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SIMPLICES MODELLED ON SPACES OF CONSTANT CURVATURE∗

Ramsay Dyer,†Gert Vegter,‡ and Mathijs Wintraecken�

Abstract. We give non-degeneracy criteria for Riemannian simplices based on simplices in
spaces of constant sectional curvature. It extends previous work on Riemannian simplices,
where we developed Riemannian simplices with respect to Euclidean reference simplices.
The criteria we give in this article are in terms of quality measures for spaces of constant
curvature that we develop here.

We see that simplices in spaces that have nearly constant curvature, are already non-
degenerate under very weak quality demands. This is of importance because it allows for
sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute)
curvature.

1 Introduction

Simplices and triangulations in ambient Euclidean space have a long history in the compu-
tational geometry community. In [4] we discussed the generalization of Euclidean simplices
to non-degenerate Riemannian simplices on a Riemannian manifold, and triangulations of
the manifold constructed with such simplices. These Riemannian simplices are de�ned us-
ing Riemannian centres of mass: suppose that we are given (n + 1) vertices v0, . . . , vn on
an n-dimensional Riemannian manifold M . Given λ = (λ0, . . . , λn) ∈ Rn+1, we de�ne
the point y ∈ M with barycentric coordinates λ by y = argminx

∑
λidM (x, vi)

2, where
dM denotes the geodesic distance on M . This gives us a way to map the standard n-
simplex, {(λ0, . . . , λn) ∈ Rn+1 |

∑
λi = 1, λi ≥ 0}, into the manifold. A simplex is called

non-degenerate if this mapping is a di�eomorphism. The criteria we gave in [4] for non-
degeneracy were based on Euclidean quality measures: we employed bounds on the quality
of the simplex found by lifting the vertices by the exponential map to the tangent space of
one of the vertices.

The comparison to Euclidean simplices leads to very stringent requirements on the
size of the simplices on a manifold that is geometrically close to a small sphere, for exam-
ple. However, we know that the non-degeneracy requirements for Riemannian simplices on
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spheres, for example, are very light. It su�ces that the vertices be contained in an open
hemisphere, and do not lie on a lower dimensional sphere of the same radius.

Our former approach was therefore poorly attuned to spaces of non-zero constant
curvature. One also expects (and we shall prove) that Riemannian simplices are somewhat
stable if one perturbs the metric of the sphere or any space of constant curvature. So in this
text we focus on manifolds whose sectional curvatures are nearly constant. For simplices in
these spaces we now give conditions for non-degeneracy similar to those in [4], but based on
spaces of constant curvature and such that requirements for non-degeneracy are very mild
if the metric deviates only slightly from the constant one.

More speci�cally, we are interested in Riemannian simplices on an n-manifold M
whose sectional curvatures are very close to constant, meaning that the sectional curvatures
K satisfy Λ` ≤ K ≤ Λu with |Λ` − Λu| small relative to min{|Λ`|, |Λu|}. We therefore
suppose that 0 < Λ` or Λu < 0, because the case where Λ` and Λu are nearly zero has been
adequately treated in [4] by comparison to Euclidean space. Here we compare to spaces
of constant curvature Λmid, where Λmid lies in the interval [Λ`,Λu]. For positively curved
spaces we take Λmid = 1

2(Λ` + Λu); for negatively curved spaces the expression is more
complicated.

To convey the main ideas of this paper in this introduction, we restrict ourselves
here to manifolds of positive curvature embedded in Euclidean space. The embedding is not
in any way essential but it clari�es the geometric picture.

In this setting we are given n + 1 points v0, . . . , vn in a small open set inside the
n-dimensional manifoldM , with nearly constant positive sectional curvatures. These points
are the vertices of the Riemannian simplex. We pick a vertex vr and we identify TvrM with
a tangent space of H(Λmid), an n-sphere of curvature Λmid. Here we used that for both
tangent spaces there exists a linear isometry to the Euclidean space of the same dimension
and thus to each other.

In general, H(Kc) denotes the complete simply connected space of constant sectional
curvature Kc, regardless of the sign of Kc. Since the sectional curvatures of H(Kc) are
constant, this space is unique up to isometries [8, Theorem 2.1, Chapter 1].

We consider the geodesics on M emanating from vr to the other vertices vi. We can
transplant these geodesics to H(Λmid). By this we mean that we map geodesics emanating
from vr on M to geodesics emanating from the same point vr in H(Λmid), preserving both
the lengths of the geodesics and the angles θil between any two geodesics emanating from
vr to vi, and vl.

The transplantation map is formally de�ned using the exponential map expp,M . The
exponential map maps straight line segments emanating from the origin in TpM to geodesics
emanating from p ∈M , such that the length of the geodesic equals the length of the line seg-
ment in TpM . We can now formally de�ne the transplantation map as expH(Λmid) ◦ exp−1

vr,M
.

Here we do not indicate a point on the sphere because any point is equivalent thanks to
spherical symmetry, but one may think of the point where the sphere touches the tangent
plane TpM .

The transplantation is a di�eomorphism onto its image if restricted to a su�ciently
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small neighbourhood U ⊂M . Given x ∈ U , we have a corresponding point in H(Λmid):

x(vr) := expH(Λmid) ◦ exp−1
vr,M

(x).

The simplex we �nd on H(Λmid) after the transplantation, with vertices vi(vr), is
denoted by σH(Λmid)(vr). Note that this simplex depends on all points v0, . . . , vn, even though
we drop this dependence from our notation.

The majority of this paper is dedicated to proving that the transplantation map
expH(Λmid) ◦ exp−1

vr,M
has low distortion. Intuitively we can think of the manifold as a sphere

with small metric distortion. The demonstrations of low distortion are very visual and are
based on the Toponogov comparison theorem, but they require technical estimates, which
are calculated in the appendices.

Because the transplantation map has low distortion, we expect that if the simplex
σH(Λmid)(vr) on H(Λmid) is well shaped, the Riemannian simplex is also well shaped and in
particular is non-degenerate, meaning that it is homeomorphic to the standard simplex. We
shall prove this. To quantify what we mean by well-shaped in a space of constant curvature,
we introduce a new volume-based quality measure QH(Kc) for simplices on spaces of constant
curvature H(Kc), combining ingredients from spherical geometry with Euclidean geometry
for ease of computation.

Our quality measureQH(Kc) of an n-simplex on the n-sphere with vertices vi is de�ned
as follows: we think of the sphere as embedded isometrically in Euclidean space Rn+1. For
each point x on the sphere we consider the n+ 1 (abstract) n-simplices indexed by j whose
vertices are x and the n vertices vi with i 6= j. We project the vertices orthogonally onto
TxM and consider the volume of the n + 1 sub-simplices. We now choose x as the point
where all the volumes are equal and de�ne QH(Kc) proportional to these equal volumes. The
precise de�nition is detailed in Section 1.1.

We can now state the main result for manifolds of positive curvature:

Theorem 1 Let M be a manifold whose sectional curvatures K satisfy 0 < Λ` ≤ K ≤ Λu.
Suppose that v0, . . . , vn are vertices on M . Assume1 that all vertices lie within a convex

geodesic ball of radius 1
2D̃ with centre vr, where D̃ ≤ 1/(2

√
Λu) and r ∈ {0, . . . , n}. Under

these assumptions the Riemannian simplex with vertices v0, . . . , vn on M is non-degenerate

if

QH(Λmid)(σH(Λmid)(vr)) > n22n|Λ` − Λu|D̃2n+2,

with QH(Λmid) the simplex quality, σH(Λmid)(vr) the simplex on H(Λmid) with vertices vi(vr)

de�ned by vi(vr) = expH(Λmid) ◦ exp−1
vr,M

(vi) and Λmid = 1
2(Λ`+Λu). The quality of a simplex

W = {wi} ⊂ H(Λmid) is given by

QH(Λmid)(W ) = min
y∈H(Λmid)

max
j

{
det

(
1

Λmid
sin
(√

Λmid dH(Λmid)(y, wi)
)

· sin
(√

ΛmiddH(Λmid)(y, wl)
)

cos θil

)
i,l 6=j

}
, (1)

1This bound is stronger than necessary. In fact it su�ces for the lengths of geodesics in the proof to
be bounded by D̃. We have chosen this formulation because it is natural in the Delaunay setting, which
motivates this work, see Section 5.
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with θil the angle between the geodesics on H(Λmid) from y to wi and wl.

We have a similar result (Theorem 14) for spaces of negative curvature, however for
negative curvature the bounds are signi�cantly more involved. In our exposition here we will
focus on the positive curvature case and only mention some results for negative curvature;
the arguments for negatively curved spaces are almost identical but the calculations are
more involved.

1.1 Quality for spaces of constant curvature

In Theorem 1 we introduced qualities for simplices of constant positive curvature. This
quality has a nice geometric interpretation (the hyperbolic -negative sectional curvature-
case is slightly more involved).

Figure 1: Geometric interpretation of the quality of a simplex on a space of positive constant
curvature. The parallelepipeds whose volume are central in (2) are spanned by pairs of blue
straight lines emanating from the red point.

The determinant

det

(
1

Λmid
sin
(√

Λmid dH(Λmid)(y, vi)
)

sin
(√

ΛmiddH(Λmid)(y, vl)
)

cos θil

)
i,l 6=j

, (2)

with θil the angle between the geodesics from y to vi and vl, in Theorem 1 gives the volume
of a parallelepiped. This parallelepiped can be found as follows: we embed the sphere in
Euclidean space in the standard manner. We take the tangent space at y and project the
vertices vi on the tangent space via the normal of the tangent space, see Figure 1. The
parallelepiped is given by the vectors from y to the projected vertices. Formula (2) is like
the determinant of a Gram matrix, because the entries of the matrix are inner products
after the orthogonal projection on the tangent space (of the sphere). We will therefore say
that it is the determinant of a pseudo Gram matrix.

The search for the point where the maximum volume is minimized in (1), is reminis-
cent of the Euclidean context. More precisely, the barycentre of a Euclidean simplex with
vertices v0, . . . , vn ∈ Rn is the point x for which the volumes of all n + 1 full-dimensional
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simplices with vertices x, v0, . . . , vj−1, vj+1, . . . , vn are equal. This means that maximum
volume of the simplices is minimized.

A more extensive discussion of the quality will follow in Section 3.

Bounds on determinants Estimates on (2) are central to our analysis. Because (2) involves
a determinant, the following result by Friedland [5] will be of use:

| det(A+ E)− det(A)| ≤ nmax{‖A‖p, ‖A+ E‖p}n−1‖E‖p, (3)

where A and E are n × n-matrices and ‖ · ‖p is the p-norm, with 1 ≤ p ≤ ∞, for linear
operators: ‖A‖p = maxx∈Rn |Ax|p/|x|p, with | · |p the p-norm on Rn. In our context A will
be a pseudo Gram matrix for a space of constant curvature. The matrix E is the matrix
of small angle deviations from the constant curvature case (or rather the deviations of their
cosines). These angle deviations are due to the local geometry, and because of the bounds
on the geometry, each entry of this matrix is bounded (which we prove using the Toponogov
comparison theorem).

1.2 Quality constraints based on Euclidean simplices

Using the geometric intuition we just developed, it is easy to compare Theorem 1 to the
previous result of [4] (or rather to [9], which contains an improved version of the result of
[4]), where we compare to simplices in Euclidean space:

Theorem 2 (Theorem 3.6.6 of [9]) Let v0, . . . , vn be a set of vertices lying in a Rieman-

nian manifold M , whose sectional curvatures are bounded in absolute value by Λ, within a

convex geodesic ball of radius D centred at one of the vertices (vr) and such that
√

ΛD < 1/2.
If σE(vr), the convex hull of (exp−1

vr,M
(vi))

n
i=0 = (vi(vr))

n
i=0 in TvrM , satis�es

vol(σE(vr))
2 >

25

24

n(n+ 1)2

(n!)2
22nΛD2n+2, (4)

then the Riemannian simplex with vertices v0, . . . , vn is non-degenerate, that is di�eomorphic

to the standard n-simplex.

We stress that in [9] we compared to Euclidean space and therefore the vertices
(vi(vr))

n
i=0, were assumed to lie in a linear space. When comparing Theorems 1 and 2 note

that because Theorem 2 is formulated in terms of the volume of a simplex and not a quality
measure that is given in terms of a determinant the occurrence of the n-factorial terms is to
be expected.

To compare the result of this paper to our previous work, we note that (2) tends to

(det(vi(vr)− x(vr))i 6=j)
2

so that QH(Λmid)(σH(Λmid)(vr)) tends to ( n!
n+1vol(σE(vr)))

2, as the curvature tends to zero.
This means conditions in Theorem 2 and Theorem 1 coincide in the limit except that the
prefactor is slightly better for Theorem 1 and Λ is replaced by |Λ` − Λu|. This replacement
by |Λ` −Λu| is the signi�cant step we make in this paper. In the hyperbolic setting we �nd
a similar proportionality to |Λ` − Λu|.
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2 Preliminaries to Riemannian Simplices and comparison theorems

2.1 Riemannian simplices

We now remind the reader of the results needed to de�ne Riemannian simplices, this partly
coincides with the introduction of [4]. We need to de�ne convex neighbourhoods that will
provide the stage for most of the comparison results. By convex we always mean geodesically
convex, to be precise: a set A ⊂ M is convex if for any two distinct points a, b ∈ A there
is a unique minimizing geodesic in M between a and b, this geodesic is contained in A, and
no other geodesic between a and b is contained in A. A function on a convex set is convex
if its restriction to any geodesic in the set is convex. We have [3, Thm. IX.6.1]:

Lemma 3 Suppose the sectional curvatures of M are bounded by K ≤ Λu, and ιM is the

injectivity radius. If

r < min

{
ιM
2
,

π

2
√

Λu

}
,

then BM (x, r) is convex. (If Λu ≤ 0, we take 1/
√

Λu to be in�nite.)

In our context, we are interested in �nding a weighted centre of mass of a �nite set
{p0, . . . , pj} ⊂ B ⊂M , where the containing set B is open, and its closure B is convex. The
centre of mass construction is based on minimising the function Eλ : B → R de�ned by

Eλ(x) =
1

2

∑
i

λidM (x, pi)
2, (5)

where the λi ≥ 0 are non-negative weights that sum to 1, and dM is the geodesic distance
function on M .

We have the following result [6, Thm 1.2]:

Lemma 4 (Unique centre of mass) Suppose the sectional curvatures of M are bounded

by K ≤ Λu, and ιM is the injectivity radius. If {p0, . . . , pj} ⊂ Bρ ⊂ M , and Bρ is an open

ball of radius ρ with

ρ < ρ0 = min

{
ιM
2
,

π

4
√

Λu

}
, (6)

then Eλ is convex and has a unique minimum in Bρ. (If Λu ≤ 0, we take 1/
√

Λu to be

in�nite.)

Using this result we can now de�ne the Riemannian simplices:

De�nition 5 (Riemannian simplex) If a �nite set σj = {p0, . . . , pj} ⊂ M in an n-
manifold is contained in an open geodesic ball Bρ whose radius, ρ, satis�es (6), then σj is

the set of vertices of a geometric Riemannian simplex , denoted σjM , and de�ned to be the
image of the map

Bσj : ∆j →M, λ 7→ argmin
x∈Bρ

Eλ(x),

where ∆j denotes the j-dimensional standard simplex. We say that σjM is non-degenerate if
Bσj is a smooth embedding; otherwise it is degenerate.
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We will focus on full dimensional Riemannian simplices, i.e., unless otherwise speci-
�ed, σM will refer to a Riemannian simplex speci�ed by n+ 1 vertices in M . The following
result from [4, 9] will be often used:

Lemma 6 (Lemma 3.6.4 of [9]) If for all x in σM (the image of the map given in De�-

nition 5) there are n tangents to geodesics connecting this point x to a subset of n vertices

v0, . . . , vj−1, vj+1, . . . , vn (this choice does depend on x) that are linearly independent then:

• The map ∆n → σM is bijective.

• The inverse of ∆n → σM is smooth.

2.2 The Toponogov Comparison Theorem

Our analysis is based on the Toponogov Comparison Theorem, which we shall discuss now
as well as the de�nitions that go with it. Our exposition will follow Karcher [7].

We use the notation Hn(Kc), or simply H(Kc), for the complete, simply connected
space of dimension n with constant sectional curvature Kc. A complete simply connected
space with constant sectional curvature is also called a space form. Often when we mention
a space of constant curvature we shall tacitly assume that it is a space form.

We are now ready to make the following de�nitions, that have been illustrated in
Figure 2.

De�nition 7 A geodesic triangle T in a Riemannian manifold consists of three minimizing
geodesics connecting three points, sometimes also referred to as vertices.2 Assume lower
curvature bounds Λ` ≤ K (or upper bounds K ≤ Λu). A triangle with the same edge
lengths as T in Hn(Λ`) (or Hn(Λu)), is called an Alexandrov triangle TΛ` (or TΛu) associated
with T.

De�nition 8 Two edges of a geodesic triangle and the enclosed angle form a hinge; a Rauch
hinge in Hn(Λ`) (or Hn(Λu)) of a given hinge, consists of two geodesics (legs) emanating
from a single point with the same lengths and enclosed angles as the original hinge. The edge
closing the Rauch hinge in Hn(Λ`) (or Hn(Λu)), that is the minimizing geodesic connecting
the two endpoints of the legs, will be called the Rauch edge of the hinge.

Note that because space forms are homogeneous, the Alexandrov triangles and Rauch
hinges are uniquely de�ned, up to isometry of H(Λl,u).

Theorem 9 (Toponogov Comparison Theorem) Let T be a geodesic triangle in M
such that for each of its vertices T lies within a geodesic ball of radius less than the injec-

tivity radius centred at the vertex and assume that the sectional curvatures K of M satisfy

the bounds Λ` ≤ K ≤ Λu. If Λu > 0, assume also that the triangle circumference is less

then 2πΛu
−1/2. Than Alexandrov triangles TΛ` and TΛu exist. Moreover, any angle α of T

satis�es

αΛ` ≤ α ≤ αΛu ,

2We stress that a geodesic triangle does not include an interior.
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where αΛ` and αΛu are the corresponding angles in TΛ` and TΛu respectively. The length c
of the third edge closing a hinge is bounded in length by the lengths of the Rauch edges, cΛ`

and cΛu, closing the Rauch hinges on H(Λ`) and H(Λu) respectively;

cΛ` ≥ c ≥ cΛu .

Figure 2: An ellipsoid (centre) with a hinge with closing geodesic and corresponding Rauch
hinges with closing geodesic on the spaces of constant curvatures (on both sides of the
ellipsoid), in this case both spheres. For the version of the Toponogov comparison theorem
using Rauch hinges the interpretation of the �gure is the following: the legs emanating from
the red vertex have the same length and the same enclosed angle on all three spaces, and the
length of the third edge (closing the Rauch hinge) on the ellipse is bounded by the lengths of
the corresponding edges on the spheres. For the version of the comparison theorem involving
Alexandrov triangles the interpretation is the following: the edge lengths of the triangles
on all three spaces are the same and the angle between two edges on the ellipse (lets say
at the red vertex) is bounded by the corresponding angles on the spheres (at the other red
vertices).

We also give the cosine rule which is of use in explicit calculations involving the
Toponogov comparison theorem. The cosine rule [1, Section 18.6, Section 19.3] for curved
spaces of sectional constant curvature is

cos
a

k
= cos

b

k
cos

c

k
+ sin

b

k
sin

c

k
cosα, with curvature 1/k2, here k > 0 (7)

cosh
a

k
= cosh

b

k
cosh

c

k
− sinh

b

k
sinh

c

k
cosα, with curvature −1/k2, here k > 0. (8)

See Figure 3 for a �gure with the edge lengths and angles indicated.

3 Simplex quality on constant curvature spaces

In this section we shall introduce an alternative for the Gram matrix that is speci�c to
spaces of non-trivial constant curvature. In this section H(1/r2), the n-sphere with radius r
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A

C

Bc

b

a

α

β

γ

Figure 3: Triangle with the standard symbols for angles and lengths.

and therefore sectional curvature 1/r2, will be assumed to be embedded in Euclidean space
in the canonical way with co-dimension one.

The hyperbolic sphere H(−1/r2), the hyperbolic n-sphere with imaginary radius r
and therefore sectional curvature −1/r2, is often viewed as embedded using the Minkowski
or Hyperboloid model. This is an embedding as the `upper' connected component of a two
sheeted hyperboloid, given by −x2

0 + x2
1 + · · ·+ x2

n = −r2, in Minkowski space with metric3

ds2 = −dx2
0 + dx2

1 + · · ·+ dx2
n.

We shall mostly denote distances as dM (x, y). M is often a space of constant cur-
vature. The exception will be when we are in Euclidean space and we want to emphasize
that it is a vector space. If so, we shall write |x− y|. So |x− y| is used interchangeably with
dRn+1(x, y), but in the one case x and y are thought of as vectors and the other as points in
Euclidean space.

We discuss the elliptic case �rst, because the geometric interpretation is easier. Our
�rst lemma helps to establish that the pseudo Gram matrices, which we de�ne below, for
spaces of constant curvature are indeed a measure of quality. By which we mean that the
pseudo Gram matrix is zero if and only if degeneracy occurs.

Lemma 10 Suppose that x, v0, . . . , vn−1 are the vertices of a simplex in L ⊂ Rn+1, where

L is an n-dimensional linear subspace. Also suppose that dRn+1(x, vi) ≤ d. Furthermore let

(H(1/r2))(y, r) be a sphere in Rn+1 with centre y, such that x ∈ (H(1/r2))(y, r) and the

tangent space Tx(H(1/r2))(y, r) coincides with L and d < r. We emphasize that x ∈ L.
Denote by π the projection from L to (H(1/r2))(y, r) via the normal of L. The domain of

this map is Bn
L(x, r) the ball in L centred at x with radius r, and the image the `upper'

hemisphere de�ned by taking x as the `north pole'. Then

det
(
d(H(1/r2))(x, π(vi))d(H(1/r2))(x, π(vl)) cos θil

)
0≤i,l≤n−1

= 0,

where θij = ∠vixvj, if and only if

det(|x− vi||x− vl| cos θil)0≤i,l≤n−1

= det

(
r2 sin

(
d(H(1/r2))(x, π(vi))

r

)
sin

(
d(H(1/r2))(x, π(vl))

r

)
cos θil

)
0≤i,l≤n−1

= 0.

3The other choice would yield a negatively de�nite metric.
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0

x vi

π(vi)

r

|x− vi|

rψi

r sin(ψi)

ψi

Figure 4: Intersection of the sphere with x, vi and π(vi). Because of lack of space we have
introduced the notation ψi = dH(1/r2)(x, π(vi))/r.

Proof We can assume that x 6= vi for all i, because if x = vi for some i there is nothing
to prove. Due to linearity of the determinant we have

det(d(H(1/r2))(x, π(vi))dH(1/r2)(x, π(vl)) cos θil)

=

(∏
i

dH(1/r2)(x, π(vi))

)
det
(
dH(1/r2)(x, π(vl)) cos θil

)
=

(∏
i

dH(1/r2)(x, π(vi))

)(∏
l

dH(1/r2)(x, π(vl))

)
det (cos θil)

=

(∏
i

dH(1/r2)(x, π(vi))
2

)
det (cos θil) ,

and similarly,

det(|x− vi||x− vl| cos θil)

= det

(
r sin

(
dH(1/r2)(x, π(vi))

r

)
r sin

(
dH(1/r2)(x, π(vl))

r

)
cos θil

)
=

(∏
i

r sin

(
dH(1/r2)(x, π(vi))

r

))2

det (cos θil) .

(9)
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Given that by assumption |x− vi| 6= 0 and

sin

(
d(H(1/r2))(x, π(vi))

r

)
6= 0,

for all i the claim follows. �

We refer to a matrix of the form(
r2 sin

(
dH(1/r2)(x, vi)

r

)
sin

(
dH(1/r2)(x, vl)

r

)
cos θil

)
i,l

as a spherical pseudo Gram matrix.

We use the pseudo Gram matrix to introduce a quality measure QH(1/r2) for simplices
on the sphere with vertices σ = {v0, . . . , vn}:

QH(1/r2)(σ)

= min
x∈H(1/r2)

max
j

{
det

(
r2 sin

(
dH(1/r2)(x, vi)

r

)
sin

(
dH(1/r2)(x, vl)

r

)
cos θil

)
i,l 6=j

}
. (10)

By the notation i, l 6= j we mean to imply that i, l ∈ {0, . . . , j−1, j+1, . . . , n}. If we view the
sphere H(1/r2) as being embedded in the Euclidean space Rn+1 this has the interpretation

QH(1/r2)(σ) = min
x∈H(1/r2)

max
j
{det (π̃xvi · π̃xvl)i,l 6=j} = min

x∈H(1/r2)
max
j
{(det (π̃xvi)i 6=j)

2}, (11)

where π̃x is the projection onto the hyperplane characterized by the normal x, that is tangent
to H(1/r2) and (wi)i 6=j denotes the matrix whose columns are all vectors wi with i 6= j.
This interpretation follows from (9).

In our de�nition we have chosen speci�cally to let x run over the entire sphere. In
particular we include the case where all vertices are equally distributed on the equator. In
this case the quality is zero. This is in accordance with our intuition because we would not
know on which hemisphere to draw the simplex.

Now we shall give some lower bounds on the quality QH(1/r2). These bounds should
strengthen our intuition. Let us consider the simplex {0, v0, . . . , vn} in Rn+1, with v0, . . . vn
lying on the sphere H(1/r2). If we project {0, v0, . . . , vn} to TxH(1/r2) we �nd {x, π(v0), . . . ,
π(vn)}. Suppose that B(y, ρ) is a ball that lies inside the simplex with vertices {0, v0, . . . , vn}
⊂ Rn+1. Now denote by πx(B(y, ρ)) the projection of B(y, ρ) onto TxH(1/r2). We see that
πx(B(y, ρ)) ⊂ ∪j(πσ)j , with (πσ)j the simplex whose vertices are {x, π(v0), . . . , π(vj−1),
π(vj+1), . . . , π(vn)}. The choice of hyperplane onto which one orthogonally projects this
ball does not in�uence the volume of the projected ball. Let us denote the volume of the
projected ball by vol(πx(B(y, ρ))). The inclusion of πx(B(y, ρ)) now gives vol(πx(B(y, ρ))) <∑

j vol(πσ)j and thus vol(πx(B(y, ρ))) < 1
(n+1)2QH(1/r2)(σ).

This completes our discussion of quality in the elliptic setting and we continue to
the hyperbolic case.
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The direct analogue of Lemma 10 holds for the Minkowski or hyperboloid model
of hyperbolic spaces of constant curvature. For this setting we therefore introduce the
hyperbolic pseudo Gram matrix(

r2 sinh

(
dH(−1/r2)(x, vi)

r

)
sinh

(
dH(−1/r2)(x, vl)

r

)
cos θil

)
i,l 6=j

,

as well as the quality measure for simplices on the hyperbolic sphere with vertices σ =
{v0, . . . , vn} for some (large enough convex) neighbourhood N

QH(−1/r2)(σ)

= min
x∈N

max
j

{
det

(
r2 sinh

(
dH(−1/r2)(x, vi)

r

)
sinh

(
dH(−1/r2)(x, vl)

r

)
cos θil

)
i,l 6=j

}
.

Remark 11 Unfortunately the geometric interpretation is more di�cult in this hyperbolic
setting and we have not (yet) been able to provide a discussion similar to the one for spaces
of positive curvature above. The authors also think that it should be possible to replace the
(convex) neighbourhood N in de�nition of hyperbolic quality by the entire space, because
we believe that the minimum is always attained in a (convex) geodesic ball containing all
points. We have not been able to prove this, however for the paper the de�nition above
su�ces, because we know that a Riemannian simplex is contained in any convex ball that
contains all vertices.

4 Non-degeneracy criteria

In this section we present our main results. We �rst give an overview of the proof and
then give the details where we distinguish the positive (elliptic) and negative (hyperbolic)
curvature cases. We rely on technical results concerning the approximation of the cosine
rule in spaces of constant curvature. Although these results may seem believable at �rst
glance the proofs are rather technical and presented in the appendix.

The steps involved in the proof are similar to the steps presented in the appendix of
[4] and Section 3.6 of [9] (where a slightly improved version can be found) for simplices based
on Euclidean simplices. A precise comparison between the steps of the proof presented in
this paper and the ones for Euclidean simplices can be found in Section 3.10.2 of [9].

4.1 Overview of the proof method

We are interested in Riemannian simplices on manifolds whose sectional curvatures are very
close to constant, meaning that the sectional curvature K satis�es Λ` ≤ K ≤ Λu with
|Λ` −Λu| small relative to |Λ`|. This means that we always suppose that 0 < Λ` or Λu < 0.

We have to distinguish between positive sectional curvature (elliptic) and negative
sectional curvature (hyperbolic). Because the sectional curvatures are very close to constant,
comparing the manifold to Euclidean space is unnatural. Instead we compare to spaces of
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Figure 5: Pictorial overview of our approach in the case of positive curvature, the negative
curvature case is similar but di�cult to depict.
Above we see a sphere of mediocre size. Below we see from left to right a small sphere, an
ellipsoid and a large sphere. The small sphere is the example of H(Λu), the large sphere of
H(Λ`) and the sphere of mediocre size of H(Λmid). The ellipsoid is the manifold M .
The vertices on M are depicted in black, as are the vertices on the spaces of constant cur-
vature left, right and below. The vertices on M are transplanted on spaces of constant
curvature by the maps expH(Λu) ◦ exp−1

vr,M
, expH(Λ`)

◦ exp−1
vr,M

and expH(Λmid) ◦ exp−1
vr,M

, re-
spectively. The same holds for the arbitrary point x (red).
The angles between the tangents to the geodesics emanating from the red point on M (the
ellipsoid in the middle) are by the Topogonov comparison theorem close to the corresponding
angles in the spaces of constant curvature (left and right). In turn these spaces of constant
curvature are similar to the space with curvature Λmid (middle bottom).
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constant curvature Λmid if the curvature is positive and ΛH
mid if the curvature is negative,

whose sectional curvature lies in the interval [Λ`,Λu].

In the elliptic case we shall compare to the space with constant curvature Λmid =
1
2(Λ` + Λu). The hyperbolic case will be more involved. In particular the non-degeneracy
conditions will be in terms of the quality of the simplex σH(Λ

(H)
mid)

(vr) with vertices expH(Λ
(H)
mid)
◦

exp−1
vr,M

(vi), where expvr,M denotes the exponential function of M at vr. Here Λ
(H)
mid stands

for one of the alternatives, namely Λmid or ΛH
mid. Simplex quality measures for constant

curvature spaces are not common and no such measure suiting our need existed previously.
We introduce a quality measure in Section 3 that is suited.

Our steps to provide quality bounds that guarantee non-degeneracy of the simplex
shall be the following:

1. Use the Toponogov comparison theorem to bound the di�erence between the lengths
of the geodesics connecting vertices vi and vj and the lengths the geodesics connecting
vertices x and vi on the one hand and the corresponding (via the map expH(Λu) ◦ exp−1

vr,M

and expH(Λ`)
◦ exp−1

vr,M
, respectively) lengths of geodesics on spaces of constant curva-

ture H(Λ`) and H(Λu).

This step relies heavily on calculations that are presented in the �rst part of Ap-
pendix A.

2. Prove that the lengths of these geodesics are not far from what you would expect on

the space H(Λ
(H)
mid) (via the map expH(Λ

(H)
mid)
◦ exp−1

vr,M
) if the vertices and x lie close

together relative to the bounds on the sectional curvature on M . It is at this point
where the analysis in the elliptic and hyperbolic cases really start to di�er.

3. Given these approximate lengths of the geodesics we can again use the Toponogov
comparison theorem and explicit calculations on spaces of constant curvature to give
estimates on di�erence between the following `inner products':

1

Λmid
sin
(√

ΛmiddM (x, vi)
)

sin
(√

ΛmiddM (x, vj)
)

cos θij,M (elliptic),

1

|ΛH
mid|

sinh

(√
|ΛH

mid|dM (x, vi)

)
sinh

(√
|ΛH

mid|dM (x, vj)

)
cos θij,M (hyperbolic),

with θij,M the angle between the geodesics from x to vi and vj , and the expectation

of these `inner products' in H(Λ
(H)
mid). As before elliptic refers to positive sectional

curvature, here Λmid > 0, and hyperbolic refers to negative sectional curvature, here
ΛH

mid < 0.

This step relies heavily on calculations that are presented in the second half of Ap-
pendix A.

4. n×n of these `inner products' are put into a pseudo Gram matrix. We shall introduce
this pseudo Gram matrix below. The determinant of this matrix is non-zero if and
only if the tangents to the geodesics emanating from x are linearly independent. A
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result by Friedland describes the behaviour of the determinant under perturbations
of the entries. This means that the determinant of the Gram matrix is close to the
determinant of the Gram matrix one expects for H(Λ

(H)
mid). This allows us to give

conditions that guarantee that there are n tangents to the geodesics emanating from
x that are linearly independent, based on the quality of the simplex you would expect
in the constant curvature case.

5. If for every x in a su�ciently large convex neighbourhood some n tangents to the
geodesics emanating from x and going to the vertices are linearly independent, the
simplex is non-degenerate, see Lemma 6.

The main building blocks for this approach where we model our intrinsic simplices
on simplices on spaces of constant curvature are the pseudo Gram matrices which we en-
countered in Sections 1.1 and 3. The calculations necessary to compare di�erent spaces of
constant curvature are given in Appendix A. The comparison of spaces of di�erent constant
curvature will mainly focus on the cosine rule.

4.2 Degeneracy criteria for simplices on spaces of constant positive curvature

Let us now give the steps in Section 4.1 in more detail.

Step 1 We de�ne Λmid = 1
2(Λ` + Λu). Note that this is the arithmetic mean of the

upper and lower bounds on the sectional curvature and has nothing to do with the mean cur-
vature. Let us further assume that all distances involved are bounded from above by some
maximum distance D̃, where we also assume that D̃ ≤ 1/(2

√
Λ`). By the Toponogov com-

parison theorem we have that dM (y, z) the distances between y, z ∈ {x, v0, . . . , vn} inM are
bounded by those in H(Λ`) and H(Λu). Or in other words we have that dH(Λu)(yΛu , zΛu) ≤
dM (y, z) ≤ dH(Λ`)(yΛ` , zΛ`) where yK = expH(K) ◦ exp−1

vr,M
(y). Because we use the exponen-

tial map at vr, regard vr as a �xed point and we shall not use the notation (vr)K , but write
vr regardless.

Step 2 The distances dH(Λ`)(yΛ` , zΛ`) and dH(Λu)(yΛu , zΛu) satisfy

1

Λ`
cos
(√

Λ`dH(Λ`)(y, z)
)

=
1

Λ`
cos
(√

Λ`dM (y, vr)
)

cos
(√

Λ`dM (z, vr)
)

+
1

Λ`
sin
(√

Λ`dM (y, vr)
)

sin
(√

Λ`dM (z, vr)
)

cos θ∠Myvrz,

and

1

Λu
cos
(√

ΛudH(Λu)(y, z)
)

=
1

Λu
cos
(√

ΛudM (y, vr)
)

cos
(√

ΛudM (z, vr)
)

+
1

Λu
sin
(√

ΛudM (y, vr)
)

sin
(√

ΛudM (z, vr)
)

cos θ∠Myvrz,

where θ∠Myvrz denotes the angle between the tangents to the geodesics on M from vr to y
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and vr to z. One can prove (see Lemma 16 in the appendix) that

1

Λmid
cos
(√

ΛmiddH(Λ`)(y, z)
)

=
1

Λmid
cos
(√

ΛmiddM (y, vr)
)

cos
(√

ΛmiddM (z, vr)
)

+
1

Λmid
sin
(√

ΛmiddM (y, vr)
)

sin
(√

ΛmiddM (z, vr)
)

cos θ∠Myvrz +RT1 ,

and

1

Λmid
cos
(√

ΛmiddH(Λu)(y, z)
)

=
1

Λmid
cos
(√

ΛmiddM (y, vr)
)

cos
(√

ΛmiddM (z, vr)
)

+
1

Λmid
sin
(√

ΛmiddM (y, vr)
)

sin
(√

ΛmiddM (z, vr)
)

cos θ∠Myvrz +RT2 ,

with |RT1 |, |RT2 | ≤ 1
2 |Λ` − Λu| 11D̃4

4! , so that

1

Λmid
cos
(√

ΛmiddM (y, z)
)

=
1

Λmid
cos
(√

ΛmiddM (y, vr)
)

cos
(√

ΛmiddM (z, vr)
)

+
1

Λmid
sin
(√

ΛmiddM (y, vr)
)

sin
(√

ΛmiddM (z, vr)
)

cos θ∠Myvrz +RT , (12)

with the same bound on |RT |.
Step 3We are now going to study the sin a sin b cos γ terms we discussed in Section 3.

These generalize the ab cos γ terms we use in the Gram-matrix in the Euclidean case. The
point we focus on is x.

Thanks to (12) we have the (approximate) lengths of all geodesics. So we can now
apply the Toponogov comparison theorem for a second time. The Toponogov comparison
theorem gives us that

dH(Λ`)(xΛ` , yΛ`) ≥ dM (x, y) ≥ dH(Λu)(xΛu , yΛu), cos θH(Λ`) ≥ cos θM ≥ cos θH(Λu),

where we identify angles in the obvious manner using expH(Λu,`)
◦ exp−1

M , in the same way
as we do the points, see Figure 5. From these inequalities we infer that

1

Λmid
sin
(√

ΛmiddH(Λ`)(xΛ` , yΛ`)
)

sin
(√

ΛmiddH(Λ`)(xΛ` , zΛ`)
)

cos θ∠Λx
`
yxz

≥ 1

Λmid
sin
(√

ΛmiddM (x, y)
)

sin
(√

ΛmiddM (x, z)
)

cos θ∠Myxz

≥ 1

Λmid
sin
(√

ΛmiddH(Λu)(xΛu , yΛu)
)

sin
(√

ΛmiddH(Λu)(xΛu , zΛu)
)

cos θ∠Λxu
yxz,
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where ∠Λxu,`
yxz denotes the angle between the tangents of the geodesics from x to

expH(Λu,`)
◦ exp−1

x,M (y) and from x to expH(Λu,`)
◦ exp−1

x,M (z). Here Λu,` should be interpreted
either Λ` or Λu. We can prove (see (19) of Lemma 20 in the appendix, while we also note
that by de�nition of Λmid, one has 2|Λmid − Λ`| = 2|Λmid − Λu| = |Λ` − Λu|) that

∣∣∣∣ 1

Λmid
sin
(√

ΛmiddH(Λu,`)(xΛu,` , yΛu,`)
)

sin
(√

ΛmiddH(Λu,`)(xΛu,` , zΛu,`)
)

cos θ∠Λx
u,`
yxz

− 1

Λmid
sin
(√

ΛmiddH(Λmid)(xΛmid
, yΛmid

)
)

sin
(√

ΛmiddH(Λmid)(xΛmid
, zΛmid

)
)

cos θ∠Λmid
yxz

∣∣∣∣
≤ |Λ` − Λu| D̃4,

where ∠Λmid
yxz is the angle between the tangents to the geodesics from expH(Λmid) ◦ exp−1

vr,M
(x)

to expH(Λmid) ◦ exp−1
vr,M

(y) and from expH(Λmid) ◦ exp−1
vr,M

(x) to expH(Λmid) ◦ exp−1
vr,M

(z). Here
we went from angles determined by the exponential map at x to those determined by the
exponential map at vr, this is possible because Lemma 20 only takes lengths of geodesics as
input.

This means

∣∣∣∣ 1

Λmid
sin
(√

ΛmiddM (x, y)
)

sin
(√

ΛmiddM (x, z)
)

cos θ∠Myxz

− 1

Λmid
sin
(√

ΛmiddH(Λmid)(xΛmid
, yΛmid

)
)

sin
(√

ΛmiddH(Λmid)(xΛmid
, zΛmid

)
)

cos θ∠Λmid
yxz

∣∣∣∣
≤ |Λ` − Λu| D̃4. (13)

Step 4 We can now exploit (13) to prove that the (rescaled) pseudo Gram matrix

(
sin
(√

ΛmiddM (x, vi)
)

sin
(√

ΛmiddM (x, vl)
)

cos θil

(2D̃)2Λmid

)
i,l 6=j

, (14)

with θ∠Mvixvl = θil is non-degenerate. Here we use Lemma 10 which says that the determi-
nant of (14) is zero if and only if the vectors exp−1

x,M (vi) with i 6= j are linearly independent.
We use the result by Friedland, see Equation (3) in Section 1.1, to give condition that guaran-
tee that the determinant of (14) is non-zero. Because of the role of max{‖A‖∞, ‖A+E‖∞},
where in this case A is (14) and A+E is the approximate Gram matrix, it is important to
note that ∣∣∣∣∣sin

(√
ΛmiddM (x, vi)

)
sin
(√

ΛmiddM (x, vl)
)

cos θil

(2D̃)2Λmid

∣∣∣∣∣ ≤ 1. (15)

This follows from the observation that if ymax < π/2 then supy∈[0,ymax]
sin(y)
ymax

≤ 1. We are

http://jocg.org/


Journal of Computational Geometry jocg.org

now able to conclude that∣∣∣∣∣∣det

(
sin
(√

ΛmiddM (x, vi)
)

sin
(√

ΛmiddM (x, vl)
)

cos θil

(2D̃)2Λmid

)
i,l 6=j

∣∣∣∣∣∣
≥

∣∣∣∣∣det

(
sin
(√

ΛmiddH(Λmid)(xΛmid
, (vi)Λmid

)
)

·
sin
(√

ΛmiddH(Λmid)(xΛmid
, (vl)Λmid

)
)

cos θ∠Λmid
vixvl

(2D̃)2Λmid

)
i,l 6=j

∣∣∣∣∣− n |Λ` − Λu| D̃2. (16)

Step 5 Combining Lemma 10 and Lemma 6 and using that if for all x there is a j such
that the pseudo Gram matrix above is non-degenerate then the simplex is non-degenerate,
we have:

Theorem 1 Let M be a manifold whose sectional curvatures K satisfy 0 < Λ` ≤ K ≤ Λu.
Suppose that v0, . . . , vn are vertices on M . Assume4 that all vertices lie within a convex
geodesic ball of radius 1

2D̃ with centre vr, where D̃ ≤ 1/(2
√

Λu) and r ∈ {0, . . . , n}. Under
these assumptions the Riemannian simplex with vertices v0, . . . , vn on M is non-degenerate
if

QH(Λmid)(σH(Λmid)(vr)) > n22n|Λ` − Λu|D̃2n+2,

with QH(Λmid) the simplex quality, σH(Λmid)(vr) the simplex on H(Λmid) with vertices vi(vr)

de�ned by vi(vr) = expH(Λmid) ◦ exp−1
vr,M

(vi) and Λmid = 1
2(Λ`+Λu). The quality of a simplex

W = {wi} ⊂ H(Λmid) is given by

QH(Λmid)(W ) = min
y∈H(Λmid)

max
j

{
det

(
1

Λmid
sin
(√

Λmid dH(Λmid)(y, wi)
)

· sin
(√

ΛmiddH(Λmid)(y, wl)
)

cos θil

)
i,l 6=j

}
, (1)

with θil the angle between the geodesics on H(Λmid) from y to wi and wl.

Remark 12 If one would choose Λmid ∈ [Λ`,Λu] not equal to 1
2(Λ` + Λu) one would need

to replace 1
2 |Λ` − Λu| in the quality bound by

max{|Λ` − Λmid|, |Λu − Λmid|}.

For a Λmid outside the interval [Λ`,Λu], one would further need to adjust the bound on D̃
by replacing Λu by the maximum of Λu and Λmid. The quality bound directly follows from
the error in the cosine rule, see Lemma 20 and the overview of the proof as given in Section
4.1.

4This bound is stronger than necessary. In fact it su�ces for the lengths of geodesics in the proof to
be bounded by D̃. We have chosen this formulation because it is natural in the Delaunay setting, which
motivates this work, see Section 5.
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4.3 Degeneracy criteria for simplices on spaces of constant negative curvature

We can perform similar calculations for the hyperbolic case but the result is signi�cantly
more complicated due to the fact that the hyperbolic cosine is not bounded by one. Moreover
we will not impose a bound on D̃ in the negative curvature setting.

Let us start by de�ning ΛH
mid as the negative solution to the following equation:

∣∣∣∣|ΛH
mid| cosh2

(√
|ΛH

mid|D̃
)
− |Λ`| cosh2

(√
|Λ`|D̃

)∣∣∣∣
=

∣∣∣∣|ΛH
mid| cosh2

(√
|ΛH

mid|D̃
)
− |Λu| cosh2

(√
|Λu|D̃

)∣∣∣∣ .
Note that by construction

∣∣∣∣|ΛH
mid| cosh2

(√
|ΛH

mid|D̃
)
− |Λ`| cosh2

(√
|Λ`|D̃

)∣∣∣∣
=

∣∣∣∣|ΛH
mid| cosh2

(√
|ΛH

mid|D̃
)
− |Λu| cosh2

(√
|Λu|D̃

)∣∣∣∣
=

1

2

∣∣∣|Λ`| cosh2
(√
|Λ`|D̃

)
− |Λu| cosh2

(√
|Λu|D̃

)∣∣∣ .
Remark 13 This de�nition of ΛH

mid is made to make the �nal expression of (17) as simple
as possible. For an arbitrary ΛH

mid ∈ [Λ`,Λu] one would need to replace

1

2

∣∣∣|Λ`| cosh2(
√
|Λ`|D̃)− |Λu| cosh2(

√
|Λu|D̃)

∣∣∣
in (17) by

max

{∣∣∣∣|ΛH
mid| cosh2

(√
|ΛH

mid|D̃
)
− |Λ`| cosh2

(√
|Λ`|D̃

)∣∣∣∣ ,∣∣∣∣|ΛH
mid| cosh2

(√
|ΛH

mid|D̃
)
− |Λu| cosh2

(√
|Λu|D̃

)∣∣∣∣} .
If one would further want to consider ΛH

mid outside [Λ`,Λu] one would also need to replace
|Λ`| by max{|Λ`|, |ΛH

mid|} in the �rst two lines of (17).

We shall once more employ the bound of Friedland, see Section 1.1. In order to be
able to do so we need, similarly to (15), that

sinh

(√
|ΛH

mid|a
)

sinh

(√
|ΛH

mid|b
)

cos γ ≤ sinh2
(√
|Λ`|D̃

)
.
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So that similarly to (16), we have∣∣∣∣∣det

(
sinh

(√
|ΛH

mid|dM (x, vi)

)
sinh

(√
|ΛH

mid|dM (x, vl)

)
cos θij

)
i,l 6=j

∣∣∣∣∣
≥
∣∣∣∣det

(
sinh

(√
|ΛH

mid|dH(ΛH
mid)(xΛH

mid
, (vi)ΛH

mid
)

)
· sinh

(√
|ΛH

mid|dH(ΛH
mid)(xΛH

mid
, (vl)ΛH

mid
)

)
cos θ∠

ΛH
mid

vixvl

)
i,l 6=j

∣∣∣∣∣
− n(sinh2

√
|Λ`|D̃)n−1

(
2 + 2 cosh

(√
|Λ`|D̃

)
+ |Λ`|2 cosh2

(√
|Λ`|D̃

) 11D̃4

4!

)

·
∣∣∣|Λ`| cosh2

√
|Λ`|D̃ − |Λu| cosh2

√
|Λu|D̃

∣∣∣ |ΛH
mid|

11D̃4

2 · 4!
.

From which we infer that

Theorem 14 Let M be a manifold with bounded negative sectional curvatures K, that is

Λ` ≤ K ≤ Λu < 0. Suppose that v0, . . . , vn are vertices onM . Let us assume that all vertices

lie within a convex geodesic ball of radius 1
2D̃ with centre vr. Under these assumptions the

Riemannian simplex with vertices v0, . . . , vn on M is non-degenerate if

QH(ΛH
mid)(σH(ΛH

mid)(vr))

> n|ΛH
mid|−n(sinh

√
|Λ`|D̃)2(n−1) ·

(
2 + 2 cosh

(√
|Λ`|D̃

)
+ |Λ`|2 cosh2

(√
|Λ`|D̃

) 11D̃4

4!

)

·
∣∣∣|Λ`| cosh2(

√
|Λ`|D̃)− |Λu| cosh2(

√
|Λu|D̃)

∣∣∣ |ΛH
mid|

11D̃4

2 · 4!
. (17)

with σH(ΛH
mid)(vr) the simplex on H(ΛH

mid) with vertices vi(vr) = expH(ΛH
mid) ◦ exp−1

vr,M
(vi),

QH(ΛH
mid)(σH(ΛH

mid)(vr)) the simplex quality

QH(ΛH
mid)(σH(ΛH

mid)(vr)) = min
x∈N

max
j

{
det

(
1

|ΛH
mid|

sinh

(√
|ΛH

mid|dH(ΛH
mid)(x, vi(vr))

)

sinh

(√
|ΛH

mid|dH(ΛH
mid)(x, vl(vr))

)
cos θil

)
i,l 6=j

}
,

where N is a geodesic ball with radius 2D̃ centred at any one of the vertices and ΛH
mid satis�es∣∣∣∣|ΛH

mid| cosh2

(√
|ΛH

mid|D̃
)
− |Λ`| cosh2

(√
|Λ`|D̃

)∣∣∣∣
=

∣∣∣∣|ΛH
mid| cosh2

(√
|ΛH

mid|D̃
)
− |Λu| cosh2

(√
|Λu|D̃

)∣∣∣∣
=

1

2

∣∣∣|Λ`| cosh2
(√
|Λ`|D̃

)
− |Λu| cosh2

(√
|Λu|D̃

)∣∣∣ .
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Remark 15 The bounds are far more complicated than the elliptic case and thus more
di�cult to interpret. However if |Λ` − Λu| tends to zero, so does∣∣∣|Λ`| cosh2

(√
|Λ`|D̃

)
− |Λu| cosh2

(√
|Λu|D̃

)∣∣∣ .
This can be made more precise using the mean value theorem which states that for a

function f there exists a c ∈ [a, b] such that f ′(c) = f(b)−f(a)
b−a . Applying this to x cosh2√xD̃

we see that∣∣∣|Λ`| cosh2
(√
|Λ`|D̃

)
− |Λu| cosh2

(√
|Λu|D̃

)∣∣∣
= |Λu − Λ`|

∣∣∣∣cosh2

(√
|Λ̃|D̃

)
+ D̃

√
|Λ̃| sinh

(√
|Λ̃|D̃

)
cosh

(√
|Λ̃|D̃

)∣∣∣∣
≤ |Λu − Λ`|

∣∣∣cosh2
(√
|Λ`|D̃

)
+ D̃

√
|Λ`| sinh

(√
|Λ`|D̃

)
cosh

(√
|Λ`|D̃

)∣∣∣ ,
with Λ̃ ∈ [Λ`,Λu], where we used that cosh2

(√
xD̃
)

+ D̃
√
x sinh

(√
xD̃
)

cosh
(√

xD̃
)
is

monotone increasing for x ≥ 0.

This implies that if one has a set of points on a manifold which is close to a space
of constant curvature, in the sense of the sectional curvature, then very small quality is
required to guarantee non-degeneracy, where we regard the lower bound on the sectional
curvature and the distance between the vertices as �xed.

One further has that∣∣∣|Λ`| cosh2
(√
|Λ`|D̃

)
− |Λu| cosh2

(√
|Λu|D̃

)∣∣∣ ≥ |Λu − Λ`|.

This can be seen by considering f(x) = −x cosh2(
√
−x) on the domain (−∞, 0] and checking

that f ′(x) ≤ −1. From this we conclude that the quality requirements are in a certain sense
stricter in the negative curvature setting than in the positive curvature setting.

5 Delaunay triangulations and future research

In [4] we assumed that we were given an abstract simplicial complex A, whose vertices were
identi�ed with points on a given Riemannian manifold M , and the non-degeneracy criterion
for simplices was the main ingredient for criteria that ensure that A is homeomorphic to M
(i.e., that it is a triangulation). The construction of A itself was addressed in earlier work
which is based on the stability of Euclidean Delaunay triangulations [2]. By considering
simplices in space forms, the current work relaxes the non-degeneracy criterion, but a further
relaxation of the triangulation criteria could be obtained by extending the stability results
of [2] to space forms.

Although there has been some attention paid to questions related to the quality of
simplices in spaces of constant curvature, see for example [8], the topic is ripe for further
investigation.
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A

C

B
c

b

a

α

β

γ

In Lemmas 20 and 21 we assume that a, b and c are given up to some error. Once
more a, b and c are the lengths of the edges of a geodesic triangle in a space of constant
curvature ±1/k2. In Lemmas 20 and 21 we derive some bounds on

sin
b

l
sin

c

l
cosα,

and

sinh
b

l
sinh

c

l
cosα,

respectively.

We shall �rst discuss the elliptic and then the hyperbolic case.

A.1 Cosine rule for spaces of positive curvature

We want to compare the cosine rule in two spaces of positive curvature. To be precise we
will prove the following

Lemma 16 Let

0 < l ≤ k a, b, c ≤ 1

2
l a, b, c ≤ dmax.

If a, b, c and γ satisfy

k2 cos
c

k
− k2 cos

a

k
cos

b

k
= k2 sin

a

k
sin

b

k
cos γ, (18)

a, b, c and γ also satisfy

l2 cos
c

l
− l2 cos

a

l
cos

b

l
= l2 sin

a

l
sin

b

l
cos γ +RT (a, b, c),

with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 11d4
max

4!
.

Here RT stands for the total remainder, because it is found by studying remainders in the

Taylor series of the constituents in (18).

http://jocg.org/


Journal of Computational Geometry jocg.org

The assumption k ≥ l is only used to streamline the calculations, in the sense that
it can be replaced by k > 0 and a, b, c ≤ 1

2k. We shall prove this statement by examining
the individual terms in (18). Our estimates are based on Taylor's theorem with remainder
in one and multiple variables.

We start with the �rst term on the left hand side of the cosine rule, we multiply by
k and l respectively to ensure that the quadratic terms cancel

l2 cos
c

l
− k2 cos

c

k
= l2 − k2 −Rpc(c)

|Rpc(c)| ≤
c4

4!
sup

c∈[0,l/2]

∣∣∣l2∂4
c cos

c

l
− k2∂4

c cos
c

k

∣∣∣
=
c4

4!
sup

c∈[0,l/2]

∣∣∣∣ 1

l2
cos

c

l
− 1

k2
cos

c

k

∣∣∣∣
≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ c4

4!
,

the notation Rpc is used to remind us of the fact that it is a remainder, in the sense of
Taylor, and we consider perturbations of the cosine, hence pc. The supremum is assumed
in c = 0 because

1

l2
cos

c

l
− 1

k2
cos

c

k

is monotone in c, which can be seen by taking the derivative and noting that

k3

l3
> 1

sin c
k

sin c
l

< 1.

For the other terms we need the following estimates

Lemma 17 Provided k ≥ l > 0 and a/l, b/l < 1/2, we have that

1

l2
cos

a

l
cos

b

l
− 1

k2
cos

a

k
cos

b

k
≤ 1

l2
− 1

k2
,

and

1

l2
sin

a

l
sin

b

l
− 1

k2
sin

a

k
sin

b

k
≤ 1

l2
− 1

k2

Proof The �rst inequality is equivalent to

1

k2
− 1

k2
cos

a

k
cos

b

k
≤ 1

l2
− 1

l2
cos

a

l
cos

b

l
,

it therefore su�ces to prove that

x2 − x2 cos ax cos bx
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is monotone increasing in x on the given domain, which can be seen by di�erentiating and
equating to zero and noting that there is no solution given the conditions on a and b:

∂x(x2 − x2 cos ax cos bx)

= 2x− 2x cos ax cos bx+ x2a sin ax cos bx+ x2b cos ax sin bx = 0

2 + xa sin ax cos bx+ xb cos ax sin bx = 2 cos ax cos bx,

and considering the Taylor series at x = 0. The last equality has no solutions except x = 0
under the assumptions because 0 ≤ ax, bx ≤ 1/2 implies that

xa sin ax cos bx+ xb cos ax sin bx ≥ 0 cos ax cos bx ≤ 1

with the equality only achieved if x = 0 or trivial a, b. Similarly the second inequality can
be proven

1

l2
sin

a

l
sin

b

l
− 1

k2
sin

a

k
sin

b

k
≤ 1

l2
− 1

k2

is equivalent to

1

k2
− 1

k2
sin

a

k
sin

b

k
≤ 1

l2
− 1

l2
sin

a

l
sin

b

l
,

which follows from the monotonicity of x2(1− sin ax sin bx) in x, which is again established
by taking the derivative and equating to zero

∂x(x2(1− sin ax sin bx))

= 2x(1− sin ax sin bx)− x2(b sin ax cos bx+ a cos ax sin bx) = 0,

which has no solutions except x = 0 because in the given domain

2 sin ax sin bx+ bx sin ax cos bx+ ax cos ax sin bx ≤ 3

2
,

which completes the proof of the second inequality. Note that this is the only place where
we really use the assumption a, b, c ≤ 1

2 l. �

With this intermediate result we can return to the proof of Lemma 16, where we
apply the result of Lemma 17 almost immediately.

Using Taylor's theorem for multiple variables we have

k2 cos
a

k
cos

b

k
− l2 cos

a

l
cos

b

l
= k2 − l2 +Rpcc(a, b),

with

|Rpcc(a, b)| ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 5d4
max

4!
.
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This follows from the fact that

∂ia∂
j
b (k

2 cos
a

k
cos

b

k
− l2 cos

a

l
cos

b

l
− (k2 − l2)) = 0,

for 0 ≤ i ≤ 3− j, 0 ≤ j ≤ 3 and

|∂ia∂
j
b (k

2 cos
a

k
cos

b

k
− l2 cos

a

l
cos

b

l
− (k2 − l2))|

=

{
| 1
k2 cos ak cos b

k −
1
l2

cos al cos bl | if i+ j = 4 and i, j even,

| 1
l2

sin a
l sin b

l −
1
k2 sin a

k sin b
k |, if i+ j = 4 and i, j odd,

≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ ,
where in the last line we used the result of Lemma 17.

Likewise we have that

l2 sin
a

l
sin

b

l
− k2 sin

a

k
sin

b

k
= Rpss(a, b)

|Rpss(a, b)| ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 5d4
max

4!
.

This follows from exactly the same reasoning

∂ia∂
j
b (l

2 sin
a

l
sin

b

l
− k2 sin

a

k
sin

b

k
) = 0,

for 0 ≤ i ≤ 3− j, 0 ≤ j ≤ 3 and

|∂ia∂
j
b (l

2 sin
a

l
sin

b

l
− k2 sin

a

k
sin

b

k
)|

=

{
| 1
l2

sin a
l sin b

l −
1
k2 sin a

k sin b
k | if i+ j = 4 and i, j even,

| 1
k2 cos ak cos b

k −
1
l2

cos al cos bl |, if i+ j = 4 and i, j odd,

≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ ,
where again in the last line we used the result of Lemma 17.

We can now combine these estimates and apply them to the cosine rule, which we
multiply by k2 and write down in di�erent order for convenience. Assuming that k > l > 0,
a/l, b/l, c/l ≤ 1

2 and a, b, c ≤ dmax, we see

k2 cos
c

k
− k2 cos

a

k
cos

b

k
= k2 sin

a

k
sin

b

k
cos γ

l2 cos
c

l
− l2 cos

a

l
cos

b

l
−Rpc(c) +Rpcc(a, b) = l2 sin

a

l
sin

b

l
cos γ

−Rpss(a, b) cos γ

l2 cos
c

l
− l2 cos

a

l
cos

b

l
= l2 sin

a

l
sin

b

l
cos γ

+RT (a, b, c),
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with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 11d4
max

4!
.

This completes the proof of Lemma 16.

A.2 Cosine rule for spaces of negative curvature

We now want to compare the cosine rule in two spaces of negative curvature, like we have
done for spaces of positive curvature in Lemma 16. To be precise we prove the following
lemma

Lemma 18 Assuming that k ≥ l > 0, and a, b, c ≤ dmax, we have that if a, b, c and γ satisfy

k2 cosh
c

k
− k2 cosh

a

k
cosh

b

k
= −k2 sinh

a

k
sinh

b

k
cos γ

they also satisfy

l2 cosh
c

l
− l2 cosh

a

l
cosh

b

l
= −l2 sinh

a

l
sinh

b

l
cos γ +RT (a, b, c),

with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
.

Again the assumption k ≥ l is only used to streamline the calculations, in the sense
that it can be replaced by k > 0. We shall follow the same procedure as in the elliptic case.

By Taylor's we see

l2 cosh
c

l
− k2 cosh

c

k
= l2 − k2 −Rpch(c),

with

|Rpch(c)| ≤ c4

4!
sup

c∈[0,dmax]

∣∣∣l2∂4
c cosh

c

l
− k2∂4

c cosh
c

k

∣∣∣
=
c4

4!
sup

c∈[0,dmax]

∣∣∣∣ 1

l2
cosh

c

l
− 1

k2
cosh

c

k

∣∣∣∣
≤
∣∣∣∣ 1

l2
cosh

dmax

l
− 1

k2
cosh

dmax

k

∣∣∣∣ c4

4!
.

The supremum is assumed in c = dmax because

1

l2
cosh

c

l
− 1

k2
cosh

c

k

is monotone in c, which can be seen by taking the derivative

1

l3
cosh

c

l
− 1

k3
cosh

c

k
.

and observing that 1
l ≥

1
k and cosh c

l ≥ cosh c
k , because the hyperbolic cosine seen as a

function from R+ to R+ is monotone.

For the remaining terms we again need a sub-lemma:
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Lemma 19 Provided k ≥ l ≥ 0 and a, b, c ≤ dm, we have that

1

l2
cosh

a

l
cosh

b

l
− 1

k2
cosh

a

k
cosh

b

k
≤ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k
,

and

1

l2
sinh

a

l
sinh

b

l
− 1

k2
sinh

a

k
sinh

b

k
≤ 1

l2
sinh2 dmax

l
− 1

k2
sinh2 dmax

k

≤ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

Proof The �rst two inequalities follow from the fact that both functions are monotone if
one leaves one of the variables �xed. Monotonicity is proven by noting that the derivative
is of the form

1

l3
cosh

y

l
sinh

z

l
− 1

k3
cosh

y

k
sinh

z

k
= 0,

which has no non-trivial solutions because cosh and sinh are monotone. The �nal inequality
follows from

1

k2
=

1

k2

(
cosh2 dmax

k
− sinh2 dmax

k

)
≤ 1

l2

(
cosh2 dmax

l
− sinh2 dmax

l

)
=

1

l2
.

�

Using Taylors theorem for multiple variables we have

k2 cosh
a

k
cosh

b

k
− l2 cosh

a

l
cosh

b

l
= k2 − l2 +Rpchch(a, b),

with

|Rpchch(a, b)| ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 5d4
max

4!
.

This follows from the fact that

∂ia∂
j
b

(
k2 cosh

a

k
cosh

b

k
− l2 cosh

a

l
cosh

b

l
− (k2 − l2)

) ∣∣∣
a=b=0

= 0,

for 0 ≤ i ≤ 3− j, 0 ≤ j ≤ 3 and

|∂ia∂
j
b (k

2 cosh
a

k
cosh

b

k
− l2 cosh

a

l
cosh

b

l
)|

=

{
| 1
k2 cosh a

k cosh b
k −

1
l2

cosh a
l cosh b

l | if i+ j = 4 and i, j even,

| 1
l2

sinh a
l sinh b

l −
1
k2 sinh a

k sinh b
k |, if i+ j = 4 and i, j odd,

≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ ,
where in the last line we used the result of Lemma 19.
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Likewise we have that

l2 sinh
a

l
sinh

b

l
− k2 sinh

a

k
sinh

b

k
= Rpshsh(x)

|Rpshsh(x)| ≤
∣∣∣∣( 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

)
5d4

max

4!

∣∣∣∣ .
This follows from exactly the same reasoning

∂ia∂
j
b (l

2 sinh
a

l
sinh

b

l
− k2 sinh

a

k
sinh

b

k
) = 0,

for 0 ≤ i ≤ 3− j, 0 ≤ j ≤ 3 and

|∂ia∂
j
b (l

2 sinh
a

l
sinh

b

l
− k2 sinh

a

k
sinh

b

k
)|

=

{
| 1
l2

sinh a
l sinh b

l −
1
k2 sinh a

k sinh b
k | if i+ j = 4 and i, j even,

| 1
k2 cosh a

k cosh b
k −

1
l2

cosh a
l cosh b

l |, if i+ j = 4 and i, j odd,

≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ ,
where again in the last line we used the result of Lemma 19.

We can now combine these estimates and apply them to the hyperbolic cosine rule,
which we multiply by k2 and write down in di�erent order for convenience. Assuming that
k > l > 0 and a, b, c ≤ dmax, we see

k2 cosh
c

k
− k2 cosh

a

k
cosh

b

k
=− k2 sinh

a

k
sinh

b

k
cos γ

l2 cosh
c

l
− l2 cosh

a

l
cosh

b

l
−Rpch(c) +Rpchch(a, b) =− l2 sinh

a

l
sinh

b

l
cos γ

+Rpshsh(a, b) cos γ

l2 cosh
c

l
− l2 cosh

a

l
cosh

b

l
=− l2 sin

a

l
sin

b

l
cos γ

+RTH(a, b, c),

with

RTH(a, b, c) ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
.

This completes the proof of Lemma 18 and therefore our discussion of the cosine rule.

A.3 The cosine with ‘errors’ in lengths for spaces of positive constant curvature

We can now give the estimates on the `inner products' of the form sin b sin c cosα.

In the following lemma we start with a geodesic triangle on H(1/k2) of which the
lengths of the edges are approximately known. By approximately known we mean that the
lengths of the edges a, b and c are close to the lengths al, bl and cl, the lengths of the edges
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Figure 6: This �gure illustrates Lemma 20.
Above we see part of a sphere of mediocre size. Below we see from left to right parts of a
large sphere, an ellipsoid and a small sphere. The small sphere is the example of H(Λu),
the large sphere of H(Λ`) and the sphere of mediocre size of H(Λmid). The ellipsoid is the
manifold M .
The vertices on M are depicted in black, as are the vertices on the spaces of constant cur-
vature left, right and below. The vertices on M are transplanted on spaces of constant
curvature by the maps expH(Λu) ◦ exp−1

vr,M
, expH(Λ`)

◦ exp−1
vr,M

and expH(Λmid) ◦ exp−1
vr,M

, re-
spectively. The same holds for the arbitrary point x (red).
vr is the point from which only black geodesics emanate. Our criteria for non-degeneracy will
be in terms of the simplex with vertices expH(Λmid) ◦ exp−1

vr,M
(vi). This means that we think

of the black edges as `known'. The blue edges are only `approximately known'. Lemma 20
gives us bounds on the `di�erence' between the `inner products' (of the form sin a

l sin b
l cos γ)

of edges on H(Λu) or H(Λ`) and H(Λmid).
The worst case scenario are the `inner products' for geodesic triangles of which all edges are
blue, that is all edge lengths are `approximately known'. Lemma 20 focusses on this.
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A
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B

c

b

a

α

β

γ

Al

Cl

Bl

cl

bl

al

αl

βl

γl

Figure 7: Two geodesic triangles on spaces of di�erent constant curvature with the angles
and edge lengths as used in Lemma 20 indicated.

of a geodesic triangle on H(1/l2). The edges with length al, bl and cl will themselves be
given as hinges, for example al satis�es

l2 cos
al
l

= l2 cos
a1

l
cos

a2

l
+ l2 sin

a1

l
sin

a2

l
cos γa.

The role of this lemma in Section 4 is to give us approximate values of the `inner
products' (of the form sin a

l sin b
l cos γ), see Figure 6 for an overview. These `inner products'

are the entries in the pseudo Gram matrix.

Lemma 20 Let H(+1/k2) and H(+1/l2) be spaces of positive constant sectional curvature,

where for convenience we assume that k > l > 0. Moreover let the edge-lengths (a, b, c) of
a geodesic triangle on H(+1/k2) satisfy

l2 cos
a

l
= l2 cos

al
l

+RTa ,

l2 cos
b

l
= l2 cos

bl
l

+RTb

l2 cos
c

l
= l2 cos

bl
l

+RTc ,

with

l2 cos
al
l

= l2 cos
a1

l
cos

a2

l
+ l2 sin

a1

l
sin

a2

l
cos γa

l2 cos
bl
l

= l2 cos
b1
l

cos
b2
l

+ l2 sin
b1
l

sin
b2
l

cos γb

l2 cos
cl
l

= l2 cos
c1

l
cos

c2

l
+ l2 sin

c1

l
sin

c2

l
cos γc,

and

|RTa |, |RTb |, |RTc | ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 11d4
max

4!
,
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and

a, a1, a2, b, b1, b2, c, c1, c2 ≤
1

2
l a, a1, a2, b, b1, b2, c, c1, c2 < dmax,

then

|l2 sin
b

l
sin

c

l
cosα− l2 sin

bl
l

sin
cl
l

cosαl| ≤ 2

∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ d4
max

, (19)

with

l2 sin
bl
l

sin
cl
l

cosαl = l2 cos
al
l
− l2 cos

bl
l

cos
cl
l
.

Here the notation for the lengths and angles of a geodesic triangle is as in Figure 7.

Clearly we can formulate Lemma 20 for each of the angles α, β and γ, as in Figure 7. We
have chosen α over γ and β. The reason for this is that γ is used in Lemma 16 (elliptic) and
Lemma 18 (hyperbolic) as a given quantity, while in Lemma 20 the angle is (approximately)
determined based on (approximate) lengths of edges.

Proof Because a, b, c are the edge lengths of a geodesic triangle on H(+1/k2) we have, by
Lemma 16, that

l2 cos
a

l
− l2 cos

b

l
cos

c

l
= l2 sin

b

l
sin

c

l
cosα+RT (a, b, c),

with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 11d4
max

4!
.

Filling in our assumptions we see that

l2 cos
al
l

+RTa − (l2 cos
bl
l

+RTb)(cos
cl
l

+
RTc
l2

)−RT

= l2 sin
b

l
sin

c

l
cosα

l2 cos
al
l
− l2 cos

bl
l

cos
cl
l

+RTb cos
cl
l

+RTc cos
bl
l

+RTb
RTc
l2

+RTa −RT

= l2 sin
b

l
sin

c

l
cosα

l2 sin
bl
l

sin
cl
l

cosαl +RTb cos
cl
l

+RTc cos
bl
l

+RTb
RTc
l2

+RTa −RT

= l2 sin
b

l
sin

c

l
cosα.

Because ∣∣∣∣RTcl2
∣∣∣∣ ≤ 11

4!

∣∣∣∣ 1

l4
− 1

k2l2

∣∣∣∣ d4
max

≤ 11

4!

∣∣∣∣ 1

l4
− 1

k2l2

∣∣∣∣ ( l2
)4

=
11

244!
,
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we have that

|RTb cos
cl
l

+RTc cos
bl
l

+RTb
RTc
l2

+RTa −RT |

≤ |RTb |+ |RTc |+
11

244!
|RTb |+ |RTa |+ |RT |

≤ (4 +
11

244!
)
11

4!

∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ d4
max

≤ 2

∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ d4
max.

�

A.4 The cosine with ‘errors’ in lengths for spaces of negative constant curvature

Similarly, for hyperbolic spaces we have

Lemma 21 Let H(−1/k2) and H(−1/l2) be spaces of negative constant sectional curvature,
where for convenience we assume that k > l > 0. Moreover let the edge-lengths (a, b, c) of
a geodesic triangle on H(−1/k2) satisfy

l2 cosh
a

l
= l2 cosh

al
l

+RTa ,

l2 cosh
b

l
= l2 cosh

bl
l

+RTb

l2 cosh
c

l
= l2 cosh

cl
l

+RTc ,

with

l2 cosh
al
l

= l2 cosh
a1

l
cosh

a2

l
− l2 sinh

a1

l
sinh

a2

l
cos γa

l2 cosh
bl
l

= l2 cosh
b1
l

cosh
b2
l
− l2 sinh

b1
l

sinh
b2
l

cos γb

l2 cosh
cl
l

= l2 cosh
c1

l
cosh

c2

l
− l2 sinh

c1

l
sinh

c2

l
cos γc,

and

|RTa |, |RTb |, |RTc | ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
,

and

a, a1, a2, b, b1, b2, c, c1, c2 < dmax,

then

|l2 sinh
b

l
sinh

c

l
cosα−l2 sinh

bl
l

sinh
cl
l

cosαl|

≤
(

2 + 2 cosh
dmax
l

+
1

l4
cosh2

(
dmax
l

)
11d4

max

4!

)
·
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
,

http://jocg.org/


Journal of Computational Geometry jocg.org

with

l2 sinh
bl
l

sinh
cl
l

cosαl = l2 cosh
bl
l

cosh
cl
l
− l2 cosh

al
l
.

Note that we no longer impose bound on the lengths with respect to l or k as we did in the
elliptic case.

Proof Because a, b, c are the edge lengths of a geodesic triangle on H(−1/k2) Lemma 18
yields

l2 cosh
c

l
− l2 cosh

a

l
cosh

b

l
= −l2 sinh

a

l
sinh

b

l
cos γ +RT (a, b, c),

with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
.

Filling in our assumptions we see that

l2 cosh
al
l

+RTa − (l2 cosh
bl
l

+RTb)(cosh
cl
l

+
RTc
l2

)−RT

= −l2 sinh
b

l
sinh

c

l
cosα

l2 cosh
al
l
− l2 cosh

bl
l

cosh
cl
l

+RTb cosh
cl
l

+RTc cosh
bl
l

+RTb
RTc
l2

+RTa −RT

= −l2 sinh
b

l
sinh

c

l
cosα

l2 sinh
bl
l

sinh
cl
l

cosαl −RTb cosh
cl
l
−RTc cosh

bl
l
−RTb

RTc
l2
−RTa +RT

= l2 sinh
b

l
sinh

c

l
cosα.

We now have that

| −RTb cosh
cl
l
−RTc cosh

bl
l
−RTb

RTc
l2
−RTa +RT |

≤|RTb | cosh
dmax

l
+ |RTc | cosh

dmax

l
+ |RTb |

∣∣∣∣RTcl2
∣∣∣∣+ |RTa |+ |RT |

≤
(

2 + 2 cosh
dmax

l
+

1

l4
cosh2

(
dmax

l

)
11d4

max

4!

)
·
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
.
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