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The rising prevalence of antibiotic resistant bacteria is an

increasingly serious public health challenge. To address this

problem, recent work ranging from clinical studies to

theoretical modeling has provided valuable insights into the

mechanisms of resistance, its emergence and spread, and

ways to counteract it. A deeper understanding of the underlying

dynamics of resistance evolution will require a combination of

experimental and theoretical expertise from different

disciplines and new technology for studying evolution in the

laboratory. Here, we review recent advances in the quantitative

understanding of the mechanisms and evolution of antibiotic

resistance. We focus on key theoretical concepts and new

technology that enables well-controlled experiments. We

further highlight key challenges that can be met in the near

future to ultimately develop effective strategies for combating

resistance.
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Introduction
Progress in our quantitative understanding of the evolu-

tionary dynamics leading to antibiotic resistance holds

promise to help avert the looming resistance crisis [1].

While changes in antibiotic prescription strategies can

contribute to countering resistance [2], optimized treat-

ment schemes that take into account the dynamics of

resistance evolution are urgently needed. The best-

known mechanisms of antibiotic resistance commonly

found in the clinic or laboratory include antibiotic degrad-

ing enzymes, drug target modification, efflux, and the

prevention of drug uptake [3–6]. These mechanisms have

been characterized in great detail in decades of fruitful

work, culminating in databases of the ‘resistome’—the

collection of all known genes conferring resistance [7–9].
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More recently, transcriptomic studies have provided a

useful intermediate phenotypic description of resistance,

showing that information on global gene expression can

improve predictions of the resistance phenotype com-

pared to genotypic data alone [10,11].

The resistance of a bacterium to a drug is determined by

measuring the minimal inhibitory concentration (MIC),

that is, the lowest concentration that completely inhibits

growth of a clonal culture [12]. An increase in resistance

occurs when the population can grow in higher concen-

trations of antibiotic. Resistance is a genetically inherited

trait, acquired by bacteria through one of two main

processes: spontaneous de novo mutations and horizontal

gene transfer [13,14]. Still, the level of resistance is often

not entirely determined genetically, but can be hetero-

geneous within a population, depend on the environ-

ment, on the population structure, or on the physiological

state of the cell [15–18]. In this review, we focus on

specific examples where population dynamics and cell

physiology affect drug sensitivity, and on quantitative

aspects that determine the emergence and spread of de
novo resistance mutations. We particularly emphasize

recent studies that combined experiments and theoretical

modeling. Related influential studies on collective resis-

tance and on the effect of drug combinations on resistance

evolution have been reviewed elsewhere [19–23].

Role of cell physiology and population
effects in resistance
The growth rate of a bacterium depends on the nutrient

environment and is a key physiological parameter that can

strongly affect its sensitivity to a wide range of antibiotics

[15,24��,25,26]. A recent experimental-theoretical study

focused on ribosome-binding antibiotics, and showed that

a lower growth rate (achieved by different growth media)

increases the tolerated antibiotic concentration while for

others, the opposite effect occurs [24��]. A mathematical

model based on bacterial ‘growth laws’ [27], which take

into account how the ribosome concentration in the cell

depends on growth rate, showed that the ribosome-bind-

ing kinetics of the drug can explain this effect: slow-

growing cells are more resistant to reversibly binding

drugs, whereas fast-growing cells are more resistant to

irreversibly binding drugs [24��]. These results would

have been hard to intuit without using a rigorous theo-

retical approach and highlight that apart from specific

molecular mechanisms, global cell physiology and growth

rate are important determinants of antibiotic resistance

levels.
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Glossary

MIC: Minimal inhibitory concentration. The lowest concentration of

an antibiotic that completely inhibits growth of a clonal culture.

TEM-1 b-lactamase: An enzyme produced by bacteria that cleaves

and deactivates b-lactam antibiotics.

DFE: Distribution of fitness effects. The probability distribution that

represents the changes in fitness caused by single-step mutations

originating from a common genotype. It depends on the ancestral

genotype and on the environment.

Epistasis: The phenomenon that the effect of a mutation depends on

the genetic background it occurs in.

Discrete fitness landscape: A graph in which the vertices are

genotypes, each with an assigned fitness value. Two genotypes are

connected by an edge if they are a single mutational event apart.
Global cell physiology can even explain how a clonal

population diversifies into growing and non-growing cells

in the presence of antibiotics. The expression of many

genes increases with increasing growth rate [28]; this

effect alone can lead to bistable population dynamics

[29]. Specifically, it was shown that in an Escherichia coli
strain that expresses the cat1 enzyme, which inactivates

the antibiotic chloramphenicol (Table 1), a positive feed-

back loop occurs where a decrease in growth rate due to

addition of more chloramphenicol decreases expression of

the resistance-conferring enzyme, thus slowing growth

even further [30]. Theory shows that such a positive

feedback loop can lead to bistability, that is, coexistence

of growing and non-growing cells at the same drug con-

centration; this striking effect was confirmed in single cell

experiments [30]. Growth bistability is likely a more

general phenomenon [31] that occurs for other resistance

mechanisms and highlights that the response of a popu-

lation of clonal bacteria to antibiotics is not simply given

by many identical copies of the same cell.

Population effects are also important when resistance is

due to extracellular antibiotic degradation. Here, the

antibiotic concentration in the medium strongly depends

on the cell density, since higher densities lead to faster

antibiotic degradation. The inoculum size of the culture

thus affects the growth of all cells and, ultimately, the

measured resistance level. This effect has been described

in mathematical models and experimentally validated

using the beta-lactamase enzyme which degrades beta-

lactam antibiotics (including amoxicillin, ampicillin, and

cefotaxime) [32,33]. Such effects generally occur when-

ever a resistant subpopulation degrades or modifies the
Table 1

Glossary of antibiotics and their targets

Antibiotic Target

Chloramphenicol 50S ribosomal subunit

Tetracycline 30S ribosomal subunit

Amoxicillin Cell wall synthesis

Trimethoprim Folate synthesis (DHFR)

Ciprofloxacin DNA replication (DNA gyrase)
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antibiotic so that the entire population can benefit from it.

It will be interesting to further investigate the causes and

consequences of these effects which also occur for other

antibiotics [34].

Studying antibiotic resistance using
experimental evolution
Beyond characterizing existing resistance mechanisms, it

is a fundamental question how de novo resistance evolves.

Understanding this can ultimately lead to strategies for

inhibiting resistance evolution. Recent years have seen a

plethora of novel techniques for investigating antibiotic

resistance evolution in the laboratory and for systemati-

cally addressing its reproducibility, speed, molecular ori-

gins, and constraints.

Resistance often evolves so fast that it can be studied in

the laboratory but it is still challenging to obtain quanti-

tative and reproducible results. Serial transfer of microbial

cultures is a common experimental evolution protocol

[35] that is also useful for studying resistance evolution

[22,36,37]. In this protocol, bacterial cultures grow in

flasks or on microtiter plates and are diluted into fresh

medium by a fixed factor at regular time intervals (e.g.,
every 24 hours). These experiments can be continued

virtually indefinitely: Richard Lenski’s seminal long-term

evolution experiment [35] has exceeded a staggering

60 thousand generations in 28 years and is still ongoing.

Because of the relative simplicity of this protocol, it is

feasible to run hundreds of evolution experiments in

parallel. Together with increasingly inexpensive whole

genome sequencing techniques [38], this opens the door

for a statistical investigation of the intrinsically stochastic

evolutionary dynamics and for identifying general prin-

ciples governing microbial evolution [39–42]. A drawback

of serial transfer protocols is their inability to keep key

parameters that affect the evolutionary process well-con-

trolled: the population size fluctuates considerably and

cultures differ in their growth rates and in the time they

spend in stationary phase. This complicates the quanti-

tative investigation of the evolutionary process and its

comparison among different cultures. Furthermore, it is

not straightforward how the antibiotic concentration

should be chosen in such experiments to gain maximum

insight into the process of resistance evolution: if it is too

low, there is virtually no selection for resistance; if it is too

high, cells cannot grow at all, preventing them from

evolving at a significant rate.

Recently developed techniques in which bacteria are

exposed to increasing antibiotic concentrations solve this

problem. Theoretical work suggested that temporal or

spatial selection gradients can facilitate the sequential

emergence and fixation of multiple resistance mutations

leading to increasingly higher resistance levels [43,44].

Consequently, advanced protocols that gradually increase

antibiotic concentrations in time or space have been
Current Opinion in Biotechnology 2017, 46:90–97
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developed [45��,46–48]. A notable example is the

‘morbidostat’: this feedback-controlled device keeps cul-

tures growing in exponential phase and automatically

increases the antibiotic concentration during the experi-

ment such that they keep growing at a pre-defined rate

despite their increasing resistance. In this way, strong

selection pressure for resistance is constantly maintained.

For some antibiotics, this protocol enabled the highly

reproducible evolution of a �1000-fold resistance

increase in just a few weeks [47].

Spatial antibiotic gradients may enable even faster resis-

tance evolution. A striking example is given by a recently

developed microfluidics device: a concentration gradient

of the fluoroquinolone antibiotic ciprofloxacin (Table 1)

was maintained across this �2–3 cm hexagonal device

that consists of over 100 micro-compartments that are

connected, allowing cells to move between different

concentrations. From an initial population size of 106

cells, the authors observed a surprisingly strong, over

200-fold resistance increase that resulted from multiple

reproducible mutations that had occurred as early

as 10 hours after inoculation [48]. A recent study sized
Figure 1
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the assay oppositely and followed evolution on a huge,

meter-scale agar plate (the ‘MEGA plate’) [45��]. In

contrast to small agar plates where rapid diffusion quickly

destroys spatial drug concentration gradients, they remain

relatively stable on this larger plate. Further, the size of

the plate allows for large bacterial population sizes that

should accelerate the occurrence of resistance mutations.

Fast resistance evolution reaching extremely high levels

within weeks was observed for different antibiotics.

Changing the slope of the concentration gradient

revealed that smaller steps in drug resistance enable

the multi-step evolution of high resistance levels that

are practically impossible to reach in a single mutation

step [45��]. A fascinating aspect of this experiment is that

the front of bacteria that grows across the plate can be

viewed as a living Muller diagram that directly visualizes

the evolutionary record and the key role of stochastic

events in this process (Figure 1a,b): some of the most

highly resistant lineages ultimately stalled in this assay

because they emerged in an unfavorable location too far

away from the growth front [45��], illustrating the sto-

chasticity of the process. Together, these results highlight

the great potential of new assays with well-defined spatial
(C)
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drug landscapes as tools for investigating resistance

evolution.

Apart from experiments where the antibiotic concentra-

tion increases monotonously, evolution has been studied

under different temporal sequences of antibiotic expo-

sure. In a recent experiment, E. coli cultures were repeat-

edly exposed to a high concentration of ampicillin for a

fixed time, followed by complete removal of the drug and

growth in its absence. In this assay, the bacteria did not

evolve resistance at all but instead genetically tuned their

lag times to match the duration of the antibiotic exposure

[49��]—a stunning observation and an effective survival

strategy as the antibiotic used can only kill growing cells.

The effect of various temporal exposure protocols on

resistance dynamics was also studied at the single-cell

level. A recent study used a synthetic stochastic switch

controlling tetracycline resistance and observed the effect

of antibiotic pulse length on the probability of selective

sweeps in a microfluidic device; an intermediate regime

in which sweeps are unlikely was identified [50]. Overall,

these studies provide powerful tools for observing resis-

tance evolution at different levels; however, mathemati-

cal models are needed to interpret the data and extrapo-

late to predictions beyond the laboratory.

Quantitative understanding of resistance
mutations and their genetic interactions
The key ingredients entering theoretical descriptions

of evolution are mutation and selection. While mutation

rates can be estimated [51], the fate of mutations in the

face of selection is determined by their effects on survival

and growth (fitness) of the organism in the current envi-

ronment. In theory, the probability that a new mutation

has a certain fitness effect is determined by the so-called

distribution of fitness effects (DFE) [52]. In practice,

the shape of this distribution is hard to measure and

has remained elusive. Approximations of the DFE for

specific environments can be obtained by direct compe-

tition with the ancestor [42,53], or by comparing growth

rates [54��] or survival in high drug doses [55] for a large

number of mutants. The shape of the DFE is crucial for

the evolutionary dynamics. For example, it is a classical

result that, for two DFEs with the same mean fitness

effect but different variances, the one with the greater

variance provides a greater probability for the occurrence

of highly beneficial mutations and thus speeds up evo-

lution. Recent studies have measured DFEs relevant for

the specific case of antibiotic resistance evolution and

revealed general relations that partly explain the shape of

this distribution [46–48].

The width of the DFE in the presence of antibiotics was

shown to depend strongly on the dose–response charac-

teristics of the drug. The DFEs for eight antibiotics

spanning diverse modes of action were approximated

by measuring the growth rates under those antibiotics
www.sciencedirect.com 
for all �4000 strains of the E. coli gene deletion library

[54��,56]. Interestingly, the widths of the distributions

vary drastically across antibiotics. These differences are

largely explained by the shape of their dose response

curves: when the growth rate is sensitive to small differ-

ences in the concentration of a particular antibiotic, the

corresponding DFE is wide. Conversely, for antibiotics

where the growth rate is robust to such small dose

differences, the corresponding DFE is narrow (Figure 2)

and can even become narrower than in the absence of

drug. A population genetics model predicted that the rate

of resistance evolution and the diversity of evolutionary

paths should increase for antibiotics with greater DFE

width when compared to antibiotics with similar dose–

response characteristics. These predictions were con-

firmed in evolution experiments using the morbidostat

[54��]. These results highlight the potential of identifying

key factors that determine the shape of the DFE for

different antibiotics and bacteria; identifying such factors

can enable increasingly accurate predictions of resistance

evolution.

DFEs of mutations restricted to specific resistance genes

can be measured more comprehensively and have

revealed surprising features. A notable example is the

DFE of the TEM-1 b-lactamase that was tackled in

several recent efforts. First, beneficial mutations were

detected by screening a randomly mutagenized library for

TEM-1 variants that convey resistance to cefotaxime, and

their resistance levels were quantified [57]. Second, the

amoxicillin MIC was measured for 64% of all possible

amino-acid substitutions in the TEM-1 enzyme; their

effects were partially explained by amino acid properties

and calculated protein stability changes [55]. Both studies

consistently found that a few mutations have a much

greater effect on fitness than predicted from an often

assumed exponential DFE. This result suggests that

evolution may be more predictable than expected—at

least for resistance enzymes. Finally, a high-resolution

map of the fitness effects for over 98% of all possible point

mutations in the TEM-1 gene was assembled; this map

suggested that the genetic code biases mutations toward

beneficial effects [58]. The TEM-1 b-lactamase became a

model system for the detailed understanding of DFEs in

the context of antibiotic resistance; results from this

system suggest that amino-acid properties and protein

stability can help to predict the effects of many mutations.

The DFE generally depends on the genetic background;

it can thus change as soon as the first mutation has

occurred. The phenomenon where the effect of muta-

tions depends on the presence of other mutations is

termed ‘epistasis’ [59]. Measuring the extent of epistasis

is important for evolutionary predictions because preva-

lent epistasis often leads to multiple fitness peaks and can

prevent a population from reaching the global fitness

maximum [60�]; in particular, this is the case for
Current Opinion in Biotechnology 2017, 46:90–97
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Dose–response characteristics of antibiotics shape the distribution of fitness effects.

Schematics of two different dose response curves: the left curve is steep, that is, the growth rate is sensitive to small changes in drug

concentration; the right curve is shallow. Mutations cause shifts in the effective drug concentration a bacterium experiences; the typical magnitude

of these shifts is surprisingly similar for diverse antibiotics [54��]. The distribution of effective drug concentrations resulting from many different

mutations is shown in gray. These mutations produce distributions of growth rates (fitness) that are wide for the steep dose–response curve (left)

and narrow for the shallow dose–response curve (right).
‘reciprocal sign epistasis’ where the fitness effect of a

mutation changes from positive to negative, depending

on the background [61]. Epistasis can be analyzed using

discrete fitness landscapes which are a powerful metaphor

for assessing the constraints and predictability of muta-

tional paths in evolution experiments [62�,63]. A discrete

fitness landscape is a graph in which the vertices are

genotypes, and two genotypes are connected by an edge

if they are a single mutational event apart. The landscape

is completed by assigning a fitness value to all genotypes

(Figure 1c). Paths on the landscape are accessible if they

represent sequences of genotypes with monotonically

increasing fitness, that is, all mutations along the path

are beneficial. If only few of the possible paths are

accessible, evolutionary trajectories become more con-

strained and predictable. Due to the astronomically large

number of possible genotypes, it is not feasible to mea-

sure the fitness effects of all mutations and their combi-

nations experimentally, even for short sequences. There-

fore, recent studies have focused on full landscape

reconstructions of just a few mutations relevant for drug

resistance [62�,63,64] and proposed biophysical models to

predict epistatic interactions from protein structure and

function [65,66�].

The enzyme dihydrofolate reductase (DHFR) has served

as a key model for describing higher-order epistasis and

biophysical constraints of fitness landscapes. DHFR is the

target of trimethoprim (Table 1) and can cause resistance

to this antibiotic via a few point mutations. A recent study
Current Opinion in Biotechnology 2017, 46:90–97 
reconstructed a fitness landscape of seven known resis-

tance mutations in DHFR [62�]. It showed that when the

possibility of the same locus mutating more than once is

taken into account, prevalent epistasis may increase the

accessibility of all peaks on a landscape, decreasing the

chance of being ‘trapped’ at a suboptimal fitness [62�]. A

later study measured the effects of three resistance muta-

tions in DHFR and their combinations on enzyme effi-

ciency, stability, and ability to bind trimethoprim [66�]. It

discovered a trade-off between affinity to trimethoprim,

enzyme efficiency, and stability which shapes the epi-

static interactions in the fitness landscape. Further, the

activity of protein chaperones strongly affected the shape

of the fitness landscape by changing the stability of the

enzyme [66�]. Together, these results underline the

importance of genetic interactions both within the same

gene and across different cellular mechanisms for pre-

dicting evolution.

A broader investigation of interactions between drug

resistance and other cellular functions, including seem-

ingly unrelated ones, can uncover potentiators of resis-

tance evolution, that is, genes that accelerate this process

[67]. Notable examples are mechanisms that increase

genetic variability by increasing the mutation rate in

response to an antibiotic challenge (stress-induced muta-

genesis). In particular, this can happen by upregulation of

the mutation-inducing SOS response [68–70], induction

of mutagenic oxidative damage [71,72], or by regulated

DNA uptake from the environment [73]. Mechanisms
www.sciencedirect.com



Quantitative understanding of antibiotic resistance Luka9ciinová and Bollenbach 95
that affect evolvability are an interesting potential target

for new drugs that could be combined with established

antibiotics to hamper spontaneous resistance evolution—

an idea that has triggered efforts to develop SOS response

inhibitors [68,74,75].

In addition to potentiation through changes in mutation

rate, it will be interesting to identify mutations in other

cellular functions that may increase the rate of resistance

evolution via epistatic interactions. A conceptually

related phenomenon occurred in Richard Lenski’s long

term evolution experiment where certain potentiating

mutations were required before the ability to metabolize

citrate could evolve [76,77]. At the heart of this phenom-

enon is a particular substitution with minor effects on

fitness that allows for a secondary mutation to become

beneficial. Similar genetic interactions between resis-

tance mutations and genetic background can occur

[78], suggesting that the evolvability of antibiotic resis-

tance can be strongly affected by the presence of muta-

tions in diverse cellular pathways. A systematic identifi-

cation of mutations that produce significant changes in

resistance development would greatly enhance our

understanding of the complex interplay between drug

resistance and other cellular functions. If the effect of

these mutations can be chemically mimicked, this

research could lead to the discovery of new adjuvants

to antibiotics that slow down resistance evolution.

Conclusions
Over the last decade, the field has made considerable

progress in understanding antibiotic resistance evolution,

at least in well-controlled laboratory settings. Bacterial

growth laws have helped to elucidate the interplay

between cell physiology, antibiotic action, and resistance

and made accurate quantitative predictions of surprising

antibiotic effects. The success of studies thus far [24��,30]
holds promise that a quantitative characterization of

bacterial physiology will also lead to an improved under-

standing of resistance mechanisms for antibiotics with

other targets than the ribosome.

New technology for evolution experiments together with

improved mapping of mutational fitness effects and epi-

static interactions will soon allow us to statistically test

predictions for evolution in various simple and structured

environments. A key challenge is to scale recently devel-

oped, precisely controlled lab evolution protocols [47] to

higher throughput so that many antibiotics and various

strains can be tested in parallel at high replication. This

technology would enable a systematic investigation of

mutations and other perturbations that affect resistance

evolution. It would further provide a deeper understanding

of the general principles of resistance evolution and enable

predictions of the differences in the propensity for resis-

tance evolution among bacteria and antibiotics. Beyond

such well-controlled experiments, a great challenge is to
www.sciencedirect.com 
develop technology enabling experiments that mimic

the physiological environment as it occurs in an infec-

tion. Apart from the host immune system and physical

properties of the host environment, the presence of other

microbes at the infection site can affect the success of

antibiotic treatments targeted at a single pathogen. In

the long run, it will be crucial to translate the advances

on antibiotic resistance evolution into specific interven-

tion strategies that are effective against pathogenic

bacteria in an infected host but, unlike current treat-

ments, keep resistance in check.
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51. Jee J, Rasouly A, Shamovsky I, Akivis Y, Steinman SR, Mishra B,
Nudler E: Rates and mechanisms of bacterial mutagenesis
from maximum-depth sequencing. Nature 2016, 534:693-696.

52. Eyre-Walker A, Keightley PD: The distribution of fitness effects
of new mutations. Nat Rev Genet 2007, 8:610-618.

53. Elena SF, Ekunwe L, Hajela N, Oden SA, Lenski RE: Distribution
of fitness effects caused by random insertion mutations in
Escherichia coli. Genetica 1998, 102–103:349-358.

54.
��
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