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Abstract

Simulation is an attractive alternative for language inclusion for automata as it is an under-approximation
of language inclusion, but usually has much lower complexity. For non-deterministic automata, while language
inclusion is PSPACE-complete, simulation can be computed in polynomial time. Simulation has also been ex-
tended in two orthogonal directions, namely, (1) fair simulation, for simulation over specified set of infinite runs;
and (2) quantitative simulation, for simulation between weighted automata. Again, while fair trace inclusion
is PSPACE-complete, fair simulation can be computed in polynomial time. For weighted automata, the (quan-
titative) language inclusion problem is undecidable for mean-payoff automata and the decidability is open for
discounted-sum automata, whereas the (quantitative) simulation reduce to mean-payoff games and discounted-
sum games, which admit pseudo-polynomial time algorithms.

In this work, we study (quantitative) simulation for weighted automata with Büchi acceptance conditions, i.e.,
we generalize fair simulation from non-weighted automata to weighted automata. We show that imposing Büchi
acceptance conditions on weighted automata changes many fundamental properties of the simulation games. For
example, whereas for mean-payoff and discounted-sum games, the players do not need memory to play optimally;
we show in contrast that for simulation games with Büchi acceptance conditions, (i) for mean-payoff objectives,
optimal strategies for both players require infinite memory in general, and (ii) for discounted-sum objectives,
optimal strategies need not exist for both players. While the simulation games with Büchi acceptance conditions
are more complicated (e.g., due to infinite-memory requirements for mean-payoff objectives) as compared to their
counterpart without Büchi acceptance conditions, we still present pseudo-polynomial time algorithms to solve
simulation games with Büchi acceptance conditions for both weighted mean-payoff and weighted discounted-
sum automata.

1 Introduction
Language inclusion and simulation. Language inclusion is a central decision question for automata as it
subsumes language emptiness, universality, and can express language equivalence. Unfortunately, for non-
deterministic automata, the language inclusion problem is PSPACE-complete. To mitigate the high complexity
issue, language inclusion is often under-approximated by a stronger notion of simulation, which has polynomial-
time complexity [1]. The simulation between automata is captured by a two-player game [1, 2, 3], called the simu-
lation game. The simulation game proceeds in turns played by Challenger and Simulator; in each turn Challenger
produces a transition of the first automaton, which then Simulator tries to match with a transition of the second
automaton. A winning strategy for Simulator proves simulation of the first automaton by the second automaton
and implies inclusion of the language of the first automaton in the language of second automaton. Intuitively, in the
language inclusion game Challenger must play oblivious of the choices of Simulator (i.e., it is a partial-information
game where Challenger has partial information), whereas the simulation game strengthens Challenger by allowing
him to observe the choices of Simulator (and thereby obtaining a perfect-information game). The game-theoretical
characterization allows for natural generalizations of the simulation notion.
Fair and quantitative simulation. The notion of simulation has been extended in two orthogonal directions.
The first is to consider Büchi acceptance conditions on the executions of the automata [4], which leads to a fair-
simulation game. In the fair simulation game, along with the automata, each player is given a Büchi acceptance
condition, and Challenger wins if his own acceptance condition is satisfied, and either the acceptance condition
of Simulator is violated or Challenger wins the simulation game. While the standard simulation game is a safety
game, whose violation can be witnessed in a finite number of steps, to consider infinite computations, one needs to
specify which are the desired infinite computations for the simulation relation. The Büchi acceptance conditions
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specify the desired set of infinite computations, and thus classical simulation is extended to fair simulation. Note
that since we consider non-deterministic automata with Büchi acceptance conditions they can express all ω-regular
properties (such as liveness, fairness, and all commonly used specifications in practice). Another extension of the
simulation notion is quantitative simulation defined on weighted automata [5]. A weighted automaton assigns a
real value to every run. For example, a weighted automaton consists of an automaton with an integer-valued weight
assigned to every transition, and two classical quantitative objectives are the mean-payoff objective that assigns to a
run the long-run average of the weights along the run, whereas the discounted-sum objective assigns the discounted
sum of the weights. A game that characterizes quantitative simulation proceeds as a classical simulation game, but
the winning condition for Simulator is stronger. Simulator has to match all transitions picked by Challenger and,
moreover, the run defined by transitions picked by Simulator needs to have the value at most the value of the run
of Challenger. Recently the analysis of quantitative properties has received a lot of attention to specify quantitative
aspects of systems [5, 6, 7], such as resource-consumption, response time etc, and has also been used in synthesis
of systems [8, 9]. Weighted automata are central in quantitative verification and synthesis as they provide a natural
specification formalism to express quantitative properties.
Previous results. The classical simulation game problem is a perfect-information safety game, and can be solved
in linear time [10, 11]. The fair-simulation game problem is a perfect-information game where the objective is
if a Büchi condition is satisfied, then another Büchi condition should be satisfied, along with a safety condition.
Such games can be solved in quadratic time [12, 13]. Note that while both language inclusion and fair trace in-
clusion problems are PSPACE-complete, the corresponding simulation question can be solved in polynomial time.
The quantitative simulation problem for weighted automata with the quantitative objective defined as mean-payoff
(resp., discounted-sum) reduces to perfect-information games with mean-payoff (resp., discounted sum) objec-
tives [5]. Using the results for perfect-information mean-payoff and discounted-sum games [14, 15], it follows
that there exist pseudo-polynomial time algorithms for the quantitative simulation problem, and if the weights are
encoded in unary, then the algorithm is polynomial. This is in sharp contrast to the language inclusion problem
for weighted automata, where the problem is undecidable for mean-payoff objectives [16], and the decidability is
open for discounted-sum objectives [5]. One very crucial property of the games both for fair simulation as well as
quantitative simulation is that in the corresponding perfect-information games each player has memoryless optimal
strategies (where a memoryless strategy does not depend on the history of interactions and depends only on the
current position of the game). For the game problem for quantitative simulation, we obtain a perfect-information
game with the same objective as the objective of the weighted automata.
Our results. In this paper we generalize both fair simulation and quantitative simulation. We consider simulation
of weighted automata with Büchi acceptance conditions. We call the resulting perfect-information game Quanti-
tative Fair Simulation Games (QFSGs), which generalize both fair simulation games and games for quantitative
simulations. To capture QFSGs we present a framework of new quantitative games called implication games de-
fined as follows. In quantitative games an objective is a function from plays to reals, i.e., each play has an outcome,
which is a real number. Then, the goal of Player 1 is to minimize the outcome against any strategy of Player 2, who
aims to maximize the outcome of the play. Implication games result from imposing additional Boolean conditions
on both players, i.e., the value of a play is (i) ∞ if Player 1 fails to satisfy his Boolean condition; (ii) −∞ if
Player 1 satisfies his Boolean condition, but Player 2 fails to satisfy his Boolean condition; and (iii) if both players
satisfy their Boolean conditions, then the payoff is determined according to the objective function. QFSGs are
exactly captured by implication games. However, the implication games are fundamentally different both from fair
simulation games as well as games for quantitative simulation. We show that (i) for mean-payoff objectives, in im-
plication games both players require infinite memory strategies for optimality, and optimal strategies exist, whereas
(ii) for discounted-sum objectives, for every ε > 0, there is a finite-memory ε-optimal strategy, but in general, op-
timal strategies need not exist. This is in sharp contrast to games for quantitative simulation with mean-payoff
and discounted-sum objectives which admit memoryless optimal strategies for both players. While QFSGs are
more complicated (e.g., due to infinite-memory requirements for mean-payoff objectives) as compared to games
for quantitative simulation, we still present pseudo-polynomial time algorithms to solve QFSGs for both weighted
mean-payoff and weighted discounted-sum automata. If the weights are encoded in unary, then our algorithm
works in polynomial time. In summary, the contributions of this paper are as follows:

1. We introduce implication games.

2. We solve implication games with Büchi objectives for both players and the sum of mean-payoff objectives.

3. We define and solve discounted-sum parity games.

4. We solve implication games with Büchi objectives for both players and the discounted-sum objective.
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Another important application: fair simulation distance. Our results for implication games apply not only
for QFSGs, but also generalize other important applications. The simulation problem for non-deterministic non-
weighted automata has also been generalized to compute simulation distance between automata. In such a setting,
if a transition of one automata is not matched, instead of loosing the game immediately, the Simulator must pay a
penalty, and the goal of the Simulator is to minimize the average penalty. Quantitative simulation games have been
employed to measure similarity properties between automata, such as correctness, robustness or coverage [17].
Again the problem of simulation distances reduce to mean-payoff games. The simulation distance problem was
considered for automata without fairness. Since we consider Büchi acceptance conditions, our results for impli-
cation games provide the solution to compute fair simulation distances (i.e., simulation distances with respect to
infinite computations described as Büchi conditions). In summary, our results for implication games on one hand
provide a solution for QFSGs, which generalize both fair simulation and quantitative simulation; and on the other
hand they provide the solution to compute fair simulation distances, which generalize simulation distances.
Pictorial illustration. The following picture shows the various generalizations. Simulation has been generalized to
quantitative simulation (between weighted automata), fair simulation (simulation with respect to Büchi acceptance
conditions for non-weighted automata), and simulation distances (to measure distances between non-weighted
automata). We generalize quantitative and fair simulation to define QFSGs (for fair simulation for weighted au-
tomata). Our solution framework of implications games for QFSGs also apply to compute fair simualtion distances
(i.e., simulation distances for non-weighted automata with Büchi acceptance conditions). In this paper we will only
consider QFSGs and not present details about simulation distances, which has been studied in[17] and reduction
was presented to mean-payoff games and adding Büchi acceptance conditions directly leads to implication games.

Simulation

Quantitative
Simulation Fair Simulation Simulation

Distances

Quantitative
Fair Simulation

Fair Simulation
Distances

Implication
Games

Organization and technical contributions of the paper. The organization and the technical contributions are as
follows:

1. In Section 2 we present notation and notions used throughout the paper.

2. In Section 3 we define implication games, which have not been considered before to the best of our knowl-
edge.

3. In Section 4 we define QFSGs, which correspond to simulation between weighted automata with Büchi
acceptance conditions. We identify classes of implication games that correspond to QFSGs.

4. In Section 5, we study implication games motivated by QFSGs for mean-payoff automata with Büchi accep-
tance condition. In these games both players have to satisfy a Büchi condition, and if the Büchi conditions
are satisfied, then the result of the game is determined by the sum of two mean-payoff objectives. We present
a reduction from the sum of two mean-payoff objectives to a two dimensional mean-payoff objective, where
the protagonist has to ensure a value of at least q in the first dimension and a value of at least p in the second
dimension. We then show how to use results of [18] to obtain a pseudo-polynomial time algorithm for our
implication games.

5. In Section 6 we study two classes of implication games. First, we consider discounted-sum parity games in
which Player 1 has to ensure that a parity objective is satisfied and the value of the game is negative. While
mean-payoff parity games have been studied before, discounted-sum parity games were not studied before
and our result may be of independent interest. Second, we consider implication games that correspond to
QFSGs for discounted-sum automata with Büchi acceptance conditions. For discounted-sum parity games
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we present a polynomial-time Turing reduction to discounted-sum games and parity games, and for implica-
tion games with discounted-sum objectives and Büchi acceptance conditions, we present a polynomial-time
Turing reduction to discounted-sum games.

6. We conclude the paper and discuss the future work in Section 7.

2 Preliminaries

2.1 Automata
Words. Given a finite alphabet Σ of letters, a word w is an infinite sequence of letters. For a word w, we define
w[i] as the i-th letter of w.
Non-deterministic automata. A (non-deterministic) automaton A is a tuple (Σ, Q, q0, δ, F ), where Σ is the
alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ Q× Σ×Q is a transition relation, and F ⊆ Q
is a set of accepting states.
Runs. Given an automaton A and an infinite word w, a run π = π[0]π[1] . . . is an infinite sequence of states such
that π[0] = q0 and for every i ∈ N \ {0} we have (π[i− 1], w[i], π[i]) ∈ δ. Given a word w, we denote by Run(w)
the set of all possible runs on w.
Büchi acceptance. The (Büchi) acceptance of words is defined using the accepting states. An (infinite) run π is
(Büchi) accepting, if there exists infinitely many j such that π[j] ∈ F . Let Acc(w) ⊆ Run(w) denote the set of
accepting runs, and a word w is accepted iff Acc(w) is non-empty. We denote by LA the set of words accepted by
A.
Weighted automata. A weighted automaton is an automaton whose transitions are labeled by integers Z. For-
mally, a weighted automaton A is a tuple (Σ, Q, q0, δ, F, wt) such that (Σ, Q, q0, δ, F ) is an automaton and
wt : δ 7→ Z. The labels of the transitions are referred to as weights.
Semantics of weighted automata. To define the semantics of weighted automata we need to define the value of
a run (that combines the sequence of weights of a run to a single value) and the value across runs (that combines
values of different runs to a single value). To define values of runs, we will consider value functions f that assign
real numbers to sequences of integers. Given a word w, every run π of A on w defines a sequence of weights of
successive transitions of A, i.e., wt(π) = (wt(π[i − 1], w[i], π[i]))i∈N\{0}; and the value fwt(π) of the run π is
defined as f(wt(π)). The value of a word w assigned by the automaton A, denoted by LA(w), is the infimum of
the set of values of all accepting runs; i.e., infπ∈Acc(w) f

wt(π), and we have the usual semantics that infimum of
an empty set is infinite, i.e., the value of a word that has no accepting runs is infinite. To indicate a particular value
function f that defines the semantics, we will call a weighted automaton A an f -automaton. We consider value
functions from VALFUNC defined below.
Value functions. We consider the following functions that aggregate a sequence of integers into a single real
number. Let a = (ai)i≥1 be a sequence of integers, and let Avgk(a) = 1

k ·
∑k
i=1 ai. We define the following

functions:

1. Limit-average infimum: LIMAVGINF(a) = lim infk→∞ Avgk(a).

2. Limit-average supremum: LIMAVGSUP(a) = lim supk→∞ Avgk(a).

3. Discounted-sum: DISCλ(a) =
∑∞
i=1 λ

i · ai, for 0 < λ < 1.

We define VALFUNC = {LIMAVGINF, LIMAVGSUP,DISCλ}.
Quantitative inclusion. We consider the quantitative variant of the inclusion question. Given an f -automaton A1

and a g-automaton A2 the inclusion question asks whether for every word w we have LA1
(w) ≤ LA2

(w). If it
is the case we say that A1 includes A2. The quantitative inclusion generalizes the (Boolean) inclusion question.
Indeed, Boolean automata can be considered as weighted automata that assign the value 1 to rejected words and 0
to accepted words.

2.2 Games

Game arena. A game arena G is a tuple (V, V1, V2, E) where (V,E) is a finite graph, (V1, V2) is a partition of V
into positions of Player 1 and Player 2, respectively. We consider (for technical convenience) that for every position
v ∈ V there is at least one outgoing edge. Given an arena G and a set U ⊆ V of positions we denote by G � U
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the arena restricted to the graph induced by U , i.e., the set of positions is U , and the set of edges E ∩ (U × U).
Moreover, if every position in U has an outgoing edge in U , then G � U is also a game arena.
Game plays. A game on an arena G is played as follows: a token is placed at a starting position, and whenever the
token is at a Player-1 position, then Player 1 chooses an outgoing edge to move the token, and when the token is
at a Player-2 position, then Player 2 does likewise. As a consequence we obtain an infinite sequence of positions,
which are called plays, and strategies are recipes to extend finite prefix of plays (i.e., the recipes to describe how
to move tokens). We formally define them below.
Strategies and plays. Given a game arena G, a function σ1 : V ∗ · V1 7→ V (resp., σ2 : V ∗ · V2 7→ V ) is a
strategy for Player 1 (resp., Player 2) on G iff σj(v0v1 . . . vk) = v implies (vk, v) ∈ E. In other words, given
a finite sequence of positions that ends at a Player-1 position (representing the history of interactions), a strategy
for Player 1 chooses the next position respecting the edge relationship (to move the token). We denote the set
of all strategies for Player 1 (resp., Player 2) on G by S1[G] (resp., S2[G]). A strategy σi is memoryless iff for
all w,w′ ∈ V ∗, v ∈ Vi we have wvi, w′vi ∈ dom(σi) implies σi(wvi) = σi(w

′vi). Informally, a memoryless
strategy does not depend on the history, but only on the current position. We denote the set of all memoryless
strategies for Player 1 (resp., Player 2) on G by S1[G,M ] (resp., S2[G,M ]). A pair of strategies σ1, σ2 on G, along
with a starting position v, defines a play π(σ1, σ2, v), which is a word over V . The play π(σ1, σ2, v) = v1v2 . . .
is defined inductively as follows: (a) v1 = v; (b) vi+1 = σ1(v1 . . . vi) if vi ∈ V1; and (c) vi+1 = σ2(v1 . . . vi) if
vi ∈ V2. We define Π(G) as the set of all plays on G. Since every position has at least one outgoing edge, every
play is indeed infinite.

We consider three types of objectives: Boolean, quantitative and implication. Implication objectives combine
Boolean and quantitative objectives and are presented in Section 3.
Boolean objectives. A Boolean objective is a function Φ : Π(G) 7→ {0, 1}. We consider three types of Boolean
objectives: tautology, Büchi and parity. Tautology are those objectives ΦT that for every play return 1. Büchi
objectives ΦB are defined by a subset F of the positions of the arena. Then, ΦB(π) = 1 iff some position from F
occurs infinitely often in π. Finally, parity objectives are defined by labellings p of the positions in the arena with
natural numbers. The parity objective p is satisfied by π, i.e., ΦP (π) = 1, iff lim inf{p(v0), p(v1), . . . , } is even,
i.e., among numbers that appear infinitely often in p(v0), p(v1), . . . the minimal one is even.
Winning strategies and winning sets. A strategy σ1 (resp., σ2) is winning for Player 1 (resp., Player 2) from a
position v iff for all strategies σ2 for Player 2 (resp., all strategies σ1 for Player 1), the play π defined by σ1, σ2
given v satisfies Φ(π) = 1 (resp., Φ(π) = 0). For a Boolean objective Φ, and i ∈ {1, 2}, the winning set for
Player i for the objective, denoted by Wini(Φ), is the set of positions v such that there exists a winning strategy
for Player i from v. For all Boolean objectives defined above, the winning sets form a partition, i.e., if Φ is the
winning objective and Φ its complement, then Win1(Φ)∩Win2(Φ) = ∅; and Win1(Φ)∪Win2(Φ) = V ; and there
exist memoryless winning strategies for the players from their respective winning set [19, 20].
Quantitative objectives. A quantitative objective in general is a Borel measurable function f : Π(G) 7→
R ∪ {−∞,∞}. Unlike in games with Boolean objectives, quantitative games do not have the winner. In-
stead, Player 1 (called also Minimizer) plays in a way to construct plays π of a possibly small value f(π),
whereas Player 2 (called also Maximizer) attempts to maximize f(π). The minimal value of the game which
Player 1 can ensure (called the lower value) is defined as val(f, v) = infσ1∈S1[G] supσ2∈S2[G] f(π(σ1, σ2, v)).
Player 2 on the other hand can ensure that the value of the game is at least the upper value, denoted as
val(f, v) = supσ2∈S2[G] infσ1∈S1[G] f(π(σ1, σ2, v)). By Borel determinacy [19], the upper and lower values co-
incide with respect to f , and is called the value of the game, denoted by val(f, v). Given a quantitative objective
f , we can consider a Boolean objective by imposing a threshold, i.e., given a threshold ν we consider the set of
winning plays to be {π ∈ Π(G) : f(π) ≤ ν}, all plays π whose value does not exceed ν.
Optimal and ε-optimal strategies. Consider a game arena G with a quantitative objective f . For a real ε ≥ 0, a
strategy σo for Player 1 (resp., Player 2) is ε-optimal for a position v iff supσ2∈S2[G] f(π(σo, σ2, v))−val(f, v) ≤ ε
(resp., val(f, v)− infσ1∈S1[G] f(π(σ1, σ

o, v)) ≥ ε). A strategy σ is optimal iff it is 0-optimal.
Basic quantitative objectives. We consider the following quantitative objectives defined by a labeling wt : E 7→ Z
of moves E on G with integers. Given an arena G, a labeling wt and a play π = v0v1 . . . on G we define wt(π) as a
sequence of integers wt(v0, v1), wt(v1, v2) . . .. Given a value function f ∈ VALFUNC, we consider the quantitative
objectives fwt defined as fwt(π) = f(wt(π)). For example, limit-average infimum objective is defined on plays
by LIMAVGINFwt(π) = LIMAVGINF(wt(π)).
Determinacy and memoryless optimal strategies. For every f ∈ VALFUNC and every labeling wt, the function
fwt is Borel measurable, and hence due to Borel determinacy theorem [19], the upper and lower values coincide,
and we have a value of the game for every initial position. Moreover, all f ∈ VALFUNC admit optimal strategies
that are memoryless [21, 14, 15].
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Composed quantitative objectives. Consider an arena G and labellings of moves wt1 and wt2. A composed
quantitative objective f + g is a quantitative objective defined as follows: (f + g)(π) = f(wt1(π)) + g(wt2(π)).

3 Implication Games
In this section we introduce implication games, and in the following section we argue how simulation of weighted
automata with Büchi acceptance conditions can be reduced to implication games, and finally we will present
solution for implication games.
Implication games. We define implication games that combine Boolean and quantitative objectives. An impli-
cation objective is a triple (Φ1,Φ2, f), where Φ1,Φ2 are Boolean objectives and f is a quantitative objective.
Intuitively, Player 1 has to satisfy the Boolean objective Φ1 and either ensure that Φ2 is violated or play to min-
imize the value of f(π). Player 2 has to either violate Φ1 or play to both satisfy Φ2 and maximize the value of
f(π). Formally, we define f ′ as follows: for every π ∈ Π(G),

f ′(π) =


f(π) if Φ1(π) = Φ2(π) = 1,

∞ if Φ1(π) = 0,

−∞ if Φ1(π) = 1 and Φ2(π) = 0.

The value of an implication game with the objective (Φ1,Φ2, f) is the value of a quantitative game with the
objective f ′, whenever the latter exists.
Classes of implication objectives. Let C1, C2 be classes of Boolean objectives, and let F be a class of quantitative
objectives. We define the class of implication games with (C1, C2,F) as the class of all implication games with
objectives (Φ1,Φ2, f), where Φ1 ∈ C1,Φ2 ∈ C2 and f ∈ F .
Values of implication games. The value of the implication game with the objective (Φ1,Φ2, f) is the value of the
quantitative game with the objective f ′. One can construct functions f ′ such that the quantitative game with the
objective does not have the value (if f is not measurable). In the following we show that every reasonable choice
of Φ1,Φ2 and f leads to a game with the properly defined value. A function f : Π(G) 7→ R ∪ {−∞,∞} is Borel
iff for every a ∈ R, the counter-image f−1[(−∞, a]] is Borel in Π(G).

Proposition 1. Let G be an arena, let Φ1,Φ2 be Boolean objectives and let f be a quantitative objective on G. If
Φ1,Φ2, f are Borel, then the implication game with the objective (Φ1,Φ2, f) has a value, i.e., for every v we have

inf
σ1∈S1[G]

sup
σ2∈S2[G]

f ′(π(σ1, σ2, v)) = sup
σ2∈S2[G]

inf
σ1∈S1[G]

f ′(π(σ1, σ2, v)).

Proof. If Φ1,Φ2, f are Borel, the objective f ′ is Borel as well. Therefore, for every threshold t, the set of plays
such that the value of the play does not exceed t is Borel. By Borel determinacy theorem [19], we have for every
threshold t, either Player 1 has a strategy to keep the value of all plays below t against all strategies of Player 2;
or Player 2 can enforce that the value of the play is at least t against all strategies of Player 1. Observe that there
exists the least t0 such that Player 2 can enforce that the value of the play is at least t0 against all strategies of
Player 1. On the other hand, for every t′ < t0, Player 1 has a strategy to keep the value of all plays below t′ against
all strategies of Player 2. Thus, t0 is the value of the game.

In classical mean-payoff games [21] (as well as in mean-payoff games with conjunction with a parity ob-
jective [22]), the value functions for LIMAVGINF and LIMAVGSUP objectives coincide for every position. In
contrast, in the following example we show that for implication games, the value functions for LIMAVGINF and
LIMAVGSUP objectives do not coincide in general.

Example 2. Consider an arena G depicted below:

A B

-1 1

0

0

Player 1 owns the position A (depicted as circles) and Player 2 owns B (depicted as squares). Consider an
implication game played on G with objective (Φ1,Φ2, LIMAVGINF), where Φ1 states that B is visited infinitely
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often, Φ2 states that A is visited infinitely often, and LIMAVGINF is taken w.r.t. the weight presented in the figure.
Intuitively, Φ1,Φ2 force Players 1 and 2 to leave their positions, which are beneficial for them in the quantitative
aspect. Observe that Player 1 can satisfy Φ1 and force the game value to be −1. Indeed, Player 1 maintains a
counter i which is increased every time Player 2 moves from B to A. Every time Player 2 moves to the position A,
Player 1 stays inA until the partial average of weights decreases below−1+ 1

i . Then, he moves to the positionB.
Observe that such a strategy satisfies Φ1 as Player 1 moves to B after finite time spent in A. Moreover, if Player 2
leaves B infinitely often, then for every ε > 0, infinitely often the partial average of the weights are below −1 + ε.
Therefore, the value of the game is −1.

However, a similar implication game with an objective (Φ1,Φ2, LIMAVGSUP) has value 1, since Player 2 can
satisfy Φ2 and as long as Player 1 leaves A infinitely often, Player 2 can force the limit supremum to reach 1 in a
similar way to the previous strategy of Player 1 for (Φ1,Φ2, LIMAVGINF). Player 2 maintains a counter i which
is increased every time Player 1 moves from A to B. Every time Player 1 moves to the position B, Player 2 stays
in B until the partial average of weights increases above 1− 1

i . As in the previous case, the value of the game is 1.

Observe that implication games are different than games with Boolean objectives. More precisely, the follow-
ing example shows that Player 1 can ensure that every play has a negative value, however, the value of the game
is 0.

Example 3. Consider an implication game (Φ1,Φ2,DISCλ) depicted in the figure below where all positions are
owned by Player 2. We define the condition Φ1 to be satisfied for all plays and Φ2 to state thatB is visited infinitely
often.

A B

0 -1

-1

Player 2 has to eventually leave A and move to B to satisfy Φ2. Clearly, every play that eventually moves to
B has a negative value. However, Player 2 can stay in A arbitrarily long and achieve values arbitrarily close to
0. Therefore, the supremum (which is the value of the game) is 0.

4 Quantitative Liveness Simulation Games
Language inclusion is a central problem in automata-based verification. Typically, the behavior of the model is
described by one automaton, while the other automaton describes traces allowed by the specification. In such a
case, the model satisfies the specification iff behaviors of the model are included in the behaviors allowed by the
specification. Unfortunately, the quantitative inclusion problem for LIMAVGINF-automata (resp., LIMAVGSUP-
automata) is undecidable. The decidability of the quantitative inclusion problem for DISCλ-automata is open.
Still, we can under-approximate (quantitative) inclusion by a more restrictive notion of (quantitative) simulation,
which implies inclusion. We define quantitative simulation in terms of games, i.e., we say that an automaton A1

is quantitatively simulated by A2 iff the player called Simulator wins the following Quantitative Fair Simulation
Game (QFSG) on A1,A2 against Challenger.
Quantitative Fair Simulation Games (QFSGs). We define a Quantitative Fair Simulation Game (QFSG) as
follows. Let A1,A2 be weighted automata over the alphabet Σ. For i ∈ {1, 2}, let Qi, δi, q0,i be respectively
the set of states, the transition relation and the initial state of Ai. We define the arena of a QFSG on A1,A2 as
G = (V, V1, V2, E), where:

1. V = V1 ∪ V2, where V1 = Q1 ×Q2, V2 = Q1 × Σ×Q2,

2. E = E1 ∪ E2, where E1 = {〈(q1, q2), (q′1, a, q2)〉 : (q1, a, q
′
1) ∈ δ1, q2 ∈ Q2} and E2 =

{〈(q′1, a, q2), (q′1, q
′
2)〉 : q′1 ∈ Q1, (q2, a, q

′
2) ∈ δ2}

Intuitively, Q1 × Q2 are Player-1 positions, where Player 1 chooses a letter from the alphabet and a transition of
A1; and then at positions Q1 ×Σ×Q2 which belong to Player 2 a response of a transition in A2 given the chosen
letter from Player 1. We will consider the starting position as v0 = 〈q0,1, q0,2〉.

We call Player 1 Challenger and Player 2 Simulator. Challenger plays on A1 and picks letters and transi-
tions of A1, while Simulator plays on A2 and attempts to match transitions of A1 with A2 transitions. Specif-
ically, at a position (q1, q2) Challenger picks a letter a and a transition (q1, a, q

′
1) of A1, which determine

the move 〈(q1, q2), (q′1, a, q2)〉. Next, at the position (q′1, a, q2) Simulator responds with a transition (q2, a, q
′
2)

7



of A2 labeled with the same letter a and moves to a position of Challenger (q′1, q
′
2). The constructed play

(q01 , q
0
2), (q11 , a, q

0
2), (q11 , q

1
2), . . . yields two runs: π1 of A1 and π2 of A2. Challenger wins the QFSG on au-

tomata A1,A2 iff he has a strategy σ1 and there exists ε > 0 such that for every strategy σ2 of Simulator, the
constructed runs satisfy the following: (1) π1 is an accepting run ofA1, and (2) either (a) π2 is not accepted byA2

or (b) the value of the run π2 in A2 is greater than the value of the run π1 in A1 plus ε. Simulator wins the QFSG
on automata A1,A2 when Challenger does not win the game.
QFSGs vs. automata inclusion. Consider a modification of QFSGs in which Challenger does not distinguish
moves of Simulator. The modified game is called a partial-information game. In such a game, strategies of
Challenger are simply runs of A1, while strategies of Simulator are as in QFSGs. Observe that Challenger has a
winning strategy in the modified game precisely when the answer to the quantitative inclusion problem of A1 in
A2 is “no”, i.e., the modified game is equivalent to the quantitative inclusion problem. QFSGs result from giving
more power to Challenger, who can observe moves of Simulator, therefore if Simulator wins QFSG then he wins
the modified game on the same automata. It follows that QFSG under-approximates the inclusion problem, i.e., if
Simulator wins the QFSG, then the answer to the inclusion problem is yes, however, the converse need not hold.
We prove this observation formally in the following result:

Theorem 4. Let f ∈ VALFUNC and let A1,A2 be f -automata with Büchi acceptance conditions, and labeling
functions wt1 and wt2. Let q0,1 (resp., q0,2) be the initial state of A1 (resp., A2). If Challenger does not win the
QFSG on automata A1,A2 starting from position v0 = 〈q0,1, q0,2〉, then the answer to the quantitative inclusion
problem of A1 in A2 is “yes”.

Proof. Assume that Challenger does not have a winning strategy from the initial position 〈q0,1, q0,2〉. Let π1 be
an accepting run of A1. Consider a strategy for Challenger that produces the run π1 regardless of the actions of
Simulator. This strategy is not winning, therefore for every ε > 0 there is a strategy of Simulator that produces
a run π2, which is accepting for A2 and fwt2(π2) ≤ fwt1(π1) + ε. It follows that for every accepting run π1 of
A1 and every ε > 0 there is an accepting run of A2 such that fwt2(π2) ≤ fwt1(π1) + ε. Then, for every word w
we have infπ2∈Acc2(w) f

wt2(π2) ≤ infπ1∈Acc1(w) f
wt1(π1), i.e., the answer to the quantitative inclusion problem of

A1 in A2 is “yes”.

QFSGs to implication games. The QFSG problem on A1 and A2 can be reduced to implication games where the
first (resp., the second) Boolean objective for the implication games represent the Boolean acceptance condition
for A1 (resp., A2), and the quantitative objective represents the composed quantitative objective. Hence in the
following section we present solution of implication games where the Boolean acceptance conditions are Büchi
conditions, and the quantitative objectives are sum of mean-payoff objectives or discounted-sum objectives.

5 Mean-Payoff Implication Games
In this section we consider implication games, where the quantitative objective is the sum of two mean-payoff
objectives, and the Boolean objectives are Büchi objectives. Our solution will use the notion of attractors that we
define below.
Attractors. For a set U ⊆ V we denote by Attri(U) the attractor set of Player i, namely, the set of positions
from which Player i can force reachability to a position in U . It is well known that an attractor is computable in
linear time [10, 11], and the corresponding winning strategy for the reachability objective is memoryless (which
is referred as an attractor strategy). An attractor strategy also ensures that the target set U is reached within |V |
steps. It is also well known that if G is a game arena, then for a set of positions U ⊆ V and for Player i = 1, 2,
the arena G � (V \Attri(U)) is a game arena, i.e., it has at least one move from every position, and all positions of
Player i in V \ Attri(U) do not have a move to Attri(U).

5.1 Mean-payoff parity games
Mean-payoff parity games, which are a subclass of implication games have been studied in [22]. Formally, mean-
payoff parity games are implication games (Φ1,Φ2, LIMAVGINF) where Φ1 is a parity objective and Φ2 is a
tautology objective (i.e., it is satisfied for all plays). Intuitively, in a mean-payoff parity game Player 1 has to ensure
that the parity condition is satisfied and the mean-payoff objective is above a certain threshold. The objective of
Player 2 is the converse. The following results have been showed in [22, 8].

Theorem 5 ([22, 8]). The following assertions hold: (i) Mean-payoff parity games can be solved in O(nd · (m+
MPALGO + PARITYALGO)) time, where MPALGO and PARITYALGO denote run-times of algorithms to solve
mean-payoff games and parity games, respectively, and n,m, and d represent the number of positions, the number
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of edges, and the number of priorities of the parity objective, respectively. (ii) In every mean-payoff parity game,
Player 1 has an infinite-memory optimal strategy, and in general, optimal strategies for Player 1 require infinite
memory. (iii) In every mean-payoff parity game, Player 2 has a memoryless optimal strategy. (iv) For every ε > 0,
there exists a finite-memory ε-optimal strategy for Player 1, and ε-optimal strategies, for ε > 0, for Player 1
in general require memory. However, if there is a finite-memory optimal strategy for Player 1, then there is a
memoryless optimal strategy.

5.2 Complexity of winning strategies
In mean-payoff parity games while Player 1 requires infinite memory for optimal strategies, there always exist
memoryless optimal strategies for Player 2. In contrast, in implication games with (Büchi,Büchi, LIMAVGINF1 +
LIMAVGINF2) objectives, we show (in the following two examples) that the optimal strategies, both for Player 1
and Player 2 in general require infinite memory. Similar result also holds if LIMAVGINF is replaced by
LIMAVGSUP which we omit for succinctness.

Example 6 (Optimal strategies for Player 2 require infinite memory). Consider an arena G depicted below:

A B

1,1

0,0

0,0

Player 2 owns both positions. Consider an implication game played on G with an objective
(Φ1,Φ2, LIMAVGINF1 + LIMAVGINF2), where Φ1 is a tautology, Φ2 states that A is visited infinitely often,
and LIMAVGINFi (for i = 1, 2) is taken w.r.t. the weights presented in the figure. Player 2 can achieve value 2
with the following strategy:

• For m = 1, 2, . . . ,:

– Follow the transition from A to B.

– Traverse the self-loop of B for m times.

– Follow the transition from B to A.

However, any finite-memory strategy of Player 2 is an ultimately periodic path π = π0(π1)ω , where π0 and π1
are finite paths, and hence LIMAVGINF1(π) + LIMAVGINF2(π) = Avg1(π1) + Avg2(π1). If π1 contains the
position A, then Avg1(π1),Avg2(π1) < 1, and its value is strictly smaller than 2. Otherwise, Φ2 is not satisfied,
and the value of the play is −∞. Hence, with infinite-memory strategy Player 2 can achieve a value of 2, while
any infinite-memory strategy gives a value strictly smaller than 2.

Example 7 (Optimal strategies for Player 1 require infinite memory). Consider an arena G depicted below:

A B

1,-1-1,1

0,0

0,0

Player 1 owns both positions. Consider an implication game played on G with an objective
(Φ1,Φ2, LIMAVGINF1 + LIMAVGINF2), where both Φ1 and Φ2 are tautologies, and LIMAVGINFi (for i = 1, 2)
is taken w.r.t. the weights presented in the figure. Player 1 can achieve value −2 with the following strategy:

• For m = 1, 2, . . . ,:

– Traverse the self-loop of A until the average weight of the first dimension is smaller than −1 + 1
m .

– Follow the transition from A to B.

– Traverse the self-loop of B until the average weight of the second dimension is smaller than −1 + 1
m .

– Follow the transition from B to A.
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With this strategy Player 1 achieves LIMAVGINF1 = LIMAVGINF2 = −1. Hence, the value of the play
is −2. However, any finite-memory strategy of Player 1 is an ultimately periodic path π = π0(π1)ω , with
LIMAVGINF1(π)+LIMAVGINF2(π) = Avg1(π1)+Avg2(π1) = 0. Hence, with infinite-memory strategy Player 1
can achieve a value of −2, while any finite-memory strategy gives a value 0. Hence optimal strategies (even ε-
optimal strategies, for ε > 0) for Player 1 require infinite memory in general.

In this section we have established that optimal strategies for both players require infinite-memory in general.
In games with Boolean combination of multiple mean-payoff objectives, infinite-memory strategies are required for
both player for optimality, and the problem is undecidable [23]. In contrast, we show in the following subsections
that in implication games with mean-payoff objectives and Büchi acceptance conditions, though both players
require infinite memory for optimality, the decision problem is decidable.

5.3 Implication games with objectives (Büchi, Büchi, LIMAVGINF + LIMAVGINF)

We consider implication games defined by (Büchi,Büchi, LIMAVGINF1 + LIMAVGINF2) objective. More for-
mally, we have weight functions wt1 and wt2, and LIMAVGINF1 = LIMAVGINFwt1 and LIMAVGINF2 =
LIMAVGINFwt2 . We start with a few notations.
Notations. Let us consider a threshold ν, and we will use the following notations:

Φinf
sum(ν) = {π : LIMAVGINF1(π) + LIMAVGINF2(π) ≥ ν};

i.e., the objective requires the sum of the mean-payoff objectives is at least ν; and for i ∈ {1, 2},

Φinf
i (ν) = {π : LIMAVGINFi(π) ≥ ν};

i.e., the objective requires that the individual mean-payoff in dimension i is at least ν. For thresholds x and y,
games with objectives that are conjunction Φinf

1 (x) ∧ Φinf
2 (y) of two individual mean-payoff objectives are called

two-dimensional mean-payoff games (and have been studied in [24]). We also consider the existential version of
two-dimensional mean-payoff games that has not been studied before. For a threshold ν, the existential version of
two-dimensional mean-payoff objectives is defined as follows:

Φinf
exi(ν) = {π : ∃x, y ∈ R. x+ y ≥ ν ∧ π ∈ Φinf

1 (x) ∧ π ∈ Φinf
2 (y)};

i.e., it quantifies existentially over the individual thresholds such that their sum exceeds ν and the individual
objectives can be satisfied.
Single-dimensional vs. two-dimensional objectives. Before we proceed with the solution, we discuss the dif-
ference between single-dimensional vs. two-dimensional objectives. More precisely, let us consider two weight
functions wt1, wt2. We define wt1 + wt2 as the weight function whose weight, for every move, is the sum of
weights of wt1 and wt2 on that move. In the following example we show that the objectives B1 ∧ (coB2 ∨Φ∗(ν)),
where Φ∗(ν) = {π : LIMAVGINFwt1+wt2(π) ≥ ν}, and B1 ∧ (coB2 ∨ Φinf

sum(ν)) are different. In fact, we show
that even the objectives Φ∗(ν) and Φinf

sum(ν) are different.

Example 8. Consider arenas G1,G2 depicted below:

A B

-1,1

1,-1

1,-1

G1

A B

0

0

0

G2

Arenas G1 and G2 have the same underlying games structures and differ only in labels of moves. All positions
are owned by Player 2 and moves in G1 are labeled by two weight functions wt1, wt2, while moves in G2 are
labeled by a single weight wt1 + wt2. The value of any play in G2 is 0 as this is the only weight in the arena.
However, for every ν > −2, Player 2 can violate the objective Φinf

sum(ν) in G1. Indeed, the strategy σ2 achieving
LIMAVGINF1(π) = LIMAVGINF2(π) = −1 is as follows: Let i be a counter initially set to 1.

Step 1. Go to position B and stay there until the value of the partial average in the first dimension is less than
−1 + 1

i .
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Step 2. Alternate between A and B until the value of the partial average in the second dimension is less than
−1 + 1

i .

Step 3. Increment i and go to Step 1.

Consider the play π generated by the strategy σ2. For every ε > 0, the partial average of π in the first (resp.,
second) dimension is less than −1 + ε infinitely often. On the other hand LIMAVGINF1(π), LIMAVGINF2(π) ≥
−1. Therefore, LIMAVGINF1(π) = LIMAVGINF2(π) = −1 and for every ν > −2 the play π violates Φinf

sum(ν).

The above example shows that the Φinf
sum(ν) objective cannot be treated simply as a one-dimensional mean-

payoff objective. Before we proceed to our solution we present a general fact about prefix-independent objectives,
and properties of winning strategies for them.
Tail (prefix-independent) objectives. A Boolean objective ϕ is a tail (prefix-independent) objective if for any
finite play π0 and any infinite play π it holds that ϕ(π) = 1 if and only if ϕ(π0 · π) = 1. Observe that Büchi and
co-Büchi objectives as well as Φinf

sum(ν), Φinf
i (ν), and Φinf

exi(ν) are all tail objectives.
Finite-history independent property. Consider a tail objective ϕ and a winning strategy σ1 for the objective ϕ.
Consider any finite history h that ends in Win1(ϕ), and the strategy that ignores that history h and plays as σ1, i.e.,
for histories h · h′ it plays as σ1(h′). Since ϕ is a tail objective, the resulting strategy ensures that if h is executed,
then against all strategies of the opponent the resulting play is still winning. In the sequel we will refer to this
property as the finite-history independent winning property.
The basic computation problem. For a given threshold ν, the implication game (Büchi,Büchi, LIMAVGINF1 +
LIMAVGINF2) is equivalent to a game with the Boolean winning condition ϕ(ν) = B1 ∧ (coB2 ∨ Φinf

sum(ν)),
where B1 stands for a Büchi condition over the set B1 and coB2 is a co-Büchi condition over the set B2. Hence,
in this subsection we study a game where Player 1 wishes to satisfy ϕ(ν), and show how to compute the maximal
threshold ν such that Player 1 is the winner with respect to the condition ϕ(ν) (specifically, we show that such
maximal threshold exists and how to compute it).
Solution overview. Intuitively, we show that to find the winner of a game with objective B1 ∧ (coB2 ∨Φinf

sum(ν)),
it is enough to consider two games independently, one with condition B1 ∧ coB2, and the other with condition
B1 ∧ Φinf

sum(ν). If Player 1 wins for one of the objectives, then clearly he wins for the original objective ϕ(ν).
Conversely, we prove that if Player 1 loses in both the games from everywhere, then he also loses for the objective
ϕ(ν) from everywhere. Games with conditions B1 ∧ coB2 are well studied [12]. Hence, most of this section is
devoted to analyze the winning condition B1 ∧ Φinf

sum(ν). The analysis is achieved as follows:

1. First, we consider the existential version of two-dimensional mean-payoff games Φinf
exi(ν), and show how

to solve them (in Subsection 5.3.1). The solution is obtained by extending the techniques to solve two-
dimensional mean-payoff games that were studied in [18].

2. Then we show how to use the solution of the existential version of two-dimensional mean-payoff games to
solve B1 ∧ Φinf

sum(ν) objectives (in Subsection 5.3.2).

3. Finally (in Subsection 5.3.3), we prove that it is enough to consider the two above winning objectives
(namely, B1 ∧ coB2 and B1 ∧ Φinf

sum(ν)) and present an algorithm that solves the original condition (and
computes the maximal value that can be obtained for a given initial position).

5.3.1 Solving games with existential two-dimensional objectives

In this section we study games with the objective Φinf
exi(ν) (i.e., existential version of two-dimensional mean-

payoff games). We fix a starting position v0 for the rest of the section. Given an arena G, we define PAIRS[G] as
PAIRS[G] = {(x, y) : Player 1 has a winning strategy from v0 for Φinf

1 (x)∧Φinf
2 (y) on G}. In the following lemma

we establish that if there exist elements in PAIRS[G] with sum at least ν, then there exist such witnesses in the set
that have O(log(nW )) description.

Lemma 9. Let G be a game arena with n positions and weights from [−W,W ]. For every threshold ν, if PAIRS[G]
contains (x, y) ∈ R2 with x + y ≥ ν, then there exist rationals (q, p) ∈ PAIRS[G] with p + q ≥ ν such that the
numerators and denominators of p, q belong to {−(nW )4, . . . , (nW )4}.

Proof. Since we consider objective Φinf
1 (x) ∧ Φinf

2 (y) for Player 1, which is a two-dimensional mean-payoff
objective, it follows from [24] that the analysis can be restricted to memoryless counter strategies for Player 2.
Given σ2 ∈ S2[G,M ], a memoryless strategy for Player 2 on G, we denote by Gσ2 the graph resulting from fixing
Player-2 choices according to σ2. Without loss of generality we consider that for any σ2 ∈ S2[G,M ], (i) the graph
Gσ2 contains a cycle with average weight (−W,−W ) (note that we can trivially add in a Player-1 position such
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a cycle which Player 1 will never choose); and (ii) we further consider that Gσ2 has only one strongly connected
component (SCC) and later present the solution for the general case. We denote by Cσ2

the set of simple cycles in
the (only) SCC of Gσ2 . For a finite path π = e1e2 . . . en and i = 1, 2 we denote wti(π) =

∑n
j=1 wti(ej). Then,

we define Avg(π) = ( wt1(π)n , wt2(π)n ).
By [24], Player 1 can win Φinf

1 (q) ∧ Φinf
2 (p) if and only if

(q, p) ∈
⋂

σ2∈S2[G,M ]

CONV {Avg(c) : c ∈ Cσ2
} (?)

(where CONV (X) contains all the convex combinations of elements from X). The problem of maximizing the
sum p + q subject to (?) is a linear programming problem, and thus if the constraints of (?) are feasible and the
solution is bounded, then a (possible) solution is a vertex of the convex polygon

⋂
σ2∈S2[G,M ] CONV {Avg(c) :

c ∈ Cσ2}. The constraints are feasible, since Player 1 can surely win for p, q = −W , and the solution is bounded
by 2 ·W , since Player 1 surely loose when p or q are greater than W . Hence, a solution is obtained in one of
the vertices of the polygon. We observe that a vertex in the polygon is either the average weight of some cycle
or the intersection of two edges (in R2): (Avg(c1),Avg(c2)) and (Avg(c3),Avg(c4)) for some four simple cycles
c1, c2, c3, c4 ∈

⋃
σ2∈S2[G,M ] Cσ2

. We further observe that for any σ2 ∈ S2[G,M ] and any simple cycle c in the
graph Gσ2 we have Avg(c) ∈ {xy : −nW ≤ x ≤ nW ∧ 1 ≤ y ≤ n}. Thus, by simple algebra, the intersection of
the two edges is a point (a, b) that satisfies a, b ∈ { r` : −(nW )4 ≤ r, ` ≤ (nW )4}. Hence, we may assume that
the maximal sum is obtained when p and q are of the above form. Hence, Player 1 can ensure a threshold couple
with sum at least ν if and only if he can ensure a threshold couple of the above form.

In the general case each Gσ2 may have more than one SCC. But the same arguments still hold. The maximal
value is still the solution of a linear programming problem in which a single SCC is chosen for every Gσ2 , and the
optimal combination of SCCs gives the maximal value.

Proposition 10. For an arena G, an initial position v0, and a threshold ν ∈ R, if Player 1 does not have a winning
strategy for Φinf

exi(ν) from v0, then there exists ε > 0 such that Player 1 does not have a winning strategy for
Φinf

exi(ν − ε) from v0.

Proof. Given an arena G, recall that PAIRS[G] = {(x, y) : Player 1 can ensure Φinf
1 (x) ∧ Φinf

2 (y) on G from v0}.
Consider s = sup{x + y : (x, y) ∈ PAIRS[G]}. By Lemma 9, s is also the supremum of the set S = {p + q :
(q, p) ∈ PAIRS[G] and p, q are rationals whose numerators and denominators belong to {−(nW )4, . . . , (nW )4}}.
As S is a finite set, it follows that there are two rationals (q, p) ∈ S such that p + q = s and Player 1 wins in
Φinf

1 (q) ∧ Φinf
2 (p). Hence, if for every x, y such that x + y ≥ ν Player 1 loses in Φinf

1 (x) ∧ Φinf
2 (y), then it must

be the case that s < ν, and the assertion holds for ε = ν−s
2 .

5.3.2 Solving games with B1 ∧ Φinf
sum(ν) objectives

In this section we study the solution for B1 ∧ Φinf
sum(ν) objectives. The next lemma shows that if the winning set

for two-dimensional mean-payoff games along with Büchi condition is empty, then the solution for sum of two
mean-payoff objectives along with Büchi condition is also empty.

Lemma 11. For every arena and every threshold ν we have Win1(B1 ∧ Φinf
sum(ν)) = ∅ if and only if for all

x, y ∈ R such that x+ y ≥ ν we have Win1(B1 ∧ Φinf
1 (x) ∧ Φinf

2 (y)) = ∅.

Proof. To prove the implication from left to right observe that for all x, y ∈ R with x+ y ≥ ν we have Win1(B1 ∧
Φinf

1 (x) ∧ Φinf
2 (y)) is contained in Win1(B1 ∧ Φinf

sum(ν)).
To prove the converse direction we assume that for every x, y ∈ R with x + y ≥ ν the region Win1(B1 ∧

Φinf
1 (x) ∧ Φinf

2 (y)) = ∅. By Proposition 10 applied to every position of the arena, we have that there exists ε > 0
such that for all x, y ∈ R with x+ y ≥ ν− ε it holds that Win1(B1 ∧Φinf

1 (x)∧Φinf
2 (y)) = ∅. We define a strategy

σ2, which is a winning strategy for Player 2 against the objective B1 ∧ Φinf
sum(ν).

1. Let AV1 (resp., AV2) be the average weight of the play until the current position in the first (resp., second)
dimension.

2. If AV1 + AV2 ≤ ν − ε, take an arbitrary move and return to Step 1.

3. Otherwise, if AV1 + AV2 > ν − ε, then let δ = AV1+AV2−(ν−ε)
2 . Then, play according to a strategy that

ensures violation of the objective B1 ∧Φinf
1 (AV1 − δ) ∧Φinf

2 (AV2 − δ), until either the average value of the
first dimension is less than AV1− δ

2 or the average value of the second dimension is less than AV2− δ
2 . Then

return to Step 1.
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In Step 3 we have AV1 − δ + AV2 − δ ≥ ν − ε, therefore a strategy for Player 2 to ensure violation of B1 ∧
Φinf

1 (AV1 − δ) ∧ Φinf
2 (AV2 − δ) exists.

We now prove that the strategy σ2 is winning for Player 2. Towards contradiction suppose that ρ is a play that is
consistent with σ2 and satisfies B1∧Φinf

sum(ν). Hence, by definition, there is a round ` ∈ N after which the average
value of the first (resp., second) dimension is always at least MAXAV1 (resp., MAXAV2) and MAXAV1+ MAXAV2 >
ν − ε. Then, either the strategy executes Step 2 infinitely often or after some time it remains in Step 3 forever.

• Consider that the strategy executes Step 2 infinitely often. Then, every time the strategy executes Step 2,
it proceeds to Step 3, hence Step 3 is executed infinitely often. After the execution of Step 3, we have that
either the average weight of the first dimension is less than MAXAV1 − δ

2 or that the average weight of the
second dimension is less than MAXAV2− δ

2 and the contradiction follows. Since Step 3 is executed infinitely
often, we get a contradiction with the assumption that after the round `, the average value of the first (resp.,
second) dimension is always at least MAXAV1 (resp., MAXAV2).

• Now, consider the case where after some time the strategy remains in Step 3 forever. Since Player 2 plays a
strategy to violate B1 ∧Φinf

1 (AV1− δ)∧Φinf
2 (AV2− δ) and average of the first (resp., the second) dimension

is above AV1 − δ
2 (resp., AV2 − δ

2 ), it follows that the B1 is violated.

The desired result follows.

Hence to solve games with Büchi and Φinf
sum(ν) objectives, we first present solution of conjunction of a Büchi

and two mean-payoff objectives, extending the results of [18].
Algorithm ALGOTWOMP. We present an algorithm (which we refer to as ALGOTWOMP) to compute Win1(B1∧
Φinf

1 (q) ∧ Φinf
2 (p)) recursively in the following way:

1. Compute W1 = Win1(B1) and W2 = Win1(Φinf
1 (q) ∧ Φinf

2 (p)).

2. Let X = V \ (W1 ∪W2).

3. If X 6= ∅, recursively call the algorithm on the arena G � (V \ Attr2(X)).

4. Otherwise, if X = ∅, then Win1(B1 ∧ Φinf
1 (q) ∧ Φinf

2 (p)) is the whole arena.

We now present the correctness and complexity analysis of the algorithm.
Correctness. Observe that ifX 6= ∅, then from every position inX , Player 2 can falsify B1∧Φinf

1 (q)∧Φinf
2 (p), and

hence all positions in Attr2(X) belong to the winning set of Player 2 (i.e., do not belong to Win1(B1 ∧ Φinf
1 (q) ∧

Φinf
2 (p))). Hence the computation correctly continues recursively over G � (V \ Attr2(X)). We now show that if

Win1(B1) = Win1(Φinf
1 (q) ∧ Φinf

2 (p)) = V , then Player 1 has a winning strategy for B1 ∧ Φinf
1 (q) ∧ Φinf

2 (p).

Lemma 12. Let G be an arena with the set of positions V such that Win1(B1) = Win1(Φinf
1 (q) ∧ Φinf

2 (p)) = V .
Then, Win1(B1 ∧ Φinf

1 (q) ∧ Φinf
2 (p)) = V .

Proof. We first prove that for B1∧Φinf
1 (q)∧Φinf

2 (p) objective, if Player 2 can violate the objective, then he can do
it by a memoryless strategy. In order to prove that memoryless strategies suffice for Player 2, we observe that if two
plays π1 and π2 satisfy both the Büchi and the mean-payoff objectives, then any arbitrary mix between the weight
sequences of π1 and π2 and between the accepting positions in sequences of π1 and π2 will still satisfy both the
Büchi and the mean-payoff objectives. Hence, this objective is a convex objective, as defined in [25], and moreover,
it follows from [25] that against convex objectives, if Player 2 has a violating strategy, then he has a memoryless
one. Thus it is enough to show that Player 1 wins in the whole arena against every Player 2 memoryless strategy.

Let σ2 be an arbitrary Player-2 memoryless strategy. We define Gσ2 as the graph resulting from fixing choices of
Player 2 in the arena G according to the strategy σ2. Let S be an arbitrary bottom strongly connected component (an
SCC with no edges out of the SCC) in Gσ2 and let u be an arbitrary position in S. As u ∈Win1(B1) it follows that S
has a position from B1 (otherwise, σ2 is a Player 2 winning strategy from u). Since u ∈Win1(Φinf

1 (q)∧Φinf
2 (p)),

then by Lemma 12 in [26], there exist k simple cycles C1, . . . , Ck in S such that for some k positive integers
N1, . . . , Nk we have (i)

∑k
i=1Ni · wt1(Ci) ≥ q; and (ii)

∑k
i=1Ni · wt2(Ci) ≥ p. Let ci be an arbitrary position

in the cycle Ci and let πi be the shortest path from ci to ci+1 for i = 1, . . . , k − 1 and let πk be the shortest path
from ck to c1 that goes through a position in B1. Clearly, for i = 1, . . . , k − 1 we have |πi| ≤ n and |πk| ≤ 2n.
We denote by ρi the finite cyclic path

(C1)N1·iπ1(C2)N2·iπ2 . . . πk−1(Ck)Nk·iπk

and by ρ the infinite path ρ1 · ρ2 · ρ3 · . . . . Clearly, ρ satisfies the Büchi condition B1 and the fact that the path also
satisfies the mean-payoff condition Φinf

1 (q)∧Φinf
2 (p) follows from [26, Lemma 11]. The desired result follows.
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Complexity. Algorithm ALGOTWOMP makes at most |V | recursively calls. The set Win1(B1) can be computed
in quadratic time [12, 27, 28], and due to [18], Win1(Φinf

1 (q)∧Φinf
2 (p)) can be computed in polynomial time in nW

if p, q ∈ Q are represented by O(log(nW )) bits. Therefore, each call takes polynomial time in nW . Therefore,
the whole algorithm works in polynomial time in nW .

Lemma 13. Let G be a game arena with n positions and weights from [−W,W ]. Given p, q ∈ Q represented by
O(log(nW )) bits, algorithm ALGOTWOMP correctly computes Win1(B1∧Φinf

1 (q)∧Φinf
2 (p)) in polynomial time

in nW .

Proposition 14. Let G be a game arena with n positions and weights from [−W,W ]. The following assertions
hold: (i) For every initial position v0, the maximum threshold ν, for which Player 1 can satisfy B1 ∧ Φinf

sum(ν) is
either −∞ or it can be encoded by 8 log(nW ) bits and it is computable in polynomial time in nW . (ii) For a fixed
threshold ν, the region Win1(B1 ∧ Φinf

sum(ν)) can be computed in polynomial time in nW .

Proof. By Lemma 9 and Lemma 11 it is enough to compute Win1(B1 ∧ Φinf
1 (q) ∧ Φinf

2 (p)) for all rationals p, q
whose numerators and denominators belong to {−(nW )4, . . . , (nW )4}, i.e., rationals that can be encoded by
8 log(nW ) bits. Then, for (i) we return the maximum p + q over the winning regions containing v0. For (ii) we
return the union of winning regions with p + q ≥ ν. Since there are only polynomially many threshold couples
p, q to consider, and since for every p, q the computation of the winning region can be done in polynomial time
(Lemma 13), the total complexity is polynomial in nW .

5.3.3 Solving games with B1 ∧ (coB2 ∨ Φinf
sum(ν)) objectives

The next lemma suggests that we can replace the original winning objective with two simpler objectives.

Lemma 15. For every arena, we have Win1(B1 ∧ (coB2 ∨ Φinf
sum(ν))) = ∅ if and only if Win1(B1 ∧ coB2) = ∅

and Win1(B1 ∧ Φinf
sum(ν)) = ∅.

Proof. To prove the implication from right to left observe that Win1(B1 ∧ coB2) and Win1(B1 ∧ Φinf
sum(ν)) are

contained in Win1(B1 ∧ (coB2 ∨ Φinf
sum(ν))).

For the implication from left to right assume that Win1(B1 ∧ coB2) = ∅ and Win1(B1 ∧ Φinf
sum(ν)) = ∅, i.e.,

Player 2 wins in the entire arena against both B1 ∧ coB2 and B1 ∧ Φinf
sum(ν) objectives for Player 1. Also, we

consider that Win1(B1) 6= ∅, since Win1(B1) = ∅ trivially implies Win1(B1 ∧ (coB2 ∨ Φinf
sum(ν))) = ∅. Then,

there exists the maximal threshold νmax for which Player 1 can satisfy B1 ∧ Φinf
sum(νmax) and νmax is smaller

than ν. Thus, by Proposition 14 it follows that there is ε > 0 such that Player 2 wins in the entire arena also
against the B1 ∧Φinf

sum(ν− ε) objective. Let σ1
2 (resp., σ2

2) be a Player 2 violating strategy for B1 ∧ coB2 objective
(resp., B1 ∧ Φinf

sum(ν − ε) objective). Note that we can choose σ1
2 to be a memoryless strategy (since B1 ∧ coB2

objective is a parity objective with three priorities). We construct a winning strategy σwin
2 for Player 2 violating

B1 ∧ (coB2 ∨ Φinf
sum(ν)) objective. The strategy σwin

2 is to alternate the following steps.

Step 1. Play according to σ1
2 until a position from B2 is visited.

Step 2. Starting at the current round N , play according to σ2
2 until the first round K for which there exist two

rounds N ≤ i1, i2 ≤ K such that the average weight of the first (respectively, the second) dimension in
round i1 (resp., i2) is p (resp., q) and p + q ≤ ν − ε

2 . Note that in this step, σ2
2 is played considering the

history from the start of this step (i.e., it ignores the history that is before the start of this current step), but
for the partial average we consider the weights of the entire history. Goto Step 1.

Consider a counter strategy σ1 and the play π according to the strategy σ1 and σwin
2 . If σwin

2 plays σ1
2 infinitely

long and cannot visit a position from B2, then since σ1
2 is a strategy that ensures violation of B1 ∧ coB2, the play

π violates condition B1. Similarly, if σwin
2 plays infinitely long σ2

2 and does not achieve the specified condition
on the partial averages, then the play π satisfies Φinf

sum(ν − ε
2 ). This follows from the finite-history independent

winning property that even with the finite history upto the beginning of Step 2, it still ensures winning against
B1 ∧Φinf

sum(ν− ε
2 ). Since σ2

2 is winning against B1 ∧Φinf
sum(ν− ε) objective, π must violate condition B1. Finally,

if the strategy σwin
2 alternates between Step 1 and Step 2 infinitely often, then the play π violates coB2 and it

violates Φinf
sum(ν).

The next theorem is the main result of this section.

Theorem 16. Let G be a game arena with n positions and weights from [−W,W ]. For the implication game with
(Büchi, Büchi, LIMAVGINF + LIMAVGINF) objective, the value of every position can be computed in polynomial
time in nW .
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Proof. For a fixed ν, we can compute the winning region by computing R1 = Win1(B1 ∧ coB2) and R2 =
Win(B1 ∧ Φinf

sum(ν)). If both R1 and R2 are empty, then by Lemma 15, Player 1 does not win for threshold ν
from anywhere in the arena. Otherwise, Attr1(R1 ∪R2) is a part of Player 1 winning region, and we continue the
computation recursively for G � (V \ Attr1(R1 ∪R2)). The computation is polynomial thanks to Proposition 14.

To compute the maximal threshold, we first compute the winning region for ν = 2W + 1, and clearly if
Player 1 wins for that threshold, then he wins for every threshold (so the value is∞). In addition, for every pair
of rationals p, q whose numerators and denominators belong to {−(nW )4, . . . , (nW )4}, we compute the winning
region for threshold ν = p + q, and for every position we assign the maximal threshold he can satisfy. We
note that by Proposition 14, it is enough to check only thresholds that are the sum of rationals whose numerators
and denominators belong to {−(nW )4, . . . , (nW )4}. Finally, for every position that cannot satisfy the threshold
ν = −2W − 1, we assign the value −∞.

The complexity is polynomial in nW due to the fact that we need to consider only polynomial number of
thresholds, and because the computation for a fixed threshold is polynomial.

5.4 Implication games with objectives (Büchi, Büchi, LIMAVGSUP + LIMAVGSUP)

In this section, we consider implication games defined by (Büchi,Büchi, LIMAVGSUP1 + LIMAVGSUP2) objec-
tive, where LIMAVGSUP1, LIMAVGSUP2 are defined as follows. Given weight functions wt1 and wt2 we have
LIMAVGSUP1 = LIMAVGSUPwt1 and LIMAVGSUP2 = LIMAVGSUPwt2 . Similar to the previous section, given a
threshold ν we will use the following notation:

Φsup
sum(ν) = {π : LIMAVGSUP1(π) + LIMAVGSUP2(π) ≥ ν};

i.e., the objective requires the sum of the mean-payoff objectives is at least ν.
Basic idea. As in the previous subsection, we solve the game by considering two simpler winning conditions,
namely, B1 and (B1 ∧ coB2) ∨ Φsup

sum(ν). We show that if Player 1 wins for both the objectives, then he also wins
the original objective (and the converse direction is trivial). We first prove the above assertion and then we analyze
games with (B1 ∧ coB2)∨Φsup

sum(ν) objective. We show that if we exchange the role of the players (namely, when
Player 1 now wishes to violate the condition), then the new winning condition becomes a conjunction of a parity
condition and a condition of the form Φinf

sum(ν). We rely on the results of the previous section and extend the
analysis from a conjunction of Büchi condition and Φinf

sum(ν) to a conjunction of parity condition and Φinf
sum(ν).

We rely on the fact that the required parity condition consists of only three priorities and obtain a polynomial time
solution in nW .
Single-dimensional vs. two-dimensional objectives. Recall Example 8 that shows objectives Φinf

sum(ν) = {π :
LIMAVGINFwt1(π) + LIMAVGINFwt2(π) ≥ ν} and Φ∗(ν) = {π : LIMAVGINFwt1+wt2(π) ≥ ν} are different.
Consider G′1,G′2 obtained from G1,G2 by multiplying all weights by −1 in Example 8 and all positions belong to
Player 1. Then, every play π on G′2 has value 0, i.e., LIMAVGSUPwt1+wt2(π) = 0, while Player 1, using strategy
σ1 from Example 8, can achieve LIMAVGSUPwt1(π) = LIMAVGSUPwt2(π) = 1. Therefore, Player 1 can satisfy
Φsup

sum(2), while the sum of the dimensions is zero at every position.

5.4.1 Reduction to (coB1 ∨ B2) ∧ Φinf
1 (q) ∧ Φinf

2 (p)

In this section we will show that the crux of the analysis of implication games with (Büchi,Büchi, LIMAVGSUP1+
LIMAVGSUP2) objective can be reduced to analysis of games with (coB1 ∨ B2) ∧ Φinf

1 (q) ∧ Φinf
2 (p) objective.

The first step to achieve the reduction is as follows: in the following lemma we show that if Player 1 wins in the
entire arena for the B1 and (B1 ∧ coB2)∨Φsup

sum(ν) objectives, then he can win the implication game for the entire
arena.

Lemma 17. Let G be an arena and let V be the set of positions of G. If Win1(B1) = V and Win1((B1 ∧ coB2) ∨
Φsup

sum(ν)) = V , then Win1(B1 ∧ (coB2 ∨ Φsup
sum(ν))) = V .

Proof. We construct a Player 1 winning strategy for B1 ∧ (coB2 ∨ Φsup
sum(ν)) in the following way. Let σ1 be a

winning strategy for (B1 ∧ coB2) ∨ Φsup
sum(ν) for all positions in V . Initially set ε = 1 and N = 0.

Step 1. Starting at the current roundN , play according to σ1 until the first roundK for which there are two rounds
N ≤ i1, i2 ≤ K such that in round i1 (resp., i2) the average weight (from the beginning of the play) of
the first (resp., second) dimension is at least r1 (resp., r2) and r1 + r2 ≥ ν − ε. Note that in this step, σ1 is
played considering the history from the start of this step (i.e., it ignores the history that is before the start
of this current step), but for the partial average we consider the weights of the entire history.
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Step 2. Play according to a winning strategy for B1 until a position from B1 is visited (i.e., an attractor strategy to
B1 is played).

Step 3. Set N = K + 1, ε = ε
2 and return to Step 1.

In order to prove that the strategy is winning for B1 ∧ (coB2 ∨ Φsup
sum(ν)) we consider two distinct cases.

1. In the first case, Steps 2 and 3 are executed only finitely many times. Hence, the strategy gets stuck forever
from some point in Step 1. In other words, there is an infinite suffix π in which Player 1 plays only according
to a winning strategy for (B1 ∧ coB2) ∨ Φsup

sum(ν), and for some ε > 0 we get that LIMAVGSUP1(π) +
LIMAVGSUP2(π) ≤ ν − ε. Hence, it must be the case that (B1 ∧ coB2) is satisfied, and thus B1 ∧ (coB2 ∨
Φsup

sum(ν)) is also satisfied and Player 1 wins.

2. In the second case, Steps 2 and 3 are executed infinitely often. Note that in Step 2 the attractor strategy
is only played for |V | steps, and the strategy never gets stuck forever in Step 2. Let π be a play ac-
cording to the strategy above. Since Step 2 is executed infinitely often, we get that π satisfies B1. Let
ν1 = LIMAVGSUP1(π) and ν2 = LIMAVGSUP2(π). Towards a contradiction, let us assume that there
exists δ > 0 such that ν1 + ν2 ≤ ν − δ. By the definition of LIMAVGSUP, there exists a round N such that
in every round after round N the average weight of dimension i is at most νi + δ

4 (for i = 1, 2). Hence,
for ε that is smaller than δ

4 , the execution of Step 1 will never terminate and the contradiction follows.
Hence, we get that LIMAVGSUP1(π) + LIMAVGSUP2(π) ≥ ν and π satisfies B1. Thus, the π belongs to
B1 ∧ (coB2 ∨ Φsup

sum(ν)).

Note that (as in Lemma 15) we also use the finite-history independent winning property above. To conclude, we
get that in both cases the strategy is winning for B1 ∧ (coB2 ∨ Φsup

sum(ν)) and the result follows.

Remark 18. (Implication of the above lemma). Note that it is trivially true that from

X = (V \Win1(B1)) ∪ (V \Win1((B1 ∧ coB2) ∨ Φsup
sum(ν))),

Player 2 has a strategy to violate the objective of the implication game (as violation of any of B1 or (B1∧ coB2)∨
Φsup

sum(ν) implies the violation of the condition for implication game). Hence if X is non-empty, then the Player-
2 attractor of X can be removed from the arena, and the computation can continue on the sub-arena. Hence
solving the implication game reduces to solving games with Büchi condition (that is well-known); and games with
(B1 ∧ coB2) ∨ Φsup

sum(ν) condition, which we study below.

Games with (B1 ∧ coB2) ∨ Φsup
sum(ν) conditions. In order to compute the winning region for the objective

(B1 ∧ coB2) ∨ Φsup
sum(ν), we compute Player 2 winning region for the complementary objective, namely, for

(coB1 ∨ B2) ∧ ¬Φsup
sum(ν), where ¬Φsup

sum(ν) = {π : LIMAVGSUP1(π) + LIMAVGSUP2(π) < ν}. This objective
for the arena G is equivalent to the objective (coB1 ∨B2)∧Φinf

sum(ν) in an arena G′ that is obtained by multiplying
all the weights in G by −1. In addition, we observe that the condition (coB1 ∨ B2) can be encoded by a parity
condition with three priorities. Hence, in some cases we formulate the objective as a conjunction of a parity
condition P and a mean-payoff sum. In the rest of this section (until Theorem 27), we switch the roles for the
players and consider that Player 1 wishes to satisfy (coB1 ∨ B2) ∧ Φinf

sum(ν). The next lemma extends Lemma 11
to parity condition.

Lemma 19. Let P be a parity condition. Then Win1(P ∧ Φinf
sum(ν)) = ∅ if and only if for all x, y ∈ R with

x+ y ≥ ν we have Win1(P ∧ Φinf
1 (x) ∧ Φinf

2 (y)) = ∅.

Proof. The proof follows exactly by the same arguments as the proof of Lemma 11 (simply by replacing the Büchi
condition with a parity condition).

The above lemma provides a reduction of games with (coB1 ∨ B2) ∧ Φinf
sum(ν) objective to the conjunction

of the parity and the existential version of two-dimensional mean-payoff objectives Φinf
exi(ν). In order to complete

the reduction of this section, we show that the quantification of x, y in the Φinf
exi(ν) can be restricted to rationals

represented by at most O(log(nW )) bits. This allows to reduce Win1(P ∧ Φinf
sum(ν)) to polynomial number of

invocations of a procedure computing, given p, q, the region Win1(P ∧ Φinf
1 (q) ∧ Φinf

2 (p)).

Lemma 20. For every threshold ν and an arena G with n positions and weights from [−W,W ]: Player 1 can
ensure (coB1 ∨ B2) ∧ Φinf

1 (x) ∧ Φinf
2 (y) for some x, y ∈ R such that x + y ≥ ν iff there is a threshold couple

p, q ∈ Q whose numerator and denominator are bounded by ±(nW )4 with p + q ≥ ν and Player 1 wins in
(coB1 ∨ B2) ∧ Φinf

1 (q) ∧ Φinf
2 (p).
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Proof. We first prove that for such objectives, if Player 2 can violate the objective, then he can do it by a mem-
oryless strategy, and the rest of the proof is similar to the proof of Lemma 9. In order to prove that memoryless
strategies suffice, we view this objective as a conjunction of parity and two-dimensional mean-payoff objectives,
and we observe that if two plays π1 and π2 satisfy the parity and mean-payoff objectives, then any arbitrary mix
between the weight sequences of π1 and π2 and between the priority sequences of π1 and π2 will still satisfy both
the parity and the mean-payoff objectives. Hence, this objective is a convex objective, as defined in [25], and it
follows from [25] that against convex objectives, if Player 2 has a violating strategy, then he has a memoryless one.

Recall that for a finite path π = e1e2 . . . en and i = 1, 2 we denote wti(π) =
∑n
j=1 wti(ej). Then, we define

Avg(π) = ( wt1(π)n , wt2(π)n ). In one-player games, Player 1 can satisfy the mean-payoff objectives for thresholds
x, y if there is an SCC C with the set of simple cycles of C being C such that (x, y) ∈ CONV {Avg(c) : c ∈ C}
(e.g., see [24]). Hence, when adding a parity condition, we require an SCC C, with minimal priority even,1 where
the set of simple cycles of C is C, and (x, y) ∈ CONV {Avg(c) : c ∈ C}. Hence, we can repeat the same analysis
as in the proof of Lemma 9 with a change that we consider only SCCs with even minimal priority. The priorities
over the positions do not change the size of the extreme points in the constructed polygon. Hence, the analysis
yields the same results as in Lemma 9.

The following proposition concludes this section.

Proposition 21. Let G be an arena with n positions and weights from [−W,W ]. The game with B1 ∧ (coB2 ∨
Φsup

sum(ν)) objective Turing-reduces in polynomial time in nW to games with (coB1 ∨ B2) ∧ Φinf
1 (q) ∧ Φinf

2 (p)
objectives on arenas with at most n positions and weights from [−W,W ] and p, q ∈ Q represented byO(log(nW ))
bits.

5.4.2 Solving games with (coB1 ∨ B2) ∧ Φinf
1 (q) ∧ Φinf

2 (p) objectives

We present the following lemmas to obtain an algorithm for computing the winning region for the condition
ϕ = (coB1 ∨B2)∧Φinf

1 (q)∧Φinf
2 (p). The first lemma gives a general scheme for computing the winning regions

of a tail objective, and the other two lemmas show how to compute the winning region for sub-formulas of ϕ.

Lemma 22. Let φ be a tail objective and let G be an arena with n positions and weights from [−W,W ]. Assume
that for every game sub-arena G′ of G, there is an algorithm (oracle O) that in polynomial time in nW returns
some v ∈ G′ with an information v ∈ Win1(φ) or v ∈ Win2(φ). Then the winning regions of the game can be
computed in polynomial time in nW .

Proof. The following recursive scheme computes the winning regions with at most n recursive calls:

• If n = 0, then we are done.

• Run O and find a position v that belongs either to Win1(ϕ) or to Win2(ϕ).

• If v ∈Wini(ϕ), then Attri(v) is part of Player i winning region.

• Continue the computation recursively over G � (V \ Attri(v)), where V is the set of positions of G.

In every recursive call the size of the arena is reduced by at least 1. As the computation of the attractor can be done
in linear time, we get a polynomial algorithm with at most n calls to O.

Lemma 23. Let G be a game arena with n positions and weights from [−W,W ]. There is an algorithm that,
given p, q ∈ Q represented by O(log(nW )) bits, computes the region Win1(coB1 ∧ Φinf

1 (q) ∧ Φinf
2 (p)) in G in

polynomial time in nW .

Proof. Let V be the set of positions of G. By Lemma 22 it is enough to present a polynomial time algorithm in nW
that returns a position and says whether it belongs to the winning region of Player 1 or Player 2. The algorithm is
as follows: We first compute Attr2(B1) and consider the following cases.

• If Attr2(B1) = V , then Player 1 loses everywhere since Player 2 can ensure that B1 is visited infinitely
often. Thus we return an arbitrary position and mark it as part of Player-2 winning region.

• Otherwise, we compute Win1(Φinf
1 (q)∧Φinf

2 (p)) over G � (V \Attr2(B1)). We now consider two sub-cases.

– If v ∈Win1(Φinf
1 (q) ∧ Φinf

2 (p)), then it is also in Win1(coB1 ∧ Φinf
1 (q) ∧ Φinf

2 (p)), and we can return
v as a Player-1 winning position.

1note that in case of adding a parity condition the SCC need not be a maximal SCC
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– If Win1(Φinf
1 (q) ∧ Φinf

2 (p)) = ∅ in G � (V \ Attr2(B1)), then we claim that Win1(coB1 ∧ Φinf
1 (q) ∧

Φinf
2 (p)) over G is also empty, and thus, we can return an arbitrary position and mark it as part of

Player-2 winning region. Indeed, the following strategy is winning for Player 2:

1. If in Attr2(B1), play an attractor strategy to reach B1.
2. If not in Attr2(B1), play to violate the mean-payoff condition Φinf

1 (q) ∧ Φinf
2 (p), as long as the

play is not in Attr2(B1). Return to 1.

Clearly, this strategy either violates coB1 or the mean-payoff condition (or both).

The desired result follows.

Lemma 24. Let G be an arena with the set of positions V , two Büchi conditions B1 and B2, and two-dimensional
weight function. Let x, y ∈ R. Assume that (i) Player-1 winning region for Φinf

1 (x) ∧ Φinf
2 (y) is V ; and (ii) in the

arena G � (V \Attr1(B2)), Player 1 wins the condition coB1∧Φinf
1 (x)∧Φinf

2 (y) from every initial position. Then
Player 1 winning region for (coB1 ∨ B2) ∧ Φinf

1 (x) ∧ Φinf
2 (y) is the entire arena G.

Proof. In order to prove the lemma we describe a Player-1 winning strategy. We present the key ideas of the
construction as the details are similar to previous results. Informally, the following is a Player-1 winning strategy:
Initially set ε = 1

1. Play according to a winning strategy that satisfies the mean-payoff conditions (recall that we assume that
Win1(Φinf

1 (x) ∧ Φinf
2 (y)) = V ), until the average weight is at least x− ε in the first dimension and y − ε in

the second dimension.

2. If the play is not in Win1(coB1 ∧ Φinf
1 (x) ∧ Φinf

2 (y)):

• Then the play is in Attr1(B2). Play attractor strategy until a position from B2 is reached.

• Else, play to satisfy coB1∧Φinf
1 (x)∧Φinf

2 (y). If at some point Player 2 advances the token to Attr1(B2),
then play attractor strategy until a position from B2 is reached.

3. Set ε = ε
2 and return to 1.

Intuitively, the correctness of the construction of the winning strategy follows from the fact that the mean-payoff
conditions are satisfied, and either B2 is visited infinitely often, or there is an infinite suffix that is played according
to a winning strategy for coB1 ∧ Φinf

1 (x) ∧ Φinf
2 (y). The desired result follows.

Given the above lemmas we now present the main result of this section.

Lemma 25. Let G be a game arena with n positions and weights from [−W,W ]. There is an algorithm to compute
Win1((coB1 ∨ B2) ∧ Φinf

1 (q) ∧ Φinf
2 (p)) in polynomial time in nW for all p, q represented by O(log(nW )) bits.

Proof. Let V be the set of positions of G. We recall that by Lemma 22 it is enough to present an algorithm that
returns a position and mark it either as a Player-1 winning position or as a Player-2 winning position. The algorithm
is as follows:

• We first compute Win1(Φinf
1 (q) ∧ Φinf

2 (p)) (can be done in polynomial time in nW [18]). Clearly, if v /∈
Win1(Φinf

1 (q) ∧ Φinf
2 (p)), then v /∈Win1((coB1 ∨ B2) ∧ Φinf

1 (q) ∧ Φinf
2 (p)) and we return v and mark it as

a Player-2 winning position.

• Otherwise, Player 1 wins Φinf
1 (q)∧Φinf

2 (p) everywhere in the arena. Next, we compute Win1(B2∧Φinf
1 (q)∧

Φinf
2 (p)) (polynomial due to Lemma 13). If v ∈Win1(B2∧Φinf

1 (q)∧Φinf
2 (p)), then surely v ∈Win1((coB1∨

B2) ∧ Φinf
1 (q) ∧ Φinf

2 (p)), and we return v as a Player-1 winning position.

• Otherwise, Win1(B2 ∧ Φinf
1 (q) ∧ Φinf

2 (p)) = ∅. Next, we compute Attr1(B2) and compute Win1(coB1 ∧
Φinf

1 (q) ∧ Φinf
2 (p)) over G � (V \ Attr1(B2)) (the computation is polynomial by Lemma 23). If v /∈

Win1(coB1 ∧ Φinf
1 (q) ∧ Φinf

2 (p)), then v /∈ Win1((coB1 ∨ B2) ∧ Φinf
1 (q) ∧ Φinf

2 (p)), since a violating
strategy for Player 2 over G � (V \Attr1(B2)) can avoid reaching Attr1(B2) in G, and thus Player 2 violates
the condition. Thus, if such v exists, then we return v and mark it as a Player-2 winning position.

• Otherwise, (i) Player 1 wins Φinf
1 (q)∧Φinf

2 (p) everywhere; and (ii) Player 1 wins coB1 ∧Φinf
1 (q)∧Φinf

2 (p)
everywhere in G � (V \Attr1(B2)). Hence, by Lemma 24, Player 1 wins the condition (coB1∨B2)∧Φinf

1 (q)∧
Φinf

2 (p) everywhere in G and we return an arbitrary position marked as a Player-1 winning position.

The desired result follows.
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5.4.3 The main result.

Proposition 26. Let G be a game arena with n positions and weights from [−W,W ]. The maximum threshold
ν, for which Player 1 can satisfy (coB1 ∨ B2) ∧ Φinf

sum(ν) from an initial position v0, is either −∞ or it can be
encoded by 8 log(nW ) bits and it is computable in polynomial time in nW . Moreover, for a fixed ν, it is possible
to compute Win1((coB1 ∨ B2) ∧ Φinf

sum(ν)) in polynomial time in nW .

Proof. The proof is similar to the proof of Proposition 14, we simply replace Lemma 9 and Lemma 11 by
Lemma 20 and Lemma 25, respectively.

We use Remark 18 and similar to the proof of Theorem 16 (by using Proposition 26 instead of Proposition 14)
we obtain the following result.

Theorem 27. Let G be a game arena with n positions and weights from [−W,W ]. For the implication game with
(Büchi, Büchi, LIMAVGSUP + LIMAVGSUP) objective, the value of every position can be computed in polynomial
time in nW .

6 Discounted-sum Implication Games
In this section we will present solution of implication discounted-sum games where the Boolean objectives are
Büchi objectives. However, before we present the solution of discounted-sum parity games. While mean-payoff
parity games have been studied before, discounted-sum parity games have not been studied, and we present their
solution as they may be of independent interest.

6.1 Discounted-sum parity games
We consider discounted-sum parity games that are implication games (Φ1,Φ2,DISCλ) where Φ1 is a parity objec-
tive and Φ2 is tautology (satisfied for all plays). In other words, the objective is to ensure that the parity objective
satisfied and minimize the discounted-sum objective.

Theorem 28. The following assertions hold for discounted-sum parity games:

1. There is a polynomial-time reduction (Turing reduction) to parity games and discounted-sum games.

2. For every ε > 0, Player 1 has a finite-memory ε-optimal strategy.

3. Player 2 has an optimal memoryless strategy.

Proof. Consider an arena G, a priority function p, a labeling function wt, and a discount factor λ ∈ (0, 1). Let the
parity objective defined by the function p be Φ. LetW1 = Win1(Φ) be the set of winning positions for the parity
objective. We define an arena G′ which is G restricted to W1, i.e., G′ = G � W1. Note that for every Player 2
position v inW1 all its outgoing edges must remain inW1 (as otherwise v would not belong toW1). We establish
the following: (A) For every position not inW1 the value is∞; and (B) for every position inW1 the value for the
discounted-sum parity objective in G is the value for the discounted-sum objective in G′. Since for every position
v not inW1 Player 2 has a winning strategy to satisfy Φ (i.e., to falsify Φ) from v it follows that the value for the
discounted-sum parity objective at v is ∞. We now establish (B). Consider a position v ∈ W1 and let t be the
value at v for the discounted-sum game played on G′. We prove that (a) the value for the discounted-sum parity
objective at v in G is at least t, and (b) for every ε > 0, there is a strategy for Player 1 in G to achieve the value
at most t + ε for the discounted-sum parity objective. Clearly, (a) and (b) imply (B) for v. This implies that the
decision problem for discounted-sum parity games (whether the value of the game is below a given threshold) can
be solved in polynomial time with oracles for parity games and discounted-sum games. We now establish (a) and
(b).

(a) The value of G is at least t. Consider a strategy σ1 for Player 1 in G. If against this strategy Player 2 can
ensure to leaveW1, then Player 2 can ensure that the parity objective Φ is violated. Hence for such a strategy the
value is∞. Otherwise, if the strategy σ1 ensures thatW1 is never left, then the strategy is also a strategy for the
discounted-sum game on G′. Thus, its value cannot be lower than the value of the discounted-sum game on G′.

(b) For every ε > 0, there is a strategy for Player 1 to achieve the value at most t + ε. Let W be the maximal
absolute weight in G. Given ε > 0, let k > 0 satisfy the following inequality W · λk · 1

1−λ < ε
2 . Since λk

decreases exponentially, clearly for every ε > 0 such a k exists. Consider a strategy for Player 1 in which he
plays according to a memoryless optimal strategy in the discounted-sum game on G′ for k rounds, and then plays
according to a memoryless winning strategy in the parity game on G. Note that since W1 is not left for the k
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rounds, Player 1 can switch to a winning strategy for the parity objective. First, observe that since Player 1 plays
an optimal strategy for the discounted-sum objective for k rounds, the discounted-sum payoff for the first k rounds
is at most t+W · λk · 1

1−λ (otherwise the discounted-sum value would have exceeded t), and the discounted-sum
payoff after k rounds is at most W · λk · 1

1−λ . Moreover, since a winning strategy for the parity objective is played
after a finite number of steps, it follows that the parity objective is satisfied. Hence the value of the resulting play
does not exceed t+ 2 ·W · λk · 1

1−λ < t+ ε. Also note that the strategy for Player 1 is a finite-memory ε-optimal
strategy as it plays a memoryless strategy for k rounds (that can be implemented by a bounded counter), which is
a memoryless optimal strategy for the discounted-sum games, and then switches to another memoryless strategy,
which is a memoryless winning strategy for the parity objective.

The above concludes the proof for the first two items, and now we prove the existence of memoryless optimal
strategies for Player 2.

Memoryless strategies for Player 2: Both, discounted-sum and parity games admit memoryless opti-
mal/winning strategies. Consider the following strategy σ∗2 for Player 2. On positions in W1, Player 2 plays
according to an optimal memoryless strategy in the discounted-sum game on G′ and in positions from V \ W1 he
plays according to a memoryless winning strategy (to falsify Φ) in the parity game on G. We now show that σ∗2 ,
which is memoryless, is an optimal strategy for Player 2 in the discounted-sum parity game. Consider a strategy σ1
for Player 1. If a play defined by σ1 and σ∗2 reaches V \W1, then the strategy σ∗2 ensures that the parity objective is
violated and the value is infinite. Otherwise, if the play stays inW1, then σ∗2 coincides with an optimal memoryless
strategy in the discounted-sum game on G′. Thus, its value is not smaller than that value of the discounted-sum
parity game on G.

In the previous theorem we established the existence of finite-memory ε-optimal strategies for Player 1 for all
ε > 0. We now show that optimal strategies need not exist in general for Player 1 (in contrast to mean-payoff
parity games where optimal strategies exist for Player 1, Theorem 5 item (ii)).

Example 29. (Non-existence of optimal strategies). Consider an arena depicted below:

1 0

A B

0 1
1

There are two positions A,B with priorities 1 and 0, both owned by Player 1. There are two loops, at A of
weight 0 and atB of weight 1. Once Player 1 leavesA toB, he cannot return toA. The value of the game is 0 since
Player 1 can take arbitrarily many times the loop at A of weight 0, and then move to B. But, to satisfy the parity
condition, which is a Büchi condition in our case that requires to visit B infinitely often, Player 1 has to leave A
eventually. Therefore, the value of every play that satisfies the parity condition is strictly positive. Also note that
in the example, for discount factor 1

2 and sufficiently small ε > 0, every ε-optimal strategy requires memory.

In mean-payoff parity games, Player 1 has optimal strategies, but they require infinite memory. However,
in mean-payoff parity games, if there is a finite-memory optimal strategy, then there is a memoryless optimal
strategy (see Theorem 5, item (iv)). We now show that in contrast, there exist discounted-sum parity games, where
finite-memory optimal strategies exist, but no memoryless strategy is an optimal one.

Example 30. (Finite-memory stronger than memoryless for optimal strategies). Consider the game with positions
A,B,C,D,E, where position E is an absorbing position (only a self-loop as the transition) with weight 0, and
priority 0. PositionA belongs to Player 1 where the outgoing edges are toB with weight 0 and to E with weight 2.
Position B belongs to Player 2, and the outgoing edges are to C and D with weight 0. Positions C and D have
A as the unique successor and the edge weights are 0 for C to A and −1 for D to A. Positions A,B,C have
priority 2 and D has priority 1. The following figure shows the game pictorially.
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2 21
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00
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Consider the game with discount factor 1
2 . We first claim that the value of the game is 0. First observe that

Player 2 by always choosing the edge from B to C ensures that the value is at least 0. We now present a finite-
memory optimal strategy for Player 1 to ensure value 0, and the strategy for Player 1 is as follows: it chooses A
to B as long as Player 2 chooses B to C; however, if Player 2 chooses B to D, then Player 1 chooses A to E.
Given the strategy for Player 1, either A,B,C is visited infinitely often, and the discounted-sum payoff is 0, and
the parity objective is satisfied. Otherwise, the edge weight −1 is followed by edge weight 2, and all other edge
weights are 0. The effective discounted-sum contribution for edge weight 2 is 1 as compared to edge weight −1 as
it appears one step after and the discount factor is 1

2 . Hence the discounted-sum is 0, and the minimum priority
visited infinitely often is 0. Hence the value of the game is 0 and there is a finite-memory optimal strategy. However,
consider the two memoryless strategies for Player 1. If Player 1 chooses A to E, then the discounted-sum parity
payoff is 1. If Player 1 always chooses A to B, then by choosing B to D Player 2 ensures that the parity objective
is violated, and the payoff is∞. It follows that in this game though finite-memory optimal strategies exist, there is
no memoryless optimal strategy.

6.2 Implication games with objectives (Büchi, Büchi, DISCλ).
In the section we study implication games with objective (Büchi, Büchi, DISCλ), which correspond to the (quan-
titative) simulation between DISCλ-automata with Büchi acceptance conditions. Note that for discounted-sum
objectives, the sum of two discounted-sum objectives DISCwt1

λ + DISCwt2
λ is equivalent to one discounted-sum

objective with the sum of the weight functions, i.e., DISC
(wt1+wt2)
λ , where the function (wt1 + wt2) for every edge

assigns the sum of wt1 and wt2. Hence we only consider implication games where the quantitative objective is a
discounted-sum objective.

Theorem 31. Implication games with objective (Büchi, Büchi, DISCλ) reduce in polynomial time to discounted-
sum games.

Proof. Consider an arena G, Büchi conditions F1, F2, a labelling function wt, and a discount factor λ ∈ (0, 1).
Consider the Boolean objective Φ1 that requires F1 to be visited infinitely often and F2 finitely often, and the
Boolean objective Φ2 that requires F1 to be visited finitely often. Let W1 = Win1(Φ1) and W2 = Win2(Φ2).
Observe that for a position v ∈ W1, Player 1 can always force the value of the implication game to be −∞, by
ensuring its own Büchi condition and falsifying the Büchi condition of the opponent. Similarly, if v ∈ W2, then
Player 2 can force the value of the implication game to be∞ by violating the Büchi condition for Player 1. The
setsW1,W2 can be computed in polynomial time [20, 12, 27, 28].

Let X = V \ (W1 ∪W2), and we now consider positions in X . We consider the arena G′ = G � X . Observe
that Player-1 positions in X have outgoing edges only to positions in X andW2, but not toW1; whereas Player-2
positions in X have outgoing edges only to positions in X andW1, but not toW2. For example, if from a position
v ∈ X for Player 2 there is a move to W2, then v would be in W2, and similarly for positions for Player 1. We
claim that the value at v of the implication game on G is equal to the value of the discounted-sum game at v on G′.
Intuitively, the first player who leaves G′ looses in the implication game, i.e., the value of the play is∞ if Player 1
left G′ and −∞ if Player 2 left G′ first. Otherwise, in G′ Player 1 can ensure that his Büchi condition is satisfied
(since the game is outside W2), and Player 2 can ensure that either his Büchi condition is satisfied or the Büchi
condition of Player 1 is violated (since the game is outside W1). Thus for each ε > 0, each player can play the
discounted-sum game long enough to ensure that value is within ε of the discounted-sum game, and then switch to
satisfying their respective Boolean objective (own Büchi condition for Player 1, and Φ1 for Player 2). We present
one case of the formal argument and the other case is similar. Recall that the value of the play in the implication
game is given by the following function f : let Ψ1 be the objective to visit F1 infinitely often, and Ψ2 the objective
to visit F2 infinitely often; then

f(π) =


DISCwt

λ (π) if Ψ1(π) = Ψ2(π) = 1,

∞ if Ψ1(π) = 0,

−∞ if Ψ1(π) = 1 and Ψ2(π) = 0.

Let σ′1 ∈ S1[G′,M ] be a memoryless optimal strategy for Player 1 for the discounted-sum objective on G′
and let ε > 0. Let N be such that the discounted-sum after N steps does not exceed ε

2 (for every ε > 0 such
a N exists as in the proof of Theorem 28). Consider σ1 that plays according to σ′1 for histories contained in G′
for N steps, after that it plays to satisfy the Büchi condition F1. On histories ending in positions from W1, the
strategy σ1 plays according to a winning strategy that satisfies Φ1. Finally, just for completeness, on the remaining
histories strategy σ1 takes some moves. Consider a strategy σ2 of Player 2. If the play π(σ1, σ2, v) is contained
in G′, it satisfies the Büchi condition F1. Moreover, there is a strategy σ′2 ∈ S2[G′] that follows σ2 on G′. Both
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the play π(σ1, σ2, v) and the play π(σ′1, σ
′
2, v) coincide on first N steps, therefore either (a) π(σ1, σ2, v) satisfies

the Büchi condition F2, and |f(π(σ1, σ2, v)) − DISCwt
λ (π(σ′1, σ

′
2, v))| < ε; or (b) it violates the Büchi condition

F2, and −∞ = f(π(σ1, σ2, v)) < DISCwt
λ (π(σ′1, σ

′
2, v)). If π(σ1, σ2, v) leaves G′, it is due to a move of Player 2,

and it must lead to W1 as σ1 on histories contained in G′ stays within G′. Once Player 2 moves to W1, then σ1
coincides with a winning strategy that satisfies Φ1 and thus, the value of the play in −∞ ≤ DISCwt

λ (π(σ′1, σ
′
2, v)).

This shows the argument for Player 1, and the argument for Player 2 is similar.

Note that the above result implies that for implication games with Büchi conditions and discounted-sum objec-
tives there exist pseudo-polynomial time algorithms.

Remark 32. (Non-existence of optimal strategies). Note that implication games with Büchi conditions and
discounted-sum objectives generalize discounted-sum Büchi games, and hence it follows from Example 29 that
optimal strategies do not exist for Player 1 in general. However, whereas for discounted-sum parity games memo-
ryless optimal strategies exist for Player 2, in implication games where the first objective is tautology, the second
objective is a Büchi objective, we obtain a discounted-sum Büchi game for Player 2. It follows from Example29
that optimal strategies do not exist for Player 2 in general, i.e., in implication games with Büchi conditions and
discounted-sum objectives optimal strategies do not exist for both players in general.

7 Conclusion and Future Works
In this paper, we defined a new kind of games called implication games. In the framework of implication games we
studied Quantitative Fair Simulation Games (QFSGs), which define simulation between weighted automata with
Büchi acceptance conditions. We obtained polynomial-time algorithms for these games under the assumption that
weights are encoded in unary. Note that since we consider non-deterministic automata it suffices to consider Büchi
acceptance conditions for ω-regular conditions. Our framework of implication games can also be applied to obtain
solution of computing simulation distances between two non-deterministic (non-weighted) automata where each of
the automaton is equipped with a Büchi acceptance condition over the infinite runs. Since we consider only Büchi
acceptance conditions for the automata problem, for our simulation games we only need to consider implication
games where the Boolean objectives are Büchi conditions. However, the solution problems for implication games
with more general Boolean conditions, such as parity, Streett, Rabin objectives, are interesting open problems.
Moreover, for quantitative objectives we consider the sum of LIMAVGINF and the sum of LIMAVGSUP objectives,
whereas mixing the sum of LIMAVGINF and LIMAVGSUP appears to be another interesting problem. Finally,
implication games with other quantitative objectives, such as energy objectives, Boolean combination of mean-
payoff or discounted-sum objectives, are other interesting direction of future works.

The following table shows the results of our paper in the context of previously studied notions of simulation.

Simulation type Game type
Strategy complexity Algorithmic
Player 1 Player 2 complexity

Simulation Safty games

memoryless
polynomial

Fair Simulation Parity-3 games
Quantitative LIMAVG-autom. Mean-payoff games

pseudo-poly.
Simulation DISCλ-autom. Discounted-sum games

Quantitative
LIMAVGINF-autom.

Implication games
infinite memory

Fair Simulation
LIMAVGSUP-autom.

DISCλ-autom. may not exist

In the first column we have the type of the simulation notion. The simulation of weighted automata without
Büchi acceptance conditions is separated into simulation of LIMAVG- and DISCλ-automata, as the reduction to
mean-payoff games for LIMAVGSUP-automata as well as LIMAVGINF-automata coincide, while it is different for
DISCλ-automata. In contrast, simulation of weighted automata with Büchi acceptance conditions is separately
considered for LIMAVGINF-, LIMAVGSUP- and DISCλ-automata. In the second column we have the game cor-
responding to the simulation notion of the first column. In the following two columns, we present the strategy
complexity of the optimal strategies for the players, and the algorithmic complexity of the decision problem for
the corresponding game.
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