
Model Measuring for Hybrid Systems

Thomas A. Henzinger and Jan Otop

Technical Report No. IST-2014-171-v1+1
Deposited at 19 Feb 2014 10:16
http://repository.ist.ac.at/171/1/report.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268224826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Model Measuring for Hybrid Systems

Thomas A. Henzinger and Jan Otop∗

Institute of Science and Technology Austria (IST Austria)

February 18, 2014

Abstract

As hybrid systems involve continuous behaviors, they should be evaluated by quantitative
methods, rather than qualitative methods. In this paper we adapt a quantitative framework,
called model measuring, to the hybrid systems domain. The model-measuring problem asks, given
a model M and a specification, what is the maximal distance such that all models within that
distance fromM satisfy (or violate) the specification. A distance function on models is given as part
of the input of the problem. Distances, especially related to continuous behaviors are more natural
in the hybrid case than the discrete case. We are interested in distances represented by monotonic
hybrid automata, a hybrid counterpart of (discrete) weighted automata, whose recognized timed
languages are monotone (w.r.t. inclusion) in the values of parameters.

The contributions of this paper are twofold. First, we give sufficient conditions under which
the model-measuring problem can be solved. Second, we discuss the modeling of distances and
applications of the model-measuring problem.

1 Introduction
Hybrid systems combine discrete control and continuous dynamics. Hybrid automata, which are used
to model hybrid systems, specify discrete control and continuous behaviors by, respectively, finite
automata and continuous functions parametrized by time. These two aspects of hybrid automata
influence each other. The current state of the discrete control determines a system of differential
inequalities that specify the evolution of continuous functions. The transitions of the discrete control
are labeled by linear inequalities, called guards. A transition is enabled only if its guards are satisfied
by the current values of continuous functions.

Hybrid automata allow for the precise modeling of physical features. Consider a model of a water-
level monitor depicted in Figure 1. The system monitors the level of water in a tank by switching the
pump on and off to keep the water level between 0 and 13 units; it works as follows. If the pump is on,
the water level rises constantly at pace 1 units per time unit. When the pump is off, the water level
drops constantly at pace 2. Finally, there is a latency of (at most) 2 time units between the decision
of the monitor to shut down (turn on) the pump and the effect. The functions t, l represent a clock
and the water level.

However, while modeling of the system’s physical part, the designer has to come up with numerical
bounds occurring in guards, like the aforementioned latency of the pump. Those values are often
estimated by the designer. In consequence, guards are often too restrictive. In the water-level monitor
example, the latency of the pump can be safely increased from 2 to 2.5. That issue can be avoided
by employing automatic parameter synthesis, which can be expressed as an instance of the model-
measuring problem.

The model-measuring problem asks, given a model M and specification P , what is the maximal
distance ρ such that all models M ′ within that distance from M satisfy (or violate) P . That distance
ρ is called the stability radius.

∗The second author is on the leave from University of Wrocław.

1

0
l ∈ [0, 10]
ṫ = 1
l̇ = 1

1
t ∈ [0, 2]
ṫ = 1
l̇ = 1

2
l ∈ [5, 10]
ṫ = 1
l̇ = −2

3
t ∈ [0, 2]
ṫ = 1
l̇ = −2

l = 10

t := 0

t ≤ 2

l = 5

t := 0

t ≤ 2

l := 1

Figure 1: The water-level monitor from [1].

L0 = L

L3

Lϕ

(a) Containment

L0 = L

L3

L¬ϕ

(b) Disjointness

Figure 2: A similarity measure and sets of traces satisfying (a) and violating (b) the specification. The
model checking problem reduces to containment (a) and disjointness (b).

To determine the stability radius, it suffices to have a unary function that, for a given transition
system M ′, specifies its distance from M . Such a function, called a similarity measure, is an input to
the model-measuring problem. As inputs are required to be finitely represented, we are interested in
automatic similarity measures that are represented by parametrized hybrid automata in the following
way.

Consider a parametrized hybrid automaton A[p] with a single parameter p, which occurs in its
guards. E.g. a parameter p in x < p. Assume that with p instantiated to 0, A recognizes precisely
the set of traces of M and the timed languages recognized by A are monotonic (w.r.t. inclusion) in
the values of the parameter p. Such a hybrid automaton defines a monotonic function from [0,∞]
to the set of timed languages (ordered by inclusion), x 7→ {Lx}, where Lx is the language of A with
p instantiated to x (cf. Figure 2). Then, A defines a similarity measure in the following way, the
distance of M ′ from M is the minimal value x such that Lx contains all traces of M ′. This definition
of a similarity measure allows for effective computation of the stability-radius.

The model satisfies the specification if its set of traces is contained in the language of all admissible
traces. In consequence, the stability radius in the model-measuring problem is the supremum of the
values x of the parameter p such that Lx is contained in the language of the specification (Figure 2.a).
Indeed, the set of traces of each model whose distance from M is less then x is contained in Lx. On
the other hand, maximality of x implies that x is the maximal distance.

However, if the specification LP is given as the complement of the set of all valid traces, the model
checking problem reduces to disjointness. Similarly, the model-measuring problem reduces to finding
the supremum of the values of x of the parameter p such that Lx and LP are disjoint (Figure 2.b).
Finding that supremum, in turn, reduces to finding the infimum of values of the parameter p such
that a given parametrized hybrid automaton with the parameter instantiated to this value recognizes
a nonempty language. That problem for discrete weighted automata is referred to as the quantitative
emptiness problem or the optimal-weight problem.

We discuss the optimal-weight problem for parametrized hybrid automata in Section 3. We give
sufficient conditions, which guarantee that a class of parametrized hybrid automata admits an effective

2

procedure for approximating the infimum of the values of parameters, such that the hybrid automaton
with parameters instantiated to these values recognizes a nonempty language.

Having an algorithmic foundation for the model-measuring problem, we can focus on its applica-
tions. Returning to the water-level monitor, the guard t ∈ [0, 2] in the transitions from 1 to 2 and from
3 to 0, and the invariants in 1, 3, can be substituted by a parametrized guard t ∈ [0, 2+p], which states
that the latency of the pump is bounded by 2 + p. Such a parametrized hybrid automaton defines
a similarity measure and the model-measuring problem answers the question: what is the maximal
latency of the pump tolerated by the system?

However, the model-measuring problem is far more general than parameter synthesis. It can be used
to measure the resilience of the model under perturbations. For instance, one can model a pipeline
failure scenario, which manifests itself as either water shortage or water absence. In case of water
shortage the pump is able to pump only 0.5 water units per second and in water absence 0 units per
second. The question “what is the maximal overall time of water shortage tolerated by the water-level
monitor” can be expressed as an instance of the model-measuring problem.

Contributions. We continue the line of research set in [11]. We introduce basic notions and notation
in Section 2. The remaining part of the paper contains the following contributions:

1. We develop the theory of monotonic parametric hybrid automata, that can be thought of as
“weighted” counterparts of hybrid automata (Section 3).

2. We adapt the model-measuring framework [11] to the hybrid automata case (Section 4).

3. We discuss constructions of similarity measures defined by hybrid automata (Section 5).

4. We study which distances on timed words can be expressed by hybrid automata (Section 6).

Related work. Parameter synthesis for hybrid automata, which is a special case of model measuring
for hybrid automata, has been extensively studied [7, 8]. However, parameter synthesis is usually
considered for arbitrary parameterizations (in particular in [8]), whereas, we are interested only in
monotonic parameterizations. The (non-monotonic) parameter synthesis problem becomes quickly
undecidable; it is already undecidable for timed automata. Therefore, the methods for (non-monotonic)
parameter synthesis are necessarily incomplete or nonterminating.

Monotonic parameterizations of timed automata have been studied in [12]. Our approach is more
general. First, it is defined on affine hybrid automata. Second, it allows constraints of the form
t ∈ [−p, p], which are disallowed in [12]. Third, parameter synthesis is a special case of our model-
measuring framework.

Evaluation of hybrid systems based on distances has been discussed in [6], where the Skorohod
distance has been suggested as the right distance between continuous behaviors. It can be expressed
by a hybrid automaton, but it is not known whether that automaton belongs to a class enjoying
decidability of the emptiness problem.

2 Preliminaries
A labeled transition system is a quadruple (S,Σ, E, s0), where S is a (finite or infinite) set of states, Σ
is an alphabet, E is a relation on S × Σ × S and s0 is an initial state. All models considered in this
paper are (finite or infinite) transition systems. A word w = a1a2 . . . is a trace of a (labeled) transition
system M if there is a path s0s1 . . . in M such that for every i ∈ [1, |w|], (si−1, ai, si) ∈ E. Such a
path is said to be associated with w.

2.1 Hybrid automata
We briefly present basic notions regarding hybrid automata and its special case, timed automata.
Timed-automata and related topics are discussed in a comprehensive survey [2]. Hybrid automata in
general and their connections to timed automata are discussed in [3, 9]. In the following, we consider
only automata over finite timed words.

3

Let X be a set of real-valued variables. An affine constraint is a conjunction of terms of the form
s(X) ∼ c, where c ∈ Q, ∼ ∈ {<,≤,=,≥, >} and s(X) is a linear combination of the variables from X
with rational coefficients. Denote by Aff(X) the set of affine constraints over X. A valuation ν is a
mapping ν : X 7→ R (written also as ν ∈ RX). A valuation ν satisfies g ∈ Aff(X), denoted by ν |= g,
if the formula ν(g), obtained from g by instantiating variables from X by their values in ν, is true.

An (affine) hybrid automaton A is a tuple (Σ, L,X, 〈l0, ν0〉, Inv, F low, δ, F), where (1) Σ is the
alphabet of A (called labels in [9]), (2) L,X are sets of locations and variables, (3) l0, ν0 are the initial
location and valuation, (4) Inv : L 7→ Aff(X) defines location invariants, (5) Flow : L 7→ Aff(Ẋ)
defines dynamics of each variable at a given location, where ẋ is the derivative of x (also called its
rate), and Ẋ = {ẋ : x ∈ X} (6) δ ⊆ L ×Aff(X ∪X+) × (Σ ∪ {ε}) × L is the switch relation, where
x+ denotes the value of x after taking the switch and X+ = {x+ : x ∈ X}. A switch (l, s, a, l′) resets
a value of x, if s is consistent with x 6= x+, (7) F is a finite set of acceptance conditions of the form
〈l, s〉, where l ∈ L and s ∈ Aff(X) is a constraint on variables.

Notice that Flow(l) consists of only derivatives and constants, i.e., ẋ ∈ [0, 2] is allowed and x = ẋ
is not.

We assume that each hybrid automaton has the time variable t ∈ X, whose rate is 1 at every
location.

We settled for the class of affine hybrid automata, therefore we omit the word “affine”.
We define the size of the automaton A, denoted by |A|, as the length of its binary representation,

where the constants are represented in binary notation.
An event over Σ andX is a pair 〈a, ν〉 of a discrete action from Σ∪{ε} and a valuation ν : X 7→ R. A

timed word over Σ and X is a finite sequence of events 〈a0, ν0〉 . . . 〈ak, νk〉 such that the time variable
ν0(t), ν1(t), . . . is a weakly increasing sequence. For a timed word w, we define untime(w) as the
projection of w on Σ∗. A state q = 〈l, ν〉 of A is a pair of a location l ∈ L and a valuation ν.

There are two kinds of transitions between states of A: (i) elapse of time: 〈l, ν〉 τ→ 〈l, ν′〉 iff there

is a differentiable function f : [0, τ] 7→ RX , such that f(0) = ν, f(τ) = ν′ and for all λ ∈ [0, τ], the
valuation µλ : X ∪ Ẋ 7→ R, defined for all x ∈ X as µλ(x) = f(λ)[x], µλ(ẋ) = (∂∂tf(λ))[x], satisfies
Flow(l), (ii) location switch: 〈l, ν〉 →

a
〈l′, ν′〉 iff there is a switch of A, (l, s, a, l′), such that the valuation

τ : X ∪ X+ 7→ R, defined for all x ∈ X as τ(x) = ν(x) and τ(x+) = ν′(x), satisfies s. An elapse of
time is usually followed by a location switch, thus we define the composition τ→ ◦ →

a
, denoted by τ→

a
.

We associate with A a transition system PreA = (L × RX , (Σ ∪ {ε}) × RX , E, 〈l0, ν0〉) such that
〈l0, ν0〉 is the initial state of A and (〈l, ν〉, α, 〈l′, ν′〉) ∈ E if α ∈ Σ∪ {ε} and there is τ > 0 such that A
has a transition 〈l, ν〉 τ→

α
〈l′, ν′〉. Paths in PreA are called runs of A.

A state 〈l, ν〉 of PreA is accepting iff there is a constraint (l′, s) ∈ F from A such that l = l′ and ν
satisfies s.

For a hybrid automaton A, we define [A] as the set of traces from [PreA] whose last state is
accepting. A timed word w is accepted by A iff there is a trace v ∈ [A] whose projection to Σ × RX
is w. We will write AM to indicate that AM generates a transition system M such that [M] = [AM].

The emptiness problem for hybrid automata asks, given hybrid automaton A, is [A] nonempty?
That problem is also referred to as the reachability problem as it is equivalent to reachability of an
accepting state in PreA.

2.2 Product of hybrid automata
Let Ai = (Σ, Li, Xi, 〈l0,i, ν0,i〉, Invi, F lowi, δi, Fi), for i ∈ {1, 2}, be hybrid automata over Σ. We
define the product of A1 and A2, denoted by A1 × A2, as the hybrid automaton A1 × A2 =
(Σ, L,X, 〈l0, ν0〉, Inv, F low, δ, F) such that:

(i) L = L1 × L2 and X = X1 ∪X2,

(ii) l0 = 〈l0,1, l0,2〉, ν0 = ν0,1 ∪ ν0,2, and

for all l1 ∈ L1, l2 ∈ L2:

4

(iv) Inv(〈l1, l2〉) ≡ Inv1(l1) ∧ Inv2(l2)

(v) Flow(〈l1, l2〉) ≡ Flow1(l1) ∧ Flow2(l2)

(vi) δ = {(〈l1, l2〉, s1 ∧ s2, a, 〈l′1, l′2〉) : (l1, s1, a, l
′
1) ∈ δ1, (l2, s2, a, l

′
2) ∈ δ2}

(vii) F = {(〈l1, l2〉, s1 ∧ s2) : (l1, s1) ∈ F1, (l2, s2) ∈ F2}

The automaton A1 ×A2 recognizes the intersection of languages recognized by A1 and A2. (This
holds only for affine hybrid automata, as they have piecewise-linear trajectories.)

2.3 Rectangular hybrid automata
An affine constraint is rectangular iff it is a finite conjunction of expressions x ∼ c, where c ∈ Q and
∼ ∈ {<,≤,=,≥, >}. A hybrid automaton is rectangular iff all constraints, are rectangular or of the
form x = x+ (which occur only in switches).

A rectangular hybrid automaton is initialized iff for each switch (l1, s, a, l2) and every x ∈ X, if
the flow of x changes, i.e, Flow(l1) �x 6= Flow(l2) �x, then x is reset at that switch. E.g. every timed
automaton is an initialized rectangular automaton [10].

Theorem 1 ([10]) The emptiness problem for initialized rectangular automata is PSPACE-complete.

A subset of Rn is compact iff it is bounded and closed. A constraint is compact iff it defines a
compact subset of Rn. Finally, a hybrid automaton is compact iff all constraints defining its invariants,
flows, the transition relation and the acceptance conditions are compact.

2.4 Parametric hybrid automata
A variable x is a parameter in a hybrid automaton if its rate at each location is 0 and in every
switch we have the constraint x = x+. A parametric hybrid automaton A is a hybrid automaton with
distinguished subsets of variables that are parameters. We write A[~p] to indicate that A has parameters
~p. Since parameters values do not change during a run, they can be instantiated to (rational) constants.

We say that a parametric hybrid automaton belongs to a class C iff for every instantiation of
parameters, the resulting automaton belongs to C. E.g. even though a parametric hybrid automaton
A has a non-rectangular constraint x ≤ p, each instantiation of p makes x ≤ p rectangular and we
consider such an automaton to be rectangular.

The emptiness problem has its parametric counterpart. The parametric emptiness problem asks,
given a parametric hybrid automaton, is there an instantiation of its parameters (by rational numbers)
such that the resulting automaton recognizes a nonempty language.

Observe that parameters in a hybrid automaton are instantiated in ν0, whereas in the parametric
emptiness problem they can be arbitrarily instantiated. It follows that the emptiness problem implies
the parametric emptiness problem, but not vice versa.

2.5 Weighted timed automata
A weighted timed automaton is a timed automaton augmented by weights associated with its locations
and switches, C : L ∪ δ 7→ N. The value of a run 〈l0, ν0〉

τ1→
a1
〈l1, ν1〉

τ2→
a2

. . .
τk→
ak
〈lk, νk〉 is given by∑k−1

i=0 C(li)τi+1 +
∑k−1
i=0 C(ei), where ei is the switch taken in the transition 〈li, νi〉

τi+1→
ai+1

〈li+1, νi+1〉.

The value of a timed word w assigned by a weighted timed automaton A, denoted by LA(w), is the
infimum of the set of values of all accepting runs of A on w. Timed words that are rejected by A have
infinite value.

The emptiness question for non-weighted automata has the following weighted counterpart:

Definition 2 The optimal-value question asks, given a weighted timed automaton A, to compute the
infimum of LA(w) over all timed words.

5

It has been shown in [4] that:

Theorem 3 The optimal-value question for timed automata can be computed in polynomial space.

Weighted timed automata defined as above are referred to in the literature as linearly-priced timed
automata. Observe that weighted timed automata are a special kind of parametric affine hybrid
automata. Indeed, a timed part of a timed automaton is translated directly to an affine hybrid
automaton and the value is represented by a value variable val. For a switch e, val is updated according
to val+ = val +C(e). In a location l, the rate of val is equal C(l). The value of val does not appear in
any constraints except for acceptance conditions, where val is compared with a threshold parameter
tr, where val ≤ tr states that we are interested in runs whose values are bounded by tr.

3 Parametric hybrid automata
In this section we develop a unified theory of “weighted” hybrid automata over finite timed words, which
is applied in Section 4. Richness of hybrid automata allows encoding value directly as a continuous
variable and avoiding auxiliary components as in discrete weighted automata. However, that richness
raises decidability issues.

However, the emptiness problem for the whole class of (affine) hybrid automata is undecidable.
Thus, we shall restrict ourselves to subclasses of hybrid automata that have the emptiness and para-
metric emptiness problems decidable (weighted timed automata, initialized rectangular automata).
The following definitions help us to address decidability issues.

Definition 4 A class of hybrid automata C is: (1) weakly decidable iff the membership (of an automa-
ton to C) and the emptiness problems are decidable over C (2) strongly decidable iff the membership,
the emptiness and parametric emptiness problems are decidable over C.

The class of parametric timed automata is weakly decidable but not strongly decidable. This
implies that even if there is a (rational) instantiation of parameters such that the resulting automaton
recognizes a nonempty language, there is no bound on the length of binary representation rational
parameters. If there was a bound, there would be finitely many instances of the automaton preserving
the bound, and one could just test for emptiness all of those instances. Thus, instead of computing
exact values of parameters, we have to settle for approximation.

We define the class of admissible parameters for A, denoted by Par(A), as {~p : [A[~p]] 6= ∅}. We are
interested in approximation of “minimal” elements ofPar(A) (which is called the quantitative emptiness
problem or the optimal-value problem in the weighted automata case.) Approximation and minimality
are defined by a vector norm | · |. For a given norm and ε > 0, we say that ~q is an ε-approximation of ~p
iff |~q− ~p| ≤ ε. A vector ~p is minimal in a set A if ~p ∈ A, and for every ~q ∈ A, |~p| ≤ |~q|. As Par(A) may
not have minimal elements, we consider its closure in Rn, cl(Par(A)). Each coordinate of Par(A) is
positive, hence cl(Par(A)) contains minimal elements.

Definition 5 A class of hybrid automata C admits parameter approximation iff there is a procedure
that for a given n > 0 and A ∈ C, returns a 2−n-approximation of a minimal element of cl(Par(A)) if
Par(A) is nonempty and ∅ otherwise.

In the rest of this section we give sufficient conditions for a class C to admit effective parameter
approximation. The complexity of parameter approximation is given separately w.r.t. the size of an
automaton |A| and a precision n.

Assume that a class of hybrid automata C is weakly decidable, but not strongly decidable. There
are two possible reasons for the undecidability: density and unboundedness of the domain of possible
parameters, the rational numbers, which corresponds to infinite domain of denominators (density)
and numerators (unboundedness). The undecidability of the parametric emptiness problem for timed
automata is caused by the density. Indeed, even a restricted problem, are there parameters from the
interval [1, 2] such that [A[~p]] is nonempty, is undecidable [13]. Density, as a source of undecidability,
can be eliminated by restricting parameterizations to be monotonic:

6

Definition 6 We say that a parametric hybrid automaton A is monotonic iff for all ~p, ~q ∈ Qk, ~p ≤ ~q
(~q is greater than ~q component-wise) implies [A[~p]] ⊆ [A[~q]]

There are simple sufficient conditions that guarantee monotonicity of a given hybrid automaton.
E.g. an automaton with constraints x− p ≤ 0 or x+ p ≥ 0 is monotonic w.r.t. p as higher values of p
lead to weakening the constraints and admittance of more runs. Still, given a hybrid automaton, even
a timed automaton, it is not possible to decide whether it is monotonic.

Proposition 7 Monotonicity of parametric timed automata is undecidable.

All monotonic timed automata are strongly decidable, but in the rich class of hybrid automata,
monotonicity alone does not make a weakly decidable class strongly decidable. The unboundedness of
the domain of parameters may cause undecidability of the parametric emptiness problem even with
monotonic parametrizations. Indeed, consider the class stopwatch automata over bounded time, i.e.,
parametric stopwatch automata that have a single parameter bounding the duration of each run. Such
automata are monotonic and their class is weakly decidable [5]. However, that class is not strongly
decidable as its strong decidability is equivalent to weak decidability of the class of stopwatch automata.

In order to eliminate unboundedness as a source of undecidability, we define a small parameter
property called f -boundedness.

Definition 8 Let f be a computable function. A class of hybrid automata C is f -bounded iff for
every A ∈ C, if there is a tuple ~p such that [A[~p]] 6= ∅, then there a tuple ~q whose components are from
[0, f(|A|)] such that [A[~q]] 6= ∅.

An f -bounded class of parametric hybrid automata that are monotonic admits effective parameter
approximation procedure. Basically, for a given A ∈ C and ε = 2−n, one can do binary search for
parameters with the minimal norm, where each parameter is from the set { ij : j ∈ {1, . . . , 2n}, i ∈
{0, . . . , j ·f(|A|)}}. Observe that the length of instantiated parameters in the fixed-point representation
is bounded by log(f(|A|)) + n. It follows that each automaton that results from such an instantiation
of A has the size bounded by A+PM(A)(log(f(|A|)) + n), where PM(A) is the number of instances
of parameters in A.

Proposition 9 Every weakly decidable and f -bounded class of monotonic hybrid automata C admits
parameter approximation in time O((f(|A|) + n) · T (|A|+ PM(A) · (log(f(|A|)) + n))), where T (·) is
the complexity of the emptiness problem for C.

f -boundedness of a class of weakly decidable hybrid automata, which are monotonic, is equivalent
to strong decidability in the following sense.

Proposition 10 Let C be a weakly decidable class of monotonic hybrid automata. The class C is
strongly decidable iff there is a computable function f such that C is f -bounded.

The classes of monotonic weighted timed automata and compact initialized rectangular automata
are exponentially bounded classes. Parameters in (affine) hybrid automata occur only in affine terms.
Thus, to show that a class C is exponentially bounded, it is sufficient to show that if an automaton
from C has an accepting run, it has an accepting run in which all variables are exponentially bounded.

A straightforward analysis of the region graph of a timed automaton yields that if a timed au-
tomaton has an accepting run, then there is a timed word (a0, t0) . . . (ak, tk) accepted by this timed
automaton with k and tk− t0 exponentially bounded in the size of the automaton. It follows that each
timed automaton that recognizes a nonempty language has a run in which values of all clocks and the
value are exponentially bounded.

Proposition 11 The class of monotonic weighted timed automata (over finite words) is exponentially
bounded.

7

Compact initialized rectangular automata have bounded rates of their variables and they recognize
precisely timed languages recognized by timed automata [10]. Thus, if a compact initialized rectangular
automaton has an accepting run, it accepts a timed word (a0, t0) . . . (ak, tk) such that k, tk − t0 are
exponentially bounded in the size of the automaton. It follows, that it has an accepting run in which
the values of all variables are exponentially bounded. Hence, we have:

Proposition 12 The class of monotonic compact initialized rectangular automata (over finite words)
is exponentially bounded.

In consequence, we have:

Corollary 13 Let | · | be a vector norm computable in linear time. The class of monotonic com-
pact initialized rectangular automata admits parameter approximation in polynomial space w.r.t. the
automaton size and linear time w.r.t. a given precision n.

Finally, the optimal parameters of weighted timed automata can be actually computed as they
are always integers or arbitrarily close to integers [4], which makes their infima integers. Thus, it is
sufficient to approximate the optimal parameters only up to ε, such that each ε-neighborhood contains
at most one vector of integers.

Proposition 14 Given a monotonic weighted timed automaton A, the value inf{|~p| : ~p ∈ Par(A)}
can be computed in polynomial space in |A|.

Recall that inf{|~p| : ~p ∈ Par(A)} =∞ if Par(A) is empty.

4 Model-measuring framework
The model-measuring problem [11] asks, given a model M and a specification ϕ, what is the maximal
distance ρ such that all models M ′ within that distance from M satisfy (or violate) ϕ. In this section,
we adapt the model-measuring problem to the hybrid automata setting. We begin with basic definitions
from [11].

Let M be a transition system (model). A similarity measure (of M) is a function dM from timed
words into positive real numbers such that for all traces w ofM , dM (w) = 0. Such a similarity measure
extends to transition systems by dM (M ′) = sup{dM (w) : w is a trace ofM ′}. Every similarity measure
results from a distance function via fixing the first argument.

Definition 15 Let M be a transition system and dM be a similarity measure. For a specification P ,
the stability radius of P in M (w.r.t. dM), denoted by srdM (P), is defined as follows:
(1) if M |= P , srdM (P) = sup{ρ ≥ 0 : ∀M ′(dM (M ′) < ρ⇒M ′ |= P)},
(2) if M |= ¬P , srdM (P) = srdM (¬P),
(3) otherwise, srdM (P) = 0.

Now, these definitions are specialized to the hybrid automata case. We begin with representing
similarity measures by monotonic hybrid automata, a hybrid counterpart of weighted automata.

Definition 16 Let | · | be a norm computable in linear time. A (hybrid) similarity measure dM is
automatic iff there is a monotonic hybrid automaton Adist such that dM (M ′) = inf{r : ∃~p.|~p| ≤
r ∧ [M ′] ⊆ [Adist][~p]}.

We assume that a specification is given by a hybrid automaton AP that accepts all timed words
that violate the specification. We call specifications given in such a way automatic. Observe that a
transition system M , given by a hybrid automaton AM , satisfies an automatic property P (M |= P)
iff the languages recognized by AM and AP are disjoint. Thus, model checking for hybrid automata
reduces to the emptiness problem for hybrid automata.

We define the model measure on the basis of the stability radius by scaling the value the stability
radius from [0,∞] to [1

2 , 1] if M |= P , and [0, 1
2] otherwise.

8

Definition 17 The model-measuring problem is defined as follows: given an automatic similarity
measure dM and an automatic specification P , compute [P]dM defined by

(i) if M |= P , [P]dM = 1− 2−srdM (M,P)−1 (∈ [1
2 , 1]),

(ii) if M |= ¬P , [P]dM = 1− [¬P]dM (∈ [0, 1
2]),

(iii) otherwise, [P]dM = 1
2 .

Observe that the minimal norm of parameters ~p such that [Adist[~p]] and [AP] have nonempty
intersection is exactly the stability radius of P in M w.r.t. dM . Thus, the model-measuring problem
for hybrid specifications reduces to the problem of finding the minimal norm of parameters such that
(Adist ×AP)[~p], the product of automata Adist and AP , recognizes a nonempty language.

We can restrict instances of the model-measuring problem (a similarity measure and a specification)
to be represented by hybrid automata from a given class. We call such a restricted problem the model-
measuring problem over C.

As noted in Section 3 the minimal norm of a vector of parameters can be a rational number
with arbitrarily long representation. For that reason, we settle for approximation. Corollary 13 and
Proposition 14 imply the following:

Theorem 18 The model measuring problem over compact initialized rectangular automata can be
approximated in polynomial space in the size of automata representing dM and P .

The model measuring problem over weighted timed automata can be computed in polynomial space
in the size of automata representing dM and P .

5 Modeling hybrid similarity measures
In this section we present a systematic approach to the construction of automatic hybrid similarity
measures. The main difficulty originates from the following issues. First, the model M is usually
complex, therefore modifying its internal structure is a complicated and error-prone task. Ideally, the
construction method would yield a similarity measure given only the original hybrid automaton and a
description of allowed perturbations. Second, the outcome of the construction should be a parametric
hybrid automaton that admits effective approximation of minimal parameters for which its intersection
with another hybrid automaton is nonempty. The presented approach addresses both issues.

Hybrid automata combine discrete and continuous control via extending finite state automata
by continuous variables. Thus, for modeling automatic hybrid similarity measures, we extend the
(discrete) hypervisor approach [11] to the hybrid case. The main idea behind the hypervisor approach
is to introduce an external component, called the hypervisor, whose task is to govern the execution
of the original automaton AM by providing alternative switch relations, invariants and flows. A
hypervisor runs an external hybrid automaton that using its current location selects the current switch
relation, invariants and flows.

Composition of AM with a hypervisor produces a monotonic hybrid automaton. In order to guaran-
tee monotonicity of the resulting automaton, we require all constraints to be monotonic in the following
sense. An affine constraint t[~p] parametrized by ~p is monotonic iff for all vectors of real numbers ~c1, ~c2,
if ~c1 ≤ ~c2, then t[~c1] implies t[~c2].

Definition 19 A hypervisor for a hybrid automaton AM =
(Σ, LM , XM , 〈l0,M , ν0,M 〉, InvM , F lowM , δM , FM) is a quadruple H = (AH , τH , InvH ,FlowH)
satisfying:

(i) AH = (Σ, LH , 〈l0,H , ν0,H〉, XH , InvH , F lowH , δH , FH) is a parametric hybrid automaton.

(ii) for every x ∈ XM ∩XH , ν0,M (x) = ν0,H(x)

(iii) τH : LH 7→ P(LM ×Aff(XM ∪X+
M)× Σ× LM), where P(A) denotes the power set of A,

(iv) InvH : LH 7→ (LM 7→ Aff(XM)),

9

(v) FlowH : LH 7→ (LM 7→ Aff(˙XM)),

(vi) AH has the initial state 〈lI , ν〉, an idle state, such that τH [lI] = δM , InvH [lI] = InvM ,
FlowH [lI] = FlowM , and for all a ∈ Σ, AH has a switch (lI ,>, a, lI), where > is the empty
constraint that is always satisfied,

(vii) all affine constraints in τH , InvH ,FlowH and AH are monotonic.

At each step, the functions τH , InvH ,FlowH determine the transition relation, invariants and flows
for AM . Intuitively, they should encode modifications applied to these components of AM rather than
their complete descriptions. For example:
(blind a-transitions) Consider la ∈ LH such that τH [la] = {(l, s, b, l′) : (l, s, a, l′) ∈ δM , b ∈ Σ}, i.e., the
automaton moves as it would have read an event with a. τH [la] can be simply defined uniformly on
δM , i.e., regardless of the complexity of δM .
(bounded deviation of x) Consider τH [lx] = {(l, s, a, l′) : (l, s′, a, l′) ∈ δM , s′ ≡ s[x/(x+y)]∧y ≤ q∧y ≥
−q}, where s[x/(x+ y)] results from substitution x by x+ y in s. Intuitively, we allow values of x to
deviate from its intended values by at most q.

For a hybrid automaton AM and a hypervisor H as in Definition 19, we define the semi-
direct product of AM and H. The semi-direct product AM n H is a parametric hybrid automaton
(Σ, L,X, 〈l0, ν0〉, Inv, F low, δ, F) such that:

• L = LM × LH , and X = XM ∪XH ,

• l0 = 〈l0,M , l0,H〉, ν0 = ν0,M ∪ ν0,H

• Inv(〈lM , lH〉) ≡ InvH [lH](lM) ∧ InvH(lH)

• Flow(〈lM , lH〉) ≡ FlowH [lH](lM) ∧ FlowH(lH)

• (〈lM , lH〉, s, a, 〈l′M , l′H〉) ∈ δ iff

(i) (lH , sH , a, l
′
H) ∈ δH , (lM , sM , a, l

′
M) ∈ τH [l′H], and s = sM ∧ sH , or

(ii) a = ε, (lH , sH , ε, l
′
H) ∈ δH and lM = l′M

• F = {〈(lM , lH), sM ∧ sH〉 : 〈lH , sH〉 ∈ FH , 〈lM , sM 〉 ∈ FM}

The semi-direct product defines an automatic hybrid similarity measure. Indeed, due to existence
of the idle location, regardless of the values of the parameters, each timed word accepted by AM is also
accepted by AM nH. More precisely, as AM can be a parametric automaton itself, for every ~p ∈ Rm,
[AM [~p]] ⊆ [(AM nH)[~p]]. Conversely, any automatic hybrid similarity measure can be obtained by
the hypervisor construction. Indeed, for any automatic hybrid similarity measure defined by A one
can define a hypervisor H, which neglects AM and simulates A. Therefore, the hypervisor approach
is complete, i.e., every automatic hybrid similarity measure can be obtained as a semi-direct product.

All constraints introduced by the hypervisor are monotonic, therefore if AM is monotonic, AM nH
is monotonic as well. In contrast, there is no natural condition on the hypervisor that would guarantee
that the semi-direct product of an automaton from a given class C and that hypervisor belongs to C.
The reason for that is that those conditions heavily depend of the class C.

Definition 20 Let C be a class of hybrid automata. Let A ∈ C and let H be a hypervisor H for A.
The hypervisor H is admissible for C with A iff AnH belongs to C.

The following facts can be easily verified by the reader:

Fact 21 Every hypervisor H = (AH , τH , InvH ,FlowH), that satisfies the following conditions is ad-
missible for the class of weighted timed automata (regardless of AM): (1) AH is a (linearly) weighted
timed automaton, (2) InvH is rectangular, and for every lh ∈ LH , for every variable x except for
the value variable wt: (3) every switch in τH [lh] preserves the value of x or resets it to 0, (4) for all
lm ∈ LM , FlowH [lH](lm) implies that all slopes of all variables equal 1.

10

Fact 22 Let AM be a compact initialized rectangular automaton. Every hypervisor H such that all
components are compact and rectangular, and AM n H is initialized, is admissible for the class of
compact initialized rectangular automata with AM .

Example 23 (Pacemaker) Consider a model of a pacemaker, which consists of three components:
the sensor, controller and electrodes. The goal of the pacemaker is to ensure that the pulse is in the
range 60-70 beats per minute. If there is no heartbeat for a predefined time, the controller sends a
signal to the electrodes, which in turn charge their capacitors for some predefined time and fire an
impulse.

The following questions can be expressed (and then approximated) as instances of the model-
measuring problem: what are the maximal impulse firing time and latency of the sensor such that
the pacemaker model still meets the specification.

The impulse firing time is modeled by a clock x with a predefined time limit Tc. Basically, we need
to change this predefined time to a parameter p and ask, what is the maximum value of p, such that the
model still meets the specification. This is expressed by a simple hypervisor that has only two locations,
an idle location and a parametric location qp. All the constraints in τH [qp], InvH [qp],FlowH [qp] remain
the same as in δM , InvM , F lowM , except that Tc is substituted by Tc + p.

The latency of the sensor can be modeled by a hypervisor that captures every heartbeat event and
forwards it to the model with a delay. The hypervisor H is defined as (AH , τH , InvH ,FlowH), where
AH is a parametrized timed automaton, which has four locations: an idle location lI , waiting for a
heartbeat lw, delaying the delivery ld and delivering a heartbeat to the model lr. The automaton AH
can be in the location ld not longer than p, which is a parameter restricting sensor delays and it can be
in the location lr only for 0 time units. Both InvH and FlowH in lw, ld, lr are as is the original model.
Then, τH [lw] is equal to δM , which corresponds to the usual behavior of the model. The transition
relation τH [ld] specifies that the hypervised automaton ignores a heartbeat event. Finally, τH [lr] is a
blind a transition as defined above; it specifies that the hypervised automaton acts as it would have got
a heartbeat event.

Observe that in the above cases the model is a timed automaton and the hypervisors are parametrized
timed automata. Therefore, the maximal firing time and the maximal sensor latency can be computed
(not only approximated) in polynomial space (Theorem 18).

The impulse firing time and the latency of the sensor from Example 23 represent two types of
similarity measures. The similarity measure related to the impulse firing time strongly depends on the
model as it essentially asks what is the maximal value of a bound in a specific constraint, whereas the
one related to the latency can be described independently of the model. We refer to those two types
as model-dependent and model-independent.

Model-dependent similarity measures are more expressible as any model-independent similarity
measure can be considered as model-dependent. On the other hand, tweaking a model may lead to
unpredictable results (Example 24). We discuss both approaches in the following sections.

5.1 Model-dependent similarity measures
We begin with an example showing that parameterizing models can effect in non-obvious faults.

Example 24 (Scheduler) Consider a system consisting of a scheduler S and processes P1, . . . , Pk.
Each process has two private clocks tI , tT , clock of individual instructionss and a total time clock. The
clock tI is used to model duration of execution of an instruction. Each instruction has its own duration
and the clock tI is reset after each execution of an instruction. The clock tT is used for preemptive
scheduling. A process P can execute instructions only when tT is below the length of a time slice for P .
This clock can be reset by the scheduler; processes are scheduled by resetting their clocks. The scheduler
has its own clock that is used to determine times of context switches. An example of a process P1 with
the time slice 10 is depicted in Figure 3. Suppose the length of time slice granted to P1 is parametrized
by p, and the tested value of the parameter would be 7. Then, after instructions inc(x),dec(x), the
process P1 is about to execute dec(x) and tT = 5. Then, after 2 time units another process is scheduled,
but P1 executes dec(x) which takes 3 time units before it is suspended. Indeed, when P1 is resumed

11

inc(x) dec(x)

tI = 2 ∧ tT ≤ 10

tI := 0

tI = 3 ∧ tT ≤ 10

tI := 0

Figure 3: An automaton modeling the process P1.

lI
ln

l̇ ∈ [−2, 1]

ls, x < p1

l̇ ∈ [−2, 0.5]
ls′ , x < p2

l̇ ∈ [−2, 0.5]

lc, x < p3

l̇ ∈ [−2, 0]

x := 0

x := 0x := 0

Figure 4: AH in the hypervisor modeling the pipeline failure.

it immediately finishes the execution of dec(x). This means that for 1 time unit two processes were
running in parallel, which cannot happen in a single-processor model. The problem did not manifest
itself in the original model because the length of time slices is equal to the sum of executing times of
instructions. That problem can be solved by compelling the scheduler to reset both clocks tT and TI ,
which corresponds to discarding partial computations.

Another example is a modification of a water-level monitor [1] presented in the introduction.

Example 25 (Water-level monitor) Both similarity measures discussed in the introduction, the
one that parametrizes the latency of the pump and the one modeling the water pipeline failure, can be
expressed with the hypervisor approach. The hypervisor that parametrizes the latency of the pump is
virtually the same as the hypervisor parameterizing the impulse firing time in Example 23; it substitutes
the constant 2 by 2 + p in all constraints.

The hypervisor modeling the water pipeline failure scenario consists of a hybrid automaton AH that
has 5 locations: an idle location lI , ln corresponding to normal water supply, ls, ls′ corresponding to
water shortage and lc corresponding to water absence. It is depicted in Figure 4.

Moreover, AH has a clock x and the parameters that bound the periods of the water shortage before
and after the water absence (p1, p3) and the water absence period (p3). The constraints on the bottom
of each node represent additional constraints on the flow of the original model.

Finally, the norm 2 · (|p1|+ |p3|) + |p2| applied to the optimal values of parameters corresponds to
the maximal overall pipeline failure time tolerated by the water-level monitor.

5.2 Model-independent similarity measures
In this section we show how to define model-independent similarity measures for hybrid automata.
A natural way to do that is to define a “distance” between timed words, and on its basis define a
similarity measure as a “distance” of timed words from the set of traces of the model LM . Similarity
measures defined in that way are clearly model-independent.

12

In the following, we discuss “distances” between timed words that are computed by monotonic
hybrid automata. We call such “distances” hybrid-automatic weighted relations, as we do require them
to be symmetric and satisfy the triangle inequality. Also, they generalize automatic relations in two
ways: their range is the real numbers instead of Boolean values and they are computed by hybrid
automata.

We begin with preliminary definitions. Let w1, w2 be timed words over Σ and X. For i ∈ {1, 2},
we define the labeling σi on events as σi(〈a, ν〉) = 〈(a, i), νi〉, where νi : (X × {i}) ∪ {t} 7→ R is
defined as νi(〈x, i〉) = ν(x) and νi(t) = ν(t). The (event) labellings σ1, σ2 extend to timed words by
applying themselves to each event. We define the disjoint union of w1 and w2, denoted by w1 ⊕ w2,
as the timed word Σ×{1, 2} consisting of the union of events of timed words σ1(w1) and σ2(w2), E.g.
〈a, 0.4〉〈b, 2.1〉 ⊕ 〈b, 0.3〉〈b, 0.4〉 = 〈(b, 2), 0.3〉〈(a, 1), 0.4〉〈(b, 2), 0.4〉〈(b, 1), 2.1〉.

A weighted relation is a generalization of the usual relation by allowing its characteristic function to
range over R+∪{∞}. We say that a (binary) weighted relation on timed words R is a hybrid-automatic
weighted relation iff there is a monotonic hybrid automaton AR such that for all timed words v, w we
have vRw = inf{|~p| : AR[~p] accepts v ⊕ w}. In particular, vRw may be equal to the value of v ⊕ w
assigned by a weighted timed automaton AR. Indeed, it suffices for AR to have a single parameter p
bounding the value variable val. Then, AR[p] accepts v⊕w iff there is a run of AR whose value varible
does not exceed p and inf{p : AR[p] accepts v ⊕ w} is the value of v ⊕ w assigned by AR.

Assume that AR contains the timed identity, i.e., for every timed word v, AR[~0] accepts v ⊕ v.
Observe that dM defined by dM (w) = inf{|~p| : v ∈ L(AM),AR[~p] accepts v ⊕ w} is an automatic
similarity measure. Clearly, for every M ′, dM (M ′) ≥ 0 and since AR contains the timed identity,
dM (M) = 0. The class of timed languages accepted by hybrid automata is closed under projection,
hence there is a hybrid automaton computing dM . Furthermore, it can be defined by a hypervisor in
a uniform way:

Proposition 26 Let R be a hybrid-automatic weighted relation computed by AR and let AM be a
hybrid automaton. The similarity measure defined from AM by R can be defined by a hypervisor that
has a symbolic definition that uses components of AM and AR as predicates. Moreover, if AR,AM
are weighted timed automata (compact initialized rectangular automata), the automaton AM nHR is
a weighted timed automaton (compact initialized rectangular automaton).

Example 27 Consider the model from Example 23 and the question of the maximal latency of the
sensor tolerated by the model. We decouple a heartbeat event into two consecutive events: an actual
heartbeat and an observed heartbeat. Then, we specify that the trace of actual heartbeats and observed
heartbeats are in a weighted relation Rd defined as follows. The weighted relation Rd is defined only
on pairs of 1-interleaved timed-words, i.e., timed words w, v satisfying that between any two events
of w, there is at most one event of v and vice versa. For timed words w, v that are 1-interleaved,
untime(w) = untime(v) and every event of w is earlier than its counterpart in v, the value of wRv is
the maximal delay between any event of w and its counterpart in v. Otherwise, wRv = ∞. We show
in Section 6, that Rd is a timed-automatic weighted relation.

6 Hybrid-automatic weighted relations
We have seen in Section 5.2 that hybrid-automatic weighted relations conveniently express model-
independent similarity measures. This motivates the study of their expression power. We show basic
construction methods as well as limitations of hybrid-automatic weighted relations. However, the
fact that certain weighted relations are not expressible by hybrid automata does not imply that the
similarity measures defined by those relations are not hybrid-automatic.

Hybrid-automatic (weighted) relations are substantially different than automatic relations on words
(defined in Section 6.2). A key difference between words and timed words is that events in the latter can
be arbitrarily dense, i.e., there can be arbitrarily many events in a fixed time interval. In consequence,
in the disjoint union w⊕ v, there is no bound on the number of events from v between two consecutive
events of w and vice versa. As we will see in Theorem 37 this leads to undecidability of simple (in the
word case) problems. To avoid that, we define the notion of K-interleaved words, which intuitively
means that words are synchronized.

13

6.1 Compositionality of hybrid-automatic relations
Composition and intersection are two simple constructions that build new hybrid-automatic weighted
relations from the ones already defined.

Definition 28 Let R,S be weighted relations. We define the composition R◦S and intersection R∩S,
as follows. For all timed words w1, w2:

w1(R ◦ S)w2 = inf{w1Rw3 + w3Sw2 : w3 is a timed word}
w1(R ∩ S)w2 =w1Rw2 + w1Sw2

Proposition 29 The composition and intersection of hybrid-automatic weighted relations are hybrid-
automatic weighted relations.

Moreover, if the relations R,S are computed by weighted timed automata (compact initialized
rectangular automata), then R ◦ S and R ∩ S are computed by weighted timed automata (compact
initialized rectangular automata).

6.2 K-interleaved timed words
In this section, we define K-interleaved property, which intuitively expresses that two words are syn-
chronized. Next, we show that discrete automatic relations can be lifted to the hybrid case assuming
that the timed words are K-interleaved. That assumption is essential (Theorem 37).

Definition 30 Let w1, w2 be timed words over disjoint alphabets. We say that w1, w2 are K-interleaved
iff in any time interval [t1, t2] the numbers of events from w1 and from w2 differ by at most K.

We briefly introduce automatic relations on discrete words. The convolution of words w1, w2,
denoted by w1⊗w2, is a word over (Σ∪{#})× (Σ∪{#}) of length max(|w1|, |w2|) such that the i-th
letter of w1 ⊗w2 is a pair of the i-th letters of w1 and w2. If |wj | < i, we assume that its i-th letter is
#. E.g. ab⊗ c = (a, c)(b,#). A relation R on Σ∗×Σ∗ is automatic iff there is a finite word automaton
AR such that for all v, w, vRw holds iff A accepts v ⊗ w.

Proposition 31 Let K > 0 and let S be a discrete automatic relation. A weighted (hybrid) relation
R defined for all w1, w2 as w1Rw2 = 0, if w1, w2 are K-interleaved and untime(w1) S untime(w2),
and w1Rw2 =∞ otherwise, is a hybrid-automatic weighted relation and it is computed by a monotonic
timed automaton.

A weighted relation R on Σ∗ × Σ∗ is automatic iff there is a weighted finite word automaton AR
such that for all v, w, vRw equals to the value of v ⊗ w assigned by A.

Proposition 32 Let K > 0 and let S be an automatic weighted relation. Define a weighted relation R
on timed words as follows: for all w1, w2, if w1, w2 are K-interleaved, w1Rw2 = untime(w1)Suntime(w2),
otherwise w1Rw2 =∞. The relation R is a hybrid-automatic weighted relation and it is computed by
a monotonic weighted timed automaton.

Propositions 31 and 32 have virtually the same proofs. The timed automaton computing R neglects
time and simulates the automaton computing S. Corresponding events of two timed words may appear
at different times, but since w1, w2 are K-interleaved, the timed automaton has to remember only last
K events to synchronize w1 and w2.

Definition 33 Let K > 0 and let z be a continuous variable. We define distances d∞,zK , d1,z
K on timed

words w1 = 〈a1
1, ν

1
1〉〈a1

2, ν
1
2〉 . . . 〈a1

k, ν
1
k〉, w2 = 〈a2

1, ν
2
1〉〈a2

2, ν
2
2〉 . . . 〈a2

l , ν
2
l 〉 as follows: if k = l and w1, w2

are K-interleaved:

w1dt
∞,z
K w2 = maxi∈{1,...,k} |ν1

i (z)− ν2
i (z)|

w1dt
1,z
K w2 =

∑
i∈{1,...,k}

|ν1
i (z)− ν2

i (z)|

Otherwise, w1dt
∞,z
K w2 = w1dt

1,z
K w2 =∞.

14

Proposition 34 For every K > 0 and every variable z, the relations dt∞,zK , dt1,zK are hybrid-automatic
weighted relations. If z is the time variable, then dt∞,zK , dt1,zK can be computed by, respectively, a
monotonic timed automaton and a monotonic weighted timed automaton.

Example 35 Observe that the relation from Example 27 is computed by a monotonic timed automaton.
Indeed, that relation is an intersection of three relations dt∞,x1 , Id1 and ≥1 defined as follows. dt∞,x1 is
a weighted relation from Definition 33. It is computed by a monotonic timed automaton (Proposition
34). The relation wId1v is defined by wId1v = 0 iff w, v are 1-interleaved and untime(w) = untime(v),
and wId1v = ∞ otherwise. It is computed by a monotonic timed automaton (Proposition 31 applied
to the identity relation.) Finally, the relation ≥1 is defined by w≥1v = 0 iff w, v are 1-interleaved and
every event of w is earlier than its counterpart in v, and w≥1v = ∞ otherwise. It is computed by
a monotonic timed automaton that counts the difference of events from w and from v. Clearly, the
difference of events from w and from v is always 0 or 1 iff w, v are 1-interleaved and every event of w
is earlier than its counterpart in v.

Example 36 (Skorohod distance) The Skorohod distance between functions x, y : Rn 7→ R is defined
as dS(x, y) = inf{‖Id−Λ‖∞+ ‖x− y ◦Λ‖∞ : Λ is a bijective continuous function}. It has been pointed
out in [6], that dS is the right measure to compare hybrid systems. The intuition behind the Skorohod
distance is that Λ represents distorted time flow, and the distance measures the optimal balance between
the distortion of time (|Id− Λ‖∞) and space (|x− y ◦ Λ‖∞).

The Skorohod distance can be expressed by an affine hybrid automaton on K-interleaved timed
words. Observe that for all w, v, dS(w, v) = w dt∞,tK ◦(dt∞,zK ∩tId) v, where tId is defined as w tId v = 0 if
projections of w, v on the time variable are equal, and w tId v =∞ otherwise. Clearly, tId is recognized
by a timed automaton.

Unfortunately, a hybrid-automaton expressing dt∞,zK is neither rectangular nor initialized.

6.3 Inexpressible hybrid relations
Propositions 31, 32 and 34 refer only to timed words that are K-interleaved. In a way, it is clear
that automata with finite memory are not able to process meaningfully piling up events from one of
the timed words. However, the question arises, is there a (more general) notion of hybrid automata
whose emptiness problem is decidable, but it is strong enough to define nontrivial hybrid-automatic
weighted relations without assuming that timed words are K-interleaved? The following theorem
proves otherwise.

Theorem 37 Let Id be a weighted relation defined as follows: for all timed words w1, w2, w1Idw2 = 0
iff untime(w1) = untime(w2), and w1 Idw2 =∞ otherwise.

The problem, given a hybrid-automatic weighted relation R, decide whether there are w1, w2 such
that w1(Id ∩R)w2 equals 0, is undecidable.

7 Conclusions
In this paper we presented the model-measuring framework for the hybrid case, where distances are
represented by parametrized hybrid automata. The theory developed in this paper applies to any class
of hybrid automata, but the model-measuring problem is decidable only on special classes of hybrid
automata. We give two examples of such classes, weighted timed automata and compact initialized
rectangular automata.

Our future work is to extend the class of hybrid automata for which the model-measuring problem
is decidable.

Acknowledgment
This work was supported in part by the Austrian Science Fund NFN RiSE (Rigorous Systems Engi-
neering) and by the ERC Advanced Grant QUAREM (Quantitative Reactive Modeling).

15

References
[1] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger, P-H Ho, Xavier

Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic analysis of hybrid
systems. Theoretical computer science, 138(1):3–34, 1995.

[2] Rajeev Alur and P. Madhusudan. Decision problems for timed automata: A survey. In SFM,
volume 3185 of LNCS, pages 1–24. Springer, 2004.

[3] Tawhid Bin Waez, Juergen Dingel, and Karen Rudie. A survey of timed automata for the devel-
opment of real-time systems. Computer Science Review, 2013.

[4] Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On the optimal
reachability problem on weighted timed automata. FMSD, 31(2):135–175, October 2007.

[5] Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine, Jean-François Raskin, and
James Worrell. On reachability for hybrid automata over bounded time. In Automata, Languages
and Programming, pages 416–427. Springer, 2011.

[6] Paul Caspi and Albert Benveniste. Toward an approximation theory for computerised control. In
Embedded Software, pages 294–304. Springer, 2002.

[7] Goran Frehse, Sumit Kumar Jha, and Bruce H Krogh. A counterexample-guided approach to
parameter synthesis for linear hybrid automata. In HSCC, pages 187–200. Springer, 2008.

[8] Laurent Fribourg and Ulrich Kühne. Parametric verification and test coverage for hybrid automata
using the inverse method. Int. J. Found. Comput. Sci., 24(2):233–250, 2013.

[9] Thomas A Henzinger. The theory of hybrid automata. Springer, 2000.

[10] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable about
hybrid automata? In STOC, pages 373–382. ACM, 1995.

[11] Thomas A. Henzinger and Jan Otop. From model checking to model measuring. In CONCUR,
volume 8052 of LNCS, pages 273–287. Springer, 2013.

[12] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits Vaandrager. Linear parametric model
checking of timed automata. The Journal of Logic and Algebraic Programming, 52:183–220, 2002.

[13] Joseph S. Miller. Decidability and complexity results for timed automata and semi-linear hybrid
automata. In HSCC, volume 1790 of LNCS, pages 296–309. Springer, 2000.

8 Proofs from Section 3
Proposition 7 Monotonicity of parametric timed automata is undecidable.

Proof: The problem, given a parametric timed automaton A[q] decide whether there is a q ∈ (1, 2)
such that [A[q]] is non-empty, is undecidable [13]. We will reduce that problem to monotonicity.

Let A[q] be a parametric timed automaton. One can easily construct a parametric timed automaton
B[q] such that [B[q]] is nonempty iff q ∈ (1, 2). Observe that (A × B)[q] is monotonic iff for every
q ∈ (1, 2), [A[q]] is empty. Indeed, [A] is empty for every q ∈ (1, 2), then [(A× B)[q]] is empty for
every q. Thus, it is monotonic. Conversely, if [A[q]] is nonempty for some q ∈ (1, 2), [(A× B)[q]] is
nonempty as well. But, [(A× B)[2]] is empty, thus A× B is not monotonic. �

Proposition 9 Every weakly decidable and f -bounded class of monotonic hybrid automata C admits
parameter approximation in time O((f(|A|) + n) · T (|A|+ PM(A) · (log(f(|A|)) + n))), where T (·) is
the complexity of the emptiness problem for C.

16

Proof: First, let ~p>0 = (f(|A|), . . . , f(|A|)). Due to f -boundedness and monotonicity, if there is ~q
such that [A[~q]] 6= ∅, then [A[~p>0]] 6= ∅. Thus, if [A[~p>0]] = ∅ we can immediately return ∅. Otherwise,
~p⊥0 = ~0 and by binary search, we define a sequence of pairs 〈~p⊥0 , ~p>0 〉, 〈~p⊥1 , ~p>1 〉 so that [A[~p>i]] 6= ∅
[A[~p⊥i]] = ∅, until for some k, [A[~p⊥0]] 6= ∅ or |~p>k − ~p⊥k | < 2−n. Such k is bounded by log(f(|A|)) + k
multiplied by the length of ~p. All bounds from the statement can be easily verified. �

Proposition 10 Let C be a weakly decidable class of monotonic hybrid automata. The class C is
strongly decidable iff there is a computable function f such that C is f -bounded.

Proof: Proposition 9 give the implication from right to left. The converse implication: Consider a
function g : C 7→ R, such that for a given parametric automaton A, it returns |~p| such that A[~p] 6= ∅,
if there are such parameters and 0 otherwise. The function g is effectively computable. It first checks
whether there are parameters ~p such that A[~p] 6= ∅. If there are, it check vectors of successive natural
numbers, ~0,~1, Due to monotonicity, such a procedure terminates. Otherwise, it returns 0. Since C
is strongly decidable, the first check is decidable. In consequence, g is computable.

Observe that f(n) defined as max{g(A) : A ∈ C, |A| ≤ n} is the function that gives a bound on
parameters and it is computable. �

Proposition 11 The class of monotonic weighted timed automata (over finite words) is exponentially
bounded.

Proof: Let A be a monotonic timed automaton with multiple parameters ~p. Let us fix a total order
on parameters, e.g. p0 � p1 � . . . � pk. We say that pi has a higher order than pj iff pj ≺ pi.

We call a constraint positive (resp. negative) iff it is of one the forms x − s(~p) ≤ 0, x − s(~p) < 0
x + s(~p) ≥ 0 or x + s(~p) > 0 and the parameter in s with the highest order that occurs with a non-
zero coefficient, occurs with positive (resp. negative) coefficient. Each parametric constraint is either
positive or negative.

Let A+ be obtained from A by removing all transitions with negative constraints. Observe that
for each finite timed word accepted by A with some parameters has a run (with some parameters)
that avoids all transitions with negative constraints. Indeed, for sufficiently large parameters with
sufficiently large difference between them, we can make all negative constraints unsatisfiable, i.e., in
constraints of the forms x− s(~p) ≤ 0 or x− s(~p) < 0, s(~p) will be less than 0 and in constraints of the
forms x+ s(~p) ≥ 0 or x+ s(~p) > 0, −s(~p) will be greater than the last timestamp of the timed word w.
Thus, the unions over all parameters ~p of [A[p]] and [A+[p]] are equal. Therefore, if there is ~p1 such
that [A[~p1]] 6= ∅, there is also ~p2 such that [A+[~p2]] 6= ∅. Therefore, we assume that such ~p2 exists.

Consider A> resulting from A+ by replacing each constraint containing a parameter with >, the
propositional constant true. As A> has no parameters, it is a usual timed automaton. Observe that
if [A>] is nonempty, then it has an accepting run of exponential duration, i.e., an accepting run
π = 〈l0, t0〉 . . . 〈ln, tn〉, where t0 = 0 and tn is exponential w.r.t. |A>|. Indeed, an accepting run of
minimal length in the region graph of A> visits each region at most once and it stays in each region at
most one unit of time. There are exponentially many regions in the region graph, therefore the duration
of a shortest accepting run is exponentially bounded. We show that with appropriate parameters π is
also an accepting run in A+ and A.

Let c be the maximal absolute value of all coefficients occurring in constraints of A+. Consider the
following instantiation ~p of parameters: p0 = c · (tn + ε), p1 = 2 · c · (tn + ε), . . . , pk = 2k · c · (tn + ε).
There are two types of constraints in A+ and they are both satisfied on π:

1. the constraints of the form x ≤ s(~p) or x− s(~p) < 0, where the parameter in t with the highest
order occurs with positive coefficient are satisfied on π. Observe that tn + ε ≤ s(~p). The
constraints x ≤ tn + ε and x < tn + ε are satisfied on π.

2. the constraints of the form x ≥ s(~p) or x > s(~p), where the parameter in t with the highest order
occurs with negative coefficient are satisfied on π. That is because −(tn + ε) ≥ s(~p), therefore
they are of the forms x ≥ −ε and x > −ε. As clocks are always non-negative, those constraints
are always satisfied.

17

Therefore, π is an accepting run of A+[~p]. Since every run of A+[~p] is a run of A, π is an accepting
run of A[~p] and all components of ~p are exponentially bounded in |A|.

For weighted timed automata, observe that the weight is linearly bounded in the duration of the
run and the number of events. �

Proposition 12 The class of monotonic compact initialized rectangular automata (over finite words)
is exponentially bounded.

Proof: Let A be a compact initialized rectangular automaton without parameters. Due to [10], there
is a timed automaton B whose sets of states and variables are linear in |A| and the constants that
appear in its constraints appear in A as well. Thus, such a timed automaton B has exponential region
graph. Hence, if [A] = [B] is nonempty, there is a timed word of exponential duration, i.e., a timed
word (a0, t0), . . . , (ak, tk) with tk − t0 exponentially bounded in |A|.

Assume that [A] is nonempty and w ∈ [A] is a timed word of exponential duration. Since A is
compact, there is a bound C on all its flows. Then, during the run of A on w, the values of all variables
are contained in [−C · dw, C · dw], where dw is the duration of the timed word w.

Next, we can repeat the proof of Proposition 11. �

9 Proofs from Section 5
Proposition 26 Let R be a hybrid-automatic weighted relation computed by AR and let AM be a
hybrid automaton. The similarity measure defined from AM by R can be defined by a hypervisor that
has a symbolic definition that uses components of AM and AR as predicates. Moreover, if AR,AM
are weighted timed automata (compact initialized rectangular automata), the automaton AM nHR is
a weighted timed automaton (compact initialized rectangular automaton).

Proof: To see that, consider a monotonic hybrid automaton AR over Σ × {1, 2} that represents a
hybrid-automatic weighted relation R. A hypervisor HR = (AH , τH) is defined as follows: AH in
over the alphabet Σ; on w it simulates execution of AR on v ⊕ w by guessing v step by step. It
remembers the currently guessed letter in its state and whenever it takes an ε-transition according to
a guessed letter a, the hypervised automaton AM takes an ε-transition, defined by τH , consistent with
the transition that it would take if it read a. In other words, H defines blind a transitions as defined
in Section 5. Such transitions can be symbolically defined.

A quick analysis of the semi-direct product shows that this construction preserves classes of weighted
timed automata and compact initialized hybrid automata. �

10 Proofs from Section 6
Proposition 29 The composition and intersection of hybrid-automatic weighted relations are hybrid-
automatic weighted relations.

Proof: Let AR, AS be monotonic hybrid automata computing R and S.
Intersection: We can assume that parameters of AR and AS , ~pR, ~pS , are disjoint. Observe that the

automaton AR ×AS with the vector norm |~p| = |~pR|R + |~p|S computes R ∩ S.
Composition: We can assume that parameters of AR and AS , ~pR, ~pS , are disjoint. The automata

AR, AS work on w ⊕ v and they distinguish events from w and v by a second component, i.e., an
event (a, ν) from w becomes (〈a, i〉, νi)„ where νi : X × {i} ∪ {t} 7→ R is defined as νi(〈x, i〉) = ν(x)
and νi(t) = ν(t).

We can relabel letters and variables in AR, AS to A′R, A′S such that:

(i) letters Σ× {1} and variables X × {1} in AR remain the same in A′R
(ii) letters Σ × {2} and variables X × {2} in AR are relabeled to Σ × {3} and variables X × {3} in
A′R

18

(iii) letters Σ × {1} and variables X × {1} in AS are relabeled to Σ × {3} and variables X × {3} in
A′S

(iv) letters Σ× {2} and variables X × {2} in AS remain the same in A′S

Finally, we defined the automaton AR◦S as the result of projecting out Σ × {3} and variables
X × {3}.

It is easy to see that the automaton AR◦S with the vector norm |~p| = |~pR|R + |~p|S computes R ◦S.
�

Proposition 34 For every K > 0 and every variable z, the relations dt∞,zK , dt1,zK are hybrid-automatic
weighted relations. If z is the time variable, then dt∞,zK , dt1,zK can be computed by, respectively, a
monotonic timed automaton and a monotonic weighted timed automaton.

Proof: A hybrid automaton computing w1dt
∞,z
K w2 works as follows. It implements a FIFO queue

buffer the values of z from unmatched events. The queue stores values of z from w1 or w2. Assume
that it stores values from wi. If the next event is from wi, it enqueues its value of z. Otherwise, it
dequeues a value of z and checks if the dequeued value of z and the value from the current event differ
by at most p. If not it rejects. Otherwise, it continues.

Due to K-interleaved assumption, the queue size does not exceed K. Thus, we can implement it
using K continuous variables.

A hybrid automaton computing w1dt
1,z
K w2 works in a similar way, but instead of comparing values

of z, it adds the difference to the weight variable.
Observe that hybrid automata computing w1dt

∞,z
K w2 and w1dt

1,z
K w2 are affine, but they are neither

initialized nor rectangular.
Now, we consider a special case, where z is the timed variable. A hybrid automaton A1 computing

w1dt
∞,t
K w2 works in a similar way as w1dt

∞,z
K w2, but the queue stores clocks. When an event enqueues

its value, a corresponding clock is reset. We the event is dequeued, the corresponding clock is checked
whether it does not exceed p. Clearly, A1 is a timed automaton as all variables have slope 1, they are
only reset to 0 and the only constraints are of the form x < p.

Finally, we construct a weighted timed automaton A2 that computes w1dt
1,t
K w2. That automaton

has K + 2 states q0, . . . , qK and qfail, each of q0, . . . , qK corresponds to the number of unmatched
events, and qfail denotes that the automaton detected that w1, w2 are not K-interleaved. It does not
have weights on transitions, but it has weights associated with the states. For i ∈ {0, . . . ,K}, the state
qi has the weight i, i.e., staying in the state qi for time ∆ costs ∆ · i. Thus, the automaton needs to
remember the number of unmatched events, i.e., the difference between the numbers of events of w1

and w2 read so far, i.e., if the automaton has read 3 events from w1 and none of w2, then it is in the
state q3.

It can be shown by induction on N that the automaton A correctly computes dt(w1, w2) for all
K-interleaved timed words w1, w2 with |w1| = |w2| = N .

�

11 The proof of Theorem 37
Definition 38 Let ∆ > 0 and let R be a hybrid-automatic weighted relation. We say that R piecewise-
defines S on ∆-intervals if

w1Sw2 =

∞∑
j=0

(w1 ∩ [j ·∆, (j + 1) ·∆])R(w2 ∩ [j ·∆, (j + 1) ·∆])

We leave the following proposition without a proof.

Proposition 39 For every rational ∆ > 0, every relation piecewise-defined on ∆-intervals by a hybrid-
automatic weighted relation is a hybrid-automatic weighted relation.

19

Theorem 37 Let Id be a weighted relation defined as follows: for all timed words w1, w2, w1Idw2 = 0
iff untime(w1) = untime(w2), and w1 Idw2 =∞ otherwise.

The problem, given a hybrid-automatic weighted relation R, decide whether there are w1, w2 such
that w1(Id ∩R)w2 equals 0, is undecidable.

Proof: Consider an instance of PCP Γ = {(v1, w1), . . . , (vk, wk)}. Let RΓ be a relation defined as
follows: for all u1, u2, RΓ(u1, u2) = 0 if for every j ∈ N (untime(u1∩[j, j+1]), untime(u2∩[j, j+1])) ∈ Γ
and u1Ru2 =∞ otherwise. Fact 39 implies that RΓ is hybrid-automatic weighted relation.

Assume that u1(Id∩RΓ)u2 = 0. Then, untime(u1) = untime(u2) and there is a sequence i1, . . . , im
such that untime(u1) = vi1 . . . vim , untime(u2) = wi1 . . . wim . Thus, the instance Γ of PCP has a
solution.

Conversely, assume that Γ has a solution i1, . . . , im. Let u1, u2 be timed words such that for every
j ∈ {1, . . . ,m}, untime(u1 ∩ [j, j + 1)) = vj and untime(u2 ∩ [j, j + 1)) = wj . Clearly, u1RΓu2 = 0
and untime(u1) = untime(u2), hence u1Idu2 = 0. It follows that u1(Id ∩R)u2 = 0.

Thus, u1(I ∩RΓ)u2 = 0 if and only if Γ has a solution. �

20

