

Model Checking of Linearizability of
Concurrent List Implementations

Pavol Černý, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri
and Rajeev Alur

IST Austria (Institute of Science and Technology Austria)

Am Campus 1

A-3400 Klosterneuburg

Technical Report No. IST-2010-0001

http://pub.ist.ac.at/Pubs/TechRpts/2010/IST-2010-0001.pdf

April 19, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268224819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf

Copyright © 2010, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission.

Model Checking of Linearizability of Concurrent
List Implementations

Pavol Černý1, Arjun Radhakrishna1, Damien Zufferey1, Swarat Chaudhuri2,
and Rajeev Alur3

1 IST Austria
2 Pennsylvania State University

3 University of Pennsylvania

Abstract. Concurrent data structures with fine-grained synchroniza-
tion are notoriously difficult to implement correctly. The difficulty of
reasoning about these implementations does not stem from the number
of variables or the program size, but rather from the large number of pos-
sible interleavings. These implementations are therefore prime candidates
for model checking. We introduce an algorithm for verifying linearizabil-
ity of singly-linked heap-based concurrent data structures. We consider
a model consisting of an unbounded heap where each node consists an
element from an unbounded data domain, with a restricted set of oper-
ations for testing and updating pointers and data elements. Our main
result is that linearizability is decidable for programs that invoke a fixed
number of methods, possibly in parallel. This decidable fragment covers
many of the common implementation techniques — fine-grained locking,
lazy synchronization, and lock-free synchronization. We also show how
the technique can be used to verify optimistic implementations with the
help of programmer annotations. We developed a verification tool CoLT
and evaluated it on a representative sample of Java implementations of
the concurrent set data structure. The tool verified linearizability of a
number of implementations, found a known error in a lock-free imple-
mentation and proved that the corrected version is linearizable.

1 Introduction

Concurrency libraries such as the java.util.concurrent package JSR-166 [12] or
the Intel Threading Building Blocks support the development of efficient multi-
threaded programs by providing concurrent data structures, that is, concurrent
implementations of familiar data abstractions such as queues, sets, and stacks.
Many sophisticated algorithms that use lock-free synchronization have been pro-
posed for this purpose (see [9] for an introduction). Such implementations are
not race-free in the classic sense because they allow concurrent access to shared
memory locations without using locks for mutual exclusion. This also makes them
notoriously hard to implement correctly, as witnessed by several bugs found in
published algorithms [4, 13]. The complexity of such algorithms is not due to the
number of lines of code, but due to the multitude of interleavings that must be

examined. This suggests that such applications are prime candidates for formal
verification, and in particular, that model checking can be a potentially effective
technique for analysis.

A typical implementation of data structures such as queues and sets con-
sists of a linked list of vertices, with each vertex containing a data value and
a next pointer. Such a structure has two distinct sources of infinity: the data
values in individual vertices range over an unbounded domain, and the num-
ber of vertices is unbounded. A key observation is that methods manipulating
data structures typically access data values in a restricted form using only the
operations of equality and order. This suggests that the contents of a list can
be modeled as a data word: given an unbounded domain D with equality and
ordering, and a finite enumerated set Σ of symbols, a data word is a finite se-
quence over D × Σ. In our context, the set D can model keys used to search
through a list, the ordering can be used to keep the list sorted, and Σ can be
used to capture features such as marking bits or vertex-local locks used by many
algorithms. However, when concurrent methods are operating on a list without
acquiring global locks, vertices may become inaccessible from the head of the
list. Indeed, many bugs in concurrent implementations are due to the fact that
“being a list” is not an invariant, and thus, we need to explicitly model the
next pointers and the shapes they induce (see Figure 1). In this paper, we pro-
pose a formal model for a class of such algorithms, identify restrictions needed
for decidability of linearizability, and show that many published algorithms do
satisfy these restrictions. We propose the model of singly-linked data heaps for
representing singly-linked concurrent data structures. A singly-linked data heap
consists of a set of vertices, along with a designated start vertex, where each
vertex stores an element of D×Σ and a next field that is either null or a pointer
to another vertex. Methods operating on such structures are modeled by method
automata. A method automaton has a finite internal state and a finite number
of pointer variables ranging over vertices in the heap. The automaton can test
equality of pointers and equality as well as ordering of data values stored in
vertices referenced by its pointer variables. It can update fields of such vertices,
and update its pointer variables, for instance, by following the next fields. The
model restricts the updates to pointers to ensure that the list is traversed in
a monotonic manner from left to right. We show that this model is adequate
to capture operations such as search, insert, and delete, implemented using a
variety of synchronization mechanisms, such as fine grained vertex-local locking,
lazy synchronization, and primitives such as compare-and-set.

Our main result concerns decidability of linearizability of parallel composi-
tion of two method automata. Linearizability [10] is a central correctness re-
quirement for concurrent data structure implementations. After presenting the
construction for concurrent execution of two automata, we show that it gener-
alizes to a fixed number of method automata composed using sequential and
parallel composition. Our decidability proof is based on two results.

First, we show how linearizability of two method automata A1 and A2 can be
reduced to a reachability condition on a method automaton A. The automaton A

simulates the parallel composition for A1 and A2, i.e. A1 ‖ A2, and both possible
linearizations, A1 ; A2 and A2 ; A1. The principal insight in the construction
of A1 ‖ A2 is that the two automata can proceed through the list almost in a
lock-step manner.

Second, we show that reachability for a single method automaton is decidable:
given a method automaton, we want to check if there is a way to invoke the
automaton so that it can reach a specified state. We show that the problem can
be reduced to finite state reachability problem. The main idea is that one needs
not to remember values in D, but only the equality and order information on
such values.

We implemented a tool CoLT (short for Concurrency using Lockstep Tool)
based on the decidability results. We evaluated the tool on a number of im-
plementations, including one that uses hand-over-hand vertex local locking, one
that uses an optimistic approach called lazy synchronization, and one that uses
lock-free synchronization via compare-and-set. All of these algorithms are de-
scribed in [9] and the Java source code was taken from the book’s website. The
tool verified that the fine-grained and lazy algorithms are linearizable, and found
a known bug in the remove method of the lock-free algorithm. The experiments
show that our techniques scale to real implementations of concurrent sets. The
running times were under a minute for all cases of fine-grained and lazy meth-
ods (even without linearization points), and around ten minutes for lock-free
methods (when the programmer specified linearization points).
Related Work Verifying correctness of concurrent data structures has re-
ceived a lot of attention recently. A number machine-checked manual proofs of
correctness of exist in the literature [7, 6]. Several approximate static-analysis-
based approaches to the verification of concurrent data structures have been
proposed [17, 16, 15, 8]. Our approach is to the best of our knowledge the first
sound and complete automated analysis that captures concurrent set implemen-
tations. As for the model of the heap, closest to ours is the model of [1], but
the work in [1] is on abstraction of sequential heap accessing programs. There is
an emerging literature on automata and logics over data words [14, 3] and algo-
rithmic analysis of programs accessing data words [2]. While existing literature
studies acceptors and languages of data words, we want to handle destructive
methods that insert and delete elements, and thus, we need a model of trans-
ducers.

2 Singly-Linked Data Heaps and Method Automata

Singly-Linked Data Heaps Let D be an unbounded set of data values
equipped with equality and linear order (D,=, <). Let Σ be a finite set of sym-
bols. A singly-linked data heap is a tuple (V,next ,flag , data, h), where V is a
finite set of vertices, next is a partial function from V to V , flag is a function
from V to Σ, data is a function from V to D, and h ∈ V denotes the initial
vertex.

The structure L is naturally viewed as a labeled graph with edge relation
next . L is well-formed if this graph has no cycle reachable from h. For each
well-formed list L as above, we define a finite data word (a word over Σ × D)
that captures the part of L starting at h. Let s = s0s1 . . . sn be the maximal
sequence of vertices such that s0 is h and for all i, next(si) = si+1. Figure 1
shows a singly-linked data heap with six vertices that contain values from Σ and
D.

Method automata: syntax A method

s1 s2 s3 s4

s5

s6

d1 d2 d3 d4

d5

d6

head
o

p0p1

q
MA

h v2 v3 v4

v5

v6

Fig. 1. Singly-linked data heap and a
method automaton

automaton is a tuple (Q,P,DV , T, q0,
F, head , O), where Q is a finite set of
states, P is a finite partially-ordered
set of pointer variables, DV is a finite
set of data variables, T is a transition
relation, q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states, head is
a pointer constant, and O is a set of
pointer constants.

A method automaton operates on
a singly-linked data heap L = (V,next ,flag , data, h). The pointer variables range
over V ∪{nil}, where nil is a special value, and are denoted by p0, p1, p2, Let
≤P be the partial order on P . The partial order is required to have a minimum
element, denoted by p0. The variable p0 is called the current pointer, and the
other variables in P are called lagging pointers. The constant head points to the
vertex h and is shared across method automata. The pointer constants in the
set O = {o, o0, o1, . . .} give method automata input/output capabilities and are
referred to as IO pointers. These constants are shared with a client that invokes
the method automaton. The method automaton does not change the value of
pointer constants. In what follows, we use the word pointers to refer to pointer
variables and constants. The set R of pointers of a method automaton is defined
by R = P ∪ {head} ∪ O. The data variables in DV = {v, v0, v1, . . .} range over
the unbounded domain D.

The transition relation T is defined by a set of tuples of the form (q,G,A, q′),
where q, q′ ∈ Q are states, G is a guard, and A is an action. There are no outgoing
transitions from the final states.

We denote by DE a data expression defined as follows: DE = v | data(p),
where p is a pointer variable or constant. Also, let succ be the successor relation
defined by the partial order ≤P . (Note that since P is finite, ≤P defines a
successor relation.)

The language of guards G is now defined as:

G ::= flag(p) = s (for s ∈ Σ) | DE = DE | DE < DE | p = p′

| p = nil | p = next(p′) | next(p) = nil | G and G | ¬G | true

where p, p′ are pointer constants or variables.

An action of A is a term derived by the grammar

Act ::= flag(p) := s (where s ∈ Σ) | data(p) := DE | v := DE |
p := p′ (where succ(p′, p)) | next(p) := p′ (where succ(p′, p))
next(p) := nil | p := nil | p0 := next(p0) | Act ; Act .

where p, p′ are pointer variables, p0 is the current pointer (minimum pointer
variable). The restriction enforce that the list is traversed in a monotonic manner.
This necessitates that pointer variables are statically ordered, and the furthest
pointer can be assigned to the next of its vertex, but lagging pointers can be
assigned only to a pointer further up in this ordering. Fields of vertices, including
the next field, corresponding to lagging pointers can still be updated.

We require the actions to satisfy a restriction OW, abbreviation for “One
write before move.” This restriction states that there is at most one action mod-
ifying flag(p), at most one action modifying data(p), and at most one action
modifying next(p) performed between two successive changes of the value of the
pointer variable p. The restriction can be enforced syntactically — we omit the
details. We note that the restriction OW holds for every implementation we have
encountered and that we show that without this restriction, the linearizability
problem becomes undecidable.

Figure 1 shows a method automaton in state q. Its head pointer points to
the vertex h of the list. A client of the automaton can store values in the vertex
v6 pointed to by the IO pointer o. The variables p1 and p2 are pointer variables
of the method automaton.
Examples We illustrate the model by showing how the model captures syn-
chronization primitives and other core features of concurrent data structure al-
gorithms.

– Traversing a list. Let us suppose we want the current pointer p0 to traverse
a list (assumed to be sorted) until it finds a data value equal or larger to the
one stored at a node pointed to by an IO pointer o. A method automaton
can achieve this by having a transition such as: (q, data(p0) < data(o), p0 :=
next(p0), q).

– Inserting a node. We show how a node can be inserted. We assume that
the position to insert the node has been found - the new node o is to
be inserted between p1 and p0. The transition relation can then include
(q, true,next(o) := p0, q1) and (q1, true,next(p1) := o, q2).

– Locking individual vertices. We can model locking of nodes by the Σ nodes.
Let us suppose that Σ = {u, l1, l2, . . .}, for unlocked, locked by thread
1, locked by thread 2, etc. A locking transition can then look as follows:
(q0,flag(p) = u,flag(p) := l1, q1) for thread number 1. Unlocking can be
modeled as follows: (q1,flag(p) = l1,flag(p) := u, q2).

– Modeling compare-and-set. The synchronization operation compare-and-set
is supported by several contemporary architectures as well as Java Concur-
rency library. The operation takes two arguments, an expected value (ev)
and an update value (uv). If the current value of the register (for hardware)
or a reference (in Java) is equal to the expected value, then it is replaced by

the update value. The operation returns a Boolean indicating whether the
value changed. The operation is modeled by the following transition tuple:
(q, data(p) = ev , data(p) := uv , q′)).

Semantics An automaton invocation, denoted by A(L, ionodes), consists of a
method automaton A = (Q,P,DV , T, q0, F, head , O), a singly-linked data heap
L = (V,next ,flag , data, h), and a function ionodes from O to V . The pair
(L, ionodes) is referred to as method input. A method input is well-formed if
L is well-formed, and for all variables o ∈ O, we have that the vertex ionodes(o)
is unreachable from h and next(ionodes(o)) is undefined. A method automaton
is thus initialized by having its head pointer pointing to the head of L and its
input variables in O initialized by the function ionodes. The output of a method
is also realized via the variables O, which are shared with the client.

The semantics is given by the transition system denoted by [[A(L, ionodes)]].
The definition formalizes the following intuition: a transition of the method
automaton is chosen nondeterministically and executed atomically. Let us use
a special value nil to model the null pointer, and let qerr /∈ Q be a special
state reached on null-pointer dereference. Let L = (V,next ,flag , data, h) and
A = (Q,P,DV , T, q0, F, head , O). A node4 s = (L, q, U, dv) of [[A(L, ionodes)]]
has four components: a list L, a state q in Qerr = Q ∪ {qerr}, a valuation of
pointers U : R → V ∪ {nil} and a valuation of data variables dv : DV → D. A
node is initial if it is of the form (L, q0, U, dv), where U sets all pointer variables
to h and dv sets all the pointer variables to the value data(h). Note that there
is a unique initial node in [[A(L, ionodes)]].

The transition relation of [[A(L, ionodes)]] is defined as expected. For exam-
ple, if (q, true, p := next(p), q′) is a transition of the method automaton A, then
there is a transition from a node (L, q, U, dv) to a node (L, q′, U ′, dv), where
U ′(p′) = U(p′) for all p′ ∈ R such that p′ 6= p and U ′(p) = U(next(p)).

Composition of method automata Let us consider two method automata
A1 and A2. Their parallel composition A1 ‖ A2 will be defined using a transition
system. The transition system will be denoted by TP (A1, A2, L, ionodes). Intu-
itively, the set of nodes of the transition system is the product of sets of nodes
of transition systems [[A1(L, ionodes1)]] and [[A2(L, ionodes2)]], with the singly-
linked data heap L being shared between the two automata. The transition
function defines interleaving semantics. We omit further details in the interest of

space. The relation (L, ionodes)
A1‖A2−−−−→ (L′, ionodes ′) is defined similarly as in

the case of one automaton. Note that here, ionodes is a valuation of IO variables
of both automata. For sequential composition A1 ; A2, we analogously define the

system TS(A1, A2, L, ionodes) and (L, ionodes)
A1‖A2−−−−→ (L′, ionodes ′).

4 In this paper, we reserve the word state for the states of method automata. For other
transitions systems, we talk of nodes.

3 Verifying Linearizability

Linearizability [10] is the standard correctness condition for concurrent data
structure implementations. In this section, we study the linearizability problem
for parallel composition of method automata.
Representing Abstract Data Types We start by defining an equivalence
relation on singly-linked data heaps. Two singly-linked data heaps are equivalent
when they represent the same value of an abstract data type ADT . We define a
function adt that takes a singly-linked data heap and returns a value in ADT . As
an example, we consider sets of elements of the data domain D as the abstract
data type. In this case, the range of the function adt would be 2D. For example,
the value adt(L) can be the set of data values from all the reachable unmarked
nodes (if marked nodes are assumed to be deleted).

Let A be a method automaton. Let (L, ionodes) and (L′, ionodes ′) be method
inputs. The relation (L, ionodes) ≡ (L′, ionodes ′) holds adt(L) = adt(L′) and
ionodes(o) = ionodes(o), for all IO variables o of A.
Two method linearizability Given two method automata A1 and A2, we say
that the parallel composition A1 ‖ A2 is linearizable if and only if the following
condition holds: For all LP , L′P , ionodesP , ionodes′P such that (LP , ionodesP) is

a well-formed method input, if (LP , ionodesP)
A1‖A2−−−−→ (L′P , ionodes ′P), then

– either there exist LS1, L
′
S1, ionodesS1, ionodes

′
S1 such that (LS1, ionodesS1)

is a well-formed method input, and (LS1, ionodesS1)
A1;A2−−−−→ (L′S1, ionodes ′S1)

and (LP , ionodesP) ≡ (LS1, ionodesS1) and (L′P , ionodes ′P) ≡ (L′S1, ionodes ′S1)
– or there exist LS2, L

′
S2, ionodesS2, ionodes

′
S2 such that (LS2, ionodesS2) is

a well-formed method input, and (LS2, ionodesS2)
A2;A1−−−−→ (L′S2, ionodes ′S2)

and (LP , ionodesP) ≡ (LS2, ionodesS2) and (L′P , ionodes ′P) ≡ (L′S2, ionodes ′S2).

The definition of two method linearizability intuitively says that for every
(interleaved) execution of A1 ‖ A2, there is an equivalent (sequential) execution
of either A1 ; A2 or A2 ; A1. Note that the standard definition of linearizabil-
ity [10] requires that if a method m1 starts executing after m2 has finished, the
effect of m2 must be visible to m1. This requirement does not explicitly appear
in our definition, because if there are only two methods composed in parallel,
and one of them starts after the other has finished, the execution is sequential.

The definition of two method linearizability captures the standard definition
of linearizability [10] for the case of parallel composition of two methods. In the
standard definition, the requirement that all histories (possibly of unbounded
length) are linearizable is used to capture the requirement on the contents of
the list from our definition. In other words, given two methods A1 and A2,
two-method-linearizability not only checks that all histories of A1 ‖ A2 are lin-
earizable, it also checks that all histories of P1 ; P ; P2 are linearizable, for
all sequential programs P1 and P2. As an example, consider a set with methods
insert, contains. With these two methods, the requirement from our definition
that starting on the same list, the interleaved and one of the sequential execu-
tions should finish with the same list is captured by the history that (starting

with the empty list) calls insert at the beginning and contains at the end of the
execution. A formal comparison of the definitions is deferred to the full version.
Decision problem We can now formulate the decision problem we consider in
this paper:

Given two method automata A1 and A2, the two method linearizability
problem is to decide whether A1 ‖ A2 is linearizable.

3.1 Reachability

In order to show that the two method linearizability is decidable, we will need the
following results. First, we show that the effect of two method automata running
in parallel can be captured by a single method automaton, which is built using a
lockstep construction. Second, we show that reachability is decidable for method
automata.

Theorem 1. Given two method automata A1 and A2, there exists a method au-
tomaton LS (A1 ‖ A2) such that for all LP , L′P , ionodesP , ionodes′P such that

(LP , ionodesP) is a well-formed method input, we have (L, ionodes)
A1‖A2−−−−→

(L′, ionodes ′) iff (L, ionodes)
LS(A1‖A2)−−−−−−−→ (L′, ionodes ′).

Proof. The idea behind constructing a method automaton LS (A1 ‖ A2) is to
update the current pointers of the two A1 and A2 automata in lockstep manner
— i.e. the current pointers of the two automata traverse the list at most one step
apart. If e.g. the current pointer of A1 is one step ahead of the current pointer
of A2, then transitions of A2 are scheduled until the current pointers point to
the same position. The lockstep construction is a type of partial-order reduction.
The construction is complicated by the presence of lagging pointers. The solution
consists of nondeterministically guessing the interaction of the automata via
lagging pointers. It is in this step that the restriction OW is needed.

We now present the proof in more detail. We start by demonstrating the
main ideas in a simplified setting, and we then show how to extend the proof.
We assume that neither of the automata A1 and A2 have lagging pointers and
they do not modify the next field of the elements (i.e. no pointer modifications
are performed). Both A1 and A2 have only one pointer (the current pointer). If
A conforms to these restrictions, we call it a simple MA.

Furthermore, we simplify the question to a reachability question. We ask
whether a pair (q1, q2) is reachable in A1 ‖ A2 when the current pointers of both
A1 and A2 point to the same vertex of the list L. More formally, the pair (q1, q2) is
same-vertex-reachable in A1 ‖ A2 if there exists a well-formed input (L, ionodes)
and if a vertex (L, q1, q2, U1, U2, dv1dv2) is reachable in TP (A1, A2, L, ionodes)
and we have that U1(p1

0) = U2(p2
0) where p1

0 and p2
0 denote the current pointers

of the two automata.

Lemma 1. Let A1 and A2 be two simple MAs, and let q1 be a state of A1 and
q2 be a state of A2. There exists a method automaton LS (A1 ‖ A2) and a state

q of LS (A1 ‖ A2) such that (q1, q2) is same-vertex-reachable in A1 ‖ A2 if and
only if q is reachable in LS (A1 ‖ A2).

In the rest of this proof, A1 and A2 are arbitrary but fixed. We denote
LS (A1 ‖ A2) by LS . We construct the MA LS as follows. Let LS be defined by
the tuple (QC , PC , dv , TC , qC0 , FC , head , OC). The set QC is the product of the
sets Q1 and Q2 and QB , where QB allows storing some bookkeeping information.
The set of pointer variables contains two pointers - the current pointer pC0 , and
one lagging pointer pC1 . The initial state qC0 is (q10 , q

2
0 , q

B
0) and the set of final

states FC is F1 × F2 × FB .
The transition function of LS simulates the parallel composition of A1 and

A2, with an important restriction: the current pointers of the two automata
are never more than one step apart. Specifically, the following is an invariant:
pC0 = pC1 or pC0 = next(pC1). When A1 is one step ahead, the pointer pC0 represents
the current pointer of A1 and pC1 pointer represents the current pointer of A2;
when A2 is one step ahead, the situation is reversed. The automaton LS keeps
track of whether A1 or A2 is one step ahead in the QB part of the state.

A move-transition is a transition where the action is of the form p0 =
next(p0). The automaton LS proceeds by simulating sequences of transitions
of A1 or A2. It simulates A1 by performing a transition of A1 on the Q1 compo-
nent of the state. The simulation proceeds as follows:

– If pC0 = pC1 , then LS chooses nondeterministically whether to simulate A1

(A2). It then simulates A1 (A2) until A1 (A2) performs a move-transition.
At that point, pC0 = next(pC1), and the simulation continues as described
next.

– If pC0 = next(pC1) then:
• If A1 is one step ahead, CA simulates A2 until A2 performs a move-

transition. At that point, pC0 = pC1 .
• If A2 is one step ahead, CA simulates A1 until A1 performs a move-

transition. At that point, pC0 = pC1 .

The pair (q1, q2) is same-vertex reachable in LS if there exist a well-formed
input (L, ionodes), a list L′ and function U ′L, dv ′L such that (L′, q, U ′L, dv ′L) is
reachable from initial state in [[LS (L, ionodes)]], U ′L(pC0) = U ′L(pC1) and q =
(q1, q2, qb), for some qb.

We now prove that LS is the desired automaton, i.e. it is an automaton which
we can analyze in order to decide whether (q1, q2) is same-vertex-reachable in
A1 ‖ A2 — that is, we need to prove that (q1, q2) is same-vertex reachable in
A1 ‖ A2 if and only if (q1, q2) is same-vertex reachable in LS .

A node in [[LS (L, ionodes)]] (or TP (A1, A2, L, ionodes)) is called a target node
if it represents a point in the execution where the current pointers of the two
automata point to the same state and their states are q1 and q2.

Let tC be a target node in [[LS (L, ionodes)]]. It is easy to prove that if tC is
reachable, then there exists a target node t reachable in TP (A1, A2, L, ionodes),
as the set of paths in TP (A1, A2, L, ionodes) is a superset of the set of paths in
[[LS (L, inpO)]].

(b)

(c)

(d)

(e)

(a)

A1.p0

A1.p0

A1.p0

A1.p0
A1.p0

A1.p1

A1.p1

A2.p0

A2.p0

A2.p0

A2.p0

A2.p0

s1

s1

s1

s1

s1

s2

s2

s2

s2

s2

(s3, d3)

(s4, d4)

d1

d1

d1

d1

d1

d2

d2

d2

d2

d2

Fig. 2. Lockstep construction

The other implication is more difficult to prove. Let t be a target node in
TP (A1, A2, L, ionodes). Let Z be a path leading to t from the initial node. Let
s = s0s1 . . . sn be the maximal sequence of vertices in the list L such that s0 is
h and for all i, next(si) = si+1. Let K ⊆ {0, 1, . . . n}, such that i ∈ K if A1 was
first at position i (more formally i ∈ K iff a node where U(p1

0) = si occurs in Z
before a node where U(p2

0) = si).

The only time when “scheduling” occurs in LS is when pC0 = pC1 . To construct
the desired path that reaches a target node tC , we resolve the nondeterminism
using the set K obtained from the path Z in TP (A1, A2, L, ionodes). If pC0 =
pC1 = si and i + 1 ∈ K, then we continue on the path where LS simulates A1

first (if i+ 1 6∈ K the situation is reversed).

In this way, we have constructed a path Z ′ from the initial state in [[LS (L, ionodes)]].
We can now prove that for all i, whenever in Z ′ a node occurs where U(pC0) =
U(pC1) = si for the first time, then the the two simulated automata A1 and A2

are in the same states as they are in the node in Z where U(p1
0) = U(p2

1) = si for
the first time. Intuitively, there are two reasons for this: first, for every position
i, the same automaton reaches the position i first in Z and Z ′. Second, what the
second automaton sees is not influenced by how far ahead is the first automaton.
This concludes the proof of Lemma 1.

Proof (of Theorem 1): Lemma 1 shows that a special case of the concurrent
reachability for simple MAs can be reduced to reachability in MAs. We will
therefore need to generalize the proof of the lemma — first, from concurrent
reachability in MAs to concurrent reachability for general MAs and second,

from reachability to the condition on initial and final lists from the statement of
this theorem.

We start by explaining briefly how the proof can be generalized from the case
of simple MAs to general MAs. The difference between simple MAs and MAs
is that MAs have lagging pointers and MAs can modify the next field of the
vertices in a list.

Let us consider lagging pointers. First, we explain in detail how the assump-
tion that there are no lagging pointers was used in the construction of the au-
tomaton LS . Let us suppose that the automaton A1 has one lagging pointer, and
the automaton A2 has no lagging pointers. Now suppose that the current pointer
of A1, the lagging pointer of A1 and the current pointer of A2 point to the same
vertex v in the list. Furthermore suppose that A1 executes a move-transition
and is one step ahead. The situation after A1 executed the move-transition is
depicted on Figure 2, part (d). In the figure, the pointer A1.p0 is A1’s current
pointer, and the pointer A1.p1 is A1’s lagging pointer. In this situation, the lock-
step construction seems not to work, as the current pointer of A2 cannot advance,
because we do not know whether A1 will write to the vertex v. The solution is
that LS will guess what A1 will write to v (and read from v) before A2 performs
a move transition. Due to the definition of MAs, the sequence of what A1 and
A2 write is bounded. In this way, any run of A1 ‖ A2 can be simulated; note
that as the run continues, the guess needs to be checked, that is, it needs to be
checked whether A1 indeed writes what was guessed. LS will store the guessed
sequence in the QB part of the state (the sequence of values from Σ) as well as
in the data variables (the sequence of values from D). The situation is depicted
in Figure 2, part(e). When LS moves the current pointer of A2, A2.p0, it needs
to keep the guessed sequence (of length 2 in the figure) logically attached to the
node to which the lagging pointer of A1, A1.p1, is pointing. The construction
can be generalized to the case when both automata have multiple lagging point-
ers. The automaton LS guesses the whole sequence of read and writes to v that
happens before the last lagging pointer leaves the vertex v.

We now present how the proof of Lemma 1 can be extended to cover MAs
that perform pointer modifications in the heap and extension from same-vertex-
reachability to concurrent reachability.

Let us consider MAs that perform pointer modifications of the heap, that
is, they change the value of the next field of a node. We describe the proof on
two examples: inserting and deleting nodes into the heap. The solution in this
cases is again based on nondeterministic guessing. For inserting, we first note
that the number of vertices that can be inserted into the list at a lagging pointer
is bounded by the number of pointers (including input/output pointers) the
automaton has. Thus the amount of information to be guessed is bounded, and
can be stored to be verified. As for deleting, let us consider one way an automaton
can delete nodes from the list. It can redirect the next field of the node pointed
to by a lagging pointer to the current pointer. Such a run can be simulated by
LS by nondeterministically guessing where the deletion starts. More precisely,
let us suppose that the lagging pointer of A1 as well as the current pointer of

A2 points to a node v, and that the current pointer of A1 is one step ahead, i.e.
it points to a node v′ such that next(v) = v′. If LS now guesses that A1 will
in the future course of the run delete nodes by redirecting the next field of its
lagging pointer, and A2 will advance its current pointer only after this deletion,
LS can still advance the current pointer of A2, but not process the nodes that
are to be deleted by A1. The automaton LS will check that the deletion has in
fact occurred.

We now briefly explain how can we generalize from the proof for same-vertex
reachability of a pair (q1, q2) (as in Lemma 1) to prove concurrent reachability
(as defined by the concurrent reachability problem). The difference between the
two notions is that concurrent reachability does not require the current pointers
of the two automata point to the same vertex in the heap. The simulation by
the CA automaton is extended as follows: the automaton proceeds as before
for the part of the list that is traversed by both automata. However, it can
nondeterministically decide to stop simulating one of the automata. In this way,
it simulates runs where the current pointers of the two automata point to a
different nodes in the heap when they A1 reaches q1 and A2 reaches q2.

In the course of this proof, we have for simplicity of discussion focussed
on the reachability question. As simple inspection of the proof shows that the
constructed automaton LS has the same effect on the resulting list and values
of output pointers as the parallel composition of A1 and A2.

This completes the proof of Theorem 1.

Let A = (Q,P,DV , T, q0, F, head , O) be a method automaton. Let q be a
state in Q. The method automaton reachability problem is to decide whether
there exist a well-formed method input (L, ionodes), a list L′, and a valuation
of pointer variables U such that in the transition system [[A(L, ionodes)]], the
node (L′, q, U) is reachable from the initial node.

Theorem 2. The method automaton reachability problem is decidable. The com-
plexity is polynomial in the number of states of the automaton, and exponential
in the number of its pointer and data variables.

Proof. Let A be a method automaton (MA). We say that a state q is reachable
in A iff there exist a well-formed input (L, ionodes), a list L′ and a valuation of
pointer variables U and of data variables dv , such that (L′, q, U, dv) is reachable
in [[A(L, ionodes)]] from the initial state.

For simplicity, we present the rest of the proof for the case of automata which
do not have data variables. Extending to the general case is no difficult.

Note that the size (number of nodes) of the transition system [[A(L, ionodes)]]
is potentially infinite. There are two “sources of infinity”: the first is the unbound-
edness of the heap, and the second is the unboundedness of the data domain.

The structure of the proof is as follows. First, we construct a transition system
Tl (l for local), such that q is reachable in A if and only if it is reachable in Tl.
In Tl, we remove one “source of infinity”, namely the unbounded heap. Second,
we construct a finite transition system Tf (f for finite), such that q is reachable

in Tl if and only if it is reachable in Tf . Reachability in finite transition system
is decidable, which enables us to conclude the proof.

Construction of Tl. The nodes of Tl are called local nodes. A local node is a
tuple (q, Ul, same-value,next l), where q is a state in Q, UL is a function from
the set of pointers R to Σ × D, and same-value and next l are relations on R.
The main difference between Tl and A is that there are no pointers in Tl.

There are two main ideas behind the construction of Tl. First, the local nodes
contain enough information to evaluate the guards, and this information can be
updated as a result of performing actions. Second, as we are interested in reach-
ability, we can replace the list and input by considering nondeterministic tran-
sitions. Thus the main difference between Tl and and nodes in [[A(L, ionodes)]]
is that local nodes do not contain the list L.

We will use the following notation in the rest of the paper. Let f be a partial
function. The expression f [a ← b] denotes a function that is the same as f at
all points except a, where it returns the value b.

In the interest of space, we do not give the full definition of the transition
relation in Tl, we only present two illustrative examples. First, let us consider
a method automaton transition given by the tuple (q,next(p4) = p3, p4 := p3, q

′).
This tuple induces a transition in Tl as follows: a local node (q, Ul, same-value,next l)
has a transition to (q′, U ′l , same-value ′,next ′l) if next l(p4) = p3, U ′l = Ul[p4 ←
Ul(p3)], and the relations same-value and next ′L get updated to reflect that p4

is now equal to p3.
Second, let us consider a method automaton transition given by the tuple

(q, true, p0 := next(p0), q′). This tuple induces a transition in Tl as follows: a local
node (q, Ul, same-value,next l) has a transition to (q′, U ′l , same-value ′,next ′l) if
U ′l = Ul[p0 ← (s, d)], where s is in Σ, d is in D and the relations same-value
and next ′L get updated to reflect that p0 advanced one step. Note that s and d
are unconstrained.

Note that it is here, in the construction of the transition function of Tl, that
the restriction R1 is used. The fact that the pointer p0 is the only one that can
move forward through the list, and that it cannot back implies that the values
encountered by p0 do not need to be stored, except for those pointed to by
lagging pointers.

A state q is reachable from TL if there exists an initial node k0 and a function
Ul and relations same-value and next l, such that the node (q, Ul, same-value,next l)
is reachable from k0. We can prove that a state q is reachable in Tl iff it is reach-
able in A. Both directions are proven by straightforward induction on the length
of the path witnessing that q is reachable.

Construction of Tf . Note that Tl is still an infinite state system, as its nodes
store values from the unbounded domain D. We construct a finite-state system
Tf that abstracts away the value from D and keeps only the equality and order-
ing information. More precisely, the function Ul : R → Σ ×D is replaced by a
function UΣ : R→ Σ and by an order on equivalence classes on R. The nodes in

Tf are tuples (q, UΣ ,PV , same-value,next l), where PV is an order on equiva-
lence classes on R. A node in Tf represents a set of nodes in Tl. For example, PV
might be (p2 < p0 = p1), which represents a set of nodes which includes a node
where Ul(p0) = (s0, 3), Ul(p1) = (s1, 3), Ul(p2) = (s2, 2) for some s0, s1, s2 ∈ Σ
(in this example we assume D = N).

Let α denote the abstraction function from nodes in Tl to nodes in Tf . The
transitions between nodes in Tf are defined as follows: for two nodes of Tf , t1
and t2, there is a transition from t1 to t2 iff there exist two nodes of Tl, l1 and
l2, such that α(l1) = t1 and α(l2) = t2, and there exists a transition from l1 to
l2 in Tl.

We can prove that a state q is reachable in Tl iff it is reachable in Tf . Given
the definition of the transition function, it can be easily seen (and proven by
induction), that if q is reachable in Tl, then it is reachable in Tf .

For the other implication, we use a technique similar to the proof of Theorem
1 in [2]. First note that for two nodes t1 and t2 in Tf , it is not the case that
for all nodes l1 and l2 of Tl, such that α(l1) = t1 and α(l2) = t2, there exists a
transition from l1 to l2. For a counterexample, consider a node t1 in Tf where
PV specifies that p1 > p2. Furthermore, suppose that there is a transition tuple
in the method automaton with an action p0 = next(p0) that induces a transition
(without changing values of variables other then p0) to a node t2 where PV is
p1 > p0 > p2. Now consider a local node where Ul(p1) = (s1, 6) and Ul(p2) =
(s2, 5). Note now that l1 cannot transition to any state that would correspond
to the order on pointer variables required by t2, simply because there is no node
between 5 and 6.

In a key part of the proof of this implication (reachability in Tf implies
reachability in Tl) is to show that for t1 and t2, nodes in Tf , if t2 is reachable from
t1, then there exist l1 and l2, nodes in Tl, such that t1 = α(l1) and l2 = α(t2),
and such that such that l2 is reachable from l1. The main idea for proof by
induction is that we can choose l1 in such a way that the gaps between values
are large enough. More precisely, if (1) t1 requires that e.g. p1 > p2 for two
pointer variables p1 and p2 and (2) p2 is reachable from p1 via a path of length
k, then it is sufficient to choose p1 such that Ul(p1) = (s1, d1), Ul(p2) = (s2, d2),
and d1 − d2 > 2k.

Note that we can tighten the analysis above by noting that the only “new”
values come from move transitions, i.e. transitions where the action is p0 :=
next(p0) - thus it is sufficient to consider the number of move transitions, and
not the length of the path.

Complexity The proof yields an algorithm for deciding reachability of a state q.
The algorithm checks reachability of q in the finite-state transition system Tf .

The number of states in Tf depends polynomially on the number of states of
the method automaton and exponentially on the number of its pointer variables
(as the order on equivalence classes on pointer variables is tracked). Reachability
in a finite state system can be decided in the time polynomial in the number of
states of this system.

This completes the proof of Theorem 2.

3.2 Deciding linearizability

The following theorem is the main result of the paper.

Theorem 3. The two method linearizability expression problem is decidable.

Proof. The proof is by reduction to reachability in method automata, which in
turn reduces (by Theorem 2 to reachability in a finite state system. We show how
linearizability of A1 ‖ A2 can be reduced to reachability in a method automaton
LinCheck(A1 ‖ A2). The automaton LinCheck(A1 ‖ A2) essentially simulates of
the parallel composition A1 ‖ A2, and both possible linearizations, A1 ; A2 and
A2 ; A1. LinCheck(A1 ‖ A2) reaches an error state if there is an unlinearizable
execution of A1 ‖ A2.

First, we use Theorem 1 to show that instead of simulating A1 ‖ A2 (resp.
A1 ; A2 and A2 ; A1), one can simulate the method automaton LS (A1 ‖ A2)
(resp. LS (A1 ; A2) and LS (A2 ; A1)).

Second, we show how LinCheck(A1 ‖ A2) can simulate the three method
automata LS (A1 ‖ A2), LS (A1 ; A2), LS (A2 ; A1)) on the same input heap
and reach an error state if there is an unlinearizable execution of LS (A1 ‖ A2).
The key idea is once again that the current pointers of the three automata can
advance in a lockstep manner. The reason is much simpler in this setting than
in the proof of Theorem 1 – here the three automata do not communicate at
all (the only reason we are simulating the three automata together is that they
run on the same input heap). LS (A1 ‖ A2) reaches an error state e.g. if it can
conclude that a particular position in the output list for LS (A1 ‖ A2) will be
different from that position in output lists of both LS (A1 ; A2) and LS (A2 ; A1).

We have reduced linearizability to reachability in method automata. We can
thus conclude by using Theorem 2.

Construction of LinCheck(A1 ‖ A2) Let us consider the expression E = A1 ‖ A2.
Let E1 and E2 be two expressions describing the two linearizations that are a
priori possible, i.e. E1 = A1 ; A2 and E2 = A2 ; A1. We consider three automata:
LS (E), LS (E1), and LS (E2).

Recall (from the proof of Theorem 1) that the set of states of the automaton
LS (E) is the product of sets Q1 and Q2 and QB , where Qi is the set of states of
Ai (for i = 1, 2), and QB allows storing necessary bookkeeping information. We
have that apart from the bookkeeping information, which is different in LS (E),
LS (E1), and LS (E2), the three automata carry the information about states of
A1 and A2.

We will construct a method automaton LinCheck(E) that simulates the three
automata LS (E), LS (E1), and LS (E2). LinCheck(E) reaches an error state if it
determines that one of the following conditions hold:

– after all three automata has finished processing the node at position t of
their list, the data at the node at position t in the list processed by LS (E)
is different from both the data in the list processed by LS (E1) and LS (E2)

– after all three automata has finished processing the list, at least one of the
value in the input/output nodes of LS (E) is different from both the corre-
sponding output value LS (E1) and LS (E2)

We now need to explain how the automaton LinCheck(E) can simulate the
three automata operating on three different lists. (Note that at the beginning,
the lists are the same. However, during the computation, they can be different.)
As LinCheck(E) processes the list, it keeps the data in the nodes pointed to by
the three simulated automata in dedicated data variables. The number of the
data variables is bounded - this is because of the following two facts: First, each
of the three automata has a bounded number of pointer variables. Second, the
current pointers can be kept close together (the difference in positions is at most
one), because the three automata do not communicate — there is no channel
through which they can exchange information. (We simulate them in parallel
only because they process the same list.)

The automaton LinCheck(E) needs to keep bookkeeping information about
the data variables representing the lists being processed by the three automata.
The amount of information is finite, and can be stored in the state of the au-
tomaton. We do not describe all the details, we mention only that that for each
position of the list pointed to by at least one of the three automata, the automa-
ton keeps track which automata point to it. After the last automaton leaves a
position, the automaton checks that the value left begin by LS (E) is the same
as either the value left behind by LS (E1) and the value left behind by LS (E2).
Once the automaton sees the difference in the output list between LS (E) and
one of LS (Ei), i ∈ {1, 2} it stops simulating LS (Ei). If both LS (E1) and LS (E2)
are stopped, the automaton enters an error state. The values in IO nodes are
similarly checked at the end of the execution.

Extension to general composition of method automata Let us consider
method expressions that compose a finite set of methods sequentially and in
parallel. Theorem 3 extends to this setting: it is decidable whether a method
expression is linearizable. Note that given a method expression E, the number
of automata LinCheck(E) simulates grows exponentially with the number of
methods in E, as LinCheck(E) simulates all possible linearizations of E.
Undecidable extensions The following theorem shows that the restriction
OW is necessary for decidability.

An UWMA is a method automaton where the OW restriction has been lifted.
(UWMA is an abbreviation for method automaton with unrestricted writes.)

Theorem 4. The two method linearizability problem is undecidable is undecid-
able for UWMAs.

Proof. The proof is based on reduction from concurrent reachability for UW-
MAs, which is undecidable. The main idea is that if a pair of states (q1, q2)) is
reachable, then the two automata will erase their work, thus making the execu-
tion linearizable. The fact that reachability is undecidable follows from Lemma 2.

The proof of this theorem also implies that if we lift the restrictions on
how the pointer variables are updated, the two method linearizability problem
becomes undecidable as well.

Let A1 and A2 be two UWMAs. Let q1 be a state of A1 and let q2 be
a state of A2. The concurrent reachability problem is to decide whether there
exist a well-formed method input (L, ionodes) such that in the transition system
TP (A1, A2, L, ionodes), a node where the state component is (q1, q2) is reachable.

Lemma 2. The concurrent reachability problem for UWMA is undecidable.

Proof. We reduce the halting problem of an arbitrary Turing machine M to
the concurrent reachability problem in a system (A1||A2), where A1 and A2

are UWMAs. The list on which (A1||A2) operates encodes a string in the ob-
vious way. The machine (A1||A2) accepts iff this string is of the form w =
b#w1#w2 . . .#wn, where b ∈ {1, 2}, the wi’s are successive configurations of
M; w1 and wn are respectively the initial and final configurations of M; and
each wi has the same length.

On an input list, the machines operate in parallel as follows. Both A1 and
A2 maintain lagging pointers to the first node in the list and read and write its
data. This node serves as a “shared-memory communication channel” between
A1 and A2. We refer to the fragments of the input list (viewed as strings) between
successive occurrences of # as epochs.

Initially, if the Σ-field of the first node of the list has the value b, then Ab
moves first (w.l.o.g., let this be A1). Now A1 iterates through the list until it
reaches the second epoch—in the process it checks that the first epoch represents
an initial configuration of M. At this point, it is the turn of A2 to move. From
now on, A1 and A2 take turns in reading the list one symbol at a time and
comparing the symbols read in corresponding turns (communication is performed
through the shared channel, which also stores a bit that determines whether it
is currently the turn of A1 or A2). It is easy to see that if A1 and A2 finish
reading the epochs w1 and w2 in corresponding turns, then they can check that
these are successive configurations of M. If they are not, A1 changes state to
an error state. At any point, the control state of A1 is q if the last epoch of M
that it read completely represents an accepting configuration. This completes
the reduction.

4 Experimental Evaluation

4.1 Examples

This section presents a range of concurrent set algorithms. They all share the
basic idea that a set is implemented as a linked list. The main difference comes
from the synchronization style they use. The interface the concurrent set provides
consists of three methods: contains, add, and remove. The algorithms that we
analyze represent a set as a linked list whose nodes are sorted by their keys
(the sortedness property enables efficient detection of an absence of a key). Each

key occurs at most once in the set. The list contains two sentinel nodes, head
and tail, which are never removed, added, or searched for, and their keys have
minimum and maximum possible values.

The examples differ in the synchronization techniques they use. The tech-
niques used include fine-grained locking, optimistic synchronization, lazy syn-
chronization, and lock-free synchronization:

– A natural approach to synchronization in concurrent lists is fine-grained
locking, where each vertex of the list is locked separately. For operations
such as insertion or deletion of nodes into a list, locking a single vertex at
a time is not sufficient. Therefore we use “hand-over-hand” locking, where
during the traversal, a node is unlocked only after its successor is locked. At
the point in the list where insertion or deletion is to be performed, the two
successive locked nodes are kept locked.

– A problem with fine-grained locking is that threads that modify disjoint
parts of the list can still block each other. Optimistic synchronization is an
attempt to remedy the problem. Here, threads do not acquire locks as they
traverse the list. Instead, when a thread locates (and locks) the part of the
list which it wants to modify, the thread needs to re-traverse the list to
make sure the locked nodes are still reachable from the head of the list. The
re-traversal is called the validation phase.

– The lazy synchronization algorithm improves the optimistic one in two main
aspects. First, the methods do not need re-traversal. Second, contains (com-
monly thought to be the most used method), do not use locks anymore. The
most significant change to the synchronization is that the deleted nodes are
marked.

– A method is called lock-free if a delay in one thread executing the method
cannot delay other threads executing the method. If a method uses locks, it
is not lock-free. It is possible to make all methods of the set data structure
lock-free using the compareAndSet primitive. For example, we can write
a lock-free algorithm for deletion of set elements where the only atomic
primitive is one that, in one atomic step, rewires the outgoing pointer from
a node and marks the deleted nodes. This primitive can be implemented by
the compareAndSet operation in Java.

4.2 Implementation

The CoLT tool chain can be seen in Figure 3. The input to the tool is a Java file
and two method names. The methods in the Java file are parsed into method
automata. The second tool in the toolchain is a lockstep scheduler. It takes the
two method names and the corresponding method automata, and produces a
finite-state model using the (simplified) construction from the proof of Theo-
rem 3. The finite state model is then checked by the SPIN [11] model checker.
If SPIN returns false, it also returns a counterexample trace that describes the
execution that is not linearizable. CoLT then returns a visual representation of
the trace for inspection by the programmer.

parser
scheduler

Java Lockstep Promela Spin

Yes

No
(counterexample)

names
Two method

MA

MA

MA

Fig. 3. CoLT Toolchain

In the rest of this subsection, we summarize the main issues in translating the
Java implementations of concurrent data set algorithms to method automata.
Encoding Java Concurrency primitives We have seen in Section 2 how
locks can be encoded. Here we explain in more detail about the non-blocking
primitives. The Java Concurrency library includes a class called
AtomicMarkableReference which implements compareAndSet and attemptMark
operations. The class has a reference field (call it rf) and a mark field (call it
mf). The method public boolean compareAndSet(T expectedReference, T
newReference, boolean expectedMark, boolean newMark) tests whether rf
is equal to expectedReference and mf is equal to expectedMark, and if it is so,
sets these fields to respectively newReference and newMark. The method public
boolean attemptMark(T expectedReference, boolean newMark) tests whether
rf is equal to expectedReference, and if it is so, sets the mf field to newMark.

Note that it is the next pointer of a vertex that is implemented using
AtomicMarkableReference. In our model of concurrent data lists, this is mod-
eled using the source vertex of the pointer (recall that every vertex has at most
one outgoing pointer). The method compareAndSet is modeled by the follow-
ing transition tuple: (q,flag(p) = expectedMark and p = expectedReference,
(flag(p) = newMark; p = newReference, q′)).
Implementation assumptions

In order to simplify the implementation, we made several assumptions on
the programs that are handled. That is, we implement only a simplified version
of the construction from the proof of Theorem 3, as the full consuction is not
needed for the concurrent set implementations.

– Phases approach We implemented only a simplified version of the construc-
tion from the proof of Theorem 3. It relies on the fact that all the examples
we considered work in two phases: in the first phase, a list is traversed with-
out modification (or with limited modification in the case of the lock-free
algorithm) and in the second phase, the list is modified “arbitrarily”. This
simplifies the implementation by reducing the amount of nondeterministic
guessing that is necessary, but relies on annotations to identify the phases.
In more detail: we can exploit some information about the general structure
of the algorithms. First, the algorithm traverse the list, looking for the part
that needs to be modified (find phase). Then the required modifications are
made (modify phase). We observed that during the find phase, the method
automaton do not change the list structure. It might lock/unlock nodes,

but the next field is never changed. The automaton simply traverse the list.
During the modify phase the automaton do not move anymore, but performs
modifications on the list. This additional knowledge can be used to simplify
the analysis. During the lockstep construction the algorithm has to guess
what will happen. In practice it means that the model checker needs to do a
case split. Knowing in which phase is the algorithm allows us to dramatically
reduce the number of guesses we have to make.
Optimistic algorithms have a further validate phase between the find and
modify phase, while other algorithm can also retry (i.e. restart from the
beginning).

– CoLT currently assumes that at the start of execution of the two programs,
the list is sorted. This is standard assumption for concurrent set implemen-
tations [9].

– CoLT currently assumes that the data value in a node is not changed. Note
that this holds for concurrent set implementations — these insert and delete
nodes, but do not change their values.

Validate Method automaton can only traverse the list monotonically from
left to right. The optimistic algorithm described above traverses the list twice,
once to find the required node and lock it and the second time to validate that
the locked node is still accessible from the head of the list. We implemented
a heuristic to extend the scope of our tool to cover the optimistic algorithm.
For this heuristic, we require annotations in the code that mark the first and
the second traversal. Given these annotations, the tool can decompose each
method to two method automata, one that finds and locks the node and one
for validation. A construction similar to sequential composition of these two
automata is then used to model an optimistic method.
Retry The core traversal of fine-grained, lazy and lock-free algorithms satisfies
the restriction of traversing the list monotonically from left to right. The only
caveat is that in many cases, when an operation such as insertion or deletion
fails, the method aborts and “retries” by setting all pointers to the start vertex,
and our restriction rules out such a retry. We emphasize that the retry behavior
is very different from the validate behavior of the optimistic algorithm. The
aborted executions in the case of fine-grained, optimistic, and lazy method, have
no effect on the heap. In the case of the lock-free method, the effect of the aborted
execution is limited and simply defined. We implemented a simple heuristic
to deal with retry behavior. The heuristic produces a method automaton that
behaves as follows: whenever such a retry would occur execution is not simulated
further. One can easily prove for all algorithms we have considered that if the
parallel composition of method automata constructed in this way is linearizable,
so are the original method. Similarly, an unlinearizable execution of parallel
composition of method automata constructed in this way corresponds to an
unlinearizable execution of the original methods.
Linearization points Our tool enables programmers to specify linearization
points. Specifying them is not necessary, but leads to reduction of the search

public boolean add(T item) {
... //initialisation
pred.lock();
try {

Node curr = pred.next;
L1: curr.lock();
try {

while (curr.key < key) {
pred.unlock();
pred = curr;
curr = curr.next;
L2: curr.lock();

}
stage = modify; ////
if (curr.key == node.key)

return false;
... //actually add the node
return true;

} finally { curr.unlock(); }
} finally { pred.unlock(); }

}

The method add linearizes when it reaches:

– L1 iff curr.key >= key

– L2 iff curr.key >= key

If curr.key > key then item is added be-
tween pred and curr. The locking prevents
any other method to interfere with the pro-
cess.
If curr.key == key item is already present
in the set and the method returns.

Fig. 4. Linearization points of the method add (fine-grained locking)

space, and thus to improving memory consumption and running time of the
experiments.

We take advantage of linearization points [10]. A linearization point for some
method is an instant between its invocation and its response where the effect
seems to occur atomically.

Given an complete history H, where each method call has a linearization
point, an equivalent sequential history H ′ can be constructed using the lineariza-
tion points ordering. Fortunately, there are methods which linearization point
depends only on the current method’s state and the list. However, there also are
methods with more complicated linearization points, or where the linearization
point is not even the method itself.

Let consider the add method in the fine-grained locking implementation of
sets as linked lists [9, Chapter 9.5]. Assuming that all the other methods that
traverse the lists use the same synchronization scheme, we can infer the lineariza-
tion points presented in Figure 4.

Suppose we are given two methods A1, A2 with their linearization points L1,
L2. We want to prove that all histories are linearizable. We divide the histories
into those where L1 happens before L2 and those where L2 happens before L1.
By the definition above, When L1 precedes L2 in history H, there is a sequential
execution of A1;A2 which is equivalent to H. More formally: for all histories h,
h is linearizable is equivalent to for all histories h, we have that (if L1 precedes
L2 in h, then h is equivalent to a history of A1;A2) and (if L2 precedes L1 in
h, then h is equivalent to a history of A2;A1).

In practice we check two smaller systems for linearizability: First, we simulate
A1 ‖ A2 with only A1;A2 and we force L1 to happen before L2. Then, we
simulate A1 ‖ A2 with A1;A2 and L1 before L2. If one of the two test fails. This
analysis is sound, even if the linearization points are incorrect. However the

completeness rely on the correctness of the linearization points. Given incorrect
points the analysis might says that correct methods are not linearizable.

The benefit of this construction is that we need to simulate only two R2MAs
at the same time instead of three. The gains in term of memory consumption
(and time) are substantial. With the help of this technique we have been able
to prove the correctness of instances that previously ran out of memory.

To force L2 to happen after L1 we simply tell the model checker to discard
the runs when L2 occurs before L1. We must be careful not to discard too
many runs because of our lockstep setting. The problem arises when A2 cannot
move without linearizing, but A1 needs to move ahead to linearize and the
lockstep construction prevents them from being separated. The solution comes
from another observation about the algorithms. All the methods we analyze stop
traversing the list when they reach their linearization point. We use this fact to
let A1 proceed without lockstep. Since A2 stops, we do not need to remember
the node between the two automaton.
Manual processing

In the current prototype version, the following simple processing is done
manually.

– Some of the methods we considered take an integer value as parameter and
create a node with these data value. Since our model of method automata
does not support node creation, we replaced this by passing a node as a
parameter. Note that this transformation can be easily automatized.

– In some methods, a command where the reference to next field appears
on both sides (e.g. prev.next = curr.next) was replaced by two simpler
commands aux = curr.next; prev.next = aux. This will be corrected in
a future version of CoLT .

4.3 Experiments

We evaluated the tool on the fine-grained, optimistic, lazy, and lock-free im-
plementations of the concurrent set data structure. The Java source code was
taken from the companion website to [9]. All the experiments were performed
on a server with an 1.86GHz Intel Xeon processor (with 8 cores) and 32GB of
RAM.

The results of the experiments are presented in Table 1. Here, the first column
lists the analyzed algorithm, the second column names the analyzed parallel
composition of methods, the third column contains the number of lines of code
and the number of pointer variables of the first method, and the fourth column
gives the same information for the second method. The fifth column indicates
whether linearization points were used. The sixth column lists the maximum
depth reached in the exploration of the finite state graph. The seventh and eight
columns indicate the memory and time consumption. The ninth column indicates
whether the method expression was linearizable.

First, to evaluate our analysis on implementations of fine-grained locking
algorithms, we ran the remove method in parallel first with the contains method,

Algorithm Methods M1 M2 Lin. Depth Mem Time Res
loc/pts loc/pts points (MB) (s)

Fine-grained remove ‖ contains 29/2 23/2 No 157 10.2 0.85 Yes
Fine-grained remove ‖ remove 29/2 29/2 No 141 8.3 0.46 Yes
Fine-grained remove ‖ add 29/2 26/2 No 303 18.1 2.4 Yes

Optimistic add ‖ remove 40/3 38/3 No 110 37.6 5.86 Yes
Optimistic contains ‖ contains 30/3 30/3 No 150 37.6 6.9 Yes
Optimistic remove ‖ remove 38/3 38/3 No 130 36.2 6.35 Yes

Lazy remove ‖ remove 36/3 36/3 No 164 20.1 2.68 Yes
Lazy remove ‖ add 36/3 34/3 No 164 26.3 3.51 Yes
Lazy contains ‖ remove 36/3 6/1 No 136 13.2 1.28 Yes
Lazy remove1 ‖ add1 36/3 34/3 No 137 24.2 3.17 No
Lazy remove2 ‖ remove2 34/3 34/3 No 143 17.9 2.18 No

Lock-free contains ‖ contains 9/2 9/2 No 98 6.4 0.25 Yes
Lock-free remove ‖ remove 34/3 34/3 Yes 95 77.6 8.08 No
Lock-free remCorr ‖ remCorr 34/3 34/3 Yes 268 1908.3 605 Yes
Lock-free add ‖ remCorr 35/3 34/3 No ? out ? ?
Lock-free add ‖ remCorr 35/3 34/3 Yes 267 1550.3 577 Yes
Lock-free add ‖ contains 35/3 9/2 No 400 18984.1 5700 Yes

Table 1. Experimental results

second with itself, and third with the add method. The memory consumption
was under 20MB and the running time under 3s in all cases.

Second, we analyzed the optimistic implementations. The Java file was an-
notated to enable using the heuristic defined in the previous subsection. CoLT
validates the optimistic implementations in under 40MB of memory for every
case. While implementing the heuristic, some of the basic components of the
tool were rewritten to be more efficient; hence, the time and memory consump-
tion of these results are not directly comparable with the other algorithms.

Third, we analyzed lazy-synchronization implementations. The tool CoLT
verified linearizability in the same three cases as in the Fine-grained Locking
algorithm. We used the tool to analyze modifications of the add and remove
methods suggested as exercises in [9]. One exercise suggests simplification of
the validation check (methods remove1 and add1), the other asks not using one
of the locks (method remove2). We used the tool on parallel composition of
remove1 and add1, and on parallel composition of remove2 with itself. In both
cases, CoLT reported these compositions to not be linearizable and produced
counterexamples. The visual representations of the counterexamples are available
on the tool’s website [5]. Note that for both fine-grained and lazy synchronization
algorithm, we did not need linearization points, as the running times and memory
consumption were within reasonable bounds.

Fourth, we considered lock-free implementations of concurrent set algorithms.
The tool verified linearizability of parallel composition of the contains method
with itself. CoLT also found that the parallel composition of remove with itself

is not linearizable. This is a known bug, reflected in the online errata for [9]. The
the counterexample is available online [5]. We then corrected the bug accord-
ing to the errata (method removeCorr —short for removeCorrected). The tool
showed that in this case, the parallel composition of remove with itself is lineariz-
able. We observe that the memory usage in this example is more substantial,
for example for the parallel composition of the corrected remove method with
the add method, the tool needs 2GB of memory, even when the linearization are
provided. The tool runs out of memory if linearization points are not provided.
The reasons for increased memory consumption of the Lock-free algorithm com-
pared to the other two algorithms are that the Lock-free algorithm has an inner
loop and the input list can contain nodes marked for deletion, thus increasing
the search space for analysis.

5 Conclusion

Summarizing, the main contributions of the paper are two-fold: first, we prove
that linearizability is decidable for a model that captures many published concur-
rent list implementations, and second, we showed that the approach is practical
by applying the tool to a representative sample of Java methods implementing
concurrent data sets.

References

1. P. Abdulla, M. Atto, J. Cederberg, and R. Ji. Automated analysis of data-
dependent programs with dynamic memory. In ATVA, pages 197–212, 2009.

2. R. Alur, P. Černý, and S. Weinstein. Algorithmic analysis of array-accessing pro-
grams. In CSL, pages 86–101, 2009.

3. M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In LICS, pages 7–16, 2006.

4. S. Burckhardt, R. Alur, and M. Martin. Checkfence: checking consistency of con-
current data types on relaxed memory models. In PLDI, pages 12–21, 2007.

5. P. Černý, A. Radhakrishna, D. Zufferey, S. Chaudhuri, and R. Alur. CoLT website.
http://www.ist.ac.at/∼cernyp/colt.

6. R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal verification of a lazy
concurrent list-based set algorithm. In CAV, 2006.

7. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a prac-
tical lock-free queue algorithm. In FORTE, 2004.

8. T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In POPL, pages
2–15, 2009.

9. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Elsevier Inc.,
2008.

10. M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

11. G. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

12. D. Lea. The java.util.concurrent synchronizer framework. In CSJP, 2004.

13. M. Michael and M. Scott. Correction of a memory management method for lock-
free data structures. Technical Report TR599, University of Rochester, 1995.

14. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Logic, 5(3):403–435, 2004.

15. M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a non-blocking
stack. In POPL, 2007.

16. V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-
concurrent linearisable objects. In PPOPP, pages 129–136, 2006.

17. E. Yahav and M. Sagiv. Automatically verifying concurrent queue algorithms.
Electr. Notes Theor. Comput. Sci., 89(3), 2003.

