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The Complexity of Ergodic Games∗

Krishnendu Chatterjee† Rasmus Ibsen-Jensen‡

Abstract

We study finite-state two-player (zero-sum) concurrent mean-payoff games played on a graph. We
focus on the important sub-class of ergodic games where all states are visited infinitely often with prob-
ability 1. The algorithmic study of ergodic games was initiated in a seminal work of Hoffman and Karp
in 1966, but all basic complexity questions have remained unresolved. Our main results for ergodic
games are as follows: We establish (1) an optimal exponential bound on the patience of stationary strate-
gies (where patience of a distribution is the inverse of the smallest positive probability and represents
a complexity measure of a stationary strategy); (2) the approximation problem lie in FNP; (3) the ap-
proximation problem is at least as hard as the decision problem for simple stochastic games (for which
NP ∩ coNP is the long-standing best known bound). We show that the exact value can be expressed
in the existential theory of the reals, and also establish square-root sum hardness for a related class of
games.

Keywords: Concurrent games; Mean-payoff objectives; Ergodic games; Approximation complexity.

1 Introduction

Concurrent games. Concurrent games are played over finite-state graphs by two players (Player 1 and
Player 2) for an infinite number of rounds. In every round, both players simultaneously choose moves (or
actions), and the current state and the joint moves determine a probability distribution over the successor
states. The outcome of the game (or a play) is an infinite sequence of states and action pairs. Concurrent
games were introduced in a seminal work by Shapley [29], and they are the most well-studied game models
in stochastic graph games, with many important special cases.

Mean-payoff (limit-average) objectives. The most fundamental objective for concurrent games is the limit-
average (or mean-payoff) objective, where a reward is associated to every transition and the payoff of a play
is the limit-inferior (or limit-superior) average of the rewards of the play. The original work of Shapley [29]
considered discounted sum objectives (or games that stop with probability 1); and the class of concurrent
games with limit-average objectives (or games that have zero stop probabilities) was introduced by Gillette
in [17]. The Player-1 value val(s) of the game at a state s is the supremum value of the expectation that
Player 1 can guarantee for the limit-average objective against all strategies of Player 2. The games are
∗The first author was supported by FWF Grant No P 23499-N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant

(279307: Graph Games), and Microsoft faculty fellows award. Work of the second author supported by the Sino-Danish Center for
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zero-sum, so the objective of Player 2 is the opposite. The study of concurrent mean-payoff games and
its sub-classes have received huge attention over the last decades, both for mathematical results as well as
algorithmic studies. Some key celebrated results are as follows: (1) the existence of values (or determinacy
or equivalence of switching of strategy quantifiers for the players as in von-Neumann’s min-max theorem)
for concurrent discounted games was established in [29]; (2) the result of Blackwell-Ferguson established
existence of values for the celebrated game of Big-Match [5]; and (3) developing on the results of [5]
and Bewley-Kohlberg on Puisuex series [4] the existence of values for concurrent mean-payoff games was
established by Mertens-Neyman [26].

Sub-classes. The general class of concurrent mean-payoff games is notoriously difficult for algorithmic
analysis. The current best known solution for general concurrent mean-payoff games is achieved by a
reduction to the theory of the reals over addition and multiplication with three quantifier alternations [7]
(also see [19] for a better reduction for constant state spaces). The strategies that are required in general
for concurrent mean-payoff games are infinite-memory strategies that depend in a complex way on the
history of the game [26, 5], and analysis of such strategies make the algorithmic study complicated. Hence
several sub-classes of concurrent mean-payoff games have been studied algorithmically both in terms of
restrictions of the graph structure and restrictions of the objective. The three prominent restrictions in
terms of the graph structure are as follows: (1) Ergodic games (aka irreducible games) where every state
is visited infinitely often almost-surely. (2) Turn-based stochastic games, where in each state at most one
player can choose between multiple moves. (3) Deterministic games, where the transition functions are
deterministic. The most well-studied restriction in terms of objective is the reachability objectives. A
reachability objective consists of a set U of terminal states (absorbing or sink states that are states with only
self-loops), and the set U is exactly the set of states where out-going transitions are assigned reward 1 and all
other transitions are assigned reward 0. For all these sub-classes, except deterministic mean-payoff games
(that is ergodic mean-payoff games, concurrent reachability games, and turn-based stochastic mean-payoff
games) stationary strategies are sufficient, where a stationary strategy is independent of the past history of
the game and depends only on the current state.

Previous results. The decision problem of whether the value of the game at a state is at least a given thresh-
old for turn-based stochastic reachability games (and also turn-based mean-payoff games with deterministic
transition function) lie in NP∩coNP [8, 32]. They are among the rare and intriguing combinatorial problems
that lie in NP∩ coNP, but not known to be in PTIME. The existence of polynomial-time algorithms for the
above decision questions are long-standing open problems. The algorithmic solution for turn-based games
that is most efficient in practice is the strategy iteration algorithm, where the algorithm iterates over local
improvement of strategies which is then established to converge to a globally optimal strategy. For ergodic
games, Hoffman and Karp [21] presented a strategy iteration algorithm and also established that stationary
strategies are sufficient for such games. For concurrent reachability games, again stationary strategies are
sufficient (for ε-optimal strategies, for all ε > 0) [12, 9]; the decision problem is in PSPACE and square-
root sum hard [10].1

Key intriguing complexity questions. There are several key intriguing open questions related to the com-
plexity of the various sub-classes of concurrent mean-payoff games. Some of them are as follows: (1) Does
there exist a sub-class of concurrent games where the approximation problem is simpler than the exact de-
cision problem, e.g., the decision problem is square-root sum hard, but the approximation problem can be
solved in FNP? (2) There is no convergence result associated with the Hoffman-Karp algorithm for ergodic

1The square-root sum problem is an important problem from computational geometry, where given a set of natural numbers
n1, n2, . . . , nk, the question is whether the sum of the square roots exceed an integer b. The square root sum problem is not known
to be in NP.
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games; and is it possible to establish a convergence for a strategy iteration algorithm for approximating the
values of ergodic games. (3) The complexity of a stationary strategy is described by its patience which is
the inverse of the minimum non-zero probability assigned to a move [12], and there is no bound known for
the patience of stationary strategies for ergodic games.
Our results. The study of the ergodic games was initiated in the seminal work of Hoffman and Karp [21],
and most of the complexity questions (related to computational, strategy, and algorithmic complexity) have
remained open. In this work we focus on the complexity of simple generalizations of ergodic games (that
will subsume ergodic games). Ergodic games form a very important sub-class of concurrent games sub-
suming the special cases of uni-chain Markov decision processes and uni-chain turn-based stochastic games
(that have been studied in great depth in the literature with numerous applications, see [15, 27]). We con-
sider generalizations of ergodic games called sure ergodic games where all plays are guaranteed to reach an
ergodic component (a sub-game that is ergodic); and almost-sure ergodic games where with probability 1 an
ergodic component is reached. Every ergodic game is sure ergodic, and every sure ergodic game is almost-
sure ergodic. Intuitively the generalizations allow to consider that after a finite prefix an ergodic component
is reached.

1. (Strategy and approximation complexity). We show that for almost-sure ergodic games the optimal
bound on patience required for ε-optimal stationary strategies, for ε > 0, is exponential (we establish
the upper bound for almost-sure ergodic games, and the lower bound for ergodic games). We then
show that the approximation problem for turn-based stochastic ergodic mean-payoff games is at least
as hard as solving the decision problem for turn-based stochastic reachability games (aka simple
stochastic games); and finally show that the approximation problem belongs to FNP for almost-sure
ergodic games. Observe that our results imply that improving our FNP-bound for the approximation
problem to polynomial time would require solving the long-standing open question of whether the
decision problem of turn-based stochastic reachability games can be solved in polynomial time.

2. (Algorithm). We present a variant of the Hoffman-Karp algorithm and show that for all ε-
approximation (for ε > 0) our algorithm converges with in exponential number of iterations for
almost-sure ergodic games. Again our result is optimal, since even for turn-based stochastic reacha-
bility games the strategy iteration algorithms require exponential iterations [16, 13].

3. (Exact complexity). We show that the exact decision problem for almost-sure ergodic games can be
expressed in the existential theory of the reals (in contrast to general concurrent mean-payoff games
where quantifier alternations are required). Finally, we show that the exact decision problem for sure
ergodic games is square-root sum hard.

Technical contribution and remarks. Our main result is establishing the optimal bound of exponential
patience for ε-optimal stationary strategies, for ε > 0, in almost-sure ergodic games. Our result is in sharp
contrast to the optimal bound of double-exponential patience for concurrent reachability games [20], and
also the double-exponential iterations required by the strategy iteration algorithm for concurrent reachability
games [18]. Our upper bound on the exponential patience is achieved by a coupling argument. While
coupling argument is a well-established tool in probability theory, to the best of our knowledge the argument
has not been used for concurrent mean-payoff games before. Our lower bound example constructs a family
of ergodic mean-payoff games where exponential patience is required. Our results provide a complete
picture for almost-sure and sure ergodic games (subsuming ergodic games) in terms of strategy complexity,
computational complexity, and algorithmic complexity; and present answers to some of the key intriguing
open questions related to the computational complexity of concurrent mean-payoff games.
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Comparison with results for Shapley games. For Shapley (concurrent discounted) games the fact that the
approximation problem is in FNP is straight-forward to prove; and the more interesting and challenging
question is whether the approximation problem can be solved in PPAD. The PPAD complexity for the
approximation problem for Shapley games was established in [11]; and the PPAD complexity arguments use
the existence of unique (Banach) fixpoint (due to contraction mapping) and the fact that weak approximation
implies strong approximation. A PPAD complexity result for the class of ergodic games (in particular,
whether weak approximation implies strong approximation) is a subject for future work.

2 Definitions

In this section we present the definitions of game structures, strategies, mean-payoff function, values, and
other basic notions.

Probability distributions. For a finite set A, a probability distribution on A is a function δ : A → [0, 1]
such that

∑
a∈A δ(a) = 1. We denote the set of probability distributions onA byD(A). Given a distribution

δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the support of the distribution δ. We denote by
r the number of random states where the transition function is not deterministic, i.e., r = |{s ∈ S | ∃a1 ∈
Γ1(s), a2 ∈ Γ2(s).|Supp(δ(s, a1, a2))| ≥ 2}|.
Concurrent game structures. A concurrent stochastic game structure G = (S,A,Γ1,Γ2, δ) has the fol-
lowing components.
• A finite state space S and a finite set A of actions (or moves).
• Two move assignments Γ1,Γ2 : S → 2A \ ∅. For i ∈ {1, 2}, assignment Γi associates with each state
s ∈ S the non-empty set Γi(s) ⊆ A of moves available to Player i at state s.
• A probabilistic transition function δ : S×A×A→ D(S), which associates with every state s ∈ S and

moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), a probability distribution δ(s, a1, a2) ∈ D(S) for the successor
state.

We will denote by δmin the minimum non-zero transition probability, i.e., δmin =
mins,t∈S mina1∈Γ1(s),a2∈Γ2(s){δ(s, a1, a2)(t) | δ(s, a1, a2)(t) > 0}. We will denote by n the num-
ber of states (i.e., n = |S|), and by m the maximal number of actions available for a player at a state (i.e.,
m = maxs∈S max{|Γ1(s)|, |Γ2(s)|}). We denote by r the number of random states where the transition
function is not deterministic, i.e., r = |{s ∈ S | ∃a1 ∈ Γ1(s), a2 ∈ Γ2(s).|Supp(δ(s, a1, a2))| ≥ 2}|.

Plays. At every state s ∈ S, Player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and inde-
pendently Player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the successor state t
with probability δ(s, a1, a2)(t), for all t ∈ S. A path or a play of G is an infinite sequence π =(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), (s2, a

2
1, a

2
2) . . .

)
of states and action pairs such that for all k ≥ 0 we have

(i) ak1 ∈ Γ1(sk) and ak2 ∈ Γ2(sk); and (ii) sk+1 ∈ Supp(δ(sk, a
k
1, a

k
2)). We denote by Π the set of all

paths.

Strategies. A strategy for a player is a recipe that describes how to extend prefixes of a play. Formally, a
strategy for Player i ∈ {1, 2} is a mapping σi : (S × A × A)∗ × S → D(A) that associates with every
finite sequence x ∈ (S × A × A)∗ of state and action pairs, and the current state s in S, representing the
past history of the game, a probability distribution σi(x · s) used to select the next move. The strategy σi
can prescribe only moves that are available to Player i; that is, for all sequences x ∈ (S × A × A)∗ and
states s ∈ S, we require that Supp(σi(x · s)) ⊆ Γi(s). We denote by Σi the set of all strategies for Player
i ∈ {1, 2}. Once the starting state s and the strategies σ1 and σ2 for the two players have been chosen,
then we have a random walk πσ1,σ2s for which the probabilities of events are uniquely defined [31], where an
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eventA ⊆ Π is a measurable set of paths. For an eventA ⊆ Π, we denote by Prσ1,σ2s (A) the probability that
a path belongs to A when the game starts from s and the players use the strategies σ1 and σ2; and denote
Eσ1,σ2s [·] as the associated expectation measure. We will consider in particular stationary and positional
strategies. A strategy σi is stationary (or memoryless) if it is independent of the history but only depends
on the current state, i.e., for all x, x′ ∈ (S × A × A)∗ and all s ∈ S, we have σi(x · s) = σi(x

′ · s),
and thus can be expressed as a function σi : S → D(A). For stationary strategies, the complexity of
the strategy is described by the patience of the strategy, which is the inverse of the minimum non-zero
probability assigned to an action [12]. Formally, for a stationary strategy σi : S → D(A) for Player i, the
patience is maxs∈S maxa∈Γi(s){

1
σi(s)(a) | σi(s)(a) > 0}. A strategy is pure (deterministic) if it does not use

randomization, i.e., for any history there is always some unique action a that is played with probability 1.
A pure stationary strategy σi is also called a positional strategy, and represented as a function σi : S → A.
We call a pair of strategies (σ1, σ2) ∈ Σ1 × Σ2 a strategy profile.
The mean-payoff function. In this work we will consider limit-average (or mean-payoff) functions.
We will consider concurrent games with a reward function R : S × A × A → [0, 1] that assigns
a reward value 0 ≤ R(s, a1, a2) ≤ 1 for all s ∈ S, a1 ∈ Γ1(s), and a2 ∈ Γ2(s). For a path
π =

(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
, the limit-inferior average (resp. limit-superior average) is defined as

follows: LimInfAvg(π) = lim infn→∞
1
n ·
∑n−1

i=0 R(si, a
i
1, a

i
2) (resp. LimSupAvg(π) = lim supn→∞

1
n ·∑n−1

i=0 R(si, a
i
1, a

i
2)). For brevity we will denote concurrent games with mean-payoff functions as CMPGs

(concurrent mean-payoff games).
Values and ε-optimal strategies. Given a CMPG G and a reward function R, the lower value vs (resp. the
upper value vs) at a state s is defined as follows:

vs = sup
σ1∈Σ1

inf
σ2∈Σ2

Eσ1,σ2s [LimInfAvg]; vs = inf
σ2∈Σ2

sup
σ1∈Σ1

Eσ1,σ2s [LimSupAvg].

The celebrated result of Mertens and Neyman [26] shows that the upper and lower value coincide and
gives the value of the game denoted as vs. For ε ≥ 0, a strategy σ1 for Player 1 is ε-optimal if we have
vs − ε ≤ infσ2∈Σ2 E

σ1,σ2
s [LimInfAvg]. An optimal strategy is a 0-optimal strategy.

Game classes. We consider the following special classes of CMPGs.

1. Variants of ergodic CMPGs. Given a CMPG G, a set C of states in G is called an ergodic component,
if for all states s, t ∈ C, for all strategy profiles (σ1, σ2), if we start at s, then t is visited infinitely
often with probability 1 in the random walk πσ1,σ2s . A CMPG is ergodic if the set S of states is an
ergodic component. A CMPG is sure ergodic if for all strategy profiles (σ1, σ2) and for all start states
s, ergodic components are reached certainly (all plays reach some ergodic component). A CMPG is
almost-sure ergodic if for all strategy profiles (σ1, σ2) and for all start states s, ergodic components
are reached with probability 1. Observe that every ergodic CMPG is also a sure ergodic CMPG, and
every sure ergodic CMPG is also an almost-sure ergodic CMPG.

2. Turn-based stochastic games, MDPs and SSGs. A game structure G is turn-based stochastic if at
every state at most one player can choose among multiple moves; that is, for every state s ∈ S there
exists at most one i ∈ {1, 2} with |Γi(s)| > 1. A game structure is a Player-2 Markov decision
process (MDP) if for all s ∈ S we have |Γ1(s)| = 1, i.e., only Player 2 has choice of actions in
the game, and Player-1 MDPs are defined analogously. A simple stochastic game (SSG) [8] is an
almost-sure ergodic turn-based stochastic game with two ergodic components, where both the ergodic
components (called terminal states) are a single absorbing state (an absorbing state has only a self-
loop transition); one terminal state (>) has reward 1 and the other terminal state (⊥) has reward 0;
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and all positive transition probabilities are either 1
2 or 1. The almost-sure reachability property to the

ergodic components for SSGs is referred to as the stopping property [8].

Remark 1. The results of Hoffman and Karp [21] established that for ergodic CMPGs optimal stationary
strategies exist (for both players). Moreover, for an ergodic CMPG the value for every state is the same,
which is called the value of the game. We argue that the result for existence of optimal stationary strategies
also extends to almost-sure ergodic CMPGs. Consider an almost-sure ergodic CMPG G. Notice first that
in the ergodic components, there exist optimal stationary strategies, as shown by Hoffman and Karp [21].
Notice also that we eventually will reach some ergodic component, with probability 1 after a finite number
of steps and therefore that we can ignore the rewards we get while doing so (since mean-payoff functions
are independent of finite prefixes). Hence, we get an almost-sure reachability game, in the states which are
not in the ergodic components, by considering any ergodic component C to be a terminal with reward equal
to the value of C. In such games it is easy to see that there exist optimal stationary strategies.

Value and the approximation problem. Given a CMPG G, a state s of G, and a rational threshold λ, the
value problem is the decision problem that asks whether vs is at most λ. Given a CMPG G, a state s of G,
and a tolerance ε > 0, the approximation problem asks to compute an interval of length ε such that the value
vs lies in the interval. We will present the formal definition of the decision version of the approximation
problem in Section 3.3. In the following sections we will consider the value problem and the approximation
problem for almost-sure ergodic, sure ergodic, and ergodic games.

3 Complexity of Approximation for Almost-sure Ergodic Games

In this section we will present three results for almost-sure ergodic games: (1) First we establish (in Sec-
tion 3.1) an optimal exponential bound on the patience of ε-optimal stationary strategies, for all ε > 0.
(2) Second we show (in Section 3.2) that the approximation problem (even for turn-based stochastic ergodic
mean-payoff games) is at least as hard as solving the value problem for SSGs. (3) Finally, we show (in
Section 3.3) that the approximation problem lies in FNP.

3.1 Strategy complexity

In this section we will present results related to ε-optimal stationary strategies for almost-sure ergodic
CMPGs, that on one hand will establish an optimal exponential bound for patience, and on the other hand
will be used to establish the complexity of approximation of values in the following subsection. The re-
sults of this section will also be used in the algorithmic analysis in Section 4. We start with the notion of
q-rounded strategies.

The classes of q-rounded distributions and strategies. For q ∈ N, a distribution d over a finite set Z is a
q-rounded distribution if for all z ∈ Z we have that d(z) = p

q for some number p ∈ N. A stationary strategy
σ is a q-rounded strategy, if for all states s the distribution σ(s) is a q-rounded distribution.

Patience. Observe that the patience of a q-rounded strategy is at most q. We will show that for almost-sure
ergodic CMPGs for all ε > 0 there are q-rounded ε-optimal strategies, where q is as follows:⌈

4 · ε−1 ·m · n2 · (δmin)−r
⌉
.

This will immediately imply an exponential upper bound on the patience. We start with a lemma related to
the probability of reaching states that are guaranteed to be reached with positive probability.
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Lemma 2. Given a CMPG G, let s be a state in G, and T be a set of states such that for all strategy profiles
the set T is reachable (with positive probability) from s. For all strategy profiles the probability to reach T
from s in n steps is at least (δmin)r (where r is the number of random states).

Proof. The basic idea of the proof is to consider a turn-based deterministic game where one player is
Player 1 and Player 2 combined, and the opponent makes the choice for the probabilistic transitions.
(The formal description of the turn-based deterministic game is as follows: (S ∪ (S × A1 × A2), (A1 ×
A2) ∪ S ∪ {⊥},Γ1,Γ2, δ); where for all s ∈ S and a1 ∈ Γ1(s) and a2 ∈ Γ2(s) we have Γ1(s) =
{(a1, a2) | a1 ∈ Γ1(s), a2 ∈ Γ2(s)} and Γ1((s, a1, a2)) = {⊥}; Γ2((s, a1, a2)) = Supp(δ(s, a1, a2))
and Γ2(s) = {⊥}. The transition function is as follows: for all s ∈ S and a1 ∈ Γ1(s) and a2 ∈ Γ2(s)
we have δ(s, (a1, a2),⊥)((s, a1, a2)) = 1 and δ((s, a1, a2),⊥, t)(t) = 1.) In the turn-based deterministic
game, against any strategy of the combined players, there is a positional strategy of the player making the
probabilistic choices such that T is reached after being in each state at most once certainly (by positional de-
terminacy for turn-based deterministic reachability games [30]), as otherwise there would exist a positional
strategy profile such that T is never reached. The probability that exactly the choices made by the positional
strategy of the probabilistic player in the turn-based deterministic game is executed once in each state in the
original game is at least (δmin)r. Hence the desired result follows.

Variation distance. We will use a coupling argument in our proofs and this requires the definition of
variation distance of two probability distributions. Given a finite set Z, and two distributions d1 and d2 over
Z, the variation distance of the distributions is

var(d1, d2) =
1

2
·
∑
z∈Z
|d1(z)− d2(z)| .

Coupling and coupling lemma. Let Z be a finite set. For distributions d1 and d2 over the finite set Z, a
coupling ω is a distribution over Z × Z, such that for all z ∈ Z we have

∑
z′∈Z ω(z, z′) = d1(z) and also

for all z′ ∈ Z we have
∑

z∈Z ω(z, z′) = d2(z′). We will only use the second part of coupling lemma [1]
which is stated as follows:

• (Coupling lemma). For a pair of distributions d1 and d2, there exists a coupling ω of d1 and d2, such
that for a random variable (X,Y ) from the distribution ω, we have that var(d1, d2) = Pr[X 6= Y ].

We will now show that in almost-sure ergodic CMPGs strategies that play actions with probabilities
“close” to what is played by an optimal strategy also achieve values that are “close” to the values achieved
by the optimal strategy.

Lemma 3. Consider an almost-sure ergodic CMPG and let ε > 0 be a real number. Let σ1 be an optimal
stationary strategy for Player 1. Let σ′1 be a stationary strategy for Player 1 s.t. σ′1(s)(a) ∈ [σ1(s)(a) −
1
q ;σ′1(s)(a) + 1

q ], where q = 4 · ε−1 ·m · n2 · (δmin)−r, for all states s and actions a ∈ Γ1(s). Then the
strategy σ′1 is an ε-optimal strategy.

Proof. First observe that we can consider ε ≤ 1, because as the rewards are in the interval [0, 1] any strategy
is an ε-optimal strategy for ε ≥ 1. The proof will be split up in two parts, and the second part will use the
first. The first part is related to plays starting in an ergodic component; and the second part is the other case.
In both cases we will show that σ′1 guarantees mean-payoff within ε of the mean-payoff guaranteed by σ1,
thus implying the statement. Let σ2 be a positional best response strategy against σ′1. Our proof is based
on a novel coupling argument. The precise nature of the coupling argument is different in the two parts, but
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both will use the following: For any state s, it is clear that the variation distance between σ′1(s) and σ1(s) is
at most |Γ1(s)|

2·q , by definition of σ′1(s). For a state s, let ds1 be the distribution over states defined as follows:
for t ∈ S we have ds1(t) =

∑
a1∈Γ1(s)

∑
a2∈Γ2(s) δ(s, a1, a2)(t) · σ1(s)(a1) · σ2(s)(a2). Define ds2 similarly

using σ′1(s) instead of σ1(s). Then ds1 and ds2 also have a variation distance of at most |Γ1(s)|
2·q ≤ m

2·q . Let
s0 be the start state, and P = πσ1,σ2s0 be the random walk from s0, where Player 1 follows σ1 and Player 2
follows σ2. Also let P ′ = π

σ′1,σ2
s0 be the similar defined walk, except that Player 1 follows σ′1 instead of

σ1. Let Xi be the random variable indicating the i-th state of P , and let Y i be the similar defined random
variable in P ′ instead of P .

The state s0 is in an ergodic component. Consider first the case where s0 is part of an ergodic component.
Irrespective of the strategy profile, all states of the ergodic component are visited infinitely often almost-
surely (by definition of an ergodic component). Hence, we can apply Lemma 2 and obtain that we require
at most n · (δmin)r = ε·q

4·n·m steps in expectation to get from one state of the component to any other state of
the component.
Coupling argument. We will now construct a coupling argument. We will define the coupling using induc-
tion. First observe that X0 = Y 0 = s0 (the starting state). For i, j ∈ N, let ai,j ≥ 0 be the smallest number
such that Xi+1 = Y j+1+ai,j . By the preceding we know that ai,j exists for all i, j with probability 1 and
ai,j ≤ ε·q

4·n·m in expectation. The coupling is done as follows: (1) (Base case): Couple X0 and Y 0. We have
that X0 = Y 0; (2) (Inductive case): (i) if Xi is coupled to Y j and Xi = Y j = si, then also couple Xi+1

and Y j+1 such that Pr[Xi+1 6= Y j+1] = var(dsi1 , d
si
2 ) (using coupling lemma); (ii) if Xi is coupled to Y j ,

but Xi 6= Y j , then Xi+1 = Y j+1+ai,j = si+1 and Xi+1 is coupled to Y j+1+ai,j , and we couple Xi+2 and
Y j+2+ai,j such that Pr[Xi+2 6= Y j+2+ai,j ] = var(d

si+1

1 , d
si+1

2 ) (using coupling lemma). Notice that all Xi

are coupled to some Y j almost-surely; and moreover in expectation j
i is bounded as follows:

j

i
≤ 1 +

m

2 · q
· ε · q

4 · n ·m
= 1 +

ε

8 · n
.

The expression can be understood as follows: consider Xi being coupled to Y j . With probability at most
m
2·q they differ. In that caseXi+1 is coupled to Y j+1+ai,j . OtherwiseXi+1 is coupled to Y j+1. By using our
bound on ai,j we get the desired expression. For a state s, let fs (resp. f ′s) denote the limit-average frequency
of s given σ1 (resp. σ′1) and σ2. Then it follows easily that for every state s, we have |fs − f ′s| ≤ ε

8·n . The
formal argument is as follows: for every state s, consider the reward function Rs that assigns reward 1 to
all transitions from s and 0 otherwise; and then it is clear that the difference of the mean-payoffs of P
and P ′ is maximized if the mean-payoff of P is 1 under Rs and the rewards of the steps of P ′ that are
not coupled to P are 0. In that case the mean-payoff of P ′ under Rs is at least 1

1+ ε
8·n

> 1 − ε
8·n (since

1 > 1 −
(
ε

8·n
)2

= (1 + ε
8·n)(1 − ε

8·n)) in expectation and thus the difference between the mean-payoff of
P and the mean-payoff of P ′ under Rs is at most ε

8·n in expectation. The mean-payoff value if Player 1
follows a stationary strategy σ1

1 and Player 2 follows a stationary strategy σ1
2 , such that the frequencies of

the states encountered is f1
s , is

∑
s∈S

∑
a1∈Γ1(s)

∑
a2∈Γ2(s) f

1
s · σ1

1(s)(a1) · σ1
2(s)(a2) · R(s, a1, a2). Thus

the differences in mean-payoff value when Player 1 follows σ1 (resp. σ′1) and Player 2 follows the positional
strategy σ2, which plays action as2 in state s, is∑

s∈S

∑
a1∈Γ1(s)

(
fs · σ1(s)(a1)− f ′s · σ′1(s)(a1)

)
· R(s, a1, a

s
2)

Since |fs − f ′s| ≤ ε
8·n (by the preceding argument) and |σ1(s)(a1) − σ′1(s)(a1)| ≤ 1

q for all s ∈ S and

8



a1 ∈ Γ1(s) (by definition), we have the following inequality∑
s∈S

∑
a1∈Γ1(s)

(
fs · σ1(s)(a1)− f ′s · σ′1(s)(a1)

)
· R(s, a1, a

s
2)

≤
∑
s∈S

∑
a1∈Γ1(s)

|fs · σ1(s)(a1)−
(
fs −

ε

8 · n
)
·
(
σ1(s)(a1)− 1

q

)
|

=
∑
s∈S

∑
a1∈Γ1(s)

| ε

8 · n
· σ1(s)(a1) + fs ·

1

q
− ε

8 · n · q
|

≤
∑
s∈S

(
ε

8 · n
+
fs ·m
q

+
ε ·m

8 · n · q
)

=
ε

8
+
m

q
+
ε ·m
8 · q

≤ ε

8
+
ε

4
+
ε

8
=

ε

2

The first inequality uses that R(s, a1, a
s
2) ≤ 1 and the preceding comments on the differences. The second

inequality uses that (a) when we sum over σ1(s)(a1) for all a1, for a fixed s ∈ S, we get 1; (b) |Γ1(s)| ≤ m.
The following equality uses that

∑
s∈S fs = 1 since they represent frequencies. Finally since 4 ·m ·n ·ε−1 ≤

q, ε ≤ 1, and n ≥ 1 we have m
q ≤

ε
4 and ε·m

8·q ≤
ε

32 ≤
ε
8 . The desired inequality is established.

The state s0 is not in an ergodic component. Now consider the case where the start state s0 is not part
of an ergodic component. We will divide the walks P and P ′ into two parts. The part inside some ergodic
component and the part outside all ergodic components. If P and P ′ ends up in the same ergodic component,
then the mean-payoff differs by at most ε

2 in expectation, by the first part. For any pair of strategies the
random walk defined from them almost-surely reaches some ergodic component (since we consider almost-
sure ergodic CMPGs). Hence, we can apply Lemma 2 and see that we require at most n · (δmin)r = ε·q

4·n·m
steps in expectation before we reach an ergodic component.
Coupling argument. To find the probability that they end up in the same component we will again make a
coupling argument. Notice that X0 = Y 0 = s0. We will now make the coupling using induction. (1) (Base
case): Make a coupling betweenX1 and Y 1, such that Pr[X1 6= Y 1] = var(ds01 , d

s0
2 ) ≤ |Γ1(s0)|

2·q ≤ m
2·q (such

a coupling exists by the coupling lemma). (2) (Inductive case): Also, if there is a coupling between Xi and
Y i and Xi = Y i = si, then also make a coupling between Xi+1 and Y i+1, such that Pr[Xi+1 6= Y i+1] =

var(dsi1 , d
si
2 ) ≤ |Γ1(si)|

2·q ≤ m
2·q (such a coupling exists by the coupling lemma). Let ` be the smallest number

such that X` is some state in an ergodic component. In expectation, ` is at most ε·q
4·n·m . The probability that

Xi 6= Y i for some 0 ≤ i ≤ ` is by union bound at most m
2·q ·

ε·q
4·n·m ≤

ε
8·n ≤

ε
2 in expectation. If that is

not the case, then P and P ′ do end up in the same ergodic component. In the worst case, the component
the walk P ends up in has value 1 and the component that the walk P ′ ends up in (if they differ) has value
0. Therefore, with probability at most ε

2 the walk P ′ ends up in an ergodic component of value 0 (and
hence has mean-payoff 0); and otherwise it ends up in the same component as P does and thus gets the
same mean-payoff as P , except for at most ε

2 , as we established in the first part. Thus P ′ must ensure the
same mean-payoff as P except for 2ε

2 = ε. We therefore get that σ′1 is an ε-optimal strategy (since σ1 is
optimal).

We show that for every integer q′ ≥ `, for every distribution over ` elements, there exists a q′-rounded
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distribution “close” to it. Together with Lemma 3 it will show the existence of q′-rounded ε-optimal strate-
gies, for every integer q′ greater than the q defined in Lemma 3.

Lemma 4. Let d1 be a distribution over a finite set Z of size `. Then for all integers q ≥ ` there exists a
q-rounded distribution d2 over Z, such that |d1(z)− d2(z)| < 1

q .

Proof. WLOG we consider that ` ≥ 2 (since the unique distribution over a singleton set clearly have the
desired properties for all integers q ≥ 1). Given distribution d1 we will construct a witness distribution d2.
There are two cases. Either (i) there is an element z ∈ Z such that 1

q ≤ d1(z) ≤ 1 − 1
q , or (ii) no such

element exists.

• We will first consider case (ii), i.e., there exists no element z such that 1
q ≤ d1(z) ≤ 1− 1

q . Consider
an element z∗ ∈ Z such that 1 − 1

q < d1(z∗). Precisely only one such element exists in this case
since not all ` elements can have probability strictly less than 1

q ≤
1
` , and no more than one element

can have probability strictly more than 1 − 1
q ≥

1
2 . Then let d2(z∗) = 1 and d2(z) = 0 for all other

elements in Z. This clearly ensures that |d1(z)− d2(z)| < 1
q for all z ∈ Z and that d2 is a q-rounded

distribution.

• Now we consider case (i). Let z` be an arbitrary element in Z such that 1
q ≤ d1(z`) ≤ 1 − 1

q .
Let {z1, . . . , z`−1} be an arbitrary ordering of the remaining elements. We will now construct d2

iteratively such that in step k we have assigned probability to {z1, . . . , zk}. We will establish the
following iterative property: in step k we have that

∑k
c=1(d1(zc)− d2(zc)) ∈ (−1

q ; 1
q ). The iteration

stops when k = ` − 1, and then we will assign d2(z`) the probability 1 −
∑`−1

c=1 d2(zc). For all
1 ≤ k ≤ `− 1, the iterative definition of d2(zk) is as follows:

d2(zk) =


bq · d1(zk)c

q
if
∑k−1

c=1 (d1(zc)− d2(zc)) < 0

dq · d1(zk)e
q

if
∑k−1

c=1 (d1(zc)− d2(zc)) ≥ 0

We use the standard convention that the empty sum is 0. For 1 ≤ k ≤ `−1, observe that (a) |d1(zk)−
d2(zk)| < 1

q ; and (b) since d1(zk) ∈ [0, 1] also d2(zk) is in [0; 1]. Moreover, there exists an integer p
such that d2(zk) = p

q . We have that

d1(zk)− 1

q
<
bq · d1(zk)c

q
≤ d1(zk) ≤ dq · d1(zk)e

q
< d1(zk) +

1

q
(‡).

Thus, if the sum
∑k−1

c=1 (d1(zc)− d2(zc)) is negative, then we have that

−1

q
<

k−1∑
c=1

(d1(zc)− d2(zc)) ≤
k∑
c=1

(d1(zc)− d2(zc)) <

k−1∑
c=1

(d1(zc)− d2(zc)) +
1

q
<

1

q
,

where the first inequality is the iterative property (by induction for k − 1); the second inequality

follows because in this case we have d2(zk) =
bq · d1(zk)c

q
≤ d1(zk) by (‡); the third inequality

follows since d1(zk)− d2(zk) = d1(zk)− bq · d1(zk)c
q

<
1

q
by (‡); the final inequality follows since
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∑k−1
c=1 (d1(zc)−d2(zc)) is negative. Symmetrically, if the sum

∑k−1
c=1 (d1(zc)−d2(zc)) is not negative,

then we have that

1

q
>

k−1∑
c=1

(d1(zc)− d2(zc)) ≥
k∑
c=1

(d1(zc)− d2(zc)) >
k−1∑
c=1

(d1(zc)− d2(zc))− 1

q
≥ −1

q
,

using the iterative property (by induction) and the inequalities of (‡) as in the previous case. Thus, in
either case, we have that −1

q <
∑k

c=1(d1(zc) − d2(zc)) < 1
q , establishing the iterative property by

induction.

Finally we need to consider z`. First, we will show that |d1(z`)− d2(z`)| < 1
q . We have that

d2(z`) = 1−
`−1∑
c=1

d2(zc) =
∑̀
c=1

(d1(zc))−
`−1∑
c=1

(d2(zc)) = d1(z`) +

`−1∑
c=1

(d1(zc)− d2(zc)) .

Hence |d1(z`) − d2(z`)| < 1
q , by our iterative property. This also ensures that d2(z`) ∈ [0; 1], since

d1(z`) ∈ [1
q ; 1− 1

q ], by definition. Thus, d2 is a distribution overZ (since it is clear that
∑

z∈Z d2(z) =

1, because of the definition of d2(z`) and we have shown for all z ∈ Z that d2(z) ∈ [0; 1]). Since
we have ensured that for each z ∈ (Z \ {z`}) that d2(z) = p

q for some integer p, it follows that

d2(z`) = p′

q for some integer p′ (since q is an integer). This implies that d2 is a q-rounded distribution.
We also have |d1(z)− d2(z)| < 1

q for all z ∈ Z (by (‡)) and thus all the desired properties have been
established.

This completes the proof.

Corollary 5. For all almost-sure ergodic CMPGs, for all ε > 0, there exists an ε-optimal, q′-rounded
strategy σ1 for Player 1, for all integers q′ ≥ q, where

q = 4 · ε−1 ·m · n2 · (δmin)−r .

Proof. Notice that the q defined here is the same q as is defined in Lemma 3. Let the integer q′ ≥ q be
given. Consider an almost-sure ergodic CMPG G. Let σ′1 be a optimal stationary strategy in G for Player 1.
For each state s, pick a q′-rounded distribution ds over Γ1(s), such that |σ′1(s)(a1)− ds(a1)| < 1

q′ ≤
1
q for

all a1 ∈ Γ1(s). Such a distribution exists by Lemma 4, since q′ ≥ q ≥ m ≥ |Γ1(s)|. Let the strategy σ1 be
defined as follows: σ1(s) = ds for each state s ∈ S. Hence σ1 is a q′-rounded strategy. By Lemma 3, the
strategy σ1 is also an ε-optimal strategy.

Exponential lower bound on patience. We will now present a family of ergodic CMPGs where the lower
bound on patience is exponential in r. We will present the lower bound on a special class of ergodic CMPGs,
namely, skew-symmetric ergodic CMPGs which we define below.

Skew-symmetric CMPGs. A CMPG G is skew-symmetric2, if there is a bijective map f : S → S, where
f(f(s)) = s, (for all s we will use s to denote f(s)) where the following holds: For each state s, there is
a bijective map fs1 : Γ1(s) → Γ2(s) (for all i ∈ Γ1(s) we will use i to denote fs1 (i)) and a bijective map
fs2 : Γ2(s)→ Γ1(s) (similarly to the first map, for all j ∈ Γ2(s) we will use j to denote fs2 (j)), such that for

2For the special case of matrix games (that is; the case where n = 1), this definition of skew-symmetry exactly corresponds to
the notion of skew-symmetry for such.
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all i ∈ Γ1(s) and all j ∈ Γ2(s), the following conditions hold: (1) we have R(s, i, j) = 1−R(s, j, i); (2) for
all s′ such that δ(s, i, j)(s′) > 0, we have δ(s, j, i)(s′) = δ(s, i, j)(s′); and (3) we have fs2 (fs1 (i)) = i and
that fs1 (fs2 (j)) = j.

Lemma 6. Consider a skew-symmetric CMPG G. Then for all s we have vs = 1− vs.

Proof. Let s be a state. For a stationary strategy σk for Player k, k ∈ {1, 2}, let σk be a stationary strategy
for the other player defined as follows: For each state s and action i ∈ Γk(s), let σk(s)(i) = σk(s)(i). For
a stationary strategy σ1 for Player 1, consider the stationary strategy profile (σ1, σ1). For the random walk
P = πσ1,σ1

s , where the players follows (σ1, σ1), starting in s corresponds to the random walk P = πσ1,σ1
s ,

where the players follows (σ1, σ1), starting in s, in the obvious way (that is: if P is in state si in the i-th
step and the reward is λ, then P ′ is in si, in the i-th step and the reward is 1 − λ). The two random walks,
P and P ′, are equally likely. This implies that vs = 1− vs.

Corollary 7. For all skew-symmetric ergodic CMPGs the value is 1
2 .

Family Gkη . We will now provide a lower bound for patience of ε-optimal strategies in skew-symmetric
ergodic CMPGs. More precisely, we will give a family of games {Gkη | k ≥ 2 ∨ 0 < η < 1

4·k+4}, such that
Gkη consists of 2 · k + 5 states and such that δmin for Gkη is η. The game Gkη will be such that all 1

48 -optimal
stationary strategies require patience at least 1

2·ηk/2 .

Construction of the family Gkη . For a given k ≥ 2 and η, such that 0 < η < 1
4·k+4 , let the game Gkη

be as follows: The game consists of 2 · k + 5 states, S = {a, b, b, c, c, s1, s1, s2, s2, . . . , sk, sk}. For
s ∈ (S \ {c, c}), we have that |Γ1(s)| = |Γ2(s)| = 1. For s′ ∈ {c, c}, we have that |Γ1(s′)| = |Γ2(s′)| = 2,
and let Γ1(s′) = {is′1 , is

′
2 } and Γ2(s′) = {js′1 , js

′
2 }. For y ≥ 2 we have that sy (resp. sy) has a transition to

sk (resp. sk) of probability 1 − η; to sy−1 (resp. sy−1), where s0 = s0 = a, with probability η; and also
the reward of the transition is 0 (resp. 1). The state b (resp. b) is deterministic and has a transition to a of
reward 0 (resp. 1). The transition function at state c is deterministic, and thus for each pair (i, j) of actions
we define the unique successor of c.

1. For (ic1, j
c
1) and (ic2, j

c
2) the successor is b.

2. For (ic1, j
c
2) the successor is b.

3. For (ic2, j
c
1) the successor is sk.

The reward of the transitions from c is 0. Intuitively, the transitions and rewards from c will be defined from
skew-symmetry. Formally, we have:

1. For (ic1, j
c
1) and (ic2, j

c
2) the successor is b.

2. For (ic2, j
c
1) the successor is b.

3. For (ic1, j
c
2) the successor is sk.

The reward of the transitions from c is 1. There is a transition from a to each other state. The probability to
go to c and the probability to go to c are both 1

4 . For each other state s′ (other than c, c and a), the probability
to go to s′ from a is 1

4·k+4 . The transitions from a have reward 1
2 . There is an illustration of Gkη in Figure 1.

Lemma 8. For any given k and η, such that 0 < η < 1
4·k+4 , the CMPG Gkη is both skew-symmetric and

ergodic. Thus Gkη has value 1
2 .
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Proof. We first argue about ergodicity: from any starting state s, the state a is reached almost-surely; and
from a there is a transition to all other states with positive probability. This ensures that Gkη is ergodic.

The following mappings implies that CMPG Gkη is skew-symmetric: (i) f(si) = si for all i; and
(ii) f(a) = a; and (iii) f(b) = b; and (iv) f(c) = c. The bijective map f c1 between Γ1(c) and Γ2(c)
is such that ic1 = jc1 (and thus also ic2 = jc2). The bijective map f c2 is such that jc1 = ic1 (and thus also
j
c
2 = ic2).

Lemma 9. For any given k and η, such that 0 < η < 1
4·k+4 , consider the set Cp of stationary strategies for

Player 1 in Gkη , with patience at most 1
p , where p = 2 · ηk/2. Consider the stationary strategy σ∗1 defined

as: (i) σ∗1(c)(ic2) = p (and σ∗1(c)(ic1) = 1 − p); and (ii) σ∗1(c)(ic2) = 1 − p (and σ∗1(c)(ic1) = p). Then the
strategy σ∗1 ensures the maximal value among all strategies in Cp.

Proof. First, observe that from sk, the probability to reach a in k steps is ηk. If a is not reached in k steps,
then in these k steps sk is reached again. Similarly for sk. Thus, the expected length Lsk of a run from sk
(or sk) to a, is (strictly) more than η−k, but (strictly) less3 than k · η−k.

The proof will be split in three parts. The first part will consider strategies in Cp that plays ic2 with
probability greater than p; the second part will consider strategies in Cp that plays ic2 with probability 0; and
the third part will show that the optimal distribution for the actions in c is to play as σ∗1 .

1. Consider some stationary strategy σ′1 ∈ Cp such that σ′1(c)(ic2) = p′ > p. Consider the strategy σ1

such that σ1(c) = σ∗1(c) and σ1(c) = σ′1(c). We will show that σ1 guarantees a higher expected
mean-payoff value for the run between a and c than σ′1, and thus σ1 will ensure greater mean-payoff
value than σ′1.

For ` ∈ {1, 2}, let σ`2 be an arbitrary stationary strategy which plays jc` with probability 1. Let m`

be the mean-payoff of the run from c to a, when Player 1 plays σ∗1 and Player 2 plays σ`2. Define
m′` similarly, except that Player 1 plays σ′1 instead of σ∗1 . Then, m1 = 1−p

p·(Lsk+1)+(1−p)·2 and m′1 =

1−p′
p′·(Lsk+1)+(1−p′)·2 (the expected length of the run is p′ · (Lsk + 1) + (1− p′) · 2 and it gets reward 1
only once and only with probability 1− p′). We will now argue that m1 > m′1. Consider m1 −m′1:

m1 −m′1 =
1− p

p · (Lsk + 1) + (1− p) · 2
− 1− p′

p′ · (Lsk + 1) + (1− p′) · 2

=
(1− p) · (p′ · (Lsk + 1) + (1− p′) · 2)− (1− p′) · (p · (Lsk + 1) + (1− p) · 2)

(p · (Lsk + 1) + (1− p) · 2) · (p′ · (Lsk + 1) + (1− p′) · 2)

Hence, see that the numerator of the above expression is

(1− p) · (p′ · (Lsk + 1)+(1− p′) · 2)− (1− p′) · (p · (Lsk + 1) + (1− p) · 2)

= (p′ − p) · (Lsk + 1) > 0

and therefore m1 > m′1.

We will now argue that m1 < m2 and m′1 < m′2 (and thus Player 2 will play jc1 in c against
both σ1 (and thus also σ∗1) and σ′1). We have that m2 = p

2 and (repeated for convenience)

3It is also less than 2 · η−k + k, since for any state si, for i ≥ 1, there is a probability of more than 1
2

to go to sk and whenever
the play is in sk there is a probability of ηk that it is the last time.
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m1 = 1−p
p·(Lsk+1)+(1−p)·2 <

1
p·(Lsk+1) <

1
p·η−k . But p = 2 · ηk/2 and therefore 1

p·η−k ≤
1

2·ηk/2·η−k =
1

2·η−k/2 <
1

η−k/2
≤ p

2 . Similar for m′1 < m′2, and hence we have the desired result.

2. Consider some stationary strategy σ0
1 ∈ Cp such that σ0

1(c)(ic2) = 0. Now consider the strategy σ1

such that σ1(c) = σ∗1(c) and σ1(c) = σ0
1(c). Then, the best response σ0

2 for Player 2 against σ0
1

will play jc2 with probability 1. We see that if Player 1 follows σ0
1 and Player 2 follows σ0

2 , then the
mean-payoff of the run from c to a is 0. Thus σ1 will ensure greater mean-payoff value than σ0

1 .

3. Similar to the first two parts, it follows that a strategy that plays like σ∗1 in c ensures at least the mean-
payoff value of any other stationary strategy in Cp for the play between c and a. (In this case, the best
response for Player 2 will play jc1 with probability 1 and therefore the mean-payoff for the run from c
to a is 2−p

2 as the length of the run is 2; and with probability 1 − p both rewards are 1, otherwise the
first reward is 1 and the second reward is 0).

It follows from above that σ∗1 ensures the maximal mean-payoff value among all strategies in Cp.

Lemma 10. For any given k and η, such that 0 < η < 1
4·k+4 , consider the set Cp of stationary strategies for

Player 1 in Gkη , with patience at most 1
p , where p = 2 · ηk/2. For all strategies in Cp, the mean-payoff value

is at most 23
48 ; and hence no strategy in Cp is 1

48 -optimal.

Proof. By Lemma 9 we only need to consider σ∗1 as defined in Lemma 9. Now we calculate the expected
mean-payoff value for a run from a to a given σ∗1 and a positional best-response strategy σ2 for Player 2,
(which is then the expected mean-payoff value of the strategies in Gkη) as follows:

1. With probability 1
2 in the first step, the run goes to some state which is neither c nor c. Since the

probability is equally large to go to some state s or to the corresponding skew-symmetric state s and
no state s can be reached such that |Γ1(s)| or |Γ2(s)| is more than 1, such runs has mean-payoff 1

2 .

2. Otherwise with probability 1
2 in the first step we get reward 1

2 and go to either c or c with equal
probability (that is: the probability to go to c or c is 1

4 each). As shown in Lemma 9, (i) the length of
the run from c to a is 2; and with probability 1− p both rewards are 1, otherwise the first reward is 1
and the second reward is 0; (ii) the expected length of the run from c to a is p · (Lsk + 1) + (1− p) · 2
and it gets reward 1 only once and only with probability 1− p (where Lsk is as defined in Lemma 9).

From the above case analysis we conclude that the mean-payoff of the run from a to a is

1

2
· 1

2
+

1

4
·

(
1
2 + 1 + (1− p)

3
+

1
2 + 1− p

1 + p · (Lsk + 1) + (1− p) · 2

)

=
1

4
+

1
2 + 1 + (1− p)

12
+

1
2 + 1− p

4 · (1 + p · (Lsk + 1) + (1− p) · 2)

<
1

4
+

1
2 + 2

12
+

2

4 · p · Lsk
<

1

4
+

5

24
+

1

2 · 2 · ηk/2 · η−k

=
1

4
+

5

24
+

1

4 · η−k/2
<

1

4
+

5

24
+

1

48
=

23

48
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Figure 1: For a given k ∈ N and 0 < η < 1
4·k+4 , the skew-symmetric ergodic game Gkη , except that the

transitions from a are not drawn. There is a transition from a to each other state. The probability to go
to c from a and the probability to go to c from a are both 1

4 . For each other state s′ (other than c, c and
a), the probability to go to s′ from a is 1

4·k+4 . The transition from a has reward 1
2 . Dashed edges have

reward 1 and non-dashed edges have reward 0. Actions are annotated with probabilities if the successor is
not deterministic.

In the first inequality we use that 1 + p · (Lsk + 1) + (1 − p) · 2 > p · Lsk and that p > 0. In the second
inequality we use that p = 2 · ηk/2 and that η−k < Lsk . In the third we use that η−k/2 > 12, which comes
from k ≥ 2 and η < 1

4·k+4 ≤
1
12 . Therefore, we see that there is no 1

48 -optimal strategy with patience at

most η
−k/2

2 in the game Gkη .

Theorem 11 (Strategy complexity). The following assertions hold:

1. (Upper bound). For almost-sure ergodic CMPGs, for all ε > 0, there exists an ε-optimal strategy of
patience at most d4 · ε−1 ·m · n2 · (δmin)−re.

2. (Lower bound). There exists a family of ergodic CMPGs Gδmin
n , for each odd n ≥ 9 and 0 < δmin <

1
2·n and n = r + 5, such that any 1

48 -optimal strategy in Gδmin
n has patience at least 1

2 · (δmin)−r/4.

Proof. The upper bound comes from Corollary 5, since all q-rounded strategies have patience at most q; and
the lower bound follows from Lemma 10.

3.2 Hardness of approximation

We present a polynomial reduction from the value problem for SSGs to the problem of approximation of
values for turn-based stochastic ergodic mean-payoff games (TEMPGs).

The reduction. Consider an SSG G with n non-terminal states, and two terminal states (> and ⊥). Given
a state s in G we construct a TEMPG G′ = Red(G, s) that has the same states as G (including the terminal
states) and one additional state s′. For every transition in G, there is a corresponding transition in G′, with
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reward 0. The 1 terminal > (resp. 0 terminal ⊥) instead of the self-loop, has two outgoing transitions that
go to> (resp. ⊥) with probability 1− 1

29n
and to s′ with probability 1

29n
. The reward of the transitions are 1

(resp. 0) for > (resp. ⊥). The additional state s′ goes to s with probability 1 − 1
27n

and to each other state
(including the terminals, but not s and s′) with probability 1

(n+1)·27n . The rewards of the transitions from s′

are 0. We first observe that the game G′ is ergodic: since the SSG G is stopping, from all states and for all
strategies in G, the terminal states are reached with probability 1; and hence in G′, from all states and for all
strategies, the state s′ is reached with probability 1; and from s′ there exists a positive transition probability
to every state other than s′. It follows that under all strategy profiles, from all starting states, the state s′

is visited infinitely often almost-surely, and hence every other state is visited infinitely often almost-surely.
Hence G′ is ergodic. We will now show that the value v of G′ is “close” to the value vs of s in G. We then
argue that we can obtain vs from v in polynomial time by rounding.

Lemma 12. Let G be an SSG, and consider a state s in G with value vs. The value v of Red(G, s) is in the
interval [vs − 2−7n+1; vs + 2−7n+1].

Proof. We show that the value of G′ is at least vs − 2−7n+1; and the other part of the proof is symmetric.
Notice that since G is stopping, we reach a terminal in n steps with probability at least 1

2n , from every
starting state. The expected number of steps required to reach the terminal states is at most n · 2n (one can
also use a more refined argument similar to [22] to show that the expected number of steps is at most 2n+1).
By construction this is also the case inG′. From a terminal state inG′ the expected number of steps required
to reach s′ is 29n. Consider an optimal strategy σ1 in G for Player 1. Since G and G′ have the same set of
states where Player 1 has a choice (and the same choices in those states), we can also use σ1 in G′. Now
consider the best response strategy σ2 against σ1 for Player 2 in G′. We will now estimate the value of G′.
The best σ2 can ensure for Player 2 is the following:

• By the argument above, for the plays from any starting state in G, the expected number of steps
required to reach a terminal state is (at most) n · 2n.

• For a state t different from s, the plays from t reach the 0 terminal with probability 1.

• The plays from s reach the 0 terminal with probability 1− vs and the 1 terminal with probability vs.

Notice that for plays starting from any state t 6= s′, the expected number of steps to reach s′ is at most
n · 2n + 29n. Hence the expected number of steps required to reach s′ again from itself is at most n · 2n +
29n + 1. We now argue that the mean-payoff value is at least vs − 2−7n+1. With probability 1 − 1

27n
, the

successor of s′ is s. From s the play reaches s′ after being in the 1 terminal for vs · 29n steps in expectation.
Each reward obtained in the 1 terminal is 1. All remaining rewards are 0. Hence, the mean-payoff value is
at least

vs · 29n · (1− 1
27n

)

n · 2n + 29n + 1
=

vs · 29n

n · 2n + 29n + 1
−

vs · 29n · 1
27n

n · 2n + 29n + 1

≥ vs · 29n

(1 + 2−7n)29n
− vs · 29n · 2−7n

29n

> (1− 2−7n) · vs − vs · 2−7n

= vs − vs · 2−7n+1

≥ vs − 2−7n+1 .
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The first inequality comes from n · 2n = 2n+logn < 22n; the second inequality comes from 1 − 2−14n =
(1− 2−7n)(1 + 2−7n) < 1⇒ 1− 2−7n < 1

1+2−7n ; and the last inequality comes from vs ≤ 1.
Using a similar argument for Player 2, we obtain that the mean-payoff value is at most vs + 2−7n+1, by

using that the expected path-length from a state t in G to a terminal is at least 0. Therefore v, the value of
G′, is in the interval [vs − 2−7n+1; vs + 2−7n+1].

Observe that if the value v of G′ can be approximated within 2−6n, then Lemma 12 implies that the
approximation a is in [vs− 2−7n+1− 2−6n; vs + 2−7n+1 + 2−6n]; which shows that a is in [vs− 2−5n; vs +
2−5n]. Hence we see that a − 2−5n is in [vs − 2−4n; vs]. As observed by Ibsen-Jensen and Miltersen [22],
if the value of a state of an SSG can be approximated from below within 2−4n, then one can use the Kwek-
Mehlhorn algorithm [24] to round the approximated value to obtain the correct value, in polynomial time.
We therefore get the following lemma.

Lemma 13. The problem of finding the value of a state in an SSG is polynomial time Turing reducible to the
problem of approximating the value of a TEMPG (turn-based stochastic ergodic mean-payoff game) within
2−6n.

3.3 Approximation complexity

In this section we will establish the approximation complexity for almost-sure ergodic CMPGs. We first
recall the definition of the decision problem for approximation.

Approximation decision problem. Given an almost-sure ergodic CMPG G (with rational transition prob-
abilities given in binary), an ε > 0 (in binary), and a rational number λ (in binary), the promise problem
PROMVALERG (i) accepts if the value of G is at least λ, (ii) rejects if the value of G is at most λ − ε, and
(iii) if the value is in the interval (λ− ε;λ), then it may both accept or reject.

Theorem 14 (Approximation complexity). For almost-sure ergodic CMPGs, the following assertions hold:

1. (Upper bound). The problem PROMVALERG is in FNP.

2. (Hardness). The problem of finding the value of a state in an SSG is polynomial time Turing reducible
to the problem PROMVALERG, even for the special case of turn-based stochastic ergodic mean-payoff
games (TEMPGs).

Proof. We present the proof for both the items.

1. We first present an FNP algorithm for PROMVALERG as follows: Guess an ε
4 -optimal, q′-rounded

strategy σ1 for Player 1, where q′ = dqe such that q is as in Corollary 5 (also such a strategy exists by
Corollary 5). The strategy is then described using at mostO(n ·m · log q′) many bits. Since ε and δmin

is given in binary, log q′ uses at most polynomial many bits. Now compute the best response strategy
for Player 2. Since σ1 is a stationary strategy (because it is q′-rounded), when Player 1 restricted to
follow σ1, the game becomes an MDP for Player 2, and the size of the MDP is also polynomial in
the size of G and log q′. Hence there exists a positional best response strategy σ2, which we can find
in polynomial time using linear programming [15, 27, 23]. When Player 1 follows σ1 and Player 2
follows σ2 some expected mean-payoff val is achieved. Similarly guess an ε

4 -optimal, q-rounded
strategy σ′2 for Player 2. Again there exists a positional best response strategy σ′1 for Player 1 which
can again be computed in polynomial time. When Player 1 follows σ′1 and Player 2 follows σ′2 some
expected mean-payoff val′ is achieved. If val′− val > ε

2 , then reject, because then not both σ1 and σ′2
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can be ε
4 optimal. Clearly the value of G must be in [val; val′]. Notice that both λ− ε and λ cannot be

in [val; val′], since val′−val ≤ ε
2 . Therefore if λ ≤ val′, then accept, otherwise reject. This establishes

that PROMVALERG is in FNP.

2. We will now show that the problem of finding the value of a state in an SSG is polynomial time Turing
reducible to the problem PROMVALERG for TEMPGs. By Lemma 13, we just need to approximate
the value v of a TEMPG G within 2−6n. For any number 0 < a < 1 and integer b, let Procb be a
procedure, that takes p

q as an input and returns if a ≥ p
q , where 0 ≤ p ≤ q ≤ b. For any integer b,

given procedure Procb, the Kwek-Mehlhorn algorithm [24], finds integers 0 ≤ p ≤ q ≤ b, such that
a− p

q <
1
b inO(log b) time andO(log b) calls to Procb. We will argue how to use the Kwek-Mehlhorn

algorithm [24] to find the value of G within 2−6n using polynomially many calls to PROMVALERG.
Let b be 28n. Let Procb be PROMVALERG with ε = 2−16n. Notice that the choice of ε ensures that
there can be at most one pair p, q such that p

q ∈ [v − ε; v], where 0 ≤ p ≤ q ≤ 28n, because all
such numbers are at least 2−16n apart. On such an input PROMVALERG will answer arbitrarily, but
on all other inputs it will accurately answer if p

q ≥ v. The Kwek-Mehlhorn algorithm queries a pair
of variables only once, and will find a fraction p

q such that 0 ≤ p ≤ q ≤ 28n. But the four best such
fractions must be within 2−6n of v.

The desired result follows.

4 Strategy Iteration Algorithm for Almost-sure Ergodic CMPGs

The classic algorithm for solving ergodic CMPGs was given by Hoffman and Karp [21]. We will present
a variant of the algorithm, and show that for every ε > 0 it runs in exponential time for ε approximation.
Also observe that even for the value problem for SSGs the strategy iteration algorithms require exponential
time [16, 14], and hence our exponential upper bound is optimal (given our reduction of the value problem
of SSGs to the approximation problem for TEMPGs).

The variant of Hoffman-Karp algorithm. For an almost-sure ergodic CMPG G, an ε > 0, and a state
t, we will present an algorithm to compute a q-rounded ε-optimal strategy in O(qn·m) iterations, and each
iteration will require O

(
2POLY(m) · POLY(n, log(ε−1), log(δ−1

min))
)

time, where

q =
⌈
4 · ε−1 ·m · n2 · (δmin)−r

⌉
.

Note that in all typical cases, n is large and m is constant, and every iteration takes polynomial time if m is
constant. The basic informal description of the algorithm is as follows. In every iteration i, the algorithm
considers a q-rounded strategy σi1, and then improves the strategy locally as follows: first it computes the

potential vσ
i
1
s given σi1 as in the Hoffman-Karp algorithm, and then for every state s, the algorithm locally

computes the best q-rounded distribution at s to improve the potential. The intuitive description of the
potential is as follows: Fix the specific state t as a target state (where the potential must be 0); and given a
stationary strategy σ, consider a modified reward function that assigns the original reward minus the value
ensured by σ. Then the potential for every state s other than the specified state t is the expected sum
of rewards under the modified reward function for the random walk from s to t. The local improvement
step is achieved by playing a matrix game with potentials. Our variant differs from the Hoffman-Karp
algorithm that while solving the matrix game we restrict Player 1 to only q-rounded distributions. The formal
description of the algorithm is given in Figure 2, and the formal definition of the expected one-step reward
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Function VarHoffmanKarp(G,ε,t)

Let q ←
⌈
4 · ε−1 ·m · n2 · (δmin)−r

⌉
;

Let σ0
1 be a q-rounded strategy;

for (i ∈ Z+) do
Compute gi, (vis)s∈S as the unique solution of

∀s ∈ S : gi + vis = min
a2∈Γ2(s)

(ExpRew(s, σi−1
1 (s), a2) +

∑
s′∈S

δ(s, σi−1
1 (s), a2)(s′) · vis′)

vit = 0;

for (s ∈ S) do
Let Ms be the matrix game defined as follows:
Ms[a1, a2]← R(s, a1, a2) +

∑
s′∈S δ(s, a1, a2)(s′) · vis′ , for all a1 ∈ Γ1(s) and a2 ∈ Γ2(s);

if (σi−1
1 (s) is a best q rounded distribution for the matrix game Ms) then

Let σi1(s)← σi−1
1 (s);

else
Let σi1(s) be an arbitrary best q-rounded distribution over Γ1(s) for the matrix game Ms;

if (σi1 = σi−1
1 ) then

return σi1;

Figure 2: Algorithm for solving ergodic games

ExpRew(s, d1, d2) for distributions d1 over Γ1(s) and d2 over Γ2(s) is as follows: ExpRew(s, d1, d2) =∑
a1∈Γ1(s),a2∈Γ2(s) R(s, a1, a2) · d1(a1) · d2(a2).

Computation of every iteration. The computation of every iteration is as follows. The computation of
the unique solution gi and (vis)s∈S is obtained in polynomial time using linear programming. The fact
that the solution is unique follows from the fact that once a strategy for Player 1 is fixed, we obtain an
MDP for Player 2, and then the MDP solution is unique. For a state s, let Dq(s) denote the set of all
q-rounded distributions over Γ1(s). A q-rounded distribution d is best for the matrix game Ms iff d ∈
arg maxd1∈Dq(s) mina2∈Γ2(s)

∑
a1∈Γ1(s) d1(a1) ·Ms[a1, a2]. The computation of a best q-rounded strategy

is achieved as follows: given an (m1 ×m2)-matrix game M , solve the following integer linear program for
v and (xi)1≤i≤m1 :

max v

subject to v ≤
m1∑
i=1

M [i, j] · xi; 1 ≤ j ≤ m2,

m1∑
i=1

xi = 1;

xi · q ∈ N; 1 ≤ i ≤ m1

v · q · ` ∈ Z;

where ` is the gcd of all the entries of M . It was shown by Lenstra [25], that any integer linear pro-
gramming problem on an integer (m1 × m2)-matrix (that is, with m1 variables) can be solved in time
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2POLY(m1) · POLY(m2, log a), where a is an upper bound on the greatest integer in the matrix and asso-
ciated vectors. Notice that we can simply scale our matrix with q · ` and obtain our optimization problem
in the required form. Since the entries in the original game was defined from a solution to an MDP (which
can be represented using polynomially many bits, because the Player-1 strategy is q-rounded), we know that
only polynomially many bits are needed to represent Ms (also after scaling). Thus, such an integer linear
programming problem can be solved in time O(2POLY(m) · POLY(n, log(ε−1), log(δ−1

min))). This gives us
the desired time bound for every iteration.

Turn-based game for correctness. For the correctness analysis, we consider a turn-based stochastic version
of the game (which is not ergodic), and refer to the turn-based game asG′ = TB(G). The gameG′ = TB(G)
will be a bipartite game of exponential size. For a state s inG, let Sqs = {(s×d1) | d1 ∈ Dqs}. The state space
in G′ is S′ = (

⋃
s∈S S

q
s ) ∪ S. Whenever we mention S in the rest of this paragraph it should be clear from

the context if we refer to S as a part of G or G′. In G′, Player 1 controls the states in S and Player 2 the ones
in
⋃
s∈S S

q
s . From state s ∈ S, for every d1 ∈ Dqs , there is a transition from s to (s, d1) ∈ Sqs with reward 0;

and from each state (s, d1) ∈ Sqs there are |Γ2(s)| actions. For an action a2 ∈ Γ2(s), the probability
distribution over the next state is given by δ(s, d1, a2), and the reward is given by ExpRew(s, d1, a2). Given
a q-rounded strategy σ1 for Player 1 in G and a positional strategy σ2, if we interpret the strategies in G′,
then the mean-payoff value in G′ is exactly half of the mean-payoff value in G.

Correctness analysis and bound on iterations. We now present the correctness analysis, and the bound
on the number of iterations will follow. The classic strategy iteration algorithm computes the same series
of strategies for Player 1 on TB(G) as our modified Hoffman-Karp algorithm does on the original game4.
This is because, if we consider a fixed strategy for Player 1 in TB(G) and the corresponding strategy in G,
then the best response positional strategy for Player 2 in TB(G) and G resp. must correspond to each other.
Then, by the way the potentials are calculated by the two algorithms, we get the same potential for a given
state s ∈ S for Player 1 in TB(G) as we do for the corresponding state in G (they are precisely the same,
since the value in TB(G), for any given strategy profile, is half the value of G, and thus, when we have
taken two steps in TB(G) we have subtracted precisely the value of G). For d1 ∈ Dqs , the potential of state
(s, d1) in TB(G) is the same as the value ensured for Player 1 inMs, if Player 1 plays d1. Thus, also the next
strategy for Player 1 is the same. Thus, since the turn-based algorithm correctly finds the optimal strategy for
Player 1, our modified Hoffman-Karp algorithm also correctly finds the q-rounded strategy that guarantees
the highest value in G for all states, among all q-rounded strategies. Since the best q-rounded strategy in
G is ε-optimal for G (by Corollary 5), we have thus found an ε-optimal strategy. It is well known that the
classic strategy iteration algorithm only considers each strategy for Player 1 once (because the potential of
the strategies picked by Player 1 are monotonically increasing in every iteration of the loop) . Therefore our
VarHoffmanKarp algorithm requires at most qm·n iterations, since there are most qm·n strategies that are
q-rounded.

Inefficiency in reduction to TB(G). Observe that we only use TB(G) for the correctness analysis, and
do not explicitly construct TB(G) in our algorithm. Constructing TB(G) and then solving TB(G) using
strategy iteration could also be used to compute ε-optimal q-rounded strategies. However, as compared to
our algorithm there are two drawbacks in constructing TB(G) explicitly. First, then every iteration would
take time polynomial in q (which is exponential in n), whereas every iteration of our algorithm requires

4The proof that the strategy iteration algorithm works for turn-based mean-payoff games seems to be folk-lore, and also see [28]
for the related class of discounted games. Moreover, though TB(G) is not almost-sure ergodic, if we consider an ergodic component
C in G, and consider the corresponding set of states in TB(G), then from all states in C every other state in C is visited infinitely
often with probability 1 in TB(G). Thus for the concrete game TB(G), the proof can also be done similarly to the proof by Hoffman
and Karp [21] for ergodic games, by picking t as a state in C in TB(G).
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only polynomial time in n and log q. Second, our algorithm only requires polynomial space, whereas the
construction of TB(G) would require space polynomial in q (which is exponential in the input size).

Theorem 15. For an almost-sure ergodic CMPG, for all ε > 0, VarHoffmanKarp correctly computes an
ε-optimal strategy, and (i) requires at most O

((
ε−1 ·m · n2 · (δmin)−r

)n·m) iterations, and each iteration
requires at most O(2POLY(m) · POLY(n, log(ε−1), log(δ−1

min))) time; and (ii) requires polynomial space.

5 Exact Value Problem for Almost-sure Ergodic Games

We present two results related to the exact value problem: (1) First we show that for almost-sure ergodic
CMPGs the exact value can be expressed in the existential theory of the reals; and (2) we establish that the
value problem for sure ergodic CMPGs is square-root sum hard.

5.1 Value problem in existential theory of the reals

We show how to express the value problem for almost-sure ergodic CMPGs in the existential theory of the
reals (with addition and multiplication) in three steps (for details about the existential theory of the reals
see [6, 3]).

Step 1: Ergodic decomposition computation. First we compute the ergodic decomposition of an almost-sure
ergodic CMPG in polynomial time, and let C1, C2, . . . , C`, be the ` ergodic components. The polynomial
time algorithm is as follows: construct a graph with state space S, and put an edge (s, t) iff t is reachable
from s in the CMPG. The bottom scc’s of the graph are the ergodic components, where a bottom scc is an
scc with no out-going edges leaving the scc.

Step 2: Existential theory of the reals sentence for an ergodic component. For an ergodic CMPG G,
Hoffman-Karp [21] shows that the value is the unique fixpoint of the strategy iteration algorithm. The
algorithm iteratively takes a strategy σ1 for Player 1, computes the optimal best response strategy σ2 for
Player 2, and computes the potentials of each state vσ1s and the value gσ1 guaranteed by σ1. A strategy
for Player 1 that ensures a higher value than gσ1 is then, for every state u, to use an optimal distribution
in the matrix game defined by M [a1, a2] = R(u, a1, a2) +

∑
s∈S δ(u, a1, a2)(s) · vσ1s . We will quantify

over stationary strategies in the existential theory of the reals, and use the following notation: for a set
{x1, x2, . . . , xk} of variables we write ProbDist(x1, x2, . . . , xk) to denote the constraints (i) xi ≥ 0 for
1 ≤ i ≤ k, and (ii)

∑k
i=1 xi = 1; which specifies that the set of variables forms a probability distribution.

We can formulate the fixpoint of the Hoffman-Karp algorithm (and thus the value g) using existential first
order theory as follows. Fix a specific state s∗, and then consider the following sentence where we quantify
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existentially over the variables g, (xs,i)s∈S,i∈Γ1(s), (ys,j)s∈S,j∈Γ2(s), (vs)s∈S , have the following constraints:

Φ(g, (xs,i)s∈S,i∈Γ1(s), (ys,j)s∈S,j∈Γ2(s), (vs)s∈S) = (1)∧
s∈S

∧
j∈Γ2(s)

(g + vs ≤
∑

i∈Γ1(s)

(xs,i · (R(s, i, j) +
∑
t∈S

(δ(s, i, j)(t) · vt))) ∧ (2)

∧
s∈S

∧
i∈Γ1(s)

(g + vs ≥
∑

j∈Γ2(s)

(ys,j · (R(s, i, j) +
∑
t∈S

(δ(s, i, j)(t) · vt))) ∧ (3)

∧
s∈S

ProbDist(xs,1, xs,2 . . . , xs,|Γ1(s)|) ∧
∧
s∈S

ProbDist(ys,1, ys,2 . . . , ys,|Γ2(s)|) ∧ (4)

(vs∗ = 0) . (5)

Notice that (2) and the fact that the variables xs,i gives a probability distribution, ensures that xs,i gives an
optimal strategy in the matrix game of potentials, similar for (3) and ys,j . Also, (2) and (3) implies that∧

s∈S
(g + vs =

∑
j∈Γ2(s)

∑
i∈Γ1(s)

(ys,j · xs,i · (R(s, i, j) +
∑
t∈S

(δ(s, i, j)(t) · vt))) ,

which together with (2) ensures that

∀s : g + vs = max
j∈Γ2(s)

∑
i∈Γ1(s)

(xs,i · (R(s, i, j) +
∑
t∈S

(δ(s, i, j)(t) · vt))) .

The preceding equality together with (vs∗ = 0) ensures that (vs)s∈S is the potential associated with the
stationary strategy x, and hence, g is the value of the game. The sentence Φ in the existential theory of the
reals for the value is

∃g, (xs,i)s∈S,i∈Γ1(s), (ys,j)s∈S,j∈Γ2(s), (vs)s∈S : Φ(g, (xs,i)s∈S,i∈Γ1(s), (ys,j)s∈S,j∈Γ2(s), (vs)s∈S);

and g denotes the value of the component.
Step 3: Existential theory of the reals sentence for an almost-sure ergodic CMPG. Given a real number
λ and an almost-sure ergodic CMPG G, we will now give an existential theory of the reals sentence,
which can be satisfied iff G has value at most λ. Let C1, C2, . . . , C` be the ergodic components, and
let C =

⋃`
i=1Ci. We denote by ΦCi the existential theory of the reals sentence for the value in com-

ponent Ci (as described in Step 2) and the variable gi is the value. The existential theory sentence for
other states is given using the formula for reachability games. We quantify existential over the variables
((zs)s∈S , (xi,s)s∈(S\C),i∈Γ1(s), (ys,j)s∈(S\C),j∈Γ2(s)) and have the following constraints:∧

1≤i≤` ΦCi ∧∧
s∈(S\C)

∧
j∈Γ2(s) (zs ≤

∑
i∈Γ1(s)

∑
t∈S xs,i · δ(s, i, j)(t) · zt) ∧∧

s∈(S\C)

∧
i∈Γ1(s) (zs ≥

∑
j∈Γ2(s)

∑
t∈S ys,j · δ(s, i, j)(t) · zt) ∧∧

1≤i≤`
∧
s∈Ci (zs = gi) ∧∧
s∈(S\C) ProbDist(xs,1, xs,2 . . . , xs,|Γ1(s)|) ∧

∧
s∈S ProbDist(ys,1, ys,2 . . . , ys,|Γ2(s)|) ∧

(zs ≤ λ) .
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The idea is as follows: First note that the constraint zs = gi, for s ∈ C, ensures that for all states in the
ergodic component the variable zs denotes the value of s (by the correctness of the formula ΦCi for an
ergodic component Ci). If the value of state s ∈ (S \ C) in G is zs, for all s, then∧

s∈(S\C)

∧
j∈Γ2(s)

(zs ≤
∑

i∈Γ1(s)

∑
t∈S

xs,i · δ(s, i, j)(t) · zt)

ensures that x is an optimal strategy in the game. Also, similar to the ergodic part,∧
s∈(S\C)

∧
j∈Γ2(s)

(zs ≤
∑

i∈Γ1(s)

∑
t∈S

xs,i ·δ(s, i, j)(t) ·zt) ;
∧

s∈(S\C)

∧
i∈Γ1(s)

(zs ≥
∑

j∈Γ2(s)

∑
t∈S

ys,j ·δ(s, i, j)(t) ·zt)

implies that for all s:
(zs = max

j∈Γ2(s)

∑
i∈Γ1(s)

∑
t∈S

xs,i · δ(s, i, j)(t) · zt) .

Therefore, the vector z̄, such that z̄s = zs is a fixpoint for the value iteration algorithm. Hence, the fact that
zs ≤ λ, implies that the least fixpoint z̃ of the value iteration algorithm (which is the value of the game) is
such that z̃s ≤ λ. Thus, we get the following theorem.

Theorem 16. The value problem for almost-sure ergodic CMPGs can be expressed in the existential theory
of the reals.

5.2 Square-root sum hardness

In this section we show that the value problem for sure ergodic CMPGs is at least as hard as the square-root
sum problem.

Square-root sum problem. The square-root sum problem is the following decision problem: Given a
positive integer v and a set of positive integers {n1, . . . , n`}, is

∑`
i=1

√
ni ≥ v? The problem is known to

be in the the fourth level of the counting hierarchy [2], but it is a long-standing open problem if it is in NP.

Reduction to sure ergodic CMPGs. The reduction is similar to [10, 11]. First we will define a family
of ergodic CMPGs {Gb | b ∈ N}, such that Gb has value

√
b. Given an instance of the square-root sum

problem, (v, {n1, . . . , n`}), we use our family to get an ergodic CMPG Gni for each number ni. We use
one more state s∗, with one action for each player. The successor of s∗ is Gni with probability 1

` for every

i. This will ensure that the value of s∗ is
∑
i

√
ni

` . Thus, the value of s∗ is at least v` iff
∑

i

√
ni ≥ v. Notice

that we reach an ergodic component in precisely one step from s∗, and thus the game is sure ergodic.

The numbers kb and db. First we will define Gb, for b 6∈ {1, 2, 4}. We will define Gb for b ∈ {1, 2, 4}
afterwards. To define Gb for b 6∈ {1, 2, 4}, we will use two numbers kb and db, such that kb > db > 0,
defined as follows: Let kb be the smallest positive integer such that k2

b > b. Let db = 2 · kb − 2·b
kb

, implying

that b = k2
b −

db·kb
2 . This gives us directly that db > 0 (and hence also db·kb

2 ∈ N). We will show that
kb > db. First, for b = 3, we see that k3 is 3 and 3 = 22 − 1·2

2 and thus d3 = 1, implying that k3 > d3. For
9 > b ≥ 5, we see that kb = 3 and db ∈ [2

3 ; 8
3 ] and again have that kb > db. For b ≥ 9, we will show the

statement using contradiction. Assume therefore that db ≥ kb. We then get that b = k2
b −

db·kb
2 ⇒ b ≤ k2b

2 .

By definition of kb we know that b ≥ (kb − 1)2 = k2
b + 1 − 2 · kb ≥ k2

b + 1 − kb
2 · kb >

k2b
2 . That is a

contradiction. The second to last inequality is because for b ≥ 9, we have that kb ≥ 4. Thus, kb > db for
b 6∈ {1, 2, 4}.
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wu

db
kb 1− db

kb

Figure 3: The game Gb, such that b = k2
b −

kb·db
2 . Dashed edges has reward kb − db and non-dashed edges

has reward kb. Actions are annotated with probabilities if the probability is not 1.

Construction ofGb. For a positive integer b 6∈ {1, 2, 4}, we defineGb as follows. There are two states inGb,
u and w. The state w has a single action for Player 1 and a single action for Player 2, aw and bw respectively,
and the successor of w is always u. Also R(w, aw, bw) = kb. The state u has two actions for each of the
two players. Player 1 has actions a1

u and a2
u. Player 2 has actions b1u and b2u. For any pair of actions aiu

and bju we have that the successor, δ(u, aiu, b
j
u) is w, except for a1

u and b1u for which the successor is u with
probability db

kb
and w with probability 1 − db

kb
. Note that dbkb is a number in (0, 1), since kb > db > 0. The

rewards R(u, a1
u, b

2
u) = R(u, a2

u, b
1
u) are kb− db. The rewards R(u, a1

u, b
1
u) = R(u, a2

u, b
2
u) are kb. The game

is ergodic, since db
kb
< 1, and thus there is a positive probability to change to the other state in every step, no

matter the choice of the players. There is an illustration of Gb in Figure 3.

Remark 17. For b 6∈ {1, 2, 4}, the numbers kb and db have short binary descriptions. The number kb > 0

cannot be larger than
√

2 · b, because otherwise k2
b −

db·kb
2 ≥ k2b

2 > b. It must also be a positive integer and
thus has a binary representation of length at most 1+log b

2 . Also kb > db > 0 and db·kb
2 is a positive integer

and thus, db has a binary representation of length at most 1+log b
2 + 1+log b

2 = 1 + log b.

Gb for b ∈ {1, 2, 4}. One can, using the preceding, define Gb for all positive integers b which is not in
{1, 2, 4}. It is also easy to construct games, which has value

√
1 and

√
4, since they are integers. Let G1

be an arbitrary ergodic CMPG of value 1 and G4 be an arbitrary ergodic CMPG of value 2. One can also
construct a ergodic CMPG, which has value

√
2, similar to our construction of Gb for b 6∈ {1, 2, 4}, using

fractional5 k2 and d2. We see that k2 = 3
2 and d2 = 1

3 gives us that 2 = k2
2 − d2·k2

2 , while ensuring that
k2 > d2 > 0. Let G2 be the game defined analogous to Gb for b 6∈ {1, 2, 4} using k2 = 3

2 and d2 = 1
3 .

The value in Gb is
√
b. We will now argue that for a fixed b 6∈ {1, 4}, the game Gb has value

√
b (by

definition, the CMPGs G1 and G4 had value 1 and 2 resp.). We will use that b = k2
b −

db·kb
2 and that

kb > db > 0. Let σ1 be some arbitrary stationary optimal strategy for Player 1. Let p be the probability that
σ1 plays a1

u. Let a be the optimal potential of state u, then the potential of w is 0. Let v be the value of Gb.

5We do not use fractional kb in general only because it becomes harder to argue that the games has a polynomial length binary
representation.
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Then as shown by Hoffman-Karp [21] the strategy σ1 must satisfy the equation system

a = p · (kb − db) + (1− p) · kb − v

a = (1− p) · (kb − db) + p · kb +
db · p · a
kb

− v

0 = a+ kb − v

From the third equation we obtain a = v − kb, and substituting in the first equation we obtain that

2 · kb = p · db + 2 · v ⇒ p =
2 · kb − 2 · v

db

Substituting a and p from above into the second equation we obtain

0 = 2 · kb − 2 · v − db + 2 · kb − 2 · v +
db · (2 · kb − 2 · v) · (v − kb)

kb · db

⇒ 0 = 2 · kb − db −
2 · v2

kb

⇒ 0 =
k2
b

2
− db · kb

4
− v2

2
(Multiply by kb and divide by 4).

Solving the above second degree equation for v we obtain that

v =
−0±

√
−4 · (k

2
b
2 −

db·kb
4 ) · −1

2

2 · −1
2

⇒ v = ±
√
b

Since we know that the value is positive (since all rewards are positive, because kb > db > 0), we see that
v =
√
b. Thus the desired property is established.

Theorem 18. The value problem for sure ergodic CMPGs is square-root sum hard.

6 Conclusion

In this work we established the strategy complexity and the approximation complexity for ergodic, sure
ergodic, and almost-sure ergodic mean-payoff games. Our results also show that the approximation prob-
lem for turn-based stochastic ergodic mean-payoff games is at least as hard as the value problem for SSGs.
In contrast, for concurrent deterministic almost-sure ergodic games, the value problem can be solved in
polynomial time. In concurrent deterministic games, in every ergodic component all states have an unique
successor, and hence an optimal strategy and the value can be computed in polynomial time. In any given
concurrent deterministic almost-sure ergodic game, once the values of the ergodic components have been
computed, the value iteration algorithm computes the values for the remaining states in n iterations. More-
over, we established that the value problem for sure ergodic games is square-root sum hard. Note that for
sure ergodic games with reachability objectives, the values can be computed in polynomial time by value it-
eration for n iterations. This shows informally that the hardness of sure ergodic games is due to mean-payoff
objectives. Since we have shown that values of ergodic games can be irrational, we conjecture that the value
problem for ergodic games itself is sqaure-root sum hard, but an explicit reduction will be cumbersome.
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