
Decidable Problems for Probabilistic 
Automata on Infinite Words

Krishnendu Chatterjee and Mathieu Tracol

IST Austria (Institute of Science and Technology Austria)

Am Campus 1

A-3400 Klosterneuburg

Technical Report No. IST-2011-0004

http://pub.ist.ac.at/Pubs/TechRpts/201  1  /IST-201  1  -000  4  .pdf   

April 11, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268224811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf


Copyright © 2011, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or 
classroom  use  is  granted  without  fee  provided  that  copies  are  not  made  or 
distributed for profit or commercial advantage and that copies bear this notice and 
the full  citation on the first  page.  To copy otherwise,  to  republish,  to  post  on 
servers or to redistribute to lists, requires prior specific permission.



Decidable Problems for Probabilistic Automata on Infinite Words

Krishnendu Chatterjee (IST Austria) Mathieu Tracol (IST Austria)

Abstract

We consider probabilistic automata on infinite words with acceptance defined by parity conditions. We consider
three qualitative decision problems: (i) the positive decision problem asks whether there is a word that is accepted
with positive probability; (ii) the almost decision problem asks whether there is a word that is accepted with
probability 1; and (iii) the limit decision problem asks whether for every ε > 0 there is a word that is accepted
with probability at least 1 − ε. We unify and generalize several decidability results for probabilistic automata
over infinite words, and identify a robust (closed under union and intersection) subclass of probabilistic automata
for which all the qualitative decision problems are decidable for parity conditions. We also show that if the input
words are restricted to lasso shape words, then the positive and almost problems are decidable for all probabilistic
automata with parity conditions.

1



1 Introduction

Probabilistic automata and decision problems. Probabilistic automata for finite words were introduced in the
seminal work of Rabin [15] as an extension of classical finite automata. Probabilistic automata on finite words
have been extensively studied (see the book [14] on probabilistic automata and the survey of [5]). Probabilistic
automata on infinite words have been studied recently in the context of verification [2, 1]. We consider probabilistic
automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and parity conditions.
Qualitative decision problems. We consider three qualitative decision problems for probabilistic automata on
infinite words [1, 10]: given a probabilistic automaton with an acceptance condition, (i) the positive decision
problem asks whether there is a word that is accepted with positive probability (probability > 0); (ii) the almost
decision problem asks whether there is a word that is accepted almost-surely (with probability 1); and (iii) the limit
decision problem asks whether for every ε > 0 there is a word that is accepted with probability at least 1 − ε. The
qualitative decision problems for probabilistic automata are the generalization of the emptiness and universality
problem for deterministic automata.
Undecidability results. The decision problems for probabilistic automata on finite words have been extensively
studied [14, 5], and the main results establish the undecidability of the quantitative version of the decision problems
(where the thresholds are a rational 0 < λ < 1, rather than 0 and 1). The undecidability results for the qualitative
decision problems for probabilistic automata on infinite words are quite recent. The results of [1] show that the
positive (resp. almost) decision problem is undecidable for probabilistic automata with Büchi (resp. coBüchi)
acceptance condition, and as a corollary both the positive and almost decision problems are undecidable for parity
acceptance conditions. The results of [1] also show that the positive (resp. almost) decision problem is decidable
for probabilistic automata with coBüchi (resp. Büchi) acceptance condition, and these results have been extended
to the more general case of stochastic games with imperfect information in [3] and [11].
The positive and almost problem are decidable for safety and reachability conditions, and also for probabilistic

automata over finite words. It was shown in [10] that the limit decision problem is undecidable even for proba-
bilistic finite automata, and the proof can be easily adapted to show that the limit decision problem is undecidable
for reachability, Büchi, coBüchi and parity conditions (see [7] for details).
Decidable subclasses. The root cause of the undecidability results is that for arbitrary probabilistic automata and
arbitrary input words the resulting probabilistic process is complicated. As a consequence several researchers have
focussed on identifying subclasses of probabilistic automata where the qualitative decision problems are decidable.
The work of [6] presents a subclass of probabilistic automata, namely hierarchichal probabilistic automata (HPA),
and show that the positive and almost problems are decidable for Büchi and coBüchi conditions. The work of [10]
presents a subclass of probabilistic automata, namely #-acyclic automata, and show that the limit reachability
problem is decidable for this class of automata over finite words. The two subclasses HPA and#-acyclic automata
are incomparable in expressive power.
Our contributions. In this work we unify and generalize several decidability results for probabilistic automata
over infinite words, and identify a robust subclass of probabilistic automata for which all the qualitative decision
problems are decidable for parity acceptance conditions. For the first time, we study the problem of restricting the
structure of input words, as compared to the probabilistic automata, and show that if the input words are restricted
to lasso shape words, then the positive and almost problems are decidable for all probabilistic automata with parity
acceptance conditions. The details of our contributions are as follows.
1. We first present a very general result that would be the basic foundation of the decidability results. We
introduce a notion of simple probabilistic process: the non-homogeneous Markov chain induced on the
state space of a probabilistic automaton by an infinite word is simple if the tail σ-field of the process has
a particular structure. The structure of the tail σ-field is derived from Blackwell-Freedman-Cohn-Sonin
decomposition-separation theorem [4, 8, 16] on finite non-homogeneous Markov chains which generalizes

2



the classical results on homogeneous Markov chains.
2. We then show that if we restrict the input words of a probabilistic automaton to those which induce simple
processes, then the positive and almost decision problems are decidable for parity conditions. We establish
that these problems are PSPACE-complete.

3. We then introduce the class of simple probabilistic automata (for short simple automata): a probabilistic
automaton is simple if every input infinite words induces simple processes on its state space. This semantic
definition of simple automata uses the decomposition-separation theorem. We present a structural (or syn-
tactic) characterization of the class of simple automata, which relies on the structure of the support graph
of the automata. From our structural characterization it follows that given a probabilistic automaton, it
is a PSPACE-complete problem whether the automaton is simple. We show that the model of simple au-
tomata generalizes both the models of HPA and #-acyclic automata. We show that for simple automata the
positive, almost and limit problems are decidable for parity conditions, and are PSPACE-complete. Thus
our results both unify and generalize two different results for decidability of subclasses of probabilistic
automata. Moreover, we show that simple automata are robust, i.e., closed under union and intersection.
Thus we are able to identify a robust subclass of probabilistic automata for which all the qualitative decision
problems are decidable for parity conditions.

4. Finally, we study for the first time the effect of restricting the structure of input words for probabilistic
automata, rather than restricting the structure of probabilistic automata. We show that for all ultimately
periodic (or lasso shape) words and for all probabilistic automaton, the probabilistic process induced is a
simple one. Hence as a corollary of our first result, we obtain that if we restrict to lasso shape words, then the
positive and almost decision problems are decidable (PSPACE-complete) for all probabilistic automata with
parity conditions. However, the limit decision problem for the reachability condition is still undecidable for
lasso shape words, as well as the Büchi and coBüchi conditions.

In this paper we use deep results from probability theory to establish general results about the decidability of
problems on probabilistic automata. We present surprising structural characterizations of semantic notions coming
from probability theory in the context of probabilistic automata. The proofs are given in appendix.

2 Preliminaries

Distributions. Given a finite setQ, we denote by∆(Q) the set of probability distributions onQ. Given α ∈ ∆(Q),
we denote by Supp(α) the support of α, i.e. Supp(α) = {q ∈ Q | α(q) > 0}.
Words and prefixes. Let Σ be a finite alphabet of letters. A word w is a finite or infinite sequence of letters
from Σ, i.e., w ∈ Σω. Given a word w = a1, a2... ∈ Σω and i ∈ N, we define w(i) = ai, and we denote by
w[1..i] = a1, ..., ai the prefix of length i of w. Given j ≥ i, we denote by w[i..j] = ai, ..., aj the subword of w
from index i to j. An infinite word w ∈ Σω is a lasso shape word if there exist two finite words ρ1 and ρ2 in Σ∗

such that w = ρ1 · ρω
2 .

Definition 1 (Finite Probabilistic Table (see [14])). A Finite Probabilistic Table (FPT) is a tuple T = (Q, Σ, {Ma}a∈Σ,α)
where Q is a finite set of states, Σ is a finite alphabet, α is an initial distribution on Q, and the Ma, for a ∈ Σ,
are Markov matrices of size |Q|, i.e., for all q, q′ ∈ Q we have Ma(q, q′) ≥ 0 and for all q ∈ Q we have∑

q′∈Q Ma(q, q′) = 1.

Distribution generated by words. For a letter a ∈ Σ, let δ(q, a)(q′) = Ma(q, q′) denote the transition probability
from q to q′ given the input letter a. Given β ∈ ∆(Q), q ∈ Q and ρ ∈ Σ∗, let δ(β, ρ)(q) be the probability,
starting from a state sampled accordingly to β and reading the input word ρ, to go to state q. Formally, given
ρ = a1, ..., an ∈ Σ∗, letMρ = Ma1 · Ma2 · ... ·Man . Then δ(β, ρ)(q) =

∑
q′∈Q β(q′) · Mρ(q′, q). We often write

δ(β, ρ) instead of Supp(δ(β, ρ)), for simplicity: δ(β, ρ) is the set of states reachable with positive probability
when starting from distribution β and reading ρ. As well, given H ⊆ Q, we write δ(H, ρ) for the the set of states

3



reachable with positive probability when starting from a state inH sampled uniformly at random, and reading ρ.
Homogeneous and non-homogeneous Markov chains. A Markov chain is a sequence of random variables
X0,X1,X2, ..., taking values in a (finite) set Q, with the Markov property: P(Xn+1 = x|X1 = x1,X2 =
x2, . . . ,Xn = xn) = P(Xn+1 = x|Xn = xn). Given n ∈ N, the matrixMn of size |Q| such that for all q, q′ ∈ Q
we have Mn(q, q′) = P(Xn+1 = q′|Xn = q) is the transition matrix at time n of the chain. The Markov chain is
homogeneous if Mn does not depend on n. In the general case, we call the chain non-homogeneous.
Induced Markov chains. Given a FPT with state space Q, given G ⊆ Q and ρ = a0, ..., am−1 ∈ Σ∗ such that
δ(G, ρ) ⊆ G, we define the Markov chain {Xn}n∈N induced by (G, ρ) as follows: the initial distribution, i.e. the
distribution ofX0, is uniform on G; given i ∈ N,Xi+1 is distributed according to δ(Xi, ai mod m)(−). Intuitively,
{Xn}n∈N is the Markov chain induced on the FPT when reading the word ρω .
Probability space and σ-field. A word w ∈ Σω induces a probability space (Ω,F , Pw): Ω = Qω is the set of
runs, F is the σ-field generated by cones of the type Cρ = {r ∈ Qω | r[1..|ρ|] = ρ} where ρ ∈ Q∗, and Pw is the
associated probability distribution on Ω. See [18] for the standard results on this topic. We write {Xw

n }n∈N for the
non-homogeneous Markov chain induced on Q by w, and given n ∈ N let µw

n be the distribution of Xw
n on Q:

Given q ∈ Q, µw
n (q) = Pw[{r ∈ Ω | r(n) = q}]

The σ-field F is also the smallest σ-field on Ω with respect to which all the Xw
n , n ∈ N, are measurable. For

all n ∈ N, let Fn = B(Xw
n ,Xw

n+1, ...) be the smallest σ-field on Ω with respect to which all the Xw
i , i ≥ n,

are measurable. We define F∞ = ∩n∈NFn, called the tail σ-field of {Xw
n }. Intuitively, an event Γ is in F∞ if

changing a finite number of states of a run r does not affect the occurrence of the run r in Γ.
Atomic events. Given a probability space (Ω,F , P) and Γ ∈ F , we say that Γ is F-atomic if P(Γ) > 0, and for
all Γ′ ∈ F such that Γ′ ⊆ Γ we have either P(Γ′) = 0 or P(Γ′) = P(Γ). In this paper we will use atomic events
in relation to the tail σ-field of Markov chains.
Acceptance conditions. Given a FPT, let F ⊆ Q be a set of accepting (or target) states. Given a run r, we denote
by Inf(r) the set of states that appear infinitely often in r. We consider the following acceptance conditions.
1. Safety condition. The safety condition Safe(F ) defines the set of paths that only visit states in F ; i.e.,
Safe(F ) = { (q0, q1, . . .) | ∀i ≥ 0. qi ∈ F }.

2. Reachability condition. The reachability condition Reach(F ) defines the set of paths that visit states in F at
least once; i.e., Reach(F ) = { (q0, q1, . . .) | ∃i ≥ 0. qi ∈ F }.

3. Büchi condition. The Büchi condition Büchi(F ) defines the set of paths that visit states in F infinitely often;
i.e., Büchi(F ) = { r | Inf(r) ∩ F (= ∅ }.

4. coBüchi condition. The coBüchi condition coBüchi(F ) defines the set of paths that visit states outside F
finitely often; i.e., coBüchi(F ) = { r | Inf(r) ⊆ F }.

5. Parity condition. The parity condition consists of a priority function p : Q → N and defines the set of paths
such that the minimum priority visited infinitely often is even, i.e.,Parity(p) = {r | min(p(Inf(r)) is even}.

Probabilistic automata. A Probabilistic Automaton (PA) is a tuple A = (T , Φ) where T is a FPT and Φ is an
acceptance condition.
Decision problems. Let A be a PA, and let Φ : Ω → { 0, 1 } be an acceptance condition. We consider the
following decision problems.
1. Almost problem: Whether there exists w ∈ Σω such that Pw

A(Φ) = 1?
2. Positive problem: Whether there exists w ∈ Σω such that Pw

A(Φ) > 0?
3. Limit problem: Whether for all ε > 0, there exists w ∈ Σω such that Pw

A(Φ) > 1 − ε?
Proposition 1 summarizes the known results from [1, 7, 10].

Proposition 1. Given a PA and an acceptance condition Φ, the following assertions hold:

4



1. The almost problem is decidable for Φ = safety, reachability, Büchi, and undecidable for Φ = Co-Büchi
and parity.

2. The positive problem is decidable for Φ = safety, reachability, Co-B̈uchi, and undecidable for Φ = Büchi
and parity.

3. The limit problem is decidable for Φ = safety, and undecidable for Φ = reachability, B̈uchi, Co-Büchi, and
parity.

3 Simple Processes

In this section we first recall the decomposition-separation theorem, then use it to decompose the tail σ-field of
stochastic processes into atomic events. We then introduce the notion of simple processes, which are stochastic
processes where the atomic events obtained using the decomposition-separation theorem are non-communicating.

3.1 The Decomposition Separation Theorem and tail σ-fields

The structure of the tail σ-field of a general non-homogeneous Markov chain has been deeply studied by math-
ematicians. Blackwell and Freedman, in [4], presented a generalization of the classical decomposition theorem
for homogeneous Markov chains, in the context of non-homogeneous Markov chains with finite state spaces. The
work of Blackwell and Freedman has been deepened by Cohn [8] and Sonin [16], who gave a more complete
picture. We present the results of [4, 8, 16] in the framework of jet decompositions presented in [16].
Jets and partition into jets. A jet is a sequence J = {Ji}i∈N, where each Ji ⊆ Q. A tuple of jets (J0, J1, ..., Jc)
is called a partition of Qω into jets if for every n ∈ N, we have that J0

n, J1
n, ..., Jc

n is a partition of Q. The
Decomposition-Separation Theorem, in short DS-Theorem, proved by Cohn [8] and Sonin [16] using results of
[4], is given in Theorem 1. We first define the notion of mixing property of jets.
Mixing property of jets. Given a FPT A, a jet J = {Ji}i∈N is mixing for a word w if: given Xw

n , n ≥ 0 the
process induced on Q by w, given q, q′ ∈ Q, and a sequence of states {qi}i∈N such that for all i ≥ 0 we have
qi ∈ Ji, givenm ∈ N, if limnPw[Xw

n = qn | Xw
m = q] > 0 and limnPw[Xw

n = qn | Xw
m = q′] > 0, then we have:

limn→∞
Pw[Xw

n = qn | Xw
n ∈ Jk

n ∧ Xw
m = q]

Pw[Xw
n = qn | Xw

n ∈ Jk
n ∧ Xw

m = q′]
= 1

Intuitively, a jet is mixing if the probability distribution of a state of the process, conditioned to the fact that this
state belongs to the jet, is ultimately independent of the initial state. This extends the notion of mixing process on
homogeneous ergodic Markov chains, on which the distribution of a state of the process after a number of steps is
close to the stationary distribution, irrespective of the initial state.

Theorem 1 (The Decomposition-Separation Theorem [4, 8, 16]). Given a FPT A = (Q, Σ, {Ma}a∈Σ,α), for all
w ∈ Σω there exists c ∈ { 1, 2, . . . , |Q| } and a partition (J0, J1, ..., Jc) of Qω into jets such that:

1. With probability one, after a finite number of steps, a run r ∈ Ω enters into one of the jets Jk, k ∈
{ 1, 2, . . . , c } and stays there forever.

2. For all k ∈ { 1, 2, . . . , c } the jet Jk is mixing.

Theorem 1 holds even if Σ is infinite: it is valid for any non-homogeneous Markov chain on a finite state space.
In this paper we will focus on finite alphabets only.
Remark. We note that for all i ∈ {1, 2, . . . , c}, either µw

n (J i
n) →n→∞ 0 or there exists λi > 0 such that for n large

enough µw
n (J i

n) > λi. Indeed, if µw
n (J i

n) (→n→∞ 0 but there exists a subsequence of {µw
n (J i

n)}n∈N which goes to
zero, then a non zero probability of runs enter Ji

n and leave it afterward infinitely often, which contradicts the first
point of Theorem 1. Thus, we can always assume that there exists λ > 0 such that for all i ∈ { 1, 2, . . . , c }, for n

5



large enough, we have µw
n (J i

n) > λ. If this is not the case, we just merge the jets Ji such that µw
n (J i

n) →n→∞ 0
with J0, which does not invalidate the properties of the jet decomposition stated by Theorem 1.
For the following of the section, we fix w ∈ Σω and a partition J0, J1, ..., Jc of Qω as in the DS Theorem.

Given i ∈ { 1, 2, . . . , c } and n ∈ N, let:

τ i
n = {r ∈ Ω | r(i) ∈ J i

n}, and τ i
∞ = ∪N∈N ∩n≥N τ i

n

We now present a result directly from our formulation of the DS Theorem (the result can also be proved using
more general results of [8]).
Proposition 2. For all i ∈ { 1, 2, . . . , c }, the following assertions hold: (1) τi∞ ∈ F∞, i.e., τ∞i is a tail σ-field
event; (2) τ i

∞ is F∞-atomic; i.e., τ∞i is an atomic tail event; and (3) Pw(
⋃c

i=1 τ
i
∞) = 1.

The fact that the τi
∞ are atomic sets of F∞ means that all the runs which belong to the same τi∞ will satisfy the

same tail properties. Intuitively, a tail does not depend on finite prefixes. Several important classes of properties
are tail properties, as presented in [9]: in particular any parity condition is a tail property.

3.2 Simple processes

Definition 2. Let {Xw
n }n∈N be a process induced onQ by a wordw ∈ Σω, and let µw

n be its probability distribution
on Q at time n. We say that {µw

n }n∈N is simple if there exist λ > 0 and two sequences {An}n∈N and {Bn}n∈N of
subsets of Q such that:

• ∀n ∈ N, An, Bn is a partition of Q
• ∀n ∈ N, ∀q ∈ An, µw

n (q) > λ
• µw

n (Bn) →n→∞ 0
The second point of the following proposition shows that the tail σ-field of a simple process can be decomposed

as a set of “non-communicating” jets. Intuitively, a jet is non-communicating if there exists a bound N ∈ N such
that after timeN , if a run belongs to the jet, it will stay in it for ever with probability one. The following proposition
is a reformulation of the notion of simple process in the framework of jets decomposition.
Proposition 3. Let w ∈ Σω, and suppose that the process {µw

n }n∈N induced on Q is simple. Then there exists a
decomposition of Qω into jets, J0, J1, ..., Jc, and N ∈ N, which satisfy the following properties:

1. For all n ≥ N , all i ∈ { 1, 2, . . . , c } and all q ∈ Ji
n, we have µn(q) > λ.

2. For all i ∈ { 1, 2, . . . , c } and all n2 > n1 ≥ N we have δ(Ji
n1

, wn2
n1+1) ⊆ J i

n2
.

3. µw
n (J0

n) →n→∞ 0.
4. Each jet Ji, i ∈ { 1, 2, . . . , c } is mixing.

4 Decidable Problems for Simple Processes

In this section we will present decidable algorithms for the decision problems with the restriction of simple
processes. We first define the simple decision problems that impose the simple process restriction. Given an
acceptance condition Φ, we consider the following problems:
1. Simple almost (resp. positive) problems: Does there exist w ∈ Σω such that {µw

n }n∈N is simple and
Pw
A(Φ) = 1 (resp. Pw

A(Φ) > 0)?
2. Simple limit problem: For all ε > 0, is there w ∈ Σω such that {µw

n }n∈N is simple and Pw
A(Φ) > 1 − ε?

Proposition 4 shows that the decidability and undecidability results of Proposition 1 concerning the positive,
almost, and limit safety and reachability problems still hold when we consider their “simple process” version.
Propositions 5 and 6 are more interesting as they show that the almost and positive parity problem becomes
decidable when restricted to simple processes. Finally, Proposition 7 shows that the ”limit” decision problems
remain undecidable even when restricted to simple processes.

6



Proposition 4. The simple almost (resp. positive) safety and reachability problems are PSPACE-complete, as well
as the simple limit safety problem. The simple limit reachability problem is undecidable.

Proposition 5. The simple almost parity problem is PSPACE-complete

Proposition 6. The simple positive parity problem is PSPACE-complete.

A corollary of the proofs of Propositions 5 and 6 is that if the simple almost (resp. positive) parity problem is
satisfied by a word, then it is in fact satisfied also by a lasso shape word.

Proposition 7. The simple limit Büchi and coBüchi problems are undecidable.
From the propositions of this section we obtain the following theorem. In the theorem below the PSPACE-

completeness of the limit safety problem follows as for safety conditions the limit and almost problem coincides.

Theorem 2. The simple almost and positive problems are PSPACE-complete for parity conditions. The simple
limit problem is PSPACE-complete for safety conditions, and the simple limit problem is undecidable for reacha-
bility, Büchi, coBüchi and parity conditions.

5 Simple Automata

In this section we introduce the class of simple automata, which is a subclass of probabilistic automata on which
every word induces a simple process. We present a structural characterization of simple automata, show that all
the associated decision problems are PSPACE-complete, and then show that the class of simple automata is closed
under union and intersection.

5.1 Simple Automata

Definition 3 (Simple Automata). A probabilistic automaton is simple if for all w ∈ Σw, the process {µw
n }n∈N

induced on its state space by w is simple.

In [10], given S ⊆ Q and a ∈ Σ, the authors define the set S · a as the support of δ(S, a), and in the case where
S · a = S, the set S · a# as the set of states which are recurrent for the homogeneous Markov chain induced on
S by the transition matrix Ma. Next, they define the support graph GA of the automaton A as the graph whose
nodes are the subsets of Q, and such that, given S, T ⊆ Q, the couple (S, T ) is an edge in GA if there exists a ∈ Σ
such that S · a = T or S · a = S and S · a# = T . They present the class of #-acyclic automata as the class of
probabilistic automata whose support graph is acyclic.

Definition 4 ([10]). A probabilistic automaton A is #-acyclic if GA is acyclic.

We now present a natural generalization of this approach, where we consider edges in the support graph labeled by
finite words, instead of letters. More precisely, given S ⊆ Q and ρ ∈ Σ∗, let S · ρ = Supp(δ(S, ρ)). If S · ρ = S,
we define S · ρ# as the set of states which are recurrent for the homogeneous Markov chain induced on Q by ρ
(i.e. by the transition matrix {δ(q, ρ)(q′)}q,q′∈Q), and which are reachable from a state in S on this Markov chain.

In the future, we may use the notation S
ρ→ T to signify that S · ρ = T , and S

ρ#

→ T to signify that S · ρ# = T .
We now define the extended support graph of a probabilistic automaton.

Definition 5 (Extended Support Graph). Let A be a probabilistic automaton. The extended support graph HA of
A is the directed graph whose vertices are the non-empty subsets of Q, and whose edges are the pairs (S, T ) such

that there exists ρ ∈ Σ∗ such that either S · ρ = T , or S · ρ = S and S · ρ# = T . An edge of the type A
ρ#

→ B is

called a #-edge. An edge of the type A
ρ#

→ B where B ! A is called a #-reduction.

Example 1.

7



Consider the following probabilistic automaton A,
with state space Q = {s, t, u}.

A : s

a,.5; b,1

!!
a,.5

""
t

a,.5

##

a,.5; b,1

""
u

a,1; b,1

##

We haveQ ·a = Q ·a# = Q, andQ ·b = Q ·b# = Q.
However, Q · (ab)# = {t, u}. Thus, {t, u} is reach-
able from Q inHA, but not in GA.

In general, given a path in HA, we compact the notation of the sequences: instead of A
ρ1→ B

ρ2→ C , we
may write A

ρ1·ρ2→ C since by definition both are sequences in HA. Thus, we can associate to any path in HA a

sequence: seq = A1
ρ1→ A2

ρ#
2→ A3

ρ3→ A4
ρ#
4→ A5...

ρk→ Ak+1, where the ρi are words in Σ∗ (possibly empty when

i is odd). Given a path seq on HA, a subpath of seq is a path seq′ = A′
1

ρ′1→ A′
2

ρ′#2→ A′
3

ρ′3→ A′
4

ρ′#4→ A′
5...

ρ′
k′→ A′

k′+1
onHA such that k = k′, ρ′i = ρi for all i ∈ [1; k], and such that A′

1 ⊆ A1. A cycle is a path such that A1 = Ak+1.
A cycle is elementary if it does not contain any subpath different from itself which is a cycle.

Lemma 1. Any path seq = A1
ρ1→ A2

ρ#
2→ . . .

ρk→ Ak+1 inHA such that Ak+1 ⊆ A1 contains an elementary cycle.

In the following of the subsection, we introduce several technical notions useful for the structural characteriza-
tion of the class of simple automata. Given a probabilistic automaton A, an execution tree is given by an initial
distribution α ∈ ∆(Q), or a set of states A ⊆ Q, and a finite or infinite word ρ. We use the term execution tree
informally for the set of execution runs onA which can be probabilistically generated when the system is initiated
in one of the states of Supp(α) (or A), and when the word ρ is taken as input.

Definition 6 (Leak). A leak is a tuple (A,B, ρ) where A,B ⊆ Q and ρ ∈ Σ∗ are such that: A (= ∅, , B (=
∅, A ∩ B = ∅, (A ∪ B) · ρ = A ∪ B, and (A ∪ B) · ρ# = B.

For simplicity, we may use the term leak for a couple (A, ρ) where A ⊆ Q and ρ ∈ Σ∗ are such that A · ρ = A
and A · ρ# (= A.

Definition 7. An execution tree (α, ρ) is said to be chain recurrent for a probabilistic automaton A if it does not
contain a leak. That is, for all ρ1, ρ2 ∈ Σ∗ such that ρ1 · ρ2 is a prefix of ρ, (δ(α, ρ1), ρ2) is not a leak. We write
CRec(α) for the set of ρ ∈ Σ∗ such that (α, ρ) is a chain recurrent execution tree for A.
The following key lemma shows that for any probabilistic automaton A there exists a constant γ(A) > 0 such

that the probability to reach any state on a chain recurrent execution tree is either 0 or greater than γ(A). Given
a probabilistic automaton A, let ε(A) be the smallest non zero probability which appears among the δ(q, a)(q′),
where q, q′ ∈ Q and a ∈ Σ.

Lemma 2. Let A be a probabilistic automaton. For all q ∈ Q, all ρ ∈ CRec(q) and all q′ ∈ Supp(δ(q, ρ)) we
have δ(q, ρ)(q′) ≥ ε2

2·|Q| where ε = ε(A).

5.2 Structural characterization

In this section we prove that the class of simple automata coincides with the following class of structurally
simple automata:

Definition 8. A probabilistic automaton A is structurally simple if the extended support graph of A does not
contain any elementary cycle with a #-reduction.

Example 2 (Structurally simple Automata).

8



Consider the following probabilistic automaton:

A : 2

a:1

$$

b:1

%%
1a:.4,b:1

"" a:.3 &&
a:.3

''!!!!!!!
3 a:1 &&

b:1

(( 4

a,b:1

))

The support graph of A contains a cycle with a #-
reduction: ({ 1, 2, 3, 4 } a#

→ { 2, 4 } b·a→ { 1, 2, 3, 4 }).
However, A does not contain any elementary cycle
with a #-reduction, since the only elementary cycles
of A are: ({1}, b), ({2}, a), ({4}, a), ({4}, b), and
({1, 2, 3} b→ {1} a→ {1, 2, 3}). It is straightforward
to verify that this automaton is simple.

The five following lemmas are technical and rely on the structure of elementary cycles of extended support
graphs. We show that on a structurally simple automaton, given w ∈ Σω, the associated execution tree can be
decomposed as a sequence of a bounded number of chain recurrent execution trees. The key Lemma 2 is then used
to bound the probabilities which appear.

Lemma 3. Suppose that A is structurally simple. Let A ⊆ Q and ρ ∈ Σ∗ be such that A · ρ ⊆ A. Then there
exists B ⊆ A such that (B, ρ) is chain recurrent.

Lemma 4. Let {µw
n }n∈N be the process generated by a word w = a1, a2, ... ∈ Σω on a probabilistic automaton.

Given n ≥ 1 recall that w[1..n] = a1, ..., an. Suppose that there exists γ > 0 and N ≥ 0 such that for all n ≥ N
and all q ∈ Supp(δ(α, w[1..n])) we have δ(α, w[1..n])(q) > γ. Then the process is simple.

We introduce the notion of Sequence of recurrent execution trees in order to represent a process which may not
be chain recurrent, but which can be decomposed as a sequence of a finite number of chain recurrent execution
trees. The length of the sequence mesures the numer of steps which do not belong to a chain recurrent subsequence,
and will be usefull to bound the ”leaks” induced on the sequence. The following Lemma 5 uses the key Lemma 2.
Definition 9 (Sequence of recurrent execution trees). A sequence of recurrent execution trees is a finite sequence
(α1, ρ1), ρ′1, (α2, ρ2), ρ′2, ...(αk, ρk) such that:

• ρk ∈ Σω, and for i ∈ [1; k − 1] we have ρi, ρ′i ∈ Σ∗

• For all i ∈ [2; k] we have:
Supp(αi) ⊆ Supp(δ(αi−1, ρi−1 · ρ′i−1))

• All the execution trees (αi, ρi) are chain recurrent
The length of the sequence is defined as

∑k−1
i=1 |ρ′i|.

Given an execution tree (α, w), a subsequence of recurrent execution trees of (α, w) is a sequence of recurrent
execution trees (α1, ρ1), ρ′1, (α2, ρ2), ρ′2, ...(αk, ρk) such that α = α1 and w = ρ1 · ρ′1 · ρ2 · ρ′2 . . . · ρk.

Lemma 5. Let A be a probabilistic automaton. Suppose that there exists K ∈ N such that for all execution tree
(α, ρ), there exists a subsequence of recurrent execution trees of length at most K . Then A is simple.

Definition 10. Let A ⊆ Q and ρ ∈ Σ∗. Given B ⊆ Q, we say that B is #-ρ-reachable from A, written A
#-ρ−→ B,

if B ⊆ δ(A, ρ), and we can decompose ρ in a sequence of subwords ρ = ρ1 · ρ2 · . . . · ρ2·k−1 (with ρi possibly

empty when i is odd), and such that A ρ1−→
ρ#
2−→ ρ3−→

ρ#
4−→ . . .

ρ2·k−1−→ B.

The notion of #-ρ-reachability satisfies a form of transitivity: given A,B,C ⊆ Q and ρ = ρ1 · ρ2 ∈ Σ∗, if
A

#-ρ1−→ B and B
#-ρ2−→ C , then A

#-ρ−→ C . Lemma 6 is usefull to prove Lemma 7, and Proposition 8 follows from
Lemma 7 and Lemma 5. Proposition 9 uses Lemma 8 and completes the characterization.

Lemma 6. Suppose that A is structurally simple. Let A,B ⊆ Q and ρ ∈ Σ∗ be such that B ⊆ A and A
#-ρ−→ B.

Then there exists C ⊆ A such that (C, ρ) is chain recurrent.

Lemma 7. Suppose that A is structurally simple. Then for all execution tree (α, w), there exists a subsequence of
recurrent execution trees of length at most 22·|Q|.

9



Proposition 8. All structurally simple automata are simple.

Lemma 8. Let seq = A1
ρ1→ A2

ρ#
2→ A3

ρ3→ A4
ρ#
4→ ...

ρ#
2·k→ A1 be an elementary cycle in HA. Then for all ε > 0

there exists K ≥ 0, λ > 0 and i2, i4, . . . , i2·k ≥ 1 such that:

• For all q, q′ ∈ A1 and all k ≥ K we have δ(q, (ρ1 · ρi2·k
2 · ρ3 · ρi4·k

4 · ... · ρi2·k ·k
2·k )2|Q|)(q′) > λ

• For all k ≥ K we have δ(A1, (ρ1 · ρi2·k
2 · ρ3 · ρi4·k

4 · ... · ρi2·k ·k
2·k )2|Q|)(A1) > 1 − ε

Proposition 9. All simple automata are structurally simple.
Theorem 3. The class of simple automata and the class of structurally simple automata coincide.

5.3 Decision problems for simple automata

For the following of the section, A is an automaton with state space Q and initial distribution α. Now that we
have characterized structurally the class of simple automata, we can show that the simple automaton problem of
whether a given probabilistic automaton is simple, is a PSPACE complete problem.

Theorem 4. The simple automaton problem is PSPACE complete.

We now consider the qualitative decision problems for simple automata. In Proposition 6 of [10], the authors
show that if F ⊆ Q is reachable from a state q0 in the support graph of A, then it is limit reachable from q0 in A.
A direct generalization of this result to the extended support graph gives Proposition 10.

Proposition 10. If F is reachable from Supp(α) in the extended support graph of A, then it is limit reachable
from α in A.
The following Proposition shows that the limit reachability problem is decidable on simple automata, which

was the original motivation for the introduction of#-acyclic automata in [10].

Proposition 11. Let A be a simple automaton, and let F ⊆ Q. Then (1) F is limit reachable in A iff (2) F is
reachable from Supp(α) in the extended support graph of A.
The following proposition provides the decidability of the limit reachability problem on simple automata. The-

orem 5 follows using Propositions 12 and 11.

Proposition 12. Given S, T ⊆ Q, we can decide in PSPACE whether there exists a path between S and T inHA.

Theorem 5. The limit reachability problem is PSPACE-complete on simple automata.

We consider the complexity of decision problems related to infinite words on simple PAs. The upper bound on
the complexity in Proposition 13 follows from the results of Section 4, since the process induced on a simple PA
by a word w ∈ Σ is always simple. The lower bound follows from the fact that the PA used for the lower bound
of Section 4 is simple. Proposition 14 shows that even the limit parity problem is decidable for simple automata.

Proposition 13. The almost and positive problems are PSPACE-complete for parity conditions on simple PAs.
Proposition 14. The limit problem is PSPACE-complete for parity conditions on simple PAs.

Theorem 6. The almost, positive and limit problems are PSPACE-complete on the class of simple automata for
the parity condition.

5.4 Closure properties for Simple Automata

Given A1 = (S1, Σ, δ1,α1) and A2 = (S2, Σ, δ2,α2) two simple automata on the same alphabet Σ, the
construction of the cartesian product automaton A1 "# A2 is standard. We detail this construction in appendix,
along with the proof of the following proposition.

10



Proposition 15. Let A1 and A2 be two simple automata. Then A = A1 "# A2 is also simple.
We prove that the classes of languages recognized by simple automata under various semantics (positive parity,

almost parity) are robust. This property relies on the fact that one can construct the intersection or the union of
two parity (non-probabilistic) automata using only product constructions and change in the semantics (going from
parity to Streett or Rabin, and back to parity). By Proposition 15, such transformations keep the automata simple.
Theorem 7. The class languages recognized by simple automata under positive (resp. almost) semantics and
parity condition is closed under union and intersection.

6 Subclasses of Simple Automata

In this section we show that both #-acyclic automata (recall Definition 4) and hierarchical probabilistic au-
tomata are strict subclasses of simple automata.
Proposition 16. The class of simple automata strictly subsumes the class of #-acyclic automata.
Another restriction of Probabilistic Automata which has been considered is the model of Hierarchical PAs, pre-

sented first in [6]. Intuitively, a hierarchical PA is a probabilistic automaton on which a rank function must increase
on every runs. This condition imposes that the induced processes are ultimately deterministic with probability one.
Definition 11 ([6]). Given k ∈ N, a PA B = (Q, qs, Q, δ) over an alphabet Σ is said to be a k-level hierarchical
PA (k-HPA) if there is a function rk : Q → {0, 1, ..., k} such that the following holds:

Given j ∈ {0, 1, ..., k}, let Qj = {q ∈ Q | rk(q) = j}. For every q ∈ Q and a ∈ Σ, if j0 = rk(q) then
post(q, a) ⊆ ∪j0≤l≤kQl and |post(q, q) ∩ Qj0| ≤ 1.

Proposition 17. The class of simple automata strictly subsumes the class of hierarchical automata.
It follows that our decidability result (Theorem 6) for simple PAs both unifies and generalizes the decidability

results previously known for#-acyclic (for limit reachability) and hierarchical PA (for almost and positive Büchi).

7 Processes Induced by Lasso Shape Words

In this section we consider the decision problems where, instead of restricting the probabilistic automata, we
restrict the set of input words to lasso shape words. First, the processes induced by such words are simple:
Proposition 18. Let A be a PA, let w be a lasso shape word, and let α ∈ ∆(Q). Then the process induced by w
and α on Q is simple.
Corollary 1. LetM be a finite state machine. Then for any w ∈ Σω generated byM, the process induced by w
and α on Q is simple.
The results of this section along with the results of Section 4 give us the following theorem.

Theorem 8. Given a probabilistic automaton with parity acceptance condition, the question whether there is lasso
shape word that is accepted with probability 1 (or positive probability) is PSPACE-complete.
Conclusion. In this work we have used a very general result from stochastic processes, namely the decomposition-
separation theorem, to identify simple structure of tail σ-fields, and used them to define simple processes on
probabilistic automata. We showed that under the restriction of simple processes the almost and positive decision
problems are decidable for all parity conditions. We then characterized structurally the class of simple automata on
which every process is simple. We showed that this class is decidable, robust, and that it generalizes the previous
known subclasses of probabilistic automata for which the decision problems were decidable. Our techniques
also show that for lasso shape words the almost and positive decision problems are decidable for all probabilistic
automata. We believe that our techniques will be useful in future research for other decidability results related to
probabilistic automata and more general probabilistic models.

11



References

[1] C. Baier, N. Bertrand, and M. Größer. On decision problems for probabilistic Büchi automata. In FOSSACS,
pages 287–301. Springer, 2008.

[2] C. Baier and M. Großer. Recognizing ω-regular languages with probabilistic automata. In LICS, pages
137–146, 2005.

[3] N. Bertrand, B. Genest, and H. Gimbert. Qualitative determinacy and decidability of stochastic games with
signals. In LICS, pages 319–328, 2009.

[4] D. Blackwell and D. Freedman. The tail σ-field of a Markov chain and a theorem of Orey. The Annals of
Mathematical Statistics, 35(3):1291–1295, 1964.

[5] R. G. Bukharaev. Probabilistic automata. Journal of Mathematical Sciences, 13:359–386, 1980.
[6] R. Chadha, A. Sistla, and M. Viswanathan. Power of randomization in automata on infinite strings. In

CONCUR, pages 229–243. Springer, 2009.
[7] K Chatterjee and Thomas A. Henzinger. Probabilistic Automata on Infinite Words: Decidability and Unde-

cidability Results. ATVA, 2010.
[8] H. Cohn. Products of stochastic matrices and applications. International Journal of Mathematics and Math-

ematical Sciences, 12(2):209–233, 1989.
[9] M. de Rougemont and M. Tracol. Statistic Analysis for Probabilistic Processes. In LICS, pages 299–308,

2009.
[10] H. Gimbert and Y. Oualhadj. Probabilistic automata on finite words: Decidable and undecidable problems.

ICALP, pages 527–538, 2010.
[11] V. Gripon and O. Serre. Qualitative concurrent stochastic games with imperfect information. pages 200–211,

2009.
[12] J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable markov chains. Springer, 1976.
[13] D. Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266, 1977.
[14] A. Paz. Introduction to probabilistic automata. Academic Press, Inc. Orlando, FL, USA, 1971.
[15] M.O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.
[16] I. Sonin. The asymptotic behaviour of a general finite nonhomogeneous Markov chain (the decomposition-

separation theorem). Lecture Notes-Monograph Series, 30:337–346, 1996.
[17] M. Tracol, C. Baier, and M. Grösser. Recurrence and Transience for Probabilistic Automata. In FSTTCS,

pages 395–409, 2009.
[18] M.Y. Vardi. Automatic verification of probabilistic concurrent finite state programs. In FOCS, pages 327–

338, 1985.

12



Appendix

A Details of Section 3

Details of Proposition 2.

Proof. (of Proposition 2).We present the proof of all three parts below.
Assertion 1. Let i ∈ { 1, 2, . . . , c }. We prove that τi

∞ belongs to F∞. We first note that for all N0 ∈ N and
N ≥ N0, by definition of FN , we have ∩n≥Nτn

i ∈ FN0 . Next, we note that {∩n≥Nτn
i }N∈N is an increasing

sequence of sets of runs, and that the first point of Theorem 1 implies τi∞ = limN→∞ ∩n≥N τ i
n. For all N0 ∈ N,

we have FN0 is a σ-field, hence the limit of an increasing sequences of sets in FN0 also belong to FN0 . We get
that for all N0 ∈ N, we have τ i

∞ ∈ FN0 , hence the result.
Assertion 2. We prove that τi

∞ is atomic by using Proposition 2.1. of [8], which states the following result:
• For any set Γ in F∞, there exists a sequence Ln of subsets of Q such that, Pw-almost surely, we have

limn→∞{r ∈ Ω s.t. r(n) ∈ Ln} = Γ.
Here, “limn→∞{r ∈ Ω s.t. r(n) ∈ Ln} = Γ almost surely” means that the Pw-measure of the set of states on
which the characteristic functions of the sets {r ∈ Ω s.t. r(n) ∈ Ln} and Γ goes to zero as n goes to infinity. For
sake of completeness, we prove this fact using the Martingale Convergence Theorem, as in [8] (see for instance
[12] for a presentation of the Martingale Convergence Theorem and the Levy’s Law).
Given n ∈ N, let σ(Xw

0 ,Xw
1 , . . . ,Xw

n ) be the σ-field generated by Xw
i , i ∈ { 0, . . . , n }. Since Γ belongs

to F∞ = ∩n∈NFn, the Levy’s Law implies that, Pw almost surely, limn→∞P(Γ|σ(Xw
0 ,Xw

1 , . . . ,Xw
n )) = 1Γ,

where 1Γ is the characteristic function of Γ. Since {Xn, n ≥ 0} is Markovian, we know that for all n we have
P(Γ|σ(Xw

0 ,Xw
1 , . . . ,Xw

n )) = P(Γ|σ(Xw
n )). Let 0 < λ< 1, and given n ∈ N let Ln = {q ∈ Q | P(Γ|Xw

n = q) >
λ}. Then, Pw almost surely, we have limn→∞{Xn ∈ Ln} = Γ, which proves the preliminary result.
Now, let A ∈ τ i

∞. By hypothesis, Pw[A] > 0. Suppose by contradiction that 0 < Pw[A] < Pw(τ i
∞).

Let B = τ i
∞ \ A. We have A,B ∈ F∞, hence there exist Ln, L′

n, n ∈ N two sequences of sets such that
limn→∞{r ∈ Ω | r(n) ∈ Ln} = A almost surely and limn→∞{r ∈ Ω | r(n) ∈ L′

n} = B almost surely. Let N be
large enough, and let q ∈ LN , q′ ∈ L′

N be such that :

P[r ∈ A | r(N) = q] > 1 − 1
4 · |Q|2

;

and
P[r ∈ B | r(N) = q′] > 1 − 1

4 · |Q|2 .

We prove that this contradicts the second point of Theorem 1: first, by the Pigeon Hole Principle, there exists a
sequence qn, n ≥ N of states in L′

n such that

limnP[r(n) = qn| r(N) = q′] >
1

2 · |Q| .

Moreover, by the second point of Theorem 1 we know that

limn→∞
P[Xw

n = qn | Xw
n ∈ Jk

n ∧ Xw
m = q]

P[Xw
n = qn | Xw

n ∈ Jk
n ∧ Xw

m = q′]
= 1

Thus, for n large enough, P[r(n) = qn| r(N) = q] >
1

4 · |Q| . Hence, for n large enough, P[r (∈ A| r(N) = q] >

1
4 · |Q|2 . This is a contradiction.

13



Assertion 3. The fact that, Pw(
⋃c

i=1 τ
i
∞) = 1, is a consequence of the first point of Theorem 1: with probability

one, after a finite number of steps, a run belongs to one of the Ji and never leaves it.

Details of Proposition 3. We prove Proposition 3.

Proof. Let J0, ..., Jc be a decomposition of Qω into jets, as in Theorem 1. Let λ > 0 be the threshold given by
the definition of a simple process, for the process {µw

n }n∈N. For all i ∈ { 1, 2, . . . , c } and n ∈ N, let

Ĵ i
n = {q ∈ J i

n s.t. µw
n (q) > λ}

For all n ∈ N, let H0
n = J0

n ∪
⋃c

i=1(J
i
n \ Ĵ i

n), and let Hi
n = Ĵ i

n for i ∈ { 1, 2, . . . , c }. We claim that the
decomposition of Qω into jets H = (H0, ...,Hc) satisfies the conditions of the proposition.
The first point of the Proposition follows from the definition of the Ĵ i

n. The third point follows from the fact
that the process is simple: the probability of the set of states whose measure is less than λ goes to zero. We prove
now the second point.
Suppose that there exists no N ∈ N such that the property is satisfied for the jet decomposition H . Then, there

exists i ∈ { 1, 2, . . . , c } such that for all N ∈ N, there exist n2 > n1 ≥ N such that δ(Ĵ i
n1

, wn2
n1

) (⊆ Ĵ i
n2
.

We write w = a0, a1, .... Since Q is finite, there exist i (= j in { 1, 2, . . . , c } and q, q′ ∈ Q such that for
an infinite number of n ∈ N we have q ∈ Ĵ i

n, q′ ∈ Ĵj
n, and δ(q, an)(q′) > 0. Since for n large enough we

have µw
n (q) > λ for all q ∈ Ĵ i

n, this implies that the probability of the set of runs which move from jet Ji to jet
Jj infinitely often is at least ε · λ, where ε is the least non zero probability which appears among the transition
probabilities given by theMa, for a ∈ Σ. This implies that the probability of the set of runs which stay inside one
of the Ji, i ∈ { 1, 2, . . . , c } for ever after a finite number of steps cannot be equal to one. This contradicts the
definition of the decomposition J0, ..., Jc.
For the fourth point, the fact that the jets are mixing follows directly from the Theorem 1, and the fact that a run

does not leave Ĵ i once it has entered it after time N .

B Details of Section 4

Details of Proposition 4. We prove Proposition 4.

Proof. By [2] and [7], the almost (resp. positive) safety and reachability problems are decidable for the general
class of probabilistic automata, as well as the limit safety problem. The results of [2] and [7] show that if one of
the problems is satisfiable, it is satisfiable by a lasso shape word, and hence the simple version of the problem is
satisfiable (by the results of our Section 7). As a consequence, we can use this result to get the decidability of the
problems when we restrict to simple processes. The PSPACE-completeness follows from the results of [6].
The undecidability of the limit reachability problem comes from the results of [10] and [7], which show that it

is undecidable for the general class of probabilistic automata, and from the following fact: Given a PA with state
space Q, accepting states F ⊆ Q and ε ∈]0; 1[, if there exists w ∈ Σω such that Pw[{r | r ∈ Reach(F )}] > 1 − ε,
then there exists w′ ∈ Σω such that Pw′ [{r | r ∈ Reach(F )}] > 1 − 2 · ε and the process induced by w′ is simple.
For this we just have to consider any lasso shape word w = ρ1 · ρω

2 whose prefix word ρ1 satisfies the 1 − 2 · ε
reachability condition. In Section 7, we see that the process induced by a lasso-shape word on an automaton is
always simple, which concludes the proof.

Details of Proposition 5.

Proof. The proof is in three times: first we present an equivalent formulation of the problem. Then we show that
the equivalent formulation gives a problem which we can solve in PSPACE. Finally we give the PSPACE lower
bound.

14



In the following, p : Q → N is a parity function on Q, and Φ = Parity(p). We prove that: (1) There exists
w ∈ Σω such that the induced process is simple and Pw

A(Φ) = 1 if and only if (2) There exists G ⊆ Q and
ρ1, ρ2 ∈ Σ∗ such that G = δ(α, ρ1), δ(G, ρ2) ⊆ G, and the runs on the Markov chain induced by (G, ρ2) satisfy
Φ with probability one. We show in the appendix that the properties can be verified in PSPACE and also present a
PSPACE lower bound.
We show the equivalence (2)⇔(1). The way (2)⇒(1) is direct, since we will show in Section 7 that the process

induced by a lasso shape word on any automaton is always simple. We prove that (1)⇒(2). Let w = a1, ..., ai, ...
be such that the induced process is simple and Pw

A(Φ) = 1. Using Proposition 3, let J0, J1, ..., Jm be the decom-
position of Qω into jets and let N0 ∈ N, λ > 0 be such that:

• ∀n ≥ N0, ∀i ∈ { 1, 2, . . . , c }, ∀q ∈ J i
n: µn(q) > λ.

• ∀i ∈ { 1, 2, . . . , c }, for all n2 > n1 ≥ N0, we have δ(Ji
n1

, wn2
n1+1) ⊆ J i

n2
.

• µw
n (J0

n) →n→∞ 0
• Each jet Ji, i ∈ { 1, 2, . . . , c } is mixing.

Without loss on generality, since Q is finite, taking N0 large enough, we can assume that the vector of sets of states
(J0

N0
, ..., Jc

N0
) appears infinitely often in the sequence {(J0

n, ..., Jc
n)}n∈N. As well, without loss on generality, we

can assume that for all n ≥ N0 and all i ∈ { 1, 2, . . . , c }, all the states in Ji
n appear infinitely often among the sets

J i
m, for m ≥ N0. Let i ∈ { 1, 2, . . . , c }. Given q ∈ Q, let

Φq = {r ∈ Ω | q ∈ Inf(r) and p(q) = min
q′∈Inf(r)

p(q′)}

Clearly, for all q ∈ Q, Φq ∈ F∞. Since Q is finite, there exists qi ∈ Q such that P(τ i
∞ ∩ Φqi) > 0. By Proposition

2, τ i
∞ is atomic, hence τi

∞ ⊆ Φqi . Since the runs of the process satisfy the parity condition with probability one,
p(qi) must be even. Moreover, for all n ≥ N0 and all q ∈ Ji

n, we must have p(q) ≥ p(qi). Indeed, such a q
appears an infinite number of times in the sequence Ji

n, by hypothesis, and always with probability at least λ.
Since τ i

∞ ⊆ Φqi , there exists mi ∈ N such that for all q ∈ JN0
i , there exists m < mi such that δ(q, w[N0 +

1..m])(qi) > 0. We define m = maxi∈{ 1,2,...,c } mi, and m′ ≥ m such that

(J0
N0

, ..., Jc
N0

) = (J0
N0+m′ , ..., Jc

N0+m′)

Taking ρ1=w[0..N0] and ρ2 = w[N0 + 1..N0 + m′] completes the proof. Indeed, when starting from the initial
distribution, after reading ρ1, we arrive by construction in one of the sets Ji

N0
, with i ∈ { 0, . . . , c }. Starting

from this state q, if the word ρ2 is taken as input, we go to set Ji
N0+m′ with probability one, visit qi with positive

probability, and do not visit any state with probability smaller that p(qi). This implies that when starting from q
and reading ρω

2 , we visit qi with probability one, hence the result.
Now, we argue the PSPACE upper and lower bounds. The proof is close to the proof of the complexity bounds

of [17].
First, we show that we can verify the second property in NPSPACE, hence in PSPACE. The proof is in two

steps. In a first step, we show that we can decide in NPSPACE whether, given G ⊆ Q, there exists ρ1 ∈ Σ∗

such that G = δ(α, ρ1). For this notice that, given G ⊆ Q, if there exists ρ1 ∈ Σ∗ such that G = δ(α, ρ1),
then there exists ρ′1 ∈ Σ∗ such that G = δ(α, ρ′1) and |ρ′1| ≤ 2|Q|. Thus, we can restrict the search to words ρ1
of length at most 2|Q|. By guessing the letters a1, a2, . . . of ρ1 one by one, and by keeping in memory the set
Ai = δ(α, a1, . . . , ai) at each step, we can check at each step whether Ai = G, and thus we can decide whether
there exists such a ρ1 in NPSPACE.
In a second step, we show that, given G ⊆ Q, we can decide in NPSPACE whether there exists ρ2 ∈ Σ∗

such that the runs on the periodic non-homogeneous Markov chain induced by (G, ρ2) satisfy Φ with probability
one. For this, we refine the previous argument. Notice that this is equivalent to find ρ2 = a1, . . . , ak ∈ Σ∗ and
A,B ⊆ Q such that:

15



• ρ2 has length at most 22·|Q|

• δ(G, ρ2) ⊆ G
• A,B partition G
• A is the set of recurrent states for the homogeneous Markov chain induced by ρ2 on G
• B is the set of transient states for the homogeneous Markov chain induced by ρ2 on G
• For all q0 ∈ A, for all the finite runs q0, a1, q1, a2, q2, . . . , ak generated with positive probability when
initiated on q and when reading ρ2, the minimal value of the p(qi), i ∈ { 0, k − 1 } is even.

This can be checked in NPSPACE. Indeed, we can guess A,B, and the letters of ρ2 one by one, and at each step
keep in memory the following sets:

• The set of states visited at time i, i.e. Ei = δ(A ∪ B, a1, . . . , ai)
• For all q ∈ A and all q′ ∈ δ(q, a1, . . . , ai), the minimal p value of the paths visited between q and q′. Notice
that this set has size at most |Q|.

• For all q ∈ A ∪ B and all q′ ∈ δ(A ∪ B, a1, . . . , ai), a boolean value vi(q, q′) which is equal to one if there
exists a path between q and q′ between the first step and step i, and which is null if not.

At the end, we just have to check that Ek = G, that the minimal p-values of all the paths issued from A is even,
that the set of states in A are recurrent for the chain, and that the states in B are transient. This can be done easily
since we can recover the graph of the Markov chain on G from the values given by v|ρ2|.
We prove now that the simple almost Büchi problem is PSPACE-hard. For this, we reduce the problem of

checking the emptiness of a finite intersection of regular languages, which is known to be PSPACE complete by
[13], to the simple almost Büchi problem, which is a particular case of the simple almost parity problem. The size
of the input of Problem 1 is the sum of the number of states of the automata.

Problem 1 (Finite Intersection of Regular Languages).
Input: A1, ...,Al a family of regular deterministic automata (on finite words) on the same finite alphabet Σ.
Question: Do we have L(A1) ∩ ... ∩ L(Al) = ∅ ?

Let A1, ...,Al be a family of regular automata on the same finite alphabet Σ, with respective state spaces Qi

and transition functions δi (where δi(s, a)(t) = 1 if there exist a transition from s to t with label a ∈ Σ in Ai). We
build a probabilistic automaton A = (Q, Σ′, δ,α, F ) such that the simple almost Büchi(F ) problem is satisfied on
A iff L(A1) ∩ ... ∩ L(Al) (= ∅.
Let x be a new letter, not in Σ, and let Σ′ = Σ ∪ {x}.
• Q is the union of the state spaces of the Ai, plus two extra states s and ⊥. That is Q =

⋃l
i=1 Q′

i ∪ {s, ⊥},
where the Q′

i are disjoint copies of the Qi.
• The state ⊥ is a sink: for all a ∈ Σ′, δ(⊥, a)(⊥) = 1.
• If u′ is the copy of a non accepting state u of Ai, we allow in A the same transitions from u′ as in Ai for u:
if a ∈ Σ, let δ(u′, a)(v′) = 1 iff v′ is the copy of a state v ∈ Qi such that δi(u, a)(v) = 1. Moreover we add
a transition from u with label x: δ(u, x)(⊥) = 1.

• If u′ is the copy of an accepting state u of Ai, i ∈ [1; l], the transitions from u′ in A are the same as in Ai,
plus an extra transition δ(u′, x)(s) = 1.

• From state s in A, with uniform probability on i ∈ [1; l], when reading x, the system goes to one of the
copies of an initial state of the Ai’s.

• For the transitions which have not been precised, for instance if a ∈ Σ is read in state s, the system goes
with probability one to the sink ⊥.

• The initial distribution α is the Dirac distribution on s.
• F = {s}
Given ρ ∈ L(A1)∩ ...∩L(Al), the input word (x ·ρ ·x)ω satisfies clearly the simple almost Büchi(F ) problem

since a run visits s after each occurrence of x · ρ · x (the generated process is simple since we see in Section 7 that
any process generated on a probabilistic automaton by a lasso shape word is simple).

16



Conversely, suppose that there exists ρ ∈ Σω such that the induced process is simple and satisfies almost surely
the Büchi(F ) condition.

• Since the only transition from s which does not goes to the sink has label x, the word ρmust start with letter
x.

• Since with probability one the runs induced by ρ visit infinitely often s, the letter x must appear infinitely
often in ρ. Let ρ = x · ρ′ · x where ρ′ ∈ Σ is non empty and does not contain the letter x. After reading
x ·ρ′ ·x, since the process cannot be in the sink ⊥ with positive probability, it has to be on s with probability
one. This implies that ρ′ ∈ L(A1) ∩ ... ∩ L(Al), hence L(A1) ∩ ... ∩ L(Al) (= ∅.

This concludes the proof of the PSPACE completeness of our problem. We give an example of the last reduction.

Example 3. Consider the following regular automata A1 and A2, and the associated probabilistic automaton A.

12

a

b

b
a

3 4 5

b

a

a

b

a, b

Figure 1. AutomataA1 and A2

12

a

b

b

a

3 4 5

b

a

a

b

a, b

s ⊥

x, .5

x, .5

x

x

x

x x

a, b, x

Figure 2. The probabilistic automatonA

For instance, the word b · a · a belongs to L(A1) ∩L(A2). We get that on A, the word (x · b · a · a · x)ω satisfies
the simple almost Büchi({s}) problem.

This completes the details of the PSPACE upper and lower bound.

Details of Proposition 6. We prove that the simple positive parity problem is PSPACE-complete.

Proof. As before, let Φ = Parity(p) where p : Q → N is a parity function. We follow a method analogous
to the one for the simple almost parity problem: We prove that: (1) There exists w ∈ Σω such that the induced
process is simple and Pw

A(Φ) > 0 iff (2) There exists G ⊆ Q and ρ1, ρ2 ∈ Σ∗ such that G ⊆ Supp(δ(α, ρ1)), and

17



δ(G, ρ2) ⊆ G, and the runs on the Markov chain induced by (G, ρ2) satisfy Φ with probability one. That is, we
reach G with positive probability, and once we read ρ2 from a state in G we satisfy the condition almost surely.
The way (2)⇒(1) of the equivalence is direct. We prove that conversely, (1)⇒(2). Suppose now that there exists

such a w = a1, ..., ai, ... . The induced processed is simple, so let J0, J1, ..., Jm be as given by Proposition 3.
As before, without loss on generality, since Q is finite, we can also assume that the vector of sets (JN0

0 , ..., JN0
c )

appears infinitely often in the sequence (J0
n, ..., Jc

n), n ∈ N. Moreover, we also assume that for all n ≥ N0, for
all i ∈ { 1, 2, . . . ,m }, all the states in Jn

i appears in a infinite number of the sets Jm
i ,m ≥ N0.

Let i ∈ { 1, 2, . . . , c }. As before, an ultimate property is either satisfied or unsatisfied with probability one by
the runs r ∈ Ω such that r(N0) ∈ J i

n. Thus, we can define qi ∈ Q as the state with minimal value for p among the
states which are visited infinitely by runs in τ∞i with probability one.
Since the runs of the process satisfy the parity condition with positive probability, there exists i ∈ {1, 2, . . . , c}

such that p(qi) is even. Moreover, for all n ≥ N0 and all q ∈ Jn
i , as in the previous case, we must have p(q) ≥

p(qi). Finally, there existsmi ∈ N such that for all q ∈ JN0
i , there exists m < mi such that δ(q, w[N0..m])(qi) >

0. We define m′ ≥ mi such that

(J0
N0

, ..., Jc
N1

) = (J0
N0+m′ , ..., Jc

N0+m′)

Taking ρ1 = w[0..N0] and ρ2 = w[N0..N0 + m′] concludes the proof.
The PSPACE upper and lower bound proofs are analogous to the proof of Proposition 5.

Details of Proposition 7. We prove that the simple limit Büchi and coBüchi problems are undecidable.

Proof. This is a direct consequence of the fact that the simple limit reachability problem is undecidable. The
reduction from an instance of the simple limit reachability problem is direct: we only delete all outgoing transitions
from the accepting states in F , and transform them into self loops for all label a ∈ Σ. We get a probabilistic
automaton on which the simple limit Büchi and coBüchi problems are satisfied iff the simple limit reachability
problem is satisfied.

C Details of Section 5

Details of Lemma 1. We prove Lemma 1.

Proof. Notice first that by definition, every cycle in HA contains a cycle which is elementary. Thus, we just
have to show that seq contains a cycle. If Ak+1 = A1, then we are done. If Ak+1 ! A1, let B1 be such that

Ak+1
ρ1→

ρ#
2→ . . .

ρk→ B1. Then we have B1 ⊆ Ak+1. If B1 = Ak+1 then we are done, since B1
ρ1→

ρ#
2→ . . .

ρk→ B1 is
a subpath of seq which is a cycle. If B1 ! Ak+1, then we continue the construction iteratively: for i ≥ 1, until

we find Bi+1 such that Bi = Bi+1, we let Bi+1 be such that Bi
ρ1→

ρ#
2→ . . .

ρk→ Bi+1. By construction at each step
we have Bi (= ∅, and Bi+1 ⊆ Bi. Clearly, the construction has to stop after at most |Q| steps, and we get a cycle

Bi
ρ1→

ρ#
2→ . . .

ρk→ Bi which is a subpath of seq.

Details of Lemma 2. We prove the key Lemma 2.

Proof. Given U ⊆ Q and ρ ∈ Σ∗, let

δ−1(ρ)(U) = {q ∈ Q | δ(q, ρ)(U) > 0}

The following remark will be useful: given ρ = a1, ..., an ∈ Σ∗, given U ⊆ Q and i ∈ { 0, 1, 2, . . . , n − 1 }, let
Si = δ−1(ai+1, ..., an)(U). Then we have:

18



1. For all i ∈ { 0, 1, 2, . . . , n − 1 }, δ(Q \ Si, ai+1, ..., an) ⊆ Q \ U
2. For all i ∈ { 0, 1, 2, . . . , n − 2 }, if δ(Si, ai+1) ⊆ Si+1, then δ(α, a1, ..., ai)(Si) = δ(α, a1, ..., ai+1)(Si+1)
3. Given i ∈ {0, 1, 2, . . . , n−2}, let ki be the number of integers j ∈ [i;n−2] such that δ(Sj , aj+1) (⊆ Sj+1.
Then, for all i ∈ { 0, 1, 2, . . . , n − 2 },

δ(α, a1, ..., an)(U) ≥ δ(α, a1, ..., ai)(Si) · εki

The only non trivial point is the last one. It follows from the fact that for all ρ ∈ Σ∗ and q, q′ ∈ Q, if
δ(q, ρ)(q′) > 0, then by definition of ε we have δ(q, ρ)(q′) > ε|ρ|.
By contradiction, suppose that there exists ρ ∈ CRec(q) and U ⊆ Q such that U ⊆ Supp(δ(q, ρ)) and

δ(q, ρ)(U) < ε2
2·|Q|

We show that then we can write ρ = ρ1 · ρ2 · ρ3 where ρ1, ρ2, ρ3 are such that δ(q, ρ1) can be partitioned into
two subsets A and B such that (A,B, ρ2) is a leak. This contradicts the definition of CRec(A).
Let ρ = a1, ..., al. Given i ∈ { 0, 1, 2, . . . , l − 1 }, let:
• V n

i = δ−1(ai+1, ai+2, ...al)(U) ∩ δ(q, a1, . . . , ai)
• W n

i = (Q \ V n
i ) ∩ δ(q, a1, . . . , ai)

Using the fifth point of the previous remark, since δ(q, ρ)(U) < ε2
2·|Q| , there exists a least k integers i in

{1, 2, . . . , l −2} such that δ(V n
i , ai+1) (⊆ V n

i+1, where k satisfies εk < ε2
2·|Q| . Thus, k ≥ 22·|Q|. Let n1, ..., n22·|Q|

be the 22·|Q| largest integers in { 1, 2, . . . , l } such that δ(Vn
i , ai+1) (⊆ V n

i+1.
By a simple cardinality argument, there exist i < j in { 1, 2, . . . , 22·|Q| } such that V n

ni
= V n

nj
and Wn

ni
= W n

nj
.

Let ρ1 = a1, . . . , ani−1, ρ2 = ani , . . . , anj−1 and ρ3 = anj , . . . , an. Then we are in the following situation:
q

ρ1 &&

ρ1

**"
""

""
""

" W n
ni

ρ2 && W n
ni

V n
ni

ρ2 &&

ρ2

++########
V n

ni

That is, δ(q, ρ1) can be partitionned into two subsets Vn
ni
and Wn

ni
such that δ(Wn

ni
, ρ2) ⊆ W n

ni
, δ(V n

ni
, ρ2) ⊆

V n
ni

∪ W n
ni
, and δ(V n

ni
, ρ2) (⊆ V n

ni
. This implies that there exists A ⊆ V n

ni
such that (A, (V n

ni
\ A) ∪ W n

ni
, ρ2) is a

leak. Since A, (V n
ni

\A) ∪ W n
ni
is a partition of δ(q, ρ1), we get that the execution tree (q, ρ) contains a leak. This

is a contradiction since ρ ∈ CRec(q).

Details of Lemma 3.
We start with a remark, and a preliminary lemma.

Remark 1. Given a structurally simple automaton A, an elementary cycle with no #-edge can be rewritten as
C = A1

ρ1→ A2
ρ2→ . . .

ρk→ Ak+1 = A1. Given ρ = ρ1 · ρ2 · . . . · ρk, we associate the couple (A1, ρ) to the cycle C .

Notice that for any decomposition ρ = ρ′1 · ρ′2 · . . . · ρ′k′ of ρ, the cycle C′ = A1
ρ′1→ A′

2
ρ′2→ . . .

ρ′k→ A′
k+1 = A1 is

also an elementary cycle.

Lemma 9. Suppose that A is structurally simple, and let (E, ρ) be associated to an elementary cycle of A as in
remark 1. Then (E, ρ) is a chain recurrent execution tree.

Proof. Suppose by contradiction that (E, ρ) is not chain recurrent. Then there exists ρ1, ρ2, ρ3 ∈ Σ∗ and A,B ⊆
Q non empty such that ρ = ρ1 · ρ2 · ρ3, A ∩ B = ∅, A ∪ B = δ(E, ρ1), A ∪ B = (A ∪ B) · ρ2 and B =
(A ∪ B) · ρ#

2 . Notice that since (E, ρ) is elementary, seq = E
ρ1→ A ∪ B

ρ2→ A ∪ B
ρ3→ E is also elementary.

Then, seq′ = E
ρ1→ A ∪ B

ρ#
2→ B

ρ3→ δ(B, ρ3) is a path in HA. Since δ(B, ρ3) ⊆ δ(A ∪ B, ρ3) = E, by Lemma

19



1, the path seq′ contains an elementary cycle seq′′ = C1
ρ1→ C2

ρ#
2→ C3

ρ3→ C1. Since A is structurally simple, the

sequence C2
ρ#
2→ C3 is not a #-reduction, i.e. we must have C2 = C2 · ρ#

2 = C3, hence also C2 = C2 · ρ2 = C3.
This proves that seq′′′ = C1

ρ1→ C3
ρ2→ C3

ρ3→ C1 is a subcycle of seq. But by construction we have that C3 ⊆ B,
hence C3 (= A ∪ B. Thus, seq′′′ is a subcycle of seq different from seq. This contradicts the fact that seq is
elementary.

We now prove Lemma 3.

Proof. The proof is direct: by Lemma 1, the path A
ρ→ A · ρ contains an elementary cycle B

ρ→ B. By Lemma 9,
(B, ρ) is chain recurrent.

Details of Lemma 4. We prove Lemma 4.

Proof. For all n ∈ N, we let An = Supp(δ(α, w[1..n])) and Bn = Q \ An. By hypothesis, for all all n ≥ N and
all q ∈ An, we have µw

n (q) = δ(α, w[1..n])(q) > γ. Moreover, for all n and all q ∈ Bn we have µw
n (q) = 0. This

shows that the process is simple.

Details of Lemma 5. We prove Lemma 5.

Proof. Let ρ ∈ Σω, and let {µρ
n}n∈N be the processed induced onQ by ρ. By hypothesis, let (α, ρ1), ρ′1, (α2, ρ2), ρ′2, ...(αk , ρk

be a subsequence of recurrent execution trees of (α, ρ) of length at mostK. That is, we have
∑k−1

i=1 |ρ′i| ≤ K. By
definition, for all i ∈ { 1, . . . k − 1 } we have ρi ∈ Σ∗ and ρ′i ∈ Σ∗, and ρk ∈ Σω.
For all i ∈ { 1, . . . , k − 1 }, let α′

i = δ(αi, ρi). We are in the following situation:

α
ρ1→ α′

1
ρ′1→ α2

ρ2→ α′
2

ρ′2→ α3 . . .
ρ′k−1→ αk

ρk→

We know that:
• For all i ∈ { 1, . . . , k − 2 }, the execution tree (αi, ρi) is chain recurrent
• (αk, ρk) is chain recurrent
We show that the process {µρ

n}n∈N satisfies the hypothesis of Lemma 4. As before, let ε = ε(A) be the minimal
non zero probability which appears among the values δ(q, a)(q′) when q, q′ ∈ Q and a ∈ Σ. Let λ = ε2

2·|Q| . By
Lemma 2, for all q ∈ Q, all ρ′ ∈ CRec(q) and all q′ ∈ Supp(δ(q, ρ′)), we have δ(q, ρ′)(q′) ≥ λ. We claim that
for all i ∈ { 1, . . . , k − 1 } and all q ∈ Supp(α′i), we have α′

i(q) ≥ (Minq∈Supp(α)α(q)) · λi · εK·i. We prove this
result by induction on i:

• The case i = 1 follows from the use of Lemma 2 on the chain recurrent execution tree (α1, ρ1).
• Suppose the proposition true until i ∈ {1, . . . , k−2}. Let q′ ∈ Supp(α′

i+1). then there exists q ∈ Supp(α′i)
such that δ(q, ρi · ρ′i)(q′) > 0. Let q′′ ∈ Q be such that δ(q, ρi)(q′′) > 0, and δ(q′′, ρ′i)(q′) > 0. By
the use of Lemma 2 on the chain recurrent execution tree (αi, ρi), we know that δ(q, ρi)(q′′) > λ. By
definition of ε and K, we have that δ(q′′, ρ′i)(q′) ≥ ε|ρ

′
i|, hence δ(q′′, ρ′i)(q′) ≥ εK . We have α′

i+1(q′) ≥
αi(q) · δ(q, ρi · ρ′i)(q′). Since by induction hypothesis we have that αi(q) ≥ (Minq∈Supp(α)α(q)) · λi · εK·i,
we get that α′

i+1(q′) ≥ (Minq∈Supp(α)α(q)) · λi+1 · εK·i+1, hence the result.
Now, let N =

∑k−1
i=1 (|ρi| + |ρ′i|), and let n ≥ N . Since (αk, ρk) is chain recurrent, we can apply the same

method for the chain recurrent execution tree (αk, ρk). As a conclusion, we see that the process {µρ
n}n∈N satisfies

the hypothesis of Lemma 4 with the parameters N =
∑k−1

i=1 (|ρi|+ |ρ′i|) and γ = (Minq∈Supp(α)α(q)) ·λK · εK·K .
This proves the result.

Details of Lemma 6. We prove Lemma 6.

20



Proof. Let ρ = ρ1 · ρ2 · . . . · ρ2·k−1 be the decomposition of ρ into subwords such that

A
ρ1−→

ρ#
2−→ ρ3−→

ρ#
4−→ . . .

ρ2·k−1−→ B

By Lemma 1, this path contains an elementary cycle:

C1
ρ1−→ C2

ρ#
2−→ C3

ρ3−→ C4
ρ#
4−→ . . .

ρ#
2·k−→ C1

Since A is structurally simple, the cycle does not contain any#-reduction, hence for all i ∈ { 1, . . . , 2 · k } which
is even, we have Ci = Ci · ρ#

i , and then also Ci = Ci · ρi. By Lemma 9, this implies that (C1, ρ) is chain
recurrent.

Details of Lemma 7. We prove Lemma 7.

Proof. We build iteratively the following sequences {Ai }i∈N, {A′
i }i∈N, {Bi }i∈N, { ρi }i∈N, { ρ′i }i∈N, { ai }i∈N,

{ wi }i∈N:
• Let A1 = Supp(α), and B1 = ∅.
• ρ1 is the longest prefix of w such that there exists A′

1 ⊆ Q such that A1
#-ρ1−→ A′

1, and A′
1 ⊆ A1. If the set of

valid word is not bounded, then we let ρ1 = w and the construction stops.
• Let w1 be such that ρ1 · w1 = w.
• If the execution tree (A′

1, w1) is chain recurrent, we stop the construction. If not, let ρ′1 of maximal length
be such that (A′

1, ρ
′
1) is chain recurrent.

• Let a1 ∈ Σ be the letter which follows ρ1 ·ρ′1 inw. By construction, (A′
1, ρ

′
1 ·a1) is not chain recurrent, hence

we can decompose ρ′1 ·a1 as ρ′1 ·a1 = ρ′′1 ·ρ′′′1 and find U1, V1 a partition of δ(A′
1, ρ

′′
1) such that (U1, V1, ρ′′′1 )

is a leak and U1 ∪ V1 = δ(A′
1, ρ

′′
1) = δ(A′

1, ρ
′
1 · a1). We let A2 = V1. Remark that A′

1
#-ρ′1·a1−→ A2. Since

A1
#-ρ1−→ A′

1, this implies that A1
#-ρ1·ρ′1·a1−→ A2. By definition of A′

1, we have A2 (= A1.
• Let B2 = δ(A1, ρ1 · ρ′1 · a1) \ A2.
• Let i ≥ 1. Suppose that we have constructed the sets A1, B1, A′

1, . . . Ai+1, Bi+1, and the sequence of finite
words ρ1, w1, ρ′1, a1, ρ′′1 , . . . ρi, wi, ρ′i, ai, ρ′′i . We continue the construction as follows:
– ρi+1 is the longest prefix of wi such that there exists A′

i+1 ⊆ Q such that Ai+1
#-ρi+1−→ A′

i+1, and
A′

i+1 ⊆ Ai+1. If the set of available words is not bounded, then we let ρi+1 = wi and the construction
stops.

– Let wi+1 be such that ρ1 · ρ′1 · ρ′′1 · ... · ρi+1 · wi+1 = w.
– If the execution tree (A′

i+1, wi+1) is chain recurrent, we stop the construction. If not, let ρ′i+1 of
maximal length be such that (A′

i+1, ρ
′
i+1) is chain recurrent.

– Let ai+1 ∈ Σ be the letter which follows ρ1·ρ′1·. . .·ρi+1·ρ′i+1 inw. By construction, (A′
i+1, ρ

′
i+1 ·ai+1)

is not chain recurrent, hence we can decompose ρ′i+1 · ai+1 as ρ′i+1 · ai+1 = ρ′′i+1 · ρ′′′i+1 · ρ′′′′i+1 and
find Ui+1, Vi+1 a partition of δ(A′

i+1, ρ
′′
i+1) such that (Ui+1, Vi+1, ρ′′′i+1) is a leak and Ui+1 ∪ Vi+1 =

δ(A′
i+1, ρ

′′
i+1) = δ(A′

i+1, ρ
′
i+1 · ai+1). We let Ai+2 = Vi+1. Remark that A′

i+1

#-ρ′i+1·ai+1−→ Ai+2.

Since by induction we have A1
#-ρ1−→ Ai+1 and since by hypothesis Ai+1

#-ρi+1−→ A′
i+1 , this implies

that A1
#-ρ1·ρ′1·a1·...·ρ′i+1·ai+1−→ Ai+2. By definition of A′

i+1, we have Ai+2 (= Ai+1, and by induction we
have Ai+2 (= Aj for all j ≤ i + 1.

– Let Bi+2 = δ(A1, ρ1 · ρ′1 · a1 · . . . · ρi+1 · ρ′i+1 · ai+1) \ Ai+1.

21



Since there exists at most 2|Q| different subsets Ai of Q, the construction stops after at most 2|Q| steps. We get
a sequence:

A1
ρ1−→

ρ′1−→a1→ . . .
ρi−→

ρ′i−→ ai→ Ai+1
ρi+1−→

Where ρi+1 ∈ Σω . Moreover, we now by construction that ρi+1 = wi, since by hypothesis the set of prefixes
ρi+1 of wi such that there exists A′

i+1 ⊆ Q such that Ai+1
#-ρi+1−→ A′

i+1 and A′
i+1 ⊆ Ai+1 is not bounded. We

can use Lemma 6 iteratively to show that this imply that there exists C ⊆ Ai+1 such that (C, ρi+1) is chain
recurrent. Indeed, by Lemma 6, to any finite length prefix pref of wi such that there exists A′

i+1 ⊆ Q such that
Ai+1

#-pref−→ A′
i+1 and A′

i+1 ⊆ Ai+1, we can associate Cpref ⊆ Ai+1 such that (Ai+1, pref) is chain recurrent.
Taking C ⊆ Ai+1 which appears infinitely often among the Cpref concludes the point.
By Lemma 6, for all i, Ai

ρi→ A′
i is such that we can find Bi ⊆ Ai such that (Bi, ρi) is chain recurrent. Since

for all i we have that A′
i

ρ′i→ Ai+1 is chain recurrent by construction, we get a subsequence of recurrent execution
trees of (α, w) of length at most 2|Q| (only the subsequences which correspond to arrows ai→ may not contain a
chain recurrent subsequence).

Details of Lemma 8. We prove Lemma 8.

Proof. We define the following set of distributions α1,α2, . . . ,α2·k on Q:
• α1 is the uniform distribution on A1

• α2 = δ(α1, ρ1). We have in particular A2 ⊆ Supp(α2).
• Let i2 ≥ 1 and λ2 > 0 be such that for all state q′ of Q which is recurrent for ρ2 and which is reachable
from a state q in Supp(α1) we have δ(q, ρi2

2 )(q′) > λ2. Then we let α3 = δ(α2, ρ
i2
2 ). By construction,

A3 ⊆ Supp(α3).
• From j = 2 until j = k we do the following step iteratively:

– α2·j = δ(α2·j−1, ρ2·j−1). We have A2·j ⊆ Supp(α2·j).
– Let i2·j ≥ 1 and λ2·j > 0 be such that for all state q′ of Q which is recurrent for ρ2·j and which
is reachable from a state q in Supp(α2·j−1) we have δ(q, ρ

i2·j
2·j )(q′) > λ2·j . Then we let α2·j+1 =

δ(α2·j , ρ
i2·j
2 ). Again, by construction, A2·j+1 ⊆ Supp(α2·j+1)

Finally, we define the following bipartite graph link(seq) on A1: given q, q′ ∈ A1, the edge (q, q′) belongs to
link(seq) iff we have

δ(q, (ρ1 · ρi2
2 · ρ3 · ρi4

4 · ... · ρi2·k
2·k ))(q′) > 0

Since the cycle seq is supposed to be elementary, the graph link(seq)must be connected. That is, given q, q′ ∈ A1,
there must exists a sequence of edges (q1, q2), (q2, q3), . . . , (qi−1, qi) in link(seq) such that q = q1 and q′ = qi.
If it were not the case, we could build a subcycle of seq. Now,by a simple cardinality argument, if link(seq)
is connected, then given q, q′ ∈ A1, there must exists a sequence of edges (q1, q2), (q2, q3), . . . , (qi−1, qi) in
link(seq) such that q = q1 and q′ = qi, and such that i ≤ 2|Q|. But this implies that for all q, q′ ∈ A1 we have:

δ(q, (ρ1 · ρi2
2 · ρ3 · ρi4

4 · ... · ρi2·k
2·k )2

|Q|
)(q′) > 0

Hence the result.
Moreover, we can check that by construction of the ij , we get that for all q, q′ ∈ A1 and all k ≥ 2|Q| we have

δ(q, (ρ1 · ρi2·k
2 · ρ3 · ρi4·k

4 · ... · ρi2·k·k
2·k )2

|Q|
)(q′) >

k∏

j=1

λ2·j

The second point follows from the fact that for all j ∈ { 1, . . . , k − 1 } we have A2·j · ρ#
2·j = A2·j+1

22



Details of Proposition 9. We prove Proposition 9.

Proof. We prove the contraposition of the proposition: let A be a probabilistic automaton such that HA contains
an elementary cycle with a#-reduction. We show that A is not simple. Let

C = A1
ρ1→ A2

ρ#
2→ A3...

ρk→ A1

be an elementary cycle in HA where A2
ρ#
2→ A3 is a #-reduction. Let ε > 0 be the minimal values which appears

among the non zero values of the δ(q, a)(q′), when q, q′ ∈ Q and a ∈ Σ. Let i2, i4, . . . , be given by Lemma 8.
For all i ≥ 1, let ki ∈ N be the smallest integer such that δ(A1, (ρ1 · ρi2·k

2 · ρ3 · ρi4·k
4 · ... · ρk)2

|Q|)(A1) > 1 − 1
2i .

We consider the process generated on A be the word w equal to:

(ρ1 · ρi2·k1
2 · ρ3 · ρi4·k1

4 · ... · ρk1)
2|Q| · (ρ1 · ρk2

2 · ρ3 · ρk2
4 · ... · ρk2)

2|Q| · . . .

We claim that this process is not simple. By hypothesis, A2
ρ#
2→ A3 is a #-reduction in HA. Thus, A3 ⊆ A2, and

there exists q′ ∈ A2 \ A3. Given i ≥ 2, let σi ∈ Σ∗ be such that σi = (ρ1 · ρk1
2 · ρ3 · ρk1

4 · ... · ρk1)2
|Q| · (ρ1 · ρk2

2 ·
ρ3 · ρk2

4 · ... · ρki−1)2
|Q| · . . . · · · · (ρ1 · ρ

ki−1
2 · ρ3 · ρ

ki−1
4 · ... · ρki−1)2

|Q| · ρ1.
Let λ > 0 be given by Lemma 8. By Lemma 8 and by construction of the ki, for all i ≥ 1 and q ∈ A1, we have

that δ(q,σi)(q′) > λ · ε. That is, µw
|σi|(q

′) > λ · ε. However, since |ki| goes to infinity, and since q′ ∈ A2 \ A3,
for all γ > 0, there exists i ∈ N such that 0 < δ(q′, ρki

2 )(q′) < γ. This is in contradiction with the definition of a
simple process. Thus the process is not simple.

Details of Theorem 4. We prove Theorem 4.

Proof. The proof follows the same lines as the other complexity proofs of this paper. We first show that the
problem is in NPSPACE, hence in PSPACE, and next prove that the problem is PSPACE hard by a reduction from
the intersection of regular automata problem.
First, we have to show that the following problem is in PSPACE: given a probabilistic automaton A, does HA

contain an elementary cycle with a #-reduction. If such a cycle C = A′
1

ρ′1→ A′
2

ρ′#2→ A′
3

ρ′3→ A′
4

ρ′#4→ A′
5...

ρk′→ A′
1

exists, notice that we can find another elementary cycle C′ = A1
ρ1→ A2

ρ#
2→ A3

ρ3→ A4
ρ#
4→ A5...

ρk→ A1 such that
k ≤ 22·|Q|. Indeed, we can get rid of the internal repetition of sets in the cycle, as long as we keep the structure of
the underlying connexion graph. Next, recall the definition of the bipartite graph link(C) presented in Lemma 8.
Then the following problem is in PSPACE: given B ⊆ A ⊆ Q and I a bipartite graph on A, decide whether there
exists ρ ∈ Σ∗ such that A · ρ = A, A · ρ# = B, and link(A, ρ) = I . For this, we just guess the letters of ρ one by
one, and keep in memory the partial link graphs. Finally, to decide whetherHA contains an elementary cycle with
a #-reduction, we just use the two previous remarks to guess the intermediate sets on by one. Keeping the partial
link graph in memory, we can check the result in NPSPACE, hence in PSPACE.
To show that the problem is PSPACE hard, we modify slightly the proof of Proposition 5. As before, we reduce

the problem of Emptiness of Finite Intersection of Regular Languages, which is known to be PSPACE complete
[13], to our problem.

Problem 2 (Finite Intersection of Regular Languages).
Input: A1, ...,Al a family of regular deterministic automata (on finite words) on the same finite alphabet Σ.
Question: Do we have L(A1) ∩ ... ∩ L(Al) = ∅ ?

23



Let A1, ...,Al be a family of regular automata on the same finite alphabet Σ, with respective state space Qi and
transition functions δi: δi(s, a)(t) = 1 if there exist a transition from s to t with label a ∈ Σ in Ai). We build a
probabilistic automaton A = (A, Σ′, δ,α, F ) such that A is simple iff L(A1) ∩ ... ∩ L(Al) (= ∅.
Let x and y be two letters, not in Σ, and let Σ′ = Σ ∪ {x, y}.
• Q is the union of the state spaces of the Ai, plus two extra states s and ⊥. That is Q =

⋃l
i=1 Q′

i ∪ {s, ⊥},
where the Q′

i are disjoint copies of the Qi.
• The state ⊥ is a sink: for all a ∈ Σ′, δ(⊥, a)(⊥) = 1.
• If u′ is the copy of a non accepting state u of Ai, we allow in A the same transitions from u′ as in Ai for u:
if a ∈ Σ, δ(u′, a)(v′) = 1 iff v′ is the copy of a state v ∈ Qi such that δi(u, a)(v) = 1. Moreover we add a
transition from u with label x: δ(u, x)(x) = 1, and we add a transition from u with label y: δ(u, y)(⊥) = 1

• If u′ is the copy of an accepting state u of Ai, i ∈ [1; l], the transitions from u′ in A are the same as in Ai,
plus an extra transition δ(u′, x)(s) = 1, and an extra transition δ(u′, y)(s) = 1.

• From state s in A, with uniform probability on i ∈ [1; l], when reading x, the system goes to one of the
copies of an initial state of the Ai’s, or to s.

• For the transitions which have not been precised, for instance if a ∈ Σ is read in state s, the system goes
with probability one to the sink ⊥.

• The initial distribution α is the Dirac distribution on s.
• F = {s}
Given ρ ∈ L(A1) ∩ ... ∩ L(Al), the sequence {s}

x|Q|
→ x#

→ ρ→ { y→ s} is an elementary cycle with a#-reduction.
On the other hand, if L(A1) ∩ ... ∩L(Al) = ∅, it is straitforward to see that when reading an infinite word ρ on A
with initial distribution {s}, the induced process is simple: either ρ contains an infinite number of times the letter
y, in which case with probability one after a finite number of steps a run loops on ⊥, either ρ contains a finite
number of y, and the process is deterministic, hence simple, after a finite number of steps. Thus, A is simple if
and only if L(A1) ∩ ... ∩ L(Al) = ∅. See Example 4 for an illustration.

Example 4. Consider the following regular automata A1 and A2, and the associated probabilistic automaton A.

12

a

b

b
a

3 4 5

b

a

a

b

a, b

Figure 3. AutomataA1 and A2

For instance, the word b·a·a belongs to L(A1)∩L(A2). Then we can check that {s}
x7

→ {s, 3, 2} x#

→ {3, 2} b·a·a→
{1, 4} y→ {s} is an elementary cycle with a #-reduction.

Details of Proposition 11. We prove Proposition 11.

Proof. Proposition 10 shows that (2)⇒(1). We now show that (1)⇒(2). Suppose that F is limit reachable from α
in A. First, if there exists ρ ∈ Σ∗ such that Supp(δ(α, ρ)) ⊆ F , then by definition F is reachable from Supp(α)
in GA.

24



12

a, x

b

b, x

a

3 4 5

b, x

a

a, x

b

a, b, x

s ⊥

x, .3

x, .3

y

y

y

y
y

a, b, x

x, .4

Figure 4. The probabilistic automatonA

Suppose now that F is limit reachable from α in A, but that for all ρ ∈ Σ∗ we have Supp(δ(α, ρ)) (⊆ F . We
define the following probabilistic automaton B with state space Q′, alphabet Σ′ and transition function as follows:

• Q′ = Q ∪ {⊥} where ⊥ is a new state.
• Σ′ = Σ ∪ {e} where e is a new symbol.
• We keep the same transitions on B as in A when the labels are in Σ.
• Given q ∈ F , we add an extra transition with label e which leads to a state q ∈ Q with probability α(q).
• Given q ∈ Q \ F , we add an extra transition with label e which leads to state ⊥ with probability one.
• From state ⊥, given any a ∈ Σ′ we loop with probability one on ⊥.

We show that the automaton B is not simple. Since F is limit reachable from α, we can let {ρn}n∈N be a sequence
of finite words such that for all n ∈ N we have δ(α, ρn)(F ) > 1 − 1

2n
. We define w ∈ Σω as:

w = ρ1 · e · ρ2 · e · ρ3...

We claim that the process induced on the state space Q′ of B by w is not simple. First, notice that at any time, if
the current distribution of the process is β ∈ ∆(Q′) and the letter e is taken as input, then the probability to be in
a state q ∈ Q at the next step is equal to α(q) ∗ β(F ).
Given k ∈ N, let βk ∈ ∆(Q′) be the distribution on Q′ that we get after having read ρ1 · e · ρ2 · e . . . ρk · e. By

the choice of the ρn, for all k we have βk(Q) > 1/2. By hypothesis, there exists q, q′ ∈ Q such that q ∈ Supp(α)
and such that for an infinite number of n ∈ N we have q′ ∈ Supp(δ(q, ρn)) and q′ (∈ F . Let γ = α(q). We have
found a couple q, q′ ∈ Q such that:

• For all k we have βk(q) > γ/2

• Infinitely often, δ(q, ρk)(q′) > 0 and δ(α, ρ1 · e . . . · e · ρk)(q′) <
1
2k

Such a couple q, q′ invalidates the Proposition 3 which holds for simple process. Indeed, by Proposition 3, if
infinitely often we have µw

n (q) > γ, then there exists N ∈ N and γ′ > 0 such that for all n2 > n1 ≥ N , if
µw

n1
(q) > γ and δ(q, wn2

n1+1)(q
′) > 0, then µw

n2
(q′) > γ′. Thus, B is not simple. By Theorem 8, this implies that

there exists an elementary cycle with a#-reduction in the extended support graph of B. Since A is supposed to be
structurally simple, this imply that one of the words which appears among the labelings of the cycle contains the
letter e. However, since for all a ∈ Σ′ we have δ(⊥, a)(⊥) = 1, and since the cycle is elementary and contains a
#-reduction, no set among the sets in the cycle can contain the state ⊥. Notice that given A ⊆ Q, if⊥(∈ A · e then
A ⊆ F . This implies that a subset of F appears among the sets in the cycle. Since the letter e appears among the
letters in the cycle, the set Supp(α) also appears among the sets in the cycle. This implies that there exists a paths
between Supp(α) and F , i.e. that F is #-reachable from Supp(α) in the extended support graph of A.

25



Details of Proposition 12. We prove Proposition 12.

Proof. First, we prove that given S, T ⊆ Q, we can decide in PSPACE whether (S, T ) is an edge of HA.
Using a method analogous to the proof of Proposition 5, we can decide in PSPACE whether there exists ρ ∈ Σ∗

such that S · ρ = T . For the case of the #-edges, the proof follows from the following property:

If S, T ⊆ Q and ρ ∈ Σ∗ are such that S · ρ = S and S · ρ# = T , then there exists ρ′ ∈ Σ∗ of length at most
|Q| · 2|Q| such that S · ρ′# = T .

Indeed, given ρ ∈ Σ∗ and S ⊆ Q, we define the link graph of ρ relative to S as the bipartite graph between
couples (q, q′) where q ∈ S and q′ ∈ Q are such that δ(q, ρ)(q′) > 0. The property is a consequence of the fact
that given S ⊆ Q there are at most |Q| · 2|Q| different link graphs of words relative to S.
Once again, we can use a method analogous to the proof of Proposition 5 to conclude the proof, by guessing

the letters of ρ one by one and by updating the link graph.
Once we can decide in PSPACE whether (S, T ) is an edge of HA, it is simple to decide in PSPACE whether

there exists a path in HA between to sets S and T . If there exists such a path, then there exists a path between S
and T of length at most 2|Q|. We can guess in PSPACE the intermediate subsets which form the path, and solve
the problem in PSPACE.

Details of Proposition 14. We prove Proposition 14.

Proof. We prove the following: a simple PAA satisfies the qualitative limit parity problem iff there exists a set of
states A ⊆ Q such that:

• A is limit reachable from Supp(α)
• There exists ρ ∈ Σ∗ of length at most 2|Q| such that A · ρ ⊆ A and the parity condition is satisfied on the
Markov chain induced by A, ρ.

This condition are PSPACE-complete, using the same kind of arguments as before.

Details of the product construction and Proposition 15.
Given A1 = (S1, Σ, δ1,α1) and A2 = (S2, Σ, δ2,α2) two simple automata on the same alphabet Σ, the

construction of the product automaton A1 "# A2 = (S, Σ, δ,α) is as follows:
• S is the cartesian product of S1 and S2: S = S1 × S2.
• Given (s1, s2), (s′1, s′2) ∈ S and a ∈ Σ, δ((s1, s2), a)((s′1, s′2)) = δ1(s1, a)(s′1) · δ2(s2, a)(s′2).
• Given (s1, s2) ∈ S, α((s1, s2)) = α1(s1) · α2(s2).
Given s = (s1, s2) ∈ S, let p1(s) = s1 and p2(s) = s2 be the respective projections of s on the state spaces of

A1 and A2.
We now prove Proposition 15.

Proof. Let A1, A2, ..., Al = A1 be a cycle in HA. For all i ∈ { 1, 2, . . . , l }, let A1
i = p1(Ai), and A2

i = p2(Ai).
The sequences A1

1, ..., A
1
l and A2

1, ..., A
2
l are sequences of subsets of S1 and S2 respectively. If there exists an

edge between Ai and Ai+1 in HA which is not a #-edge, then clearly there exists an edge between A1
i and A1

i+1
in HA1 , and there exists an edge between A2

i and A1
i+1 in GA2 . All that we have to show is that, if there exists a

#-reduction between Ai and Ai+1 inHA, then there exists a#-reduction between A1
i and A1

i+1 inHA1 and there
exists an edge between A2

i and A1
i+1 inHA2 , or there exists an edge between A1

i and A1
i+1 inHA1 and there exists

a#-reduction between A2
i and A1

i+1 inHA2 . This is also direct. As a consequence, if A is not simple, then either
A1 or A2 is not simple. This proves the result.

Details of Theorem 7. We prove Theorem 7.

26



Proof. First, remark that the stability of the class of languages recognized by parity automata under the positive
semantics is trivial: we just consider a “union automaton” whose structure is the union of the structures of the two
given automata, and whose initial distribution is a mix of the two given automata initial distributions.
We consider now the stability of this class of language under the intersection operator. Let A be a simple

parity automaton. Clearly, by defining a relevant set of accepting sets, we can transform it accepting condition to
transform it to a positive Street PA which recognizes the same language. Since we do not change the structure of
the automaton nor its transition function, the new automaton is still simple. Now, given two Street PA with the
positive semantics, using a classical product construction, we can construct a Street PA which, under the positive
semantics, accept a language which is the intersection of the languages of the two Street automata. By Proposition
15, this Street PA is still simple. Finally, using a construction a la Safra, we can construct a parity PA which, under
the positive semantics, recognizes the same language as the last Street PA. We can show that the construction
a la Safra keeps the automaton simple, since it can be seen as a product construction which does not add any
probabilistic transition. We get the stability of the languages of positive parity PA under union and intersection.
Remark next that PA with positive parity semantics and PA with almost parity semantics are dual of each

others: given a PAA with positive parity semantics, by inverting the parity condition (taking a new parity function
p′ = p − 1), we get a new PA A′ whose language is the complementary of L>0(A): L=1(A′) = L>0(A)c.
As a consequence, if the class of languages recognized by positive parity PA is stable under intersection and
complementation, so is the class of languages recognized by almost parity PA.

D Details of Section 6

Details of Proposition 16. We prove Proposition 16.

Proof. By contradiction, suppose that A is #-acyclic and not simple, i.e. there exists an elementary cycle A1 →
A2 → ... → Ak = A1 in the extended support graph HA of A, such that at least one of the arrows corresponds
to a #-reduction. By Proposition 10, if A → B is an edge in HA, then B is limit reachable from A in A. If A
is #-acyclic, then by Proposition 7 of [10] limit reachability implies reachability in GA. This implies that there
exists a path between A and B in GA. Thus, since A1 → A2 → ... → Ak = A1 is an elementary cycle in HA,
there exists a cycle in GA. This is a contradiction.
The automaton of Example 2 is simple, since it does not contain an elementary cycle with a #-reduction.

However it is not #-acyclic. This completes the proof.

Details of Proposition 17. We prove Proposition 17.

Proof. Let A be a k-hierarchical automata. Let C = B1 → B2 → ... → Bl = B1 be an elementary cycle
in the extended support graph of A. Let i, j ∈ { 1, . . . , l }, let q ∈ Bi, and let q′ ∈ Bj . By Lemma 8, there
exists ρ ∈ Σ∗ such that δ(q, ρ)(q′) > 0, and there exists ρ′ ∈ Σ∗ such that δ(q,′ , ρ′)(q) > 0. This implies that
rk(q) = rk(q′). This implies that there is not probabilistic transition in the cycle. As a consequence, C can not
contain a #-reduction. This proves that A is simple. The automaton of Example 2 is simple, but not hierarchical,
which completes the proof.

E Details of Section 7

Details of Proposition 18. We prove Proposition 18.

Proof. We just have to show that for any α ∈ ∆(Q) and ρ ∈ Σ∗, the process induced by ρω and α on Q is
simple. Let {Xn}n∈N be the non-homogeneous Markov chain induced on Q by α and ρω. Then for all i ∈
{0, 1, . . . , |ρ|−1}, the chain {Xn·|ρ|+i}n∈N is homogeneous. The result follows from the classical decomposition

27



Theorem of the state space of an homogeneous Markov chain into periodic components of recursive classes, and
transient states.

Details of Theorem 8. We prove Theorem 8.

Proof. By the results of Section 4, if the simple almost or positive parity problem is satisfied, then it is satisfied
by a lasso shape word. Along with Proposition 18, this implies that the simple almost or positive parity problem
is equivalent to the question whether there is lasso shape word that is accepted with probability 1 (or positive
probability). Since the simple almost or positive parity problem is PSPACE-complete, we get the theorem.

28


