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Abstract	

Immune	 cells	 migrating	 to	 the	 sites	 of	 infection	 navigate	 through	 diverse	 tissue	

architectures	 and	 switch	 their	 migratory	 mechanisms	 upon	 demand.	 However,	 little	 is	

known	about	systemic	regulators	that	could	allow	the	acquisition	of	these	mechanisms.	

	

We	 performed	 a	 genetic	 screen	 in	 Drosophila	 melanogaster	 to	 identify	 regulators	 of	

germband	 invasion	 by	 embryonic	 macrophages	 into	 the	 confined	 space	 between	 the	

ectoderm	 and	 mesoderm.	 We	 have	 found	 that	 bZIP	 circadian	 transcription	 factors	 (TFs)	

Kayak	 (dFos)	 and	 Vrille	 (dNFIL3)	 have	 opposite	 effects	 on	 macrophage	 germband	

infiltration:	 Kayak	 facilitated	 and	 Vrille	 inhibited	 it.	 These	 TFs	 are	 enriched	 in	 the	

macrophages	 during	 migration	 and	 genetically	 interact	 to	 control	 it.	 Kayak	 sets	 a	 less	

coordinated	mode	of	migration	of	the	macrophage	group	and	increases	the	probability	and	

length	 of	 Levy	 walks.	 Intriguingly,	 the	 motility	 of	 kayak	 mutant	 macrophages	 was	 also	

strongly	 affected	 during	 initial	 germband	 invasion	 but	 not	 along	 another	 less	 confined	

route.	Inhibiting	Rho1	signaling	within	the	tail	ectoderm	partially	rescued	the	Kayak	mutant	

phenotype,	 strongly	 suggesting	 that	 migrating	 macrophages	 have	 to	 overcome	 a	 barrier	

imposed	 by	 the	 stiffness	 of	 the	 ectoderm.	 Also,	 Kayak	 appeared	 to	 be	 important	 for	 the	

maintenance	of	the	round	cell	shape	and	the	rear	edge	translocation	of	the	macrophages	

invading	 the	germband.	 	Complementary	 to	 this,	 the	cortical	actin	 cytoskeleton	of	Kayak-

deficient	macrophages	was	strongly	affected.	RNA	sequencing	revealed	the	filamin	Cheerio	

and	 tetraspanin	 TM4SF	 to	 be	 downstream	of	 Kayak.	 Chromatin	 immunoprecipitation	 and	

immunostaining	 revealed	 that	 the	 formin	 Diaphanous	 is	 another	 downstream	 target	 of	

Kayak.	Immunostaining	revealed	that	the	formin	Diaphanous		is	another	downstream	target	

of	 Kayak.	 Indeed,	 Cheerio,	 TM4SF	 and	 Diaphanous	 are	 required	 within	 macrophages	 for	

germband	invasion,	and	expression	of	constitutively	active	Diaphanous	in	macrophages	was	

able	 to	 rescue	 the	 kayak	mutant	 phenotype.	 Moreover,	 Cher	 and	 Diaphanous	 are	 also	

reduced	in	the	macrophages	overexpressing	Vrille.	

	

We	hypothesize	that	Kayak,	through	its	targets,	increases	actin	polymerization	and	cortical	

tension	 in	macrophages	and	thus	allows	extra	force	generation	necessary	for	macrophage	

dissemination	and	migration	through	confined	stiff	tissues,	while	Vrille	counterbalances	it.		
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1 Introduction	

	

Cell	migration:	how	do	cells	migrate?	

	The	ability	to	migrate	is	one	of	the	fundamental	properties	of	the	animal	eukaryotic	cells.	It	

is	 absolutely	 crucial	during	 the	development	of	 the	embryo	as	multiple	dynamic	 cell	 and,	

hence,	 tissue	 rearrangements	occur	at	 this	 stage	 that	underlie	 the	 formation	of	 the	adult	

organism.	 Examples	 of	 such	 active	 cell	 movements	 include	 germ	 layer	 rearrangements	

during	gastrulation	(Smutny	et	al.,	2017;	Supatto,	McMahon,	Fraser,	&	Stathopoulos,	2009),	

development	of	the	branched	organs	such	as	trachea	(Ghabrial	&	Krasnow,	2006)	or	blood	

vessels	(Gerhardt	et	al.,	2003),	and	the	developmental	migration	of	the	microglia	(Casano,	

Albert,	&	Peri,	2016)	etc.	Later,	in	an	adult	organism,	immune	cells	are	the	primary	cells	that	

actively	 migrate	 towards	 the	 sites	 of	 infection	 and	 perform	 their	 tasks	 there	 such	 as	

engulfment	of	pathogens	and	an	inflammatory	response	(Lämmermann	et	al.,	2013).	Upon	

tissue	 wounding,	 the	 cells	 of	 the	 surrounding	 epithelium	 receive	 the	 wound	 signals,	

reactivate	 and	 start	 their	 path	 towards	 the	 site	 of	 injury	 to	 enclose	 it	 (Shaw	 &	 Martin,	

2016).	 In	 pathology,	 cancer	 cells	 modify	 the	 normal	 cellular	 program	 to	 propagate	

themselves,	 spread	 and	 populate	 other	 organs	 through	 metastasis	 formation	 during	

invasive	migration	(Friedl,	Locker,	Sahai,	&	Segall,	2012).		

Clearly,	 cell	migration	 is	 a	 widespread	 process	 that	 is	 essential	 for	 the	 functioning	 of	 an	

animal	organism.	But	how	do	cells	perform	this	task	of	purposefully	moving	themselves?	As	

it	 appears	 now,	 there	 could	 be	 diverse	mechanisms	 depending	 on	 the	 cell	 type	 and	 the	

conditions	 of	 the	 surroundings.	 However,	 there	 are	 some	 basic	 features	 that	 serve	 as	 a	

foundation	 for	 the	 formulation	 of	 the	 classical	 model	 of	 cell	 migration.	 They	 were	

discovered	and	formulated	 in	1980’s	by	Abercrombie	(Danuser,	Allard,	&	Mogilner,	2013).	

At	this	time,	the	question	of	cell	polarization	was	not	addressed.	However,	once	the	cell	has	

designated	 a	 front	 and	 a	 rear,	 the	 next	 four	 steps	 are	 described	 as	 crucial	 for	migration	

(Fig.1).	Step	1	 is	a	growing	lamellipodia	at	the	front	edge,	this	growth	being	driven	by	the	

polymerization	of	 actin	at	 the	 leading	edge.	 Step	2	 is	 the	 formation	of	 adhesion	 contacts	

(usually,	 Integrin-mediated	 focal	 adhesions)	 at	 the	 leading	 edge	 which	 are	 necessary	 to	

anchor	the	propulsive	forces	at	the	front	as	well	as	the	forces	of	retraction	that	appear	at	
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the	cell	rear	at	step	4.	These	adhesions	are	disassembled	in	step	3,	and	in	step	4	the	rear	of	

the	cell	contracts.	

Abercrombie	 has	 proposed	 that	 the	 front	 to	 rear	 gradient	 of	 adhesion	 determines	 the	

direction	of	 cell	migration	 towards	 the	 front,	 and	 that	 the	 contraction	of	 the	 rear	 occurs	

similarly	to	actomyosin	contraction	in	the	muscles.	Importantly,	Abercrombie	has	suggested	

the	 presence	 of	 rearward	 movement	 of	 the	 cell	 cytoplasm,	 the	 prominence	 of	 this	

movement	being	dependent	on	the	interplay	of	the	front	adhesion	and	the	rear	contraction	

forces.	Later	it	was	found	out	that	this	rearward	movement	is	a	retrograde	actin	flow.	Now	

it	 is	well	 established	 that	 all	 four	 steps	 are	mechanochemically,	 spatially,	 and	 temporally	

coordinated	to	ensure	directed	cell	migration	(Labrousse	et	al.,	2003).	

As	the	mechanism	of	the	rear	contraction	in	migrating	cell	is	the	main	mechanism	discussed	

in	this	Thesis,	we	will	go	in	a	bit	more	details	into	current	understanding	of	this	process.		

In	most	of	the	cell-migratory	systems	contraction	is	generated	by	Myosin	motors	attached	

to	the	actin	filaments	and	pulling	on	them	using	the	energy	of	ATP	hydrolysis	(C.	A.	Wilson	

et	al.,	2010).	There	are	several	conceptual	models	that	explain	why	and	how	the	system	of	

the	 force-generating	 elements,	 such	 as	 actomyosin	 filaments,	 would	 produce	 overall	

network	contraction	rather	than	expansion.	Some	models	assume	that	actomyosin	fibers	in	

migrating	cell	are	organized	into	the	sarcomeric	structure	that	acts	as	a	unit	of	contraction	

in	 the	muscle	cell	 (Naumanen,	Lappalainen,	&	Hotulainen,	2008).	One	of	 the	proposals	of	

how	actin	and	myosin	filaments	can	self-organize	into	a	sarcomeric	structure	is	that	myosins	

remain	 bound	 to	 the	 barbed	 end	 of	 an	 actin	 filaments.	When	 several	 actin	 bundles	with	

opposing	 polarity	 are	 connected	 to	 the	 same	 myosin	 cluster	 they	 slide	 into	 a	 mini-

sarcomere	 configuration	 (Zumdieck,	 Kruse,	 Bringmann,	 Hyman,	 &	 Jülicher,	 2007).	 Even	

without	this	property	it	 is	predicted	that	myosin	would	sort	actin	filaments	based	on	their	

polarity,	thus	generating	fibers	with	alternating	polarity	(Craig,	Dey,	&	Mogilner,	2011).		
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The	 more	 complete	 model	 includes	 cross-linkers	 that	 are	 permanently	 attached	 to	 the	

barbed	ends	of	actin	filaments	but	still	allow	polymerization	of	actin	to	occur.	This	sort	of	

arrangement	 should	 allow	 a	 proper	 mini-sarcomere	 contraction	 (Friedrich,	 Fischer-

Friedrich,	Gov,	&	Safran,	2012).	 Interestingly,	 it	was	also	proposed	that	contraction	of	the	

actin	 filaments	 can	 occur	 independent	 of	 the	myosin	motors,	 given	 that	 actin	 fibers	 are	

bound	 by	 cross-linkers	 and	 at	 the	 same	 time	 actin	 depolymerization	 occurs:	 cross-linkers	

would	compensate	for	reduced	actin	mesh	density	by	crosslinking	the	remaining	filaments	

and,	thus,	contracting	the	whole	network		(Sun	&	Hemler,	2001).	

	

Cell	migration	in	confinement:	a	special	circumstance	

As	the	research	of	cell	migration	has	expanded,	it	became	clear	that	Abecrombie’s	classical	

model	of	cell	migration	holds	for	2D	type	of	migration:	 	the	cell	has	to	be	attached	to	the	

substrate	 through	 the	 specific	 adhesions	 at	 the	 front	 edge	 to	 generate	 sufficient	 traction	

forces	to	counteract	Brownian	motion	and	to	propel	itself	forward.	However,	when	a	cell	is	

confined	in	a	3D	environment,		there	is	enough	surface	contact	that	secures	forward	motion	

CB29CH18-Danuser ARI 1 September 2013 12:24
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Figure 1
Revisiting the Abercrombie model of metazoan cell crawling. Cell migration is divided into discrete steps: (a) protrusion based on actin
growth and polymerization force; (b) formation of new adhesions at the front; (c) release and recycling of adhesions at the rear; and
finally, (d ) actin-myosin-powered contraction of the cytoplasm, resulting in forward translocation of the cell body. We are showing
schematically the centrosome and microtubules originating from it, as well as the Golgi complex and Golgi-derived microtubules that
play important roles in guiding migration.

FROM ABERCROMBIE TO EARLY AND INTEGRATIVE MODELING
In his famous Croonian lecture, Abercrombie (1980) was the first to compile an integrated model of
cell migration based on a series of fairly isolated experimental observations. Although the model
was not mathematical, it has defined the framework for nearly all qualitative and quantitative
models of migration to date. The model postulated that migration occurs in a cycle of four steps
driven by interconnected but separate processes (Figure 1). Prerequisite to the cycle is that the
cell is polarized (i.e., the cell has a well-defined front and rear). The Croonian lecture did not
address the mechanisms of polarization; however, it offered the speculation that chemical and/or
mechanical cues could be responsible for a differential distribution of molecular factors along the
axis of movement that may cause the separation of processes. Today, it is well established that
cells can sense gradients in chemical, mechanical, and other extracellular cues and define the front
and rear.

Once the cell is polarized, step one in the migration cycle is the protrusion of a lamellipodium
at the leading cell edge (Figure 1a). In Abercrombie’s time, it was not clear which molecules were
driving the forward propulsion, although he already speculated that the growth of actin filaments
at the cell front may be important. Step two consists of the formation of new adhesions at the
cell front (Figure 1b). These adhesions are required to balance propulsive forces at the leading
edge as well as contractile forces elicited in step four. In step three, aging adhesions are released
(Figure 1c). The final step is the contraction of the cell (Figure 1d ). Abercrombie proposed that
this process is mediated by actomyosin machinery similar to the molecular machinery implicated in
muscle contraction. Given a front-to-back gradient in adhesion strength, contraction will lead to
preferential forward movement of the rear. Importantly, it may also stall or even retract the leading
edge, dependent on the overall adhesion strength and the rate of lamellipodial extension. Indeed,
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Figure	 1.	 Abercrombie model of metazoan cell crawling. Cell migration is divided into discrete steps: (a) 
protrusion based on actin growth and polymerization force; (b) formation of new adhesions at the front; (c) release 
and recycling of adhesions at the rear; and finally, (d ) actin-myosin-powered contraction of the cytoplasm, 
resulting in forward translocation of the cell body. We are showing schematically the centrosome and microtubules 
originating from it, as well as the Golgi complex and Golgi-derived microtubules that play important roles in 
guiding migration (Danuser et al., 2013). 
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(Paluch,	Aspalter,	&	Sixt,	2016).	Indeed,	there	are	several	studies	showing	that	3D	migration	

can	occur	without	 Integrin-mediated	adhesion	(Lämmermann	et	al.,	2008;	Ruprecht	et	al.,	

2015).	 In	 general,	 there	 is	 a	 continuum	of	 different	 cell-migratory	modes,	 spanning	 from	

adhesion-dependent	(mesenchymal)	to	a	more	adhesion-independent	mode	(amoeboid).	In	

turn,	 there	 are	 cell	 intrinsic	 and	 cell	 extrinsic	 factors	 that	 define	 the	 position	 of	 the	

migrating	cell	within	this	continuum	and,	hence,	its	preferred	migratory	mode.	

One	 of	 the	 instrinsic	 factors	 predisposing	 a	 cell	 to	 move	 in	 an	 adhesion-independent,	

amoeboid	 	 fashion	 is	 the	 absence	 of	 Integrins.	 High	 actomyosin	 contractility	 is	 another	

factor	 favoring	 the	 amoeboid	 type	 of	 locomotion.	 Cortical	 contractility	 at	 the	 cell	 rear	 is	

important	not	only	for	generation	of	the	cytoplasmic	flow	forward,	but	also	to	counteract	

and	weaken	adhesion	and	to	promote	a	rounded	cell	morphology.	(This	is	a	bit	logically	odd	

as	you	first	are	focusing	on	absence	of	adhesion	and	now	on	how	this	works	in	the	context	

of	 the	 presence	 of	 adhesion).	 Accordingly,	 myosin	 II	 knock-out	 in	 T-cells	 induced	 cell	

spreading	 and	 impaired	 migration	 (Jacobelli	 et	 al.,	 2010),	 while	 activation	 of	 Rho/Rock	

pathway	 in	 isolated	 zebrafish	 progenitors	 in	 confinement	 induced	 adhesion-independent	

migration	(Ruprecht	et	al.,	2015).	

Among	extrinsic	 factors	 favoring	amoeboid	migration,	 the	most	obvious	one	 is	using	non-

adhesive	substrates	for	cells	to	migrate	on.	Interestingly,	decreasing	substrate	adhesiveness	

increased	the	speed	of	migration	of	several	mesenchymal	cell	types,	when	they	were	placed	

in	 2D	 confinement	 between	 two	 glass	 plates	 (Liu	 et	 al.,	 2015).	 Despite	 the	 fact	 that	

decreases	 in	 adhesion	 can	 improve	 the	 efficiency	 of	 migration,	 some	 degree	 of	

adhesiveness	to	the	substrate	due	to	friction	is	necessary	to	generate	traction	and	forward	

motion:	 that	 has	 been	 confirmed	 by	 the	 inability	 of	 Walker	 cells	 to	 move	 on	 an	 inert	

polyethylene	glycol	surface	even	when	confined	(Bergert	et	al.,	2015).	Finally,	confinement	

per	se	promotes	cell-substrate	 interaction	 in	the	absence	of	specific	 (focal)	adhesions	and	

favors	rapid	cell	locomotion	(Toyjanova,	Flores-Cortez,	Reichner,	&	Franck,	2015).	However,	

when	 confinement	 is	 too	 strong	 due	 to	 the	 stiffness	 of	 the	 substrate,	 cell	 migration	 is	

impeded,	 presumably	 because	 too	 strong	 confinement	 imposes	 a	 barrier	 on	 nuclear	

translocation	(Davidson,	Sliz,	Isermann,	Denais,	&	Lammerding,	2015).		

There	 are	 several	 models	 describing	 mechanisms	 that	 cells	 can	 utilize	 to	 migrate	 in	

confinement	without	 the	use	of	 focal	 adhesions	 (Paluch	 et	 al.,	 2016).	One	of	 the	models	

assumes	a	cell	 inserting	 lateral	protrusions,	such	as	blebs	or	pseudopods,	 into	the	gaps	of	



	 12	

discontinuous	surrounding	tissues,	thus	generating	traction	forces	(Fig.	2a).	Indeed,	this	sort	

of	 locomotion	was	observed	 in	migrating	neutrophils	 that	were	pasting	 their	pseudopods	

into	 surrounding	 3D	 matrix,	 deforming	 it	 and	 moving	 themsleves	 forward	 (Mandeville,	

Lawson,	 &	 Maxfield,	 1997;	 Tozluoǧlu	 et	 al.,	 2013).	 Another	 proposed	 model	 is	 called	

chimneying	and	does	not	 require	a	discontinuous	environment	around	 the	migrating	 cell.	

Instead,	the	actin	polymerizes	against	the	walls	of	the	channel	in	which	the	cell	moves,	and	

exerts	a	pushing	 force	on	the	walls	 (Fig.	2b);	 the	dense	elastic	actin	meshwork	at	 the	cell	

rear	prevents	counterproductive	 retrograde	 flow	and	 rear	bleb	 formation	 (Hawkins	et	al.,	

2011;	Malawista,	De	Chevance,	&	Boxer,	2000).	 Indeed,	such	a	network	of	actin	filaments	

growing	 perpendicular	 to	 the	 walls	 of	 confinement	 has	 been	 observed	 (K.	Wilson	 et	 al.,	

2013).	Finally,	non-specific	friction	between	the	migrating	cell	and	the	confining	walls	could	

generate	 traction	 forces	 to	 promote	 cell	 migration	 	 (Hawkins	 et	 al.,	 2011).	 Intracellular	

forces	 generated	 by	 the	 retrograde	 actin	 flow	 can	 provide	 sufficient	 friction	 on	 the	

substrate,	 if	 the	extracellular	domains	of	 the	transmembrane	proteins	carried	by	the	 flow	

are	in	the	proximity	to	the	substrate	(Fig.	2c).	Cadherins	and	extracellular	glycocalyx	matrix	

proteins	 are	 candidate	 molecules	 that	 could	 generate	 transient	 interaction	 with	 the	

substrate	favored	by	confinement	(P.	Friedl	&	Bröcker,	2000).		

It	 could	 be	 beneficial	 for	 certain	 types	 of	 cells	 to	 possess	 the	 ability	 to	 acquire	 certain	

migratory	 strategy	 (such	 as	 mesenchymal	 or	 amoeboid)	 on	 demand.	 This	 could	 be	

particularly	crucial	for	highly	motile	cells	that	are	exposed	to	multiple	environments,	such	as	

immune	 cells	 navigating	 in	 the	 developing	 embryo,	 in	 which	 tissues	 are	 constantly	

reorganising	and	presenting	diverse	environments	to	migrating	cells.		

	

The	role	of	the	AP1	transcription	factor	in	invasive	migration	

					The	invasive	migration	of	cells	can	be	a	transcriptionally	acquired	behavior	(Bradford	W.	

Ozanne,	Spence,	McGarry,	&	Hennigan,	2006).	During	the	development	of	an	embryo	and	in	

tumor	spreading,	cell	invasion	is	linked	to	epithelial-to-mesenchymal	transitions	(EMTs),	the	

process	 through	which	epithelial	 cells	 downregulate	 cell–cell	 adhesions	 and	 lose	polarity,	

thus	becoming	mesenchymal-like	cells	with	invasive	capabilities	(B.	W.	Ozanne	et	al.,	2000).	

Transcription	factors	Snail,	Slug,	Twist,	and	Zeb1/2	are	 involved	 in	EMT	(Ordway,	Fenster,	

Ruan,	&	Curran,	2005).	Tumor	cell	invasion	has	common	features	with	the	development	of	
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the	 embryo,	 during	 which	 epithelial	 cells	 initiate	 migration	 in	 response	 to	 extracellular	

signals	such	as	TGFβ	(transforming	growth	factor	beta)	(Derynck,	Akhurst,	&	Balmain,	2001;	

Zavadil	 &	 Böttinger,	 2005),	 HGF	 (hepatocyte	 growth	 factor)	 (Thiery,	 Acloque,	 Huang,	 &	

Nieto,	 2009)	or	 EGF	 (epidermal	 growth	 factor)	 (Lu,	Ghosh,	Wang,	&	Hunter,	 2003).	All	 of	

these	ligands	are	known	to	activate	AP1	(activating	protein	1),	another	transcription	factor	

linked	to	invasion	and	EMT.		AP1	is	also	implicated	in	the	transformation	of	cells	by	various	

oncogenes	 that	 participate	 in	 the	 growth	 factor	 Ras	 pathway	 and	 increasing	 tumor	

invasiveness.		

					AP1	is	composed	primarily	of	heterodimers	of	Fos	and	Jun	family	proteins.	The	Fos	family	

includes	 Fos,	 Fra1	 and	 Fra2,	 and	 the	 Jun	 family	 is	 made	 up	 of	 c-Jun,	 JunB	 and	 JunD,		

respectively.	Originally,	Fos	and	Jun	were	first	identified	as	retroviral	oncogenes	that	were	

able	 to	 induce	 tumors	 in	 vivo	and	 transform	 fibroblasts	 into	 tumorogenic	 cells	 in	 culture	

(Curran,	Peters,	Van	Beveren,	Teich,	&	Verma,	1982).		v-fos-transformed	rat	fibroblast	cells,	

208F,	adopted	a	bipolar	spindle	shape	that	didn’t	have	actin	stress	fibers	and	had	only	weak	

adhesion	structures.	In	one	study	the	target	genes	of	v-fos	in	transformed	208F	cells	were	

identified	(Bradford	W.	Ozanne	et	al.,	2006)	and	they	were	consistent	with	the	previously	

identified	 AP1	 target	 genes	 associated	 with	 invasion	 such	 as	 members	 of	 the	 matrix	

metalloproteinase	 (MMP)	 family	 of	 extracellular	 proteases	 (Bradford	 W.	 Ozanne	 et	 al.,	

2006).	 Transformed	208	 fibroblast	 cells	perform	 invasive	migration	 in	an	 in	 vitro	 invasion	

assay	where	 cells	migrate	 in	 3D	 through	 a	 thick	 layer	 of	matrigel.	 These	 cells	migrate	by	

extending	 a	 long	 pseudopod	 that	 forms	 membrane	 ruffles	 at	 its	 tip	 and	 this	 invasive	

migration	 and	 pseudopod	 formation	was	 dependent	 on	 AP1	 activity	 (Lamb	 et	 al.,	 1997).	

Among	 genes	 upregulated	 in	 v-fos-transformed	208	 fibroblasts	were	CD44,	 a	 cell	 surface	

hyaluronan-receptor	that	 links	to	the	actin	cytoskeleton,	and	ezrin,	a	member	of	the	ERM	

(ezrin–radixin–moesin)	family	of	protein	that	connects	CD44	to	the	actin	cytoskeleton.	Both	

of	 these	 genes	 were	 shown	 to	 be	 important	 for	 pseudopod	 formation	 and	 the	 invasive	

migration	of	transformed	fibroblasts.	Another	Fos	ortholog,	FOSL1,	was	shown	to	regulate	

the	adhesion	and	migration	of	endothelial	cells	of	the	forming	vessel	by	directly	regulating	

the	transcription	of	integrins	(Galvagni,	Orlandini,	&	Oliviero,	2013).	

									In	 an	 elegant	 study	 of	 the	 invasion	 of	 anchor	 cells	 moving	 through	 the	 basement	

membrane	of	developing	Caenorhabditis	elegans,	the	FOS-1A	transcription	factor	has	been	

shown	to	upregulate	the	transcription	of	a	set	of	genes	that	in	combination	were	important	
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for	 anchor	 cell	 invasion.	 These	 genes	 were	 protocadherin,	 MMP	 and	 hemicentin,	 a	

component	of	the	ECM.	Altogether	they	were	sufficient	to	allow	anchor	cells	to	anchor	on	

the	 basement	 membrane,	 dissolve	 it,	 adhere	 again	 and	 migrate	 through	 (Hagedorn	 &	

Sherwood,	2011).	

									AP1	 in	 Drosophila	 is	 important	 for	 the	 formation	 of	 metastasis	 by	 Rasv12,	 scrib-	

mediated	tumors	(Atkins	et	al.,	2016;	Igaki,	Pagliarini,	&	Xu,	2006;	Kulshammer	&	Uhlirova,	

2013;	Uhlirova	&	Bohmann,	2006).	There	are	several	 cytoskeleton	 regulators	 found	 to	be	

transcriptionally	 regulated	 by	 AP1	 in	 this	 model	 system,	 among	 them	 were	 MMPs,	 the	

formin	Diaphanous	and	the	filamin	Cheerio.	It	was	shown	that	filamin	Cheerio	is	involved	in	

proliferation,	 formation	 of	 metastasis	 and	 invasiveness	 of	 this	 tumor	 (Kulshammer	 &	

Uhlirova,	2013).		

							Thus,	 AP1	 transcription	 factor	 (and	 Fos	 in	 particular)	 is	 the	 key	 transcription	 factors	

linked	 to	 the	 regulation	 of	 cell	 migration	 and	 invasion	 in	 different	 model	 systems.	 AP1	

usually	regulates	actin	cytoskeleton	components	and	MMPs.	However,	the	exact	underlying	

molecular	mechanisms	could	be	different	and	strongly	depend	on	the	context.	

					Both	Fos	and	Jun	protein	families	are	parts	of	of	basic	leucine	zipper	(bZIP)	superfamily	

of	 transcription	 factors	 (Miller,	 2009).	Members	of	 the	bZIP	 superfamily	 form	homo-	and	

heterodimers	 and	 activate	 transcription	 upon	 binding	 to	 specific	 sites	 on	 the	 DNA.	

CCAAT/enhancer	 binding	 protein	 α	 (C/EBPα)	was	 the	 first	 cloned	 and	 characterized	 bZIP	

transcription	factor.	The	researchers	identified	that	the	bZIP	DNA	binding	domain	contains	

a	positively	charged	segment,	the	basic	region,	that	is	connected	to	the	repeats	of	leucine	

comprising	 the	 leucine	 zipper.	 Following	 studies	 of	 the	 crystal	 structure	 of	 bZIP	

transcription	factors	have	demonstrated	that	these	factors	bind	to	DNA	as	dimers	that	form	

a	 chopstick-like	 structure	 and	 that	 dimerization	 occurs	 because	 the	 leucine	 zippers	 of	

monomers	havie	coiled-coil	alpha-helical	structures	which	wrap	around	other	(Ellenberger,	

Brandl,	 Struhl,	 &	 Harrison,	 1992;	 Miller,	 2009).	 The	 basic	 region	 of	 each	 of	 the	 protein	

helices	binds	to	the	DNA	major	groove	at	one-half	of	a	palindromic	site.		

								bZIP	 proteins	 are	 classified	 into	 several	 protein	 families	 each	 having	 their	 own	 DNA	

specificities	 (Garvie	 &	 Wolberger,	 2001).	 Each	 bZIP	 transcription	 factor	 recognizes	 its	

specific	DNA	region	thanks	to	five	basic	residues	located	in	the	conserved	positions	in	the	

basic	region.	The	ability	to	form	heterodimers	by	certain	members	of	bZIP	proteins	further	

broadens	the	range	of	possible	DNA	binding	sites	(Vinson	&	Boyd,	1993).	
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- 										c-Jun	bZIP	transcription	factors,	in	addition	to	heterodimerization	with	c-Fos	and	AP1	

formation,	can	also	form	homodimers	but	with	a	lower	affinity	(John,	Leppik,	Busch,	Granger-

schnarr,	&	Schnarr,	1996;	Krieger,	2015a;	Nakabeppu,	Ryder,	&	Nathans,	1988).	Some	studies	

have	found	that	c-Fos,	unlike	c-Jun,	lacks	the	ability	to	homodimerize	and	can	bind	to	DNA	

only	in	complex	with	c-Jun	(Chinenov	&	Kerppola,	2001;	Curran,	Peters,	Van	Beveren,	Teich,	

&	Verma,	1982).	It	is	thought	that	leucine	zippers	of	c-Fos	repulse	each	other	thus	preventing	

stable	homodimerization.	However,	a	study	detected	stable	c-Fos	dimers	bound	to	DNA	by	

determining	its	dissociation	constants	from	FRET	transitions	and	using	imaging	fluorescence	

cross-correlation	spectroscopy	(SPIM-FCCS)	and	molecular	dynamics	modeling	(Krieger,	

2015b).	In	another	study	it	was	shown	that	a	single	amino	acid	substitution	within	the	

leucine	zipper	region	confers	DNA	binding	and	homodimerization	capacity	to	mammalian	Fos	

(Porte,	Oertel-buchheit,	John,	Granger-schnarr,	&	Schnarr,	1997).	Interestingly,	it	was	shown	

that	in	Drosophila	both	Fos	(dFos)	and	Jun	(dJun)	can	form	both	stable	hetero-	and	

homodimers	(Alerting,	1990).	dFos	homodimerizes,	possibly	because	there	are	more	

hydrophobic	residues	in	zipper	region	responsible	for	dimerization	as	opposed	to	mammalian	

Fos	and,	therefore,	more	stable	homodimer	can	form.	However,	the	most	stable	dimer	in	

vitro	was	AP1	followed	by	the	dJun	homodimer	and	only	then	the	dFos	homodimer.	Both	

dFos	and	dJun	homodimers	formed	complexes	with	AP1	DNA	binding	sites	in	band	shift	

assays	and	were	able	to	activate	transcription	in	vitro	(Alerting,	1990).	

	

	

	

	

	

Tissue	boundaries	in	the	embryo:	confinement	for	the	cells	to	migrate	in?	

The	developing	embryo	 is	an	excellent	example	of	a	 “collection”	of	 tissues	each	of	which	

possesses	a	unique	combination	of	physical	properties	such	as,	 for	example,	adhesiveness	

or	rigidity.	These	properties	define	the	way	the	tissue	develops	and	changes,	as	well	as	the	

way	it	interacts	with	the	neighboring	tissues	and	with	the	cells	that	migrate	through	it.	All	

these	 processes	 are	 parts	 of	 the	morphogenesis	 that	 causes	 an	 organism	 to	 develop	 its	

shape.		
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One	 of	 the	 key	 features	 of	 morphogenesis	 is	 tissue	 separation,	 the	 process	 when	

boundaries	 form	 between	 different	 cell	 populations.	 Interestingly,	 tissue	 separation	 can	

occur	even	before	the	cells	acquire	their	fates,	 indicating	that	 its	function	 is	not	to	simply	

draw	borders	between	organs,	but	to	also	pattern	and	organize	the	tissue	within	the	single	

organ	(Fagotto,	2014).	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 2.	 	 Different	 physical	 mechanisms	 of	 force	 generation	 and	 transmission	 during	 focal	 adhesion–

independent	migration.	The	pink	line	represents	the	actomyosin	cortex,	with	dark	pink	showing	strong	cortex	

contractility	 and	 light	 pink	 a	 weak	 cortex.	 (a)	 Swimming	 migration	 of	 blebbing	 cells.	 Asymmetric	 shape	

deformations	during	bleb	expansion	and	bleb	 retraction	combined	with	hydrodynamic	 interactions	with	 the	

surrounding	fluid	may	lead	to	cell	locomotion.	(b)	Intercalation	of	lateral	protrusions	into	substrate	gaps	may	

serve	as	footholds	to	drive	cell	migration.	This	type	of	migration	may	be	particularly	effective	in	3D	matrices	

and	 in	 crowded,	 inhomogeneous	 environments	 in	 vivo.	 (c)	 Chimneying	 migration	 of	 cells	 in	 confinement.	

Lateral	pushing	forces	against	the	surrounding	substrate	keep	the	cell	body	in	place,	allowing	for	high	cortical	

contractility	at	 the	rear	and	protrusion	expansion	at	 the	 front	 to	drive	 locomotion.	 (d	 )	During	 flow-friction-

driven	 migration,	 forces	 generated	 by	 contractile	 flows	 of	 the	 actomyosin	 cortex	 are	 transmitted	 to	 the	

substrate	via	nonspecific	friction.	The	molecular	origin	of	friction	is	not	known	(Paluch	et	al.,	2016).	
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The	 study	 that	 laid	 a	 foundation	 for	 our	 understanding	 of	 tissue	 separation	 was	 an	

experiment	 in	which	dissociated	embryonic	tissues	sorted	themselves	out	 from	the	mixed	

aggregates	(Steinberg	&	Gilbert,	2004).	This	process	was	later	confirmed	by	the	observation	

of	cell	sorting	during	normal	tissue	formation	(Wacker,	Grimm,	Joos,	&	Winklbauer,	2000).	A	

smooth	interface	between	tissues	is	considered	to	be	a	good	criterion	for	the	existence	of	a	

tissue	boundary	as	this	reflects	an	abrupt	discontinuity	in	cell	adhesion/tension	(Dahmann,	

Oates,	&	Brand,	2011).	

There	 are	 two	 key	molecular	 players	 in	 tissue	 separation:	 the	 actin	 cytoskeleton	 and	 the	

cell-cell	 adhesion	molecules	 (Fagotto,	 2014).	 The	 level	 of	 actomyosin	 contractility	 defines	

the	 stability	 and	 rigidity	 of	 the	 tissue.	 Homophilic	 cell-cell	 adhesion	 molecules,	 such	 as	

cadherins,	 through	their	extracellular	domains	define	the	way	cells	connect	 to	each	other	

and	 through	 their	 cytoplasmic	 region	 couple	 cell-cell	 adhesion	 to	 the	 actin	 machinery.	

Epithelial	 E-cadherin	 and	 mesodermal	 N-cadherin	 are	 the	 classical	 cadherins	 that	 are	

thought	to	define	differential	tissue	adhesion.	Both	of	these	cadherins	connect	to	the	actin	

cytoskeleton	 through	 catenins	 that	 are	 also	 required	 for	 adhesion	 formation.	 Cadherins	

form	clusters	 that	associate	with	 the	actin	 cytoskeleton	 regulators,	 such	as	actin	 filament	

nucleating	factors	and	Rho	GTPases	(Ratheesh	et	al.,	2012).		

One	model	describing	the	biophysical	properties	of	the	tissue	is	based	on	an	analogy	to	

the	 physics	 of	 a	 fluid	 (Fagotto,	 2014).	 In	 this	model	 there	 are	 two	 forces	 opposing	 each	

other:	the	contractility	of	the	actin	cytoskeleton	that	minimizes	the	surface	of	the	cell	and	

the	cell-cell	adhesion	that	favors	cell	spreading	(Lecuit	&	Lenne,	2007).	At	the	equilibrium	of	

these	two	forces	certain	interfacial	cell	tension	arise	that	could	cause	tissue	separation.		

There	 are	 several	 models	 describing	 the	 tissue	 separation	 process.	 One	 of	 them	 is	 the	

differential	adhesion	hypothesis	(DAH)	that	states	that	tissues	sort	based	on	the	differential	

affinity	of	adhesion	molecules	on	the	surface	of	different	cell	 types:	cells	with	the	highest	

adhesion	 will	 tend	 to	 sort	 together	 thus	 minimizing	 their	 surface.	 However,	 this	 model	

didn’t	withstand	attempts	at	experimental	validation	in	vivo	(Ninomiya	et	al.,	2012).	
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Another	model	is	called	differential	interfacial	tension	hypothesis	(DITH)	and	is	based	on	the	

differential	contractility	of	 the	tissues	that	would	 lead	to	the	different	 levels	of	 interfacial	

tension.	 This	 model	 has	 been	 confirmed	 experimentally	 in	 zebrafish	 germ	 layers	 in	 vitro	

(Krieg	et	al.,	2008;	Maitre	&	Heisenberg,	2011).	However,	this	model	assumes	actomyosin	

tension	 and	 cell-cell	 adhesion	 to	 be	 two	 independent	 variables,	which	 is	 hardly	 the	 case	

given	 the	 strong	 crosstalk	 between	 the	 actin	machinery	 and	 cadherin	 complexes.	 A	 local	

contractility	model	is	yet	another	model	that	is	considered	to	be	an	adaptation	of	the	DITH.	

The	 difference	 is	 that	 this	 model	 assumes	 that	 tissue	 separation	 depends	 on	 the	 local	

differences	 in	 the	 tissue	 contractility	 at	 the	 boundary	 and	 not	 on	 the	 global	 tissue	

properties.		

Interestingly,	 the	 concept	 of	 tissue	 separation	 based	 on	 differential	 tension	 was	

complemented	 by	 the	 recent	 in	 vivo	 study	 by	 (Krens	 et	 al.,	 2017).	 Researchers	 have	

demonstrated	 that	 in	 zebrafish	 embryo	 cortical	 tension	 was	 the	 same	 in	 the	 separating	

germ	 layers,	 and	 this	 was	 caused	 by	 the	 higher	 osmolarity	 of	 the	 interstitial	 fluid	 of	 the	

embryo	as	compared	to	the	culture	medium	where	previous	in	vitro	experiments	have	been	

done.	

boundary interface. This produces high interfacial tension between
the two cell populations independently of global tissue tension and
adhesiveness (Dahmann et al., 2011). Contractility is predicted to be
regulated at the boundary interface by interaction between
heterophilic cell contact molecules (Dahmann et al., 2011;
Landsberg et al., 2009).

Experimental evidence
As mentioned above, there is ample correlative evidence for
qualitatively different tensile properties at the boundary. In
particular, insect boundaries are typically marked by strong
actomyosin structures, which seem to be connected via cadherin
adhesions to form extended supracellular ‘chains’ (Fig. 5A′). Actin
structures also prominently mark vertebrate boundaries (Fagotto
et al., 2013; Calzolari et al., 2014). High interfacial tension was
confirmed by laser ablation experiments on the Drosophila wing
anteroposterior boundary (see Box 2) (Landsberg et al., 2009).
Global interference with myosin II function disrupted boundary
alignment in all three models of insect boundaries (Landsberg et al.,
2009; Major and Irvine, 2006; Monier et al., 2010), and the targeted
inactivation of myosin II at the parasegment boundary using

chromophore-assisted laser inactivation (CALI; see Box 2)
demonstrated that its activity was required to maintain boundary
function (Monier et al., 2010).

Critique
The implicit assumption of this model is that the different cell
identities on either side of the boundary are not so much defined by
their adhesive or tensile properties as by the expression of specific
cell surface molecules. As we will see, ephrins and Ephs seem to
play this role in vertebrates. In the case of the insect compartment
boundaries the source of such local signals is unknown. Those
signals that are known to position the boundary and provide
compartment identity [Wnt/Wingless (Wg) for the parasegments,
Notch for the dorsoventral wing boundary, Hedgehog and DPP/
BMP for the anteroposterior boundary (reviewed by Dahmann et al.,
2011)] currently show no obvious direct connection with
actomyosin contractility.

The current model presented for insect compartment boundaries
states that tensile forces parallel to the interface are the motor of
separation (Dahmann et al., 2011; Aliee et al., 2012). Yet, although
differences in adhesion were considered as potential regulators of

Fig. 5. Cortical contractility and mechanisms of separation. (A) Mechanisms of inhibition of cell mixing. Cell intercalation may be inhibited by different
mechanisms, all of which are dependent on actomyosin contractility. (A′) Actomyosin structures connect and reinforce cadherin junctions, building supracellular
‘cables’ that seal the boundary. (A″) Actomyosin contractility leads to cell retraction and disruption of cell contacts. (A‴) Contractility prevents cadherin clustering
and the establishment of heterotypic adhesive contacts. (B) Levels of contractility may account for the different types of boundaries. The schematic, which is
based on live observation of the formation of the Xenopus notochord boundary (Fagotto et al., 2013), shows the progression from the initially uniform tissue to the
final boundary. The successive behaviors seem to correspond to the mechanisms presented in A-A‴ and may recapitulate different boundary types. The process
appears to be driven by the progressive increase in contractility of the actin cortex along the boundary (red double-headed arrows), triggered by ephrin/Eph
signaling. The earliest signs of separation include cortex thickening, increased cadherin clusters at contacts abutting the future boundary and some flattening
of the boundary interface. This boundary is equivalent to the ‘adhesive boundary’ that is seen, for example, at insect parasegments. The second intermediate
phase is characterized by stronger cell contractions and by repeated formation and disappearance of cadherin clusters across the boundary in an attempt to
reinforce cell adhesion in reaction to tension. The interface has significantly straightened. This boundary resembles the ‘dynamic boundary’ found between
ectoderm and mesoderm. Finally, as tension further increases, cadherin clusters cannot be maintained and adhesion is disrupted. The final boundary is
characterized by low adhesion and high tension. This represents a ‘non-adhesive’ boundary.

3312

REVIEW Development (2014) 141, 3303-3318 doi:10.1242/dev.090332

D
E
V
E
LO

P
M

E
N
T

Figure	3.	Cortical contractility and mechanisms of separation. (A) Mechanisms of inhibition of cell mixing. 
Cell intercalation may be inhibited by different mechanisms, all of which are dependent on actomyosin 
contractility. (A′) Actomyosin structures connect and reinforce cadherin junctions, building supracellular 
‘cables’ that seal the boundary. (A′′) Actomyosin contractility leads to cell retraction and disruption of cell 
contacts. (A′′′) Contractility prevents cadherin clustering and the establishment of heterotypic adhesive 
contacts (Fagotto,	2014). 
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Still	in	other	in	vivo	cases	actomyosin	tension	appears	to	be	highest	at	the	tissue	boundary,	

as	confirmed	by	laser	ablation	assays	in	Drosophila	imaginal	disc	and	myosin	accumulation	

at	 the	 imaginal	 disc	 boundaries	 (Aliee	 et	 al.,	 2012).	 At	 the	 molecular	 level	 it	 can	 be	

explained	 in	 the	 two	 following	 ways.	 In	 the	 first	 one,	 the	 boundary	 is	 thought	 of	 as	 a	

supracellular	 seal	 formed	 because	 increased	 actomyosin	 contractility	 consolidates	 lateral	

homophilic	junctions,	generates	the	“seal”	and	prevents	intercalation	of	another	tissue	(Fig.	

3a’).	Another	way	to	view	it,	is	that	actomyosin	tension	at	the	boundary	prevents	(Fig.	3a’’)	

or	 disrupts	 (Fig.	 3a’’’)	 formation	 of	 the	 heterophilic	 adhesion	 between	 two	 tissues	 by	

counteracting	adhesive	force.	

	A	certain	degree	of	interfacial	tension	at	the	boundary	of	the	tissues	will	result	in	a	certain	

degree	 of	 stiffness	 of	 these	 tissues.	 This	 stiffness	 along	 with	 the	 low	 level	 of	 adhesion	

between	 these	 tissues	 provide	 an	 opportunity	 and	 confinement	 for	 the	 motile	 cells	 to	

migrate	 in,	 which	may	 or	may	 not	 be	 used	 to	 the	 advantage	 of	 the	migratory	 cells.	 The	

outcome	will	depend	 in	part	on	the	balance	between	the	tissue	stiffness	and	the	physical	

properties	 of	 the	 migratory	 cells:	 when	 the	 stiffness	 of	 the	 migrating	 cell	 and	 the	

surrounding	tissues	are	at	optimal	ratio,	confinement	would	be	beneficial	for	the	migrating	

cell	to	generate	a	traction	force.	When	that	ratio	is	suboptimal,	the	cell	may	not	be	able	to	

move	within	the	overly	stiff	tissues.	Alternatively,	too	soft	tissues	would	not	sustain	traction	

generation	and	would	yield	under	the	force	applied	by	the	migrating	cell.		

We	would	 like	to	 find	out	which	properties	and	corresponding	molecular	 regulators	allow	

cells	 to	 successfully	 move	 through	 the	 confined	 tissue	 environment,	 and	 how	 this	

movement	occurs.		

There	are	several	in	vivo	systems	that	allow	this	question	to	be	addressed.	One	of	them	are	

border	 cells	migrating	 in	 the	 ovary	 of	Drosophila.	These	 are	 a	 collective	 of	 4-6	 cells	 that	

delaminate	 from	 the	 epithelium	 of	 the	 egg	 and	 migrate	 between	 nurse	 cells	 to	 reach	

another	side	of	the	egg	and	form	a	special	structure	for	the	sperm	entry.	The	front	border	

cell	forms	a	leading	edge	protrusion,	and	all	border	cells	form	adherent	junctions	between	

each	other	to	move	coherently.	Multiple	regulators	and	players	of	this	process	have	been	

described	(Montell,	Yoon,	&	Starz-Gaiano,	2012).	Another	 in	vivo	system	to	study	 invasive	

migration	 is	 the	 anchor	 cell	 of	 Caenorhabditis	 elegans.	 The	 anchor	 cell	 is	 a	 specialized	

uterine	 cell	 that	 undergoes	 stereotypic	 developmental	 migration	 through	 the	 epidermal	

basement	membrane	and	further	moves	between	central	vulval	precursor	cells	to	form	to	
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form	uterine-vulval	connection.	It	was	demonstrated	that	there	is	a	transcriptional	FOS-1A-

dependent	program	that	consists	of	several	molecular	players	crucial	to	regulate	invasion	of	

the	anchor	cell	(Hagedorn	&	Sherwood,	2011).	

We	are	investigating	invasive	migration	of	Drosophila	embryonic	macrophages	as	this	

system	provides	a	huge	array	of	genetic	tools	to	manipulate	different	genes	and	tissues	as	

well	as	provides	good	imaging	opportunities	(for	details	see	“Drosophila	genetics	and	

imaging	tools	allow	dissecting	the	mechanisms	underlying	macrophage	migration	in	vivo”	

below).	Unlike	border	cells	that	migrate	as	highly	cohesive	group	of	cells,	Drosophila	

embryonic	macrophages	disseminate	during	their	migration	and	move	as	single	cells	that	

physically	contact	each	other	and	surrounding	tissues	from	time	to	time.	This	mode	of	

migration	is	similar	to	the	migration	of	the	vertebrate	macrophages	that	constantly	probe	

environment	to	carry	out	their	tasks.	Conservation	of	the	macrophage	functions	(i.e.	

engulfing	pathogens,	clearing	dead	cells	and	secretion	of	the	extracellular	matrix)	and	

corresponding	molecular	players	(e.g.	scavenger	receptors)	across	vertebrate	and	insect	

groups	makes	Drosophila	macrophages	a	very	suitable,	simple	and	genetically	tractable	in	

vivo	system	to	investigate	migration	of	immune	cells	and	to	find	molecular	mechanisms	

underlying	this	process	that	could	be	relevant	for	the	vertebrate	counterparts.	
	

	

	

Drosophila	embryonic	macrophages	is	a	model	system	to	study	cell	migration	

in	vivo	

Immune	cells	 fight	external	 infections,	help	the	organism	to	heal	 itself	and	are,	therefore,	

essential	 for	 its	 normal	 functioning	 (Luster,	 Alon,	 &	 von	 Andrian,	 2005;	 Munoz,	 Biro,	 &	

Weninger,	 2014).	 Unlike	 vertebrates	 that	 rely	 on	 a	 highly	 complex	 immune	 system	

containing	 both	 innate	 and	 adaptive	 parts,	 Drosophila	 melanogaster	 has	 only	 an	 innate	

immune	 system	 consisting	 of	 macrophages	 (Lemaitre	 &	 Hoffmann,	 2007).	 Drosophila	

macrophages	 are	 important	 to	 both	 prevent	 infections	 and	 cancer	 and	 to	 sculpt	 the	

development	of	an	embryo	(Parisi,	Stefanatos,	Strathdee,	Yu,	&	Vidal,	2014;	Pastor-Pareja,	

Wu,	 &	 Xu,	 2008).	 Macrophages	 migrate	 during	 embryonic	 development	 along	 the	 paths	

where	their	functions	are	required	and	eventually	populate	the	embryo	(Cho	et	al.,	2002).	
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Macrophages	originate	in	the	head	mesoderm	(Holz,	2003;	Lebestky,	Chang,	Hartenstein,	&	

Banerjee,	2000)	from	where	they	delaminate	over	time	and	spread	along	three	main	routes		

(Fig.	4).	 In	route	1,	macrophages	move	over	the	yolk	sac	and	beneath	the	amnioserosa	to	

the	tip	of	the	germband	(route	1a).	They	then	invade	the	extended	germband	(Bruckner	et	

al.,	 2004;	 Cho	 et	 al.,	 2002;	 Siekhaus,	 Haesemeyer,	 Moffitt,	 &	 Lehmann,	 2010)	 and	 head	

towards	 kidney-like	 organs	 called	 the	 renal	 tubules	 (route	 1b);	 macrophages	 secrete	

collagen	 IV	which	 facilitates	BMP	 signaling	 required	 for	 the	proper	development	of	 these	

organs	 (Bunt	 et	 al.,	 2010).	 In	 route	 2,	 that	 goes	 along	 the	 vnc,	 macrophages	 engulf	

apoptotic	glial	cells	and	facilitate	vnc	condensation	(Sears,	2003;	Zhou,	Hashimi,	Schwartz,	&	

Nambu,	1995).	Macrophages	also	spread	along	the	dorsal	vessel	in	route	3,	however,	their	

function	there	has	not	been	demonstrated	yet.	

Macrophages	 are	 thought	 to	 be	 guided	 by	 PDGF/VEGF-related	 ligands	 (Pvfs),	 however,	

there	are	certain	clarifications	that	need	to	be	introduced.	First,	it	was	shown	that	the	loss	

of	 function	 of	 PDGF/VEGF-related	 receptor,	 PVR,	 expressed	 in	 the	 macrophages	 causes	

defects	in	their	migration	along	their	routes	(Bruckner	et	al.,	2004;	Cho	et	al.,	2002;	Parsons	

&	 Foley,	 2013;	Wood	 &	 Jacinto,	 2007).	 However,	 later	 it	 was	 proven	 that	 PVR	 plays	 an	

essential	role	in	the	macrophage	survival	(Bruckner	et	al.,	2004).	Complementary	to	this	it	

was	shown	that	PVR-deficient	macrophages	with	restored	survival	are	deficient	in	the	germ	

band	entry	thus	demonstrating	the	importance	of	PVR	in	this	type	of	migration	(Bruckner	et	

al.,	2004;	Parsons	&	Foley,	2013).	The	role	of	Pvf	signaling	for	the	macrophage	migration	in	

route	 2	 is	 to	 guide	 macrophage	 migration	 as	 was	 demonstrated	 when	 the	 macrophage	

survival	defect	was	rescued	(Brückner	et	al.,	2004).	In	route	3	removal	of	the	Pvf	is	sufficient	

to	 cause	migratory	 defects	without	 affecting	 survival	 (Wood,	 Faria,	&	 Jacinto,	 2006).	 It	 is	

also	not	established	solidly	whether	Pvfs	act	as	chemoattractants:	on	one	hand,	Pvf2	over-

expression	 causes	macrophage	 accumulation	 (Cho	 et	 al.,	 2002),	 on	 the	 other	 hand,	 Pvfs	

were	not	tested	for	their	ability	to	redirect	macrophage	direction	of	migration.		In	addition,	

expression	 of	 Pvf2	 or	 dominant	 active	 form	 of	 PVR	 in	 the	 macrophages	 did	 not	 stop	

macrophage	 migration,	 arguing	 against	 the	 role	 of	 Pvfs	 in	 chemoattraction	 (McDonald,	

Pinheiro,	&	Montell,	2003;	Parsons	&	Foley,	2013).	 In	summary,	the	presumable	functions	

for	Pvfs	 in	 the	embryo	are	 to	 increase	 invasion	 in	 route	1	as	well	as	mediate	adhesion	or	

guidance	on	several	macrophage	routes.	
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Figure	4.	Plasmatocyte	migration	routes	and	their	functional	roles	during	embryonic	development.	Schematic	

of	two	embryos	(early	Stage	12	on	the	left	and	Stage	14	on	the	right)	showing	that	plasmatocytes	specified	in	

the	 head	mesoderm	migrate	 along	 three	main	 routes	 during	 embryonic	 development.	 One	 sub	 population	

migrates	 in	 Stage	 10-11	 over	 the	 yolk	 sac	 to	 the	 edge	 of	 the	 extended	 germband	 indicated	 by	 an	 asterisk	

(route	 1a).	 They	 then	 penetrate	 the	 germband	 and	 cluster	 around	 the	 renal	 tubules	 where	 they	 secrete	

collagen	 IV	which	ensheathes	 the	 tubules	 (route	1b).	These	and	other	plasmatocytes	 that	have	entered	 the	

germband	 continue	 along	 the	 posterior	 ventral	 nerve	 cord	 (vnc,	 route	 1c	 in	 left	 embryo,	 route	 1	 in	 right	

embryo).	 Another	 subpopulation	migrates	 out	 from	 the	 head	 (route	 2	 in	 both	 embryos)	 along	 the	 anterior	

ventral	 nerve	 cord.	 In	 both	of	 these	 routes	 plasmatocytes	 engulf	 apoptotic	midline	 glia.	 The	 third	 group	of	

plasmatocytes	migrates	along	the	developing	heart	also	towards	the	posterior	of	the	embryo	(route	3	in	both	

embryos).	Arrows	indicate	the	migration	routes	(Ratheesh,	Belyaeva,	&	Siekhaus,	2015).	

	

As	the	focus	of	the	current	thesis	 is	the	investigation	of	the	macrophage	invasion	into	the	

germ	band	(route	1),	this	process	is	described	in	more	details	here.		

	(Siekhaus	et	al.,	2010)	have	shown	that	macrophage	invasion	into	the	germ	band	requires	

Rap1,	RhoL	and	α-Integrin.	The	mammalian	orthologs	of	these	proteins	are	known	to	be	

involved	in	the	process	of	vessel	extravasation	by	immune	cells,	thus	hinting	at	the	

conservation	of	certain	parts	of	this	process	with	germband	invasion.	(Ratheesh	et	al.,	

2018)	have	further	explored	this	process	and	found	that	the	Drosophila	orthologs	of	TNF	

and	its	receptor	are	involved	in	control	of	the	germband	properties	that	define	the	

efficiency	of	macrophage	invasion.	At	stage	12	of	embryonic	development	macrophages	

start	to	invade	the	germ	band	between	the	ectoderm	and	mesoderm	that	were	closely	

juxtaposed	at	previous	stages,	and	these	two	tissues	separate	(Fig.5a,	b).	The	TNFα	family	

receptor	ortholog,	Grindelwald,	expressed	in	the	ectoderm	of	the	germband	and	its	ligand	

developing kidney interstitium and may stimulate
growth and ureteric bud branching [36]. Postnatally
mouse macrophages also facilitate the branching of the
mammary gland, a process requiring Bone morphogenet-
ic protein (BMP) signalling [37,38]. Macrophage remo-
deling, although not secretion, of collagen appears to be
involved [39]. Thus macrophages influence development
in both Drosophila and vertebrates and migrate develop-
mentally to many of the same tissues. This routing helps
populate different vertebrate tissues with the resident
macrophages that play later essential physiological and
immunological roles [40].

PDGF/VEGF ligands in Drosophila and
vertebrate macrophage migration
PDGF/VEGF-related ligands (Pvfs) have been thought
to mediate migration along all three embryonic routes in
Drosophila but this idea is now contested. The original
hypothesis rested on the findings that each path expresses
one of the 3 Pvfs [13,16] and that loss of function of the
ligands or their plasmatocyte expressed receptor, the
PDGF/VEGF-related Receptor, PVR, causes defects in
movement along each route [13,16,23,41]. However, in-
terpretation of these experiments is complicated; PVR
signaling is also required for plasmatocyte survival [23].
PVR activation of Mbc and Rac has been implicated in its
migratory function in another cell type [42,43], and sig-
naling through Akt/Tor, and MEk/ERK in its role in
hemocyte survival [13,23,42,44,45]. Thus to definitively

demonstrate a migratory role for these ligands or their
receptor requires the migration defects caused by their
absence to remain when cell survival is restored. This has
been shown for PVR and Pvf2/3 in penetration of the
germband in route l [23,41]. In route 2 the importance of
PVR [16] is established but that of Pvfs is not yet clear.
One lab showed strong migratory defects after RNAi of
Pvf2 and 3, but did not assess effects on plasmatocyte
survival [16]. Another rescued survival and restored the
migratory defects seen in a deletion affecting the two
Pvfs, however this deletion causes only a reduction, not
the elimination, of Pvf2 expression [41]. A role in route
3 is likely as migration there fails in the absence of only
one Pvf [16]; eliminating two is required to see strong
survival defects [13,23]. Whether these Pvfs are acting as
chemoattractants is another open question. When Pvf2 is
over-expressed in areas the plasmatocytes normally cross,
it triggers plasmatocyte accumulation, which could be
caused by attraction or adhesion [13,16,25]. Pvfs have not
been used to redirect plasmatocytes to a new area, as was
demonstrated with another migratory cell type, border
cells [46]. Expression of Pvf2 or a dominant active (DA)
form of PVR in the plasmatocytes themselves should
block migration if a chemotactic response is required
for guidance. Each appeared not to, but the expression
was turned on only after much migration had already
commenced [41] and in a background in which the
endogenous protein was still present, albeit for Pvf2 at
reduced levels. Thus the potential migratory functions for
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Eiger,	expressed	in	the	amnioserosa,	affect	the	localization	of	the	components	of	the	

Crumbs	apical	complex	in	the	ectoderm.	The	result	is	decreased	levels	of	the	ectodermal	

apical	phosphorylated	Myosin	II	and,	as	a	consequence,	a	lowered	apparent	stiffness	of	the	

ectoderm	that	favors	macrophage	germband	invasion.	When	the	stiffness	of	the	ectoderm	

was	increased	by	the	overexpression	of	dominant	active	Rho1,	macrophages	were	stalled	at	

the	germband	entry	point. 

	

	

	

	

	

	

	

	

Figure	 5.	 a.	 Schematics	 of	 stage	 10	 and	 stage	 12	 embryos	 (gray)	 with	 box	 indicating	 the	 region	magnified	

below	 to	 illustrate	 the	 morphology	 of	 the	 germband	 before	 (stage	 10)	 and	 after	 (stage	 12)	 macrophage	

invasion.	 Macrophages	 (red)	 enter	 between	 the	 caudal	 ectoderm	 (green),	 and	 the	 visceral	 mesoderm	

(magenta)	along	a	track	of	Laminin	A	(orange).	The	AS	adjacent	to	the	ectoderm	is	in	blue	and	the	yolk	in	gray.	

	b.	 Confocal	 images	 of	 fixed	 lateral	 stage	 10	 and	 12	 wild-type	 embryos	 with	 macrophages	 visualized	 by	
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srpHemo-3XmCherry	 expression	 (red),	 ectoderm	 by	 antibody	 staining	 against	 DE-Cadherin	 (green)	 and	

mesoderm	 by	 antibody	 staining	 against	 DN-Cadherin	 (magenta),	 along	 with	 a	 merge	 of	 all	 channels.	 The	

dotted	white	line	in	the	green	channel	indicates	the	apical	side	of	the	ectoderm	cells	(Ratheesh	et	al.,	2018).	c.	

LanA	staining	in	the		germband.	d.	LanA	staining	along	VNC.	ECT	–	ectoderm,	MES	–	mesoderm,	macrophages	

are	labeled	in	green	

	

This	finding	implies	that	the	stiffness	of	the	ectoderm	has	to	reach	a	certain	value	to	allow	

macrophage	passage	into	the	germband.	This	situtaion	is	reminiscent	of	a	cell	migrating	in	a	

confinement	channel	where	the	degree	of	confinement	has	to	be	at	a	certain,	optimal,	level	

that	does	not	obstruct	forward	cell	movement	and	allows	generation	of	the	traction	force	

on	 the	 walls.	 It	 is	 also	 striking	 that	 at	 the	 stage	 of	 macrophage	 germband	 invasion	 the	

components	of	 the	extracellular	matrix	are	 just	starting	to	be	deposited	(Matsubayashi	et	

al.,	 2017).	 This	 is	 evident,	 for	 example,	 through	 the	 staining	of	 Laminin	A	 (LanA):	 LanA	 is	

visible	 at	 early	 stage	 12	 in	 the	 germ	 band	 (Fig.	 5c),	while	 later	 at	 stage	 13	macrophages	

migrate	 along	much	 thicker	 LanA	 tracks	 in	 the	 VNC	 route	 (Fig.	 5d).	 This	 further	 parallels	

germband	invasion	with	the	adhesion-independent	migration	under	confinement.	

	

	Drosophila	genetics	and	imaging	tools	allow	dissecting	the	mechanisms	

underlying	macrophage	migration	in	vivo	

Drosophila	 melanogaster	 has	 proven	 itself	 to	 be	 an	 excellent	 model	 system	 for	 genetic	

studies	and	dissecting	regulatory	pathways.	This	began	in	the	time	of	Thomas	Morgan	when	

he	 adopted	 fruit	 flies	 in	 the	 lab	 because	 they	were	 cheap	 and	 easy	 to	maintain.	 Later	 it	

appeared	that	many	developmental	processes	are	conserved	between	flies	and	vertebrates,	

and	out	of	15,000	Drosophila	genes	about	half	have	clear	human	homologues.	Moreover,	

flies	possess	multiple	morphological	features	that	could	be	easily	measured	and	quantified.	

The	most	powerful	 advantage	of	Drosophila	 as	a	model	 system	 is	 therefore	 the	ability	 to	

carry	 out	 forward	 genetic	 screens	 to	 find	 the	 key	 components	 regulating	 a	 process	 of	

interest	(St	Johnston,	2002).	

The	Nobel-Prize-winning	genetic	screen	was	carried	out	by	Christiane	Nüsslein-Volhard	and	
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Eric	 Wieschaus	 in	 which	 they	 chemically	 mutagenized	 flies	 and	 attempted	 to	 find	 all	 or	

almost	all	genes	 involved	 in	the	patterning	of	the	embryo	(Nüsslein-volhard	&	Wieschaus,	

1980).	One	class	of	genes	missed	in	this	screen	were	the	genes	involved	in	the	development	

of	the	fly	brain,	that	were	discovered	in	a	separate	screen	through	which	several	conserved	

axon	 pathfinding	 regulators	 were	 identified	 (Seeger,	 Tear,	 Ferres-Marco,	 &	 Goodman,	

1993).	 As	 the	 tools	 advanced,	 Gal4	 system	 and	 GFP	 came	 into	 play	 allowing	 labeling	 of	

individual	 neurons	 and	 to	 carry	 out	 successful	 screens	 to	 find	 genes	 controlling	 dendritic	

morphology	(Gao,	Brenman,	 Jan,	&	Jan,	1999).	Modern	 libraries	of	mutants	keep	multiple	

fly	lines	with	P-elements	incorporated	into	different	locations	in	the	genes.	P-elements	can	

carry	 special	 cassettes	 that	 allow	activation	or	 inhibition	of	 nearby	 genes.	 Finally,	 several	

repositories	maintain	libraries	of	flies	with	interfering	RNAs	designed	to	knock-down	nearly	

every	gene	in	the	Drosophila	genome	placed	under	control	of	the	UAS	regulatory	sequence.		

Thus	they	can	be	driven	 in	any	desired	time	and	place	 in	the	fruit	 fly	 if	the	corresponding	

Gal4	 driver	 is	 available	 (Dietzl	 et	 al.,	 2007).	 And	 since	 the	 Drosophila	 genome	 is	 less	

redundant	 than,	 for	 example,	 the	 genome	 of	 the	 mouse,	 it	 is	 easier	 to	 interfere	 with	 a	

certain	function	or	a	process	because	there	are	less	genes	that	regulate	it.	

These	diverse	approaches	that	allow	genetic	manipulations	of	one	or	several	genes	 in	the	

tissue	 of	 interest	 can	 be	 combined	with	 the	modern	 imaging	 techniques	 to	 visualize	 and	

quantify	the	process	of	interest.	The	Drosophila	embryo	is	particularly	amenable	to	imaging	

due	 to	 its	 relative	 thinness	 and	 translucency.	 Various	 types	 of	 mutants,	 fluorescent	

reporters	and	Gal4	drivers	were	combined	to	perturb	the	function	of	genes	and	to	observe	

the	 corresponding	 morphogenetic	 changes	 and	 phenotypes	 (Collinet,	 Rauzi,	 Lenne,	 &	

Lecuit,	2015;	Razzell,	Wood,	&	Martin,	2014;	Weng	&	Wieschaus,	2017).	

			In	 our	 group	 we	 use	 the	 advantages	 of	 the	 Drosophila	 embryo	 as	 an	 excellent	 model	

system	for	genetic	studies	and	imaging	to	unravel	mechanisms	underlying	migration	of	the	

immune	 cells,	 macrophages	 (introduced	 above).	 Our	 goal	 is	 to	 find	 regulators	 of	 the	

macrophage	germ	band	 invasion	and	our	central	approach	 is	 to	carry	out	genetic	 screens	

for	 genes	 affecting	 this	 process.	 As	 a	 primary	 read-out	 we	 use	 the	 number	 of	 the	

macrophages	in	the	germ	band	(macrophages	are	labelled	with	specific	Gal4	enhancer	trap	

driving	 fluorescent	protein	 (Brückner	 et	 al.,	 2004))	 and	 compare	 these	numbers	between	

wild	type	and	the	mutant	different	genetic	situations	 (Fig.	6a).	 	As	a	control	 to	be	able	to	
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detect	 general	migration	defects	we	analyse	macrophage	numbers	 along	 a	 second	 route,	

the	VNC:	normal	numbers	and	 speed	along	 this	 route	 in	 the	mutant	embryo	 indicate	 the	

absence	of	a	defect	in	general	migration	(Fig.	6b).	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 6.	 Schematics	 of	 Drosophila	 embryo	 showing	 macrophages	 spreading	 along	 the	 routes.	 a.	

Lateral	view	of	the	middle	stage	12	embryo	with	the	germband	outlined	with	the	dashed	line	(route	

1).	b.	Lateral	view	of	the	middle	stage	12	embryo	with	the	VNC	outlined	with	the	dashed	line	(route	2).	
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	Aims	of	the	Thesis	

	

I.	Identification	and	description	of	molecular	players	and	mechanisms	key	for	

the	macrophage	invasive	migration	

Aim	1:	to	identify	systemic	regulators	of	the	macrophage	germ	band	invasion	

By	means	of	a	genetic	screen	and	consequent	detailed	genetic	characterization	we	aimed	to	

find	 transcription	 factors	 and	 their	 partners	 that	 could	 act	 as	 master	 regulators	 of	

macrophage	germ	band	invasion.	This	is	important	as	through	transcription	expression	of	a	

number	of	proteins	 could	be	 tuned	 that	 together	 set	 the	properties	of	macrophages	 that	

are	beneficial	 for	migration	 in	 confinement.	 It	 is	 an	 interesting	biological	question	 if	 such	

master	 regulators	 exist.	 It	 is	 also	 an	 important	 task	 to	 describe	 our	 system	 further	 by	

identifying	the	genes	controlling	germ	band	invasion.	

Aim	 2:	 to	 identify	 the	 molecular	 mechanisms	 acting	 downstream	 of	 these	

systemic	regulators	

We	 would	 like	 to	 unravel	 mechanisms	 and	 players	 acting	 downstream	 of	 transcription	

factors	 that	 are	 key	 to	 tuning	 germ	 band	 invasion.	 We	 would	 like	 to	 identify	 several	

principle	 downstream	 targets	 that	 could,	 together	 or	 separately,	 explain	 the	 strategy	

utilized	by	the	macrophage	when	they	are	trying	to	migrate	in	confinement.	We	hope	that	

this	 will	 shed	 more	 light	 on	 this	 process	 per	 se	 and	 will	 aid	 our	 understanding	 of	 the	

parameters	crucial	for	this	mode	for	migration.		

II.	Identification	of	novel	molecular	players	with	the	previously	unknown	role	

in	migration	

Aim	3:	to	identify	novel	regulators	of	migration	in	confinement	

As	macrophage	germ	band	 invasion	parallels	 cell	migration	 in	 confinement	we	would	use	

the	main	advantage	of	Drosophila	as	a	model	system,	i.e.	relative	ease	of	genetic	screens,	to	

find	novel	regulators	of	this	process	with	previously	unknown	role	in	migration.	We	would	

test	 their	 possible	 interaction	 with	 the	 other	 components	 identified	 in	 the	 screen.	 This	

possible	novel	piece	of	 information	could	have	important	practical	 implications	and	would	

have	to	be	tested	in	vertebrate	model	organisms.	
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Methods	

	

Fly	strains	and	genetics	

Flies	were	 raised	 on	 standard	 food	 bought	 from	 IMBA	 (Vienna,	 Austria)	which	 contained	

agar,	 cornmeal,	 and	 molasses	 with	 the	 addition	 of	 1.5%	 Nipagin.	 Adults	 were	 placed	 in	

cages	in	a	Percival	DR36VL	incubator	maintained	at	25ºC	and	65%	humidity;	embryos	were	

collected	on	 standard	plates	prepared	 in	house	 from	apple	 juice,	 sugar,	 agar	and	Nipagin	

supplemented	with	 yeast	 from	 Lesaffre	 (Marcq,	 France)	 on	 the	 plate	 surface.	 Fly	 crosses	

and	embryo	collections	for	RNA	interference	experiments	(7	hour	collection)	as	well	as	live	

imaging	(6	hour	collection)	were	conducted	at	29ºC.		

	

Fly	stocks	and	extended	genotypes	

srpHemo-GAL4	was	provided	by	K.	Brückner	(UCSF,	USA)	 (Brückner	et	al.,	2004).	kay1		was	

provided	 by	 O.	 Schuldiner	 (Weizmann	 Institute	 of	 Science,	 Israel)	 .	 kay2,	 vrik05901,	 tkv4,	

cwoB9,	gbkg07905,	P{EP}CG10413EP2164	,	PBac{PB}CG5850c03122,	P{EPgy2}MFS15EY06280,	P{lacW}Bsgk13638.	(UAS-

Fra)2,	UAS-Rho.N19,	UAS-fbz,	UAS-kay	RNAi	 (TRIP	HMS00254,	TRIP	JF02804)	 lines,	UAS-vri	

RNAi	(TRIP	HMS02029)	 line,	UAS-tkv	RNAi	 (TRIP	GL00035,	TRIP	GLV21018),	UAS-cher	RNAi	

(TRIP	 HMS01501),	UAS-dia	 RNAi	 (TRIP	 HMS05027,	 TRIP	 HMS00308)	 lines,	 e22c-GAL4	 line	

were	obtained	from	the	Bloomington	Stock	Center	(USA).	UAS-vrille	line	was	provided	by	J.	

Blau	 (NYU,	USA).	UAS-dia.deltaDad.EGFP	 line	was	provided	by	B.	 Stramer	 (KCL,	UK).	UAS-

cher.FLAG	 line	 was	 provided	 by	 M.	 Uhlirova	 (CECAD,	 Germany).	 Dad::GFP.nls	 line	 was	

provided	 by	 T.	 Kornberg	 (UCSF,	 USA).	 The	UAS-сher	 RNAi	 line	 (KK107518),	UAS-bsg	 RNAi	

(KK108920),	 and	 UAS-tm4sf	 RNAi	 (KK111096)	 lines	 were	 obtained	 from	 the	 Vienna	

Drosophila	Resource	Center	(VDRC),	Vienna,	Austria.	

	

The	lines	used	in	each	figure:	

Figures	1C,	1D:	Oregon	R.	Figures	1G,	1H,	1K,	1L:	srpHemo-GAL4,	UAS-GFP.	Figure	1J:	

srpHemo-GAL4,	UAS-GFP;	;	kay1/kay1.	Figure	1M:	,	vrik05901/,	vrik05901;	srpHemo-GAL4,	UAS-

GFP.	Supplementary	figure	1A,	1B:	srpHemo-Gal4,	UAS-mCD8::GFP	

	Figures	2A,	2F,	2M,	2N,	2P	and	supplementary	figures	2D,	2G,	2H:	srpHemo-GAL4,	UAS-

GFP.nls.	Figures	2B,	2F	:	srpHemo-GAL4,	UAS-GFP.nls;	kay2/kay2.	Figures	2C,	2F	:	srpHemo-
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GAL4,	UAS-GFP.nls/(UAS-Fra)2;		kay2/kay2.	Figures	2D,	2F:	srpHemo-GAL4,	UAS-GFP.nls;	

kay1/kay1..	Figures	2G,	2I	and	supplementary	figures	2A,	2C,	2F,	2I,	2K:	srpHemo-Gal4,	

srpHemo-H2A::3xmCherry.	Figures	2H,	2I	and	supplementary	figures	2A,	2C,	2F,	2I,	2K:	

srpHemo-Gal4,	srpHemo-H2A::3xmCherry/UAS-fbz.	Figures	2K,	2M:	,	vrik05901/,	vrik05901;	

srpHemo-GAL4,	UAS-GFP.nls.	Figures	2L,	2N,	2P	and	supplementary	figures	2D,	2G,	2H::	

srpHemo-GAL4,	UAS-GFP.nls,	UAS-vrille.	Figures	2J,	2O:	srpHemo-GAL4,	UAS-GFP,	UAS-

H2A::RFP.	Figure	2J:	srpHemo-GAL4,	UAS-GFP,	UAS-H2A::RFP	/UAS-kayak	RNAi	(TRIP	

HMS00254,	TRIP	JF02804).	Figure	2O:	srpHemo-GAL4,	UAS-GFP,	UAS-H2A::RFP/	UAS-vrille	

RNAi	(TRIP	HMS02029).	Figures	2P:	srpHemo-GAL4,	UAS-GFP.nls;	+/kay1.	

Figures	3A,	3C,	3D,	3E,	3J,	3K,		3H,	3I	and	supplementary	figure	3C	:	Resille::GFP/	srpGal4,	

srpHemo-H2A::3xmCherry.	Figures	3A,	3C,	3D,	3E,	3J,	3K,		3H,	3I	and	supplementary	figure	

3C:	Resille::GFP/	srpHemo-H2A::3xmCherry;	srpHemo-Gal4/UAS-fbz.	Supplementary	figures	

2A,	2B,	2D:	srpHemo-GAL4,	UAS-GFP.nls.	Supplementary	figures	2A,	2B,	2D:	srpHemo-GAL4,	

UAS-GFP.nls;	kay2/kay2.	Supplementary	figure	3E:	srpGal4,	srpHemo-H2A::3xmCherry.	

Supplementary	figure	3E:	srpHemo-H2A::3xmCherry,	srpHemo-Gal4/UAS-fbz.	

Figures	4B,	4D,		4F,	4H,	4I	and	supplementary	figure	4E,	4F,	4G,	4H,	4I,	4J,	4K,	4L,	4M,	4N,	

4R,	4S:	srpHemo-Gal4,	srpHemo-3xmCherry.	Figures	4B,	4D,	4F	and	supplementary	figures	

4E,	4F,	4G,	4H,	4I,	4J,	4K,	4L,	4M,	4N:	srpHemo-Gal4,	srpHemo-3xmCherry/UAS-fbz..	Figures	

4H,	4I	and	supplementary	figure	4O:	UASDicer2;	srpHemo-Gal4,	srpHemo-3xmCherry.	

Figures	4H,	4I	and	supplementary	figure	4O:	UASDicer2;	srpHemo-Gal4,	srpHemo-

3xmCherry/UAS-cheerio	RNAi	(TRIP	HMS01501).	Figures	4H,	4I	and	supplementary	figure	

4O:	UASDicer2;	srpHemo-Gal4,	srpHemo-3xmCherry/UAS-tm4sf	RNAi	(VDRC	KK111096).	

Figures	4J,	4K,	4N:	UASDicer2;	srpHemo-Gal4,	srpHemo-H2A::3xmCherry.	Figure	4J,	4K:	

UASDicer2;	srpHemo-Gal4,	srpHemo-H2A::3xmCherry/UAS-diaphanous	RNAi	(TRIP	

HMS05027,	TRIP	HMS00308).		Figure	4N:	srpHemo-Gal4,	srpHemo-H2A::3xmCherry/UAS-

cheerio	RNAi	(TRIP	HMS01501,	VDRC	KK107518).	Figure	4N:	srpHemo-Gal4,	srpHemo-

H2A::3xmCherry/UAS-tm4sf	RNAi	(VDRC	KK111096).	Figures	4L:	srpHemo-GAL4,	UAS-

mCherry.nls.	Figures	4L:	srpHemo-GAL4,	UAS-mCherry.nls/UAS-fbz.	Figures	4L,	4M:	

srpHemo-GAL4,	UAS-mCherry.nls;	UAS-diaCA/UAS-fbz.	Figures	4L,	4M:	srpHemo-GAL4,	UAS-

mCherry.nls;	UAS-cheerio/UAS-fbz.	Supplementary	figures	4B,	4C,	4D:	srpHemo-Gal4,	UAS-

mCD8::GFP.	Supplementary	figure	4B:	srpHemo-Gal4,	UAS-mCD8::GFP/UAS-fbz.	
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Supplementary	figures	4B,	4C,	4D:	srpHemo-Gal4,	UAS-mCD8::GFP/UAS-vrille.	

Supplementary	figures	4R,	4S:	srpHemo-Gal4,	srpHemo-3xmCherry/UAS-vrille.	

Figures	5A,	5B	and	supplementary	figure	5A,	5B,	5G,	5H	:	srpHemo-Gal4,	UAS-mCD8::GFP.	

Figures	5A,	5B	and	supplementary	figure	5A,	5B,	5G,	5H:	srpHemo-Gal4,	UAS-

mCD8::GFP/UAS-fbz.	Figures	5C,	5D,	5E:	srpHemo-Gal4,	UAS-LifeAct::GFP,	UAS-RedStinger.	

Figures	5C,	5D,	5E:	srpHemo-Gal4,	UAS-LifeAct::GFP,	UAS-RedStinger/UAS-fbz.	Figures	5F,	

5G,	5H	and	supplementary	figure	5C,	5D,	5E,	5F:	srpHemo-Gal4,	UAS-CLIP::GFP.	Figures	5F,	

5G,	5H	and	supplementary	figure	5C,	5D,	5E,	5F:	srpHemo-Gal4,	UAS-CLIP::GFP/UAS-fbz.	

Figures	5I:	srpHemo-H2A::3xmCherry.	Figures	5I:	srpQF/	e22CGal4,	srpHemo-

H2A::3xmCherry;		QUAS-fbz/UAS-Rho.N12.		

Figure	6A:	srpHemo-GAL4,	UAS-GFP,	UAS-H2A::RFP.	Figure	6A:	srpHemo-GAL4,	UAS-GFP,	

UAS-H2A::RFP/UAS-thickveins	RNAi	(TRIP	GL00035,	TRIP	GLV21018).	Figure	6C:	srpHemo-

3xmCherry.	Figure	6D:	srpHemo-H2A::3xmCherry;	UAS-dad.GFP.nls.	Figure	6E:	srpHemo-

GAL4,	UAS-GFP.nls.	Figures	6E:	srpHemo-GAL4,	UAS-GFP.nls;	kay2/+.	Figures	6E:	srpHemo-

GAL4,	UAS-GFP.nls;	+/tkv4.	Figures	6E:	srpHemo-GAL4,	UAS-GFP.nls;	kay2/	tkv4.	

Figure	7B:		srpHemo-GAL4;	UAS-srcEGFP.		Figure	7B:		srpGFP;	cwoB9/cwoB9.	Figure	7C:		

srpHemo-GAL4,	UAS-mCherry.nls.	Figure	7C:		srpHemo-GAL4,	UAS-mCherry.nls;	

cwoB9/cwoB9.	Figure	7E:	srpHemo-GAL4,	UAS-GFP.nls.	Figure	7E:	srpHemo-GAL4,	UAS-

GFP.nls;	gbkg07905/	gbkg07905.	Figure	7E:	srpHemo-GAL4,	UAS-GFP,	UAS-H2A::RFP.	Figure	7E:	

P{EP}CG10413EP2164	/	P{EP}CG10413EP2164;	srpHemo-GAL4,	UAS-GFP,	UAS-H2A::RFP.	Figure	7E:	

PBac{PB}CG5850c03122/	PBac{PB}CG5850c03122;	srpHemo-GAL4,	UAS-GFP,	UAS-H2A::RFP.	Figure	7E:	

P{EPgy2}MFS15EY06280/	P{EPgy2}MFS15EY06280;	srpHemo-GAL4,	UAS-GFP,	UAS-H2A::RFP.	Figure	7E:	

P{lacW}Bsgk13638/	P{lacW}Bsgk13638;	srpHemo-GAL4,	UAS-GFP,	UAS-H2A::RFP.		Figure	7F:	srpHemo-

GAL4,	UAS-GFP,	UAS-H2A::RFP.	Figure	7F:	P{lacW}Bsgk13638/	P{lacW}Bsgk13638;	srpHemo-GAL4,	UAS-

GFP,	UAS-H2A::RFP.	Figure	7F:	P{EP}CG10413EP2164	/	P{EP}CG10413EP2164;	srpHemo-GAL4,	UAS-GFP,	

UAS-H2A::RFP.	

	

Cloning	and	generation	of	QUAS-kayDN	line	



	 31	

The	fragment	of	dominant	negative	Kayak	(Kay	DN)	was	amplified	from	the	genomic	DNA	of	

UAS-fbz	(UAS-kayDN)	fly	line	generated	by	(Eresh,	Riese,	Jackson,	Bohmann,	&	Bienz,	1997)	

using	 primers	 that	 encompass	 a	 5’	 consensus	 translation	 initiation	 sequence	 followed	 by	

bZIP	 fragment	 (dominat	 negative	 fragment	 capable	 of	 dimerization	 but	 not	 of	

transactivation)	 and	 contain	 restriction	 sites	 for	 further	 cloning:	 5’-

GAAGATCTATTGGGAATTCAACATGACCCCG-3’	 and	 5’-

CCCTCGAGTCAGGTGACCACGCTCAGCAT-3’.	 The	 resulting	 fragment	was	 cut	 using	BglII	 and	

XhoI	resctriction	enzymes	and	ligated	into	the	pQUASt	vector	to	place	the	gene	under	the	

control	 of	 5xQUAS	 using	 standard	 procedures.	 The	 final	 construct	 was	 sequenced	 and	

injected	into	the	attP2	landing	site	by	the	BestGene	(https://www.thebestgene.com/).	

	

Embryo	staging	

Embryos	which	had	completed	germband	extension	were	staged	for	imaging	based	on	the	

invagination	of	 the	stomodeum	as	well	as	germband	retraction	away	from	the	anterior	 in	

embryos	oriented	 laterally.	Embryos	which	showed	stomodeum	 invagination	but	no	germ	

band	 retraction	 were	 classified	 as	 Stage	 11,	 embryos	 which	 showed	 stomodeum	

invagination	 and	 germ	 band	 retraction	 with	 the	 tip	 of	 the	 germband	 at	 70%	 embryonic	

length	were	classified	as	early	Stage	12,	embryos	with	germband	retraction	with	the	tip	of	

the	 germ	 band	 at	 60%	 embryonic	 length	 were	 classified	 as	 Stage	 12,	 embryos	 with	 the	

germband	 fully	 retracted	 with	 the	 tip	 of	 the	 germ	 band	 at	 30%	 embryonic	 length	 were	

classified	as	Stage	13.	

	

In	situ	hybridization	and	immunofluorescence	

Embryos	 were	 fixed	 with	 3.7%	 formaldehyde/heptane	 for	 20	 min	 followed	 by	 methanol	

devitellinization	for	in	situ	hybridization.	The	kayak	cDNA	clone	SD04477	and	the	vrille	cDNA	

clone	RE29005	were	obtained	from	the	Drosophila	Genomics	Resource	Centre	(DGRC).	T7	or	

T3	 polymerase-synthesized	 digoxigenin-labelled	 anti-sense	 probe	 preparation	 and	 in	 situ	

hybridization	was	performed	using	standard	methods	 (Lehmann	and	Tautz,	1994).	 Images	

were	 taken	 with	 a	 Nikon-Eclipse	 Wide	 field	 microscope	 with	 a	 20X	 0.5	 NA	 DIC	 water	

Immersion	Objective.	For	most	antibody	stainings,	embryos	were	fixed	with	4.0%	methanol-

free	formaldehyde	and	heptane	for	40	min	at	RT	followed	by	hand	devitellinesitaion.	Vrille	

staining	 was	 conducted	 on	 embryos	 devitellinized	 with	 ethanol.	 Embryos	 were	mounted	
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after	immunolabeling	in	Vectashield	Mounting	Medium	(Vector	Labs,	Burlingame,	USA)	and	

imaged	 with	 a	 Zeiss	 Inverted	 LSM700	 Confocal	 Microscope	 using	 a	 Plain-Apochromat	

20X/0.8	 Air	 Objective	 or	 a	 Plain-Apochromat	 63X/1.4	 Oil	 Objective	 as	 required.	 All	

antibodies	and	dilutions	used	are	listed	in	Supplemental	Table	2.	

	

	

	

Time-Lapse	Imaging	

Embryos	were	dechorionated	in	50%	bleach	for	4	min,	washed	with	water,	and	mounted	in	

halocarbon	oil	27	(Sigma)	between	a	coverslip	and	an	oxygen	permeable	membrane	(YSI).	

The	 anterior	 dorsolateral	 region	 of	 the	 embryo	 was	 imaged	 on	 an	 upright	 multiphoton	

microscope	 (TrimScope,	 LaVision)	 equipped	 with	 a	 W	 Plan-Apochromat	 40X/1.4	 oil	

immersion	 objective	 (Olympus).	 GFP	 and	mCherry	were	 imaged	 at	 860	 nm	 and	 1100	 nm	

excitation	 wavelengths,	 respectively,	 using	 a	 Ti-Sapphire	 femtosecond	 laser	 system	

(Coherent	 Chameleon	 Ultra)	 combined	 with	 optical	 parametric	 oscillator	 technology	

(Coherent	Chameleon	Compact	OPO).	Excitation	 intensity	profiles	were	adjusted	 to	 tissue	

penetration	depth	and	Z-sectioning	for	imaging	was	set	at	1	µm	for	tracking.	For	long-term	

imaging,	movies	were	acquired	 for	60	 -	150	minutes	with	a	 frame	 rate	of	25-40	 seconds.	

Embryos	were	imaged	with	a	temperature	control	unit	set	to	either	25	or	29°C	depending	

on	the	genotype.		

	

Image	Analysis		

Macrophage	cell	counts:	Autofluorescence	of	the	embryo	was	used	to	measure	the	position	

of	the	germ	band	to	determine	the	stages	for	analysis	of	fixed	samples.	Embryos	in	which	

the	tip	of	the	germ	band	retracted	up	to	60%	of	embryonic	length	(Stage	12)	were	analysed	

for	the	number	of	macrophages	that	had	entered	the	germband,	for	the	number	along	the	

ventral	 nerve	 cord	 (vnc)	 and	 in	 the	 whole	 embryo.	 Macrophages	 were	 visualized	 using	

confocal	microscopy	with	a	Z-resolution	of	2µm	and	the	number	of	macrophages	within	the	

germband	or	the	segments	of	vnc	was	calculated	in	individual	slices	(and	then	aggregated)	

using	the	Cell	Counter	plugin	in	FIJI.	Total	macrophage	numbers	were	obtained	using	Imaris	

(Bitplane)	by	detecting	all	the	macrophage	nuclei	as	spots.		
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Macrophage	Tracking,	Speed,	Persistence.	Mode	of	Migration	and	Macrophage	GB	Entry	

Delay	Analysis		

Embryos	 in	 which	 either	 the	 macrophage	 nuclei	 were	 labeled	 with	 srpHemo-

H2A::3XmCherry	 and	 the	 surrounding	 tissues	 with	 Resille::GFP,	 or	 only	 the	macrophages	

were	 labeled	 with	 srpHemo>GFP.nls	 were	 imaged	 and	 250x250x40µm3	 3D-stacks	 were	

typically	 acquired	 with	 about	 0.2x0.2x1µm3	 voxel	 size	 at	 every	 39-41	 seconds	 for	

approximately	 2	 hours.	 For	 imaging	macrophages	 migrating	 along	 the	 VNC	movies	 were	

acquired	 for	 30	minutes	 from	 the	 time	 point	when	macrophages	 have	 started	 spreading	

into	 the	6th	 “segment”	 (see	 Fig.	 S2).	 Images	 acquired	 from	multiphoton	microscopy	were	

initially	processed	with	ImSpector	software	(LaVision	Bio	Tec)	to	compile	channels	from	the	

imaging	 data,	 and	 the	 exported	 files	 were	 further	 processed	 using	 Imaris	 software	

(Bitplane)	to	visualize	the	recorded	channels	in	3D.	Briefly,	

i.	 The	 movie	 from	 each	 imaged	 embryo	 was	 rotated	 and	 aligned	 along	 the	 AP	 axis	 for	

tracking	analysis.	

ii.	Detailed	description	of	the	macrophage	live	migration	analysis	in	germ	band:	

Embryos	 expressing	 srpHemo-H2A::3XmCherry	 and	 Resille::GFP	 (for	 outlining	 germ	 band)	

were	used	for	calculating		macrophage	migration	parameters	in	germ	band.		

Germ	 band	 entry	 zone	 is	 defined	 as	 the	 continuous	 area	 starting	 between	 ectoderm	 of	

germ	band	and	yolk	sac,	entering	 further	an	 interface	between	ectoderm,	mesoderm	and	

yolk	 sac	 and	 continuing	 for	 the	next	 10	µm	between	ectoderm	and	mesoderm	 interface.	

Analysis	of	macrophage	migration	in	germ	band	in	each	movie	started	at	the	time	point	of	

the	 first	 macrophage	 appearing	 between	 germ	 band	 ectoderm	 and	 yolk	 sac	 and	 ended	

when	the	germ	band	started	retraction	(typically	60	minutes	from	the	movie	was	used	for	

analysis).	

Post	 germ	 band	 entry	 is	 the	 zone	 between	 ectoderm	 and	mesoderm	 of	 germ	 band	 that	

starts	immediately	after	germ	band	entry	zone	(after	initial	10	µm	of	the	interface	between	

ectoderm	and	mesoderm	of	germ	band)	and	continues	indefinitely.	Macrophage	migration	

in	 post	 germ	 band	 entry	 zone	 was	 analyzed	 starting	 from	 the	 time	 when	 the	 first	

macrophage	has	entered	post	germ	band	entry	zone	and	either	for	30	minutes,	or	for	less	

than	30	minutes	 	 (in	this	case	until	germ	band	has	started	 its	retraction).	Only	two	out	of	

four	 embryos	 with	macrophages	 expressing	mac>	 kayDN	 were	 analyzed	 for	migration	 in	

post	germ	band	entry	zone	as	in	another	two	embryos	macrophages	were	not	appearing	in	
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post	germ	band	entry	zone	before	germ	band	retraction	onset	(due	to	migration	defect	in	

germ	band	entry	zone).	

Delay	 time	 is	 defined	 as	 the	 time	macrophage	 nucleus	 spends	 at	 the	 interface	 between	

ectoderm,	mesoderm	 and	 yolk	 sac	 in	 germ	 band	 entry	 (Delay	 2)	 from	 the	 time	 when	 it	

appears	 there	 until	 the	 time	when	 it	 starts	 to	move	 forward	 along	 ectoderm	mesoderm	

interface	persistently,	i.e.	starts	doing	sequential	steps	in	one	direction	between	ectoderm	

and	mesoderm	(and	consequently	leaves	the	germband	entry	zone).		

iii.	 Macrophage	 nuclei	 were	 extracted	 using	 the	 spot	 detection	 function	 and	 tracks	

generated	 in	 3D	 over	 time.	 The	 edge	 of	 the	 germband	 was	 detected	 using	 either	

Resille::GFP	 fluorescence	 or	 autofluorescence	 from	 the	 yolk	 and	 	 germband.	 The	 mean	

position	of	the	tracks	in	X-	and	Y-axis	was	used	to	restrict	analysis	to	either	of	the	migratory	

zones	(pre		germband,		germband	entry,	post		germband	entry).	

iv.	Nuclei	 positions	 in	XYZ-dimensions	were	determined	 for	 each	 time	point	 and	used	 for	

further	quantitative	analysis.		

Cell	 speeds,	 trajectory	 persistence	 and	 fits	 of	 displacement	 distributions	 were	 calculated	

using	custom	Python	scripts	from	single	cell	positions	in	3D	for	each	time	frame	measured	

in	Imaris	(Bitplane).	Speed	at	each	moment	in	time	was	calculated	as	an	absolute	value	of	

the	 displacement	 divided	 by	 the	 time	 between	 position	 sampling.	 Briefly,	 instantaneous	

velocities	 from	 single	 cell	 trajectories	 were	 averaged	 to	 obtain	 a	 mean	 instantaneous	

velocity	 value	 over	 the	 course	 of	 measurement.	 The	 persistence	 of	 cell	 trajectory	 was	

calculated	as	a	mean	value	of	the	cosine	of	the	angle	between	subsequent	displacements	

across	the	whole	trajectory	of	the	cell:	

𝑃𝑒𝑟𝑠 𝑝!,𝑝!,… ,𝑝! =
1
𝑛 cos (< 𝑝!!! − 𝑝!!!,𝑝!!! − 𝑝! >)
!!!

!!!

	

where	𝑛	is	 a	number	of	position	 samples	 for	every	 cell	 and	𝑝!,𝑝!,… ,𝑝!are	 the	measured	

positions	 of	 the	 cell	 in	 the	 (𝑥,𝑦) 	space,	 so	 that	 𝑝!!! − 𝑝! 	is	 a	 vector	 indicating	 a	

displacement	of	 the	 cell	 at	 the	 time	point	𝑖,	 and	< 𝑎, 𝑏 >	denotes	 an	 angle	between	 two	

vectors	a	and	b.	These	persistence	values	were	then	averaged	over	all	cell	tracks	to	obtain	

the	mean	value	for	the	measurement	period.	

Average	distance	to	the	two	nearest	cells	was	calculated	for	every	cell	and	every	time	point	

and	then	averaged	of	all	cells	and	all	time	points:	
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒!!! =
1
𝑇

1
𝑁!

!

!!!

1
2 (𝑑 𝑝!! ,𝑝!!!

! + 𝑑 𝑝!! ,𝑝!!!
! )

!!

!!!

	

where	𝑇	is	duration	of	the	session,	𝑁!is	the	number	of	tracked	cells	at	time	𝑡	and	𝑑(𝑝!! ,𝑝!!)	

is	the	Euclidean	distance	between	positions	of	cells		𝑐	and	𝑖	at	the	time	𝑡,	and	𝑘!! 	and	𝑘!! 	are	

the	 indices	 closest	 and	 the	 next	 closest	 cells	 to	 the	 cell	 with	 index	 c	 at	 time	 t	

correspondingly.	I	have	used	two	closest	cells	instead	of	one	to	reduce	the	noisiness	of	the	

measure	of	a	distance	to	a	single	nearest	neighbor.	

To	 characterize	 the	 cell	 migration	 strategy,	 maximum	 likelihood	 estimation	 of	 normal	

distribution	parameters	and	Levy	distribution	parameters	in	the	following	form:	

 
 
were	calculated.	Because	both	models	have	the	same	number	of	parameters	(2),	only	the	

likelihoods	 of	 the	 best	 fits	 were	 compared	 to	 choose	 the	 best	 model.	 As	 Levy-like	

movements	 are	 described	 by	 occasional	 long	 displacements	 with	 periods	 of	 local	

exploration	in-between,	I	have	used	average	length	of	“jumps”	to	compare	the	movement	

patterns	 of	 different	 cell	 populations.	 The	 jumps	 were	 defined	 as	 displacements,	 whose	

length	exceeded	5	µm	per	40	seconds	sampling	period,	 so	 the	average	value	of	 the	 jump	

across	a	measurement	period	can	be	calculated	as:	

𝑀𝑒𝑎𝑛 𝑗𝑢𝑚𝑝 =
1
𝑇

1
𝑁!

!!!

!!!

𝑝!!!! − 𝑝!!
!, !!!!!!!!! !!

	

where	|x|	denotes	a	 length	of	the	displacement	vector	x	and	the	rest	of	the	notations	as	

described	above.	

	

Measurement	of	junctional	fluorescence	intensities	

The	 cortical	 intensity	 of	 Dia	 and	 F-actin	 (Phalloidin)	 were	 calculated	 (for	 all	 genotypes	

except	for	mac>vrille)	using	linescan	analysis	as	previously	described	(Smutny	et	al.,	2010)	

with	the	following	changes.	The	line	length	was	approximately	5µm	and	the	line	was	always	

drawn	 in	 the	middle	slice	of	 the	Z	stack	 (1µm	resolution)	at	 the	macrophage-macrophage	

contact.	For	every	line,	a	Gaussian	fit	was	applied	and	maximum	intensities	across	the	cell	
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contact	 were	 then	 normalized	 against	 average	 intensities	 of	 Dia	 or	 F-actin	 (Phalloidin)	

staining	in	the	stereotypic	germ	band	area	of	about	50x50µm2	in	each	embryo.	The	average	

intensity	of	the	Phospho-Myosin	Regulatory	Light	Chain	(MyoP)	was	calculated	by	outlining	

the	 periphery	 of	 the	 middle	 Z	 stack	 (1µm	 resolution)	 of	 the	 macrophage	 and	 then	 the	

average	 intensities	 along	 this	 line	 were	 normalized	 against	 average	 intensities	 of	 MyoP	

staining	in	the	stereotypic	germ	band	area	of	about	50x50µm2	in	each	embryo.	The	average	

intensity	of	Dia	staining	 in	mac>vrille	macrophages	was	calculated	 in	the	same	way	as	 for	

MyoP.	Both	analyses	were	carried	out	using	standard	Fiji	software.	4-5	embryos	were	used	

for	the	analysis	of	each	genotype.	Only	macrophages	located	in	the	pre	germ	band	or	germ	

band	entry	zones	were	analyzed.		

	

Cell	aspect	ratio	analysis	and	imaging	actin	dynamics	

Embryos	 expressing	 srpHemoGal4>UAS-CLIP::GFP	 were	 used	 for	 measuring	 th	 maximal	

length	and	width	of	the	macrophage.	Briefly,	250x250x30μm3	(1µm	Z	resolution)	3D-stacks	

were	 typically	 acquired	 at	 every	 35-42	 seconds	 for	 approximately	 1	 hour.	 To	 measure	

maximal	 width	 and	 length	 of	 cells	 we	 used	 standard	 Fiji	 software.	 We	 started	 the	

measurement	from	the	time	when	the	cell	body	of	the	first	macrophage	fully	appeared	in	

the	Delay	2	zone	(and	only	the	first	entering	macrophage	was	analyzed)	and	for	the	next	20	

µm	 along	 the	 ectoderm	mesoderm	 interface	 (which	 corresponds	 to	 the	 germband	 entry	

zone).	 At	 every	 timeframe,	 the	 lines	were	 drawn	 along	 the	 longest	 dimension	of	 the	 cell	

(from	the	cell	base	until	the	tip	of	the	cell	or	the	tip	of	the	filopodia,	typically	in	the	middle	

of	the	Z	stack),	which	was	considered	to	be	a	maximal	cell	length,	and	along	the	orthogonal	

longest	dimension,	which	was	considered	to	be	a	maximal	cell	width.	The	border	between	

the	 first	 and	 the	 second	 entering	 macrophages	 was	 drawn	 based	 on	 the	 line	 of	

uninterrupted	CLIP::GFP	intensity	at	the	base	of	the	first	macrophage.	The	length	to	width	

ratios	were	quantified	 for	each	timeframe	and	probability	density	 function	was	plotted:	5	

embryos	 were	 recorded	 for	 each	 genotype.	 The	 length	 of	 the	 filopodia	 (when	 it	 was	

present)	 was	 measured	 concomitantly.	 Embryos	 expressing	 srpHemoGal4>UAS-

LifeAct::GFP,	 UAS-RedStinger	 	 were	 used	 to	 image	 actin	 dynamics	 live.	 Briefly,	

250x250x30μm3	 (1µm	 Z	 resolution)	 3D-stacks	 were	 typically	 acquired	 at	 every	 35-42	

seconds	 for	 approximately	 1	 hour.	 The	 filopodia	 length	 was	 measured	 only	 for	 the	 first	

entering	macrophage	from	the	time	when	filopodia	was	first	pasted	into	Delay	2	zone	and	
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until	 the	macrophage	 has	 started	 translocating	 its	 cell	 body	 into	 Delay	 2	 zone	 (filopodia	

widens	and	resolves	during	this	period).	3-4	embryos	were	recorded	for	each	genotype.	

Actin	dynamics	were	measured	in	the	first	few	entering	macrophages	from	the	time	point	

when	the	first	macrophage	started	its	movement	from	the	Delay	2	zone	further	along	the	

ectoderm	 mesoderm	 interface	 (tail	 entry	 zone).	 Imaging	 was	 done	 until	 the	 germband	

retraction	onset.	3	embryos	were	recorded	for	each	genotype.	

	

FACS	sorting	of	the	macrophages	

For	embryo	collection	adult	flies	of	either	w+;;srpHemo-Gal4,srpHemo-3xmCherry/+		or	w+;;	

srpHemoGal4,srpHemo::3xmCherry	 /UAS-kayDN	 genotypes	were	 placed	 into	 plastic	 cages	

closed	with	apple	juice	plates	with	yeasts	for	egg	laying.	Collections	were	performed	at	29°C	

at	 8h-20h	 light-dark	 cycle.	 	 Since	 our	 aim	 was	 to	 obtain	 macrophages	 from	 a	 narrow	

developmental	time	window	(stage	11-	early	stage	12,	when	macrophages	undergo	invasive	

migration	into	the	germ	band)	we	left	adult	flies	to	lay	eggs	for	1	hour,	then	isolated	plates	

with	embryos	and	let	them	reach	a	desired	stage	by	keeping	them	at	29°C	for	additional	5	

hours	15	minutes.	Embryos	were	harvested	in	this	way	for	2	days	with	about	6-7	collections	

per	day	and	stored	meanwhile	at	+4°C	to	slow	down	development.	Collected	embryos	were	

dissociated	 and	 the	 macrophages	 were	 sorted	 according	 to	 the	 procedure	 described	 in	

(Gyoergy	et.al).	About	1-1.5x105	macrophages	were	sorted	within	30	minutes.	

	

Sequencing	of	the	macrophage	transcriptome	

Total	 RNA	was	 isolated	 from	 the	 FACS-sorted	macrophages	using	Qiagen	RNeasy	Mini	 kit	

(Cat	No.	74104).	The	quality	and	concentration	of	RNA	was	determined	using	Agilent	6000	

Pico	 kit	 (Cat	No.	 5067-1513)	 on	Agilent	 2100	 Bioanalyzer:	 about	 100ng	 of	 total	 RNA	was	

extracted	from	1.5x105	macrophages.	RNA	sequencing	was	performed	by	the	CSF	facility	of	

Vienna	 Biocenter	 according	 to	 the	 standard	 procedures	

(https://www.vbcf.ac.at/facilities/next-generation-sequencing/).	 Briefly,	 cDNA	 library	 was	

synthesized	using	QuantSeq	3’	mRNA-seq	 Library	Prep	kit	 and	3	 replicates	of	 each	of	 the	

genotypes	 w+;;srpHemoGal4,srpHemo::3xmCherry/+	 or	 w+;;	

srpHemoGal4,srpHemo::3xmCherry	 /UAS-kayDN)	 	 were	 sequenced	 on	 the	 Illumina	 HiSeq	

2500	platform.	
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The	reads	were	mapped	to	the	Drosophila	melanogaster	Ensembl	BDGP6	reference	genome	

with	 STAR	 (version	 2.5.1b)	 The	 read	 counts	 for	 each	 gene	 were	 detected	 using	 HTSeq	

(version	 0.5.4p3).	 The	 Flybase	 annotation	 (r6.19)	 was	 used	 in	 both	 mapping	 and	 read	

counting.	The	counts	were	normalised	using	the	TMM	normalization	from	edgeR	package	in	

R.	 Prior	 to	 statistical	 testing	 the	 data	 was	 voom	 transformed	 and	 then	 the	 differential	

expression	 between	 the	 sample	 groups	 was	 calculated	 with	 limma	 package	 in	 R.	 The	

functional	 analyses	 were	 done	 using	 the	 topGO	 and	 gage	 packages	 in	 R	 (Anders,	 Pyl,	 &	

Huber,	2015;	Dobin	et	al.,	2013).	

	

qPCR	

RNA	was	 isolated	 from	approximately	50,000	w+;;srpHemoGal4,srpHemo::3xmCherry/+	 or	

w+;;	 srpHemoGal4,srpHemo::3xmCherry/UAS-vrille	macrophages	 using	 the	 	 the	 procedure	

described	above.	Isolated	RNA	was	used	for	cDNA	synthesis	using	Sensiscript	RT	Kit	(Qiagen,	

Hilden,	Germany)	 	and	oligodT	primers.	 	A	Takyon	qPCR	Kit	 (Eurogentec)	was	used	to	mix	

qPCR	reactions	based	on	the	provided	protocol.	qPCR	was	run	on	a	LightCycler	480	(Roche,	

Basel,	 Switzerland)	 and	 data	 were	 analyzed	 in	 the	 LightCycler	 480	 Software	 and	 Prism	

(GraphPad	Software).	Data	are	represented	as	relative	expression	to	a	housekeeping	gene	

(=2-Δct).	Below	are	the	sequences	of	the	used	primers:	

RpL32:		Fw	pr		AGCATACAGGCCCAAGATCG,	Rv	pr	TGTTGTCGATACCCTTGGGC	

(http://www.flyrnai.org/FlyPrimerBank)	

Cher:	Fw	pr		ACCGATGCGGGCAACAACAT,	Rv	pr	GCGATCGCGCACCAGATAC	

TM4SF:	Fw	pr		GCAGTCGCAGTTGCAATGCT,		Rv	pr	TGACTCGTAGGCGTGCTCC	

	

	

Statistics	and	Repeatability	

Statistical	 tests	 as	well	 as	 the	number	 of	 embryos/	 cells	 assessed	 are	 listed	 in	 the	 Figure	

legends.	 All	 statistical	 analyses	 were	 performed	 using	 R	 Studio	 and	 significance	 was	

determined	 using	 a	 95%	 confidence	 interval.	 Data	 points	 from	 individual	 experiments	 /	

embryos	 were	 pooled	 to	 estimate	 mean	 and	 s.e.m.	 No	 statistical	 method	 was	 used	 to	

predetermine	 sample	 size	 and	 the	 experiments	were	 not	 randomized.	 An	 unpaired	 t-test	

was	 used	 to	 calculate	 the	 significance	 in	 differences	 between	 two	 groups	 and	 One-Way	

ANOVA	followed	by	Tukey	HSD	post	tests	were	used	for	multiple	comparisons.		
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Representative	 images	 in	 Figure	 1,	 Figure	 2,	 Figure	 S1	were	 from	 experiments	 that	were	

repeated	 at	 least	 3	 and	 up	 to	 5	 times.	 In	 all	 live	 imaging	 experiments	 each	 embryo	was	

recorded	in	a	separate	day;	number	of	embryos	recorded	for	tracking	experiments	is	3-4	for	

each	genotype	and	set	up;	number	of	embryos	recorded	for	the	macrophage	aspect	ratio	

measurements	 is	 4-5	 for	 each	 genotype;	 number	 of	 embryos	 recorded	 with	 the	

macrophages	expressing	LifeAct	and	RedStinger	is	2	for	each	genotype.	

Representative	images	in	Figure	4	and	Figure	S3	were	from	experiment	that	was	carried	out	

1	time.	Representative	in	situ	images	shown	in	Figure	1	were	from	an	experiment	repeated	

1	time.	
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Results	

	

Chapter	I.	Kayak	(dFOS)	and	Vrille	(dNFIL3)	circadian	transcription	factors	are	regulators	of	

Drosophila	macrophage	invasion	

	

Kayak	(dFOS)	and	Vrille	(dNFIL3)	circadian	transcription	factors	have	opposite	effects	on	

the	macrophage	germ	band	invasion	

Drosophila	macrophages	originate	in	the	head	mesoderm	of	the	embryo	at	stage	10	and	

start	their	movement	towards	other	tissues	at	stage	11	(Fig	.1A,	A’).	In	one	of	their	routes	

they	move	towards	the	germ	band	and	penetrate	it	at	early	stage	12	in	confined	space	

between	ectoderm	and	mesoderm,	thus	pushing	these	two	tissues	apart	((Ratheesh	et	al.,	

2018),	Fig	.1B	and	1B’).	The	second	route	goes	along	the	VNC	where	macrophages	move	in	

the	less	confined	space	between	mesoderm	and	the	yolk	sac	at	late	stage	12.	Our	aim	was	

to	identify	regulators	that	could	tune	macrophage	properties	to	allow	efficient	germ	band	

invasion	in	confined	conditions.	We	carried	out	a	genetic	screen	on	pre-selected	genes	with	

the	enriched	expression	in	the	macrophages	and	focused	on	transcription	factors	(TFs)	as	

they	could	tune	cellular	properties	by	switching	on	a	system	of	downstream	effectors.	Two	

circadian	TFs	from	the	bZIP	family	–	Kayak		and	Vrille,	orthologs	of		the	mouse	FosB	and	

NFIL3	(Fig.E,	F)	–	are	some	of	the	few	TFs	that	are	transiently	up-regulated	in	the	

macrophages	(Table	S1).	Kayak	(Kay)	and	Vrille	(Vri)	are	co-expressed	in	the	macrophages	

on	the		mRNA	level	at	early	stage	11	(Fig.C),	and	on	the	protein	level	at	early	stage	12	(Fig.	

G-M)	where	they	persist	in	the	nucleus	until	stage	13	(Sup.1).		

We	have	used	macrophage	numbers	in	the	germ	band	(GB)	as	a	non-direct	read	out	of	

macrophage	GB	invasion	efficiency.	Macrophage	number	in	the	GB	was	significantly	

reduced	in	kay1,	kay2	and	significantly	increased	in	,	vrik05901	homozygous	null	mutants	(Fig.2	

A-B,	D-K,	M).	We	have	to	notice	that	some	fraction	of	kay1,	kay2	and		vrik05901	embryos	had	

significant	developmental	defects	(as	judged	from	the	gut	morphology)	and	were	excluded	

from	the	analysis.	Macrophage-specific	rescue	of	kay2	mutant	with	the	wild	type	

counterpart	(Fig.2C)	as	well	as	autonomous	down-regulation	of	Kayak	and	Vrille	with	the	

srpHemo::Gal4	macrophage-specific	driver	(mac>)	and	the	corresponding	RNAi	lines	and	DN	

version	of	Kayak	(kayDN)	driven	with	macrophage	specific	Gal4	driver	has	a	similar		effect	
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on	the	macrophage	numbers	in	the	GB	(Fig.H,	L,	I)	thus	implying	that	Kayak	acts	in	the	

macrophages	to	facilitate	GB	invasion,	and	Vrille	acts	to	inhibit	this	process.	Moreover,	

overexpression	of	Vrille	in	the	macrophages	(mac>vri)	leads	to	strongly	reduced	

macrophage	numbers	in	GB	(Fig.	2N)	further	confirming	the	role	of	Vrille	as	an	inhibitor	of	

migration	(overexpression	of	Kayak	didn’t	have	a	significant	effect,	Sup.2A).	As	mac>kayDN	

and	mac>vri	perturbed	function	of	the	corresponding	genes	autonomously	in	the	

macrophages	and	resulted	in	the	strongest	alteration	of	macrophage	numbers	in	the	GB,	we	

performed	further	experiments	and	analysis	using	first	and	foremost	these	two	alleles.	

Macrophage	numbers	in	the	pre	germband	zone	(between	yolk	sac	and	amnioserosa)	were	

not	altered	in	both	mac>kayDN	and	mac>vri	(Sup.2	B-D)	suggesting	that	the	earlier	

processes	of	macrophage	differentiation	and	migration	toward	the	GB	were	not	regulated	

by	Kayak	and	Vrille.	Moreover,	macrophages	still	spread	normally	along	the	second,	less	

confined,	VNC	route	in	both	mac>kayDN	and	mac>vri	embryos	(Sup.	2	E-G),	preliminarily	

suggesting	that	Kayak	and	Vrille	are	required	only	for	certain	types	of		macrophage	

migration	such	as	GB	invasion.	To	rule	out	cell	death	or	proliferation	defects	we	have	

quantified	the	total	macrophage	number.	Mac>kayDN	embryos	had	decreased	total	

macrophage	numbers	(Sup.2	I)	that	was	likely	a	result	of	the	missing	last	round	of	

proliferation	at	stage	11	(staining	for	cleaved	caspase	CC3	(Sup.2	J-K)	and	inspecting	nuclear	

integrity	did	not	reveal	any	difference	between	control	and	mac>kayDN	macrophage	thus	

excluding	cell	death).	Interestingly,	reduced	total	cell	number	apparently	did	not	prevent	

macrophages	to	populate	the	pre		germband	and	VNC	areas.		In	contrast,	mac>vri	embryos	

had	similar	to	the	wild	type	total	number	of	the	macrophages	(Sup.2	H).	

Finally,	we	have	tested	if	Kayak	and	Vrille	could	interact	genetically.	As	using	classical	

epistasis	test	is	not	feasible	(embryos	having	both	kay1	and,	vrik05901	homozygous	null	alleles	

had	severe	developmental	defects)	we	though	of	testing	if	one	can	enhance	the	phenotype	

of	another.	To	this	end	we	quantified	macrophage	number	in	the	GB	in	the	embryos	of	the	

following	genotypes:	heterozygous		kay1/+	,	mac>vriweak	(attenuated	Vrille	overexpression	in	

the	macrophages)	and	kay1/mac>vriweak	.	Interestingly,	we	found	that	although	mac>vriweak		

macrophages	were	present	in	lower	numbers	in	the	GB	as	compared	to	control,	kay1/+		has	

further	non-additively	enhanced	this	phenotype	(Fig.2	P).	
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This	data	suggests	that	Kayak	and	Vrille	have	opposite	effects	on	the	macrophage	germband	

invasion	and	could	control	them	through	the	same	pathway	or	by	tuning	the	same	cellular	

process.	

	

	

	
	

vrik05901,	
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Figure	1.	Kayak	(Dm-Fos)	and	Vrille	(Dm-NFIL3)	transcription	factors	are	co-expressed	in	migrating	

macrophages	at	stage	12.	

A.	Schematics	of	a	lateral	view	of	stage	11	embryo	showing	macrophage	(green)	migratory	routes	and	a	blow-
up	of	the	dorsal	route	(A’):	macrophages	have	left	the	head	and	moved	onto	yolk	sac	(yellow).	Amnioserosa	
covering	yolk	sac	is	shown	with	the	black	line.		
B.		Schematics	of	a	lateral	view	of	an	early	stage	12	embryo	and	a	blow-up	of	the	macrophage	dorsal	route	
(B’):	macrophages	penetrate	the	germ	band	underneath	the	ectoderm	(dark	magenta)	and	appear	at	the	
ectoderm	-	mesoderm	(light	magenta)	interface.	They	continue	migration	between	ectderm	and	mesoderm	of	
the	germ	band.		
C.	In	situ	hybridization	of	embryos	with	Kayak	riboprobe	detecting	all	isofroms:	stage	11	lateral	view;	stage	13	
lateral	view.		Kayak	expression	is	enriched	in	the	macrophages	before	migration.	
D.	In	situ	hybridization	of	embryos	with	Vrille	riboprobe	detecting	all	isofroms:	stage	11	lateral	view	(e);	stage	
13	lateral	view.		Vrille	expression	is	enriched	in	the	macrophages	before	migration.	
E-F.	Alignment	of	Kayak	(E)	and	Vrille	(F)	protein	isoforms	with	the	mouse	orthologs.	Orange	and	purple	boxes	
indicate	conserved	bZIP	regions	of	Kayak	and	Vrille	correspondingly.	
G.		Expression	of	Kayak	protein	(red)	detected	with	respective	antibody	at	stage	11:	Kayak	is	present	in	the	
subpopulation	of	macrophages	(green).		
H.	Expression	of	Kayak	protein	at	early	stage	12:		Kayak	is	present	in	all	macrophages.	
J.	No	Kayak	staining	is	detected	in	the	macrophages	in		kay1	mutant.	
I.	Blow	up	of	an	area	indivcated	in	(G)	showing	nuclear	localization	of	Kayak	(white	arrow).	
K.	Expression	of	Vrille	protein	(red)	detected	with	respective	antibody	at	stage	11:	Vrille	is	not	present	in	the	
macrophages	(green)	yet.	
L.	Expression	of	Vrille	protein	at	early	stage	12:		Vrille	is	present	in	all	macrophages.	
M.	No	Vrille	staining	is	detected	in	the	macrophages	in		vrik05901	mutant.	
N.	Blow	up	of	an	area	indicated	in	(L)	showing	nuclear	localization	of	Vrille	(white	arrow).	
	In	(f)-(h)	and	(j)-(l)	scale	bar	corresponds	to10	µm,	in	(i)	and	(m)	to	5	µm.	Macrophages	are	labeled	using	srp-
Gal4	driving	UAS-GFP.	The	edge	of	the	germ	band	is	indicated	with	the	dashed	line.	
	
	

	

Kayak	promotes	macrophage	motility	and	persistence	at	the	GB	entry	

To	further	explore	at	what	point	on	their	way	to	and	through	the	GB	Kayak	is	important	for	

migration,	we	performed	live	imaging	and	tracking	of	macrophages.	To	outline	the	GB	

borders	we	generated	a	line	labeling	the	membranes	of	the	whole	embryo	and	combined	it	

with	the	macrophage	reporter	line	in	either	the	wild	type	or	mac>kayDN	background	(Fig.	

3A).	We	collected	and	recorded	embryos	at	early	stage	12,	prior	to	the	onset	of	GB	

retraction.	During	analysis,	we	split	the	macrophage	path	to	the	GB	into	several	zones	in	

each	of	which	Kayak	appeared	to	regulate	a	certain	aspect	of	macrophage	motility	(Fig.3	B).	

First	of	all,	both	3D	speed	and	directional	persistence	were	not	affected	in	the	pre	

germband	zone	(Fig.3	C,	E)	further	suggesting	that	macrophage	motility	is	not	compromised	

at	earlier	stages.	However,	mac>kayDN	macrophages	are	delayed	on	average	for	10-15	

minutes	in	the	initial	entry	into	the	GB	(into	the	zone	between	ectoderm	and	the	yolk	sac	-	

Delay	1,	Fig.3	A,	B).	This	could	be	caused	by	either	a	deficient	ability	of	mac>kayDN		
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macrophages	to	move	into	confinement,	or	by	their	autonomous	inability	to	efficiently	

separate	from	each	other.	Indeed,	wild	type	macrophages	move	as	a	dense	group	in	the	pre		

germband	zone,	and	afterwards	start	to	separate	and	disseminate	along	stereotypic	routes	

such	as	GB	and	VNC	(Sup.3	B).		
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Figure	2.	Kayak	facilitates	and	Vrille	inhibits	macrophage	migration	into	the		germband.	
A.		Mid	stage	12	wild	type1	embryo.	
B.		Mid	stage	12	kay2	embryo:	macrophage	number	in		germband	is	reduced.	
C.		Mid	stage	12	kay2	embryo	expressing	wild	type	Kayak	in	the	macrophages:	macrophage	number	in		germband	is	rescued.	
D.	Mid	stage	12	kay1	embryo:	macrophage	number	in		germband	is	reduced.	
E.	Schematics	of	a	lateral	view	of	a	mid	stage	12	embryo	with	the	macrophages	(green)	at	germband	border	that	is	outlined		
with	the	black	dashed	line.	
F.	Quantification	of	the	macrophage	numbers	in		germband	from	experiments	in	(A)	-	(D).	
G.		Mid	stage	12	wild	type	2	embryo.	
H.	 Mid	 stage	 12	 embryo	 expressing	 dominant	 negative	 version	 of	 Kayak	 in	 the	 macrophages:	 macrophage	 number	 in		
germband	is	reduced.	
I.	Quantification	of	the	macrophage	numbers	in		germband	from	experiment	in	(G-H).	
J.		Quantification	of	the	macrophage	numbers	in		germband	from	the	embryos	expressing	Kayak	RNAi	in	the	macrophages:			
macrophage	number	in		germband	is	reduced.	
K.		Mid	stage	12	,	vrik05901	embryo:	macrophage	number	in		germband	is	increased.	
L.	Mid	stage	12	embryo	overexpressing	wild	type	version	of	Vrille	 in	the	macrophages:	macrophage	number	 in	 	germband	 is	
reduced.	
M.		Quantification	of	the	macrophage	numbers	in		germband	from	experiments	in	(K).	
N.		Quantification	of	the	macrophage	numbers	in		germband	from	experiments	in	(L).	
O.	Quantification	of	the	macrophage	numbers	in		germband	from	the	embryos	expressing	Vrille	RNAi	in	the	macrophages:		
macrophage	number	in		germband	is	increased.	
P.	Quantification	of	the	macrophage	numbers	in		germband	from	the	embryos	having	kay1/+	genotype,	embryos	weakly		
overexpressing	Vrille	in	the	macrophages	and	embryos	with	a	combination	of	both:		
	macrophage	number	in		germband	is	non-additively	reduced	when	kay1/+	is	combined	with	the	Vrille	overexpression..	
In	(b)	-	(e),	(g)	-	(h)	and	(k)	-	(l)		germband	border	is	outlined	with	the	white	dashed	line.			Scale	bar	corresponds	to	10	µm.	
		Macrophages	are	labeled	using	either	srp-Gal4	driving	UAS-GFP			((b)	-	(e),	(g)	-	(h))	or	srp::3xH2AmCherry	((k)	-	(l)).	
Histograms	 show	mean	+/-	s.e.m.	***P<0.005,	**P<0.01,	*P<0.05.	Unpaired	 t-test	was	used	for	statistics	of	 (I),	 (M),	 (N),	 (O)	
quantifications;	one	way	ANOVA	with	Tukey	post	hoc	were	used	for	statistics	of	quantifications	(F),	(J),	(P).	
	Number	in	the	box	corresponds	to	the	number	of	analyzed	embryos.	
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Figure 2. Kayak facilitates and Vrille inhibits macrophage migration into the tail.
A.  Mid stage 12 wild type1 embryo.
B.  Mid stage 12 kay2 embryo: macrophage number in tail is reduced.
C.  Mid stage 12 kay2 embryo expressing wild type Kayak in the macrophages: macrophage number in tail is rescued.
D. Mid stage 12 kay1 embryo: macrophage number in tail is reduced.
E. Schematics of a lateral view of a mid stage 12 embryo with the macrophages (green) at the tail border that is outlined with the black dashed line.
F. Quantification of the macrophage numbers in tail from experiments in (A) - (D).
G.  Mid stage 12 wild type 2 embryo.
H. Mid stage 12 embryo expressing dominant negative version of Kayak in the macrophages: macrophage number in tail is reduced.
I. Quantification of the macrophage numbers in tail from experiment in (G-H).
J.  Quantification of the macrophage numbers in tail from the embryos expressing Kayak RNAi in the macrophages:  macrophage number in tail is reduced.
K.  Mid stage 12 vri5 embryo: macrophage number in tail is increased.
L. Mid stage 12 embryo overexpressing wild type version of Vrille in the macrophages: macrophage number in tail is reduced.
M.  Quantification of the macrophage numbers in tail from experiments in (K).
N.  Quantification of the macrophage numbers in tail from experiments in (L).
O. Quantification of the macrophage numbers in tail from the embryos expressing Vrille RNAi in the macrophages: macrophage number in tail is increased.
P. Quantification of the macrophage numbers in tail from the embryos having kay1/+ genotype, embryos weakly overexpressing Vrille in the macrophages and embryos with a combinaiton of both: 
 macrophage number in tail is non-additively reduced when kay1/+ is combined with the Vrille overexpression..
In (b) - (e), (g) - (h) and (k) - (l) tail border is outlined with the white dashed line.   Scale bar corresponds to 10 µm.  Macrophages are labeled using either srp-Gal4 driving UAS-GFP   ((b) - (e), (g) - (h)) or srp::3xH2AmCherry ((k) - (l)).
Histograms show mean +/- s.e.m. ***P<0.005, **P<0.01, *P<0.05. Unpaired t-test was used for statistics of all quantifications. Number in the box corrsponds to the number of analyzed embryos.

vrik05901	
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However,	mac>kayDN	macrophages	do	move	less	efficiently	as	single	cells	inside	the	GB	

(Fig.	3C,	E):	the	3D	speed	and	directional	persistence	were	reduced	in	the	germband	entry	

zone	(which	includes	the	initial	entry	between	yolk	and	ectoderm	as	well	as	the	first	20	uM	

along	ectoderm-mesoderm	interface).	Moreover,	there	is	the	second	delay	zone	(Delay	2,	

Fig.	3B)	at	the	triple	interface	within	the	GB,	i.e.	between	ectoderm,	yolk	and	mesoderm.	

There	the	macrophage	nucleus	“wobbles”	for	some	time	before	it	continues	moving	

persistently	further	along	ectoderm-mesoderm	interface.	This	“wobbling”	time	is	longer	for	

mac>kayDN	macrophages	as	compared	to	wild	type	ones	(Fig.	3D).	Interestingly,	there	was	

no	significant	difference	in	the	speed	of	wild	type	and	mac>kayDN	macrophages	after	they	

passed	the	first	20	uM	along	the	ectoderm-mesoderm	interface,	i.e.	in	the	post	-germband	

entry	zone	(Sup.	3C).	The	motility	phenotype	of	macrophages	in	mac>kayDN		embryos	was	

largely	mirrored	by	the	macrophages	in	kay2	embryos	with	the	exception	of	reduced	speed	

in	the	pre		germband	zone	(Sup.	3A,	D),	which	we	think	is	likely	to	be	a	non-autonomous	

effect	of	kay2	mutation	as	Kayak	is	also	strongly	expressed	in	the	ectoderm.	

Interestingly,	mac>kayDN	macrophages	moved	along	the	VNC	(the	second	route	that	we	

used	as	a	control)	with	unaltered	3D	speed	(Fig.	3J)	and	spread	out	normally	(Sup..3E).	

However,	the	macrophage	step	size	distribution	in	2D	was	shifted:	wild	type	macrophages	

made	more	steps	with	a	length	of	4	uM	or	greater	while	mac>kayDN		macrophages	made	

more	steps	shorter	than	4	uM	(Fig.3	G-I).	This	is	reflected	in	the	fact	that	the	control	step	

size	distribution	fits	better	to	a	Levy	than	to	a	normal	distribution,	while	for	mac>kayDN	the	

situation	is	the	opposite.	The	average	size	of	the	jump	made	by	mac>kayDN	is	significantly	

smaller	as	well	(Fig.3K).	

The	live	imaging	phenotype	described	above	suggests	that	Kayak	is	important	for	

macrophage	dissemination,	long	step	size	generation	and	motility	within	the	GB.		
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Kayak	and	Vrille	control	cortical	proteins	to	regulate	GB	invasion	

To	find	the	mechanisms	acting	downstream	of	Kayak	and	Vrille	involved	in	the	regulation	of	

GB	invasion	we	performed	FACS	sorting	of	the	macrophages	from	early	stage	12	embryos	of	

wild	type	and	mac>kayDN	genotypes	and	RNA-sequencing	of	the	corresponding	

transcriptomes	(Fig.4A).	We	have	carried	out	three	replicates	and	have	found	consistent	

results	in	all	of	them.	We	found	several	differentially	expressed	genes	with	both	down-	and	

up-regulated	ones	(Table	S3.).	As	the	up-regulated	genes	were	mostly	stress	response	

proteins	we	focused	on	the	down-regulated	ones	(Fig.	4B-C).	In	an	independent	

immunostaining	screen	we	found	that	the	intensity	of	the	formin	Diaphanous	(Dia)	was	

reduced	at	the	junctions	of	the	macrophages	in	germband	entry	and	pre		germband	zones	

in	both	mac>kayDN	and	mac>vri	embryos	(Fig.4D-E;	Sup.4A-C),	however,	the	average	

	
Figure	3.	Kayak	facilitates	macrophage	motility	at	the	germband	entry	
A.	 Stills	 from	 the	 movies	 showing	 wild	 type	 macrophages	 and	 macrophages	 expressing	 dominant	 negative	
version	of	Kayak	entering	the	germ	band	(area	shown	in	dashed	square	in	schematics).		
The	borders	of	the	ectoderm	and	yolk	are	shown	with	the	dashed	line.	
B.	Detailed	 schematics	of	 the	 germ	band	 showing	different	 zones	where	 the	parameters	of	 the	macrophage	
invasion	were	quantified.	
C.	Quantification	of	the	speed	of	the	macrophages	in	the	pre	GB	and	GB	entry:	the	speed	of	the	macrophages	
expressing	dominant	negative	version	of	Kayak	was	significantly	reduced	at	the	GB	entry	zone.	
D.	Quantification	of	the	GB	entry	delay	time:	the	delay	time	of	the	macrophages	expressing	dominant	negative	
version	of	Kayak	is	significantly	increased.	
E.	 Quantification	 of	 the	 directional	 persistence:	 the	 directional	 persistence	 of	 the	 macrophages	 expressing	
dominant	negative	version	of	Kayak	is	smaller	at	the	GB	entry.	
	F.	Schematics	of	a	lateral	view	of	a	stage	13	with	the	macrophages	(green)	migrating	along	the	VNC	fragment	
of	which		is	outlined	with	the	black	dashed	line.	
	Quantification	 of	 the	 speed	 of	 the	 macrophages	 moving	 along	 the	 VNC:	 the	 speed	 of	 the	 macrophages	
expressing	dominant	negative	version	of	Kayak	was	is	not	altered.	
G.	Blow	up	of	an	area	of	the	VNC	inner	row	(outlined	 in	(F))	showing	macrophages	moving	on	the	top	of	the	
mesoderm.	Macrophages	perform	two	types	of	steps:	
	the	 short	 one	 (non-jump)	and	 the	 long	 one	 (jump).	 The	 length	of	 the	 jump	 of	 the	macrophages	 expressing	
dominant	negative	version	of	Kayak	was	significantly	reduced.	
H-I.	Distribution	of	the	macrophage	step	sizes:	distribution	of	the	step	sizes	of	the	wild	type	macrophages	fits	
to	Levy	distribution	better	than	to	normal.	
	(H:	 Levy	 Log-Likelihood:	 -2436.9129978;	 Normal	 Log-Likelihood:	 -2526.71421681);	 	 distribution	 of	 the	 step	
sizes	of	the	macrophages	expressing	dominant	negative	
	version	 of	 Kayak	 fits	 to	 normal	 distribution	 better	 than	 to	 Levy	 (I:	 Levy	 Log-Likelihood:	 -2918.17012744;	
Normal	Log-Likelihood:	-2474.99357689).		
J.	Quantification	of	the	speed	of	the	macrophages	moving	along	VNC:	the	speed	of	the	macrophages	expressing	
dominant	negative	version	of	Kayak	is	not	altered	
K.	 Quantification	 of	 the	 jump	 length	 of	 the	 macrophages	 moving	 along	 VNC:	 the	 jump	 length	 of	 the	
macrophages	expressing	dominant	negative	version	of	Kayak	is	significantly	reduced.	
Macrophages	 are	 labeled	 using	 srp::3xH2AmCherry,	 the	 rest	 of	 the	 embryos	 is	 labeled	 using	 Resille::GFP-	
Histograms	 show	 mean	 +/-	 s.e.m.	 Unpaired	 t-test	 was	 used	 for	 statistics	 of	 all	 quantifications	 ***P<0.005,	
**P<0.01,	*P<0.05.	
	Unpaired	t-test	was	used	for	statistics	of	all	quantifications.	Number	 in	the	box	corrsponds	to	the	number	of	
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intensity	of	myoP	was	normal	in	mac>kayDN	(Sup.5	E-F).	Given	this	finding,	we	decided	to	

focus	on	two	candidates	from	the	list	of	down-regulated	RNA	seq	targets	that	could	be	

linked	to	the	junctional	localization	of	Dia:	namely,	the	filamin	Cheerio	(Cher)	and	

tetraspanin	TM4SF.	Interestingly,	Cher	but	not	TM4SF	mRNA	is	significantly	reduced	in	the	

mac>vri	macrophages	(Sup.4	Q-R).	Indeed,	RNAi	knock-down	of	Cher,	TM4SF	and	Dia	

resulted	in	significantly	reduced	macrophage	numbers	in	the	germband	(Fig.H-I,	L)	but	not	

in	the	pre-germband	zone	or	VNC	(Sup.	4O,	P).	Moreover,	we	were	able	to	rescue	the	

mac>kayDN	phenotype	by	overexpressing	a	dominant	active	version	of	Dia	(Fig.	4	J).		In	

addition,	we	have	identified	a	reduction	of	Dia	intensity	at	the	macrophage	junctions	in	

both	Cher	and	TM4SF	RNAis	(Fig.4	F-G;	Sup.4N).	This	suggests	that	Dia,	Cher	and	TM4SF	are	

targets	of	Kayak	that	act	to	regulate	macrophage	GB	invasion.	Cher	and	TM4SF	are	

transcriptionally	regulated	by	Kayak,	while	Cher	could	as	well	be	a	direct	binding	target	of	

Kayak	as	indicated	by	Kayak	ChIP	seq	results	from	the	whole	embryos	(Fig.4	C).	Cher	and	

TM4SF	in	turn	are	important	for	localizing	Dia	at	the	macrophage	junctions.	Moreover,	the	

results	above	suggest	that	Kayak	and	Vrille	may	interact	via	co-regulation	of	Cher	and	thus,	

non-directly,	Dia.	

	

	

Kayak	promotes	macrophage	rear	re-location	under	the	load	of	the	germband	ectoderm	

As	Dia,	Cher	and	TM4SF	are	known	actin	cytoskeleton	regulators	we	stained	embryos	with	

phalloidin	to	see	if	F-actin	is	affected	in	the	macrophages	expressing	the	corresponding	

RNAis.	Indeed,	we	saw	a	reduction	in	F-actin	intensity	at	the	macrophage	junctions	in	the	

GB	entry	and	pre		germband	zone	in	mac>kayDN	macrophages	(Fig.5	A,B).	

To	figure	out	what	happens	with	the	macrophage	on	the	cellular	level	we	performed	live	

imaging	of	the	macrophages	labeled	with	different	cytoskeletal	markers	–	either	

LifeAct::GFP,	RedStinger	to	label	actin	and	the	nucleus	or	CLIP::GFP	to	label	microtubules.	

We	found	that	macrophages	entering	the	space	between	ectoderm,	yolk	and	mesoderm	–	

the	place	where	Delay	2	occurs	–	first	insert	filopodia	and	then	relocate	there	the	whole	

body	(Fig.5	C).	Both	wild	type	and	mac>kayDN	macrophages	formed	filopodia,	however,	as	

the	cell	body	moved	forward	along	the	ectoderm	mesoderm	interface,	intense	actin	

structures	were	forming	around	the	nucleus	of	the	wild	type	cell.	The	first	entering	cell	had	

the	primary	filopodia	develop	into	a	thicker	protrusion,	as	well	as	intense	F-actin	structures	
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forming	behind	the	nucleus	(Fig.5	C).	The	second	cell	followed	the	first	one	in	close	

proximity	and	had	prominent	actin	structures	forming	in	front	of	the	nucleus	that	moved	

over	a	minute	behind	the	nucleus	(Fig.5	E).	This	coincided	with	the	forward	relocation	of	the	
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nucleus	(Fig.5C,	E).	Nothing	similar	was	observed	in	the	mac>kayDN	macrophage:	the	only	

prominent	actin	structures	were	long	thin	protrusions	forming	in	the	cell	front,	while	in	the	

back	of	the	cell	the	actin	was	mostly	diffuse		(Fig.5C,	E).		Correspondingly,	the	nucleus	was	

slower	in	leaving	the	Delay	2	zone	and	in	passing	between	the	ectoderm	and	mesoderm.	

Labeling	microtubules	of	the	macrophages	with	the	CLIP::GFP	allowed	us	to	estimate	the	

aspect	ratios	of	the	first	entering	cell	within	the	first	20	uM	of	the	ectoderm	mesoderm	

interface	(as	CLIP::GFP	intensity	was	largely	similar	between	wild	type	and	mac>kayDN	

macrophages,	Fig.5F,	G;	Sup.5D).	We	found	that	in	mac>kayDN	embryos	the	entering	

macrophage	was	more	elongated	than	the	wild	type	counterpart	(Fig.5F,	H	upper	panel)	

due	to	the	increased	maximal	length	of	the	cell	body	(Sup.5	B).	This	is,	probably,	a	result	of	

Figure	4.	Kayak	regulates	macrophage	germ	band	invasion	through	actin	cytoskeleton	associated	proteins.	
A.	Schematics	representing	a	pipeline	of	the	macrophage	FACS	sorting.	
B.	Expression	levels	of	the		genes	down-regulated	in	the	macrophages	expressing	dominant	negative	version	of	
Kayak.	Fold	enrichment	is	normalized	
	and	multiple	 comparisons	 statistical	 tests	 are	 performed	 as	 described	 in	 the	 Methods.	 (B’)	 Genes	 with	 the	
strong	expression	in	the	macrophages.	
(B’’)	Genes	with	the	moderate	expression	in	the	macrophages.	
C.	Table	describing	genes	down-regulated	in	the	macrophages	expressing	dominant	negative	version	of	Kayak.		
*Kayak	ChIP	seq	data	from	the	whole	embryos	at	stage	16	is	kindly	provided	by	J.	Zeitlinger.	
**	Closest	mouse	protein	orthologs	were	found	using	UniProt	BLAST	bioinformatics	resource,	the	top	score	hit	is	
shown	in	the	table.	
D.	Dia	(red)	immunostaining	in	wild	type	macrophages	(green)	and	macrophages	expressing	dominant	negative	
version	of	Kayak.	
E.	Quantification	of	Dia	 intensity	on	the	macrophage-macrophage	 junction	from	the	experiment	shown	in	(D):	
Dia	is	reduced		
at	the	junctions	of	the	macrophages	expressing	dominant	negative	version	of	Kayak.	
F.	Dia	(red)	immunostaining	in	wild	type	macrophages	(green)	and	macrophages	expressing	RNAis	against	Cher	
and	TM4SF.	
G.	Quantification	of	Dia	intensity	on	the	macrophage-macrophages	junction	from	the	experiment	shown	in	(H):	
Dia	is	reduced		
at	the	junctions	of	the	macrophages	expressing	RNAis	against	Cher	and	TM4SF.	
H.	 	 Quantification	 of	 the	macrophage	 numbers	 in	 germband	 from	 the	 embryos	 expressing	 Dia	 RNAis	 in	 the	
macrophages:		macrophage	number	in	germband	is	reduced.	
I.	Mid	stage	12	wild	type	2	embryo	and	mid	stage	12	embryo	expressing	Dia	RNAi	in	the	macrophages.	
J.	 	 Quantification	of	 the	macrophage	numbers	 in	 germband	 from	 the	embryos	 expressing	 dominant	 negative	
version	of	Kayak	and	either	dominant	active	version	of	Dia		
or	a	wild	type	version	of	Cher	 in	the	macrophages:	macrophage	numbers	 in	germband	is	resscued	to	the	wild	
type	levels	when	dominant	active	Dia	is	expressed	in	the	macrophages.	
K.	Mid	stage	12	wild	type	expressing	dominant	negative	version	of	Kayak	and	either	dominant	active	version	of	
Dia	(top)	
or	a	wild	type	version	of	Cher	(bottom)	in	the	macrophages.	
L.		Quantification	of	the	macrophage	numbers	in	germband	from	the	embryos	expressing	Cher	and	TM4SF	RNAis	
in	the	macrophages:		macrophage	number	in	germband	is	reduced.	
Macrophages	 are	 labeled	 using	 either	 srp::3xH2AmCherry	 (K)	 or	 srpGal4	 driving	UASGFP	 (D,	 E,	 H)	 or	 srpGal4	
driving	UASmCherry.NLS	(M).	Histograms	show	mean	+/-	s.e.m.	***P<0.005,	**P<0.01,	*P<0.05.	
Unpaired	t-test	was	used	for	statistics	of	(F),	(G),quantifications;	one	way	ANOVA	with	Tukey	post	hoc	were	used	
for	 statistics	 of	 quantifications	 (I),	 (J),	 (L),	 (N).	 Number	 in	 the	 box	 corresponds	 to	 the	 number	 of	 analyzed	
embryos.	 In	 (F,	G	and	 I)	number	 in	the	box	 corresponds	 to	 the	number	of	analyzed	macrophage-macrophage	
juncitons.	
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the	reduced	speed	of	the	cell	rear	but	not	the	cell	front	as	judged	from	tracking	the	leading	

vs.	trailing	edge	of	the	first	entering	macrophage	(Sup.5	C).	Microtubule	prortrusion	length,	

on	the	other	hand,	was	the	same	in	both	wild	type	and	mac>kayDN	macrophages	(not	

shown).	

Interestingly,	we	didn’t	observe	such	a	shift	of	the	aspect	ratio	in	mac>kayDN	macrophages	

in	the	pre	germband	zone:	it	remained	very	similar	to	the	wild	type	one	(Fig.5G,	H	bottom	

panel,	Sup.5A).	This	strongly	suggests	that	the	GB	is	imposing	some	sort	of	resistance	on	the	

entering	macrophage	that	impedes	forward	nuclear	translocation.	This	effect	becomes	

more	severe	in	mac>kayDN	macrophages	in	which	the	actin	cytoskeleton	is	compromised.	

We	tested	this	hypothesis	by	reducing	the	stiffness	of	the	ectoderm	with	the	expression	of	

dominant	negative	Rho1	by	means	of	the	ectoderm-specific	e22C-Gal4	driver	

(e22C>RhoDN).	We	used	the	Gal4-independent	Q-system	to	drive	a	DN	version	of	Kayak	in	

the	macrophages	(macQF>QUAS-kayDN)	in	the	same	embryos.	Indeed,	we	found	that	

overexpression	of	the	DN	Rho1	in	the	ectoderm	partially	rescued	the	macrophage	cell	

numbers	in	the	germband	of	macQF>QUAS-kayDN	embryos	(Fig.5	I).	

The	results	above	suggest	that	Kayak	strengthens	the	actin	cortex	of	the	macrophages	to	

allow	them	to	withstand	the	load	of	the	surrounding	tissues	during	invasive	migration	and	

to	efficiently	translocate	their	nucleus.	
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Figure	5.	Kayak	arranges	actin	cytoskeleton	to	facilitate	macrophage	forward	trnaslocation	under	the	load	of	
the	ectoderm	of	the	germ	band	
A.	F-actin/phalloidin	(magenta)	immunostaining	in	wild	type	macrophages	(green)	and	macrophages	
expressing	dominant	negative	version	of	Kayak.	
B.	Quantification	of	F-actin/phalloidin	intensity	on	the	macrophage-macrophages	junction	from	the	
experiment	shown	in	(A):	F-actin	is	reduced		
at	the	junctions	of	the	macrophages	expressing	dominant	negative	version	of	Kayak.	
C.	Stills	from	the	movies	of	the	first	wild	type	macrophage	and	the	first	macrophage	expressing	dominant	
negative	version	of	Kayak	entering		
germband:	actin	is	labelled	in	green	and	nucleus	is	labelled	in	red.	Asterisk	indicates	an	actin	protrusion	
forming	at	the	front	and	an	arrowhead	
indicates	actin	accumulation	at	the	back	of	the	macrophage.	
D.	Quantification	of	F-actin	protrusion	length	of	the	first	entering	macrophage	from	the	movies:	macrophages	
expressing	dominant	negative	version	of	Kayak	have	significantly	longer	protrusion.	
E.	Stills	from	the	movies	of	the	second	wild	type	macrophage	and	the	second	macrophage	expressing	
dominant	negative	version	of	Kayak	entering		germband:	actin	is	labelled	in	green	and	nucleus	is	labeled	in	
red.	Asterisk	indicates	an	actin	protrusion	forming	at	the	front	and	an	arrow	
indicates	actin	accumulation	at	the	back	of	the	macrophage.	
F.	Stills	from	the	movies	of	the	first	wild	type	macrophage	and	the	first	macrophage	expressing	dominant	
negative	version	of	Kayak	entering	germband:	microtubules	outline	macrophage	shape	are	labelled	in	green.		
Blue	arrow	indicates	the	front	and	yellow	arrow	indicated	the	rear	of	the	macrophage.	
G.	Stills	from	the	movies	of	the	first	wild	type	macrophage	and	the	first	macrophage	expressing	dominant	
negative	version	of	Kayak	in	the	pre	germband	zone:	microtubules	outline	macrophage	shape	are	labelled	in	
green.		Blue	arrow	indicates	the	front	and	yellow	arrow	indicated	the	rear	
of	the	macrophage.	
H.	Schematics	of	the	macrophage	showing	how	the	aspects	have	been	measured:	vertical	dashed	line	
corresponds	to	the	maximum	length	and	the	horizontal	solid	line	corresponds	to	the	maximum	width.	
Histograms	show	the	probability	density	distributions	of	the	aspect	ratios	(maximum	length	to	maximum	
width)	of	the	first	entering	macrophage	from	experiment	shown	in	(F)	(top)		and	of	the	macrophages	in	the	
pre	germband	zone	from	experiment	shown	in	(G)	(bottom).	Macrophages	expresing	dominant	negative	
verison	of	Kayak	are	more	elongated	when	enter	the	germband.	
I.	Schematics	and	quantification	of	the	experiment	with	the	rescue	of	macrophage	germband	entry	defect	:	
the	number	of	the	macrophages	expressing	dominant	negative	version	of	Kayak	in	germband	was	partially	
rescued	by	expressing	dominant	negative	version	of	Rho	in	the	ectoderm.	
Macrophages	are	labeled	using	either	srpGal4	driving	UAS::CD8GFP	(A)	or	srpGal4	driving	UASLifeActGFP,	
UASRedStinger	(C,	E)	or	srpGal4	driving		
UASCLIPGFP	(F,	G).	Histograms	show	mean	+/-	s.e.m.	***P<0.005,	**P<0.01,	*P<0.05.	
	Unpaired	t-test	was	used	for	statistics	of	(B),	(D)	quantifications;	one	way	ANOVA	with	Tukey	post	hoc	were	
used	for	statistics	of	quantifications	(I). In	(B)	number	in	the	box	corrsponds	to	the	number	of		analyzed	
macrophage-macropge	juncitons,	in	(D)	number	in	the	box	corrsponds	to	the	number	of	measurements	
(timepoints)	,	in	(I)	number	in	the	box	corrsponds	to	
	the	number	of	analyzed	embryos.	
	

	

Chapter	II.	Dpp	(BMP)	pathway	is	involved	in	regulation	of	Drosophila	macrophage	

invasive	migration	

	
						In	 a	 search	 for	 possible	 additional	 interaction	 partners	 of	 Kayak,	 we	 found	 that	

Thickveins	(Tkv),	a	receptor	of	the	Dpp	ligand,	is	likely	to	play	a	role	in	macrophage	invasive	

migration	 into	 the	 germband.	 When	 Thickveins	 expression	 was	 down-regulated	 in	 the	

macrophages	 using	 a	 macrophage-specific	 driver	 (srpHemo-Gal4	 indicated	 as	mac>)	 and	
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specific	RNAi	lines,	the	number	of	macrophages	in	the	germband	was	significantly	reduced	

(Fig.	6	A).	Interestingly,	previously	Thickveins	mRNA	was	found	to	be	expressed	in	the	head	

mesoderm	where	macrophage	originate	starting	at	stage	10,	and	mRNA	of	Dpp	(Thickveins	

ligand)	is	expressed	in	the	germ	band	at	stage	12	(Fig.	6B)	(Jackson	&	Hoffmann,	1994).	To	

see	if	the	Thickveins	pathway	is	indeed	active	in	the	macrophages	invading	the	germband,	

we	stained	embryos	with	an	antibody	against	the	phosphorylated	form	of	the	transcription	

factor	Mad,	a	conventional	reporter	of	Dpp	pathway	activity	(Mad	becomes	phosphorylated	

upon	 Thickveins	 activation).	 We	 used	 a	 commercial	 antibody	 raised	 against	 the	

phosphorylated	version	of	the	closest	mammalian	ortholog	of	Mad,	Smad3.	We	found	that	

pMad	is	present	in	a	subpopulation	of	macrophages	at	stage	10:	they	formed	a	small	stripe	

on	the	ventral	side	of	the	macrophage	group	(Fig.	6	C).	To	further	test	the	activity	of	Dpp	

pathway	 in	 the	 macrophages,	 we	 looked	 at	 the	 expression	 of	 a	 Dad::GFP.nls	 reporter	

(another	 conventional	 transcriptional	 reporter	 of	 Dpp	 pathway	 activity	 that	 acts	

downstream	of	pMad)	in	macrophages	labeled	with	mCherry::H2A.	Complementary	to	our	

previous	 finding,	 we	 detected	 Dad::GFP.nls	 signal	 in	 a	 subpopulation	 of	macrophages	 at	

stage	12	(Fig.	6	D).	Interestingly,	they	were	among	the	first	macrophages	entering	the	germ	

band.	

					To	test	if	Kayak	and	Thickveins	could	act	in	the	same	pathway,	we	performed	a	genetic	

interaction	test	 in	which	we	compared	macrophage	numbers	in	the	germband	of	the	wild	

type,	kay2/+	heterozygous,	+/tkv4		heterozygous	and	kay2/tkv4		transheterozygous	embryos.	

We	 found	 no	 significant	 change	 in	 macrophage	 numbers	 in	 germ	 band	 in	 the	 single	

heterozygous	embryos;	however,	there	was	a	strong	reduction	in	macrophage	numbers	in	

the	germ	band	of	transheterozygous	embryos	(Fig.	6	E).	This	result	indicates	that	Thickveins	

and	 Kayak	 likely	 act	 it	 the	 same	 genetic	 pathway.	 However,	 as	 both	 of	 these	 genes	 are	

expressed	not	only	 in	the	macrophages,	but	also	in	the	tissues	of	the	germ	band,	 it	 is	not	

clear	 whether	 the	 reduction	 of	 the	 macrophage	 numbers	 is	 caused	 by	 macrophage-

autonomous	action	of	Kayak	and	Thickveins.	

					Altogether,	 these	 results	 point	 to	 a	 possible	 role	 of	 Dpp	 signaling	 pathway	 in	 a	

subpopulation	of	macrophages	to	regulate	invasive	migration	into	the	germband.	This	role	

could	 be	 fulfilled	 in	 partnership	 with	 Kayak,	 for	 example,	 through	 interaction	 between	

Kayak	and	Mad	 (for	example,	 via	 their	direct	binding	on	 the	promoters	of	 the	genes	and	

cooperative	activation	of	transcription).	
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Figure	6.	The	Dpp	pathway	is	active	in	macrophages	and	is	important	for	their	number	in	the	germband	at	

stage	12.	

A. Quantification	of		macrophage	numbers	in	the	germband	from	the	embryos	expressing	Thickveins	RNAi	in	
the	macrophages:		the	macrophage	number	in		the	germband	is	significantly	reduced.	

B. In	situ	hybridization	of	embryos	with	thickveins	(left,	stage	10,	courtesy	of	BDGP)	and	dpp	(right,	stage	11,	
courtesy	of	(Jackson	&	Hoffmann,	1994))	riboprobes:	lateral	view,	arrows	point	to	either	the	head	
mesoderm	(left	embryo)	or	tip	of	the	germband	(right	embryo).		Kayak	expression	is	enriched	in	the	
macrophages	before	migration.	

C. Immunostaining	of	pMad	protein	(blue)	at	stage	10:		pMad	is	present	in	a	subpopulation	of	macrophages	
(green);	lateral	view.	

D. Snapshot	 from	 a	 movie	 showing	 Dad:.GFP.nls-positive	 macrophages	 (green,	 arrow)	 entering	 the	
germband.					Macrophages	are	labeled	in	red;	dorsal	view.	

E.	 Quantification	 of	 the	 macrophage	 numbers	 in	 the	 germband	 from	 embryos	 with	 a	 kay2/+	 genotype,	 a	
+/tkv4	genotype	and	a	combination	of	both.	Macrophage	numbers	in	the	germband	are	significantly	reduced	
when	kay2/+	is	combined	with		+/tkv4.		
Scale	bar	corresponds	to	50	µm	in	(B)	and	to	10	µm	in	(C)	and	(D).		Macrophages	are	labeled	using	either	srp-
Gal4	driving	UAS-GFP	(C)	or	srp::3xH2AmCherry	(D).	Histograms	show	mean	+/-	s.e.m.	***P<0.005,	**P<0.01,	
*P<0.05.	One	way	ANOVA	with	Tukey	post	hoc	were	used	for	statistics.	Number	in	the	box	corresponds	to	the	
number	of	analyzed	embryos.	
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Chapter	III.	Report	of	the	genetic	screen	for	additional	regulators	of	Drosophila		

macrophage	invasive	migration	

	

The	clockwork	orange	transcription	factor	is	not	involved	in	the	regulation	of	macrophage	

invasive	migration	

Another	hit	in	the	screen	for	genes	controlling	macrophage	germband	invasion	(see	Chapter	

I)	was	Clockwork	orange	(Cwo),	a	Myc-type	helix-loop-helix	transcription	factor	that	is	

involved	in	the	regulation	of	the	circadian	rhythm	of	Drosophila	and	acts	in	this	process	

through	an	interaction	with	Vrille	(Fathallah-Shaykh,	Bona,	&	Kadener,	2009).	Cwo	mRNA	

seems	to	be	expressed	in	the	macrophage	anlage	(Fig.	7A),		and	the	original	result	obtained	

by	Cornelia	Schwayer,	indicated	that	embryos	containing	a	P-element	insertion	in	Cwo	

upstream	regulatory	sequences	(CwoB9)	had	increased	numbers	of	macrophages	in	the	

germ	band	(Fig.	7B).	This	result	was	not	reproduced	in	the	author’s	own	experiment	(Fig.	

7C).	The	discrepancy	has,	probably,	arisen	from	the	different	reporters	used	in	both	

experiments.	Namely,	C.	Schwayer	has	used	mac>GFP	to	label	macrophages.	However,	the	

CwoB9	allele	already	contained	another	UASGFP	insertion.	This	has	likely	led	to	an	

overestimation	of	the	macrophage	numbers	in	CwoB9	as	compared	to	control	embryos.	The	

author,	in	contrast,	used	mac>mCherry.nls	to	label	macrophages.	Therefore,	this	last	result	

is	more	reliable	than	the	original	one	and	suggests	that	Cwo	is	dispensable	for	macrophage	

germ	band	invasion.			

					An	alternative	explanation	of	this	discrepancy	is	that	maternal	but	not	zygotic	Cwo	is	

important	for	the	macrophage	germ	band	invasion.	In	the	experiment	performed	by	C.	

Schwayer	parental	flies	were	homozygous	for	CwoB9	mutation	and	therefore	had	no	

maternal	Cwo	mRNA	and	protein.	In	the	experiment	performed	by	the	author	parental	flies	

were	heterozygous	for	CwoB9	mutation	and	therefore	contained	maternal	Cwo	mRNA	and	

protein.	

	

	

Screen	for	transporters	that	could	regulate	macrophage	invasive	migration	

					Additional	hits	in	the	screen	for	genes	controlling	macrophage	germ	band	invasion	(see	

Chapter	I)	were	several	transporter	proteins.	As	transporters	are	largely	underexplored	yet	

very	 intriguing	group	of	proteins	 that	modulate	action	of	 their	partners	and	could	couple	
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cell	migration	machinery	with	the	surrounding	environment	as	well	as	with	cell	metabolism,	

we	 decided	 to	 validate	 if	 several	 transporters	 found	 in	 original	 screen	 indeed	 regulate	

macrophage	germ	band	invasion.	The	transporters	investigated	and	corresponding	mutant	

lines	were:	Genderblind	(Gb,	a	glutamate	transporter),	gbkg07905	 ;	CG10413	(an	amino	acid	

permease	 and	 potassium:chloride	 symporter),	 P{EP}CG10413EP2164	 	 (P_CG10413);	 CG5850	 (an	

organic	 solute	 transporter),	 PBac{PB}CG5850c03122	 (P_CG5850);	 MFS15	 (a	 major	 facilitator	

superfamily	 transporter),	 P{EPgy2}MFS15EY06280		 (P_MFS15).	 Furthermore,	 in	 the	 same	 screen	

Basigin	(Bsg),	a	protein	of	 immunoglobulin	superfamily,	was	found	to	control	macrophage	

number	 in	germ	band	(mutant	 line	P{lacW}Bsgk13638	(P_Bsg)).	As	Bsg	has	been	shown	to	 form	

complexes	with	monocarboxylate	transporters,	we	thought	it	could	be	interesting	to	test	if	

it	is	indeed	involved	in	the	macrophage	invasive	migration.		

						All	of	the	genes	indicated	above	seem	to	be	expressed	in	the	macrophages	prior	to	

migration	(Fig.	7D).	We	generated	fly	lines	containing	a	P-element	insertions	in	the	

regulatory	sequences	of	the	genes	of	interest	(P-element	containing	flies	were	ordered	

from	Bloomington	Stock	Center)	combined	with	mac>		driving	nuclear	marker	H2A::RFP	in	

the	macrophages.	We	compared	macrophage	number	in	germ	band	in	control	and	

corresponding	P-element	mutants	(as	described	before).	The	result	is	shown	in	(Fig.	7E).	Out	

of	all	genes	tested	only	Bsg	and	CG10413	were	confirmed	to	affect	macrophage	number	in	

germband.	CG10413,	however,	also	affected	macrophage	numbers	along	the	VNC	(Fig.7F)	

and,	therefore,	is	likely	to	be	important	for	the	general	migration	of	macrophages.	Bsg	had	

no	effect	on	the	macrophage	number	along	the	VNC	(Fig.	7F).		

These	results	indicate	that	CG10413	and	Bsg	are	important	for	macrophage	migration.	

CG10413	is	presumably	important	for	general	migration,	while	Bsg	is	likely	to	be	important	

specifically	for	macrophage	migration	into	the	germband.	However,	it	is	not	clear	whether	

both	of	these	genes	are	required	autonomously	in	the	macrophages.	
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Figure	7.	Report	of	the	genetic	screen	for	possible	regulators	of	macrophage	germ	band	invasion.	

A. In	situ	hybridization	of	embryos	with	the	cwo	riboprobe	(stage	11,	courtesy	of	BDGP):	lateral	view,	arrows	point	to	
macrophages.	

B. Quantification	 of	 the	macrophage	 numbers	 in	 the	 germband	 from	 cwoB9	 embryos:	 	 macrophage	 number	 in	 	 the	
germband	is	significantly	increased	(courtesy	of	C.	Schwayer).	

C. Quantification	 of	 the	macrophage	 numbers	 in	 the	 germband	 from	 cwoB9	 embryos:	 	 macrophage	 number	 in	 	 the	
germband	is	not	altered.		

D. In	situ	hybridization	of	embryos	with	riboprobes	against	the	mRNA	of	gb,	CG10413,	CG5850,	mfs15	and	bsg	(stage	11,	
courtesy	of	BDGP):	lateral	view,	arrows	point	to	macrophages.	

E. 	Quantification	 of	 the	macrophage	 numbers	 in	 the	 germband	 from	 gb,	 CG10413,	 CG5850,	 mfs15	 and	 bsg	 mutant	
embryos	from	the	 screen:	macrophage	numbers	 in	 the	germband	are	 significantly	 reduced	 in	 in	P{EP}CG10413EP2164		

and	P{lacW}Bsgk13638	mutants.		
F. Quantification	of	the	macrophage	numbers	along	 the	vnc	from	CG10413	and	bsg	mutant	embryos	from	 the	 screen:	

macrophage	numbers	are	significantly	reduced	in	P{EP}CG10413EP2164		and	not	altered	P{lacW}Bsgk13638	mutants.	
Scale	bar	corresponds	to	50	µm.		Macrophages	are	labeled	using	either	srp-Gal4	driving	UAS-GFP	(B	and	E	left	graph),	srp-
Gal4	driving	UAS-mCherry.NLS	(C)	or	 srp-Gal4	driving	UAS-his::RFP	 (E,	right	graph,	F	and	G).	Histograms	 show	mean	+/-	
s.e.m.	***P<0.005,	**P<0.01,	*P<0.05.	Unpaired	t-test	was	used	for	statistics	 in	(B),	(C),	 (E	left	graph)	and	(G).	One	way	
ANOVA	with	 Tukey	 post	 hoc	 were	 used	 for	 statistics	 in	 (E	 right	 graph	 and	 F).	 Number	 in	 the	 box	 corresponds	 to	 the	
number	of	analyzed	embryos.	
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Discussion	

	

Chapter	I	

Our	studies	indicate	a	role	for	the	Drosophila	transcription	factor	Kayak	in	the	facilitation	of	

a	 particular	 step	 of	 embryonic	 macrophage	 migration,	 namely,	 the	 invasion	 of	 the	

germband	 between	 the	 ectoderm	 and	 mesoderm.	 In	 addition,	 we	 have	 found	 that	 its	

partner	in	the	circadian	clock	machinery	(Ling,	Dubruille,	&	Emery,	2012)	with	a	previously	

unknown	role	in	migration,	Vrille,	inhibits	this	step.	

Kayak	 in	 Drosophila	 has	 previously	 been	 linked	 to	 regulation	 of	 the	 cell	 shape	 of	 the	

epithelium	during	dorsal	closure	(Zeitlinger	et	al.,	1997),	cell	fate	decisions	(Riesgo-Escovar	

&	 Hafen,	 1997;	 Szüts	 &	 Bienz,	 2000),	 and	 the	 formation	 of	 metastases	 by	 Rasv12,	 scrib-			

tumors	 (Atkins	 et	 al.,	 2016;	 Igaki,	 Pagliarini,	 &	 Xu,	 2006;	 Kulshammer	 &	 Uhlirova,	 2013;	

Uhlirova	&	Bohmann,	 2006).	 (Kulshammer	&	Uhlirova,	 2013;	Uhlirova	&	Bohmann,	 2006)	

have	shown	that	the	invasive	tumor	phenotype	was	caused	by	the	metalloprotease	MMP1	

and	 filamin	 Cher	 acting	 downstream	 of	 the	 JNK	 pathway	 and	 Kayak.	 However,	 as	 live	

imaging	is	difficult	in	the	adult	fly	the	underlying	cause	of	the	increased	metastasis	rate	was	

not	clear.	Our	work	provides	evidence	that	during	normal	development	Kayak	is	important	

specifically	at	the	initial	step	of	invading	between	the	confining	ectoderm	and	mesoderm	of	

the	 germband,	 suggesting	 that	 it	 acts	 to	 allow	 efficient	 translocation	 of	 the	macrophage	

body	 under	 ectodermal	 load.	 This	 is	 also	 evident	 as	 softening	 of	 the	 ectoderm	 partially	

rescues	 the	 ability	 of	 Kayak-deficient	 macrophages	 to	 enter	 the	 germband.	 Another	

indication	that	Kayak	regulates	the	ability	of	macrophages	to	translocate	into	confinement	

is	the	fact	that,	at	least	in	some	circumstances,	Kayak-deficient	macrophages	that	enter	the	

germband	adopt	 a	more	elongated	 cell	 shape	as	 an	apparent	 consequence	of	 the	 slower	

speed	of	their	rear.	

We	found	that	Kayak	up-regulates	the	expression	of	a	number	of	genes	potentially	involved	

in	 actin	 cytoskeleton	 regulation,	 cell	 adhesion,	 cell	metabolism	as	well	 as	down-regulates	

the	expression	of	several	heat	shock	proteins	and	a	transcription	factor.	We	focused	on	the	

down-regulated	 actin	 cross-linker	 filamin	 Cher	 and	 an	 integral	 membrane	 protein	

tetraspanin	TM4SF.	We	found	that	Kayak,	Cher	and	TM4SF	increase	the	level	of	the	formin	

Dia	 at	 the	 macrophage	 cortex.	 Cher,	 TM4SF	 and	 Dia	 appeared	 all	 to	 be	 important	 for	
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macrophage	 germband	 invasion,	 while	 a	 dominant	 active	 version	 of	 Dia	 was	 capable	 of	

rescuing	the	germ	band	invasion	defect	of	Kayak-deficient	macrophages.		

Complementarily,	 the	 level	 and	 dynamics	 of	 F-actin	 were	 altered	 in	 Kayak-deficient	

macrophages	 entering	 the	 germband.	 Live	 imaging	 revealed	 that	 a	 massive	 actin	 mesh	

forms	at	the	rear	of	the	first	entering	macrophage	and	some	sort	of	actin	re-arrangement	

occurs	from	the	front	to	the	rear	of	the	second	entering	macrophage	(this	was	observed	in	

two	out	of	 three	recorded	movies).	This	 rearrangement	and	the	rear	actin	structure	were	

not	observed	in	Kayak-deficient	macrophages,	although	the	leading	edge	filopodia	was	still	

present	 in	 both	 wild	 type	 and	 Kayak-deficient	 macrophages.	 These	 results	 suggest	 that	

Kayak	shapes	the	architecture	and	dynamics	of	the	macrophage	actin	cortex.	We	speculate	

that	this	could	be	achieved	through	the	downstream	targets	of	Kayak,	Cher	and	TM4SF,	as	

well	as	by	an	indirect	effect	on	Dia.	Cher	or	TM4SF	could	facilitate	the	cortical	localization	of	

Dia,	while	 Dia	 promotes	 actin	 polymerization	 there.	 It	 has	 been	 shown	 that	 filamins	 and	

tetraspanins	 can	 regulate	 the	 cortical	 localization	 of	 Rho	 GTPases	 (Delaguillaumie,	

Lagaudrière-Gesbert,	 Popoff,	 &	 Conjeaud,	 2002;	 Kühn	 &	 Geyer,	 2017;	 Rousso,	 Shewan,	

Mostov,	 Schejter,	 &	 Shilo,	 2013;	 Seth,	 Otomo,	 &	 Rosen,	 2006;	 Stossel	 et	 al.,	 2001)	 that	

could,	 in	 turn,	 activate	 Dia	 and	 stabilize	 its	 membrane	 localization.	 Interestingly,	 the	

absence	of	Dia	was	found	to	have	no	effect	on	general	macrophage	migration	(Davis	et	al.,	

2015)	but	rather	was	required	for	macrophage	contact	inhibition	of	locomotion,	a	process	

important	for	normal	macrophage	distribution	during	the	course	of	development.	Thus,	Dia	

could	 be	 specifically	 required	 when	macrophages	 face	 some	 kind	 of	 resistance	 from	 the	

surrounding	cells	that	they	have	to	counteract.	In	addition,	Cher	cross-links	actin	making	it	

elastic	 and	 dense,	 and	 hence,	 capable	 of	 supporting	 macrophage	 shape	 and	 of	

counteracting	 the	 resistance	of	 the	ectoderm.	 Indeed,	Cher	 is	 known	 to	be	 important	 for	

the	 structural	 integrity	 of	 cardiac	 and	muscle	 cells	 for	 support	 against	mechanical	 stress	

(Fujita	et	al.,	2012).		

In	the	future	it	will	be	important	to	dissect	which	aspect	of	actin	organization	is	regulated	

by	 each	of	 the	Kayak	 targets.	 Can	 it	 be	 that	 TM4SF	organizes	 the	 cortex	 and	defines	 the	

places	of	Dia	accumulation,	while	Cher	simply	cross-links	and	increases	the	stability,	rigidity	

and	density	of	the	actin	cortex?	This	could	be	tested	by	quantifying	actin	and	Dia	intensity	

and	localization	in	invading	macrophages	expressing	RNAis	against	TM4SF	and	Cher,	labeled	

with	LifeAct	and	expressing	tagged	Dia::GFP	live	or	in	fixed	embryos	with	Dia	antibody	and	
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Phalloidin	staining.	The	role	of	Dia	in	actin	polymerization	in	macrophages	can	be	addressed	

by	 live	 imaging	of	 invading	macrophages	 labeled	with	LifeAct	and	expressing	RNAi	against	

Dia	and	then	assessing	actin	 intensity	and	localization.	 In	principle,	these	experiments	can	

alternatively	be	carried	out	in	fixed	embryos	if	the	macrophages	entering	the	germband	are	

compared	 in	stereotyped	positions	using	either	 transgenic	constructs	or	antibody	staining	

to	label	actin	and	its	components.	

There	 are	 several	 other	 aspects	 of	 actin	 organization	 in	 the	 macrophage	 that	 could	 be	

examined	further	to	unravel	the	cellular	mechanisms	of	macrophage	invasive	migration.	It	

has	 to	be	emphasized	 that	development	of	an	 in	vitro	 system	for	Drosophila	macrophage	

migration	 would	 be	 highly	 beneficial	 to	 study	 the	 cellular	 biology	 of	 this	 process	 as	 the	

spatiotemporal	resolution	of	live	imaging	would	increase	and	photo	toxicity	would	decrease	

(see	“Future	directions”	 for	more	details).	 So	 far	 imaging	 invading	macrophages	with	 fine	

cellular	 details	 and	 without	 photo	 damage	 that	 deep	 in	 the	 embryo	 has	 proven	 to	 be	

difficult	 if	 not	 impossible.	 Assuming	 that	 imaging	 is	 optimized	 we	 could	 ask	 how	 the	

expression	 of	 constitutively	 active	 Dia	 (DiaCA),	 expressed	 in	 macrophages	 ectopically,	

rescues	the	germband	invasion	of	mac>kayDN	macrophages.	In	a	recent	study	it	was	shown	

that	 endogenous	 Dia	 localizes	 to	 the	 cortex	 and	 filopodia	 of	 Drosophila	 macrophages	

(Bilancia	et	al.,	2014).	The	researchers	have	also	shown	that	DiaCA	regulates	formation	of	

actin	 protrusions	 with	 a	 distinct	morphology	 and	 dynamics.	 Interestingly,	 Dia	 interaction	

with	another	actin	nucleator,	Ena,	was	shown	to	modulate	the	dynamics	of	protrusion.		

									In	our	study,	we	have	observed	that	 the	rear	actin	mesh	as	well	as	 the	speed	of	 the	

rear	are	affected	 in	mac>kayDN	 invading	macrophages.	However,	we	cannot	exclude	that	

the	 actin	 cytoskeleton	 in	 the	 front	 of	 the	 macrophage	 was	 affected	 as	 well.	 Therefore,	

DiaCA	 could	 have	 either	 rescued	 actin	 polymerization	 uniformly	 along	 the	 macrophage	

cortex	 or	 it	 could	 have	 rescued	 it	 only	 in	 the	 rear	 of	 the	 cell.	 This	 can	 be	 addressed	 by	

imaging	invading	macrophages	(using	mac>)	expressing	the	F-actin	marker	LifeActRuby	and	

DiaCA	 fused	 to	GFP.	 LifeActRuby	would	 allow	 imaging	 and	 quantification	 of	 the	 intensity	

and	 integrity	 of	 F-actin	 as	 a	 read	 out	 of	 Dia	 activity	 in	 the	 wild	 type,	mac>kayDN	 and	

mac>kayDN	macrophages	 expressing	 DiaCA.	 The	 question	 we	 would	 seek	 to	 answer	 is	

where	exactly	in	the	cell	F-actin	is	disrupted	in	the	mutant	and	restored	in	the	Dia	rescue,	in	

the	front	or	the	rear?	A	pilot	experiment	can	be	carried	out	in	fixed	embryos	(using	either	

transgenic	constructs	or	antibody	staining	to	label	actin	and	Dia)	with	further	confirmation	
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by	 live	 imaging.	 If	 F-actin	 is	 indeed	 rescued	by	DiaCA	 selectively	 in	 the	 rear	of	 the	 cell,	 it	

would	 be	 interesting	 to	 test	 whether	 DiaCA::GFP	 localization	 to	 the	 rear	 of	 the	 cell	 can	

explain	that	bias.	It	has	been	shown	that	a	constitutively	active	Dia-like	formin	was	localized	

to	 the	 rear	 of	 the	 polarized	 amoeba	 Dictyostelium	 discoideum	 and	 was	 important	 for	

efficient	 migration	 in	 confinement	 (Ramalingam	 et	 al.,	 2015).	 Another	 study	 has	

demonstrated	 an	 increase	 in	 the	 localization	 of	 endogenous	mDia1	 at	 the	 rear	 upon	 LPS	

stimulation	and	its	importance	there	for	the	migration	of	mouse	dendritic	cells	in	a	confined	

2D	 channel.	 If	 DiaCA::GFP	 localization	 is	 indeed	 biased	 in	 the	 invading	 Drosophila	

macrophage,	it	will	be	interesting	to	answer	which	biochemical	or	physical	cues	prompt	its	

polarization	 and	 how	 they	 are	 translated	 into	 a	 specific	 localization.	 Finally,	 it	 is	 worth	

testing	 whether	 the	 DiaCA	 construct	 on	 its	 own	 can	 facilitate	macrophage	 invasion	 and,	

therefore,	could	have	rescued	the	mac>kayDN	invasion	defect	not	by	compensating	for	the	

reduction	of	endogenous	Dia	protein	at	the	cortex,	but	rather	by	overriding	the	effects	of	

the	other	missing	Kayak	targets.	One	way	to	test	this	hypothesis	is	to	overexpress	DiaCA	in	

wild	type	macrophages	and	see	if	the	number	of	macrophages	in	the	germband	exceeds	the	

wild	 type	number.	 If	 this	 scenario	 is	observed,	 it	 could	be	 that	higher	 levels	of	active	Dia	

further	 increase	the	elasticity	of	 the	cortex	and	allow	macrophages	 to	overcome	the	 load	

imposed	 by	 the	 germband	 ectoderm	 faster.	 However,	 one	might	 also	 expect	 that	 in	 this	

case	macrophage	 number	 in	 the	 germband	 could	 be	 rather	 reduced	 as	 compared	 to	 the	

wild	type	situation	as	suggested	by	recent	work	by	(Chugh	et	al.,	2017),	because	overly	long	

actin	filaments	(generated	by	an	excess	of	Dia)	would	not	generate	sufficient	tension.	In	one	

experimental	 setup	 it	 was	 demonstrated	 that	 Drosophila	 macrophages	 overexpressing	

DiaCA	have	a	reduced	velocity	during	the	inflammatory	response	to	wounds	(Bilancia	et	al.,	

2014).	

In	 live	imaging	and	electron	microscopy	experiments	one	could	assess	the	actin	dynamics,	

intensity	and	distribution	in	wild	type	macrophages	expressing	DiaCA	to	explain	its	effect	on	

the	properties	of	 the	actin	 cortex.	Another	way	 to	 test	 the	 specificity	of	 the	macrophage	

invasion	 rescue	 by	 DiaCA	 is	 to	 try	 to	 rescue	 the	 macrophage	 invasion	 defect	 caused	 by	

mutation	of	a	gene	that	has	nothing	to	do	with	endogenous	Dia	levels.		

Our	data	also	causes	us	to	wonder	 if	 the	degree	of	actin	cross-linking	 is	an	 important	

parameter	modulated	to	facilitate	invasion,	since	the	filamin	Cher	is	a	transcriptional	target	

of	Kayak	and	is	important	for	the	macrophage	invasion.	If	cross	linking	is	truly	the	function	
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provided	by	Cher	for	invasion	then	expressing	Cher	and	other	Drosophila	cross-linkers	(e.g.	

fascin)	should	be	able	to	rescue	the	germband	invasion	phenotype.	If	only	Cher	is	capable	of	

rescue,	this	would	mean	that	Cher	plays	a	more	specific	role	and	it	would	be	interesting	to	

figure	out,	what.	If	Cher	rescue	works,	it	could	be	that	Cher	can	bring	another	formin	to	the	

macrophage	cortex	in	the	rescue	experiment	and	thus	restores	both	cross-linking	and	actin	

polymerization	 (or	 it	 could	 also	 be	 that	 the	 levels	 of	 Dia	 that	 remain	 at	 the	 cortex	 of	

mac>kayDN	 macrophages	 polymerize	 sufficient	 levels	 of	 actin	 to	 rescue	 macrophage	

invasion	when	this	actin	is	cross-linked	by	an	ectopically	overexpressed	Cher).	

Since	 macrophages	 move	 as	 a	 dense	 group	 of	 cells,	 several	 aspects	 of	 their	 group	

migration	could	also	be	tuned	by	Kayak.	mac>kayDN	macrophages	are	slowed	down	already	

in	their	 initial	germ	band	entry,	when	they	move	between	the	ectoderm	and	the	yolk	sac,	

and	 therefore	 accumulate	more	 slowly	within	 the	 germband.	 Can	 it	 be	 that	 this	 reduced	

accumulation	 itself	 contributes	 to	 the	 slower	 speed	 of	migration	 on	 the	 interface	 of	 the	

ectoderm	and	mesoderm,	for	example,	if	front	macrophages	use	rear	macrophages	as	a	stiff	

substrate	to	push	themselves	 forward?	To	test	 this,	 the	number	of	 invading	macrophages	

could	 be	 reduced	 by	 expressing	 RNAi	 against	 cyclins	 in	 the	macrophages	 and	 then	 their	

speed	could	be	estimated.	Another	aspect	of	macrophage	group	migration	is	that	there	is	a	

leader	 cell	 that	 is	 followed	 by	 the	 rest	 of	 the	macrophages.	 If	 this	 leader	 cell	 expresses	

mac>kayDN	 and	 hence	 is	 deficient	 in	 invasion,	 would	 this	 be	 sufficient	 to	 inhibit	 the	

invasion	 of	 the	wild	 type	 follower	macrophages?	 The	 answer	 is	 likely	 to	 be	 partially	 yes,	

since	 the	 first	 five	 invading	 macrophages	 had	 similarly	 reduced	 migration	 speed	 (and,	

therefore,	 contributed	 to	 the	 final	 reduction	 of	 the	 invasion	 speed).	 However,	 it	 is	

interesting	to	test	to	what	extent	the	first	cell	contributes	to	 invasion,	particularly,	due	to	

the	 previous	 study	 that	 has	 suggested	 that	 specifically	 in	 the	 conditions	 of	 the	 increased	

stiffness	of	the	ectoderm	in	the	eiger	mutant	embryos	the	first	cell	is	the	only	one	that	had	

decreased	speed	(Ratheesh	et	al.,	2018).	However,	the	situation	 in	the	wild	type	could	be	

different	from	the	one	in	eiger1	mutant.	

This	can	be	done	by	means	of	clone	generation	using	Cre-recombinase	expressed	from	

a	 heat-shock	 promoter	 and	 a	 mac>STOP>kayDN	 construct.	 Cre-recombinase	 would	

stochastically	 excise	 the	 stop-cassette	 from	 a	mac>STOP>kayDN	 construct	 and	 generate	

Kayak-deficient	 macrophages	 that	 could	 occasionally	 occur	 in	 the	 leading	 position.	 After	

that	the	macrophage	number	in	the	germband	can	be	quantified	as	a	primary	read	out	of	
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invasion	efficiency	or	the	speed	of	the	 invading	macrophage	could	be	measured	after	 live	

imaging.	 Live	 imaging	 is	 particularly	 informative	 since	 follower	 cells	 can	 take	 over	 leader	

position	(in	case	the	leading	cell	is	not	performing	its	function)	and	rescue	the	invasion,	the	

process	 that	 can	 be	 detected	only	 during	 live	 imaging	 (or	 it	will	 never	 occupy	 the	 leader	

position).		

						Furthermore	 general	 aspects	 of	 macrophage	 migration	 into	 the	 germband	 could	 be	

explored.	For	example,	do	macrophages	rely	on	 Integrin-based	adhesion	at	 the	germband	

entry	where	Kayak	promotes	macrophage	motility?	 If	not,	how	do	macrophages	generate	

traction	 forces	at	germband	entry?	At	an	early	 stage	 the	ECM	 just	 starts	being	deposited	

(Matsubayashi	et	al.,	2017)	and	it	could	well	be	that	macrophages	have	to	rely	on	Integrin-

independent	adhesion.	It	is	challenging	to	completely	remove	Integrin	signaling	specifically	

from	the	macrophages	by	eliminating	both	mRNA	and	maternal	protein.	One	possibility	to	

test	the	requirement	for	Rhea,	the	fly	Talin,	in	the	macrophages	is	to	generate	a	CRISPR	null	

mutant	of	rhea	 in	the	macrophages	using	a	macrophage-specific	driver	to	express	a	guide	

RNA	 against	 Rhea	 (however,	 no	 such	 experiments	 have	 been	 carried	 out	 so	 far	 in	

Drosophila).	 In	case	there	is	no	effect	on	the	macrophage	invasion	one	has	to	exclude	the	

possibility	that	maternally	deposited	Rhea	product	compensates	lack	of	zygotic	Rhea	in	the	

macrophages.	To	do	this	one	could	develop	and	use	dominant	negative	version	of	Rhea	that	

would	 block	 both	 zygotic	 and	 maternal	 protein	 (a	 dominant	 negative	 can	 represent	 the	

variant	 of	wild	 type	 Rhea	 that	would	 be	 depleted	 of	 a	 vinculin-binding	 domain	 and	 thus	

would	 reduce	 the	ability	of	 the	 cell	 to	 form	stable	adhesions	by	 competing	with	 the	wild	

type	Rhea).		

							It	 is	 tempting	 to	 speculate	 that	 the	 first	macrophage	entering	 the	germband	uses	 the	

dense	actin	mesh	at	the	cell	rear	to	push	its	nucleus	between	the	ectoderm	and	mesoderm	

and	thereby	open	a	gap	between	these	two	tissues,	while	the	second	macrophage,	at	least	

in	some	cases,	uses	a	rearward	actin	flow	to	generate	a	traction	force	(Paluch	et	al.,	2016)	

and	propel	itself	forward	in	the	gap	opened	by	the	first	macrophage.	For	the	first	entering	

macrophage,	this	could	be	tested	by	increasing	the	stiffness	of	the	ectoderm	(for	example,	

by	ectopic	expression	of	dominant	active	Rho1)	and	observing	and	quantifying	the	density	

of	the	actin	at	the	cell	rear	using	LifeAct,	quantifying	the	speed	of	the	nucleus	and	of	the	cell	

rear	at	 germband	entry:	 the	prediction	 is	 that	under	 increased	ectodermal	 load	 the	actin	

mesh	would	intensify	while	the	speed	of	the	first	entering	macrophage	would	decrease.	The	
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best	 functional	 test	would	 be	 to	 disrupt	 the	 actin	 cortex	 at	 the	 rear	 of	 the	 first	 entering	

macrophage	by	expressing	a	specific	regulator	of	the	actin	cortex	in	the	rear	using	mosaics	

and	to	quantify	 the	speed	of	 its	nucleus.	The	specific	 regulator	of	 the	rear	actin	assembly	

can	be	searched	for	in	an	RNAi	screen	where	specific	rear	actin	structures	will	be	used	as	a	

read	 out.	 For	 the	 second	 entering	 macrophage,	 the	 presence	 of	 actin	 flow	 has	 to	 be	

confirmed	by	using	higher	time	resolution	imaging,	potentially	with	light	sheet	microscopy,	

and	 also	 observing	 myosin	 dynamics.	 Next,	 a	 correlation	 of	 the	 speed	 of	 the	 observed	

rearward	actin	flow	and	forward	nucleus	movement	can	be	done	to	test	for	a	possible	link	

between	 these	 two	events.	After	 that,	 an	 in	 vitro	 system	should	be	used	 to	 test	whether	

actin	 flow	 in	 the	 second	 macrophage	 generates	 traction	 forces	 on	 the	 walls	 of	 the	

confinement	 channel	 it	 enters.	 Traction	 forces	 can	 be	 measured	 by	 tracking	 beads	

embedded	in	the	walls	of	the	confinement	channel	(Paluch	et	al.,	2016)	and	then	have	to	be	

correlated	 with	 the	 rearward	 actin	 flow	 and	 forward	 nuclear	 displacement.	 Finally,	

functionality	 of	 the	 actin	 flow	 can	 be	 tested	 by	 genetically	 blocking	 it	 using	 myosin	

inhibitors	 and	 then	 quantifying	 the	 forward	 displacement	 of	 the	 nucleus	 as	 well	 as	 the	

traction	forces	generated	by	the	macrophage.	

				Another	 result	 of	 our	 research	 is	 our	 identification	 of	 targets	 downstream	 of	 the	

mammalian	 ortholog	 of	 Kayak,	 Fos,	 that	 were	 previously	 unknown.	 Studies	 of	 the	

mechanisms	 acting	 in	 cell	 migration	 downstream	 of	 Fos	 have	 unraveled	 several	

downstream	 regulators	 (Galvagni,	 Orlandini,	 &	 Oliviero,	 2013;	 Kelley,	 Shahab,	 &	 Weed,	

2008;	 Lamb	 et	 al.,	 1997;	 Milde-Langosch,	 2005;	 Ramachandran	 et	 al.,	 2011),	 however,	

filamins	 and	 tetraspanins	 have	 never	 been	 identified	 as	 downstream	 targets	 of	 Fos.	 In	

collaboration	 with	 Prof.	Maria	 Sibilia	 (Medical	 University	 of	 Vienna)	 we	 have	 found	 that	

expression	of	the	various	filamins	as	well	as	the	closest	ortholog	of	TM4SF	is	enhanced	in	c-

Fos	induced	bone	cancer	in	the	mouse	(data	not	shown).	It	would	be	of	particular	interest	

to	 investigate	why	Fos	up-regulates	 filamins	and	 tetraspanins	 in	 this	particular	 tissue	and	

condition	and	if	there	are	any	circumstances	of	migration	that	these	tumor	cells	engage	in	

which	that	can	be	beneficial.		

In	 addition,	 nothing	 is	 known	 about	 the	 role	 of	 NFIL3/E4BP4,	 a	 mammalian	 ortholog	 of	

Vrille,	 in	 cell	 migration	 and	 about	 its	 interaction	 with	 Fos,	 which	 are	 the	 important	

questions	to	address	 in	the	future.	Additional	experiments	can	substantiate	Vrille’s	role	 in	

invasive	 migration	 into	 the	 germband	 as	 well	 as	 confirm	 the	 molecular	 players	 acting	
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downstream	 of	 Vrille.	 These	 experiments	 include	 defining	 which	 step	 of	 migration	 is	

affected	when	Vrille	is	overexpressed	in	macrophages	(by	live	imaging	and	tracking),	testing	

if	Cher	and	Dia	are	up-regulated	in	the	vrille	null	mutant	macrophages	as	well	as	performing	

an	epistasis	 test	 for	Vrille	and	Kayak	 interactions	by	combining	the	vrille	null	mutant	with	

dominant	 negative	 Kayak	 expressed	 in	 the	 macrophages.	 Of	 course,	 another	 more	

comprehensive	approach	is	to	do	RNA	sequencing	to	search	for	all	Vrille	targets	and	to	see	

if	there	are	the	ones	shared	with	Kayak.	

			In	 summary,	 we	 have	 identified	 transcription	 factors	 that	 together	 tune	 the	 invasive	

migration	of	Drosophila	macrophages:	Kayak	tunes	macrophage	cortical	proteins	and	Vrille	

inhibits	them.	This	raises	the	interesting	possibility	that	the	systemic	modulation	of	a	set	of	

proteins	can	allow	the	cell	to	acquire	certain	physical	properties	to	adapt	and	migrate	in	a	

particular	tissue	environment.	It	would	be	interesting	to	investigate	whether	there	is	some	

kind	 of	 combinatorial	 codes	 set	 by	 different	 transcription	 factors,	 each	 of	 which	 would	

define	a	particular	mode	of	cell	migration.	

	

	

	

	

	

Chapter	II		

Our	results	point	to	a	role	for	Dpp		signaling	in	macrophage	invasive	migration,	and	to	the	

fact	that	the	Dpp	pathway	can	act	together	with	Kayak.	It	was	demonstrated	that	the	Dpp	

pathway	interacts	with	Kayak	in	gut	cell	fate	specification	during	Drosophila	embryo	

development	(Szüts	&	Bienz,	2000),	and	both	Dpp	and	Kayak	are	important	for	dorsal	

closure	of	Drosophila	embryo	(Zeitlinger	et	al.,	1997).	However,	the	Dpp	pathway	and	Kayak	

have	never	been	linked	to	the	regulation	of	cell	migration	autonomously	in	the	migrating	

cells	in	the	fly,	although	in	mammals	the	BMP	pathway	and	Fos	signaling	are	both	linked	to	

cancer	dissemination	and	metastasis	formation	(Papageorgis,	2015).	

Moreover,	it	is	intriguing	that	pMad	is	active	only	in	a	subpopulation	of	the	macrophages,	

which	is	also	evident	for	early	Kayak	expression:	Kayak	and	pMad	seem	to	be	present	in	a	

similar	ventral	stripe	of	macrophages	at	stage	10.	To	our	best	knowledge,	the	combined	
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appearance	of	these	two	factors	in	a	subpopulation	of	cells	of	a	defined	lineage	has	not	

been	observed	before.	However,	an	interaction	between	Fos	and	Smad	(the	mammalian	

ortholog	of	Mad)	was	described	and	was	shown	to	promote	cancer	(Sundqvist	et	al.,	2013).	

It	would	be	extremely	interesting	to	further	investigate	the	relevance	of	Dpp	signaling	for	

Drosophila	macrophage	invasive	migration	(especially,	if	the	pMad	macrophage	

subpopulation	plays	a	certain	role	in	this	process)	and	to	find	if	downstream	molecular	

targets	are	possibly	shared	with	Kayak.	

	

Chapter	III	

We	performed	a	genetic	screen	in	which	we	identified	previously	unknown	regulators	of	

Drosophila	macrophage	invasive	migration:	the	gene	CG10413	with	a	putative	yet	

experimentally	not	proven	function	in	amino	acid	transport	and	sodium::potassium	

symport,	and	Basigin,	an	immunoglobulin	family	protein	that	could	be	involved	in	an	

interaction	with	transporters.	In	the	future,	it	would	be	interesting	to	test	what	exactly	the	

functions	of	these	two	genes	are	in	macrophage	migration	and	if	they	could	interact	with	

each	other.	

Thus,	the	Drosophila	embryo	has	proven	itself	as	an	excellent	model	system	to	carry	out	

screens	and	to	search	for	players	and	downstream	mechanisms	involved	in	invasive	

migration	through	confined	tissues	in	vivo.		

	

Future	directions	

There	are	many	further	directions	and	questions	that	one	could	follow	to	study	macrophage	

migration.	 One	 of	 them	 that	 seems	 to	 be	 of	 particular	 interest	 and	 importance	 is	 to	

establish	an	in	vitro	system	of	macrophage	migration.	It	would	very	interesting	to	generate	

a	 minimal	 tissue	 and	 extracellular	 matrix	 environment	 based	 on	 in	 vivo	 descriptions	 of	

different	 macrophage	 routes	 and	 the	 corresponding	 substrates	 for	 migration.	 One	 could	

modulate	 different	 parameters	 (such	 as	 the	 concentration	 of	 the	matrix,	 stiffness	 of	 the	

tissues,	chemoattractant	positioning	etc.)	to	try	to	make	macrophages	migrate	and	to	find	

optimal	conditions.	Moreover,	one	could	expose	macrophages	 to	different	 types	of	 tissue	

compositions	and	observe	how	they	adapt	their	mode	of	migration.	Another	advantage	of	

an	in	vitro	system	would	be	to	significantly	improve	imaging	possibilities	as	there	would	be	
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no	 light	 dissipation	 in	 the	 external	 embryonic	 tissues.	 Two-color	 live	 imaging	 of	 the	

macrophages	 entering	 the	 germband	 is	 a	 challenging	 task	 as	 they	 migrate	 deep	 in	 the	

tissues	where	high	 laser	power	 is	 required	 to	generate	 images	of	good	quality;	high	 laser	

power,	in	turn,	often	leads	to	the	phototoxicity	and	overheating	that	result	in	artifacts	and	

the	death	of	the	embryo.	In	addition	macrophages	migrate	in	3D	and	actively	change	their	

positions	 during	 invasion,	 to	 capture	 macrophage	 trajectory	 fully	 one	 needs	 to	 acquire	

multiple	Z	stacks	per	timeframe.	This,	in	turn,	reduces	the	spatiotemporal	resolution	of	live	

imaging,	but	could	be	overcome	yet	again	in	an	 in	vitro	system	where	macrophages	could	

move	in	a	simple	2D	microchannel,	the	shape	of	which	could	be	modified	and	made	more	

complex	on	demand	to	fit	it	to	different	tissue	architectures.	

Another	 interesting	 aspect	 of	 Drosophila	 embryonic	 macrophage	 migration	 is	 that	 they	

migrate	 as	 a	 dense	 group	 that	 disseminates	 over	 time,	 but	 macrophages	 still	 maintain	

physical	 contacts	 to	 each	 other	while	migrating	within	 the	 germband.	 It	 is	 interesting	 to	

study	 the	 functional	 significance	 of	 these	 contacts,	 their	 types	 and	 the	 dependence	 of	

different	macrophage	functions	(such	as	migration	or	ECM	secretion)	on	the	presence	and	

number	of	these	contacts	as	well	as	on	the	number	of	macrophages	per	se.		
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Supplementary	information	

	

Supplementary	 figure	 1.	 Kayak	 (Dm-Fos)	 and	 Vrille	 (Dm-NFIL3)	 transcription	 factors	 are	 co-expressed	 in	
migrating	macrophages	at	stage	13.	
A.	Expression	of	Kayak	protein	at	stage	13:		Kayak	is	present	in	all	macrophages.	
B.	Expression	of	Vrille	protein	at	stage	13:		Vrille	is	present	in	all	macrophages.	
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Belyaeva et al, Supplementary Figure 1

Figure 1. Kayak (Dm-Fos) and Vrille (Dm-NFIL3) transcription factors are co-expressed in migrating
 macrophages at stage 13.
A. Expression of Kayak protein at stage 13:  Kayak is present in all macrophages.
B. Expression of Vrille protein at stage 13:  Vrille is present in all macrophages.
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Supplementary	figure	2.	Kayak	facilitates	and	Vrille	inhibits	macrophage	migration	into	the		germband.	
A.	 	 	Quantification	of	the	number	of	macrophages	that	overexpress	wild	type	version	of	Kayak:	macrophage	
number	in		germband	is	not	altered.	
B.	Schematics	of	a	lateral	view	of	a	mid	stage	12	embryo	with	the	macrophages	in	pre-tail	zone	outlined	with	
the	black	dashed	line.	
C.	Quantification	of	the	number	of	macrophages	that	express	dominant	negative	version	of	Kayak	in	the	pre-
tail	zone:	macrophage	number	is	not	altered.	
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D.	Quantification	of	 the	number	of	macrophages	 that	overexpress	wild	 type	 version	of	Vrille	 in	 the	pre-tail	
zone:	macrophage	number	is	not	altered.	
E.	 Schematics	 of	 a	 lateral	 view	 of	 a	mid	 stage	 12	 embryo	 with	 the	macrophages	 (green)	 along	 VNC	 route	
outlined	with	the	black	dashed	line.	
F.	Quantification	of	the	number	of	macrophages	that	express	dominant	negative	version	of	Kayak	in	the	VNC	
route:	macrophage	number	is	not	altered.	
G.	 	 Quantification	 of	 the	 number	 of	macrophages	 that	 overexpress	wild	 type	 version	 of	 Vrille	 	 in	 the	 VNC	
route:	macrophage	number	is	not	altered.	
H.	 Quantification	 of	 the	 total	 number	 of	 macrophages	 that	 overexpress	 wild	 type	 version	 of	 Vrille:	
macrophage	number	is	not	altered.	
I.	 Quantification	 of	 the	 total	 number	 of	 macrophages	 that	 express	 dominant	 negative	 version	 of	 Kayak:	
macrophage	number	is	not	reduced.	
J.	Apoptotoc	corpses	in	the	late	stage	11	embryos	detected	with	the	anti	CC3	antibodies	(red):	cell	death	level	
is	not	altered	in	the	macrophages	(green)	expressing	cominant	negative	version	of	Kayak.	
K.	Quantification	of	the	apoptotic	corpses	in	the	macrophages	from	experiment	in	(J).	
E.	 Table	with	 the	 quantification	 of	 the	 number	 of	macrophages	 that	 express	 dominant	 negative	 version	 of	
Kayak	in	the	pre-tail	zone	from	live	late	stage	11	embryos.	
	Macrophages	 are	 labeled	 using	 either	 srp-Gal4	 driving	 UAS-GFP	 	 	 ((c)	 and	 (k))	 or	 srp-Gal4	 driving	 UAS-
LifeAct::GFP	(f).	Scale	bar	corresponds		to	10	µm.	
Histograms	show	mean	+/-	s.e.m.	***P<0.005,	**P<0.01,	*P<0.05.	Unpaired	t-test	was	used	for	statistics	of	all	
quantifications.	
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Supplementary	figure	3.	Kayak	facilitates	macrophage	motility	at	the	germband	entry	
A.	Stills	from	the	movies	showing	wild	type	macrophages	and	kay2/kay2	macrophages	entering	the	germ	band	(the	
border	of	the	germband	is	outlined	with	the	dashed	line).		
B.	Quantification	of	 the	distance	between	macrophage	and	 its	 two	neighbours	at	 germband	entry,	pre	germband	
and	along	the	VNC	route.	Macrophages	disseminate	as	
they	move	along	the	germband	and	VNC.	
C.	Quantification	of	the	speed	of	the	macrophages	 in	the	post	GB	entry:	the	speed	of	the	macrophages	expressing	
dominant	negative	version	of	Kayak	is	not	altered.		
D.	Quantification	of	the	speed	of	the	macrophages	in	the	head,	pre	GB	entry,	GB	entry	and	post	GB	entry:	the	speed	
fo	kay2/kay2	macrophages	is	significantly		
reduced	in	the	pre	GB	entry	and	at	GB	entry.		
E.	Stills	from	the	movies	showing	wild	type	macrophages	and		macrophages	expressing	dominant	negative	version	of	
Kayak	moving	along	the	VNC	inner	row	(indicated	with		
an	arrow).	
Macrophages	are	 labeled	using	either	 srpGal4	driving	UASGFP.nls	 (A)	or	 srp::3xH2AmCherry	 (E).	Histograms	 show	
mean	+/-	s.e.m.	***P<0.005,	**P<0.01,	*P<0.05.	
	Unpaired	 t-test	 was	 used	 for	 statistics	 of	 all	 quantifications.	 Number	 in	 the	 box	 corresponds	 to	 the	 number	 of	
analyzed	tracks.	3-4	embryos	are	recorded	per	each	genotype.	
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Supplementary	 figure	 4.	 Kayak	 regulates	 macrophage	 germ	 band	 invasion	 through	 actin	 cytoskeleton	 associated	
proteins	
A.	Dia	(red)	immunostaining	in	wild	type	macrophages	(green),	macrophages	expressing	dominant	negative	version	of	
Kayak	and	macrophages	overexpressing	
Vrille.	
B.		Quantification	of	Dia	intensity	on	the	macrophage-macrophage	junction	from	the	experiment	shown	in	(B):	Dia	is	
reduced	
at	the	junctions	of	the	macrophages	overexpressing	Vrille.	
C.	Quantification	of	Dia	uniformity	on	the	macrophage-macrophage	junction	from	the	experiment	shown	in	(B):	Dia	is	
less	uniformly	distributed	
at	the	junctions	of	the	macrophages	overexpressing	Vrille.	
(E-M)	 Comparative	 (mRNA)	 expression	 levels	 of	 the	 different	 groups	 of	 genes	 in	 wild	 type	 macrophages	 and	
macrophages	expresing	dominant	negative	version	of	Kayak:	
D.	Comparative	expression	of	formin-related	genes.	
E.	Comparative	expression	of	Rho	GTPases.	
F.	Comparative	expression	of	actins.	
G.	Comparative	expression	of	filamins.	
H.	Comparative	expression	of	myosin	chains.	
I.	Comparative	expression	of	cadherin-related	genes.	
J.	Comparative	expression	of	integrin-related	genes.	
K.	Comparative	expression	of	ECM-related	genes.	
L.	Comparative	expression	of	PVR	and	Notch-related	genes	
M.	Comparative	expression	of	cell	fate	specification	genes.	
	N.	Dia	(red)	 immunostaining	in	wild	type	macrophages	(green)	and		macrophages	expressing	RNAis	agains	Cher	and	
TM4SF.	
O.	 	 Quantification	 of	 the	macrophage	 numbers	 in	 the	 pre	GB	 zone	 from	 the	 embryos	 expressing	 Cher	 and	 TM4SF	
RNAis	in	the	macrophages:			
macrophage	number	is	not	altered.	
P.		Quantification	of	the	macrophage	numbers	along	VNC	from	the	embryos	expressing	Cher	and	TM4SF	RNAis	in	the	
macrophages:		macrophage	number	is	not	altered.	
Q.	 Quantification	 of	 the	 mRNA	 level	 of	 Cher	 in	 FACS	 sorted	 macrophages	 through	 qPCR:	 Cher	 mRNA	 level	 is	
significantly	reduced	in	the	macrophages	overexpressing	Vrille,	
R.	Quantification	of	the	mRNA	level	of	TM4SF	 in	FACS	sorted	macrophages	through	qPCR:	TM4SF	mRNA	level	 is	not	
altered	in	the	macrophages	overexpressing	Vrille.	
Macrophages	 are	 labeled	 using	 srpGal4	 driving	 UAS::CD8GFP.	 Histograms	 show	 mean	 +/-	 s.e.m.	 ***P<0.005,	
**P<0.01,	*P<0.05;	in	(R)	and	(S)	histograms	show	mean	+/-	s.d.	
Unpaired	t-test	was	used	for	statistics	of	(C),	(D),	 (R),	(S)	quantifications;	one	way	ANOVA	with	Tukey	post	hoc	were	
used	for	statistics	of	quantifications	(P),	(Q).		In	(C	and	D)	number	in	the	box	corresponds	to	the	number	of		
analyzed	macrophage-macropge	juncitons,	in	(P	and	Q)	number	in	the	box	corresponds	to	the	number	of	embryos.	
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Supplementary	 figure	 5.	 Kayak	 arranges	 actin	 cytoskeleton	 to	 facilitate	macrophage	 forward	 translocation	
under	the	load	of	the	ectoderm	of	the	germ	band.	
A.	 	 Quantification	 of	 the	 maximum	 length	 and	 maximum	 width	 of	 the	 macrophage	 in	 the	 pre	 GB	 zone:	
macrophages	expressing	dominant	negative	
version	of	Kayak	are	shorter	and	thinner	than	the	wild	type	macrophages.			
B.	Quantification	of	 the	maximum	length	and	maximum	width	of	 the	 first	macrophage	entering	the	GB:	 the	
rear	of	the	macrophage	expressing	dominant	negative	
version	of	Kayak	are	longer	and	thinner	than	the	wild	type	macrophages.		
C.	Quantification	of	the	speed	of	the	front	and	the	rear	of	the	first	macrophage	entering	the	GB:	the	rear	of	
the	macrophage	expressing	dominant	negative	
version	of	Kayak	moves	significantly	slower.	
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D.	 Quantification	 of	 the	 microtubule	 intensity	 of	 ectoderm	 and	 non-ectoderm	 facing	 side	 of	 the	 first	
macrophage	entering	the	GB:	microtubule	intensity	of		
the	ectoderm	facing	side	of	the	macrophage	expressing	dominant	negative	version	of	Kayak	is	reduced.	
E.	 MyoP	 (red)	 immunostaining	 in	 wild	 type	 macrophages	 (green)	 and	 	 macrophages	 expressing	 dominant	
negative	version	of	Kayak.	
F.	Quantification	of	myoP	intensity	on	the	macrophage	cortex	from	the	experiment	shown	in	(G):	myoP	level	is	
not	altered	
in	the	macrophages	expressing	dominant	negative	version	of	Kayak.	
Macrophages	 are	 labeled	 using	 srpGal4	 driving	 UAS::CD8GFP	 (G).	 Histograms	 show	 mean	 +/-	 s.e.m.	
***P<0.005,	**P<0.01,	*P<0.05.	
	Unpaired	t-test	was	used	for	statistics	of	quantifications.		In	(B	and	H)	number	in	the	box	corresponds	to	the	
number	of		
analyzed	macrophage-macrophage	 junctions,	 in	 (C	and	D)	number	 in	 the	box	corresponds	to	 the	number	of	
measurements	(timepoints).	
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Table	S1.	Comparison	of	transcription	factors	mRNA	expression	in	the	macrophages	at	stages	11-12	and	13-

16	(based	on	(Hammonds	et	al.,	2013)).	

Macrophages	acquire	different	TFs	profiles	at	different	stages	of	embryo	development.	TFs	expressed	in	the	
macrophages	only	at	stages	11-12	are	highlighted	in	green;	TFs	expressed	in	the	macrophages	only	at	stages	
13-16	are	highlighted	in	orange;	TFs	expressed	in	macrophages	throughout	stages	11-16	are	not	highlighted.	
Function	is	annotated	only	to	TFs	expressed	in	the	macrophages	at	stages	11-12.	
	

	

Stages	11-12	 Stages	13-16	 Function	

brk	

	

Dpp-related,	development	

Bteb2	 Bteb2	

	c15	 c15	

	croc	

	

Early	embryo	patterning	

	

Dif	

	

	

dm	

	foxo	 foxo	

	gcm	 gcm	

	

	

gcm2	

	ham	

	

Neuronal	cell	fate	

kay	

	

Cell	fate	determination,	circadian	rhythm	

kn	

	

Early	embryo	patterning	

lz	 lz	

	Mad	 Mad	

	MafS	

	

Transcription	

MTF1	 MTF-1	

	odd	 odd	

	

	

Pdp1	

	

	

pros	

	

	

Rel	

	six4	

	

Development	

slp1	 slp1	

	srp	 srp	

	svp	 svp	
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tj	

	

Notch-related,	development	

topi	

	

Spermatid	differentiation	

	

Usf	

	

	

ush	

	vri	

	

Cell	growth,	circadian	rhythm	

zfh1	 zfh1	

	CG17801	

	

Unknown	

CG17802	

	

Unknown	

CG33213	 CG33213	

	

	

CG30431	

	

	

CG11071	

	

	

CG8145	

	

	

CG9932	

		

	

Table	S2.	List	of	the	antibodies	used	in	this	study.	

Antibody	 Source	animal	 Type	of	fixation	 Dilution	 Provided	by	

Anti-Diaphanous	 Rabbit	 Hand	devitellinization	 1:200	 S.	Wasserman	(UCSD,	USA)	
Phalloidin	633	 -	 Hand	devitellinization	 1:200	 Invitrogen	(A22284)	
Anti-Sqh1P	 Guinea	pig	 4%	paraformaldehyde	

and	methanol	
devitellinization	

1:200	 R.	Ward	(KU,	USA)	

Anti-Kayak	 Rabbit	 Hand	devitellinization	 1:50	 J.	Zeitlinger	(Stowers	Institute,	
USA)	

Anti-Vrille	 Guinea	pig	 4%	formaldehyde	
and	ethanol	

devitellinization	

1:50	 J.	Blau	(NYU,	USA).	

Anti-GFP	 Chicken	 4%	formaldehyde	
and	methanol	
devitellinization	

1:500	 Abcam	(ab13970)	

Anti-mCherry	 Goat	 4%	formaldehyde	
and	methanol	
devitellinization	

1:200	 Invitrogen	(M11217)	

Anti-Cleaved	
Caspase	(CC3)	

Mouse	 4%	formaldehyde	
and	methanol	
devitellinization	

1:200	 R&D	Systems	(Asp175)	

Anti-Smad3	
(phospho	S423	+	

S425)		

Rabbit	 4%	formaldehyde	
and	methanol	
devitellinization	

1:200	 Abcam	
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Table	 S3.	Macrophage	 expression	 of	 several	 genes	 is	 regulated	 by	 Kayak	 at	 the	 stage	 of	 the	 germ	 band	
invasion.	
Sequencing	of	total	mRNA	from	the	wild	type	and	Kayak-deficient	macrophages	sorted	from	the	embryos	at	
early	stage	12	(start	of	the	germ	band	invasion).	3	independent	replicates	of	each	genotype	were	compared.	
Genes	 with	 down-regulated	 expression	 are	 highlighted	 in	 red,	 genes	 with	 up-regulated	 expression	 are	
highlighted	in	green.	
*	Kayak	ChIP	seq	data	from	the	whole	embryos	at	stage	16	is	kindly	provided	by	J.	Zeitlinger.	
**	Closest	mouse	protein	orthologs	were	found	using	UniProt	BLAST	bioinformatics	resource,	the	top	score	hit	
is	shown	in	the	table.	
***	Possible	bZIP	domain	was	detected	using	Prosite	bioinformatics	resource.	

	
	

Expression	in	
the	wt	

macrophages	

Expression	in	
kayDN	

macrophages	

Adj.	p-value	 Kayak	
ChIP	

target*	

Possible	cellular	
function	

Mouse	ortholog,	
%	identity	**	

Dhc36C	 8.49	 0.01	 0.02	 yes	
								Cargo	transport	 Dynein,	axonemal,	heavy	

chain	7C,		56.8	%	

CG14204	 8.09	 0	 0.03	 no	
Acyl-CoA	metabolism	 O-acyltransferrase	like	

protein,		26.3	%	

CG42402	 3.64	 0	 0.04	 yes	
Homophilic	adhesion	 Protein	eva-1	homolog	C,	

34.6%	

CR43767	 21.87	 0	 0.045	 no	
Endopeptidase	
downregulation	 no	orhtolog	

TM4SF	 12.62	 0.97	 0.03	 no	
Cell	membrane	
organisation	 Tetraspanin-6,	23.7%	

CG42260	 9.25	 1.05	 0.001	 no	
Ion	transport	 Cyclic	nucleotide-gated	

olfactory	channel,	50.3%	

cher	 3.73	 0.64	 0.045	 yes	
Actin	

crosslinking	 Filamin	A,	52.9%	

GstT4	 166.71	 38.23	 0.02	 no	
Detoxification	

(glutathione	transfer)	
Gluthathione	S-transferrase	

theta-3,	38.8%	
Xrp1	 83.93	 21.54	 0.001	 yes	 Possible	bZIP***	 Epiglycanin,	22%	

Tspo	 138.33	 43.93	 0.045	 yes	
Mitochondrial	
transport	 Translocator	protein,	46%	

CG31337	 235.25	 86.41	 0.045	 yes	 Proteolysis	 no	orholog	

Hsp70Ab	 4.00	 36.14	 0.0007	 no	 Unknown	

Heat	shock	70	kDa	protein	
1B,	72.2%	

	

CG13321	 2.06	 15.05	 0.03	
no	

Unknown	
Tensin-2,	34.1%	

	

Hsp68	 24.75	 171.06	 0.02	

no	

Unfolded	protein	
binding	

Heat	shock	70	kDa	protein	
1B,	72.2%	

	
	

Hsp70Aa	 3.70	 19.71	 0.03	

no	

Unknown	

Heat	shock	70	kDa	protein	
1A,	76.3%	

	

CG1673	 27.91	 144.93	 0.0002	

no	 Transamination	of	
branched-chain-amino-

acids	

Branched-chain-amino-acid	
aminotransferase,	53.9%	

	

CG6574	 5.17	 25.85	 0.046	

no	

Transport	of	folate	

Thiamine	transporter	1,	
37.3%	

	

l(1)G0469	 48.37	 211.47	 0.01	

no	

Unknown	

SKI/DACH	domain-
containing	protein	1,	44.8%	

	

sug	 39.01	 151.93	 0.03	
no	

Transcription	
Zinc	finger	protein	GLIS2,	

57.4%	
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Hsp70Bc	 33.22	 100.99	 0.03	 no	
Unknown	 Heat	shock	70	kDa	protein	

1A,	76.6%	
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