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Abstract

In this paper, we address the problem of synthesizing periodic switch-
ing controllers for stabilizing a family of linear systems. Our broad ap-
proach consists of constructing a finite game graph based on the family
of linear systems such that every winning strategy on the game graph
corresponds to a stabilizing switching controller for the family of linear
systems. The construction of a (finite) game graph, the synthesis of a
winning strategy and the extraction of a stabilizing controller are all com-
putationally feasible. We illustrate our method on an example.

1 Introduction

Stability is a fundamental property in control system design that stipulates
that small perturbations in the initial state or input to the system lead to
small deviations in the resulting behavior of the system, and that the effect of
small perturbations vanishes over time. Supervisory control consists of switching
between a set of operational modes/dynamics to achieve a control objective. In
this paper, we study the problem of synthesizing a switching control to achieve
stability. More precisely, given a finite set of linear dynamical systems ẋ = Apx,
where p ∈ P and P is a finite set of indices corresponding to operational modes,
we intend to compute a switching strategy which specifies for each time instant
a mode p whose dynamics is active, such that the resulting switched system
is stable. In particular, we consider periodically controlled systems where the
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change to a new dynamics occurs only at time instants that are multiples of
τ , that is, at time τ, 2τ, 3τ, · · · . Periodically controlled switched systems model
real time behaviors of supervisory controller when implemented on a digital
platform, wherein, the sensing of the plant state and application of mode switch
happens synchronously with the processor clock periodically.

Switched systems [12] have been extensively investigated in the context of
stability. Stability analysis for switched systems is challenging even when the
dynamics of the modes is linear. For instance, it is shown in [2] that switching
between two stable systems can result in an unstable system. Hence, it is es-
sential to design the switching logic carefully so as to ensure stability. From a
computational point of view, it was established that analyzing stability is unde-
cidable for switched and hybrid systems even when the dynamics is a constant
rate dynamics [24]. Research on stability analysis for switched linear systems
explores restrictions on the dynamics and switching law such as requiring the
system matrices to be pairwise commutative or symmetric, for enforcing sta-
bility [16, 29]. More generally, Lyapunov function based approaches have been
explored for stability analysis and stabilizability of both linear and non-linear
switched systems, and consist broadly of common and multiple Lyapunov func-
tion paradigms. Necessary and sufficient conditions for the existence of com-
mon and multiple Lyapunov functions [25, 26, 1] as well as constraints on the
switching, such as, slow switching characterized by (average) dwell time [15, 7],
and asymptotic characterizations [9, 10] that ensure stability have been investi-
gated. For constrained switching, multiple Lyapunov functions have been stud-
ied in [3] including piecewise quadratic Lyapunov functions [8]. For the stabi-
lization problem, Control Lyapunov functions, namely, quadratic and piecewise
quadratic, have been explored in [28, 27, 18]. Necessary and sufficient condi-
tions for stabilization have been explored in [13]. See [14] for a recent survey on
stability and stabilization of switched linear systems. Synthesis of stabilizing
switching signals for family of unstable linear systems appeared earlier in the
literature, see e.g., [4, 6]. A min-switching signal [6] ensures global asymptotic
stability of a linear switched system S given that the subsystem matrices satisfy
a set of Bilinear Matrix Inequalities (BMIs).

In this paper, we propose an alternate approach based on abstractions for
synthesizing a stabilizing controller, that requires solving linear programming
problems and uses insights from automata and game theory [5]. Our broad
approach for synthesizing a periodic switching control is an abstraction based
approach which consists of constructing a finite weighted game graph that rep-
resents an abstraction (simplification) of the original system, and solving the
controller synthesis problem on the simplified system. More precisely, we con-
struct a finite game graph such that every control strategy on the finite game
graph which satisfies certain conditions (every cycle in the resulting graph has
product of the weights on the edges at most 1) corresponds to an actual periodic
stabilizing switching control in the original system. However, the finite game
graph is conservative in that it might have fewer strategies than that in the
original system.

The game graph is constructed based on a finite partition of the state-space.
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Each region r in the partition corresponds to a player 1 node in the graph, and
has an edge to a player 2 node (r, p) for every index p ∈ P of the dynamics.
Player 1 chooses which of the dynamics to follow from a given region r, which
is performed by following the corresponding edge. That is, choosing dynamics
p from region r corresponds to following the edge r to (r, p). Player 2 follows
the dynamics chosen for a time period τ . Hence, from (r, p), there is an edge to
every r′ such that from r following the dynamics p for time τ results in region
r′. Note that Player 2 does not choose an edge, but needs to ensure stability
for each of the edges. The strategy corresponds to choosing an edge from each
Player 1 node such that all the paths in the graph obtained by choosing any of
the Player 2 edges result in a stabilizing control. This is achieved by adding a
weight to the edges from (r, p) to r′ which provide a bound the factor by which
the state of the system moves away from the origin (the equilibrium point) when
moving from r to r′ using p for time τ . A stabilizing controller then corresponds
to a strategy in which the resulting graph does not have a cycle in which the
product of the weights on the edges is > 1.

Our approach follows the broad approach for stabilizing controller synthesis
in [23], which builds on the abstraction based stability analysis in [21, 20, 17, 19].
However, in comparison to [23], the current paper differs in several aspects.
Firstly, here we consider the problem of periodic switching controllers, whereas,
in [23], a state (facet) based switching controller is sought. Hence, in the game
graph constructed, the nodes in [23] corresponds to facets specified along with
the problem, whereas in this paper, the nodes correspond to regions, that is
provided by the user or automatically determined using approaches such as
counter-example guided abstraction refinement [17]. Further, here, the graph
construction is simpler as compared to that from [23] in that certain auxiliary
nodes are not required. Finally, the computation of the edges is simpler, since,
we need to only check if it is possible to reach a target region from a source region
at a specific time τ , rather than in an unbounded interval [0,∞) as in [23], where
hybridization is applied prior to abstract game graph construction to tackle the
issue. Further details regarding the computational aspects are discussed in
Section 5.1.

2 Problem statement

In this section, we introduce the controller synthesis problem which consists of
synthesizing a periodic switching sequence for a given family of linear dynamical
systems such that the executions resulting from the application of the switch-
ing sequence on the family correspond to a stable system. We will define the
concepts required to formalize the controller synthesis problem. Let R, Q and
N denote the set of real, rational and natural numbers, respectively.
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2.0.1 Family of linear systems

Consider a family of continuous-time linear systems

ẋ(t) = Apx(t), x(0) ∈ X0, p ∈ P, t ∈ R≥0, (1)

where x(t) ∈ Rd is the vector representing the state of the system at time t,
and P = {1, 2, . . . , N} is an index set where a p ∈ P is used to refer to the
p-th linear dynamical system, and X0 is a set of initial states. We also refer
to the index p as the (operational) mode of the family of systems. We will
use F = ({Ap}p∈P , X0) to denote the family of linear systems (1). We assume
that Ap, p ∈ P are full-rank matrices. Consequently, 0 ∈ Rd is the unique
equilibrium point for each system in F .

2.0.2 Switching signal

Next, we define a switching signal which selects an active subsystem at every in-
stant of time, i.e., the system from F that is currently being followed [11, S1.1.2].
Formally, a switching signal σ is a function from R≥0 to P such that there exist
a diverging sequence of times 0 =: τ0 < τ1 < τ2 < · · · and a sequence of indices
p0, p1, p2, · · · with pi ∈ P, i = 0, 1, 2, . . . such that σ(t) = pi for t ∈ [τi, τi+1[,
i = 0, 1, 2, . . .. We call the time instants τ0, τ1, τ2, . . . a sequence of switching
instants for σ. Note that the sequence of switching instants is not unique and
only represents time instances such that the system remains in the same mode
between two consecutive time instances. Moreover, a switching signal can be
completely specified by providing its value at the switching instants.

In this paper, we are interested in switching signals where mode changes are
allowed to only happen at periodic time instants. A switching signal σ is said to
satisfy a fixed dwell time τ if there exists a sequence of switching time instants
τ0, τ1, · · · for σ such that τi+1 − τi = τ , i = 0, 1, 2, . . .. Given τ > 0, let Στ
denote the set of all switching signals σ that satisfy a fixed dwell time τ .

2.0.3 Switched system

We refer to the system resulting from the application of a switching signal on a
family of dynamical systems as a switching system. A switched system generated
by the family of systems F and a family of switching signals Σ = {σx0}x0∈X0

is
given by

ẋ(t) = Aσx0 (t)x(t), x(0) = x0 ∈ X0, t ∈ R≥0. (2)

Henceforth, we refer to the linear switched system (2) by S = (F ,Σ). A solution
of S from an initial state x0 ∈ X0 is a map Φx0

S : R≥0 → Rd defined inductively
as follows: Let τ0, τ1, · · · be a sequence of switching instances for σx0 . Then,
for i = 0, 1, 2, · · · and t ∈ [τi, τi+1[,

Φx0

S (t) = exp(Aσx0 (τi)(t− τi))Φ
x0

S (τi),

where exp(A) represents the matrix exponential of A, namely, eA.
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2.0.4 Stability

In this paper, we are interested in stability of S under switching signals σ that
obey a fixed dwell time between every two consecutive switching instants. A
switched system S = (F ,Σ) is said to be Lyapunov stable if for every ε > 0
there exists a δ = δ(ε) > 0 such that ‖Φx0

S (0)‖ ≤ δ ⇒ ‖Φx0

S (t)‖ ≤ ε for all
x0 ∈ X0 and t ∈ R≥0.

At this point, it is important to highlight that even when all systems in F
are Lyapunov stable, it may be possible to obtain an unstable switched system S
under a switching signal satisfying a fixed dwell time. We discuss the following
example to demonstrate this matter:

Example 1 Consider a family of systems F with

A1 =

(
0 1
−0.1 0

)
and A2 =

(
0 1
−4 0

)
.

Fix a dwell time τ = 2 units of time. Notice that both A1 and A2 are Lyapunov
stable. Let a switching signal σ′ alternate between modes 2 and 1, while being
in each mode for τ units of time, that is, 0, 2, 4, 6, · · · is a sequence of switching
instances of σ′, where σ(2i) = 2 if i is even and 1 otherwise. The linear switched

system S generated under σ′ with x(0) =
(
86.3041 76.1538

)>
is not Lyapunov

stable. The state response (‖x(t)‖)t∈R≥0
is shown in Figure 1a.
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Figure 1: Plot of (‖x(t)‖)t∈R≥0

Another case is that all systems in F are unstable. Then, it may be possible
to obtain a stable switched system under a switching signal satisfying a fixed
dwell time and selecting an active subsystem in F , as in the following example.

Example 2 Consider a family of systems F with

A1 =

(
0 1
−0.1 0.2

)
and A2 =

(
0 1
−4 0.2

)
.

Fix a dwell time τ = 2 units of time. Notice that both A1 and A2 are unstable.
Let a switching signal σ′ alternate between modes 2 and 1, while being in each
mode for τ units of time, that is, 0, 2, 4, 6, · · · is a sequence of switching instances

5



of σ′, where σ(2i) = 2 if i is even and 1 otherwise. The linear switched system

S generated under σ′ with x(0) =
(
−43.6660 37.0513

)>
is Lyapunov stable.

The state response (‖x(t)‖)t∈R≥0
is shown in Figure 1b.

2.0.5 Periodic Stabilizing Switching Controller Synthesis Problem

Our broad objective in this paper is to synthesize a family of switching con-
trollers one for each initial state such that the resultant switched system is
stable. This is formalized in the following:

Problem 1 Given a family of linear systems F = ({Ap}p∈P , X0) and a scalar
τ > 0, find a family of switching signals Σ = {σx0}x0∈X0 ⊆ Στ under which the
linear switched system S = (F ,Σ) is Lyapunov stable.

Though Example 1 admits a trivial solution for Problem 1, namely, selecting
only one of the systems at any time, Example 2 does not. In this paper, we pro-
pose an abstraction based approach and employ game theoretic arguments for
the synthesis of stabilizing controllers. We will, henceforth, call a Σ stabilizing
if it is a solution to Problem 1.

3 Main approach

We propose an abstraction based approach to solve Problem 1. Our broad
approach to the problem follows that of [23], however, our focus in this paper
is on periodically controller systems which simplifies some of the technicalities
of [23]. We describe the main steps in the synthesis below:

1. First, we construct a simplified “game graph” for a given family of linear
systems such that a “winning” strategy in the game graph corresponds a
stabilizing family of switching signals.

2. We solve for a winning strategy in the game graph.

3. We extract the family of switching signals from the winning strategy.

First, we provide some preliminaries on game graphs and winning strategies
in Section 4. Solving for winning strategies is already studied in [23], and we
refer to the same. Then we present the construction of the game graph, and
extraction of the stabilizing controller from a winning strategy for the game
graph in Section 5.

4 Games

Problem 1 will be reduced to a problem on a game graph, and the solution to
this game problem will provide the solution to the initial one. The solution to
Problem 1 consists of a switching signal for every initial state, with fixed dwell
time, which renders the linear switched system stable. The search for such a
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(a) Game graph G (b) Strategy over G

Figure 2: Game graph and strategy

kind of signal is transformed into the search for a strategy in a finite weighted
game graph. In this section, we introduce certain notions in game theory which
are required for our approach.

A game is played between two players, a defender and an adversary. The
defender strives to achieve some objective, while the adversary tries to thwart
the efforts of the defender. More precisely, the game is represented by a game
graph, which is essentially a graph with two kinds of nodes corresponding to the
defender and the adversary and the edges going between nodes of different kind.
A play starts in some node, and consists of the corresponding player choosing
an edge out of the node. Then, the edge is taken upon which a node of the
opposite player is reached, followed by the opposite player choosing an edge out
of the reached node. Hence, the two players alternately choose an edge and
traverse the same. The result play, a sequence of nodes, is winning if it satisfies
certain objective. A winning strategy consists of the choices of defender for
each possible finite play such that irrespective of the choices of the adversary,
the resulting play satisfies the given objective.

Game Graph A game graph is a weighted graph G = (V,E,W) where V =
V0∪V1, V0∩V1 = ∅, E is a subset of V0×V1∪V1×V0 and W is a weight function
mapping edges to rational numbers, W : E→ Q. Nodes are partitioned between
the player and the adversary. The nodes in V0 are those where the defender
makes a choice, while the nodes in V1 are those where the adversary makes
a choice. Figure 2a shows a game graph, where the nodes at which defender
makes a decision are represented by circles and those at which the adversary
makes a decision are represented by squares.

Plays A play in a game graph G is an infinite sequence of nodes π = v1v2 . . .
such that (vi, vi+1) ∈ E for every i > 1. The set of all plays in G is denoted as
Plays(G). The weight of a play π = v1v2 . . . is bounded by b, denoted W(π) 6 b,

if
∏j
i=1 W(vi, vi+1) 6 b for every j. Note that the weight of a play is bounded

by the product of the weights on the edges of prefixes of the play.
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Strategy A strategy specifies the choices of the defender during a play. A
strategy for a game graph G = (V,E) is a function α : V0 → V1 such that
for every v ∈ V0, (v, α(v)) ∈ E. In general, a strategy specifies the defender’s
choice from a defender node given the history of the play so far. However, we
consider memoryless strategies in this paper, where the defender chooses the
same edge from a defender node, irrespective of how the node was reached. A
play π = v0v1 . . . of G is said to be consistent with a strategy α if for all vi ∈ V0,
α(vi) = vi+1.

In Figure 2b, the solid outgoing arrows from the circles show a memoryless
strategy for the defender in the game graph, which specifies the choices of the
defender when in those nodes. The strategy induces a subgraph, defined by all
the solid arrows.

Winning Strategy We consider a bounded objective for the defender, which
requires to ensure that the weight of a play consistent with the strategy is
bounded from above. This boundedness is equivalent to ensuring that every
cycle in the game graph has a product of weights equal to or smaller than one.
Next, we define the winning strategy with respect to this objective. A strategy
α is a winning strategy for a game graph G if there exists a value M ∈ Z such
that for every π ∈ Plays(G) consistent with α, the weight of π is bounded by
M .

If the game graph G is finite, that is, the number of nodes V is finite, then
the winning strategy can be effectively computed. It can be reduced to another
game called the energy game, that has been studied in the literature; details
about computing the winning strategy for the game graph with respect to a
bounded objective can be found in [23].

5 Game Graph Construction

In this section, we explain the main result of the paper. We describe the pro-
cedure to construct a game graph for solving Problem 1, and how to extract a
stabilizing controller from a winning strategy for the game graph. Our game
graph construction is parameterized by a family of linear systems F and a pe-
riodic time step τ , as well as a partition of the state-space into a finite number
of regions. The game graph captures the evolution of the different dynamics in
all the regions. More precisely, the defender nodes correspond to the regions in
the partition. Intuitively, we intend to choose a dynamics to be followed in each
of the regions. Hence, an edge from a defender node r, representing a region, to
an adversary node (p, r) corresponds to the choice of the p-th mode (dynamics)
in region r. Executing the dynamics ẋ = Apx while in region r for time τ ,
results in the system evolving to some region r′. Note that the region r′ reached
depends on the initial state in r from which we start executing. Hence, there
might be multiple regions reached depending on where the systems starts in r.
We add an edge from (p, r) to each of those regions r′, along with a weight w
that provides an upper bound on the (scaling) factor by which the state moves
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away from the equilibrium when going from r to r′. In the constructed game
graph, we need to find a strategy for the defender (choice of dynamics to be fol-
lowed in each region) such that the resulting system is stable. This correspond
to ensuring that along any play that conforms with the strategy the weight is
bounded. Hence, we reduce the problem of finding a stabilizing controller to
that of finding a winning strategy in the game graph. Below we provide the
formal details.

5.1 Construction of the Game Graph

A partition of Rd is a set of regions {r1, · · · , rm}, where for each i, ri ⊆ Rd,
for each i 6= j, r̊i ∩ r̊j = ∅ and

⋃
i ri = Rd. Let F = ({Ap}p∈P , X0) be a

family of linear systems of dimension d. A game graph induced by a family of
systems F = ({Ap}p∈P , X0), a partition R of Rd, and a time step τ , denoted as
G(F ,R, τ) = (V,E,W ), is given by

• the set of nodes V = V0 ∪ V1, where

– V0 = R,

– V1 = P ×R,

• set of edges E = E0 ∪ E1, where

– E0 = {(r, (p, r)) | r ∈ R, p ∈ P},
– E1 = {((p, r), r′) | ∃x ∈ r, y ∈ r′, y = exp(Apτ)x},

• edge weights w : E → R defined as

w(e) =

{
1, if e ∈ E0,

µ((p, r), r′), if e ∈ E1,

µ((p, r), r′) = sup{‖y‖
‖x‖
| x ∈ r, y ∈ r′, y = exp(Apτ)x}.

Note that computing the edges in E1 requires solving a linear programming
problem. First observe that the constraints x ∈ r and y ∈ r′ both correspond to
linear constraints with variables x and y given the regions r and r′. Similarly,
since exp(Apτ) is a matrix, y = exp(Apτ)x is a linear constraint as well. Note
that if we did not have a fixed time τ but an interval I in which τ resided,
then, to compute E1, we would need to over-approximate the relation between
x and y given by y = exp(Apτ)x, τ ∈ I, since, the relation between x and y is
given by an exponential function, thus obtaining a conservative E1. Computing
precise over-approximations of the relation y = exp(Apτ)x, τ ∈ I, is especially
challenging when I is unbounded. Hence, in [22], hybridization is applied to
over-approximate the dynamics ẋ = Apx to a set of polyhedral inclusion dy-
namics ẋ ∈ P , x ∈ X where P is a polyhedron and X is a polyhedral region.
Now the solutions do not contain any exponential functions, and thus, the re-
lation between x and y can be captured using linear constraints. Hence, the
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computation of the edges is a simpler affair in our current setting of periodic
controllers. Similarly, the computation of the weights µ((p, r), r′) requires solv-
ing an optimization problem over linear constraints, where the objective function
is ‖y‖ / ‖x‖. It is shown in [22] that the objective function can be simplified
to ‖y‖ by adding the constraint ‖x‖ = 1, when the regions are conical (that
is, contain the origin and are positive scaling closed). The objective function
‖y‖ considered as the infinity norm can be further reduced to solving a finite
number of linear programming problems, by considering each component of y
and its negation as objective functions in turn, and taking the maximum of the
solutions of the linear programming problems [20].

5.2 Extraction of switching signal from a strategy

Next, we present how to obtain a switching signal for F and a given initial
state x0 from a strategy α on the game graph G(F ,R, τ). The broad idea is to
follow the dynamics p0 specified by α for the region r0 to which x0 belongs, for
the first τ time units, then follow the dynamics specified by α for the region r1
that is reached by following p0 for τ time units from x0, and so on. Recall that
to specify a switching signal, it suffices to specify its values at the switching
instants. We refer to R(x) as the region in R to which x belongs. Let α be
a strategy for G(F ,R, τ), where F = ({Ap}p∈P , X0). Given an initial state
x0 ∈ X0, we define a switching signal σx0

α , where 0, τ, 2τ, · · · is a sequence of
switching instants, inductively at every iτ , while also simultaneously defining
the state xi reached by following the switching signal at time iτ . For i = 0, 1, · · · ,

• σx0
α (iτ) = pi if α(R(xi)) = (pi,R(xi)); and

• xi+1 = eApi
τxi.

5.3 Main result

Our main result states that a stabilizing switching controller for a family of
linear systems can be extracted from a winning strategy on the induced game
graph.

Theorem 1 Given a family of linear system F , a partition R of Rd, and a
time τ , if α is a winning strategy for G(F ,R, τ), then S = (F ,Σα), where
Σα = {σx0

α }x0∈X0
, is stable.

Hence, Σα which consists of switching signals extracted from the winning strat-
egy α is a family of stabilizing controllers for F .

Theorem 1 states that our switching controller synthesis approach is sound
in that if there is a winning strategy, then the extracted switched system is
Lyapunov stable. Here, completeness results are not provided. The proof is
similar to that in [23]. It relies on the fact that the scalings along solutions
of the switched system S are upper-bounded by the product of weights along
corresponding prefixes of the paths in the graph obtained by restricting the game
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graph to the choices specified by the winning strategy α. The weight along the
paths are bounded, since the strategy is winning, and hence, the solutions do
not diverge.

6 Numerical example

In this section we present numerical examples to demonstrate our result.

6.0.1 Analysis of Example 1

Consider the family of linear systems F from Example 1. We consider the state-
space R2 partitioned into four regions R = {r1, r2, r3, r4} corresponding to the
four quadrants r1 = {(x1, x2) | x1 > 0, x2 > 0}, r2 = {(x1, x2) | x1 6 0, x2 > 0},
r3 = {(x1, x2) |x1 6 0, x2 6 0}, r4 = {(x1, x2) |x1 > 0, x2 6 0}. We will employ
our technique to find a stabilizing switching signal.

The first task is to construct a game graph G(F ,R, τ) = (V,E,W ) with
V = V0 ∪ V1, E = E0 ∪ E1. We have

◦ V0 = {r1, r2, r3, r4},

◦ V1 = {(1, r1), (2, r1), (1, r2), (2, r2), (1, r3), (2, r3),
(1, r4), (2, r4)},

◦ E0 = {(r1, (1, r1)), (r1, (2, r1)), (r2, (1, r2)), (r2, (2, r2)),
(r3, (1, r3)), (r3, (2, r3)), (r4, (1, r4)), (r4, (2, r4))},

◦ E1 = {((1, r2), r1), ((1, r2), r3), ((1, r2), r4), ((2, r2), r1),
((2, r2), r3), ((2, r2), r4), ((1, r4), r1), ((1, r4), r2),
((1, r4), r3), ((2, r4), r1), ((2, r4), r2), ((2, r4), r3)},

◦ w((1, r2), r1) = 7.46, w((1, r2), r3) = 0.68,
w((1, r2), r4) = 3.91, w((2, r2), r1) = 7.45,
w((2, r2), r3) = 0.10, w((2, r2), r4) = 0.01,
w((1, r4), r1) = 1.29, w((1, r4), r2) = 0.68,
w((1, r4), r3) = 3.91, w((2, r4), r1) = 1,
w((2, r4), r2) = 0.01, w((2, r4), r3) = 0.13.

Recall the definition of w(e), e ∈ E from Section 5. The scalars µ((p, r), r′)’s are
computed by solving a linear program with ‖x‖ = 1. Observe that considering
x such that ‖x‖ = 1 suffices because we are dealing with linear dynamics, which
means that if an execution from x reaches y, then an execution from mx reaches
my for m > 0. The game graph G(P,R) is shown in Figure 3. We then obtain
the following stabilizing switching signal α for G(F ,R, τ): α(r1) = (2, r1),
α(r2) = (2, r2), α(r3) = (2, r3) and α(r4) = (2, r4).
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Figure 3: Game graph G(F ,R, τ) for Example 1

6.0.2 Analysis of Example 2

We consider the family of linear unstable systems F from Example 2 and provide
a stabilizing switching signal. Let the state-space R2 be partitioned into four
regions R = {r1, r2, r3, r4} that correspond to the four quadrants as before.
Again, we choose a fixed dwell time τ = 2 units of time. We are interested in
synthesizing a switching signal σ ∈ Στ under which the switched system S is
Lyapunov stable.

For solving the said problem, we first construct a game graph G(F ,R, τ) =
(V,E,W ) with V = V0 ∪ V1, E = E0 ∪ E1, where

◦ V0 = {r1, r2, r3, r4},

◦ V1 = {(1, r1), (2, r1), (1, r2), (2, r2), (1, r3), (2, r3),
(1, r4), (2, r4)},

◦ E0 = {(r1, (1, r1)), (r1, (2, r1)), (r2, (1, r2)), (r2, (2, r2)),
(r3, (1, r3)), (r3, (2, r3)), (r4, (1, r4)), (r4, (2, r4))},

◦ E1 = {((1, r2), r1), ((1, r2), r3), ((1, r2), r4), ((2, r2), r1),
((2, r2), r3), ((1, r4), r1), ((1, r4), r2),
((1, r4), r3), ((2, r4), r1), ((2, r4), r3)},

◦ w((1, r2), r1) = 7.54, w((1, r2), r3) = 0.61,
w((1, r2), r4) = 2.68, w((2, r2), r1) = 7.54,
w((2, r2), r3) = 0.10, w((1, r4), r1) = 1.29,
w((1, r4), r2) = 0.61, w((1, r4), r3) = 2.68,
w((2, r4), r1) = 1, w((2, r4), r3) = 0.20.

The game graph G(F ,R, τ) is shown in Figure 4. We then obtain the following
stabilizing switching signal α for G(F ,R, τ): α(r1) = (2, r1), α(r2) = (2, r2),
α(r3) = (2, r3) and α(r4) = (1, r4).

7 Conclusion

In this paper, we presented an abstraction based approach for the synthesis of
periodic switching controllers for stabilizing a family of linear systems. The
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Figure 4: Game graph G(F ,R, τ) for Example 2

broad approach of constructing a game graph and extracting a periodic con-
troller is inspired by the results of [23]. In the future, we intend to consider
periodic controllers with delays as well as systems with non-linear dynamics.
The challenges with the latter arise from the fact that often closed form so-
lutions are not known for non-linear dynamics and hence, computing precise
over-approximations of even bounded time reachable set is non-trivial, which is
required for the computation of edges and weights in the abstract game graph.
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dations & Applications, Birkhäuser Boston Inc., Boston, MA, 2003.

[12] D. Liberzon, J. P. Hespanha, and A. S. Morse, Stability of switched
systems: a lie-algebraic condition, Systems Control Letters, 37 (1999),
pp. 117–122.

[13] H. Lin and P. J. Antsaklis, Switching stabilizability for continuous-time
uncertain switched linear systems, 2007.

[14] , Stability and stabilizability of switched linear systems: A survey of re-
cent results, IEEE Transactions on Automatic Control, 54 (2009), pp. 308–
322.

[15] A. S. Morse, Supervisory control of families of linear set-point controllers
- part 1: Exact matching, IEEE Transactions on Automatic Control, 41
(1998), pp. 1413–1431.

[16] K. Narendra and J. Balakrishnan, A common lyapunov function for
stable lti systems with commuting a-matrices, IEEE Transactions on Auto-
matic Control, 39 (1994), pp. 2469–2471.

[17] Pavithra and M. G. Soto, Counterexample guided abstraction refine-
ment for stability analysis, in CAV, 2016, pp. 495–512.

[18] S. Pettersson, Synthesis of switched linear systems, in CDC, vol. 5, 2003,
pp. 5283–5288.

[19] P. Prabhakar, S. Duggirala, S. Mitra, and M. Viswanathan,
Hybrid automata-based cegar for rectangular hybrid automata, in VMCAI,
2013.

[20] P. Prabhakar and M. G. Soto, Abstraction based model-checking of
stability of hybrid systems, in CAV, 2013, pp. 280–295.

[21] , An algorithmic approach to stability verification of polyhedral
switched systems, in ACC, 2014, pp. 2318–2323.

[22] P. Prabhakar and M. G. Soto, Hybridization for stability analysis of
switched linear systems, in HSCC, 2016.

14



[23] P. Prabhakar and M. G. Soto, Formal synthesis of stabilizing con-
trollers for switched systems, in HSCC, 2017, pp. 111–120.

[24] P. Prabhakar and M. Viswanathan, On the decidability of stability of
hybrid systems, in HSCC, 2013, pp. 53–62.

[25] R. Shorten and K. Narendra, Necessary and sufficient conditions for
the existence of a common quadratic lyapunov function for two stable second
order linear time-invariant systems, in ACC, vol. 2, Jun 1999, pp. 1410–
1414.

[26] R. Shorten, K. Narendra, and O. Mason, A result on common
quadratic lyapunov functions, IEEE Transactions on Automatic Control,
48 (2003), pp. 110–113.

[27] E. Skafidas, R. J. Evans, A. V. Savkin, and I. R. Petersen, Sta-
bility results for switched controller systems, in Automatica, vol. 35, 1999,
pp. 553–564.

[28] G. Zhai, Quadratic stabilizability of discrete-time switched systems via
state and output feedback, in CDC, vol. 3, 2001, pp. 2165–2166.

[29] G. Zhai, H. Lin, and P. Antsaklis, Controller failure time analysis for
symmetric h infin; control systems, in CDC, vol. 3, Dec 2003, pp. 2459–
2464.

15


