutionary cycle
occurs: (C1, D1)

invasion byC0→ (C1D1, C0)
invasion byD0→ (C1, D1), etc.

(F) k(C1D1C0D0)in < k < k(C1D1C0D0)outs : A pair of four-morphic equilibria p̂s
C1D1C0D0

and p̂u
C1D1C0D0

appear via a saddle-node bifurcation. We get that a trimorphic population (C1, D1, C0) at p̂C1D1C0 that
is invaded by D0 is in the basin of attraction of the stable four-morphic equilibrium p̂s

C1D1C0D0
, which is

an ESS and, thus, also the end point of evolution. We have: (C1, D1)
invasion byC0→ (C1D1, C0)

invasion byD0→
(C1, D1, C0, D0).
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Within this parameter range, a pair of trimorphic equilibria p̂s
C1C0D0

and p̂u
C1C0D0

appear via a saddle
bifurcation. Both equilibria are unstable in the D1-direction, and thus, neither of them is an ESS (and
hence, not drawn).
(G) k(C1D1C0D0)outs < k < k(C1C0D0)outs : The stable equilibrium p̂s

C1D1C0D0
exits the interior state

space by passing through p̂s
C1C0D0

, which becomes stable also in the D1-direction and, thus, becomes
an ESS. Because the neighborhood of p̂C1D1C0 lies in the basin of attractions of p̂s

C1C0D0
, we have:

(C1, D1)
invasion byC0→ (C1D1, C0)

invasion byD0→ (C1, C0, D0).
(H) k(C1C0D0)outs < k < k(C1D1C0)out: the equilibrium p̂C1C0D0 exits the interior state space by passing

through p̂D0C0 , which becomes stable. We get: (C1, D1)
invasion byC0→ (C1D1, C0)

invasion byD0→ (C0, D0).
(I) k(C1D1C0)out < k < 1: The trimorphic equilibrium p̂C1D1C0 exits the interior state space by passing
through p̂D1C0 , which becomes stable in the C1-direction, but is unstable in the D0-direction, and we get:
(C1, D1)

invasion byC0→ (D1, C0)
invasion byD0→ (C0, D0).

(J) 1 < k < 1+εa
b

(1− 2ε): The strategyD1 at p̂D1 = 1 is the initial non-choosy population. Otherwise,

the invasion-substitution sequence is not altered: D1
invasion by C0→ (D1, C0)

invasion by D0→ (C0, D0).
(K) 1 + εa

b
(1− 2ε) < k < k(C0D0)SN: An unstable equilibrium p̂u

C0D0
enters the interior of the phase

space by passing through p̂D1 = 1, which becomes stable in the C0-direction. The dynamics is the same
as above: D1

invasion by C0→ (D1, C0)
invasion by D0→ (C0, D0).

(L) k(C0D0)SN < k < 1 + a
b

(1− ε− ε2): The equilibria p̂u
C0D0

and p̂s
C0D0

disappear via a saddle-node

bifurcation. This results in an evolutionary cycle: D1
invasion byC0→ (D1, C0)

invasion byD0→ D1, etc.
(M) 1 + a

b
(1− ε− ε2) < k < 4

3+ε

(
1− a

b
(1− ε)

)
: The equilibrium p̂C1D0 exits the interior state space,

but the invasion-substitution sequence is not affected: D1
invasion byC0→ (D1, C0)

invasion byD0→ D1 etc.
(N) 4

3+ε

(
1− a

b
(1− ε)

)
< k < 2: The equilibrium p̂D1C0 exits the interior state space by passing through

p̂D1 , which becomes stable in all directions and, thus, becomes an ESS and an evolutionary endpoint.

4. Discussion

In this paper, we have presented an evolutionary game-theoretical model, where individuals search
for a single long-term interaction. At each encounter an opponent may be rejected, which opens up the
opportunity for individuals to find a more beneficial interaction in the future. The search time being
finite, the decision is conditioned not only by the payoff matrix and interacting individuals, but also by
the point in time of the search season. We embedded our model in the classic games of cooperation and
studied the coevolution of cooperative behavior and decisions to accept/decline an interaction. We then
analyzed the model’s consequences when individuals face costs associated with the search and when
mistakes occur in interpreting the type of encountered individual.
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Figure 4. Phase plane analysis for the full model: Similarly to Figure 3, in order
to reduce the number of panels, we draw separate phase planes only for qualitatively
different best strategy solutions or invasion-substitution sequences and when the stability
of the monomorphic equilibria changes. In contrast to previous models, trimorphic and
four-morphic ESS solutions were found, see (G) and (F), respectively. As before, we
only draw the invasion-substitution sequences that are qualitatively different from the ones
presented in previous figures. See Section 3.4 for the discussion of the evolutionary
properties of this model and the Appendix for further analysis.



Games 2015, 6 429

In Table 1, we have summarized the results presented in Sections 3.1–3.4 and in Figures 1–4. We
list for each model the set of strategies that are reached by evolution when initially all individuals
are assumed to be non-choosy, and to simplify, we group the results according to the game that is
played (snowdrift vs. prisoner’s dilemma). Note that for each parameter value, there is only one
evolutionary endpoint, but within a range of values, there may be many. Our general finding is that
optional interactions and search costs facilitate cooperation, while mistakes have a counteracting effect.
The reasoning is as follows. When the benefit from mutual cooperation is high enough (parameter k
is not too large), optional interactions favor choosy decisions. This is due to the fact that cooperators
and even defectors benefit from rejecting a defector in the first round in order to find a cooperator in the
second round. Notice a subtlety here: choosy defectors do not have a payoff advantage over non-choosy
defectors unless there exist (choosy) cooperators in the population to be taken advantage of in the
second round.

Table 1. A summary of the best strategy solutions that are reached by an
invasion-substitution sequence starting from a non-choosy population. We collect all
solutions for each model, and we group them according to the game that is played: snowdrift
game (0 < k < 1) and a prisoner’s dilemma (1 < k < 2). Note that for each parameter
value, there is only one evolutionary endpoint, but each model for each game may have many
evolutionary endpoints. ESS, evolutionarily-stable strategy; BSS, best selective strategy.

Best Strategy Solutions (reached by evolution)

Snowdrift game
(0 < k < 1)

Prisoner’s dilemma
(1 < k < 2)

Non-choosy
Population

ESS: (C1, D1) ESS: D1

Basic Model
(a = 0, ε = 0) BSS: (C0, C1) BSS: (D0, D1)

Imperfect Signals
(a = 0, ε > 0) ESS: (C0, D0) BSS: (D0, D1)

Search Costs
(a > 0, ε = 0)

ESS: (C1, D1)
BSS: (C0, C1)

BSS: (C0, C1)
BSS: (D0, D1)
Evolutionary Cycle

Full Model
(a > 0, ε > 0)

ESS: (C1, D1)
ESS: (C0, D0)
ESS: (C1, C0, D0)
ESS: (C1, D1, C0, D0)
Evolutionary Cycle

ESS: (C0, D0)
ESS: D1

Evolutionary Cycle

In the snowdrift game, the payoff matrix is such that choosy cooperators do better than choosy
defectors, and so, evolution favors cooperation. In the prisoner’s dilemma, this is the other way round,
and so, even if initially choosy cooperators have an advantage over non-choosy defectors, choosy
defectors take over and pure defection is established. However, this is not necessarily true when
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the search is costly, because cooperators play on average less rounds than defectors and, thus, may
outcompete defectors by paying less costs. Therefore, in the prisoner’s dilemma, optional interactions
together with search costs may lead to high levels of cooperation. However, if mistakes are made in
evaluating the type of opponent, then defectors may be accepted, while they would normally be rejected.
Thus, with a sufficiently high probability of making mistakes, the advantage of cooperation is lost, and
evolution may lead to defection (compare Figures 3 and 4).

To facilitate the analytical treatment, we made several simplifying assumptions. Firstly, we considered
each search season to be only two rounds long. Since the number of decisions grows exponentially as a
function of the number of rounds, our assumption keeps the number of equations manageable. However,
dealing with a greater number of rounds is a straightforward task and is readily integrated in our general
model. Moreover, since it is the cooperators that benefit from optional interactions (see above), we expect
that the more rounds there are, the less stringent are the conditions for the evolution of cooperation [31].
Secondly, we only deal with two types of individuals. It would be again straightforward to extend this
model to any number of types. Complexity arises when introducing continuous distributions, because
not only does it lead to infinite dimensional dynamical systems (e.g., partial differential equations), but
also to function-valued strategies where the inheritance mechanism remains largely an open question.
Another direction for future work is to consider the number of rounds as random, thereby introducing
the uncertainty of knowing whether the encountered opponent is the last one before the end of a search
season. We expect this to benefit defectors, as it becomes increasingly risky to reject an interaction.
Finally, we note that another way of carrying out errors would be to introduce the possibility of mistakes
in implementing the strategies of individuals [33]. However, as we study games with long social ties, we
view strategies as an inherent property of an individual and, thus, static. Therefore, we find it unlikely
that a strategy would be executed by a mistake, and hence, such stochasticity is not considered here.

Our results are in line with previous models that have incorporated optional interactions or partner
choice allowing cooperative individuals to refuse non-beneficial interactions [27–31]. The most notable
work is by [31], where, similarly to our study, the coevolution of choosiness and cooperation was
examined. However, they investigated the effect of mortality, which influences the length of the game
(corresponding to the parameter M in our model; see above), but did not consider mistakes nor the effect
of search costs (this parameter was fixed). Importantly, since in their work, non-beneficial interactions
could be terminated and partner switching was allowed, the nature of social ties under consideration was
different than in the present paper.

To conclude, we feel that the class of games that considers trade-offs arising from the problems
of sequential search, a commonly-assumed context in mate choice and economics, has been largely
overlooked in the theoretical literature of cooperation. We believe, however, that this direction of
research not only broadens the work on games with partner choice and optional interactions, but also
keeps the models simple enough to reach general conclusions as to why in many species, individuals
work together for a common purpose or benefit.
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A. Appendix: The Basic Model

A.1. The Existence and Stability of Equilibria

We find all equilibria p̂ = (pC1 , pD1 , pC0 , pD0) by solving the zero states of Equation (8). We denote
equilibrium frequencies with p̂(·), such that, for example, p̂C1D0 = (pC1 , 0, 0, pD0) denotes an equilibrium
where only strategies C1 and D0 have strictly positive frequencies. If there is more than one equilibrium,
we enumerate them. The stability is found by calculating the eigenvalues associated with each of the
three eigenvectors that are connected to the equilibrium. Eigenvalues are denoted such that, for example,
λAB,ABC is an eigenvalue associated with equilibrium p̂AB with an eigenvector lying in the space spanned
by strategies A,B and C.

A.1.1. Monomorphic Equilibria

By construction, model Equation (7) (or Equation 8) contains always the monomorphic equilibria
p̂C1 = 1, p̂D1 = 1, p̂C0 = 1, and p̂D0 = 1. The eigenvalues connected to these equilibria are:

λC1,D1 =
bk

2
,

λD1,C1 = b(1− k),

λC0,C1 = 0,

λD0,C1 = b(1− k),

λC1,D0 =
bk

2
,

λD1,C0 = b(1− 3

4
k),

λC0,D1 =
1

2
b(1− k),

λD0,D1 = 0,

λC1,C0 = 0,

λD1,D0 = 0

λC0,D0 =
1

2
b(k − 1)

λD0,C0 = b(1− k).

(13)

A.1.2. Dimorphic Equilibria

The basic model has two lines of dimorphic equilibria p̂C1,C0 = (pC1 , 1−pC1) and p̂D1,D0 = (pD1 , 1−
pD1), where each point on the line, for all 0 ≤ pC1 , pD1 ≤ 1, is an equilibrium. In addition, there
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are three isolated (in the space of dimorphic populations) dimorphic equilibria p̂C1,D1 = (2(1−k)
2−k , k

2−k ),
p̂C1,D0 = (2(1−k)

2−k , k
2−k ) and p̂D1,C0 = (2(k−1)

2−k , 4−3k
2−k ). The eigenvalues connected to these equilibria are:

λC1C0,C1C0
= 0,

λD1D0,D1D0 = 0,

λC1D1,C1D1 =
bk(k − 1)

2− k
,

λC1D0,C1D0 =
bk(k − 1)

2− k
,

λD1C0,D1C0
=

1

2

b(3k2 − 7k + 4)

2− k
,

λC1C0,C1C0D1
=

1

2
b(k − pC0

),

λD1D0,D1D0C1 = b(1− k),

λC1D1,C1D1D0
= 0,

λC1D0,C1D0D1 = 0,

λD1C0,D1C0C1 =
1

2

bk(1− k)
2− k

,

λC1C0,C1C0D0
=

1

2
b(k − pC0

)

λD1D0,D1D0C0
= b(1− k)

λC1D1,C1D1C0
=

1

4

bk2

(2− k)
λC1D0,C1D0C0 = 0

λD1C0,D1C0D0
=
b(k − 1)

2− k

(14)

A.1.3. Trimorphic and Four-Morphic Equilibria

The only trimorphic equilibrium is the line of equilibria p̂C1D1D0 = (2(1−k)
2−k , 1− pD0 −

2(1−k)
2−k , 0, pD0),

for 0 < pD0 < 1. The eigenvalues are:

λC1D1D0,C1D1D0 = 0, λC1D1D0,C1D1DT
0

=
bk(k − 1)

2− k
, λC1D1D0,C1D1D0C0 = 0, (15)

where the first eigenvalue is associated with the eigenvector along the line of equilibria while the second
one is transversal to the line of equilibria, both in the same plane spanned by strategies (C1, D1, D0).

There are no four-morphic equilibria.

A.2. Invasion-Substitution Sequence

Above, we find that for 0 < k < 4
3
, the strategy C0 can invade the initial non-choosy population given

in Equation (10) (D0 can never selectively invade).
For 0 < k < 1, the state space spanned by strategies C1, D1, C0 contains no interior equilibria

(i.e., equilibria where all strategies have strictly positive frequencies). The Poincare–Bendixon theorem
thus ensures that no steady states (limit cycles nor any other attractors) exist in the interior state space,
and thus, after an invasion of a rare strategy C0, the dynamics must approach one of the equilibria
on the boundary of the state space. For 0 < k < 1, the only stable equilibria lie on the line
p̂C1,C0 = (pC1 , 1 − pC1) for 0 < pC0 < k, and so, after an invasion, strategy pair (C1, C0) substitutes
(C1, D1) as the resident population. This state cannot be selectively invaded by any other strategy and is
thus an evolutionary end-point (but, see the main text for the effect of neutral drift).

For 1 < k < 4
3
, the initial population is invaded and substituted by a pair (D1, C0) at

p̂D1,C0 = (2(k−1)
2−k , 4−3k

2−k ). This state can always be invaded by D0, after which, using the same
argumentation as for 0 < k < 1, the dynamics must approach the only stable boundary equilibria
p̂D1,D0 = (pD1 , 1− pD1) for 0 < pD0 ≤ 1. This state cannot be selectively invaded by any other strategy
and is, thus, an evolutionary end-point (see the main text for the effect of neutral drift).

For 4
3
< k < 2, no rare strategy can selectively invade the initial state, and so, p̂D1 is the evolutionary

end-point (see the main text for the effect of neutral drift).
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B. Appendix: Imperfect Signals

B.1. The Existence and Stability of Equilibria

B.1.1. Monomorphic Equilibria

The eigenvalues connected to the monomorphic equilibria are:

λC1,D1 =
bk

2
,

λD1,C1 = b(1− k),

λC0,C1 = 0,

λD0,C1 = b(1− k),

λC1,D0 =
1

2
b(k − ε),

λD1,C0 = b(1− 3

4
k − 3

4
εk),

λC0,D1 =
1

2
bk,

λD0,D1 = 0,

λC1,C0 = 0,

λD1,D0 = 0

λC0,D0 =
1

2
bk

λD0,C0 = b(1− k).

(16)

B.1.2. Dimorphic Equilibria

There are dimorphic equilibria p̂C1,C0 = (pC1 , 0, 1 − pC0 , 0) and p̂D1,D0 = (0, pD1 , 0, 1 − pD1),
where each point on the line, for all 0 < pC1 , pD1 < 1, is an equilibrium. In addition, there are four
(isolated) dimorphic equilibria, p̂C1,D1 = (2(1−k)

2−k , k
2−k , 0, 0), p̂C1,D0 , p̂D1,C0 and p̂C0,D0 , which have a too

long expression to be written here. The eigenvalues connected to p̂C1,D1 are:

λC1D1,C1D1 =
bk(k − 1)

2− k
,

λC1D1,C1D1D0 =
bε(k − 1)

2− k
,

λC1D1,C1D1C0 =
bk2(1− ε)
4(2− k)

,

(17)

The eigenvalues connected to the remaining equilibria p̂C1,D0 , p̂D1,C0 and p̂C0,D0 were checked
numerically with b = 15, u = 20, ε = 0.01, 0.05, 0.1 and for a range of 0 < k < 2. We checked that a
perturbation away from these parameter values did not qualitatively alter the dynamics. The stability of
the equilibria is indicated in Figure 2.

B.1.3. Trimorphic and Four-Morphic Equilibria

Trimorphic and four-morphic equilibria were investigated numerically for b = 15, u = 20,

ε = 0.01, 0.05, 0.1 and for a range of 0 < k < 2. We found only one unstable trimorphic equilibrium
p̂C1C0D0 and no four-morphic equilibria.

B.2. Invasion-Substitution Sequence

Above, we find that the initial population given in Equation (10) can be invaded by C0 for 0 < k <
4

3+ε
, but it can never be invaded by D0. For 4

3+ε
< k < 2, the population of D1 is the end-point of

evolution.
For 0 < k < 1, the state space spanned by strategies C1, D1, C0 contains no interior equilibria

(analytical result). Using similar arguments as in the basic model (see above), we find that a strategy
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pair (D1, C0) at p̂D1C0 substitutes the initial state as the resident population. Since p̂D1C0 is the only
strictly positive equilibrium on that boundary of the state-space, strategy pair (D1, C0) substitutes the
initial population for 1 < k < 4

3+ε
, as well. Numerically, using b = 15, u = 20, ε = 0.01, 0.05, 0.1, we

find that for 0 < k < 1, the population at p̂D1C0 may be invaded by D0 and substituted by (C0, D0) at
p̂C0D0 . This is an ESS and, thus, the end point of evolution. For 1 < k < 4

3+ε
, we find that D0 can invade

p̂D1C0 , after which a mix of defectors (D0, D1), for 0 < pD0 ≤ 1, becomes the end-point of evolution
(see the main text for the effects of neutral drift).

C. Appendix: Search Costs

C.1. The Existence and Stability of Equilibria

C.1.1. Monomorphic Equilibria

The eigenvalues connected to the monomorphic equilibria are:

λC1,D1 =
1

2
bk,

λD1,C1 = b(1− k),

λC0,C1 = 0,

λD0,C1 = b(1− k) + a,

λC1,D0 =
1

2
bk,

λD1,C0 = b(1− 3

4
k)− a,

λC0,D1 =
1

2
b(k − 1)− a,

λD0,D1 = 0,

λC1,C0 = 0,

λD1,D0 = −a

λC0,D0 =
1

2
b(k − 1)− a

λD0,C0 = b(1− k).

(18)

C.1.2. Dimorphic Equilibria

The eigenvalues connected to the dimorphic equilibrium p̂C1D1 are:

λC1D1,C1D1 =
bk(k − 1)

2− k
,

λC1D1,C1D1D0 =
ak

2− k
,

λC1D1,C1D1C0 =
k

4(2− k)
(bk − 4a)

(19)

The existence and stability of all of the other dimorphic equilibria were studied numerically using
b = 15, u = 20, a = 1 and a range 0 < k < 2. The results are summarized in Figure 3. We
do not draw the arrows if the equilibrium is not a best strategy solution or if it does not affect the
invasion-substitution sequence.

C.1.3. Trimorphic and Four-Morphic Equilibria

We studied the existence and stability of trimorphic and four-morphic equilibria numerically, using
values b = 15, u = 20, a = 1 and a range 0 < k < 2. We found only unstable trimorphic equilibria and
no four-morphic equilibria. Since trimorphic equilibria are not the best strategy solutions or they do not
affect the invasion-substitution sequence, they are not drawn in Figure 3.
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C.2. Invasion-Substitution Sequence

Using the eigenvalues calculated above, we find that the initial population given in Equation (10) can
be invaded by C0 for 4a

b
< k < 4

3
(1 − a

b
), but it can never be invaded by D0. For 0 < k < 4a

b
and for

4
3
(1− a

b
) < k < 2, the initial population given in Equation (10) is the end-point of evolution.

Further invasion and substitutions were found numerically using values b = 15, u = 20, a = 1 and a
range 0 < k < 2. Figure 3 and the main text present a summary of all of the qualitatively different best
strategy solution and invasion-substitution sequences.

D. Appendix: Full Model with Imperfect Signals and Search Costs

The eigenvalues connected to the monomorphic equilibria are:

λC1,D1
=
bk

2
,

λD1,C1
= b(1− k),

λC0,C1
= aε(1− ε),

λD0,C1 = b(1− k) + a(1− ε− ε2),

λC1,D0 =
1

2
b(k − ε)− aε,

λD1,C0
= b(1−

3

4
k −

3

4
εk)− a(1− ε),

λC0,D1
=

1

2
bk − a(1− 3ε+ ε2),

λD0,D1
= aε(1− ε),

λC1,C0
= −aε,

λD1,D0
= −a(1− ε)

λC0,D0
=

1

2
bk − a(1− 3ε+ 2ε2)

λD0,C0
= b(1− k) + aε(1− 2ε).

(20)

The eigenvalues connected to the dimorphic equilibrium p̂C1D1 are:

λC1D1,C1D1 =
bk(k − 1)

2− k
,

λC1D1,C1D1D0 =
1

2− k
[bε(k − 1)− a(k + 2ε− 3εk)] ,

λC1D1,C1D1C0 =
1

4(2− k)

[
bk2(1− ε)− 4a(k + 2ε+ 3εk)

] (21)

The existence and stability of all other dimorphic, trimorphic and four-morphic equilibria were
investigated numerically. We used the parameter values b = 15, a = 1, u = 20, ε = 0.01 and 0 < k < 2.
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