
Edit Distance for Timed Automata

Krishnendu Chatterjee and Rasmus Ibsen-Jensen and Rupak Majumdar

Technical Report No. IST-2013-144-v1+1
Deposited at UNSPECIFIED
http://repository.ist.ac.at/144/1/main.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268224814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Edit Distance for Timed Automata

Krishnendu Chatterjee
IST Austria

Rasmus Ibsen-Jensen
IST Austria

Rupak Majumdar
MPI-SWS

ABSTRACT
The edit distance between two (untimed) traces is the minimum
cost of a sequence of edit operations (insertion, deletion,or substi-
tution) needed to transform one trace to the other. Edit distances
have been extensively studied in the untimed setting, and form the
basis for approximate matching of sequences in different domains
such as coding theory, parsing, and speech recognition.

In this paper, we lift the study of edit distances from untimed
languages to the timed setting. We define an edit distance between
timed words which incorporates both the edit distance between the
untimed words and the absolute difference in time stamps. Our
edit distance between two timed words is computable in polyno-
mial time. Further, we show that the edit distance between a timed
word and a timed language generated by a timed automaton, de-
fined as the edit distance between the word and the closest word
in the language, is PSPACE-complete. While computing the edit
distance between two timed automata is undecidable, we showthat
the approximate version, where we decide if the edit distance be-
tween two timed automata is either less than a given parameter or
more thanδ away from the parameter, forδ > 0, can be solved
in exponential space and is EXPSPACE-hard. Our definitions and
techniques can be generalized to the setting of hybrid systems, and
analogous decidability results hold for rectangular automata.
Keywords. Timed automata; Edit distance; Rectangular hybrid
automata.

1. INTRODUCTION
The edit distance [14] between two strings is the minimum cost

of a sequence of edit operations (insertion, deletion, or substitu-
tion of one letter by another) that transforms one string to another.
The edit distance between a stringw and a languageL is the min-
imal distance between strings belonging toL andw. The notion
of edit distanceprovides a quantitative measure of “how far” one
string is from another, or from a given language. It forms theba-
sis for approximately comparing sequences, a problem that arises
in many different areas, such as error-correcting codes, natural lan-
guage processing, and computational biology.

Algorithms for edit distance have been studied extensivelyfor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’14.
Copyright 2014 ACM 978-1-4503-1567-8/13/04 ...$15.00.

(untimed) words [14, 1, 16, 18, 13, 15]. In this paper, we gener-
alize the definition of edit distance from untimed to timed words.
We define the edit distance between two timed wordstw andtw′

as the lexico-graphic ordering of two components: the first is the
(normal) edit distance on their untimed parts, and the second is
the maximum difference in time stamps.1 We study algorithmic
aspects of the edit distance between timed words and timed lan-
guages. We show that the edit distance between two timed words
can be computed in polynomial time. Moreover, we show that the
edit distance between a timed word and a timed language generated
by a timed automaton can be computed in polynomial space. The
corresponding decision problem is PSPACE-complete. A niceby-
product of our result is that the edit distance problem for anuntime
word and untimed non-deterministic finite-state automata (NFA) is
NL-complete (complete for non-deterministic log-space).

One can generalize edit distances to capture the distance between
two languages: the edit distance betweenL1 andL2 is the supre-
mum over all stringsw inL1 of the edit distance betweenw andL2.
We show that the edit distance between two timed languages gener-
ated by timed automata is not computable. However, we show that
the approximate version of the problem, where we ask if the edit
distance is either less thanα or more thanα+δ for an additive error
δ > 0, can be solved in exponential space, and is EXPSPACE-hard.

Our results use the following technical constructions. Forthe
computation of edit distance between a timed word and a timed
automaton, we construct two timed automata which are polyno-
mial in the size of the input automaton, and show that the decision
problem for edit distance reduces to checking non-emptiness of the
constructed automata. The key intuition is to use non-determinism
in the timed automata to model edits in the word, and use additional
clocks with rectangular constraints to bound the mismatch in time
stamps. For the computation of the approximation of edit distance
between two timed automata, we generalize the approach for com-
putation of edit distance between two untimed automata [4].The
algorithm uses the classical region abstraction, but requires non-
trivial generalization of the untimed case [4] to capture the quanti-
tative timing aspects.

Besides intellectual curiosity, our definition and algorithmic
computation of edit distances between timed words and timedlan-
guages form the foundations of a quantitative approach to timed
verification. The calculation of timed edit distance is the basis for
repairing timed specifications, generalizing the untimed case [4],
and for providing robust semantics to timed automata and timed
logics [9, 8]. For example, in simulation-based verification of a
real-time implementation against a timed automaton model,the
simulation trace may differ slightly from the model due to inac-

1 While we focus on this definition, we show that several related
definitions have similar algorithmic properties.

curacies in the implementation and errors in measuring the timing
behavior. Thus, a timed trace of the implementation may not be
in the model. However, instead of rejecting the implementation,
one can quantify the distance between a measured trace and the
model. Quantitative semantics for timed and hybrid logics have
been the basis for some recent verification tools [10, 7]. Ourwork
can be seen as providing a quantitative semantics for timed automa-
ton models.

Finally, while we focus on timed systems, we sketch how our
definitions and algorithmic techniques extend to hybrid automata,
with EXPTIME algorithms for the edit distance between a hybrid
trace and a rectangular hybrid automaton, and 2EXPTIME algo-
rithm for the approximate distance between two rectangularau-
tomata.

2. DEFINITIONS
In this section we first present the basic definition of timed au-

tomata, and then the notion of edit distance for them.

2.1 Timed Automata
Timed automata [2] suggest a finite syntax for specifying finite-

state automata with real-valued clocks. We first start with the no-
tion of clock constraints.

Clock constraints. For a setX of clock variables, the setΦ(X) of
clock constraintsψ is defined inductively by

ψ := x ≤ d | d ≤ x | ¬ψ | ψ1 ∧ ψ2,

wherex is a clock inX andd is a constant in natural numbers.

Timed automata. A timed automatonA over finite words is a
tuple〈L,Σ, C,→, γ, S0, F 〉 , where

• L is a finite set of locations.

• Σ is a finite set of input alphabet.

• C is a finite set of clocks.

• →⊆ L× L× Σ× 2C × Φ(C) gives the set of transitions,
whereΦ(C) is the set of clock constraints overC. An edge
(ℓ, ℓ′, σ, λ, ψ) represents a transition from locationℓ to loca-
tion ℓ′ on input letterσ, λ ⊆ C represents the set of clocks
to be reset with the transition andψ is a clock constraint over
C.

• γ : L 7→ Constr(C) is a function that assigns to every lo-
cation an invariant on clock valuations. All clocks increase
uniformly at the same rate. When at locationℓ, a valid exe-
cution must move out ofℓ before the invariantγ(ℓ) expires.
Thus, the timed automaton can stay at a location only as long
as the invariant is satisfied by the clock values.

• S0 ⊆ L× R
|C|
+ is the set of initial states.

• F ⊆ L is a finite set of accepting locations.

Each clock increases at rate1 inside a location. Aclock valuation
is a functionκ : C 7→ R≥0 that maps every clock to a non-negative
real. The set of all clock valuations forC is denoted byK(C).
Given a clock valuationκ ∈ K(C) and a time delay∆ ∈ R≥0,
we writeκ +∆ for the clock valuation inK(C) defined by(κ +
∆)(x) = κ(x)+∆ for all clocksx ∈ C. For a subsetλ ⊆ C of the
clocks, we writeκ[λ := 0] for the clock valuation inK(C) defined
by (κ[λ := 0])(x) = 0 if x ∈ λ, and(κ[λ := 0])(x) = κ(x) if
x 6∈ λ. A clock valuationκ ∈ K(C) satisfiesthe clock constraint
θ, written κ |= θ, if the conditionθ holds when all clocks inC

take on the values specified byκ. A states = 〈ℓ, κ〉 of the timed
automatonA is a locationℓ ∈ L together with a clock valuation
κ ∈ K(C) such that the invariant at the location is satisfied, that
is,κ |= γ(ℓ). We letS be the set of all states ofA. The semantics
of timed automata are given as timed transition systems, which is
standard [2], and omitted here.

Timed and untimed words. An untimed wordw ∈ Σ∗ is a finite
sequence of input letters, and atimed wordtw ∈ (Σ×R)∗ is a finite
sequence of input letters and time stamps such that the time stamps
are non-decreasing. Equivalently a timed wordtw = (w, t) can
be considered as a pair of sequences, where the first sequencew =
(σ1, σ2, . . . , σn) is the sequence of letters (i.e., the untimed word
corresponding totw), and the second sequence is the corresponding
time stampst = (t1, t2, . . . , tn), and we require that for all1 ≤
i ≤ n− 1 we haveti ≤ ti+1. Thelengthof a timed wordtw is the
number of letters in it, i.e., the length of the untimed word.

Language of timed automata.A timed wordtw induces a set of
runs over a timed automata (see [2] for the standard semantics of
runs). A wordtw is accepted by an automataA if there exists a
run that ends in an accepting location. For a timed automatonA
we denote byL(A) the set of timed words accepted byA.

Clock region equivalence.Clock region equivalence, denoted as
∼= is an equivalence relation on states of timed automata. The
equivalence classes of the relation are calledregions, and induce
a time abstract bisimulation on the corresponding timed transition
system [2]. There are finitely many clock regions; more precisely,
the number of clock regions is bounded by|L|·

∏
x∈C

(cx+1)·|C|!·

4|C|. For a realt ≥ 0, let frac(t) = t − ⌊t⌋ denote the fractional
part oft. Given a timed automatonA, for each clockx ∈ C, let cx
denote the largest integer constant that appears in any clock con-
straint involvingx in A (let cx = 1 if there is no clock constraint
involving x). Two states〈ℓ1, κ1〉 and〈ℓ2, κ2〉 are said to beregion
equivalentif all the following conditions are satisfied: (a)ℓ1 = ℓ2,
(b) for all clocksx, we haveκ1(x) ≤ cx iff κ2(x) ≤ cx, (c) for
all clocks x with κ1(x) ≤ cx, we have⌊κ1(x)⌋ = ⌊κ2(x)⌋,
(d) for all clocksx, y with κ1(x) ≤ cx andκ1(y) ≤ cy, we have
frac(κ1(x)) ≤ frac(κ1(y)) iff frac(κ2(x)) ≤ frac(κ2(y)), and
(e) for all clocksx with κ1(x) ≤ cx, we havefrac(κ1(x)) = 0 iff
frac(κ2(x)) = 0. Given a state〈ℓ, κ〉 of A, we denote the region
containing〈ℓ, κ〉 asReg(〈ℓ, κ〉).

Region graph.The region graphReg(A) corresponding to a timed
automataA is the time-abstract bisimulation quotient graph in-
duced by the region equivalence relation. The states ofReg(A)
are the regions ofA. In the region graph, for regionsR andR′,
there exists a transitionR → R′ iff there existss ∈ R ands′ ∈ R′

such that there exists a transition froms to s′ in the timed automata.
We denote by|Reg(A)| the number of states in the region graph,
which is bounded by|C|! · 4|C| · (cmax + 1)|C| · |L|, whereC is
the set of clocks,cmax the largest constant in the clock constraints,
and|L| is the number of locations.

2.2 Edit distance
In this section we first recall the notion of edit distance forun-

timed words, and then introduce the definition of edit distance for
timed words. Finally we present the definition of edit distance be-
tween a timed word and a timed automaton, and between two timed
automata.

Edit distance between untimed words. Consider a pair of un-
timed wordsw andw′. A word editWE from w to w′ is a fi-
nite sequence of some deletions, substitutions, and insertions of
letters intow such that the sequence of transformations changes

w to w′. We denote byWE(w,w′) the set of word edits fromw
to w′, andOpt(w,w′) be the set of optimal word edits between
w andw′, i.e.,Opt(w,w′) is the subset ofWE(w,w′) such that
every sequence inOpt(w,w′) has the minimal length among the
sequences inWE(w,w′). Theedit-distanceD(w,w′) is the mini-
mum number of edits required to transformw tow′, i.e., the length
of a sequence inOpt(w,w′). A word editWE is optimal if it be-
longs toOpt(w,w′). Given a word editWE, we say that thei-th
index ofw is retainedif the i-th letterwi was not deleted by the
deletions ofWE nor substituted by the substitutions ofWE. Also,
we say that thei-th index ofw correspondsto thej-th index ofw′

if i was retained and there wasj − i insertions minus deletions in
WE before thei-th index. Note that if indexi is retained, there is
always somej such thati corresponds toj. Also note that for any
indexj, there is at most one indexi such that indexi corresponds
to indexj.

Example. Informally, the edit distance between two timed words
is a pair, where the first component is the edit distance between the
untimed words, and the second component is the absolute maximal
time mismatch. We illustrate with some examples the definition
for edit distance between timed words. First consider two timed
words where the untimed parts match, i.e.,tw = (w, t) andtw′ =

(w, t
′
). Then the first component of the edit distance is 0 and the

second component is the absolute maximal mismatch in the timing.
Now, consider two timed wordstw = (w, t), wherew = abcd

and t = (1, 2, 3, 4), andtw′ = (w′, t
′
) wherew′ = abbcd and

t
′
= (1, 2, 2, 4, 4). We first extend the timed wordtw to a timed

word tw′′ = (w′′, t
′′
) such thatw′′ = w′ and the time sequences

in t
′′ matches the ones oft for the occurrences that match inw

andw′′. For example, an extension oftw is w′′ = abbcd and
t
′′
= (1, 2, 2, 3, 4). Thus the first component of the edit distance

is 1, and the second component is also 1.

Extension of timed words. Given a pair of timed wordstw =
(w, t) andtw′ = (w′, t

′
), we first consider the corresponding un-

timed wordsw andw′. Given a word editWE betweenw andw′,
the timed wordtw can beextendedto tw′ byWE if for each pair of
indicesi, j, such that indexi of w corresponds to indexj of w′ un-
derWE, we have thatti = t′j . In other words, the word edit creates
a word whose untimed word matches withw′ and the time stamps
corresponding to the letters inw match with the time stamps inw.
Given a timed wordtw, a wordw′, and a word editWE between
w andw′, letExt(tw, w′,WE) be the set of timed wordstw′ such
thattw can be extended totw′ byWE.

Edit distance between timed words. Let (a1, b1) ∈ R2 and
(a2, b2) ∈ R2 be two pairs of real numbers, then thelexico-graphic
ordering≤lex and<lex is defined as follows:

(a1, b1) ≤lex (a2, b2) iff (a1 < a2) ∨ (a1 = a2 ∧ b1 ≤ b2);

(a1, b1) <lex (a2, b2) iff (a1 < a2) ∨ (a1 = a2 ∧ b1 < b2);

and we use similar notations for≥lex and>lex. The edit distance
for timed words has two components, the first component is the
number of edits for the untimed word, and the second component
is the maximal mismatch in the time stamps. We consider edit dis-
tance between timed words where we consider the lexico-graphic
ordering of the two components, i.e., edits to discrete transitions
are more costly. Formally, the edit distanceD(tw, tw′) between
two timed words is defined as follows, whereD1(tw, tw

′) and
D2(tw, tw

′) are the first and second component, respectively:

1. For a pair of timed wordstw = (w, t) andtw′ = (w′, t
′
)

of lengthn, such thatw = w′, the first component of the

edit distance is 0 and the second componentD2(tw, tw
′) is

defined as follows:

D2(tw, tw
′) = max

1≤i≤n
|ti − t

′
i| .

2. For a pair of timed wordstw = (w, t) andtw′ = (w′, t
′
)

such thatw 6= w′ we haveD1(tw, tw
′) = D(w,w′), i.e.,

the first component is the edit distance of the untimed words.
For the second component we first consider the extension of
tw and then compute the second component. Formally,

D2(tw, tw
′) = inf

WE∈Opt(w,w′) and,

tw′′∈Ext(tw,w′,WE)

D2(tw
′′
, tw′) .

Note that above we have that the untimed part oftw′′ andtw′

coincide and hence we apply the definition of the first item
above where the untimed parts coincide. Intuitively, we first
pick some optimal word edit for the untimed word, and then
extend the first word under this word edit, and then compute
the second component. Finally, among all the choices we
consider the one that minimizes the second component.

PROPOSITION1 (COMPUTATION OF EDIT DISTANCE).
Given two timed wordstw and tw′ the edit distanceD(tw, tw′)
can be computed in polynomial time.

PROOF. It is straightforward to find the edit distance between
two timed wordstw, tw′ in polynomial time, and we describe the
main ideas below. The first component is computed simply run-
ning the classical dynamic programming algorithm of [20] onthe
untimed words. Given a boundβ on the second component the
standard dynamic programming algorithm of [20] is modified to
ensure that for alli, j, the i-th character oftw matches thej-th
character oftw′ iff they use the same letter and the difference be-
tween the time stamps is at mostβ. It is also clear that there are at
most| tw | · | tw′ | different “possible” values forβ: the difference
between each pair of time stamps (except in the case where no letter
match, in which case the value ofβ is 0). By simply using a binary
search algorithm over the possible choices, we get an algorithm
with a running time ofO(| tw | · | tw′ | · log(| tw | · | tw′ |)).

Edit distance of timed words and timed automata, and between
pairs of timed automata. Consider a pair of timed automataA and
A′, and a timed wordtw. The edit distance between the pairs, and
between the timed word and an automaton is defined as follows:

1. For the timed wordtw and the timed automatonA, the edit
distanceD(tw,A) is inftw′∈L(A) D(tw, tw′), i.e., the edit
distance is the minimal edit distance among all words ac-
cepted by the automatonA. Also note that we consider the
lexico-graphic ordering to compare the edit distance which
consists of a pair of numbers.

2. For the pair of timed automataA,A′, the edit distance
D(A,A′) is suptw∈L(A) D(tw,A′), i.e., it is the maximal
edit distance between a word in the language ofA to the au-
tomatonA′.

3. EDIT DISTANCE BETWEEN A TIMED
WORD AND A TIMED AUTOMATON

In this section we consider the edit distance problem between a
timed word and a timed automaton. We show that the problem is
PSPACE-complete. We first define the decision problem and start
with the lower bound.

Decision problem for edit distance between a timed word
and a timed automaton. The edit-distance decisionproblem
EdDec(α, β, tw,A) is as follows: given a non-negative integer
α, a numberβ ∈ Q ∪ {∞}, whereQ is the set of rationals, a
timed wordtw, and a timed automatonA, the decision problem
asks whether the edit distanceD(tw,A) ≤lex (α, β)? In the se-
quel we always considerα ∈ N andβ ∈ Q ∪ {∞} such thatβ is
non-negative.

LEMMA 2 (PSPACELOWER BOUND). The edit-distance
decision problemEdDec(α, β, tw,A) is PSPACE-hard.

PROOF. Since the reachability problem for timed automata is
PSPACE-hard [2], it follows that the non-emptiness question for
timed automata (i.e., given a timed automatonA, whetherL(A) is
non-empty) is also PSPACE-hard. If the languageL(A) for a timed
automatonA is non-empty, then it accepts a timed word of length
say at mostd∗ (d∗ is at most exponential in the size ofA and linear
in the size of the region graph). Then the answer to the question
EdDec(d∗ + 1, 0, ǫ,A) is YES iff L(A) is non-empty, whereǫ is
the empty word. The PSPACE lower bound follows.

PSPACE upper bound. The rest of the section is devoted to pre-
senting a PSPACE upper bound for the edit distance decision prob-
lem EdDec(α, β, tw,A) .

Bound on the components of the edit distance.We start with a
bound of the first component of edit distance.

1. (Bound on first component).For a given timed automatonA,
if L(A) is not empty, then as mentioned aboveA accepts a
word of length at most exponential in the size of the automa-
ton (at most the size of the region graph). Hence the first
component of the edit distance between a timed wordtw and
a timed automatonA is at mostmax{| tw |, d}, where| tw |
is the length of the timed word andd the length of the shortest
word inL(A).

2. (Bound on second component).If the first component is
bounded byα, then the second component can be at most
max (| tw |+ α) · cmax, t| tw |, where cmax is the greatest
number appearing in a clock constraint andt| tw | is the last
time stamp intw. This is because any run inA that ensures
that the first component is at mostα cannot be longer than
(| tw |+α) and we can bound the wait in each move bycmax.

PSPACE algorithm. We now give an algorithm which solves the
decision problemEdDec(α, β, tw,A) in polynomial space. We
refer to our algorithm as SOLED(α, β, tw,A). Givenα, β, tw, and
A, we construct two timed automataA′ andA′′ and return NO iff
L(A′) andL(A′′) are both empty, i.e., if either of the automata has
a non-empty language, then the answer to the edit-distance decision
problem is YES. The construction ofA′′ givenα, β, tw, andA, is
the same as the construction ofA′ givenα− 1,∞, tw andA, and
thus we only explicitly give the construction ofA′.

Construction ofA′ givenα, β, tw, andA. The construction ofA′

givenα, β, tw, andA, is as follows:

1. (Locations).The timed automatonA′ contains(| tw |+ 1) ·
(α+1) copies ofA, each location in each copy is annotated
with a pair of integers(j, k), where0 ≤ j ≤ | tw | and
0 ≤ k ≤ α, wherej corresponds to how far the timed word
tw has been processed, andk to the number of edits that have
been made. The location corresponding to locationℓ in A,
annotated with(j, k) is location(ℓ, j, k) in A′. Furthermore

there is a locationerr from which no accepting location can
be reached, and corresponds to the fact that more thanα edits
have been made (i.e., the target on edit distance has been
exceeded).

2. (Accepting locations).The only accepting locations in the
automataA′ are the locations in the copies ofA, which are
annotated with(| tw |, k) for somek and which corresponds
to accepting locations ofA.

3. (Clocks).The set of clocksC′ in A′ isC, the set of clocks in
A, together with the two additional clocks{x, x′}. The clock
x measures the total time used and the clockx′ measures the
time used in the current location. Hence,x is never reset and
x′ is reset in every transition.

4. (Transitions).The location(ℓ, j, k) have up to3 · d+1 tran-
sitions, whered is the number of transitions in locationℓ of
A. Each transition fromℓ to ℓ′ in A is copied three times
and there is also at most one more transitiont. The tran-
sition t exists iff j 6= | tw |. If transition t exists, it resets
the clockx′ (though this is not necessary, but makes it con-
ceptually easier to follow), uses the letterwj+1, and has a
clock constraint ofx′ = 0. That is, it can only be used if
no time has passed since arriving in(ℓ, j, k). The transition
goes to(ℓ, j + 1, k + 1) (the transitiont modelsinsertions
of the next letter). For a fixed transitiont′ betweenℓ and
ℓ′ in A, the three copies of it from(ℓ, j, k) each resets the
same clocks ast′, but also the clockx′ and otherwise are as
follows:

(a) The first copy has the same clock constraint ast′ but
goes to location(ℓ′, j, k+1), if k < α or err otherwise
and has the letterǫ (this copy corresponds todeletion
of the current letter).

(b) The second copy only exists ifj < | tw |. The second
copy (if it exists) also has the same clock constraint as
t′ but goes to location(ℓ′, j + 1, k + 1), if j < α or
err otherwise and has the letterwj+1 (this copy corre-
sponds tosubstitutionof the current letter).

(c) The third copy also only exists ifj < | tw | and that
t′ is awj+1-transition. The third copy (if it exists) has
the clock constraintG(t′)∧ (x ∈ [tj+1−β; tj+1+β]),
whereG(t′) is the clock constraint oft′ (the clock con-
straint is the same as fort′ if β = ∞) and goes to
location(ℓ, j+1, k) and has letterwj+1 (this copy cor-
responds tono edithaving been made with the current
letter).

Intuitively, the transitiont′ checks for insertions, the first two
copies of the transition check for deletions and substitutions,
and the final copy of the transition checks for a correct move
(i.e., no edits).

5. (Invariant). The invariant at location(ℓ, j, k) is the same as
in locationℓ.

Before the correctness argument and complexity analysis wefirst
present an example for illustration.

Example. Consider the timed automatonA for the timed language
overa, b which (i) ends ina; and (ii) in which there is a difference
in time of at most 1 between each consecutivea’s and between each
consecutiveb’s; and (iii) the first move has a delay of at most 1. The
automaton consists of two locations,1 and2, location1 is the start

21

a, {c1 ≤ 1, c2 ≤ 1},
c2 := 0

b, {c1 ≤ 1, c2 ≤ 1},
c1 := 0

a, {c1 ≤ 1, c2 ≤ 1},
c2 := 0

b, {c1 ≤ 1, c2 ≤ 1},
c1 := 0

Figure 1: Example automataA.

location and location2 is the accepting location. There are two
clocks in the automatonc1 andc2. The automaton contains four
transitions, and each transition has clock constraintc1 ≤ 1 and
c2 ≤ 1. From locationj there are two outgoing transitionstj1 and
t
j
2. The transitiontj1 goes to location1, resets clockc1, and uses

letter b. The transitiontj2 goes to location2, resets clockc2, and
uses lettera. A pictorial illustration is given in Figure 1.

We then consider the decision problemEdDec(1, 1, tw,A),
wheretw = ((a, 2), (b, 3)). There is an illustration of the timed
automatonA′ corresponding toEdDec(1, 1, tw,A) in Figure 2.
For the sake of readability, we have removed the unreachablelo-
cations (which are location(2, 0, 0), location (1, 1, 0) and loca-
tion (2, 2, 0)) in the figure, and instead of annotating the transi-
tions with the letter, clock constraints and resets, we haveanno-
tated them only with letters in{N,D, I, S}, corresponding to a
no-edit-transition, a deletion-transition, an insertion-transition, or a
substitution-transition, respectively. Note that if there are multiple
letters on an edge, then there is a copy of each transition inA′,
between the designated locations for each letter.

We see that there are only three paths in the graph of Figure 2
that reaches an accepting location from the start location.The paths
corresponds to the timed words described below:

1. The sequenceN, I which gives the run(1, 0, 0) →
(2, 1, 0) → (2, 2, 1). This sequence corresponds to the timed
word (a, 1) in A, which has an edit distance of(1, 1) from
(a, 2), (b, 3) (by inserting(b, 3)). This timed word is inA′.

2. The sequenceN,S which also gives the run(1, 0, 0) →
(2, 1, 0) → (2, 2, 1). This sequence corresponds to the timed
word (a, 1), (a, z) in A for somez ≥ 1, which has an edit
distance of(1, 1) from (a, 2), (b, 3) (by substituting(a, z)
with (b, 3)). This timed word is inA′.

3. The sequenceN,N,D which gives the run(1, 0, 0) →
(2, 1, 0) → (1, 2, 0) → (2, 2, 1). This sequence does not
correspond to any run inA′: the requirements on the first
no-edit-transition is thatc1 ≤ 1, c2 ≤ 1, x ∈ [2 − 1; 2 + 1]
(which can only be satisfied by waiting one time unit in the
start location), followed by a reset ofc2; and the requirement
on the second no-edit-transition is thatc1 ≤ 1, c2 ≤ 1, x ∈
[3−1; 3+1], but this cannot be satisfied, becausec1 = x = 1
at the start location and any positive amount of waiting will
ensure that we violatec1 ≤ 1, but we must wait at least one
time unit beforex ∈ [3 − 1; 3 + 1]. Note that if we consid-
ered the decision problemEdDec(1, 2, tw,A) instead, then
there is such a run, e.g.(a, 1), (b, 1), (a, 2) in A′ and the
word (a, 1), (b, 1), (a, 2) has an edit distance of(1, 2) from
(a, 2), (b, 3).

We now establish the correctness of the reduction and then anal-
yse the complexity.

1,
0, 0

2,
0, 0
1,

0, 1

2,
0, 1

1,
1, 0
2,

1, 0

1,
1, 1

2,
1, 1

1,
2, 0

2,
2, 0
1,

2, 1

2,
2, 1

err

I,S

S

N

D

D

N

S,D
I,S

DN

N

N

N
I,S

,DI,S
,D

D
D

D

D

I,S
,D

I,S
,D

Figure 2: The automatonA′ constructed from the timed automaton
A in Figure 1.

LEMMA 3 (CORRECTNESSARGUMENT). The algorithm
SOLED(α, β, tw,A) correctly solves the decision problem
EdDec(α, β, tw,A).

PROOF. For a given decision problemEdDec(α, β, tw,A), we
show thatA′ or A′′ is not empty iff there is a timed word inA,
with edit distance at most(α, β) to tw.

1. (Non-emptiness impliesD(tw,A) ≤lex (α, β)). Consider
an accepting wordtw′ of A′ or A′′, ending in location
(ℓ, | tw |, k) for somek. Let tw′′ be the word inA we get
by following the transitions intw′, which are not insertions.
Note that such a word exists, since the clock constraints on
transitions inA′ andA′′ which are not insertions are stronger
than inA and the insertions does not matter (since they go
between(ℓ, j, k) and(ℓ, j+1, k+1) and no time has passed).
Note thattw′ andtw spells the same (untimed) word (ignor-
ing ǫ). Therefore, by making the modifications to the un-
timed word oftw′′ as indicated bytw′, we obtaintw. Note
that there are at mostk modifications, which is at mostα.
We now consider two cases: eitherk = α or k < α.

• If k = α (indicating thattw′ ∈ A′), then whenever we
used a no-edit-transition (or correct-move-transition)
from (ℓ, j, k) to (ℓ′, j + 1, k), then the correspond-
ing move inA was such that the total timeT was in
[tj+1−β; tj+1+β] and the letter used was the(j+1)-st
letter of tw, indicating that no edit has been made and
|tj+1 − T | ≤ β. Hence the edit distance is at most
(k, β) = (α, β).

• If k < α (indicating thattw′ ∈ A′′, because in such
cases the requirements inA′ are stronger than inA′′),
then using an argument like the preceding and the con-
struction ofA′′, we get that the edit distance is at most
(k,∞) <lex (α, β).

2. (D(tw,A) ≤lex (α, β) implies non-emptiness). Con-
sider a timed wordtw′′ ∈ A, such that the edit distance
D(tw, tw′′) = D(tw′′, tw) is at most(α, β). We consider
the case that(α − 1,∞) <lex D(tw′′, tw) and show that
A′ is non-empty (the caseD(tw′′, tw) ≤lex (α − 1,∞) is
similar, but in this case we showA′′ is non-empty instead
of A′). Let WE be a word edit which is used to show that
D(tw′′, tw) is at most(α, β). We now show an accepting
run ofA′ from tw′′ andWE. Defineℓ1 ∈ A to be the start
location oftw′′ and let the corresponding location(ℓ1, 0, 0)
be the start location of the run. We can view the sequence of
operators thatWE makes ontw′′ as the following sequence
of letter operators: for alli ≥ 1, the word editWE firsts in-
serts some letters before thei-th letter oftw′′, then it either
substitutes, deletes, or keeps thei-th letter and then repeat
for the (i + 1)-st letter. WheneverWE inserts an letter into
tw′′, follow the insertion transition from the current loca-
tion. In the other cases, there is a corresponding transition t
in the wordtw′′ ∈ A. In that case follow the (substitution,
deletion, no-edit) transition depending on the choice ofWE

in the obvious way. Note that if it follows the no-edit case,
the timeT spent on the sub-word up to transitiont must be
within β of the time used for the corresponding letter oftw
by definition ofWE and hence, in each case, we can use the
indicated transition. At the end we end up in(ℓ′, | tw |, α),
whereℓ′ is an accepting location ofA the runtw′′ ends in.
Hence it follows thatA′ is non-empty.

The desired result follows.

LEMMA 4 (SPACE COMPLEXITY ANALYSIS). The algo-
rithm SOLED(α, β, tw,A) can be implemented so that it uses
polynomial space.

PROOF. It is clear from the algorithm that we just need to solve
the non-emptiness problem forA′′ andA′ in PSPACE. Both au-
tomata have at mostn = |L| · (| tw |+ 1) · (α+ 1) + 1 locations
and the least common multiple (LCM) of the numbers in the clock
constraints isg · d, whereg is the LCM of the numbers in the clock
constraints ofA andd the LCM of the denominators of the time
stamps in the timed wordtw andβ, and the number of clocks is 2
more than the number of clocks|C| of A. This indicates that we get
a region abstraction with(2+ |C|)! ·42+|C| · (g ·d+1)2+|C| ·n re-
gions [2], each region of which can be written in polynomial space
and the successors can also be computed in polynomial space.This
indicates, similarly to how the non-emptiness problem forA is
solved by Alur and Dill [2], that we can solve the non-emptiness
problem forA′ andA′′ in polynomial space. The desired upper
bound follows.

THEOREM 5 (COMPLEXITY). The edit-distance decision
problemEdDec(α, β, tw,A) is PSPACE-complete.

PROOF. The theorem follows from Lemma 2, Lemma 3 and
Lemma 4.

REMARK 6. We now argue that our construction above for
timed automata specialized to untimed automata shows NL-
completeness (non-deterministic log-space completeness) for un-
timed non-deterministic finite automata (NFA). In case of NFA, the
second component does not exist. Also given an input untimedword
w, the edit distance to an NFAA is at mostmax{|w|, |L|}, where
L is the set of locations ofA. Our construction above applied
to NFA reduces the edit distance computation to non-emptiness of
NFA. Moreover, since our reduction is local (i.e., it only modifies

transitions of every location locally) it can be implemented in log-
space. Since emptiness of NFA is NL-complete [12], we obtainthe
edit distance computation for an untimed word and an NFA is in
NL. The same proof as in Lemma 2 shows that non-emptiness of
NFA reduces to the edit distance computation problem. This gives
us the following result.

COROLLARY 7. The edit-distance computation problem for an
untimed wordw and an untimed non-deterministic finite automata
(NFA) is NL-complete.

4. EDIT DISTANCE BETWEEN TIMED
AUTOMATA

In this section we consider the computation of edit distancebe-
tween two timed automata. We first show that theexact deci-
sion problem is undecidable, and then consider theapproximation
problem. We first formally define the approximation problem as a
promiseproblem.

Promise problem. We will consider the following promise prob-
lem PromEd(δ,A,A′, α, β): Given a rational numberδ > 0, a
pair of numbers(α, β) ∈ N× (Q ∪ {∞}), and a pair of timed au-
tomataA,A′, the promise problem asks whetherD(A,A′) ≤lex

(α, β), under the promise that eitherD(A,A′) ≤lex (α, β) or
D(A,A′) >lex (α, β + δ). Intuitively the promise problem de-
fines the approximation problem with anadditiveerror in the sec-
ond component.

Significance of the promise problem.We now explain why the
promise problem is the appropriate formulation for approximation
with additive error. First, given an algorithm for the promise prob-
lem with a space (resp. time) bound, we run a modified algo-
rithm which runs as the given algorithm till the space (resp.time)
bound has been exceeded; and if the bound has been exceeded,
then it terminates and answers UNSURE. Thus even if the promise
is not met, the algorithm always terminates in the required re-
source bound. For our concrete algorithm for the promise prob-
lem, the algorithm will always use at most exponential space, and
terminate even if the promise is not satisfied, but if the promise
is not satisfied, the algorithm may answer incorrectly. An alter-
native (perhaps more intuitive) approximation formulation is given
numbers(α, β), timed automataA andA′, andβ ≥ δ > 0, if
(α, β − δ) <lex D(A,A′) ≤lex (α, β + δ), the algorithm can an-
swer UNSURE. If it does not, it must (correctly) answer YES if
D(A,A′) ≤lex (α, β), and NO ifD(A,A′) >lex (α, β). We ar-
gue that solving the promise problem imply a solution to the above
formulation, using a similar amount of resources. Given an in-
stance of the problem, first we solvePromEd(δ,A,A′, α, β − δ)
andPromEd(δ,A,A′, α, β). Note that at least one of the answers
is correct. If the results match and is YES, we haveD(A,A′) ≤lex

(α, β) and return YES; if the results match and is NO, we have
D(A,A′) >lex (α, β) and return NO. If the results do not match,
then we have(α, β − δ) <lex D(A,A′) ≤lex (α, β + δ), and
we return UNSURE. Hence we focus on the promise problem and
present a solution to it.

4.1 Lower bounds

LEMMA 8 (HARDNESS OF EXACT DECISION PROBLEM).
Given two timed automataA andA′ and two numbers(α, β), the
decision problem whetherD(A,A′) ≤lex (α, β) is undecidable.

PROOF. LetA be a timed automaton accepting all timed words.
We will now argue that for a closed timed automataA′, i.e.
where all clock constraints are closed (except towards∞), we have

D(A,A′) ≤lex (0, 0) iff L(A) ⊆ L(A′) (i.e., the language uni-
versality problem for closed timed automata). It is clear that if
L(A) ⊆ L(A′) thenD(A,A′) ≤lex (0, 0) and we will therefore
argue that ifD(A,A′) ≤lex (0, 0) thenL(A) ⊆ L(A′). The ar-
gument is as follows. Pick any timed wordtw = (w, t). We will
argue thattw ∈ L(A′). We have thatD(tw,A′) ≤lex (0, 0), which
by definition, indicates that there is a sequence of timed words
(twi)i∈N, such thattwi = (wi, ti) ∈ L(A′) andD(tw, twi) ≤lex

(0, 1
i
) (that is, for alliwe have thatw = wi and thej-th component

of t andti differs by at most1
i

for all j). Because the clock con-
straints are closed, we also have that the limit of(twi)i∈N is inA′.
But the limit of (twi)i∈N is tw. Hence any arbitrary timed word is
in A′ and therefore also all timed words. Since the language univer-
sality problem for closed timed automata is undecidable, asshown
by Ouaknine and Worrell [17], the desired result follows.

Since Lemma 8 establishes the undecidability of the exact deci-
sion problem, we consider the problem of finding the first compo-
nent exactly, but approximating the second component by an addi-
tive error termδ (as defined in the promise problem). Also note that
multiplicative approximation is undecidable, since it would still re-
quire deciding if the edit distance is precisely(0, 0) or not. We now
establish a complexity lower bound for the promise problem.

LEMMA 9 (HARDNESS OF APPROXIMATION). Given two
timed automataA and A′, two numbers(α, β), and a rational
numberδ > 0, the promise problemPromEd(δ,A,A′, α, β) is
EXPSPACE-hard.

PROOF. As shown by Brenguier and Sankur [5], the decision
problem for the universality of the untimed language of a timed
automata is EXPSPACE-complete (i.e., given a timed automata
A′, deciding whether for every wordw in Σ∗ there existstw′ =
(w′, t

′
) ∈ L(A′) such thatw′ = w is EXPSPACE-complete). We

can solve the universality of the untimed language problem,using
our promise problem, letA be a timed automaton accepting all
words and then deciding if the first component of the edit distance
D(A,A′) is 0 coincides with the untimed universality ofA′, i.e.,
PromEd(δ,A,A′, 0,∞), for anyδ > 0, iff the untimed language
of A′ is universal. The desired results follows. Since [5] has not
yet been published, we present an alternative proof: one cande-
duce that the promise problem is EXPSPACE-hard, by modifying
the construction of Baieret. al.[3] (giving rise to the timed automa-
tonA′′), for showing EXPSPACE-hardness of universality for their
subset of timed automata. The modification is as follows: instead
of requiring that each move has delay precisely 1 in a run which is
rejected, we require that the floor of the total time used increases
by 1 in every move. This indicates that if there exists a timedword
tw which is not in their construction, then the timed wordtw′,
which has the same moves, but there the first delay is1

2
and the

remaining are1 is not inA′′. For that timed wordtw′ we have
that all timed wordstw′′, such thatD(tw′, tw′′) ≤lex (0,

1
3
) is also

not inA′′, indicating thatD(tw′,A′′) >lex (0, 1
3
). Therefore, we

can solve universality of their construction using the promise prob-
lem PromEd(1

3
,A,A′′, 0, 0), indicating that the promise problem

is EXPSPACE-hard.

4.2 Upper bound
Simplification. To simplify the remainder, we will assume that
δ ≥ 2 and all numbers used, i.e. the ones in clock constraints of
A andA′ and the numbersα, β, andδ are integers. If one has an
instance of the problem where this is not the case, one can sim-
ply scale all clock constraints,β andδ so that they are all integers
and δ ≥ 2 (by multiplying with two times the LCM of the de-
nominators), and consider⌊α⌋ for the first component of the edit

distance. We will furthermore assume that there is a bound ofcmax

on the time we can wait before moving. This assumption can be
removed by including two additional columns correspondingto
arbitrary high and arbitrary low difference between time stamps
and suitable book-keeping. This will not be done explicitlyin the
present paper for sake of simplicity in presentation.

Overview of our algorithm. We will now present our algorithm in
three stages.

• (Step 1) First we will give an algorithm that finds the first
component of the edit distance.

• (Step 2) For a pair of timed automataA,A′ of edit distance
at most(α, β), we bound the worst case time mismatch,
between indices close together, for a pair of timed words
tw, tw′ such that(α− 1,∞) <lex D(tw, tw′) ≤lex (α, β).

• (Step 3) Then finally, we will give an algorithm that tests
if D(A,A′) ≤lex (α, β), under the promise that either
D(A,A′) ≤lex (α, β) or D(A,A′) >lex (α, β + δ).

The first two steps of the algorithm are relatively straight-forward
and we present them below. Finally we present Step 3 in details.

4.2.1 Step 1 and Step 2 of the algorithm
Step 1 of the algorithm. Given two timed automataA andA′,
we want to compute the first componentα of the edit distance.
First we construct the corresponding region graphsReg(A) and
Reg(A′) and annotate on each transition the corresponding letter.
By running an algorithm by Benedikt, Puppis and Riveros [4] to
compute edit distance between two finite-state (untimed) automata,
on the region graphs, we obtainα. The results of [4] also imply
that the first component of the edit distance is at most(|Reg(A)|+
1) · |Reg(A′)|, if it is finite.

Step 2 of the algorithm: Bounding the time difference.We now
present the following lemma for Step 2 of the algorithm.

LEMMA 10. Let a pair(α, β) of numbers, and a pair of timed
automataA,A′ be given, such thatD(A,A′) ≤lex (α, β). If there
exists a timed wordtw = (w, t) ∈ L(A) such thatD(tw,A′) >lex

(α − 1,∞), then for all timed wordstw′ = (w′, t
′
) ∈ L(A′),

whereD(tw, tw′) ≤lex (α, β), and for all integers1 ≤ i ≤ | tw |
and all integersj such thati− 2 · α ≤ j ≤ i+ 2 · α and1 ≤ j ≤
| tw′ |, we have that

|ti − t
′
j | ≤ 4 · α · cmax + β .

PROOF. Let a pair of numbers(α, β) and a pair of timed au-
tomataA,A′ be given, such thatD(A,A′) ≤lex (α, β). Consider
a timed wordtw = (w, t) ∈ L(A), such thatD(tw,A′) >lex

(α − 1,∞), and a timed wordtw′ = (w′, t
′
) ∈ L(A′), where

D(tw, tw′) ≤lex (α, β). Let WE be some word edit witnessing
D(tw, tw′) ≤lex (α, β). Fix some indexi in tw. If i ≤ 2 · α,
then note that0 ≤ ti ≤ i · cmax ≤ 2 · α · cmax and0 ≤ t′i+α ≤
(i+2·α)·cmax ≤ 4·α·cmax, because the time can at most increase
with cmax in every move, from which the statement follows, for
suchi. Hence, we only need to consideri > 2 · α. Consider some
indexj in w which corresponds to indexi of w′, then|i− j| ≤ α,
since it is the number of insertions minus deletions before index
i. Also note that in any setS of indices intw′ of sizeα + 1, at
least one indexi′ corresponds to some indexj′ in tw, because oth-
erwise there would be at leastα + 1 edits. This is especially true
for the set of indicesS′ = {j − α, j − α − 1, . . . , j − 2 · α} of
sizeα + 1 (note that they are all indices oftw′, becausei ≥ 2 · α
and the length of the words cannot differ by more thanα). Let

i′, j′ be some indices such thati′ in S′ corresponds toj′. We then
get thatj′ ≤ j ≤ j′ + 3 · α, by the preceding definition ofj′.
Because of the correspondence betweeni′ andj′ we also get that
|t′i′ − tj′ | ≤ β. Since we can increase the time used by at most
cmax in every move and thatt is monotonically non-decreasing, we
also get thatt′i′ − β ≤ tj ≤ t′i′ + β+3 ·α. By the same argument
we also get that

t
′
j−2·α − β ≤ t

′
i′ − β ≤ tj ≤ t

′
i′ +β+3 ·α ≤ t

′
j−2·α + β+4 ·α

and also

t
′
k − β − 4 · α ≤ tj ≤ tk + β + 3 · α ,

wherek = min(| tw′ |, j + 2 · α). Therefore, by monotonicity of
t
′ we get that for allj − 2 · α ≤ i ≤ k, that|tj − t′i| ≤ 4 · α+ β

and the desired result follows.

4.2.2 Step 3 of the algorithm
We will now give an algorithm that solves the decision problem

PromEd(δ,A,A′, α, β).

Deducing time passage.Given a timed automataA, we will con-
siderEps(A), which is identical toA, except that (1) it has one
more clockx; (2) modifies the clock constraints on the transitions
in A; and (3) also adds|L| new transitions, one from each loca-
tion. For each transitiont in A, the corresponding transition in
Eps(A) also includesx < 1 as a part of the clock constraint. For
each locationℓ in A, the new transition inEps(A) from the corre-
sponding location inEps(A) is anǫ-transition and a self-loop with
clock constraint{x = 1 ∧

∧
c∈C

c ≤ cmax}. Note that this en-
sures thatǫ−1(L(Eps(A))) = L(A), whereǫ−1 is the function on
timed languages that removes all occurrences of the letterǫ and the
corresponding time stamps. The construction ensures that the floor
of the total timed used in a prefix of a run is precisely the num-
ber of ǫ-transitions used in the prefix. A similar construction was
used by Chatterjee and Prabhu [6] for computation of quantitative
simulation.

The triple impact(tw,A,A′, α, β) = (A, V,M). Given a
timed word tw = (w, t), a pair of timed automataA,A′,
and some target pair of numbers(α, β), we define the triple
impact(tw,A,A′, α, β) = (A, V,M). We now describe the com-
ponents of the triple.

• The first componentA is a subset of regions in
Reg(Eps(A)).

• The second componentV is a vector of lengthα, and each
entry in the vector is a subset of regions ofReg(A′).

• The third componentM is a matrix of dimension(8 · α ·
cmax + 2 · β + 4, α + 1). Each entry(a1, a2) of M is a
subset of regions ofReg(Eps(A′)).

To simplify the definition ofimpact(tw,A,A′, α, β), we will now
first assign labels toM andV . The rows are labeled0, . . . , α and
the columns are labeled{−4 ·α · cmax − β− 2, . . . , 4 ·α · cmax +
β + 2}. Similarly we assign labels0, . . . , α − 1 to the entries of
V . The subsetA is the set of regions inReg(Eps(A)) one can get
to such that thei-th non-ǫ-transition used iswi and there are⌊ti⌋
manyǫ-transitions before that transition. Theα-vectorV is such
that entrya1 of V contains the regions, which can be reached after
a timed wordtw′ = (w′, t

′
), such thatD(w,w′) ≤ a1 (this is easy

to compute on the region graph, using the algorithm by Benedikt,
Puppis and Riveros [4], since it only considers the untimed part).
Also, a given regionr ∈ Reg(Eps(A′)) is in entry(a1, a2) of M
(wherea1 anda2 are resp. row and column labels ofM) iff there

exists a timed wordtw′ = (w′, t
′
), such that (1) one can get to

r after having processedtw′; and (2) there exists a word editWE

with at mosta1 edits betweentw andtw′ such that at every pair of
corresponding timed lettersi, j, we have that|⌊ti⌋−⌊t′j⌋| ≤ β+1;
and (3)⌊t| tw |⌋ − ⌊t′| tw′ |⌋ = a2.

Feasible and successfulimpact triples. We will call a triple
(A, V,M) feasibleif impact(tw,A,A′, α, β) = (A,V,M) for
sometw and successfulif it is feasible andA contains a region
with a location ofA which is accepting, but no entry in neitherV
norM contains a region with a location ofA′ which is accepting.
We will now argue that there exists a successful triple iff the answer
is NO to the promise problemPromEd(δ,A,A′, α, β).

LEMMA 11. There exists a successful triple(A, V,M) iff the
answer is NO to the promise problemPromEd(δ,A,A′, α, β).

PROOF. We will first argue that a successful triple implies that
the answer toPromEd(δ,A,A′, α, β) is NO. Consider a triple
(A, V,M) = impact(tw,A,A′, α, β) for sometw = (w, t),
which is successful. Consider some accepting regionr in A and
let tw′ = (w′, t

′
) be some timed word that goes tor from some

start location, such that for alli we have thatwi = w′
i and

⌊ti⌋ = ⌊t′i⌋. Such a run exists by definition ofimpact. We
have thattw′ ∈ L(A). Assume towards contradiction that there
is a tw′′ ∈ L(A′) such thatD(tw′, tw′′) ≤lex (α, β). Let r′ be
the accepting region one reaches inReg(Eps(A′)) after the run
tw′′ = (w′′, t

′′
). First consider the case thatD(tw′, tw′′) ≤lex

(α − 1,∞). This implies thatr′ is in entry (α − 1) of V and
hence contradicts that(A,V,M) is successful. If, on the other
hand(α− 1,∞) <lex D(tw′, tw′′) ≤lex (α, β), thenr′ is in entry
(α, ⌊t′| tw′ |⌋ − ⌊t′′| tw′′ |⌋) of M (by Lemma 10, this is an entry of
the matrix) and again contradicts that(A,V,M) is successful.

We will now argue that if the answer toPromEd(δ,A,A′, α, β)
is NO, then there is a successful triple. By definition of
PromEd(δ,A,A′, α, β) we know that there is a timed wordtw =
(w, t) ∈ L(A) such that for all timed wordstw′ ∈ L(A′), we
have thatD(tw, tw′) ≥lex (α, β + 2). Fix such a timed word
tw. There are two cases. Either for sometw′ we have that
D(tw, tw′) >lex (α,∞) or not.

• If we have thatD(tw, tw′) >lex (α,∞), then all entries of
V do not contain a region with accepting location. But the
requirements to be in entrya1 of V are satisfied by every
region in(a1, a2) of M for all a2. But this implies that the
matrix also does not contain a region with accepting location.

• In the other case, there must be a timed wordtw′ = (w′, t′)
such that(α, β + 2) ≤lex D(tw, tw′) ≤lex (α,∞). First
note that for alla1 < α, no region with an accepting loca-
tion can be in entry(a1, a2) of M nor in entrya1 for V ,
becauseD(tw,A) >lex (α− 1,∞). We therefore only need
to consider the entries in rowα. But then for any word edit
with α edits, there must be some indexi in w corresponding
to indexj of w′, such that|ti − t′j | ≥ β+2, by definition of
edit distance and since we consider thatδ ≥ 2. But then also
|⌊ti⌋−⌊t′j⌋| > β+1, implying that no region with accepting
location can be in entry(α, a2) of M for anya2.

The desired result follows.

Computing impact - the start case. It is easy to compute
impact(ǫ,A,A′, α, β) = (A,V,M), because (1)A are simply
the regions corresponding to time0 on all clocks in the start loca-
tions; and (2) for eacha1, entrya1 of V is the set of regions in
Reg(A), reachable in at mosta1 moves; and (3) for eacha1 and

a2 ≥ 0, entry(a1,−a2) of M (the entries(a′1, a
′
2), wherea′2 > 0

are empty, because the time stamps are always non-negative num-
bers, and the time for the timed wordǫ is 0) is the set of regions in
Reg(Eps(A)), reachable in preciselya1 many non-ǫ-moves anda2
manyǫ-moves (note that every letter used must be deleted to match
ǫ and thus we do not need to consider the requirement on times).

Computing impact - the move case. Given
impact(tw,A,A′, α, β) = (A,V,M), for some A,V,M

and for some timed wordtw = (w, t), we can compute each triple
impact(tw ◦(σ, t),A,A′, α, β) = (A′, V ′,M ′) for some(σ, t).
Let t′ = ⌊t⌋ − ⌊t| tw |⌋. ThenA′ is the set of regions one can
get to from some region inA, using first t′ many ǫ-transitions
and then oneσ-transition. Each entrya1 of V ′ can be computed
directly fromV , similar to the algorithm by Benedikt, Puppis and
Riveros [4] for untimed automata. Also, entry(a1, a2) of M ′

consists of the regions one can get to from some region in(a′1, a
′
2)

of M for a′2 ∈ [−4 · α · cmax − β − 1, 4 · α · cmax + β + 1]
using (1) no transitions, ifa1 = a′1 + 1 and a2 = a′2 + t′

(this corresponds to insertion); or (2) first(a2 − a′2 + t′) many
ǫ-transitions and then any non-ǫ-transition if a1 = a′1 + 1 (this
corresponds to substitution); or (3) firstt̂0 manyǫ-transitions and
then someσ-transition, followed byt̂1 many ǫ-transitions and
then some non-ǫ-transition, followed bŷt2 manyǫ-transitions and
then some non-ǫ-transition and so on until̂tn many ǫ-transitions
and then some non-ǫ-transition, wheren = a1 − a′1 and
a2 − a′2 + t′ =

∑n

i=0 t̂i (corresponding to one correct move
followed by n deletions). It is easy to see that we can always
assume that all deletions comes directly after a correct move (or
appears at the beginning).

Computing impact - correctness. We will now argue that our
computation ofimpact satisfy the properties required.

LEMMA 12. The computation ofimpact is correct.

PROOF. In both the start case and the move case, it should be
clear that the first two components (that isA andV) of the triple
are correctly computed.

We now recall the requirements on being in entry(a1, a2) ofM :
A given regionr ∈ Reg(Eps(A′)) is in entry (a1, a2) of M iff
there exists a timed wordtw′ = (w′, t

′
), such that (1) one can get

to r after having processedtw′; and (2) there exists a word editWE

with at mosta1 edits betweentw andtw′ such that at every pair of
corresponding indicesi, j, we have that|⌊ti⌋− ⌊t′j⌋| ≤ β+1; and
(3) ⌊t| tw |⌋ − ⌊t′| tw′ |⌋ = a2.

Start case ofM . In the start case forM , it is clear that there exists a
timed wordtw′ = (w′, t

′
) to each of the regions of entry(a1,−a2)

of M , because of our use of the region abstraction [2]. Also, it
containsa1 many non-ǫ-moves anda2 manyǫ-moves, indicating
that D(ǫ, tw′) ≤lex (a1,∞) (indicating that we satisfy (1)) and
that⌊t′| tw′ |⌋ = a2 (indicating that we satisfy (3)). Also, since no
word edit can have any corresponding indices betweenǫ andtw′

we satisfy (2).

Move case of M . In the move case, we have
impact(tw,A,A′, α, β) = (A, V,M) and we must com-
pute eachimpact(tw ◦(σ, t),A,A′, α, β) = (A′, V ′,M ′) for
any (σ, t). By Alur and Dill [2] we see that we satisfy (1) (since
it indicates that there is a timed word ending in each reachable
region). Also, by letting the word editWE we consider in (2), be
any that have the pairs of corresponding indices defined by our
correct moves, we see that we satisfy (2). It is clear that we can do
the rest of the word edit afterwards ina1 edits, since we increase
the number of edits we need whenever we do not use a correct
move. In regards to (3), we have the value of⌊t| tw |⌋ − ⌊t| tw |−1⌋,

from our computation ofA′. Wagner and Fischer [20] shows that
we can split up a word edit between a wordw ◦ σ and a word
w′, so thatw is edited tow′′ and σ is edited tow′′′ for some
w′′ ◦ w′′′ = w. It is easy to see that this generalises to timed
words. Therefore, we must have thattw′ can be split up intotw′′

andtw′′′ such thattw′ = tw′′ ◦ tw′′′ and such thattw′′ is in M
(because of Lemma 10). FromM we get⌊t| tw |−1⌋ − ⌊t′| tw′′ |⌋

for all possibletw′′. Thus to compute⌊t| tw |⌋ − ⌊t′| tw′ |⌋, we just
need⌊t′| tw′′′ |⌋ = ⌊t′| tw′ |⌋ − ⌊t′| tw′′′ |⌋, which is easy to find, by
counting the number ofǫ-transitions used and is done correctly by
the description.

We therefore conclude that alsoM is computed correctly.

Space complexity ofimpact-triple computation. Observe that a
triple (A, V,M) consists of some exponential number of subsets of
exponential sized sets of regions and therefore each triplehave at
most exponential size. Given the preceding it is also clear that we
can compute each successor of the (possibly) exponentiallymany
successors in exponential space. Note that given a feasibletriple
(A, V,M) it is easy to check in exponential space if the triple is
also successful.

The algorithm SolPromEd. Our algorithm SolPromEd for
solving PromEd(δ,A,A′, α, β), is as follows: (1) first compute
impact(ǫ,A,A′, α, β); and (2) then guess a timed word (with one
letter and the floor of the corresponding time stamp at a time)
to a successful triple and compute the impact triples using the
move case, and check that the triple is successful and then re-
turn NO. If there is no successful triple, return YES. The cor-
rectness follows from Lemma 11 and Lemma 12. The above al-
gorithm is non-deterministic (since it involves a guess of atimed
word) and the space complexity is exponential (since theimpact-
triple computation and check is exponential space). Since NEX-
PSPACE=EXPSPACE by Savitch’s Theorem [19], we obtain that
the algorithm for the promise problem can be implemented in ex-
ponential space. Along with Lemma 9 we obtain the following
result.

THEOREM 13 (COMPLEXITY OF APPROXIMATION). The
promise problem PromEd(δ,A,A′, α, β) can be solved in
exponential space; and the problem is EXPSPACE-hard.

Relating our algorithm to the algorithm by Benedikt, Puppis
and Riveros [4]. Our algorithmSolPromEd for deciding the de-
cision problemPromEd(δ,A,A′, α, β) is similar to the algorithm
by Benedikt, Puppis and Riveros [4] for solving the problem of
edit distance between untimed languages. There they construct
impact(w, uA, uA′, α′), for some wordw, some finite-state (un-
timed) automatauA, uA′ and some targetα′, whereas we con-
struct impact(tw,A,A′, α, β), for some timed wordtw, some
timed automataA andA′ and some target(α, β). But their con-
struction only have parallels for the first two components ofour
triple (they do not have the matrix component in their construc-
tion). Also, in their construction a given location could only occur
once in their vector, in contrast, we can have a given location in
each column ofM and inV (because, while it is always better
to make less errors, it is not clear what the best time mismatch is
before the next move).

5. DISCUSSION ON EXTENSIONS AND
CONCLUSION

In this work we have considered the edit distance computation
for timed automata under the lexico-graphic ordering. We now dis-
cuss several extensions that can be obtained from our results.

1. Point-wise comparison and Pareto curve.Instead of the
lexico-graphic comparison we could also consider point-
wise comparison between the components of the edit dis-
tance, and then compute the Pareto points where one compo-
nent cannot be improved without sacrificing the other. The
Pareto curve consists of all Pareto points. Consider bounds
B1 andB2 for the bounds for Pareto curve. Given a solution
to the decision problem with point-wise comparison which
asks whether the first component is at mostα and the sec-
ond component at mostβ, theδ-approximation of the Pareto
curve bounded byB1 andB2, for δ > 0, can be computed
as follows: enumerateα from 0 toB1 as integers, and for a
fixed α, chooseβ iteratively by a binary search in the in-
terval [0, B2] until the imprecision is smaller thanδ, and
consider the decision problem for the point-wise compari-
son withα andβ. Our solution for lexico-graphic order-
ing can also be modified to solve the point-wise compari-
son. The modifications are as follows: (A) For the solution
of Section 3, we remove automatonA′′, and in automatonA′

consider a location(ℓ, j, k) to be accepting ifℓ is accepting,
and the automatonA′ is non-empty iffD1(tw,A) ≤ α and
D2(tw,A) ≤ β (i.e., pointwise comparison). Also note that
if the language of the input automaton is non-empty, then we
haveB1 bounded byα = max{| tw |, d} andB2 bounded
bymax{(| tw |+α) · cmax, t| tw |} (refer to the paragraph of
Bound on the components of the edit distance in Section 3).
(B) For the solution of Section 4, we simply need to remove
the vectorV from the triple for the solution. Also in this case
B1 is bounded by the product of the size of the region graphs
(refer to Step 1 of our algorithm in Section 4).

2. Delay instead of time mismatch.In our definition of the sec-
ond component of the edit distance we considered the more
challenging notion of the absolute timing mismatch. Another
alternative notion is to consider the delays, where thedelay
∆i in index i is the time differenceti − ti−1 between the
(i − 1)-th andi-th move. Then instead of the timing mis-
match ofti andt′i we could consider the delay mismatch∆i

and∆′
i. The problem with the mismatch of delay is tech-

nically slightly easier (though has the same computational
complexity) and we discuss the details for the solution of
Section 4. To find the delay difference betweenA andA′,
we computeReg(A) andReg(A′), then label each transition
in Reg(A)with the corresponding letter and some symbol in-
dicating the floor of the delay used. Then each transitiont in
Reg(A)′ is copied2 · β + 1 times, one copy for each integer
y ∈ [−β, β]. Let d be the floor of the delay of transitiont.
We mark they-th copy of transitiont with the correspond-
ing letter oft and a symbol indicatingy + d. We then run
the algorithm of [4] on the resulting graphs. Note that when-
ever we match a letter, then the difference in delay must be
in [−β − 1, β + 1] as required.

3. Rectangular hybrid automata.While we have presented the
solution for timed automata, our results also extends to rect-
angular hybrid automata [11]. First note that in our solu-
tion of Section 3, we either copy transitions, or include ad-
ditional rectangular constraints, and thus our transformation
ensures that if we start with a rectangular hybrid automata
we obtain another rectangular hybrid automata. Since lan-
guage emptiness is decidable in EXPTIME for rectangular
hybrid automata [11], our solution also extends to rectan-
gular hybrid automata giving decidability in EXPTIME. Fi-
nally the solution of Section 4 relied on the region abstraction

for timed automata, and since a similar finite-quotient based
abstraction exists for rectangular hybrid automata [11], the
impact-triple based computation can also be done for rectan-
gular hybrid automata. Intuitively, the computation for timed
automata was a PSPACE computation over exponential size
structures leading to exponential space bound, and for rect-
angular automata we have an EXPTIME computation over
exponential size structures that gives 2EXPTIME complex-
ity.

Concluding remarks. In this work we extended the notion of edit
distance from untimed languages to timed languages defined by
timed automata. Our results characterized precisely the decidabil-
ity and complexity of the computation between timed words and
timed automata, and between timed automata. While we estab-
lished the complexity is PSPACE-complete for timed words and
timed automata, the problem is undecidable for a pair of timed au-
tomata. For the approximation problem between a pair of timed
automata, we establish exponential space lower and upper bound.
We also discussed how our results can be extended to variantswith
point-wise comparison, delay instead of time mismatch, andthe
more general model of rectangular automata. We believe our results
will provide a theoretical basis for approximate matching between
timed words and timed languages.

6. REFERENCES
[1] A. Aho and T. Peterson. A minimum distance error-correcting parser for

context-free languages.SIAM J. of Computing, 1:305–312, 1972.
[2] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer

Science, 126:183–235, 1994.
[3] C. Baier, N. Bertrand, P. Bouyer, and T. Brihaye. When aretimed automata

determinizable? InICALP (2), pages 43–54, 2009.
[4] M. Benedikt, G. Puppis, and C. Riveros. Regular repair ofspecifications. In

LICS, pages 335–344. IEEE Computer Society, 2011.
[5] R. Brenguier and O. Sankur. Hardness of untimed languageuniversality.

Presentation at YR-CONCUR, 2011.
[6] K. Chatterjee and V. S. Prabhu. Quantitative timed simulation functions and

refinement metrics for real-time systems. InHSCC, 2013.
[7] A. Donzé, T. Ferrère, and O. Maler. Efficient robust monitoring of signal

temporal logic. InCAV 2013, LNCS. Springer, 2013.
[8] A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued

signals. InFORMATS, LNCS, pages 92–106. Springer, 2010.
[9] G. Fainekos and G. Pappas. Robustness of temporal logic specifications for

continuous-time signals.Theoretical Computer Science, 410(42), 2009.
[10] G. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verification of

automotive control applications using S-TaLiRo. InProc. American Control
Conference, 2012.

[11] T. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid
automata.Theor. Comput. Sci., 221(1-2):369–392, June 1999.

[12] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory, Languages,
and Computation. Adison-Wesley Publishing Company, Reading,
Massachusets, USA, 1979.

[13] R. Karp. Mapping the genome: some combinatorial problems arising in
molecular biology. InSTOC 93, pages 278–285. ACM, 1993.

[14] V. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals.Soviet Physics-Doklady, 10:707–710, 1966.

[15] M. Mohri. Edit-distance of weighted automata: generaldefinitions and
algorithms.Intl. J. of Foundations of Comp. Sci., 14:957–982, 2003.

[16] T. Okuda, E. Tanaka, and T. Kasai. A method for the correction of garbled
words based on the levenshtein metric.IEEE Trans. Comput., 25:172–178,
1976.

[17] J. Ouaknine and J. Worrell. Universality and language inclusion for open and
closed timed automata. In O. Maler and A. Pnueli, editors,HSCC, volume 2623
of Lecture Notes in Computer Science, pages 375–388. Springer, 2003.

[18] G. Pighizzini. How hard is computing the edit distance?Information and
Computation, 165:1–13, 2001.

[19] W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities.J. Comput. Syst. Sci., 4(2):177–192, Apr. 1970.

[20] R. A. Wagner and M. J. Fischer. The string-to-string correction problem.J.
ACM, 21(1):168–173, Jan. 1974.

