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Abstract

We consider the problem of inference in a
graphical model with binary variables. While
in theory it is arguably preferable to com-
pute marginal probabilities, in practice re-
searchers often use MAP inference due to
the availability of efficient discrete optimiza-
tion algorithms. We bridge the gap between
the two approaches by introducing the Dis-
crete Marginals technique in which approxi-
mate marginals are obtained by minimizing
an objective function with unary and pair-
wise terms over a discretized domain. This
allows the use of techniques originally devel-
oped for MAP-MRF inference and learning.
We explore two ways to set up the objective
function - by discretizing the Bethe free en-
ergy and by learning it from training data.
Experimental results show that for certain
types of graphs a learned function can out-
perform the Bethe approximation. We also
establish a link between the Bethe free en-
ergy and submodular functions.

1. Introduction

We consider the problem of inference in a graphical
model specified by the energy function

E(x) =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) (1)
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with induced probability distribution

p(x) =
1

Z
exp{−E(x)}, (2)

for Z =
∑
x exp{−E(x)}. Here G = (V, E) is an undi-

rected graph with n = |V| nodes, x = (x1, . . . , xn) is a
labeling of V where each xi can take a finite number
of states, and θi(·), θij(·, ·) are unary and pairwise po-
tentials. This problem has received a lot of attention
as it has applications in many different areas, such as
computer vision and natural language processing.

The two standard inference tasks are

• MAP prediction: find a state x of maximal likelihood
p(x) (or, equivalently, of minimal energy E(x)).

• Marginalization: compute marginal probabilities of
the distribution p, e.g. p(xi) for some i ∈ V.

The last decade has seen a tremendous growth in the
popularity of the first approach. To a large extent, this
can be attributed to the existence of efficient discrete
energy minimization algorithms based on the min-
cut/max-flow equivalence, such as graph cuts (Boykov
et al., 2001).

In many situations marginalization is arguably the
better inference approach. For example, the Bayes-
optimal decision with respect to a Hamming loss con-
sists of thresholding the marginal predictions. Unfor-
tunately, it is much harder to tackle computationally,
and this has somewhat hindered its practical use. One
popular technique for approximate marginalization is
(loopy) sum-product belief propagation (BP). How-
ever, BP has the well-known problem that it does not
always converge, which makes it unsuitable for some
applications. While provably convergent double-loop
algorithms for computing fixed points of BP exist, they
are typically rather slow in practice, and have not
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found wide spread use, e.g. in the computer vision
community.

In this paper we attempt to overcome this by combin-
ing the benefits of the two approaches: we compute
(approximate) marginals using techniques developed
originally for MAP-MRF inference. We do it for the
important special case of binary variables, i.e. when
xi ∈ {0, 1} for each i ∈ V. Our goal is thus to com-
pute unary marginals α = (α1, . . . , αn) where

αi =p(xi =1) ∈ [0, 1]. (3)

For this we explore approximation schemes in which
α is obtained by minimizing a function of the form

f(α) =
∑
i∈V

fi(αi) +
∑

(i,j)∈E

fij(αi, αj). (4)

The motivation for using functions of the form (4)
comes from the belief optimization framework (Welling
& Teh, 2001); as shown in (Welling & Teh, 2001),
the popular Bethe free energy approximation can be
expressed in the form (4) where αi ∈ [0, 1]. How-
ever, in order to use discrete optimization algorithms,
we deviate from (Welling & Teh, 2001) by discretiz-
ing the allowed labelings α, i.e. we add a restriction
αi ∈ D ⊂ [0, 1] where D is a fixed finite set. While
this obviously limits the accuracy to some extent, it
also adds two advantages:

• It allows the use of efficient techniques developed
for MAP-MRF inference. One of our results shows
a connection between the Bethe free energy and the
submodularity theory; this suggests that one can use
graph cuts for approximate marginalization.

• It allows to go beyond limitations of the Bethe ap-
proximation by learning terms fi(·), fij(·, ·) from
training data. Again, the discretization is essential
here since it allows to apply standard techniques for
structured output learning, such as structured sup-
port vector machines.

In this paper we investigate both approaches for set-
ting terms fi(·), fij(·, ·) – by using the discretized
Bethe approximation, and by learning these terms
from training data. Our experiments show that when
the Bethe approximation does not work, the learning
can indeed improve the accuracy of marginalization.

2. Discrete energy minimization:
Background

2.1. {Sub,super}modular functions

Let D ⊆ [0, 1] be a totally ordered set. A function
g : Dm → R is called submodular on D if

g(x ∧ y) + g(x ∨ y) ≤ g(x) + g(y) (5)

for all x,y ∈ Dm, where ∧,∨ denote the component-
wise min and max operations, respectively. A function
g is called supermodular if its negative is submodular.
We now introduce the following class of functions.

Definition 1. A function f : Dn → R of the form (4)
is called {sub,super}modular if each term fij(·, ·) is
either submodular on D or supermodular on D.

Such functions will play an important role in this pa-
per: as we will show in Section 3, any function f ob-
tained from the Bethe free energy satisfies the condi-
tion of definition 1.

2.2. LP1 and LP2 relaxations

For MAP-MRF inference, i.e. minimizing the func-
tion (4) over a discrete domain Dn, many more meth-
ods have been developed than for marginalization. In
this section we concentrate on two techniques that
solve linear programming (LP) relaxations of the prob-
lem. Following (Kohli et al., 2008), we call them LP-1
and LP-2.

LP-1 This is the most frequently used relaxation for
MAP inference; it is also known as Schlesinger’s LP:

min
τ

∑
i∈V
a∈D

fi(a)τ i(a) +
∑

(i, j)∈E
a,b∈D

fij(a, b)τ ij(a, b) (6a)

s.t.
∑

a∈D
τ ij(a, b) = τ j(b) ∀(i, j), b (6b)∑

b∈D
τ ij(a, b) = τ i(a) ∀(i, j), a (6c)∑

a∈D
τ i(a) = 1 ∀i (6d)

It can be solved with general-purpose LP solvers,
e.g. interior point methods, or solved approximately
with specialized algorithms that exploit the special
structure of the problem, see e.g. (Werner, 2007).
Note that for submodular functions this relaxation is
tight (Werner, 2007), so all solutions are integral. In
general, however, the optimal solution may have frac-
tional entries.

LP-2 This relaxation proposed in (Kohli et al., 2008)
is used less frequently in the literature, but as we will
see later it is quite appropriate in our context. It
assumes that set D is ordered: D = {d1, . . . , dK},
d1 < . . . < dK . LP-2 can be described algorithmi-
cally as follows:
1. For each variable αi ∈ D introduce K − 1 binary
variables zi = (zi2, . . . , ziK) with the following corre-
spondence:

αi = d1 ⇔ zi = (0, 0, . . . , 0)

αi = d2 ⇔ zi = (1, 0, . . . , 0)

. . .

αi = dK ⇔ zi = (1, 1, . . . , 1)



Approximating Marginals Using Discrete Energy Minimization

This is known as the Ishikawa representa-
tion (Ishikawa, 2003).
2. Construct function g(z) with unary and pairwise
terms such that g(z) = f(α) if z corresponds to
α, and g(z) = ∞ if z is not a “valid” labeling, i.e.
zik < zik+1 for some i, k. We refer to (Schlesinger
& Flach, 2006; Kohli et al., 2008) for details of this
construction.
3. Apply the roof duality relaxation (Kolmogorov &
Rother, 2007) to function g(z).

In general, LP-2 is less tight than LP-1, i.e. the lower
bound on minα f(α) given by LP-2 is not greater than
that of LP-1. However, there are several reasons to use
LP-2 in our context due to the following properties:

Theorem 2 ((Kohli et al., 2008)). (a) If f is a
{sub,super}modular function then LP-1 and LP-2 co-
incide.
(b) LP-2 can be solved in polynomial time by comput-
ing a maximum flow in an appropriately constructed
graph.
(c) The LP-2 relaxation possesses the persistency, or
partial optimality property. Namely, solving LP-2
gives labelings αmin, αmax such that αmin ≤ α∗ ≤
αmax for some optimal solution α∗ ∈ arg minα f(α).
If all terms fij are submodular then αmin = αmax.

3. Discrete Marginals

We now return to the problem of computing dis-
crete marginals for a fixed discretization D =
{d1, . . . , dK} ⊂ [0, 1]. As stated in the introduction,
we would like to compute the marginals by minimiz-
ing function f(α) =

∑
i fi(αi)+

∑
(i,j) fij(αi, αj) over

α ∈ Dn. In general, this problem is NP-hard, so we
have to resort to an approximation. In this paper we
employ the LP-1 relaxation of the energy. Solving
it gives a fractional vector τ ; we then compute the
marginals via

αi =
∑
d∈D

τ i(d)d (7)

We emphasize, however, that other techniques for
MAP-MRF inference can be used as well, e.g. the LP-2
relaxation.

Below we discuss two ways to set terms fi(·), fij(·, ·):
• restrict the Bethe free energy from [0, 1]n to Dn;
• learn fi(·), fij(·, ·) from training data.
We will assume without loss of generality that func-
tion (1) has been converted to the form

E(x) =
∑
i∈V

ηixi +
∑

(i,j)∈E

ηijxixj + const (8)

This will be useful for the learning part. Note, coeffi-
cients ηi, ηij are uniquely determined from θ.

3.1. Bethe Discrete Marginals

The fact that the Bethe free energy in the binary
case can be written in the form (4) has been observed
in (Welling & Teh, 2001). This is achieved by minimiz-
ing out pairwise marginals for fixed unary marginals;
we refer to (Welling & Teh, 2001) or to a technical
report for details. We now observe the following.

Theorem 3. If a term θij(·, ·) is submodular (super-
modular) on {0, 1} then the term fij(·, ·) that comes
from the Bethe free energy is submodular (supermodu-
lar) on [0, 1].

A proof is given in the technical report. This theo-
rem has several implications. First, it means that for
submodular functions E(x) we can efficiently compute
the global minimum of the Bethe free energy up to a
given discretization. This adds to the understanding
of the complexity of minimizing the Bethe free en-
ergy. Results known so far include various sufficient
conditions for the uniqueness of the BP fixed point,
e.g. (Mooij & Kappen, 2007; Watanabe & Fukumizu,
2009). However, existing conditions usually break for
a sufficiently low temperature, i.e. when the energy
is multiplied by some large constant. Furthermore,
it is known (Watanabe, 2011) that for most types of
graphs (with the exception of trees, single cycles, and
several others) there always exist a submodular func-
tion E(x) with multiple BP fixed points. Also note
that for binary submodular functions, the Bethe free
energy evaluated at any feasible point always bounds
the log partition function, see (Ruozzi, 2012). Theo-
rem 3 implies that the tightest Bethe bound can be up
to a given discretization efficiently computed.

For non-submodular functions E(x) it is not clear
whether the global minimum of the Bethe free en-
ergy can be computed efficiently (with or without dis-
cretization). However, theorem 3 combined with the-
orem 2 imply two interesting facts: (i) the standard
LP-1 relaxation of the (discretized) Bethe free energy
can be computed efficiently via graph cuts, and (ii) the
solution of this LP gives intervals [αmin

i , αmax
i ] which

are guaranteed to contain a global minimum.

It is possible to show some convergence results when
the quantization step goes to zero (see technical re-
port).

We refer to the Bethe Discrete Marginals as to BDM.

3.2. Learned Discrete Marginals

The structure of f in Equation (4) and the fact that
prediction is performed by minimization suggest a sec-
ond possibility for obtaining discrete marginals: by
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learning a suitable f using a structured support vec-
tor machine (SSVM) (Tsochantaridis et al., 2006).

We write P for set of binary pairwise MRFs and we
denote by L the set of all possible outputs of the
discrete marginalization step, i.e. the set of vectors
τ = (τ i)i∈V ⊕ (τ ij)(i,j)∈E , where τ i ∈ [0, 1]|D| and

τ ij ∈ [0, 1]|D|×|D| fulfill the constraints of LP-1, and
⊕ indicates the concatenation of vectors. This puts us
into an over-generating setup in the sense of (Finley &
Joachims, 2008): any discretized marginal value has a
representation in L by its corresponding indicator vec-
tor but fractional solutions can be represented as well.
For any τ = (τ i)i⊕ (τ ij)ij and τ ′ = (τ ′i)i⊕ (τ ′ij)ij we
set as loss function

∆(τ , τ ′) =
∑

i∈V
|
∑

d∈D
(τ i(d)d− τ ′i(d)d)|, (9)

which penalizes mistakes in the unary predictions τ i

proportionally to their strength. For non-fractional
τ i, the inner sum is the L1-distance between the cor-
responding marginals, making ∆ compatible with ear-
lier work that had to analyze the quality of predicted
marginals (Mooij, 2010; Welling, 2004).

For any input MRF, p, with node degrees ni, unary
weights ηi and pairwise weights ηij , and for any out-
put τ = (τ i)i∈V ⊕ (τ ij)(i,j)∈E , let φ1 =

∑
i∈V τ iψ

>
i

for ψi = (ηi, ni, 1)> ∈ R3, and φ2 =
∑

(i,j)∈E τ ijψ
>
ij ,

where ψij ∈ {0, 1}K
′

denotes the indicator vector of
discretizing ηij into a set of predefined values, D′ =
{d′1, . . . , d′K′} ⊂ R. We form the SSVM’s joint feature
function as, φ(p, τ ) = vec(φ1) ⊕ vec(φ2), where vec(·)
denotes row-major order vectorization of a matrix.

The joint feature map φ(p, τ ), and thereby also
the SSVM quality function F (p, τ ) = 〈w, φ(p, τ )〉,
are linear in τ . Therefore the SSVM prediction,
argmaxτ F (p, τ ), as well as the loss-augmented predic-
tion steps needed during training,argmaxτ ∆(τ ′, τ ) +
F (p, τ ) can be performed using LP-1.

Note that our construction generalizes the BDM sit-
uation: for a suitably chosen weight vector, F (p, τ )
becomes the Bethe discrete marginal function f (or
rather its negative), up to quantization of ηij . How-
ever, the learning aims neither at approximating the
Bethe free energy nor the free energy itself. The sole
criterion for the SSVM is selecting the energy func-
tion that yields good marginal predictions when mini-
mized over. In particular, we can expect the resulting
energy to be easier to minimize than the former two,
because the overgenerating SSVM framework discour-
ages terms that would result in many fractional solu-
tions when minimized over.

We refer to the Learned Discrete Marginals as to
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Figure 1. Top row: Mean marginal error. Bottom row:
Portion of fractional marginals. Left column: Eight vari-
able distributions with submodular energies. Right col-
umn: Six variable distributions with non-submodular en-
ergies.

LDM.

4. Empirical Comparison

We now give a short account of our experiments. For
details we refer to the technical report. We generated
two datasets with distributions specified over complete
graphs. The first dataset, that we report in the left col-
umn of figure 1, involves distributions with submodu-
lar energies. In this case the LP-1 in BDM is tight and
hence solutions are expected to be non-fractional. The
second dataset, that we report in the right column of
figure 1, involves distributions with non-submodular
energies. In this case the LP-1 in BDM is no longer
tight. For both datasets we evaluated marginal errors
of BDM, LDM and BP as baseline. We report the
marginal errors in the top row of figure 1. For BDM
and LDM we in the bottom row of figure 1 also report
the portion of fractional solutions.

The portion of fractional BDM marginals in figure 1(c)
is not zero due to the fact that the employed interior-
point method has not always converged to sufficient
precision. The figure shows that LDM has learned
an objective that yields almost no fractional solutions.
Figure 1(d) shows that BDM marginals are all frac-
tional. We observe that LDM learned an objective
that yields relatively small portion of fractional solu-
tions.

The BP error in the top row of figure 1 is not 0 pos-
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sibly due to the in general wrong objective. For the
same reason we do not expect the BDM error to con-
verge to 0 either. The BDM error will not necessarily
even converge to the BP error due to possibly local
fixed point of the BP (Watanabe, 2011), due to pos-
sibly BP not having converged at all or in figure 1(d)
due to fractional solutions. In the top row of figure 1
we observe that as we increase the number of discrete
levels LDM reduces the error of BDM. We argue that
this is an indication of the ability of LDM to overcome
some of the limitations of the Bethe approximation.

5. Conclusions and future work

We introduced the Discrete Marginals approach, in
which the approximate marginals are obtained by min-
imizing an objective function of discrete variables with
unary and pairwise terms. This allows the use of tech-
niques developed for MAP-MRF inference and learn-
ing. Experiments suggest that if BP does not perform
well, learning the suitable function from training data
may have significant benefits.
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