
Synchronizing the Asynchronous

Thomas A. Henzinger and Bernhard Kragl and Shaz Qadeer

Technical Report No. IST-2017-853-v1+1
Deposited at 03 Aug 2017 22:34
https://repository.ist.ac.at/853/1/main.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268224887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Synchronizing the Asynchronous
Preprint, 4 August 2017

THOMAS A. HENZINGER, IST Austria

BERNHARD KRAGL, IST Austria

SHAZ QADEER, Microso� Research

Synchronous programs are easy to specify because the side e�ects of an operation are �nished by the time the

invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are di�cult

to specify because there are side e�ects due to pending computation scheduled as a result of the invocation

of an operation. �ey are also di�cult to verify because of the large number of possible interleavings of

concurrent asynchronous computation threads. We show that speci�cations and correctness proofs for

asynchronous programs can be structured by introducing the �ction, for proof purposes, that intermediate,

non-quiescent states of asynchronous operations can be ignored. �en, the task of speci�cation becomes

relatively simple and the task of veri�cation can be naturally decomposed into smaller sub-tasks. �e sub-tasks

iteratively summarize, guided by the structure of an asynchronous program, the atomic e�ect of non-atomic

operations and the synchronous e�ect of asynchronous operations. �is structuring of speci�cations and

proofs corresponds to the introduction of multiple layers of stepwise re�nement for asynchronous programs.

We present the �rst proof rule, called synchronization, to reduce asynchronous invocations on a lower layer to

synchronous invocations on a higher layer. We implemented our proof method in CIVL and evaluated it on a

collection of benchmark programs.

1 INTRODUCTION
Concurrent programs are di�cult to reason about because concurrently executing activities could

be arbitrarily interleaved. Programmers are o�en unable to comprehend the enormous set of

behaviors and consequently make mistakes leading to bugs that are di�cult to identify, reproduce,

and �x. Automatic veri�cation tools would be tremendously valuable to the programmer in the

process of iterative design and debugging. Full automation, however, remains an elusive goal

because the state spaces of even moderately realistic concurrent programs are extremely large

and o�en unbounded. Systematic testing of concurrent interleavings [11, 25, 46, 51] scales to

realistic programs and is useful for �nding bugs, but progressive increase in test coverage requires

prohibitively high amounts of computing resources. Static analysis uses abstractions to search for

proofs but has demonstrated only modest scalability for concurrent programs. �is paper pursues

computer-assisted deductive veri�cation [40, 50], an alternative approach that promises to be more

scalable through user involvement in the invention of proof outlines, while the justi�cation for

individual proof steps remains fully automated.

�e central concept in deductive veri�cation is the inductive invariant, an assertion that must hold

in the initial state and which is preserved by all transitions of the program. An inductive invariant,

if it can be expressed compactly, is an amazing artifact that concisely justi�es the correctness of an

enormous set of behaviors. Deductive veri�cation, despite its elegance, has not found favor with

researchers focused on automated veri�cation for two reasons. First, veri�cation conditions that

capture the correctness of an inductive invariant are o�en expressed in logics [9] whose complexity

is high, ranging from NP-complete to undecidable. Second, the programmer is required to invent the

1

inductive invariant, a task that is considered too di�cult for most programmers. �is is especially

the case for concurrent programs, whose invariants must capture all possible interleavings and

interferences of concurrently executing processes. �e �rst concern is being addressed adequately

by advances in satis�ability solving and automated theorem proving. �is paper addresses the

la�er concern by designing a mode of programmer-veri�er interaction that reduces the intellectual

e�ort of specifying inductive invariants for concurrent programs and leads to a more scalable proof

methodology.

�is paper focuses on asynchronous concurrent programs, a large class that includes distributed

fault-tolerant protocols, message-passing programs, client-server applications, event-driven mobile

applications, work�ows, device drivers, and embedded and cyber-physical systems. An important

aspect of such programs is that (long-running) operations complete asynchronously. A process

that invokes an operation does not block for the operation to �nish. Instead, the result from the

completion of the operation is communicated later, e.g., via a callback message. Asynchronous

completion not only introduces concurrency and nondeterminism into the program semantics,

but also makes the task of specifying the correct behavior of operations much more di�cult.

�e behavior of a synchronously-completing operation can be speci�ed with a precondition and a

postcondition because there is no ambiguity about the state just before and just a�er the operation

executes. �e behavior of an asynchronously-completing operation is much harder to specify because

multiple operations could be in �ight at the same time and partial results from one operation may

have already a�ected the state before the asynchronously-completing operation �nishes.

�e traditional deductive veri�cation approach to reasoning about asynchronous concurrent

systems is to model the operational semantics as a �at transition relation over the entire state of the

program, including shared variables, message bu�ers, and local states of concurrently executing

processes. �e correctness speci�cation is modeled as a safety predicate that must be satis�ed

by all reachable states. Finally, an inductive invariant is invented to justify the correctness of the

safety assertion. �is approach leads to inductive invariants that are complicated for two reasons.

First, the invariant must characterize all reachable states, even those where operations are executed

partially. Second, modeling the operational semantics as a �at transition system leads to a huge

amount of case analysis in the invariant, which makes it tedious to write and bri�le in the face of

program modi�cation.

We a�ack the problem guided by three principles. First, we model an asynchronous program not

as a �at transition system but as a program in a structured asynchronous programming language.

�is language provides syntax both for the usual sequential programming constructs and for

asynchronous task creation. Second, we focus not on reachable states but on reachable quiescent

states where all spawned tasks have �nished execution. It is signi�cantly easier to specify the

correct behavior for quiescent states than for all intermediate states. Our safety speci�cation is

a single-state predicate constraining the initial states of the program (similar to a precondition)

and a two-state predicate specifying the relationship between an initial state and any quiescent

state that may result from it (similar to a postcondition). Finally, we exploit syntactic features of

our programming language to simplify the programmer-computer interaction fundamental to a

deductive proof. Instead of using a monolithic inductive invariant to justify the correctness of

our safety speci�cation, we perform the proof by using program layers. Two successive program

layers are connected by a syntax-directed program transformation that simpli�es the program

while preserving quiescent states; thus proving our safety speci�cation on the �nal program also

proves it for the initial program. Instead of writing a monolithic invariant justifying the safety

correctness speci�cation, we write a sequence of simple invariants to justify the correctness of

program transformations.

2

�e main novel contribution of our work is a new program transformation called synchronization,

a generalization of reduction [21, 42] targeted towards asynchronous programs. While reduction

allows the creation of a coarse-grained atomic action from a sequence of �ne-grained atomic actions

performed by a single thread, synchronization allows the creation of a coarse-grained atomic action

from an arbitrary asynchronous computation, executed by a potentially unbounded number of

concurrently-executing threads. Synchronization reduces the number of interleavings that need to

be considered; it allow us to pretend, for the purposes of proof, that asynchronous calls complete

synchronously and atomically, which leads to signi�cantly simpler invariants.

�e proof of soundness for the synchronization transformation is nontrivial. In addition to the

usual commutativity conditions required for reduction, it also requires imposing a di�erent cooper-

ation condition on the asynchronous code block that is being synchronized. In essence, cooperation

requires that every synchronous execution of the synchronized code block can terminate, i.e., there

exists a terminating execution. �is prevents a program failure that is possible in the asynchronous

program to be hushed up by nonterminating (but safe) executions of the synchronized program.

We provide a reduction from the problem of checking cooperation to a safety and termination

check on a reduced sequential program.

We have implemented our proof method atop CIVL [29], a modular and automated re�nement

veri�er. CIVL already implements reduction; we extended this implementation to support syn-

chronization. By combining synchronization with another transformation called abstraction, we

provide the capability to convert an asynchronous code block into a single atomic action. By

iterating these transformations, guided by the program structure, we obtain a structured proof

that alternates the inlining of asynchronous calls (synchronization) with the summarization of

synchronous and atomic behavior (abstraction). But the program transformations do not come for

free: each transformation imposes proof obligations about the commutativity of atomic actions,

which are discharged by automatic provers.

From an annotated input program, our implementation automatically generates veri�cation

conditions that encode program correctness. Each veri�cation condition concerns only a local part

of the program, which is important in two ways. First, the veri�cation conditions are small and

thus automatically discharged by an SMT solver. Second, a failed proof obligation gives directed

feedback and is easily a�ributed to a bug in the program or a bug in the proof a�empt.

We successfully experimented with several realistic benchmarks, including a veri�ed implemen-

tation of the two-phase commit protocol (2PC).

2 MOTIVATING EXAMPLES
In this section we illustrate our new veri�cation technique based on the synchronizing program

transformation and the associated proof obligations on three simple examples. We use the notation

[...] to denote atomic actions, i.e., the statements inside square brackets are considered to execute

indivisibly.

2.1 Example 1: Synchronizing asynchronous calls
Consider the program in Figure 1. �e program comprises a single procedure Main that uses

a global variable x and a local variable i. �e �rst while loop creates a hundred new threads,

each invoking the atomic action [x := x + 1], that atomically increments x by one. �e sec-

ond while loop is similar, except that the hundred created asynchronous threads invoke the

atomic action [x := x - 1], that atomically decrements x by one. Due to asynchronous

3

thread creation, the execution of individual instances of increments and decrement can be ar-

bitrarily interleaved. However, since there are equally many increments and decrements, we

know that a�er all threads terminated, the value in variable x is equal to its initial value. �us,

the “initial-to-quiescent-state” behavior of Main is the same as that of the atomic action [skip].

global var x : int
local var i : int

Main {
i := 0
while (i < 100) {

async [x := x + 1]
i := i + 1

}
i := 0
while (i < 100) {

async [x := x - 1]
i := i + 1

}
}

Fig. 1. Asynchronous incre-
ments and decrements.

A standard noninterference-based proof of this program requires

an invariant that states that “x is equal to its original value, plus the

number of asynchronous increment threads that already terminated,

minus the number of asynchronous decrement threads that already

terminated”. Furthermore, additional ghost code has to be introduced

to keep track of the progress of each thread. By contrast, our new

proof rule allows us to wrap the whole body of Main into an atomic

block in which all asynchronous calls are replaced with synchro-

nous calls. From there it is easy to prove that a hundred increments

followed by a hundred decrements leave the variable x unchanged.

�us, we reduced the reasoning about a complicated asynchronous

program to reasoning about a simple sequential program. How is

that possible? Our key technique is the extension of commutativity-

based reduction [42] to asynchronous programs. In particular, the

atomic actions that are invoked due to asynchronous calls have to

be le� movers; they have to commute to the le�, i.e., earlier in time,

with respect to all atomic actions in the program. �is ensures that

all asynchronous interleaved executions can be summarized by a

synchronous execution, without losing any failing or terminating

behaviors. In Main, both the increment and decrement action commute with themselves and each

other. �us, our transformation is sound.

2.2 Example 2: Termination

global var x : int
local var i : int

RecInc (i : int) {
if (i > 0) {

call [x := x + 1]
async RecInc(i) // bug

}
}

Main {
async RecInc(100)
assert false

}

Fig. 2. Non-terminating recursion.

Consider the program in Figure 2. �is is a recursive formula-

tion of the �rst loop in the previous example, creating a hundred

asynchronous instances of atomic increments to x. Using a simi-

lar commutativity argument as before, our new proof rule would

allow us to rewrite the asynchronous calls to RecInc into syn-

chronous ones, would it not be for the bug that the parameter

passed to RecInc is i, instead of i-1.

What would happen if our proof rule could be applied to this

program? In the original program, there is an assertion a�er the

call to RecInc in Main, which fails any execution that reaches

that location. Since asynchronous invocations do not block, there

are certainly failing executions of the original program. However,

in the synchronized program RecInc never terminates due to

the bug in the recursive call. �e assertion in Main never gets

executed in a synchronous execution, and thus the program is

safe. Applying our proof rule would be unsound.

Note that nonterminating executions are not a problem per se;

the original asynchronous program also has a nonterminating execution where the assertion gets

postponed forever. �e problem is that the nontermination of the atomic and synchronized block

4

we are introducing e�ectively blocks executions; it gets stuck in the atomic block and thus masks

failures of the original program that would occur a�er the block �nishes. A simple approach to

remedy the situation is to always require the termination of the atomic and synchronized block we

are introducing. �is approach is sound and works for the current example (i.e., if the bug is �xed,

then the condition holds). However, as we will show in the next example, requiring the termination

of all executions is too restrictive.

2.3 Example 3: Cooperation
Finally, consider the program in Figure 3. It is a simple agreement protocol between two processes

A and B. �e global variables model the internal states of the processes; val_a is an internal value

of process A, and val_b is an internal value of process B. �e goal of the processes is to agree

on the same value. In Main, process A initiates the protocol by sending a proposal to process

B, modeled as an asynchronous call to the corresponding message handler propose_by_a of B.

Not that this modeling choice corresponds to message-passing in an unreliable network, that

might drop or reorder messages. Upon the receipt of the proposal, process B nondeterministically

chooses to either accept the value proposed by A and send back an acknowledgment message

(ack_by_b), or to reject the value and propose a new value of its own to A (propose_by_b).

�e implementations of propose_by_b and ack_by_a are symmetric and not shown in Figure 3.

global var val_a : int
global var val_b : int

Main {
async propose_by_a(val_a)

}

propose_by_a (val) {
if (*) {
call [val_b := val]
async ack_by_b()
assert val_a == val_b

} else {
call [havoc val_b]
async propose_by_b(val_b)

}
}

ack_by_b() {
assert val_a == val_b

}

Fig. 3. Simple agreement protocol.

We want to apply our new proof rule to make the protocol

invocation in Main atomic and, at the same time, transform

all asynchronous calls into synchronous calls. Recall that our

justi�cation for introducing atomic blocks is based on commu-

tativity theory. In particular, asynchronously invoked atomic

actions need to be le� movers. Since the communication in

this example is a simple back and forth, it is easy to show that

no two atomic actions can be about to execute at the same

time. We do not go into detail and turn our a�ention to the

termination issue. Obviously, we cannot show termination

for this program; there is a non-terminating execution where

both processes keep on proposing new values to each other.

However, non-terminating executions per se do not harm the

soundness of our program transformation. We just have to

make sure that failures of the original program are preserved

in the transformed program. �us our cooperation condition

requires that for all partial executions of the atomic and syn-

chronized block we are introducing, there exists a terminating

or failing extension. �at is, we do not require general termi-

nation, but the possibility to terminate. In our example it is

easy to see that each process can always take the if-branch

when processing a proposal which leads to the termination of

the protocol. �e situation is very similar in many other asyn-

chronous programs, in particular distributed protocols. �ere

are corner cases of adversarial executions that cause inde�nite retries, but the common case is

an immediate resolution. For example, in the Paxos consensus protocol there is a tiny chance

that several proposers compete inde�nitely to get their proposals accepted, always invalidating

their competitors proposals. However, the common case is a single proposer that gets incoming

5

transactions accepted on the �rst a�empt. �is is exactly the intuition we exploit in practice to

establish our cooperation condition. �e programmer provides a restriction of the nondeterminism

in the program and then we perform a standard termination check on the restricted program. Note

that this termination check is not on a concurrent program anymore. It only concerns the modi�ed

part of the program, which is now sequential.

3 AN ASYNCHRONOUS PROGRAMMING LANGUAGE
In this section we introduce an asynchronous programming language, its operational semantics,

and the notion of re�nement between programs.

Variables and stores. LetV be a set of variables partitioned into global variables VG and local

variables VL . Furthermore, there is a set of return variables VR ⊆ VL . A store is a mapping

σ : V → D that assigns a value from a domain D to every variable. Similarly, g : VG → D is

a global store and ` : VL → D is a local store. We will use the notation g ·` to denote both the

combination of g and ` into a store, as well as the separation of a store into g and `. To model

return values from a procedure with local store `1 to a caller procedure with local store `2, we

de�ne the resulting store `1 B `2 at the caller as

`1 B `2(v) =

{
`1(v) if v ∈ VR
`2(v) if v < VR

.

Atomic actions. An atomic action is a pair (ρ,α), where the gate ρ is a predicate over stores

and the action α is a (transition) relation over stores [17]. In an execution, the invocation of an

atomic action �rst evaluates the gate in the current store. If ρ evaluates to false, the execution fails.

Otherwise, the store is updated according to α . We will write σ
α
−→ σ ′ for (σ ,σ ′) ∈ α .

Syntax. A program P is a �nite mapping from atomic action names A to atomic actions, and

procedure names P to statements s of the following form.

s ::= skip | s; s | if le then s else s | while le do s | call A | call P | async P | atomic ρ s

In addition to the standard constructs (skip, sequencing, conditionals, and loops), the language

supports the invocation of atomic actions, the synchronous and asynchronous invocation of procedures,

and the formation of atomic blocks. A program is well-formed if (1) it has a dedicated main procedure

Main that serves as an entry point for executions, and (2) every atomic action name respectively

procedure name appearing in a call statement is properly mapped to an atomic action respectively

statement. We assume that all programs are well-formed. We will use dot notation and write

P .A and P .P instead of P(A) and P(P). We denote by MaybeInvoked(P) the set of procedure and

atomic action names that are called (directly or indirectly, synchronously or asynchronously) from

Main.

Atomic blocks play a special role in our formalization. Similar to an atomic action, an atomic

block atomic ρ s has a gate ρ that needs to be satis�ed in order to execute the block. If so, the

statement s is executed to completion without preemption from any other thread. In this sense,

an atomic block is a precursors to an atomic action that still contains the details of sequential

execution steps. In Section 4 we present a program transformation to rewrite a statement into an

atomic block, and in Section 7 we show how to convert an atomic block into an atomic action. �is

separates the task of coarsening atomicity from the task of summarizing sequential execution. �us,

for technical convenience, we assume that the original input program does not contain atomic

blocks, and that the introduction of an atomic block is always followed by the conversion into an

atomic action.

6

Sequential step→

(g, TC[`][skip; s]) → (g, TC[`][s]) Seq

P .A = (ρ, α) g ·` ∈ ρ g ·`
α
−→ g

′ ·`′

(g, TC[`][call A]) → (g′, TC[`′][skip])
ActionStep

P .A = (ρ, α) g ·` < ρ

(g, TC[`][call A]) →
ActionFail

(` ∈ le ∧ s ′ = s1) ∨ (` < le ∧ s ′ = s2)

(g, TC[`][if le then s1 else s2]) → (g, TC[`][s ′])
If

(` ∈ le ∧ s ′ = s ; while le do s) ∨ (` < le ∧ s ′ = skip)

(g, TC[`][while le do s]) → (g, TC[`][s ′])
While

(g, TC[`][call P]) → (g, (`, P .P) ·TC[`][skip]) Call (g, (`1, skip) ·TC[`2][s]) → (g, TC[`1 B `2][s]) Return

Concurrent step⇒

(g, t) → (g′, t ′)

(g, T] t) ⇒ (g′, T] t ′)
Step

g ·` ∈ ρ (g, (`, s)) →∗ (g′, (`′, skip))

(g, T] TC[`][atomic ρ s]) ⇒ (g′, T] TC[`′][skip])
AtomicStep

(g, t) →
(g, T] t) ⇒

Fail

g ·` < ρ ∨ (g, (`, s)) →∗
(g, T] TC[`][atomic ρ s]) ⇒

AtomicFail

(g, T] TC[`][async P]) ⇒ (g, T] TC[`][skip]] (`, P .P)) Async (g, T] (`, skip)) ⇒ (g, T) End

Fig. 4. Small-step operational semantics.

�e logical expression le in conditionals and loops is not allowed to access global variables. We

identify le with the set of local stores that satisfy the expression. �us, we write ` ∈ le if le evaluates

to true under `, and ` < le otherwise. All updates to variables, and, in particular, accesses to global

variables, are encapsulated within atomic actions.

Semantics. A frame f is a pair (`, s) of a procedure-local store ` together with a statement s that

remains to be executed. A thread t is a sequence of frames
®f , denoting a call stack. A state (g,T)

is a pair of global store g and a �nite multiset of threads T . By slight abuse of notation we will

identify a thread t with the singleton multiset {t}, and thus write T] t for adding t to T . We

present our semantics as reduction semantics [20] and de�ne statement contexts SC, frame contexts

FC, and thread contexts TC as follows.

SC ::= •Stmt | SC; s FC ::= (•LStore, SC) TC ::= FC · ®f

�e contexts are nested and a top-level thread context contains two unique holes • that can be �lled

with a statement and a local store, respectively. We write TC[`][s] to denote the thread obtained by

�lling the respective holes with ` and s . Intuitively, this thread has the frame (`, s) on the top of

its stack. �e operational semantics is formalized as the sequential transition relation→ and the

concurrent transition relation⇒ according to the rules in Figure 4. An execution π is a sequence of

states x0 ⇒ x1 ⇒ . . . , and we write π : x0 ⇒
∗ xn to denote that π is an execution that starts in x0

and ends in xn .

Remark 3.1. For the remainder of the paper we assume that every statement s in a program P has

an implicit unique identity. �us, (a) any two di�erent occurrences of syntactically equal statements

are distinguished, and (b) every occurrence of a statement in an execution can be a�ributed to a

unique syntactic statement in the program.

Speci�cations. Given a program P, we are interested in executions that start with a single thread

executing Main from some initial store σ = g·`, i.e., executions that start in a state (g, (`,P .Main)).

7

In particular, we are interested in executions that either fail or terminate. We de�ne Bad(P) to be

the set of initial stores associated with failing executions, and Good(P) to be the relation between

initial stores and �nal global stores associated with terminating executions. Formally,

Bad(P) =
{
g·` |

(
g, (`,P .Main)

)
⇒∗

}
Good(P) =

{
(g·`, g′) |

(
g, (`,P .Main)

)
⇒∗ (g′,∅)

}
A program P1 re�nes a program P2, denoted P1 4 P2, if

(1) Bad(P1) ⊆ Bad(P2) and

(2) Bad(P2) ◦ Good(P1) ⊆ Good(P2).

�e �rst condition states that P2 has to preserve failing executions of P1. �e second condition

states that P2 has to preserve terminating executions of P1 for initial states that cannot fail. �at

is, P2 can fail more o�en than P1.

Lemma 3.2. If P1 4 P2 and P2 4 P3, then P1 4 P3.

Program transformations. In the following sections we de�ne program transformationsP P ′

that transform program P into P ′. For convenience, we will sometimes write transformations

s s ′ between statements to mean the transformation of a procedure body from s into s ′, i.e.,

s s ′

P ∪ [P 7→ s] P ∪ [P 7→ s ′]
.

In order to conveniently specify rewrite rules on statements we de�ne rewrite contexts RC as follows.

RC ::= •Stmt | RC; s | s; RC | if le then RC else s | if le then s else RC

| while le do RC | atomic ρ RC

4 REDUCTION OF UNBOUNDED ASYNCHRONOUS COMPUTATIONS
Our main novel contribution in this paper is a new program transformation called synchronization,

a generalization of reduction [21, 42] targeted towards asynchronous programs. While reduction

classically allows the creation of a coarse-grained atomic action from a sequence of �ne-grained

atomic actions performed by a single thread, synchronization allows the creation of a coarse-grained

atomic action from an arbitrary asynchronous computation, executed by a potentially unbounded

number of concurrently-executing threads. More precisely, synchronization allows to rewrite a

statement s into atomic ρ s ′, where s ′ is completely synchronous.

�e soundness of the synchronization transformation requires two technical innovations. First,

we extend the usual commutativity conditions required for reduction to account for asynchronous

thread creation. Second, synchronization requires to impose a cooperation condition on s ′, that

guarantees that partial sequential executions of s ′ can be completed. In this section we state and

prove the correctness of synchronization w.r.t. abstract formulations of both conditions. �en, in

Section 5 we present a type system to establish the commutativity conditions, and in Section 6 we

show how cooperation can be established via a standard safety and termination check on a reduced

sequential program.

Synchronization. For a statement s with potential asynchronous invocations we want to de�ne a

synchronous version s ′. Since asynchronous invocations can happen indirectly, we must not only

rewrite asynchronous calls in s , but also introduce synchronized versions of the procedures called

by s . For a program P, let f be a mapping between procedure names. �en for a statement s we

de�ne Syncf (s) to be the statement equal to s , except that every call P and async P is replaced

with call f (P). �e mapping f is called a synchronization function, if for every procedure P ,

P . f (P) = Syncf (P .P). Note that for convenience we de�ned f to provide a synchronized version

of every procedure, although our program transformation only uses the ones actually called from s .

8

Remark 4.1. Since asynchronous calls cannot return values to their callers, we assume that all

asynchronously called procedures do not modify any return variable inVR . �is allows us to safely

execute a synchronized call directly (i.e., synchronously) in the thread of the caller, without its

local variables being corrupted.

De�nition 4.2. Let P be a program without any atomic blocks, and let f be a synchronization

function for P. �en the synchronization rule allows to make a statement s in P atomic and

synchronous as follows.

s ′ = Syncf (s) Atomic(s,P) Cooperative(ρ, s ′)

RC[s] RC[atomic ρ s ′]
Synchronize

Let P, s, s ′, ρ, f be �xed for the remainder of this section. Recall that, by Remark 3.1, it is always

possible to distinguish the execution steps that are due to the particular rewri�en occurrence of

statement s from those that are due to potentially other occurrences of s in the program. In the

following we will only refer to the former. �e soundness of our synchronizing reduction rule

relies on two proof obligations.

�e �rst proof obligation Atomic(s,P) states that the statement s has to be atomic in the context

of program P, which is based on commutativity theory and the notion of le� mover and right

mover originally coined by Lipton [42]. Intuitively, an atomic action is called a right mover, if it

commutes to the right (i.e., later in time) with respect to all other atomic actions in P. Analogously,

an atomic action is called a le� mover, if it commutes to the le� (i.e., earlier in time) with respect

to all other atomic actions in P. An atomic action can be both a le� and right mover. Concretely,

for every A1,A2 ∈ P the following conditions need to hold [30] (see Appendix A for complete

formalization).

• Commutativity: If A1 is a right mover or A2 is a le� mover, then the e�ect of executing

A1 followed by A2 in two di�erent threads can be achieved by executing A2 followed by A1.

• Forward preservation: If A1 is a right mover or A2 is a le� mover, then the failure of A2

immediately a�er the execution of A1 is implies that A2 must also fail before the execution

of A1.

• Backward preservation: If A2 is a le� mover (and A1 is an arbitrary atomic action), then

the failure of A1 immediately before the execution of A2 implies that A1 must also fail

immediately a�er the execution of A2.

• Nonblocking: If A2 is a le� mover, then A2 cannot block.

Letm be the mapping from atomic actions to their respective mover type: B (both mover), L (le�

mover), R (right mover), A (atomic non-mover). Note that every execution step other than the

invocation of an atomic action is naturally a both mover, since it neither reads from nor writes to

the global store.

De�nition 4.3. Atomic(s,P) holds, if the execution steps of every occurrence of s in every con-

current execution of P satisfy: (1) the sequence of mover types (including steps in asynchronously

created threads) has the form R
∗
A

?
L
∗
, and (2) the sequence of mover types in every individual

asynchronous thread has the form L
∗
.

Intuitively, condition (1) allows us to commute the steps in an execution such that s executes

without interruption from other threads; other threads that existed before s started to execute and

their child threads that were created during the execution of s . Condition (2) allows us to arrange

asynchronous calls such that they take e�ect immediately. To obtain a sound re�nement, we further

need to establish a cooperation condition. Consider the situation where s was executed partially and

then another thread in the environment failed. We need to show that this failure is preserved when

9

s executes atomically and synchronously (i.e., in an execution of s ′). If all steps of s so far were right

movers, they can be completely elided from the execution and thus the failure can occur before s ′

even starts. However, if s already executed some non-right mover, the cooperation condition states

that there must be some possibility to �rst run s to completion, such that the failure can occur a�er

s ′ �nished. �us, the cooperation condition prevents failing executions of the original program to

be turned into blocking executions of s ′ in the synchronized program.

De�nition 4.4. Cooperative(ρ, s ′) holds, if every partial sequential execution of s ′ that starts in a

store that satis�es ρ and already executed a non-right mover can be extended to a terminating or

failing execution.

We will now state and prove the correctness of our new synchronization rule. Since both of our

proof obligations are, in general, undecidable, we show in the following two Sections 5 and 6 how

they can be e�ciently checked in practice.

Theorem 4.5. If P1 P2 using the Synchronize rule, then P1 4 P2.

Proof. Bad(P1) ⊆ Bad(P2). Let π1 : (g, (`,P1.Main)) ⇒∗ be an arbitrary failing P1-execution.

We show how to construct a failing P2-execution π2 : (g, (`,P2.Main)) ⇒∗ . First, by condition (1)

of Atomic(s,P) we can rewrite π1 into π ′
1

: (g, (`,P1.Main)) ⇒∗ , such that all steps of any

top-level occurrence of s happen without any outside interleavings. �is follows from a standard

commutativity argument, where all right movers are moved to the right and all le� movers are

moved to the le�, until they meet. Now we show that all asynchrony can be eliminated in π ′
1
. We

rewrite π ′
1

stepwise into π ′′
1

: (g, (`,P1.Main)) ⇒∗ by individually considering every occurrence

of s from le� to right and doing the following. If the store right before the start of s does not satisfy

ρ, we are done. Otherwise, we consider every position from le� to right at which there exists

an un�nished thread created by s , and preserve the invariant that the portion to the le� of the

current position corresponds to a valid sequential execution. �ere is always a youngest thread

(corresponding to the topmost frame in a synchronous execution) that we need to make the next

step. If this thread makes the step at the current position, we move on. Otherwise there are two

cases, either the thread has a step downstream in the execution or not. In the �rst case, this step

has to be a le� mover by condition (2) of Atomic(s,P) and we can move it to the current position.

In the second case, observe that we can apply Cooperative(ρ, s ′) to the partial execution to the le�

of the current position to obtain a terminating of failing extension πext . Furthermore, all atomic

actions in πext are le� movers. We consider only the pre�x π ′
ext

of πext that terminates the youngest

thread. Because of the properties of le� movers, we can insert all steps of π ′
ext

at the end of our

concurrent execution, right before the failure, and commute them back to the concurrent position.

Observe that there can be only a �nite number of un�nished threads that we have to terminate like

this. At this point we eliminated all asynchronous interleavings within s . Now we need to consider

the case where the execution of s neither fails nor terminates. If the execution so far only invoked

right moving atomic actions, we can commute them all the way to the right in the concurrent

execution, over the �nal failure, and thus eliminate them from the execution altogether. Otherwise,

we can apply Cooperative(ρ, s ′) as before to obtain a failing or terminating extension of le� movers

that we can insert into the execution to complete s . Finally we obtain π2 from π ′′
1

by simulating

every step of s with a corresponding step in s ′. Here we rely on the assumption from Remark 4.1.

Bad(s2) ◦ Good(s1) ⊆ Good(s2). Let π1 : (g, (`,P1.Main)) ⇒∗ (g′,∅) be an arbitrary terminating

P1-execution. We proceed exactly as above. If we do not introduce a failure, we obtain a terminating

P2-execution π2 : (g, (`,P2.Main)) ⇒∗ (g′,∅). Otherwise we obtain a failing P2-execution π2 :

(g, (`,P2.Main)) ⇒∗ . �

10

5 CHECKING Atomic(s,P)

RM LM

B,R

B,R,L,A

B,L

Fig. 5. Atomicity automaton A.

Condition (1) of Atomic(s,P) states that the sequence of mover

types along every execution of s has to induce a path in the atom-

icity automaton A shown in Figure 5. Let L be the function that

labels edges of A with mover types, and its inverse L−1
maps a

mover type to the corresponding set of edges. We de�ne a type

system that assigns to every statement in P a set of edges in A,

corresponding to the locations at which it is allowed to appear in

an execution. Recall that m is the mapping of atomic action names

to their respective mover types. Furthermore, our type system is parameterized by a set C of

synchronized loops and procedure names that will be subject to the cooperation check. Based onm
and some C, let M be a solution to the typing equations in Figure 6. �e greatest solution (w.r.t. ⊆)

can be obtained using standard �xed point iteration. Alternatively, procedures can be annotated

with a �xed mover type and the annotation of each procedure is checked modularly.

M(skip) = L−1(B) M(call A) = L−1(m(A))

M(s1; s2) = M(s1) ◦M(s2) M(if le then s1 else s2) = M(s1) ∩M(s2)

M(while le do s) =

{
M(s) ∩ {RM→RM, LM→LM} if Syncf (while le do s) ∈ C

M(s) ∩ {RM→RM} if Syncf (while le do s) < C

M(call P) =

{
M(P .P) if f (P) ∈ C
M(P .P) ∩ {RM→RM} if f (P) < C

M(async P) =

{
M(P .P) ∩ {LM→LM} if f (P) ∈ C
∅ if f (P) < C

Fig. 6. Typing equations.

First, let us restrict our a�ention to the cases ∈ C. �e equations propagate type information

along the control �ow of program statements, where calls to atomic actions are typed according

to their mover type, and calls to procedures inherit the type of the body of the called procedure.

For example, consider the equation for while loops. Since loop bodies are generally executed

multiple times, we do not allow the body of a loop to act as the edge RM→LM, since this would

allow a non-mover to be executed multiple times. �ere is no equation for atomic blocks, since

we assumed that P does not contain any atomic blocks. If we can type s such that M(s) , ∅, we

are guaranteed that the sequence of mover types along any execution of s has the form R
∗
A

?
L
∗
.

Note that it is perfectly �ne to type statements outside of s with ∅. Furthermore, the equation for

asynchronous calls makes sure that all steps in threads created by s are le� movers. �us, our type

system establishes Atomic(s,P).

Theorem 5.1. LetM be a solution to the equations in Figure 6 such thatM(s) , ∅, then Atomic(s,P).

Now we turn our a�ention to the cases < C in the typing equations, that enforce additional

constraints on the typing of loops and calls. Loops and recursive calls are the potential sources of

nonterminating behaviors. Since Cooperative(ρ, s ′) requires the existence of cooperating extensions

to partial synchronous executions of s only if already some non-right mover took e�ect, we a free to

type any loop or procedure call with {RM→RM}. �en we are guaranteed that only right movers

executed so far. However, if we want to assign a richer type to a loop or procedure call, they have

11

(a)

global var x : int

async [x := x + 1]
call [assert x == 1]

(b)

global var x : int

async [x := x + 1]
call [assert x <= 1]

(c)

global var x : int

call [x := 0]
async [x := x + 1]

Fig. 7. Synchronization is permi�ed in program (b), but not in (a) or (c).

to be included in the set C in order to be accounted for in the cooperation check described in the

next section. Notice that the loops and procedures in C are already synchronized.

Example 5.2. Let us revisit our motivating example in Figure 1. In order to synchronize the

asynchronous calls to the increment and decrement atomic actions, we have to check that they are

le� movers with respect to themselves and each other. Going though the list, we have commutativity

(addition in general is commutative), forward and backward preservation (the gate of both atomic

actions is true), and nonblocking (addition is enabled for all integers). Since both atomic actions

are le� movers, the asynchronous calls can be typed as {LM→LM}. �en both while loops also

have to be typed as {LM→LM}, and thus their synchronizations have to be included in C for the

cooperation check. Finally, sequential composition types the whole body of Main as {LM→LM}.

Example 5.3. To gain further intuition on the le� mover requirement, let us discuss the ap-

plicability of synchronization in the programs in Figure 7. Program (a) asynchronously invokes

an increment operation and asserts that x is equal to one in the gate of a second atomic action.

Synchronizing the invocation of the increment in this program is not permi�ed, since it is not a

le� mover in the context of the program. In particular, backward preservation with respect to the

assertion does not hold. Indeed, there is an asynchronous execution of the program with x initially

zero that postpones the increment and fails, while the synchronous execution does not fail.

By contrast, in program (b) the gate is weaker and only asserts that x is less than or equal to one.

Here the increment is a le� mover and synchronization is applicable. It is an easy exercise to check

that program (b) re�nes its synchronized version.

Finally, program (c) initializes the global variable x to zero before it asynchronously invokes

the increment operation. Since increment does not commute with the initialization operation, it

is not a le� mover and synchronization is not allowed. In this program it is easy to see that this

two atomic actions will never be concurrently enabled and about to execute. In other words, we

would never have to commute an increment action to the le� of an initialization action to recover a

sequential execution from an asynchronous one. However, computing which atomic actions can

execute concurrently is, in general, as undecidable as veri�cation itself. �us, primitive atomic

actions usually have to be equipped with stronger gates to make them le� movers. For example, if a

shared variable is protected via a lock, the gate of an atomic action accessing the variable states that

the lock must be held. In Section 8 we illustrate the use of permissions [8] to aid in commutativity

checks.

6 CHECKING Cooperative(ρ, s ′)

Let π be a partial synchronous execution of s ′ that started in a store that satis�es ρ and already

executed some non-right mover. We have to guarantee that there exists a terminating or failing

extension of π . �ere are two crucial observations.

• First, there always exists some extension of π . �is is because there are only le� movers

remaining to be execute, and those cannot block. Still, there is a di�erence between some or

all extensions of π to be terminating or failing. �is is because of nondeterminism, which

12

is con�ned to atomic actions in our programming language. However, if we can suitably

restrict the nondeterminism to eliminate all nontermination, we can reduce the search for

some terminating or failing extension to a standard termination check on the restricted

program.

• Second, assume that there does not exist a terminating or failing extension of π ; i.e., all

extensions are nonterminating. �en in any such execution there must either occur a loop

or procedure call from C that does not terminate. �us it su�ces to show the termination

of all loops and procedures in C from the reachable states of s ′.

Based on those two observations we reduce Cooperative(ρ, s ′) to standard sequential safety and

termination checks as follows. A safety annotation Pre is a mapping from C to state predicates,

such that Pre(x) always holds before the execution of x .

De�nition 6.1. Safe(ρ, s ′, Pre) holds, if for every execution of s ′ that starts in a store that satis�es

ρ, Pre(P) is a valid precondition for every procedure P ∈ C, and Pre(while le do s) is a valid loop

invariant for every loop while le do s ∈ C.

At this point we want to stress that, in practice, Safe(ρ, s ′, Pre) is established without any extra

burden for the programmer nor the veri�er. �at is, for Pre it is su�cient to use the preconditions

and loop invariants that are necessary to prove the safety of the transformed program.

To restrict the nondeterminism in the program, we allow the programmer to supply restricted

versions of the atomic actions called in C. Since all those atomic actions are le� movers, we also

have to preserve the nonblocking property. Formally, a restriction function r is a partial mapping

from atomic action names to atomic action names, such that for all A ∈ P with P .A = (ρ,α) and

r (A) = A′, it holds that P .A′ = (ρ,α ′) with α ′ ⊆ α and A′ is nonblocking. Checking this conditions

is a purely logical reasoning task performed by a theorem prover. Given a restriction function r , let

Pr
be the program equal to P, except that Pr .A = r (A) for A in the domain of r .

Now we are ready to state the termination checks that can be solved by any standard termination

checker for sequential programs. In particular, for a termination checker based on user-provided

ranking functions, the required annotations can be provided directly in the source code of the

original program. Intuitively we require that every loop and procedure in C terminates with

restricted nondeterminism from every store in Pre.

De�nition 6.2. Terminates(C, Pre, r) holds, if all the following Pr
executions terminate:

• executions of P with P ∈ C that start in Pre(P), and

• executions of while le do s with while le do s ∈ C that start in Pre(while le do s).

Theorem 6.3. Let M be a solution to the equations in Figure 6 w.r.t. a set C, such that M(s) ,
∅. Let Pre be a safety annotation and let r be a restriction function such that Safe(ρ, s ′, Pre) and
Terminates(C, Pre, r). �en Cooperative(ρ, s ′).

Example 6.4. Recall the simple agreement protocol from Figure 3. Figure Figure 8 illustrates how

we establish the cooperation condition; (a) shows an excerpt of the original nondeterministic if

condition; (b) shows the corresponding implementation in our programming language using a

call to an atomic action that nondeterministically initializes a local boolean variable b; (c) shows

a user-provided restriction of the atomic action that always sets b to true. Now the termination

check for the restricted program is trivial, since all recursive calls have been eliminated.

13

(a)

if (*) {
// accept

} else {
// reject

}

(b)

call [havoc b]
if (b) {

// accept
} else {

// reject
}

(c)

call [b := true]
if (b) {

// accept
} else {

// reject
}

Fig. 8. Showing cooperation for the agreement protocol from Section 2.3.

7 A REFINEMENT-BASED PROOF SYSTEM FOR ASYNCHRONOUS PROGRAMS
�e synchronization rule introduced in the previous section establishes a re�nement relation be-

tween two programs. �us it can be generally combined with any other technique that is compatible

with this interface. In this section we present proof rules that complement synchronization to form

the basis of our �exible and practical proof methodology for asynchronous programs.

Abstraction. First and foremost, a�er the formation of an atomic block using our synchronization

rule, we usually desire to transform the atomic block further into the invocation of an atomic action.

To do so, we need to show that the atomic block behaves as that atomic action. Formally, an atomic

block atomic ρ1 s re�nes an atomic action (ρ,α), denoted atomic ρ1 s 4 (ρ,α), if

(1) ρ1 ∪ {g·` | (g, (`, s) →
∗ } ⊆ ρ2 and

(2) ρ2 ◦ {(g·`, g
′·`)) | (g, (`, s) →∗ (g′, (`′, skip))} ⊆ α2.

Note that this is a purely sequential condition. We call the resulting program transformation

atomization since the stepwise behavior of s is summarized by a single atomic action.

atomic ρ s 4 P .A

RC[atomic ρ s] RC[call A]
Atomize

�us, synchronization and atomization together summarize in a single atomic action an arbitrary

asynchronous computation executed by a potentially unbounded number of concurrently-executing

threads.

Furthermore, we can replace atomic actions with more abstract ones. An atomic action (ρ1,α1)

re�nes an atomic action (ρ2,α2), denoted (ρ1,α1) 4 (ρ2,α2), if

(1) ρ2 ⊆ ρ1, and

(2) ρ2 ◦ α1 ⊆ α2.

P .A 4 P .A′

RC[call A] RC[call A′]
Abstract

Abstraction is the main antagonists to synchronization and usually necessary between two syn-

chronization steps in order to make the atomic actions a�er an application of synchronization

commute as desired for the next application of synchronization.

Finally, if the body of a procedure was reduced to a single atomic action invocation, we can

replace calls to the procedure with calls to the atomic action.

P .P = call A
RC[call P] RC[call A]

Collapse

Atomic action & procedure introduction. We can always introduce new atomic actions and

procedures into the program. Note that we require programs to be well-formed. �us, mutually

14

recursive procedures have to be introduced together.

A < P
P P ∪ [A 7→ (ρ,α)]

ActionIntro

∀i : Pi < P

P P ∪
⋃

i [Pi 7→ si]
ProcIntro

ProcIntro is the formal justi�cation for introducing synchronized procedures into P in order to

apply Synchronize. ActionIntro is the formal justi�cation to introduce restricted atomic actions

for our cooperation check, as well as for the abstraction rules de�ned above.

Atomic action & procedure elimination. Contrary to introduction, we can eliminate atomic

actions and procedures from the program, if they are not called from Main.

A < MaybeInvoked(P)

P ∪ [A 7→ (ρ,α)] P
ActionElim

∀i : Pi < MaybeInvoked(P)

P ∪
⋃

i [Pi 7→ si] P
ProcElim

Since the mover types of atomic actions depend on all other atomic actions in the program, the

elimination of unused atomic actions is particularly important to establish the desired mover types.

Variable introduction & elimination. Since it is not central to our innovation on synchronizing

asynchronous computations, we do not formalize the introduction and elimination of local and

global program variables. However, we note that in practice it is immensely helpful to allow

di�erent sets of variables to exist on di�erent levels of re�nement, which is supported in our

implementation.

Theorem 7.1. If P1 P2 using any of the rules de�ned in this section, then P1 4 P2.

Theorem 7.2. If P1 ∗ P2, then P1 4 P2.

Proof. Follows from ⊆4 (�eorem 4.5 and �eorem 7.1) and the transitivity of4 (Lemma 3.2).

�

8 EVALUATION AND EXPERIENCE
We implemented and evaluated our veri�cation method in the context of CIVL [29], a veri�cation

system for concurrent programs based on automated and modular re�nement reasoning. CIVL itself

is implemented as a conservative extension of the Boogie language and veri�er [2]. A CIVL program

comprises a set of procedures that are speci�ed and veri�ed across multiple layers of re�nement.

At each layer, procedures can be declared to re�ne an atomic action and henceforth appear atomic

to higher layers. Re�nement is established via a blend of logic-based and automata-based reasoning.

Proof hints are usually required in the form of location invariants to aid in non-interference [50]

or rely-guarantee [35] reasoning. However, those annotations are not required to be strong

enough to prove program correctness but only strong enough to provide the context for re�nement

checking. Finally, a linear type system enables logical encoding of thread identi�ers, permissions,

etc., signi�cantly reducing the annotation burden.

Integrating our synchronization proof rule into CIVL required modi�cations throughout the

processing pipeline, including the treatment of asynchronous calls, the type checker for layer

annotations, the type checker for mover types, and the veri�cation condition generation algorithm.

While the implementation of a termination checker for sequential programs is an orthogonal

challenge, we are currently working on a termination feature for Boogie. For now, we hand-

translated the termination problems corresponding to the cooperation checks for our examples

into Dafny [41], which proved termination without any user-provided annotations.

We evaluated our technique on several examples, which we discuss in the remainder of this

section. First, we considered a progression of programs expanding our motivating examples from

Section 2. �is includes the implementation of a barrier mechanism that allows a client to block

15

const N : int;
axiom N > 0;

// #####################################
// Global shared variable

var {:layer 0} x : int;

// #####################################
// Layer 0: Low level atomic actions

procedure {:layer 0} inc ();
atomic {:both} |{ x := x + 1; }|;

procedure {:layer 0} dec ();
atomic {:both} |{ x := x - 1; }|;

// #####################################
// Layer 1: Main and inc/dec by N

procedure {:layer 1} main ()
atomic {:both} |{ skip; }|;
{
async call inc_by_N();
async call dec_by_N();

}

procedure {:layer 1} {:left} inc_by_N ()
modifies x;
ensures {:layer 1} x == old(x) + N;
{

var i := 0;
while (i != N)
invariant {:layer 1} x == old(x) + i;
{

i := i + 1;
async call inc();

}
}

procedure {:layer 1} {:left} dec_by_N ()
modifies x;
ensures {:layer 1} x == old(x) - N;
{

var i := 0;
while (i != N)
invariant {:layer 1} x == old(x) - i;
{

i := i + 1;
async call dec();

}
}

Fig. 9. Asynchronous increments and decrements in CIVL.

and wait for the completion of an asynchronous computation. Second, our central touchstone

was the speci�cation and veri�cation of the two-phase commit protocol. Our implementation is

very fast; the full 2PC benchmark is veri�ed in 3 seconds on a standard Laptop (1.60GHz × 4, 8GB)

running Ubuntu. �ird, we implemented the Paxos consensus algorithm and a protocol related to a

distributed hash table. We are working on the completion of those proofs and report on the atomic

action speci�cation.

8.1 Layered Proofs
In Figure 9 we show the CIVL implementation of our motivating example in Figure 1, with the

slight modi�cations that we use a symbolic constant N instead of the �xed constant 100, and both

loops creating the increment and decrement threads are factored into separate procedures that are

in turn asynchronously called by main.

First we need to understand the semantics of layer annotations to avoid the pitfall of believing

that the layer associated with a procedure denotes the one and only layer the procedure exists on.

�is is not the case! Conceptually a procedure exists across all layers, but with a layer annotation

we express that at this particular layer we want to prove something about the procedure, e.g., an

atomic action speci�cation that simpli�es the program for reasoning at higher layers.

Layer 0. Layer 0 is the lowest layer in our proof and represents the original program we want

to reason about. At this layer the procedures inc_by_N, dec_by_N, and main consist just of their

implementations as shown in Figure 9. On the other hand, the procedures inc and dec are declared

16

with associated atomic action speci�cations. Since this procedures do not have bodies, we assume

the atomic actions to be given and there is nothing to be proved at layer 0. However, it would

be possible to provide implementations for the procedures on an even lower layer, e.g., to model

a platform that does not support atomic integer operations. �en the layer annotation would

introduce a proof obligation to guarantee that it is sound to reason about inc and dec using

the atomic action speci�cations at layers above 0. Intuitively, at the boundary of layer 0 the

implementations of inc and dec disappear and only the atomic action speci�cations remain.

Layer 1. At layer 1 our main goal is to prove the atomic action speci�cation of main, that states

that higher layers can forget about all the asynchronous computation, and just pretend as if

main executes atomically and leaves the global state unchanged. Formally, this is achieved via a

combination of synchronization and atomization. In the code of Figure 9, inc_by_N and dec_by_N
are annotated with a mover type to indicate that they should participate in synchronization and

which type they should be assigned for type checking. We already discussed the type checking in

Example 5.2. �e cooperation condition is easy to establish because the while loops are statically

bounded. Now synchronization allows us to consider, at layer 1, (a) all asynchronous calls as

synchronous calls, and (b) the body of main to execute atomically. �us we can resort to the

sequential technique of using preconditions and postconditions to reason about procedure calls,

which allows atomization (i.e., the sequential reasoning engine of CIVL) to conclude that main
leaves the global state unchanged, establishing its atomic action speci�cation. Note that the stated

postconditions and the loop invariants to prove them are not valid at layer 0, where we still have

asynchronous calls.

8.2 Verifying the Two-Phase Commit Protocol
�e two-phase commit protocol (2PC) is a distributed algorithm that allows a set of processes to

collectively agree on the outcome of a transaction, i.e., whether to commit or abort a transaction.

�us it is used, e.g., in database systems to implement distributed atomic transactions. �e protocol

works as follows. �ere is one dedicated coordinator process, and a �xed number of participant

processes. For every incoming request, the coordinator initializes a transaction and forwards the

request to all participants. Each participant decides if it is able to commit the transaction, and

replies to the coordinator either with a “yes” vote to commit, or a “no” vote to abort. However, in the

case of a “yes” vote, a participant does not yet persistently commit the transaction. �e coordinator

processes incoming votes as follows: (1) If all participants voted “yes”, the coordinator declares the

transaction as commi�ed and sends a “commit” message to all participants. (2) If, on the other hand,

a single participant voted “no”, the coordinator immediately declares the transaction as aborted

and sends an “abort” message to all participants. Due to asynchrony and message reordering, the

protocol implementation must be robust against unexpected situations, e.g., a participant receiving

an abort message for a transaction it was not yet asked to vote for.

In CIVL we implement every message handler as a procedure and model the sending of a

message as an asynchronous call to the corresponding message handler (in another process). �is

novel way of expressing message passing eliminates shared-state message bu�ers and captures

the standard limitations of message delivery in computation networks, i.e., potentially lost and

reordered messages. Our approach could also account for duplicated messages via nondeterministic

loops around calls to message handlers. However, in this example we did not consider message

duplication. Figure 10 shows the message handlers in 2PC together with their call hierarchy. We use

the convention of pre�xing their names with C for coordinator or P for participant, e.g., P_VoteReq
is the handler of a participant process for vote request messages sent by the coordinator. Figure 11

shows the implementation of message handlers together with their atomic action speci�cations.

17

C_TransReq

C_VoteYes

C_VoteNo

P_VoteReq

P_Commit

P_Abort

synchronize
atomize

synchronize
atomize

synchronize
atomize

Fig. 10. 2PC call hierarchy (from le� to right) and proof outline (right to le�).

�e ghost variable state holds the belief about the state of every transaction for every process,

which can be undecided, commi�ed, or aborted. �e real state is held in the votes variable, which

is used by the coordinator to count the number of “yes” votes it received for every transaction.

�e correctness of 2PC is expressed by the predicate xConsistent in the top-level speci�cation of

C_TransReq, that states that for the allocated transaction there are no two processes such that one

believes the transaction to be commi�ed and the other one aborted. To prove this property we use

the combined power of our synchronization rule together with the existing atomization in CIVL,

illustrated in Figure 10.

�e �rst step is to synchronize the call to P_Commit in C_VoteYes, and the call to P_Abort in

C_VoteNo. For that, both actions have to be le� movers with respect to themselves, each other, and

the actions C_VoteYes_Update and C_VoteNo_Update which perform the local state update in the

coordinator, i.e., all actions called within the context of C_VoteYes and C_VoteNo. For example,

P_Commit and P_Abort commute because their gates have opposing assertions about the state of

the coordinator; P_Commit asserts that the coordinator is already commi�ed, while P_Abort asserts

that the coordinator is already aborted. It is important to highlight that those assertions are not

only used for le� mover checks. �ey also serve as safety speci�cations about intermediate states

during program execution that are veri�ed by our methodology.

In our next synchronization step we want to synchronize both the call of C_VoteYes and

C_VoteNo in P_VoteReq. However, for that we �rst have to convert them into atomic actions by

means of atomization. Both atomic action speci�cations state that the current state is extended,

such that it remains consistent and no process goes from commi�ed or aborted back to undecided.

�e atomization as well as the subsequent le� mover checks for C_VoteYes and C_VoteNo make

use of linear permissions as follows. In C_TransReq, for every transaction with identi�er xid we

also allocate a ghost set of permissions consisting of all pairs (xid,pid), where pid is a process

identi�er of a participant. �e calls to P_VoteReq and in turn C_VoteYes and C_VoteNo get passed

the appropriate permission p, corresponding to their xid and pid parameter, which is expressed by

the predicate p.perm(xid,pid). In C_VoteYes, all incoming permissions are collected in a ghost

set B. �e linear type checker ensures that the collection of permissions stored in linear variables

live at any time during execution never contain the same permission twice. In particular, we are

guaranteed that no two instances of C_VoteYes and C_VoteNo ever execute with the same values

for xid and pid. And further, capturing the correctness mechanism of 2PC, if all permissions for a

particular xid arrived in B, there cannot be any pending instance of C_VoteNo for that xid.

�e remaining atomization of P_VoteReq, the synchronization of P_VoteReq in C_TransReq,

and the atomization of C_TransReq are simple propagation.

18

C_VoteYes (xid, pid, linear_in p) {
 call commit := C_VoteYes_Update(xid, pid, p);
 if (commit) {
 for (i in 1..numParticipants) {
 async call P_Commit(xid, i);
 }
 }
}

C_VoteNo (xid, pid, linear_in p) {
 call abort := C_VoteNo_Update(xid, pid);
 if (abort) {
 for (i in 1..numParticipants) {
 async call P_Abort(xid, i);
 }
 }
}

assert p.perm(xid, pid);
assert xConsistent(state[xid]);
add p to B;
if (xAllPermsInB(xid)) {
 havoc state[xid];
 assume xExtends(old(state[xid]), state[xid]);
}

assert p.perm(xid, pid);
assert xUndecidedOrAborted(state[xid]);
havoc state[xid];
assume xUndecidedOrAborted(state[xid]);
assume xExtends(old(state[xid]), state[xid]);

C_VoteYes_Update (xid, pid)
assert VotesEqState(votes[xid], state[xid][C_Pid]);
if (votes[xid] != -1) {
 votes[xid] := votes[xid] + 1;
 if (votes[xid] == numParticipants) {
 state[xid][C_Pid] := COMMITTED;
 return true;
 }
}
return false;

C_VoteNo_Update (xid, pid)
assert !Committed(state[xid][C_Pid]);
if (votes[xid] != -1) {
 state[xid][C_Pid] := ABORTED;
 votes[xid] := -1;
 return true;
}
return false;

P_Commit (xid, pid)
assert participantPid(pid);
assert Committed(state[xid][C_Pid]);
assert xUndecidedOrCommitted(state[xid]);
state[xid][pid] := COMMITTED;

P_Abort (xid, pid);
assert participantPid(pid);
assert Aborted(state[xid][C_Pid]);
assert xUndecidedOrAborted(state[xid]);
state[xid][pid] := ABORTED;

C_TransReq () {
 call xid, linear perms := AllocateXid();
 for (i in 1..numParticipants) {
 async call P_VoteReq(xid, i, perms[i]);
 }
 return xid;
}

havoc state[xid];
assume xConsistent(state[xid]);

P_VoteReq (xid, pid, linear_in p) {
 if (*) {
 async call C_VoteYes(xid, pid, p);
 } else {
 call SetParticipantAborted(xid, pid, p);
 async call C_VoteNo(xid, pid, p);
 }
}

assert p.perm(xid, pid);
assert xConsistent(state[xid]);
havoc state[xid];
assume xExtends(old(state[xid]), state[xid]);

SetParticipantAborted (xid, pid, linear p)
assert p.perm(xid, pid);
assert xUndecidedOrAborted(state[xid]);
state[xid][pid] := ABORTED;

var state : Xid × Pid → TransactionState; // ghost
var votes : Xid → int;
var linear B : Set of (Xid × Pid); // ghost

Fig. 11. Excerpts from our 2PC implementation and proof (solid boxes show procedure implementations,
dashed boxes show atomic action specifications). Thick lines represent the layers of bo�om-up synchroniza-
tion and atomization (see Figure 10). For some procedures we show both the implementation and the atomic
action specification (dashed box a�ached to a solid box). For some procedures we only show the atomic
action specification (detached dashed box).

19

8.3 Other Distributed Protocols
In addition to 2PC, we implemented and speci�ed the Paxos consensus protocol and a relocation

protocol for a distributed hash table. We are currently working on the completion of the full proofs.

In this section we focus on the top-level atomic action speci�cations that provide both guidance in

structuring the proof top down and a simple interface to reason about clients building on top of

the protocols.

Paxos. Paxos [39] is a consensus protocol that allows a set of processes to agree on a common

value. Despite the seemingly simple correctness argument of the protocol, we made a similar

experience as previously described elsewhere, e.g., [10]: there are many choices to be made to go

from an abstract protocol description found in the literature to a concrete implementation. �ose

choices are far reaching and o�en lead to bugs in the running system. �us it is important to

connect the implementation-level mechanism, such as counters and �ags, with the abstract protocol

mechanism.

Surprisingly, the top-level atomic action speci�cation of our implementation is essentially the

same as the one for 2PC. We have a speci�cation variable that represents the �nal chosen value of

every process (which can be uninitialized). �en the atomic action speci�cation of Paxos states

that the chosen values have to be consistent (i.e., at most one chosen value), and that a state update

(1) keeps the values consistent, and (2) no process that already chose a value can �ip its decision.

Paxos is o�en used to implement a replicated state machine. Using our speci�cation simpli�es

the task of reasoning about the consistency of a replicated state machine that uses the Paxos

implementation to decide on the state machine commands to be executed.

Distributed hash table. A distributed hash table (DHT), for example Chord [58], distributes

the storage of individual hash entries among many nodes. To balance the load on the storage

nodes, a central operation in a DHT system is to relocate a block of hash table entries from one

node to another. �e mechanism for such a relocation can be quite complex, in particular if

several relocations happen concurrently. However, our top-level atomic action speci�cation for the

relocation operation is, that before and a�er the operation all hash table entries have to be stored

on at least one node.

Free from the low-level asynchronous communication, our speci�cation can be readily used to

establish the hash table abstraction of the DHT system towards clients.

8.4 Discussion
Based on our experience we now discuss four core contributions of our approach to the state of the

art in deductive program veri�cation of concurrent programs.

Proof directionality. Our proof methodology directly suggests a strategy to approach a proof by

alternating applications of synchronization and atomization, guided by the syntactic structure of a

program. For a distributed protocol like 2PC, a proof is constructed along the communication pa�ern

of the protocol. �e presentation in this paper consistently followed a bo�om-up approach, going

stepwise from a concrete program towards an abstract speci�cation. However, it is equally possible,

and o�en bene�cial, to take a top-down approach by stepwise re�ning an abstract speci�cation

into an executable implementation.

Proof structure. Compared to the complexity of writing a monolithic invariant over the entire

state of a �at transition system in one shot, our layered approach promotes proof productivity by

decomposing the annotation burden into smaller manageable pieces. Establishing the justi�cation

for a particular synchronization or atomization step sets a narrow focus of a�ention. Furthermore,

di�erent parts of the invariant can be stated at appropriate levels of abstraction. For example, our

20

2PC proof separates an invariant about the protocol mechanism (voting and commit phase) from

an invariant about its low-level implementation (counting “yes” votes).

Speci�cation. We introduce a simple way of specifying the behavior of asynchronous operations

as relations between initial and quiescent states, similar to pre- and postconditions of sequential

operations. While proving such a speci�cation for an asynchronous operation is still challenging,

reasoning with the speci�cation is simple. For example, it is easy to verify a client for 2PC that issues

multiple transaction requests using the atomic action speci�cation of C_TransReq. Furthermore,

our proof methodology accommodates safety speci�cations about intermediate results as follows.

First, a programmer can write local assertions that are veri�ed during stepwise re�nement, as we

demonstrated in our 2PC proof. Second, a programmer can introduce auxiliary history variables

that capture speci�c e�ects as they occur during execution. �is history variables are available in

atomic action speci�cations. Incidentally, the term history is used in [5] to denote a process algebra

term that represents all sequences of atomic actions in a concurrent program, which corresponds

to a re�nement step in our se�ing.

Message-passing. Our way of modeling message sends as asynchronous procedure calls eliminates

message bu�ers as explicit shared state and thus focuses the correctness argument on the underlying

mechanism, instead of its implications on the shape and contents of message bu�ers. Another

interesting consequence is that message handlers of a particular process do not necessarily execute

sequential. For example, in our 2PC implementation every process can handle multiple messages

concurrently without waiting for previous handlers to terminate.

9 RELATEDWORK
�is paper is about computer-assisted deductive veri�cation of asynchronous concurrent programs.

We build upon the classical works that introduced the central notion of stability under interference

(i.e., noninterference) to enable invariant-based reasoning about concurrent programs that share

state [35, 50]. While pure asynchronous message-passing programs [33] do not explicitly share

state, message bu�ers in their operational semantics are inherently shared and thus become subject

to interference [56]. Our goal is to bridge the gap between these theoretical foundations and their

applicability in the construction and veri�cation of practical systems. In particular, we provide

support for the discovery and construction of inductive invariants via proof structuring mechanisms

and automation.

�ere are several recent works closely related in spirit to ours. Ivy [52] organizes the search for

an inductive invariant as a collaborative process between automatic veri�cation a�empts and user

guided generalizations of counterexamples to induction in a graphical model. �e core insight is

the use of a restricted modeling and speci�cation language that makes their veri�cation conditions

decidable. We use a rich speci�cation logic and rely on partitioned veri�cation conditions that can be

discharged by an SMT solver [12]. �e IronFleet methodology [28] embeds TLA-style state-machine

modeling [40] into the Dafny veri�er [41] to re�ne high-level distributed systems speci�cations

into low-level executable implementations. �ey use a �xed 3-layer design and one-shot reductions

to atomic actions, while our program layers are more �exible. PSync [16] uses a synchronous round-

based model of communication for the purpose of program design and veri�cation, shi�ing the

complexity of e�cient asynchronous execution to a runtime system. We allow explicit control over

low-level details at the potential cost of increased veri�cation e�ort. Verdi [62] lets a programmer

provide a speci�cation, implementation, and proof of a distributed system under a simple albeit

unrealistic network model. �e application is automatically transformed into one that handles

faults via veri�ed system transformers. �e work of [23] introduces a rely-guarantee rule for a

weaker form of asynchrony, where a single task queue atomically executes one task at a time.

21

Concurrent separation logic (CSL) [48] was devised for modular reasoning about multi-threaded

shared-memory programs, with recent generalizations [15, 36, 47, 59], mechanizations [57], and

tools [4, 14, 45] focusing on the veri�cation of �ne-grained concurrent data structures. CSL

adequately addresses the problem of reasoning about low-level concurrency related to dynamic

memory allocation, but still su�ers from the complications of a monolithic approach to invariant

discovery for the protocol-level concurrency. For example, [49] uses CSL to link implementation

steps of message-passing programs to atomic actions, and relies on a model checker to explore the

interleavings of those atomic actions. Conversely, our reduction-based approach allows the �exible

construction of a re�nement proof that splits the problem of invariant discovery into smaller sub-

tasks, but currently does not support the elegance of CSL to reason about dynamic memory. Similar

concepts that are used in both approaches are, e.g., the use of permissions [6]. �e actor services

of [45] focus on compositional veri�cation of response properties of message-passing programs

via assertions that allow to specify that particular trigger messages necessarily leads to described

response messages. Although for technically di�erent reasons, they require the termination of

individual message handlers akin to our cooperation condition.

�ere is a wide range of research concerned with techniques for fully-automatic analysis of

concurrent programs. �is includes works on state space exploration based on model checking [34],

partial-order reduction [24, 53], abstraction re�nement [26, 31, 32, 54, 61], counting/cardinality [19,

60], Petri nets/well-structured transition system [18, 22, 38], cuto� results [37], counter abstrac-

tion [3], abstract interpretation [44], etc. �ese techniques are complementary to our approach

and both can bene�t from each other. On the one hand, we can use automated procedures in

our approach wherever possible to limit the amount of user interaction. On the other hand, our

proof structuring results in smaller and simpler input for automatic procedures, and thus makes

them amenable to large programs otherwise out of reach. We consider the robust integration of

heterogeneous automation techniques into an interactive veri�cation system an important line of

future work.

Systematic testing, as in P [13], relies on a user-provided test harness to perform a clever

exploration of concurrent interleavings to discover bugs. �e correctness notion of robustness

against concurrency [7] allows to reduce concurrent interleavings to serial executions in the testing

se�ing.

While our work focuses on asynchronous concurrency, we note that there is a broad body

of work on the veri�cation of synchronous concurrency, o�en in connection with hardware,

embedded systems, and robotics (e.g., rendezvous in process algebras [55], events in synchronous

languages [27], time in synchronous models [1, 43]).

10 CONCLUSION
�e main contribution of this paper is a new way to structure correctness proofs of asynchronous

concurrent programs. �e classical, unstructured proof method relies on the discovery of an

inductive invariant that accounts for all possible interleavings of concurrent processes. Our proof

method decomposes the task, guided by the program structure and syntax, into formulating and

automatically discharging smaller, independent proof obligations. �ese proof obligations will

require to show that an atomic action commutes with other atomic actions; that an atomic action

summarizes the e�ect of a statement in a given context; and most importantly, that an assertion is

an inductive invariant for a simpler program, where all asynchronous procedure calls are replaced

by synchronous (immediate) atomic actions. �us, using our method, the automatable part of

a concurrent veri�cation problem—i.e., the safety proof given an inductive invariant—remains

automatable, and the creative part—i.e., the discovery of an appropriate invariant—is greatly

22

simpli�ed by structuring it into smaller proof obligations, each of which can still be discharged

automatically. Furthermore, counterexamples to proof obligations are local and can be readily

used to identify and �x bugs. �is makes real concurrent so�ware amenable to semi-automatic

veri�cation.

REFERENCES
[1] Rajeev Alur and �omas A. Henzinger. 1999. Reactive Modules. Formal Methods in System Design 15, 1 (1999), 7–48.

[2] Michael Barne�, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2005. Boogie: A Modular

Reusable Veri�er for Object-Oriented Programs. In FMCO.

[3] Gérard Basler, Michele Mazzucchi, �omas Wahl, and Daniel Kroening. 2010. Context-aware counter abstraction.

Formal Methods in System Design 36, 3 (2010), 223–245.

[4] Stefan Blom and Marieke Huisman. 2014. �e VerCors Tool for Veri�cation of Concurrent Programs. In FM.

[5] Stefan Blom, Marieke Huisman, and Marina Zaharieva-Stojanovski. 2015. History-Based Veri�cation of Functional

Behaviour of Concurrent Programs. In SEFM.

[6] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Ma�hew J. Parkinson. 2005. Permission accounting in

separation logic. In POPL.

[7] Ahmed Bouajjani, Michael Emmi, Constantin Enea, Burcu Kulahcioglu Ozkan, and Serdar Tasiran. 2017. Verifying

Robustness of Event-Driven Asynchronous Programs Against Concurrency. In ESOP.

[8] John Boyland. 2003. Checking Interference with Fractional Permissions. In SAS.

[9] Aaron R. Bradley and Zohar Manna. 2007. �e calculus of computation - decision procedures with applications to

veri�cation. Springer.

[10] Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made live: an engineering perspective.

In PODC.

[11] Dmitry Chistikov, Rupak Majumdar, and Filip Niksic. 2016. Hi�ing Families of Schedules for Asynchronous Programs.

In CAV.

[12] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An E�cient SMT Solver. In TACAS.

[13] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and Damien Zu�erey. 2013. P: safe

asynchronous event-driven programming. In PLDI.

[14] �omas Dinsdale-Young, Pedro da Rocha Pinto, Kristo�er Just Andersen, and Lars Birkedal. 2017. Caper - Automatic

Veri�cation for Fine-Grained Concurrency. In ESOP.

[15] �omas Dinsdale-Young, Mike Dodds, Philippa Gardner, Ma�hew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

Abstract Predicates. In ECOOP.

[16] Cezara Dragoi, �omas A. Henzinger, and Damien Zu�erey. 2016. PSync: a partially synchronous language for

fault-tolerant distributed algorithms. In POPL.

[17] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. A calculus of atomic actions. In POPL.

[18] Michael Emmi, Pierre Ganty, Rupak Majumdar, and Fernando Rosa-Velardo. 2015. Analysis of Asynchronous Programs

with Event-Based Synchronization. In ESOP.

[19] Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. 2014. Proofs that count. In POPL.

[20] Ma�hias Felleisen and Robert Hieb. 1992. �e Revised Report on the Syntactic �eories of Sequential Control and

State. �eor. Comput. Sci. 103, 2 (1992), 235–271.

[21] Cormac Flanagan and Shaz Qadeer. 2003. A type and e�ect system for atomicity. In PLDI.

[22] Pierre Ganty and Rupak Majumdar. 2012. Algorithmic veri�cation of asynchronous programs. ACM Trans. Program.

Lang. Syst. 34, 1 (2012), 6:1–6:48.

[23] Ivan Gavran, Filip Niksic, Aditya Kanade, Rupak Majumdar, and Viktor Vafeiadis. 2015. Rely/Guarantee Reasoning for

Asynchronous Programs. In CONCUR.

[24] Patrice Godefroid. 1996. Partial-Order Methods for the Veri�cation of Concurrent Systems - An Approach to the State-

Explosion Problem. Lecture Notes in Computer Science, Vol. 1032. Springer.

[25] Patrice Godefroid. 1997. Model Checking for Programming Languages using Veriso�. In POPL.

[26] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. 2011. Predicate abstraction and re�nement for verifying

multi-threaded programs. In POPL.

[27] Nicolas Halbwachs. 1992. Synchronous Programming of Reactive Systems. Kluwer Academic Publishers.

[28] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Se�y,

and Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In SOSP.

[29] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015. Automated and Modular Re�nement Reasoning

for Concurrent Programs. In CAV.

23

[30] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015. Automated and Modular Re�nement Reasoning

for Concurrent Programs. Technical Report MSR-TR-2015-8. Microso� Research. h�ps://www.microso�.com/en-us/

research/publication/automated-and-modular-re�nement-reasoning-for-concurrent-programs/

[31] �omas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2004. Race checking by context inference. In PLDI.

[32] �omas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. 2003. �read-Modular Abstraction Re�nement.

In CAV.

[33] Carl Hewi�, Peter Bishop, and Richard Steiger. 1973. A Universal Modular ACTOR Formalism for Arti�cial Intelligence.

In IJCAI.

[34] Gerard J. Holzmann. 1997. �e Model Checker SPIN. IEEE Trans. So�ware Eng. 23, 5 (1997), 279–295.

[35] Cli� B. Jones. 1983. Speci�cation and Design of (Parallel) Programs. In IFIP Congress.

[36] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL.

[37] Alexander Kaiser, Daniel Kroening, and �omas Wahl. 2010. Dynamic Cuto� Detection in Parameterized Concurrent

Programs. In CAV.

[38] Alexander Kaiser, Daniel Kroening, and �omas Wahl. 2014. A Widening Approach to Multithreaded Program

Veri�cation. ACM Trans. Program. Lang. Syst. 36, 4 (2014), 14:1–14:29.

[39] Leslie Lamport. 1998. �e Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2 (1998), 133–169.

[40] Leslie Lamport. 2002. Specifying Systems: �e TLA+ Language and Tools for Hardware and So�ware Engineers. Addison-

Wesley.

[41] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Veri�er for Functional Correctness. In LPAR.

[42] Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (1975),

717–721.

[43] Kenneth L. McMillan. 2000. A methodology for hardware veri�cation using compositional model checking. Sci.

Comput. Program. 37, 1-3 (2000), 279–309.

[44] Antoine Miné and David Delmas. 2015. Towards an industrial use of sound static analysis for the veri�cation of

concurrent embedded avionics so�ware. In EMSOFT.

[45] Peter Müller, Malte Schwerho�, and Alexander J. Summers. 2016. Viper: A Veri�cation Infrastructure for Permission-

Based Reasoning. In VMCAI.

[46] Madanlal Musuvathi, Shaz Qadeer, �omas Ball, Gérard Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu.

2008. Finding and Reproducing Heisenbugs in Concurrent Programs. In OSDI.

[47] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State

Transition Systems for Fine-Grained Concurrent Resources. In ESOP.

[48] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. �eor. Comput. Sci. 375, 1-3 (2007), 271–307.

[49] Wytse Oortwijn, Stefan Blom, and Marieke Huisman. 2016. Future-based Static Analysis of Message Passing Programs.

In PLACES.

[50] Susan S. Owicki and David Gries. 1976. An Axiomatic Proof Technique for Parallel Programs I. Acta Inf. 6 (1976),

319–340.

[51] Burcu Kulahcioglu Ozkan, Michael Emmi, and Serdar Tasiran. 2015. Systematic Asynchrony Bug Exploration for

Android Apps. In CAV.

[52] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety veri�cation by

interactive generalization. In PLDI.

[53] Doron A. Peled. 1993. All from One, One for All: on Model Checking Using Representatives. In CAV.

[54] Corneliu Popeea, Andrey Rybalchenko, and Andreas Wilhelm. 2014. Reduction for compositional veri�cation of

multi-threaded programs. In FMCAD.

[55] A. W. Roscoe. 1997. �e �eory and Practice of Concurrency. Prentice Hall.

[56] Richard D. Schlichting and Fred B. Schneider. 1984. Using Message Passing for Distributed Programming: Proof Rules,

Disciplines. ACM Trans. Program. Lang. Syst. 6, 3 (1984), 402–431.

[57] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized veri�cation of �ne-grained concurrent

programs. In PLDI.

[58] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari Balakrishnan. 2001. Chord: A scalable

peer-to-peer lookup service for internet applications. In SIGCOMM.

[59] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying re�nement and hoare-style reasoning in a logic for

higher-order concurrency. In ICFP.

[60] Klaus von Gleissenthall, Nikolaj Bjørner, and Andrey Rybalchenko. 2016. Cardinalities and universal quanti�ers for

verifying parameterized systems. In PLDI.

[61] Björn Wachter, Daniel Kroening, and Joël Ouaknine. 2013. Verifying multi-threaded so�ware with impact. In FMCAD.

24

https://www.microsoft.com/en-us/research/publication/automated-and-modular-refinement-reasoning-for-concurrent-programs/
https://www.microsoft.com/en-us/research/publication/automated-and-modular-refinement-reasoning-for-concurrent-programs/

[62] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and �omas E. Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In PLDI.

25

A COMMUTATIVITY
Letm be a mapping from atomic action names to mover types {R,L,B,A}. �en for all A1,A2 ∈ P

with P .A1 = (ρ1,α1) and P .A2 = (ρ2,α2), the following conditions need to hold.

• Commutativity: If M(A1) ∈ {R,B} or M(A2) ∈ {L,B}, then the e�ect of executing A1

followed by A2 in two di�erent threads can be achieved by executing A2 followed by A1.

∀g, ḡ, g′, `1, `′1, `2, `′2 ∃ĝ :

©«
∧

∧

∧

g·`1 ∈ ρ1

g·`2 ∈ ρ2

g·`1
α1

−−→ ḡ·`′
1

ḡ·`2
α2

−−→ g
′·`′

2

ª®®®®¬
=⇒

(
∧

g·`2
α2

−−→ ĝ·`′
2

ĝ·`1
α1

−−→ g
′·`′

1

)
• Forward preservation: If M(A1) ∈ {R,B} or M(A2) ∈ {L,B}, then the failure of A2

immediately a�er the execution of A1 is implies that A2 must also fail before the execution

ofA1. �is condition is equivalent to forward preservation of the gate ofA2 by the execution

of A1.

∀g, g′, `1, `′1, `2 :
©« ∧∧

g·`1 ∈ ρ1

g·`2 ∈ ρ2

g·`1
α1

−−→ g
′·`′

1

ª®¬ =⇒ g
′·`2 ∈ ρ2

• Backward preservation: If M(A2) ∈ {L,B}, then the failure of A1 immediately before the

execution of A2 implies that A1 must also fail immediately a�er the execution of A2. �is

condition is equivalent to backward preservation of the gate of A1 by the execution of A2.

∀g, g′, `1, `2, `′2 :
©« ∧∧

g·`2 ∈ ρ2

g·`2
α2

−−→ g
′·`′

2

g
′·`1 ∈ ρ1

ª®¬ =⇒ g·`1 ∈ ρ1

• Nonblocking: If M(A2) ∈ {L,B}, then moving the execution ofA2 to the le� is not allowed

to prevent a (potentially failing) execution from making progress.

∀σ ∈ ρ2 ∃σ ′ : σ
α2

−−→ σ ′

26

