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Krishnendu Chatterjee1 and Yaron Velner2
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Abstract. Two-player games on graphs are central in many problems in formal verification and
program analysis such as synthesis and verification of open systems. In this work we consider
solving recursive game graphs (or pushdown game graphs) that can model the control flow
of sequential programs with recursion. While pushdown games have been studied before with
qualitative objectives, such as reachability and ω-regular objectives, in this work we study for
the first time such games with the most well-studied quantitative objective, namely, mean-payoff
objectives. In pushdown games two types of strategies are relevant: (1) global strategies, that
depend on the entire global history; and (2) modular strategies, that have only local memory
and thus do not depend on the context of invocation, but only on the history of the current
invocation of the module. Our main results are as follows: (1) One-player pushdown games
with mean-payoff objectives under global strategies are decidable in polynomial time. (2) Two-
player pushdown games with mean-payoff objectives under global strategies are undecidable.
(3) One-player pushdown games with mean-payoff objectives under modular strategies are NP-
hard. (4) Two-player pushdown games with mean-payoff objectives under modular strategies
can be solved in NP (i.e., both one-player and two-player pushdown games with mean-payoff
objectives under modular strategies are NP-complete). We also establish the optimal strategy
complexity showing that global strategies for mean-payoff objectives require infinite memory
even in one-player pushdown games; and memoryless modular strategies are sufficient in two-
player pushdown games. Finally we also show that all the problems have the same complexity
if the stack boundedness condition is added, where along with the mean-payoff objective the
player must also ensure that the stack height is bounded.

1 Introduction

Games on graphs. Two-player games played on finite-state graphs provide the mathematical frame-
work to analyze several important problems in computer science as well as mathematics. In particular,
when the vertices of the graph represent the states of a reactive system and the edges represent the
transitions, then the synthesis problem (Church’s problem) asks for the construction of a winning
strategy in a game played on the graph [11, 30, 29, 28]. Game-theoretic formulations have also proved
useful for the verification [3], refinement [23], and compatibility checking [14] of reactive systems.
Games played on graphs are dynamic games that proceed for an infinite number of rounds. The ver-
tex set of the graph is partitioned into player-1 vertices and player-2 vertices. The game starts at an
initial vertex, and if the current vertex is a player-1 vertex, then player 1 chooses an out-going edge,
and if the current vertex is a player-2 vertex, then player 2 does likewise. This process is repeated
forever, and gives rise to an outcome of the game, called a play, that consists of the infinite sequence
of states that are visited. Two-player games on finite-state graphs with qualitative objectives such
as reachability, liveness, ω-regular conditions formalized as the canonical parity objectives, strong
fairness objectives, etc. have been extensively studied in the literature [22, 17, 18, 35, 31, 21].

The extensions. The study of two-player finite-state games with qualitative objectives has been
extended in two orthogonal directions in literature: (1) two-player infinite-state games with qualitative
objectives; and (2) two-player finite-state games with quantitative objectives. One of the most well-
studied model of infinite-state games with qualitative objectives are pushdown games (or games on
recursive state machines) that can model reactive systems with recursion (or model the control flow
of sequential programs with recursion). Pushdown games with reachability and parity objectives have
been studied in [33, 32, 5, 4] (also see [19, 20, 10, 9] for sample research in stochastic pushdown games).
The most well-studied quantitative objective is the mean-payoff objective, where a reward is associated
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with every transition and the goal of one of the players is to maximize the long-run average of the
rewards (and the goal of the opponent is to minimize). Two-player finite-state games with mean-
payoff objectives have been studied in [16, 36, 27], and more recently applied in synthesis of reactive
systems with quality guarantee [6] and robustness [7]. Moreover recently many quantitative logics
and automata theoretic formalisms have been proposed with mean-payoff objectives in their heart to
express properties such as reliability requirements, and resource bounds of reactive systems [12, 8, 15].
Thus pushdown games with mean-payoff objectives would be a central theoretical question for model
checking of quantitative logics (specifying reliability and resource bounds) on reactive systems with
recursion feature.

Pushdown mean-payoff games. In this work we study for the first time pushdown games with
mean-payoff objectives (to the best of our knowledge mean-payoff objectives have not been studied in
the context of pushdown games). In pushdown games two types of strategies are relevant and studied
in literature. The first is the global strategies, where a global strategy can choose the successor state
depending on the entire global history of the play (where history is the finite sequence of configurations
of the current prefix of a play). The second is the modular strategies, and modular strategies are
understood more intuitively in the model of games on recursive state machines. A recursive state
machine (RSM) consists of a set of component machines (or modules). Each module has a set of
nodes (atomic states) and boxes (each of which is mapped to a module), a well-defined interface
consisting of entry and exit nodes, and edges connecting nodes/boxes. An edge entering a box models
the invocation of the module associated with the box and an edge leaving the box represents return
from the module. In the game version the nodes are partitioned into player-1 nodes and player-2 nodes.
Due to recursion the underlying global state-space is infinite and isomorphic to pushdown games. The
equivalence of pushdown games and recursive games has been established in [5]. A modular strategy
is a strategy that has only local memory, and thus, the strategy does not depend on the context of
invocation of the module, but only on the history within the current invocation of the module. In other
words, modular strategies are appealing because they are stackless strategies, decomposable into one
for each module. In this work we will study pushdown games with mean-payoff objectives for both
global and modular strategies.

Previous results. Pushdown games with qualitative objectives were studied in [33, 32]. It was shown
in [33] that solving pushdown games (i.e., determining the winner in pushdown games) with reachabil-
ity objectives under global strategies is EXPTIME-hard, and pushdown games with parity objectives
under global strategies can be solved in EXPTIME. Thus it follows that pushdown games with reach-
ability and parity objectives under global strategies are EXPTIME-complete. The notion of modular
strategies in games on recursive state machines was introduced in [5, 4]. It was shown that the mod-
ular strategies problem is NP-complete in pushdown games with reachability and parity objectives
in general [5, 4]. The results of [5] also presents more refined complexity results in terms of the num-
ber of exit nodes, showing that if every module has single exit, then the problem is polynomial for
reachability objectives [5] and in NP ∩ coNP for parity objectives [4].

Our contributions. In this work we present a complete characterization of the computational and
strategy complexity of pushdown games and pushdown systems (one-player pushdown games or push-
down automata) with mean-payoff objectives. Solving a pushdown system (resp. pushdown game)
with respect to a mean-payoff objective is to decide whether there exists a path that (resp. a winning
strategy to ensure that every path possible given the strategy) satisfies the mean-payoff objective.
Our main results for computational complexity are as follows.

1. Global strategies. We show that pushdown systems (one-player pushdown games) with mean-payoff
objectives under global strategies can be solved in polynomial time, whereas solving pushdown
games with mean-payoff objectives under global strategies is undecidable.

2. Modular strategies. Solving pushdown systems with single exit nodes with mean-payoff objectives
under modular strategies is NP-hard, and pushdown games with mean-payoff objectives under
modular strategies can be solved in NP. Thus both pushdown systems and pushdown games with
mean-payoff objectives under modular strategies are NP-complete.

Our results are shown in Table 1. First observe that our hardness result for modular strategies is
different from the NP-hardness of [5] because the hardness result of [5] shows hardness for games
with reachability objectives and require that the number of modules with multiple exit nodes are not
bounded (in fact if every module of the recursive game has a single exit, then the problem is in PTIME



Global strategies Modular strategies

Pushdown systmes PTIME NP-complete
(NP-hard for single exit)

Pushdown games Undecidable NP-complete

Table 1. Computational complexity of pushdown systems and pushdown games with mean-payoff objectives.

Global strategies Modular strategies

Pushdown systmes Infinite Memoryless

Pushdown games Infinite Memoryless

Table 2. Strategy complexity of pushdown systems and pushdown games with mean-payoff objectives.

for reachability and NP ∩ coNP for parity objectives). In contrast we show that for mean-payoff
objectives the problem is NP-hard even for pushdown systems (only one player), where every module
has a single exit node, under modular strategies. Second we also observe the very different complexity
of global and modular strategies for mean-payoff objectives in pushdown systems vs pushdown games:
the global strategies problem is computationally inexpensive (in PTIME) as compared to the modular
strategies problem (which is NP-complete) in pushdown systems; whereas the global strategies problem
is computationaly infeasible (undecidable) as compared to the modular strategies problem (which is
NP-complete) in pushdown games. Also observe that in contrast to finite-state game graphs where
the complexities for mean-payoff and parity objectives match, for pushdown systems and games, the
complexities of parity and mean-payoff objectives are very different. Along with the computational
complexities, we also establish the optimal strategy complexity showing that global winning strategies
for mean-payoff objectives in general require infinite memory even in pushdown systems; whereas
memoryless or positional (independent of history) strategies suffice for modular strategies for mean-
payoff objectives in pushdown games (see Table 2). Finally we also study the stack boundedness
conditions where the goal of one player along with maximizing the mean-payoff objectives is also to
ensure that the height of the stack is bounded. We show that all the complexities for the additional
stack boundedness condition along with mean-payoff objectives are the same in pushdown systems
and games as without the stack boundedness condition.

Technical contributions. Our key technical contributions are as follows. For pushdown systems un-
der global strategies we show that the mean-payoff objective problem can be solved by only considering
additional stack height that is polynomial. We then show that the stack height bounded problem can
be solved in polynomial time using a dynamic programming style algorithm. For pushdown games un-
der global strategies our undecidability result is obtained as a reduction from the universality problem
of weighted automata (which is undecidable [26, 1]). For modular strategies we first show existence of
a cycle independent modular strategies, and then show memoryless modular strategies are sufficient.
Given memoryless modular strategies and polynomial time algorithm for pushdown systems, we ob-
tain the NP upper bound for the modular strategies problem. Our NP-hardness result for modular
strategies is a reduction from the 3-SAT problem.

Organization. Our paper is organized as follows. In Section 2 (resp. Section 3) we present the results
for pushdown systems (resp. pushdown games) under global strategies. In Section 4 we present the
results for modular strategies.

2 Mean-Payoff Pushdown Graphs

In this section we consider pushdown graphs (or pushdown systems) with mean-payoff objectives. We
start with the basic notion of stack alphabet and commands.

Stack alphabet and commands. Let Γ denote a finite set of stack alphabet, and Com(Γ ) = {skip, pop}∪
{push(z) | z ∈ Γ} denote the set of stack commands over Γ . Intuitively, the command skip does
nothing, pop deletes the top element of the stack, push(z) puts z on the top of the stack. For a stack
command com and a stack string α ∈ Γ+ we denote by com(α) the stack string obtained by executing
the command com on α.



Weighted pushdown systems. A weighted pushdown system (WPS) (or a weighted pushdown
graph) is a tuple:

A = 〈Q, Γ, q0 ∈ Q, E ⊆ (Q × Γ ) × (Q × Com(Γ )), w : E → Z〉,

where Q is a finite set of states with q0 as the initial state; Γ the finite stack alphabet and we assume
there is a special initial stack symbol ⊥ ∈ Γ ; E describes the set of edges or transitions of the pushdown
system; and w is a weight function that assigns integer weights to every edge. We assume that ⊥ can
be neither put nor removed from the stack. A configuration of a WPS is a pair (α, q) where α ∈ Γ+

is a stack string and q ∈ Q. For a stack string α we denote by Top(α) the top symbol of the stack.
The initial configuration of the WPS is (⊥, q0). We use W to denote the maximal absolute weight of
the edge weights.

Successor configurations and runs. Given a WPS A, a configuration ci+1 = (αi+1, qi+1) is a suc-
cessor configuration of a configuration ci = (αi, qi), if there is an edge (qi, γi, qi+1, com) ∈ E
such that com(αi) = αi+1, where γi = Top(αi). A path π is a sequence of configurations. A path
π = 〈c1, . . . , cn+1〉 is a valid path if for all 1 ≤ i ≤ n the configuration ci+1 is a successor configuration
of ci (and the notation is similar for infinite paths). In the sequel we shall refer only to valid paths.
Let π = 〈c1, c2, . . . , ci, ci+1, . . .〉 be a path. We denote by π[j] = cj the j-the configuration of the path
and by π[i1, i2] = 〈ci1 , ci1+1, . . . , ci2〉 the segment of the path from the i1-th to the i2-th configuration.
A path can equivalently be defined as a sequence 〈c1e1e2 . . . en〉, where c1 is the initial configuration
and ei are valid transitions.

Average weights of paths. For a finite path π, we denote by w(π) the sum of the weights of the

edges in π and Avg(π) = w(π)
|π| , where |π| is the length of π, denote the average of the weights.

For an infinite path π, we denote by LimSupAvg(π) (resp. LimInfAvg(π)) the limit-sup (resp. limit-
inf) of the averages (long-run average or mean-payoff objectives), i.e., lim sup(Avg(π[0, i]))i≥0 (resp.
lim inf(Avg(π[0, i]))i≥0).

Notations. We shall use (i) γ or γi for an element of Γ ; (ii) e or ei for a transition (equivalently an
edge) from E; (iii) α or αi for a string from Γ ∗. For a path π = 〈c1, c2, . . .〉 = 〈c1e1e2 . . .〉 we denote
by (i) qi: the state of configuration ci, and (ii) αi: the stack string of configuration ci.

Stack height and additional stack height of paths. For a path π = 〈(α1, q1), . . . , (αn, qn)〉, the stack
height of π is the maximal height of the stack in the path, i.e., SH(π) = max{|α1|, . . . , |αn|}. The
additional stack height of π is the additional height of the stack in the segment of the path, i.e., the
additional stack height ASH(π) is SH(π) − max{|α1|, |αn|}.

Pumpable pair of paths. Let π = 〈c1e1e2 . . .〉 be a finite or infinite path. A pumpable pair of paths
for π is a pair of non-empty sequence of edges: (p1, p2) = (ei1ei1+1 . . . ei1+n1 , ei2ei2+1 . . . ei2+n2), for
n1, n2 ≥ 0, i1 ≥ 0 and i2 > i1 + n1 such that for every j ≥ 0 the path πj

(p1,p2) obtained by pumping

the pair p1 and p2 of paths j times each is a valid path, i.e., for every j ≥ 0 we have

πj

(p1,p2)
= 〈c1e1e2 . . . ei1−1(ei1ei1+1 . . . ei1+in

)jei1+in+1 . . . ei2−1(ei2ei2+1 . . . ei2+n2)
jei2+n2 . . .〉

is a valid path. We will show that large additional stack height implies the existence of pumpable pair
of paths. To prove the results we need the notion of local minima of paths.

Local minima of a path. Let π = 〈c1, c2, . . .〉 be a path. A configuration ci = (αi, qi) is a local minima if
for every j ≥ i we have αi ⊑ αj (i.e., the stack string αi is a prefix string of αj). One basic fact about
local minima of a path is as follows: Every infinite path has infinitely many local minimas. We discuss
the proof of the basic fact and some properties of local minima. Consider a path π = 〈c1, c2, . . .〉. If
there is a finite integer j such that from some point on (say after i-th index) the stack height is always
at least j, and the stack height is j infinitely often, then every configuration after i-th index with
stack height j is a local minima (and there are infinitely many of them). Otherwise, for every integer
j, there exists an index i, such that for every index after i the stack height exceeds j, and then for
every j, the last configuration with stack height j is a local minima and we have infinitely many local
minimas. This shows the basic fact about inifinitely many local minimas of a path. We now discuss
a property of consecutive local minimas in a path. If we consider a path and the sequence of local
minimas, and let ci and cj be two consecutive local minimas. Then either ci and cj have the same
stack height, or else cj is obtained from ci with one push operation. In the following proposition we
establish that if the additional stack height of a path exceeds (|Q| · |Γ |)2, then there is a pumpable
pair of paths.
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Fig. 1. Subpath construction.

Proposition 1 Let π be a finite path such that ASH(π) = d ≥ (|Q| · |Γ |)2. Then π has a pumpable
pair of paths.

Proof. We first select a subpath of π∗ of π such that π∗ = 〈c∗1, . . . , c
∗
p, . . . , c

∗
n〉 and the following

conditions hold: (i) c∗1 is a local minima in π∗, (ii) |α∗
1| = |α∗

n|, and (iii) |α∗
p| = |α∗

1| + d. The subpath
is selected as follows: consider the configuration c∗p in π where the stack height is maximum, and c∗1
is the closest configuration before c∗p where the stack height is exactly d less than the stack height of
c∗p, and similarly c∗n is the closest configuration after c∗p where the stack height is exactly d less than
that of c∗p (see Figure 1). Clearly all the three conditions are satisfied. Let c′ij

(resp. c′′ij
) be the closest

configuration before (resp. after) c∗p such that the stack height of c′ij
(resp. c′′ij

) is |α∗
1| + j, for j ≥ 0.

Since d ≥ (|Q| · |Γ |)2 it follows from the pigeonhole principle that there exists j1, j2 such that the
states and the top stack symbol of c′ij1

and c′ij2
are identical, and the states and the top stack symbol

of c′′ij1
and c′′ij2

are identical. It is straight forward to verify that the sequence p1 of edges between c′ij1

and c′ij2
along with the sequence p2 of edges between c′′ij2

and c′′ij1
are a pumpable pair, i.e., (p1, p2)

is a pumpable pair for π. ⊓⊔

In the following lemma we establish the connection of additional stack height and existence of
pumpable pair of paths with positive weights.

Lemma 1 Let c1, c2 be two configurations and n ∈ Z. Let d ∈ N be the minimal additional stack
height of all the paths between c1 and c2 with total weight at least n. If d ≥ (|Q| · |Γ |)2, then there
exists a path π∗ from c1 to c2 with additional stack height d that has a pumpable pair (p1, p2) such
that w(p1) + w(p2) > 0.

Proof. The proof is by induction on the length |π| of the witness path π (i.e., π is a path from c1 to
c2 with minimal additional stack height with weight at least n). We prove the base case and inductive
step below.

– Base case: Note that since ASH(π) = d we must have |π| ≥ d. Hence in the base case we have
|π| = d. By Proposition 1, the path π has a pumpable pair (p1, p2). As |π| = d it must be that
the additional stack height ASH(π0

(p1,p2)) of the path π0
(p1,p2)

obtained from π by removing p1 and

p2 (i.e., pumping (p1, p2) zero times) is less than d. Hence it must be that w(π) > w(π0
(p1,p2)),

as otherwise π0
(p1,p2)

would be a witness path from c1 to c2 with weight at least n but smaller

additional stack height contradicting the minimality of π. Hence we have that w(p1) + w(p2) > 0.
– Inductive step: Again by Proposition 1, we have that π has a pumpable pair (p1, p2). If w(p1) +

w(p2) > 0, then we are done. Otherwise, w(p1)+w(p2) ≤ 0, and then we have w(π0
(p1,p2)

) ≥ w(π).

Hence ASH(π0
(p1,p2)) is d, since, otherwise if ASH(π0

(p1,p2)
) < d, then π0

(p1,p2) would be a witness

path from c1 to c2 with weight at least n but smaller additional stack height than π (contradicting
minimality of π). Since |π| > |π0

(p1,p2)|, by the inductive hypothesis it follows that π0
(p1,p2)

has a

pumpable pair (p3, p4) such that w(p3) + w(p4) > 0.

The desired result follows ⊓⊔



Mean-payoff objectives with strict and non-strict inequalities. For a given integer r, the mean-
payoff objective LimInfAvg ⊲⊳ r (resp. LimSupAvg ⊲⊳ r) defines the set of infinite paths π such that
LimInfAvg(π) ⊲⊳ r (resp. LimSupAvg(π) ⊲⊳ r), where ⊲⊳∈ {≥, >}. The mean-payoff objectives with inte-
ger threshold r can be transformed to threshold 0 by subtracting r from all transition weights. Hence in
this work w.l.o.g we will consider mean-payoff objectives (i) LimInfAvg > 0 (resp. LimSupAvg > 0), and
call them mean-payoff objectives with strict inequality; and (ii) LimInfAvg ≥ 0 (resp. LimSupAvg ≥ 0),
and call them mean-payoff objectives with non-strict inequality. We are interested in solving WPSs
with mean-payoff objectives, i.e., to decide if there is a path that satisfies the objective.

2.1 Objectives LimInfAvg > 0 and LimSupAvg > 0

In this section we consider limit-average (or mean-payoff) objectives with strict inequality. We will
show that WPSs with such objectives can be solved in polynomial time. A crucial concept in the proof
is the notion of good cycles, and we define them below.

Good cycle. A finite path π = 〈c1, . . . , cn〉 is a good cycle if the following conditions hold:

1. w(π) > 0 (the weight of the path is positive);
2. c1 is a local minima;
3. let c1 = (α1, q1) and cn = (αn, qn), then q1 = qn and Top(α1) = Top(αn).

We first prove two propositions and the intuitive descriptions of them are as follows: In the first
proposition we show that for every WPS, for every natural number d there exists a natural number n
such that if there is path with weight at least n and additional stack height at most d, then there is a
good cycle in the WPS. The second proposition is similar to the first proposition, and shows that if
the additional stack depth is large, then it is possible to construct paths with arbitrarily large weights.
Using the above two propositions we then show that if the weight of a finite path is sufficiently large,
then either a good cycle exists or paths with arbitrarily large weights can be constructed. Finally we
prove the key lemma that establishes the equivalence of the existence of a path satisfying mean-payoff
objectives with strict inequality and the existence of a good cycle.

Proposition 2 Let A be a WPS. For every d ∈ N there exists nA,d ∈ N such that the following
assertion holds: If there exists a path π = 〈c1, . . . , cr〉 such that (i) c1 is a local minima, (ii) w(π) ≥
nA,d and (iii) ASH(π) ≤ d; then A has a reachable good cycle.

Proof. Let Gd be a graph that contains all the paths that begin in c1 and end in cr with additional
stack height at most d and for which c1 is a local minima. Clearly, the graph Gd is a finite graph, and
the maximal absolute weight W is the same as that for A. A reachable positive cycle in Gd implies
the existence of a reachable good cycle in A, and if no positive cycle is reachable, then the weight of
each path is bounded by |Gd| · W . Thus with nA,d = |Gd| · W we obtain the desired result. ⊓⊔

Proposition 3 Let A be a WPS. Let n ∈ Z and let π = 〈c1, . . . , cr〉 be a path with weight at least n,
with minimal additional stack height, such that c1 is a local minima. If ASH(π) ≥ (|Q| · |Γ |)2, then for
every m ∈ N there exists a path πm from c1 to cr such that c1 is a local minima and w(πm) ≥ m.

Proof. By Lemma 1 there exists a path π from c1 to cr that has a pumpable pair (p1, p2) such that
w(p1) + w(p2) > 0. Hence for every i ∈ N we get that w(πi+1

(p1,p2)
) > w(πi

(p1,p2)
) (i.e., the weight

after pumping i + 1 times the pair of paths exceeds than the weight of pumping i times). Hence for
i = m − w(π) we get that w(πi

(p1,p2)
) ≥ m. The desired result follows. ⊓⊔

Lemma 2 Let A be a WPS. There exists nA ∈ N such that if there exists a path π from configuration
c1 to configuration cr with c1 as a local minima and w(π) ≥ nA, then one of the following holds:

1. A has a reachable good cycle.
2. For every n′ ∈ N there exists a path π′ from c1 to cr such that c1 is a local minima of π′ and

w(π′) > n′.

Proof. Observe that the nA is our choice and we will choose it sufficiently large for the proof. Let
d∗ = (|Q| · |Γ |)2, and our choice of nA is |Q| · |Γ | · nA,d∗ (where nA,d∗ is as defined in Proposition 2).
Let π = 〈c1, c2, . . . , cr〉 be a path such that c1 is a local minima and w(π) ≥ nA. Let m1, . . . , mj be



the local minimas along the path. Note that m1 = c1 and cr = mj . Also note that j = |αr|−|α1|. Note
that if mi1 = (αi1 , q) and mi2 = (αi2 , q), then if a good cycle does not exist we get that the weight
of the path between mi1 and mi2 is non positive. Hence, since Q and Γ are finite, by the pigeonhole
principle, either a good cycle exists or there exists mi, mi+1 such that αi+1 = αiγ for some γ ∈ Γ and
there exists a path from mi to mi+1 such that mi is a local minima and the weight of the path is at
least nA,d∗ . Let π∗ be such a path with minimal additional stack height between mi and mi+1. We
consider two cases to complete the proof.

1. If the additional stack height of π∗ is smaller than d∗, then by Proposition 2 we have a reachable
good cycle from mi and since mi is reachable from c1 we have reachable good cycle from c1

(condition 1 of the lemma holds).
2. If the additional stack of π∗ is at least d∗, then by Proposition 3 for every n0 we can construct

a path πn0 between mi and mi+1 with weight w(πn0 ) at least n0, and m1 is a local minima of
πn0 . For n′ ∈ N, let n0 = n′ + W · |π|, and let π′ be the path constructed using the segment from
c1 to mi, then the path πn0 , and then the segment of π from mi+1 to cr. The configuration c1 is
a local minima of π′ and the weight of π′ is at least n0 − W · |π| ≥ n′. Hence it follows that for
every n′ we can construct a path from c1 to cr with c1 as a local minima and weight at least n′

(condition 2 of the lemma holds).

This completes the proof of the lemma. ⊓⊔

Lemma 3 Let A be WPS. The following statements are equivalent: (i) There exists a path π1 with
LimSupAvg(π1) > 0; (ii) there exists a path π2 with LimInfAvg(π2) > 0; and (iii) there exists a path π
that contains a good cycle.

Proof. The direction from right to left is immediate. Let π = π1π2 be a finite path in A such that π2 is
a good cycle. Let π1 = c1e

1
1e

1
2 . . . e1

n1
and π2 = c2e

2
1e

2
2 . . . e2

n2
. The infinite path π′ = π1c2(e

2
1e

2
2 . . . e2

n2
)ω

obtained by repeating the good cycle forever is a valid path which satisfies that LimSupAvg(π′) ≥
LimInfAvg(π′) > 0.

In order to prove the opposite direction, we consider an infinite path π such that LimSupAvg(π) > 0.
Let q ∈ Q and γ ∈ Γ be such that the sequence m1 = (αi1 , q), m2 = (αi2 , q), . . . is an infinite sequence
of local minima of π and Top(αij

) = γ (note that such state and symbol are guaranteed to exist due
to the existence of infinitely many local minimas and finiteness of |Q| and |Γ |). If there exists j > 1
such that w(π[i1, ij ]) > 0 then by definition π[i1, ij ] is a good cycle and the result follows. Otherwise
let us assume that for every j > 1 we have w(π[i1, ij]) ≤ 0. As LimSupAvg(π) > 0 it follows that for
every n ∈ N there exists in > 1 such that the path π[i1, in] contains a prefix with weight at least n
(otherwise LimSupAvg(π) ≤ 0). We now use Lemma 2 to complete the proof. Let n = nA (where nA

is as used in Lemma 2). Let π′ = m1, . . . , c
∗ be the prefix of π[i1, in] such that w(π′) ≥ n. If the first

condition of Lemma 2 holds (i.e., A has a good cycle), then we are done with the proof. Otherwise,
by condition 2 of Lemma 2 it follows that for every n0 ∈ N there exists a path πn0 from m1 to c∗

such that m1 is a local minima and w(πn0 ) ≥ n0. Let us choose n0 = W · |π[i1, in]|+ 1. Then consider
the path π = πn0π[i + |π′|, in] that is obtained by concatenating the witness path πn0 for n0 from
m1 to c∗, and then the part of π from c∗ to π[in]. For the path π we have (i) the sum of weights is
at least n0 − W · |π[i1, in]| ≥ 1 > 0; (ii) π[i1] is a local minima; and (iii) the state and the top stack
symbol of π[i1] and π[in] are the same. Thus π is a witness good cycle. For conclusion we get that if
LimSupAvg(π) > 0, then there exists a good cycle, which also implies that there exists a path π′ such
that LimInfAvg(π′) > 0. This concludes the proof of the lemma. ⊓⊔

In the above key lemma we have established the equivalence of the decision problems for WPSs
with mean-payoff objectives with strict inequality and the problem of determining good cycles. We
will now present a polynomial time algorithm for detecting good cycles. To this end we introduce the
notion of non-decreasing paths and summary functions.

Non-decreasing paths. A path from configuration (αγ, q1) to configuration (αγα2, q2) is a non-
decreasing α-path if (αγ, q1) is a local minima. Note that if π is a non-decreasing α-path for some
α ∈ Γ ∗, then it is a non-decreasing β-path for every β ∈ Γ ∗. Hence we say that π is a non-decreasing
path if there exists α ∈ Γ ∗ such that π is a non-decreasing α-path.

Summary function. Let A be a WPS. For α ∈ Γ ∗ we define sα : Q × Γ × Q → {−∞} ∪ Z ∪ {ω} as
following.



1. sα(q1, γ, q2) = ω iff for every n ∈ N there exists a non-decreasing path from (αγ, q1) to (αγ, q2)
with weight at least n.

2. sα(q1, γ, q2) = z ∈ Z iff the weight of the maximum weight non-decreasing path from configuration
(αγ, q1) to configuration (αγ, q2) is z.

3. sα(q1, γ, q2) = −∞ iff there is no non-decreasing path from (αγ, q1) to (αγ, q2).

Remark 1 For every α1, α2 ∈ Γ ∗: sα1 ≡ sα2 .

Due to Remark 1 it is enough to consider only s ≡ s⊥. The computation of the summary function
will be achieved by considering stack height bounded summary functions defined below.

Stack height bounded summary function. For every d ∈ N, the stack height bounded summary function
sd : Q × Γ × Q → {−∞} ∪ Z ∪ {ω} is defined as follows: (i) sd(q1, γ, q2) = ω iff for every n ∈ N there
exists a non-decreasing path from (⊥γ, q1) to (⊥γ, q2) with weight at least n and additional stack
height at most d; (ii) sd(q1, γ, q2) = z iff the weight of the maximum weight non-decreasing path from
(⊥γ, q1) to (⊥γ, q2) with additional stack height at most d is z; and (iii) sd(q1, γ, q2) = −∞ iff there
is no non-decreasing path with additional stack height at most d from (⊥γ, q1) to (⊥γ, q2).

Basic facts of summary functions. We have the following basic facts: (i) for every d ∈ N, we have
sd+1 ≥ sd (monotonicity); and (ii) sd+1 is computable in polynomial time from sd and A (we will
show this fact in Lemma 4). We first present a proposition that shows that from sd, with d = (|Q|·|Γ |)2,
we obtain the values of function s for all values in Z ∪ {−∞}.

Proposition 4 Let d = (|Q| · |Γ |)2. For all q1, q2 ∈ Q and γ ∈ Γ , if s(q1, γ, q2) ∈ Z ∪ {−∞}, then
s(q1, γ, q2) = sd(q1, γ, q2).

Proof. By definition we have s(q1, γ, q2) ≥ sd(q1, γ, q2). Assume towards contradiction that
s(q1, γ, q2) > sd(q1, γ, q2), then there exists a non-decreasing path π with minimal additional
stack height from (⊥γ, q1) to (⊥γ, q2) with weight n > sd(q1, γ, q2) and additional stack height
d′ > (|Q| · |Γ |)2. Hence by Proposition 3 for every m ∈ N there exists a non-decreasing path from
(⊥γ, q1) to (⊥γ, q2) with weight at least m (note that in Proposition 3 the witness path constructed
by pumping the positive pumpable pair yields a non-decreasing path). Hence s(q1, γ, q2) = ω in con-
tradiction to the assumption that s(q1, γ, q2) ∈ Z ∪ {−∞}. The desired result follows. ⊓⊔

Our goal now is the computation of the ω values of the summary function. To achieve the compu-
tation of ω values we will define another summary function s∗ and a new WPS A∗ such that certain
cycles in A∗ will characterize the ω values of the summary function. We now define the summary
function s∗ and the pushdown system A∗. Let d = (|Q| · |Γ |)2. The new summary function s∗ is
defined as follows: if the values of sd and sd+1 are the same then it is assigned the value of sd, and
otherwise the value ω. Formally,

s∗(q1, γ, q2) =

{

sd(q1, γ, q2) if sd(q1, γ, q2) = sd+1(q1, γ, q2)
ω if sd(q1, γ, q2) < sd+1(q1, γ, q2).

The new WPS A∗ is constructed from A by adding the following set of ω-edges: {(q1, γ, q2, skip) |
s∗(q1, γ, q2) = ω}.

Proposition 5 For all q1, q2 ∈ Q and γ ∈ Γ , the following assertion holds: the original summary
function s(q1, γ, q2) = ω iff there exists a non-decreasing path in A∗ from (⊥γ, q1) to (⊥γ, q2) that
goes through an ω-edge.

Proof. The direction from right to left is easy: if there is a non-decreasing path in A∗ that goes
through an ω-edge, it means that there exists (q′1, γ

′, q′2) with either sd(q
′
1, γ, q′2) = ω or sd(q

′
1, γ

′, q′2) <
sd+1(q

′
1, γ

′, q′2). If sd(q
′
1, γ, q′2) = ω, then clearly s(q′1, γ, q′2) = ω. Otherwise we have sd(q

′
1, γ

′, q′2) <
sd+1(q

′
1, γ

′, q′2), and then the proof of Proposition 4 shows that s(q′1, γ
′, q′2) = ω. Since there exists

finite path from (⊥γ, q1) to (⊥γ, q2) with the ω-edge it follows that s(q1, γ, q2) = ω.
For the converse direction, we consider the case that s(q1, γ, q2) = ω. If s∗(q1, γ, q2) = ω, then

the proof follows immediately. Otherwise it follows that sd(q1, γ, q2) ∈ Z. Hence there exists a weight
n ∈ Z such that the non-decreasing path with the minimal additional stack height with weight n
has additional stack height d′ ≥ d + 1. Let π be that path. Then there exists a non-decreasing
subpath that starts at (αγ′, q′1) and ends at (αγ′, q′2) with additional stack height exactly d + 1. If
sd+1(q

′
1, γ

′, q′2) = sd(q
′
1, γ

′, q′2), then π is not the path with the minimal additional stack height. Hence,
as sd+1(q

′
1, γ

′, q′2) > sd(q
′
1, γ

′, q′2), by definition s∗(q′1, γ
′, q′2) = ω and the proof follows. ⊓⊔



We are now ready to show that the summary function s can be computed polynomial time.

Lemma 4 For a WPS A, the summary function s is computable in polynomial time.

Proof. There are two key steps of the proof: (i) computation of sd, for d = (|Q| · |Γ |)2, and we will
argue how to compute si+1 from si in polynomial time; (ii) computation of a non-decreasing path in
A∗ that goes through an ω-edge. We first argue how the key steps give us the desired result and then
present the details of the key steps. Given the computation of (i), we construct sd, sd+1 in polynomial
time, and hence also s∗. Given s∗ we construct A∗ in polynomial time. By computation (ii) we can
assign the ω values for the summary function, and all other have values as defined by sd. Thus with
the computation of key steps (i) and (ii) in polynomial time, we can compute the summary function
s in polynomial time. We now describe the key steps:

1. Computation of si+1 from si and A. Let GA be the finite weighted graph that is formed by all
the configurations of A with stack height either one or two, that is, the vertices are of the form
(α, q) where q ∈ Q and α ∈ {⊥ · γ,⊥ · γ1 · γ2 | γ, γ1, γ2 ∈ Γ}. The edges (and their weights) are
according to the transitions of A: formally, (i) (Skip edges): for vertices (⊥ ·α, q) we have an edge
to (⊥ ·α, q′) iff e = (q, Top(α), skip, q′) is an edge in A (and the weight of the edge in GA is w(e))
where α = γ or α = γ1 · γ2 for γ, γ1, γ2 ∈ Γ ; (ii) (Push edges): for vertices (⊥ · γ, q) we have an
edge to (⊥ · γ · γ′, q′) iff e = (q, γ, push(γ′), q′) is an edge in A (and the weight of the edge in GA

is w(e)) for γ, γ′ ∈ Γ ; and (iii) (Pop edges): for vertices (⊥ · γ · γ′, q) we have an edge to (⊥ · γ, q′)
iff e = (q, γ′, pop, q′) is an edge in A (and the weight of the edge in GA is w(e)) for γ, γ′ ∈ Γ .
Intuitively, GA allows skips, push pop pairs, and only one additional push. Note that GA has at
most 2 · |Q| · |Γ |2 vertices, and can be constructed in polynomial time.
For every i ≥ 1, given the function si, the graph Gi

A is constructed from GA as follows: adding
edges ((⊥γ1γ2, q1), (⊥γ1γ2, q2)) (if the edge does not exist already) and changing its weight to
si(q1, γ2, q2) for every γ1, γ2 ∈ Γ and q1, q2 ∈ Q. The value of si+1(q1, γ, q2) is exactly the weight
of the maximum weight path between (⊥γ, q1) and (⊥γ, q2) in Gi

A (with the following convention:
−∞ < z < ω, z + ω = ω and z +−∞ = ω +−∞ = −∞ for every z ∈ Z). If in Gi

A there is a path
from (⊥γ, q1) to (⊥γ, q2) that contains a cycle with positive weight, then we set si+1(q1, γ, q2) = ω.
Hence, given si and A, the construction of Gi

A is achieved in polynomial time, and the computation
of si+1 is achieved using the Bellman-Ford algorithm [13] in polynomial time (the maximum weight
path is the shortest weight if we define the edge length as the negative of the edge weight). Also
note that the Bellman-Ford algorithm reports cycles with positive weight (that is, negative length)
which is required to set ω values of si+1. It follows that we can compute si+1 given si and A in
polynomial time.

2. Non-decreasing ω-edge path in A∗. We reduce the problem of checking if there exists a non-
decreasing path from (⊥γ, q1) to (⊥γ, q2) in A∗ that goes through an ω-edge to the problem
of pushdown reachability in pushdown systems (or pushdown graphs), which is known to be in
PTIME [34, 2]. The reduction is as follows: for every state q ∈ Q we add a fresh (new) state qω, add
a transition (or edge) (qω

1 , γ, qω
2 , com) for every (q1, γ, q2, com) ∈ ∆ (i.e., the freshly added states

follow the transition in the fresh copy as in the original WPS), and a transition (q1, γ, qω
2 , com)

for every transition (q1, γ, q2, com) that has an ω weight (i.e., there is a transition to the fresh
copy only for an ω-edge). It follows that there exists an ω-edge non-decreasing path in A∗ from
(⊥γ, q1) to (⊥γ, q2) iff the configuration (⊥γ, qω

2 ) is pushdown reachable from the configuration
(⊥γ, q1). Hence it follows that existence of non-decreasing ω-edge path in A∗ can be determined
in polynomial time.

This completes the proof of polynomial time algorithm to compute the summary function. ⊓⊔

Given the computation of the summary function, we will construct a summary graph, and show
the equivalence of the existence of good cycles in a WPS with the existence of positive cycles in the
summary graph.

Summary graph and positive simple cycles. Given a WPS A = 〈Q, Γ, q0 ∈ Q, E ⊆ (Q × Γ ) × (Q ×
Com(Γ )), w : E → Z〉 and the summary function s, we construct the summary graph Gr(A) = (V , E) of
A with an weight function w : E → Z∪{ω} as follows: (i) V = Q×Γ ; and (ii) E = Eskip∪Epush where
Eskip = {((q1, γ), (q2, γ)) | s(q1, γ, q2) > −∞}, and Epush = {((q1, γ1), (q2, γ2)) | (q1, γ1, q2, push(γ2)) ∈
E}; and (iii) for all e = ((q1, γ), (q2, γ)) ∈ Eskip we have w(e) = s(q1, γ, q2), and for all e ∈ Epush is



according to weight function of A, i.e., w(e) = w(e). A simple cycle C in Gr(A) is a positive simple
cycle iff one of the following conditions hold: (i) either C contains an ω-edge (i.e., edge labeled ω by
w); or (ii) the sum of the weights of the edges of the cycles according to w is positive.

Proposition 6 A WPS A has a good cycle iff the summary graph Gr(A) has a positive simple cycle.

Proof. If A has a good cycle, then let π be a good cycle. The good cycle π is a non-decreasing path
〈c1, . . . , cn〉 such that c1 = (α1γ, q) and cn = (α1γα2γ, q) and w(π) > 0. Let m1, . . . , mr be the local
minimas along the path. Note that for every i < r, either mi and mi+1 have the same stack height
or mi+1 is reachable from mi via one push transition. For configuration c = (αγ, q), let us denote
Top(c) = (γ, q). Hence the path Top(m1), . . . , Top(mr) is a cycle in Gr(A). If the cycle contains an
ω-edge, then it is a positive cycle (by definition of positive cycles in Gr(A)). Otherwise, the weight of
the cycle in Gr(A) is at least w(π), and therefore Gr(A) has a positive cycle (and therefore positive
simple cycle).

The other direction is as follows. Consider a positive cycle in Gr(A). If the cycle does not contain
an ω-edge, then there exists a non-decreasing path in A with the same weight that forms a good cycle.
Otherwise, let (γ, q) be a vertex in the cycle, and ((γ1, q1), (γ1, q2)) be an ω-edge in the cycle of Gr(A).
From the construction of Gr(A), it follows that there exist α1, α2, α3 in A such that the following
non-decreasing paths exist:

– A non-decreasing path π1 from (α1γ, q) to (α1γα2γ1, q1) (due to the path of the cycle).
– For every m ∈ N: a non-decreasing path πm from (α1γα2γ1, q1) to (α1γα2γ1, q2) with weight at

least m (due to the ω-edge).
– A non-decreasing path π2 from (α1γα2γ1, q2) to (α1γα2γ1α3, q) (due to the path of the cycle).

Hence, for m = W · (|π1| + |π2|) + 1, we get that the path π1π
mπ2 is a good cycle. This completes

both directions of the proof and gives us the result. ⊓⊔

Since the summary function and summary graph can be constructed in polynomial time, and the
existence of a positive cycle in a graph can be checked in polynomial time (for example, first checking
existence of a cycle with an ω-edge, and then applying Karp’s mean-cycle algorithm [25] after removing
all ω edges), we have the following lemma.

Lemma 5 Given a WPS A, whether A has a good cycle can be decided in polynomial time.

Lemma 3 and Lemma 5 give us the following theorem.

Theorem 1 Given a WPS A, whether there exists an infinite path π such that LimInfAvg(π) > 0
(or LimSupAvg(π) > 0) can be decided in polynomial time. If there exists an infinite path π such
that LimSupAvg(π) > 0, then there exists an ultimately periodic infinite path π′ such that both
LimSupAvg(π′) > 0 and LimInfAvg(π′) > 0.

2.2 Objectives LimInfAvg ≥ 0 and LimSupAvg ≥ 0

In this section we consider mean-payoff objectives with non-strict inequality. We will assume that the
input WPS A has integer weights, but we will consider certain transformations that produce rational
weight functions.

Transformed weight functions and weighted graphs. Let w : E → Q be a weight function, and r ∈ Q

be a rational value, then the weight function w + r : E → Q is defined as follows: for all e ∈ E we
have (w + r)(e) = w(e) + r. Let G = (V, E) be a (possibly infinite)3 graph with a weight function
w : E → Q. In order to emphasize that w is the weight function for G, we use wG. We denote by Gr

the same infinite graph with weight function wG +r. We first show that if the lim-inf-average objective
can be satisfied for all ǫ > 0, then the non-strict lim-inf-average objective can also be satisfied.

Proposition 7 Let A be a WPS. There exists a path π with LimInfAvg(π) ≥ 0 iff for every ǫ > 0
there exists a path πǫ with LimInfAvg(πǫ) > −ǫ.

3 In this subsection we often look at a WPS as an infinite graph of the configurations



Proof. The direction from left to right is trivial.
In order to prove the converse direction let us assume that for every n ∈ N there exists a path πn

with LimInfAvg(πn) > − 1
n
. Hence for every n ∈ N there exists a path π∗ which leads to a path Cn

that is a good cycle with respect to the weight function w + 1
n
. Since there are infinitely many values

of n ∈ N, and Q and Γ are finite, w.l.o.g all the good cycles (with respect to w+ 1
n
) starts at the same

top configuration (γ, q). Hence for π = π∗C2W ·|C2|2

1 . . . C2W ·|Ci+1|i

i . . . we get that LimInfAvg(π) ≥ 0.
This completes the proof. ⊓⊔

Lemma 6 Let A be a WPS with integer weights (weight function w). Let ℓ = |Γ | · |Q|, and fix
ǫ = 1

ℓ(ℓ+1)2 ·2·ℓ
. Then the WPS Aǫ (with weight function w + ǫ) has a good cycle iff for every δ > 0 the

WPS Aδ (with weight function w + δ) has a good cycle.

Proof. The direction from right to left is trivial. For the converse direction we first prove the following
proposition.

Proposition 8 Let sǫ be the summary function for Aǫ.

1. If sǫ(q1, γ, q2) 6= ω, then sǫ(q1, γ, q2) ≤ s(q1, γ, q2) + 1
2·ℓ .

2. If sǫ(q1, γ, q2) = ω, then for every δ > 0 we have sδ(q1, γ, q2) = ω, where sδ is the summary
function for Aδ.

Proof. We prove both the items below.

1. If sǫ(q1, γ, q2) 6= ω, then maximum weight non-decreasing path with minimal additional stack
height from (⊥γ, q1) to (⊥γ, q2) has an additional stack height of at most (|Q| · |Γ |)2 = ℓ2. Note
that this path does not contain positive cycles (since sǫ(q1, γ, q2) 6= ω). Hence there exists a path
π with the same weight and with stack height at most ℓ2 which does not contain any cycles. Hence
|π| ≤ ℓℓ2 , and therefore

wAǫ(π) = wA(π) + ǫ · |π| ≤ wA(π) + ǫ · ℓℓ2 ≤ wA(π) +
1

2 · ℓ
.

Since s(q1, γ, q2) ≥ wA(π) (as π is a non-decreasing path we have s(q1, γ, q2) ≥ wA(π)), we obtain
the result of the first item.

2. In order to prove the second item of the proposition, it is enough to prove that if an edge weight
is ω in (Aǫ)∗ (where (Aǫ)∗ is the WPS constructed with the function (sǫ)∗), then for every δ > 0
the weight of the edge is ω also in the summary graph Gr(Aδ) of Aδ. We consider two cases to
complete the proof.

– Case 1. If sǫ
ℓ(q1, γ, q2) = ω, then the infinite graph Aǫ has a positive cycle C with stack height

at most ℓ2, hence there exists positive cycle C′ such that |C′| ≤ ℓℓ2 . Towards contradiction,
let us assume that wA(C′) < 0. As all the weights in A are integers we get that wA(C′) ≤ −1.
As wA(C′) + ǫ · |C′| = wAǫ(C′) ≥ 0 we get that |C′| ≥ 1

ǫ
which is a contradiction. Thus

wA(C′) ≥ 0, and hence for every δ > 0 we have wAδ (C′) > 0, hence sδ
ℓ(q1, γ, q2) = ω.

– Case 2. Otherwise, we have sǫ
ℓ+1(q1, γ, q2) > sǫ

ℓ(q1, γ, q2). Let π be a path from (⊥γ, q1) to
(⊥γ, q2) with additional stack height ℓ + 1 and weight sǫ

ℓ+1(q1, γ, q2). As sǫ
ℓ+1(q1, γ, q2) >

sǫ
ℓ(q1, γ, q2), by Lemma 1 it follows that π has a pumpable pair (p1, p2) with wAǫ(p1) +

wAǫ(p2) > 0. If p1 (resp. p2) contains a cycle with positive weight, then by the same ar-
guments presented in the proof of the first item of the proposition this cycle will be positive
also in Aδ, for every δ > 0, and hence sδ(q1, γ, q2) = ω. Therefore w.l.o.g both p1 and p2 do
not contain any cycles and thus |p1|, |p2| ≤ ℓℓ+1. Again by the same arguments presented in
the proof of the first item we obtain that wA(p1) + wA(p2) ≥ 0 and hence for every δ > 0
we have wAδ (p1) + wAδ (p2) > 0. As (p1, p2) is a positive pumpable pair in Aδ it follows that
sδ(q1, γ, q2) = ω.

This completes the proof of the second item.

We obtain the desired result of the proposition. ⊓⊔

We are now ready to prove Lemma 6. Let us assume that there exists a good cycle in Aǫ. Then by
Proposition 6 there exists a positive simple cycle C in the summary graph Gr(Aǫ). We consider two
cases:
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Fig. 2. WPS A to witness ultimately periodic words might not suffice for mean-payoff objectives with non-
strict inequality

– If C contains an ω-edge e, then by Proposition 8 for every δ > 0 the same cycle in Gr(Aδ) will also
contain an ω-edge. Therefore C is a positive cycle also in Gr(Aδ) and hence Aδ has a good cycle.

– Otherwise C does not contain an ω-edge. Towards contradiction assume that the weight of C in
Gr(A) is negative. As the weight of A are integers it follows that the weight of C is at most −1.
By Proposition 8, for every e ∈ C we have wGr(Aǫ)(e) ≤ wGr(A)(e) + 1

2·ℓ ; and thus wGr(Aǫ)(C) ≤

wGr(A)(C) + |C|
2·ℓ . As C is a simple cycle (in Gr(Aǫ)) we get that |C| ≤ ℓ, and hence we have

wGr(Aǫ)(C) ≤ wGr(A)(C) + 1
2 ≤ − 1

2 , which contradicts the assumption that C is a positive cycle.
Therefore we have wGr(A)(C) ≥ 0, and therefore for every δ > 0 we get that wGr(Aδ)(C) > 0 and

hence Aδ has a good cycle.

This completes the proof of the lemma. ⊓⊔

Theorem 2 Given a WPS A, whether there exists an infinite path π such that LimInfAvg(π) ≥ 0 (or
LimSupAvg(π) ≥ 0) can be decided in polynomial time. There exists a WPS A such that there exists a
path π with LimInfAvg(π) = 0 but for every ultimately periodic path π we have both LimInfAvg(π) < 0
and LimSupAvg(π) < 0.

Proof. From Proposition 7 it follows that if there is a path π such that LimInfAvg(π) ≥ 0, then for
every ǫ1 > 0 there is a path π such that LimInfAvg(π) > −ǫ1. By Lemma 6 it follows that it suffices
to check for ǫ (for the ǫ described by Lemma 6). Given a WPS A, the WPS Aǫ can be constructed
in polynomial time (as ǫ has only polynomial number of bits). Then applying the polynomial time
algorithm to find good cycles (as given in the previous subsection) we answer the decision problems
in polynomial time. We observe that Proposition 7 and Lemma 6 also hold for LimSupAvg objectives,
and thus the result also follows for LimSupAvg objectives.

We now present the example to show that the witness paths for non-strict inequality mean-payoff
objectives are not necessarily ultimately periodic. Consider the WPS A with two states Q = {q1, q2}
with two symbol stack alphabet Γ = {⊥, γ} and the edge set E = {e1, e2, . . . , e5} is described as fol-
lows: e1 = (q1,⊥, q1, push(γ)), e2 = (q1, γ, q1, push(γ)), e3 = (q1, γ, q2, skip), e4 = (q2, γ, q2, pop), e5 =
(q2,⊥, q1, skip). The weight function is as follows: w(e4) = 1, and all other edge weights are −1.
(See Figure 2 for pictorial description). For i ≥ 1, consider the path segment ρi = e1e

i−1
2 e3e

i
4e5

that executes the edge e1, followed by (i − 1)-times the edge e2, then the edge e3, followed by i-
times the edge e4 and finally the edge e5. It is straight forward to verify that for the infinite path
π = (⊥, q1)ρ1ρ2ρ3 . . . we have that get that LimSupAvg(π) = LimInfAvg(π) = 0. However for every
valid path π = ξ1ξ

ω
2 , where ξ1 ∈ E∗ and ξ2 ∈ E+ it must be the case that either (i) ξ2 = e2 and

then LimInfAvg(π) = LimSupAvg(π) = −1 or that (ii) ξ2 is a cycle with length at most |ξ2| has weight
at most −1, and hence LimInfAvg(π) ≤ LimSupAvg(π) ≤ − 1

|ξ2|
< 0. This completes the proof of the

result. ⊓⊔

2.3 Mean-payoff objectives with stack boundedness

In this section we consider WPSs with mean-payoff objectives along with the stack boundedness con-
dition that requires the height of the stack to be bounded. An infinite path π = 〈c1, c2, . . . ci . . .〉 is a
stack bounded path if there exists n ∈ N such that |αi| ≤ n for every i ∈ N (recall that αi is the stack
string of configuration ci).

Theorem 3 Given a WPS A, the following problems can be solved in PTIME.



1. Does there exist a stack bounded infinite path π such that LimInfAvg(π) ⊲⊳ 0 (resp. LimSupAvg(π) ⊲⊳
0), for ⊲⊳∈ {≥, >}?

2. Is sup{LimInfAvg(π) | π is a stack bounded path} ≥ 0 (resp.
sup{LimSupAvg(π)|π is a stack bounded path} ≥ 0)?

Proof. The results for each item are proved with a proposition of the proof below.

Proposition 9 There exists a stack bounded infinite path π in A such that LimSupAvg(π) > 0 (resp.
LimSupAvg(π) ≥ 0) iff the summary graph Gr(A) has a vertex with self-loop that has a positive (resp.
non-negative) weight.

Proof. If there exists a stack bounded infinite path π in A such that LimSupAvg(π) > 0 (resp.
LimSupAvg(π) ≥ 0), then it contains a cycle that begins and ends at configuration (αγ, q) with
positive (resp. non negative) weight. Hence in the summary graph Gr(A) the vertex (γ, q) will have a
self-loop with positive (resp. non negative) weight. The other direction is straight forward. ⊓⊔

It is straight forward to verify that Proposition 9 also holds for LimInfAvg(π) objective. This gives
us the first item of the theorem. The next proposition proves the last item of the theorem.

Proposition 10 Let ǫ be the constant from Lemma 6. Then there exists a stack bounded infinite path
π such that LimInfAvg(π) > −ǫ iff sup{LimInfAvg(π) | π is a stack bounded path} ≥ 0.

Proof. The direction from right to left is immediate. In order to prove the other direction let us assume
that there exists a stack bounded infinite path π such that LimInfAvg(π) > −ǫ. Hence by Proposition 9
the summary graph Gr(Aǫ) contains a self-loop for vertex (γ, q) with positive weight. By the same
argument used in the proof of Lemma 6 it follows that for every δ > 0 the self-loop of vertex (γ, q) will
have a positive weight in graph Gr(Aδ). Hence for every δ > 0 there exists a stack bounded path πδ such
that LimInfAvg(πδ) > −δ, which implies that sup{LimInfAvg(π) | π is a stack bounded path} ≥ 0. 2

The proof of Proposition 10 straight forwardly extends to LimSupAvg(π) objective, and hence we have
the desired result of the theorem. ⊓⊔

Thus we have the following result summarizing the computational complexity.

Theorem 4 Given a WPS A, the following questions can be solved in polynomial time: (1) Whether
there exists a path π in Φ ⊲⊳ 0, where Φ ∈ {LimSupAvg, LimInfAvg} and ⊲⊳∈ {≥, >}; and (2) whether
there exists a path π in Φ ⊲⊳ 0 such that π is stack bounded, where Φ ∈ {LimSupAvg, LimInfAvg} and
⊲⊳∈ {≥, >}.

3 Mean-Payoff Pushdown Games

In this section we consider pushdown games with mean-payoff objectives. We will show that the
problem of deciding the existence of a strategy (or a finite-memory strategy) to ensure mean-payoff
objectives in pushdown games is undecidable. The undecidability results will be obtained by a reduc-
tion from the universality problem of weighted sum automata, which is known to be undecidable [26,
1]. We start with the definition of weighted pushdown games.

Weighted pushdown games (WPGs). A weighted pushdown game (WPG) G = 〈A, (Q1, Q2)〉
consists of a WPS A and a partition (Q1, Q2) of the state space Q of A into player-1 states Q1

and player-2 states Q2. A WPG defines an infinite-state game graph (V , E) with partition (V 1, V 2)
of the vertex set V , where V is the set of configurations of A, and V 1 = {(α, q) ∈ V | q ∈ Q1},
V 2 = {(α, q) ∈ V | q ∈ Q2} and E is obtained from the transitions of A. The initial vertex is the
configuration (⊥, q0).

Plays and strategies. A play on G (or equivalently on the infinite-state game graph) is played in the
following way: a pebble (or token) is placed on the initial vertex; and in every round, if the pebble
is currently on player-1 vertex (a vertex in V 1), then he chooses an edge to follow, and moves the
pebble accordingly; and if the current vertex is a player-2 vertex, he does likewise. The process goes on
forever and generates an infinite play (an infinite path π in the infinite graph of the game). A strategy

for player 1 is a recipe to extend plays; formally, a strategy for player 1 is a function τ : V
∗
×V 1 → V

such that for all w ∈ V
∗

and v ∈ V 1 we have (v, τ(w · v)) ∈ E. Equivalently a strategy for player 1



given a history of configurations (i.e., the sequence of configurations of the finite prefix of a play)
ending in a player-1 state, chooses the successor configuration according to the transition of A. A
play π = v1v2 . . . is consistent with a strategy τ if for every vi ∈ V 1 we have vi+1 = τ(v1v2 . . . vi),
i.e., the play is possible according to the strategy τ . The definition of player-2 strategies is analogous.
Informally a strategy can be viewed as a transducer that takes as input the sequence of transitions,
and outputs the transitions to be taken. A strategy is finite-memory if there is a finite-state transducer
to implement the strategy.

Winning strategies. We will consider mean-payoff objectives, as already defined in the previous section.
A player-1 strategy τ is a winning strategy if for every play π consistent with τ we have LimInfAvg(π) ≥
0 (resp. LimInfAvg(π) > 0, LimSupAvg(π) ≥ 0, LimSupAvg(π) > 0). In other words, a winning strategy
for player 1 ensures the mean-payoff objective against all strategies of player 2. We are interested in
the question of existence of a winning strategy, and the existence of a finite-memory winning strategy
for player 1 in WPGs with mean-payoff objectives. Our undecidability results for WPGs with mean-
payoff objectives will be a reduction from the non-universality of weighted finite automata. We define
the problem below.

Weighted finite automata (WFA). A weighted finite automaton (WFA) is a tuple A =
〈Σ, Q, q0, ∆, w : ∆ → Z〉, where Σ is a finite input alphabet, Q is a finite set of states, ∆ ⊆ Q×Σ×Q
is a transition relation, w : ∆ → Z is a weight function and q0 ∈ Q is the initial state. For a word
ρ = σ1σ2 . . . σn, a run of A on ρ is a sequence r = r0r1 . . . rn ∈ Q+, where r0 = q0, and for all 1 ≤ i ≤ n
we have di = (ri−1, σi, ri) ∈ ∆. The weight of the run r is w(r) =

∑n
i=1 w(di). Since the automaton

is non-deterministic there maybe several runs for a word, and the weight of a finite word ρ ∈ Σ∗

over A is the minimal weight over all runs on ρ, i.e., LA(ρ) = min{w(r) | r is a run of A on ρ}. The
non-universality problem asks, given ν ∈ Z, whether there exists a word ρ ∈ Σ∗ for which LA(ρ) ≥ ν?

Theorem 5 ([1]) Given a WFA with weight function w : ∆ → {−1, 0, 1}, the non-universality prob-
lem is undecidable for every ν ∈ Z for the following question: (a) Does there exist a word ρ ∈ Σ∗ such
that LA(ρ) ≥ ν? (Equivalently, is it not the case that for every ρ ∈ Σ∗ we have LA(ρ) ≤ ν − 1?)

Informally, given a WFA A we will construct a WPG in such way that in the first rounds player-1
fills the stack with letters that construct a word ρ of A, and then player-2 simulates the WFA minimal
run on ρ and then the game returns to the initial state. If for all ρ ∈ Σ∗ we have LA(ρ) ≤ 0, then the
mean-payoff of the play will be at most 0, otherwise, there exists a word ρ ∈ Σ∗ such that LA(ρ) > 0,
and then by playing according to ρ, player-1 can ensure positive mean-payoff.

Reduction: WFA to WPGs. We first prove that WPGs are undecidable for LimInfAvg(π) > 0
and LimSupAvg(π) > 0 objectives. This proof will immediately show the undecidability also for
LimInfAvg(π) ≥ 0 and LimSupAvg(π) ≥ 0 objectives, as LimInfAvg(π) ≥ 0 (resp. LimSupAvg(π) ≥ 0)
is dual to the objective of player 2 when the objective of player 1 is LimSupAvg(π) > 0 (resp.
LimInfAvg(π) > 0).

Reduction. The reduction from the non-universality problem of a weighted automaton is as follows.
Given a WFA A = 〈Σ, Q, q0, ∆, w : ∆ → {−1, 0, 1}〉 we construct a WPG G with the aid of five
gadgets, and we describe the gadgets below. WLOG we assume that there is a special symbol $ that
does not belong to Σ.

1. Gadget 1. The first gadget contains only one state, namely q$, which is a player-1 state. The state
has two possible transitions. In the first transition it pushes $ into the stack and remains in the
same state. In the second transition it pushes $ and goes to the second gadget. All the weights in
this gadget are −10.

2. Gadget 2. The second gadget also contains one state, namely qΣ , which is also a player-1 state.
For every σ ∈ Σ the state has a transition that pushes σ into the stack and remains in the same
state. In addition there is one more transition, which leads to the third gadget keeping the stack
unchanged with weight 0. All the weights in this gadget (other than the skip transition) are −1.
Informally, in this gadget player 1 needs to construct a word ρ such that the reverse of ρ has value
at least 1 in A. For a word ρ, let rev(ρ) denote the reverse of the word.

– In this gadget player 1 should construct a word ρ ∈ Σ∗ for which LA(rev(ρ)) ≥ 1.
– The WPG G will be constructed in such way that player 1 must play in a way so that the

number of $ in the stack will be greater than the number of letters from σ to ensure the
mean-payoff objectives.
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Fig. 3. The WPG G from WFA A

3. Gadget 3. The third gadget is the choice gadget with only one player-2 state qch , which either
leads to the fourth gadget or the fifth gadget. The weights of the transitions are 0 and the stack
is not changed. Informally, player-2 should go to the fifth gadget if the word that player 1 pushed
into the stack has non-positive weight, and should go to the fourth gadget if the number of $
symbols in the stack is less than the number of symbols from Σ.

4. Gadget 4. The fourth gadget consists of only one player-2 state q<$ (to denote that there is not
enough $ symbols). It has a transition pop(σ) with 0 weight, for all σ ∈ Σ; and a transition pop($)
with +11 weight. If the stack is empty, then there is a transition to the initial state.
A pictorial description of the first four gadgets is shown in Figure 3, where © denote player-
1 states, 2 denote player-2 states, and edges are labeled by stack top; followed by the stack
command; and then the weight; and if the stack top is irrelevant (i.e., the transition is valid for
all stack tops), then it is denoted as . We now describe the fifth gadget.

5. Gadget 5. The fifth gadget is the simulate run gadget. The states in this gadgets are essentially
the set Q of states of the automaton A; and all the states are player-2 states. The transitions
and edge weights are as follows: (i) for every (q, σ, q′) ∈ ∆ we have a transition (q, σ, q′, pop(σ)),
with weight wA(q, σ, q′) + 1 (1 plus the weight in A); and (ii) in addition there exists a transition
(q, $, q, pop($)) with weight +10 and a transition (q,⊥, q$, skip) to the initial state for empty stack
with weight 0.

Correctness of reduction. We will now prove the correctness of the reduction by showing that
there is a winning strategy (also a finite-memory winning strategy) in the WPG G for mean-payoff
objectives with strict inequality iff there is a finite word ρ ∈ Σ∗ such that LA(ρ) ≥ 1. Let π be a play
on the above WPG G. The i-th iteration of the play are the rounds between the i-th visit and the
(i + 1)-th visit to the initial state.

Lemma 7 If there is a word ρ ∈ Σ∗ such that LA(ρ) ≥ 1, then there exists a finite-memory strategy
τ∗
1 for player 1 to ensure that for all plays π consistent with τ∗

1 we have LimSupAvg(π) > 0 and
LimInfAvg(π) > 0.

Proof. The finite-memory strategy τ∗
1 for player 1 is to play in every iteration $n+1 in q$ followed by

rev(ρ) in qΣ , where n = |ρ| is the length of the word ρ. In every iteration, the sum of the weights is
at least 1 as LA(ρ) ≥ 1, and the length of play in every iteration is at most 4 · n. It follows that for
all plays π consistent with τ∗

1 we have both LimSupAvg(π) > 0 and LimInfAvg(π) > 0. ⊓⊔

Lemma 8 If for all words ρ ∈ Σ∗ we have LA(ρ) ≤ 0, then there exists a counter strategy τ∗
2 for

player 2 to ensure that for all strategies τ1 of player 1, for the play given τ∗
2 and τ1: for all iterations

i, for every round between i-th iteration and (i + 1)-th iteration, the sum of the weights from the
beginning of the iteration to the current round of the iteration is at most 0.



Proof. The counter strategy τ∗
2 is as follows: consider an iteration i, and let the strategy of player 1

in this iteration produce the sequence $nρ, for ρ ∈ Σ∗. Note that if the state qch is never reached,
then all the weights are negative (in q$ and qΣ all weights are negative). The strategy τ∗

2 is described
considering the following two cases.

1. If n ≤ |ρ|, then the strategy τ∗
2 chooses the state q<$ at the state qch (since there are not enough $

in the stack). For any round of the play till state qch is reached, the sum of the weights is negative.
Once q<$ is reached, for any round the payoff is at most −10 · n − |ρ| + 11 · n = −|ρ| + n ≤ 0, as
n ≤ |ρ|.

2. Otherwise, we have n > |ρ| and LA(rev(ρ)) ≤ 0. There exists a run r on rev(ρ) such that for every
prefix β of rev(ρ) the sum of the weights is at most 2 · |β| ≤ 2 · |ρ| < 2 ·n (since the absolute value
of the weights of A are bounded by 1) and in the end of the run sum of the weights is at most
0. The counter strategy τ∗

2 follows the run r. Hence the sum of the weights for any prefix β is at
most −10 · n + 2 · |β| ≤ −10 · n + 2 · n < 0, until the letter $ is the top symbol of the stack. Once
$ is the top symbol, the sum of the weights is at most −10 · n, since the sum of the weights of
the run is at most 0. Since with each pop of $ the weight is 10, and there are n pops, it follows
that in every round of iteration the sum of the weights is at most 0. Finally, once the iteration is
completed the sum of the weights is also at most 0.

The desired result follows. ⊓⊔

Lemma 9 Given WFA A and the WPG G constructed by the reduction the following the assertions
hold:

1. If there is a word ρ ∈ Σ∗ such that LA(ρ) ≥ 1, then there is a finite-memory winning strategy τ∗
1

for player 1 for the objectives LimSupAvg(π) > 0 and LimInfAvg(π) > 0.
2. If for all words ρ ∈ Σ∗ we have LA(ρ) ≤ 0, then there is no winning strategy for player 1 for the

objectives LimSupAvg(π) > 0 and LimInfAvg(π) > 0.
3. There exists a winning strategy (resp. a finite-memory winning strategy) for player 1 for the

objectives LimSupAvg(π) > 0 and LimInfAvg(π) > 0 iff there is a word ρ ∈ Σ∗ such that LA(ρ) ≥ 1.

Proof. Note that the third item is a consequence of the first two items. The first item follows from
Lemma 7. We now use Lemma 8 to prove the second item. Given the condition of the second item,
let us consider the strategy τ∗

2 for player 2 as described in Lemma 8. Let π be a play consistent with
τ∗
2 . We consider two cases to complete the proof.

– If π does not have infinite number of iterations, then from some point on only states q$ or qΣ are
visited, and they both have only negative weights. Hence all the weights occur in π from some
point on are non-positive and hence LimInfAvg(π) ≤ LimSupAvg(π) ≤ 0.

– Otherwise, π has infinite number of iterations. Given τ∗
2 it follows from Lemma 8 that for all

iterations, in every round of an iteration, the sum of the weights from the beginning of the
iteration to the current round is non-positive. Hence LimInfAvg(π) ≤ LimSupAvg(π) ≤ 0.

The desired result follows. ⊓⊔

Undecidability for related decision problems. It follows from Lemma 9 that the existence of
winning strategies (resp. finite-memory winning strategies) for mean-payoff objectives with strict in-
equality is undecidable for WPGs. For general strategies the result also follows for non-strict inequality
by duality. We now show the undecidability for finite-memory strategy for the non-strict inequality
as well as undecidability for stack boundedness. This is done by showing a reduction from the non-
universality problem for WFA with threshold ν = 0. The reduction is identical to the original reduction
presented in this section. If there exists a word ρ ∈ Σ∗ such that LA(ρ) ≥ 0, then playing $|ρ|+1rev(ρ)
in every iteration is a finite-memory winning strategy for player-1 (also for the stack boundedness
condition). Otherwise, for every ρ ∈ Σ∗ we have LA(ρ) ≤ −1. In this case, against every player-1
finite-memory strategy, with memory size M , player-2 has a strategy that ensures that the mean-
payoff is at most − 1

2M
. Similarly, against every player-1 strategy that ensures stack height at most

M , player-2 has a strategy that ensures that the mean-payoff at most − 1
2M

.

Theorem 6 Given a WPG G, the following questions are undecidable: (1) Whether there ex-
ists a winning strategy (resp. finite-memory winning strategy) to ensure Φ ⊲⊳ 0, where Φ ∈
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Fig. 4. Example WPG G.

{LimSupAvg, LimInfAvg} and ⊲⊳∈ {≥, >}; and (2) whether there exists a winning strategy (resp.
finite-memory winning strategy) to ensure Φ ⊲⊳ 0 along with stack boundedness, where Φ ∈
{LimSupAvg, LimInfAvg} and ⊲⊳∈ {≥, >}.

Distinguishing facts. We now show some interesting facts about WPGs with mean-payoff objectives
that distinguish from finite game graphs with mean-payoff objectives.

1. Fact 1. It follows from the proof of Theorem 2 (the example of ultimately periodic words are
not sufficient to witness values) that in general, positional (or memoryless) strategies are not
sufficient, and infinite-memory strategies are required in general (in contrast, in finite game graphs,
memoryless winning strategies are guaranteed to exist).

2. Fact 2. The objectives LimSupAvg and LimInfAvg do not coincide in general for WPGs. We show
this in Example 1.

3. Fact 3. We also note that pushdown mean-payoff games are very different as compared to parity
games. For finite-state games both parity and mean-payoff conditions have the same complexity
(both lie in NP ∩ coNP and also in UP ∩ coUP [24]), whereas for pushdown games the mean-
payoff problem is undecidable, whereas the parity problem is EXPTIME-complete [33]. Moreover,
for countably infinite games with finitely many priorities, for parity objectives memoryless winning
strategies exist [31], whereas as we show (Fact 1) for mean-payoff pushdown games infinite-memory
strategies are required.

Example 1 We show that there exists a WPG such that player-1 can ensure that LimInfAvg(π) ≥ 2
and player-2 can ensure that LimInfAvg(π) ≤ −2. The WPG is described as follows: Let Q1 = {q1

I , q
2
I}

and Q2 = {q1
II , q

2
II}, and let E, the set of transitions, be as follows

– (q1
I ,⊥, q1

I , push(γ)) with weight −2;

– (q1
I , γ, q1

I , push(γ)) with weight −2;

– (q1
I , γ, q2

I , skip) with weight 0;

– (q2
I , γ, q2

I , pop) with weight +4;

– (q2
I ,⊥, q1

II , skip) with weight 0;

– (q1
II ,⊥, q1

II , push(γ)) with weight +2;

– (q1
II , γ, q1

II , push(γ)) with weight +2;

– (q1
II , γ, q2

II , skip) with weight 0;

– (q2
II , γ, q2

II , pop) with weight −4;

– (q2
II ,⊥, q1

I , skip) with weight 0.

The WPG is shown in Figure 4. It is straight forward to verify that player-1 can ensure
LimSupAvg(π) ≥ 2, and player-2 can assure LimInfAvg(π) ≤ −2. ⊓⊔



4 Recursive Games and Modular Strategies

In this section we will consider modular strategies in pushdown games, and modular strategies are
more intuitive in the equivalent model of recursive game graphs. We first present the definition of
recursive game graphs from [5].

Weighted recursive game graphs (WRGs). A recursive game graph A consists of a tuple
〈A1, . . . , An〉 of game modules, where each game module Ai = (Ni, Bi, V

1
i , V 2

i ,Eni,Ex i, δi) consists of
the following components:

– A finite nonempty set of nodes Ni.
– A nonempty set of entry nodes En i ⊆ Ni and a nonempty set of exit nodes Ex i ⊆ Ni.
– A set of boxes Bi.
– Two disjoint sets V 1

i and V 2
i that partition the set of nodes and boxes into two sets, i.e., V 1

i ∪V 2
i =

Ni ∪Bi and V 1
i ∩V 2

i = ∅. The set V 1
i (resp. V 2

i ) denotes the places where it is the turn of player 1
(resp. player 2) to play (i.e., choose transitions).

– A labeling Yi : Bi → {1, . . . , n} that assigns to every box an index of the game modules A1 . . . An.
– Let Callsi = {(b, e) | b ∈ Bi, e ∈ Enj , j = Yi(b)} denote the set of calls of module Ai and

let Retnsi = {(b, x) | b ∈ Bi, x ∈ Ex j , j = Yi(b)} denote the set of returns in Ai. Then, δi ⊆
(Ni ∪ Retnsi) × (Ni ∪ Callsi) is the transition relation for module Ai.

A weighted recursive game graph (for short WRG) is a recursive game graph, equipped with a weight
function w on the transitions. We also refer the readers to [5] for detailed description and illustration
with figures of recursive game graphs. WLOG we shall assume that the boxes and nodes of all modules
are disjoint. Let B =

⋃

i Bi denote the set of all boxes, N =
⋃

i Ni denote the set of all nodes,
En =

⋃

i En i denote the set of all entry nodes, Ex =
⋃

i Ex i denote the set of all exit nodes, V 1 =
⋃

i V 1
i

(resp. V 2 =
⋃

i V 2
i ) denote the set of all places under player 1’s control (resp. player 2’s control), and

V = V 1 ∪V 2 denote the set of all vertices. We will also consider the special case of one-player WRGs,
where either V 2 is empty (player-1 WRGs) or V 1 is empty (player-2 WRGs).

Configurations, paths and local history. A configuration c consists of a sequence (b1, . . . , br, u),
where b1, . . . , br ∈ B and u ∈ N . Intuitively, b1, . . . , br denote the current stack (of modules), and n
is the current node. A sequence of configurations is valid if it does not violate the transition relation.
The configuration stack height of c is r. Let us denote by C the set of all configurations, and let C1

(resp. C2) denote the set of all configurations under player 1’s control (resp. player 2’s control). A
path π = 〈c1, c2, c3, . . .〉 is a valid sequence of configurations. Let ρ = 〈c1, c2, . . . , ck〉 be a valid finite
sequence of configurations, such that ci = (bi

1, . . . , b
i
di

, ui), and the stack height of ci is di. Let ci

be the first configuration with stack height di = dk, such that for every i ≤ j ≤ k, if cj has stack
height di, then uj /∈ Ex (uj is not an exit node). The local history of ρ, denoted by LocalHistory(ρ),
is the sequence (uj1 , . . . , ujm

) such that cj1 = ci, cjm
= ck, j1 < j2 < · · · < jm, and the stack height

of cj1 , . . . , cjm
is exactly di. Intuitively, the local history is the sequence of nodes in a module. Note

that by definition, for every ρ ∈ C∗, there exists i ∈ {1, . . . , n} such that all the nodes that occur
in LocalHistory(ρ) belongs to Vi. We say that LocalHistory(ρ) ∈ Ai if all the nodes in LocalHistory(ρ)
belongs to Vi.

Global game graph and isomorphism to pushdown game graphs. The global game graph
corresponding to a WRG A = 〈A1, . . . , An〉 is the graph of all valid configurations, with an edge
(c1, c2) between configurations c1 and c2 if there exists a transition from c1 to c2. It follows from
the results of [5] that every recursive game graph has an isomorphic pushdown game graph that is
computable in polynomial time.

Plays, strategies and modular strategies. A play is played in the usual sense over the global game
graph (which is possibly an infinite graph). A (finite) play is a (finite) valid sequence of configurations
〈c1, c2, c3, . . .〉 (i.e., a path in the global game graph). A strategy for player 1 is a function τ : C∗×C1 →
C respecting the edge relationship of the global game graph, i.e., for all w ∈ C∗ and c1 ∈ C1 we have
that (c1, τ(w · c1)) is an edge in the global game graph. A modular strategy τ for player 1 is a set
of functions {τi}n

i=1, one for each module, where for every i, we have τi : (Ni ∪ Retnsi)
∗ → δi.

The function τ is defined as follows: For every play prefix ρ we have τ(ρ) = τi(LocalHistory(ρ)), where
LocalHistory(ρ) ∈ Ai. The function τi is the local strategy of module Ai. Intuitively, a modular strategy
only depends on the local history, and not on the context of invocation of the module. A modular
strategy τ = {τi}n

i=1 is a finite-memory modular strategy if τi is a finite-memory strategy for every



i ∈ {1, . . . , n}. A memoryless modular strategy is defined in similar way, where every component local
strategy is memoryless.

Mean-payoff objectives and winning modular strategies. The weight of a finite path π, denoted
by w(π) is the sum of all weights along the path. For an infinite path π (as in the previous sections)

we denote LimInfAvg(π) = lim infn→∞
w(π[1,n])

n
(resp. LimSupAvg(π) = lim supn→∞

w(π[1,n])
n

), where
π[1, n] is the initial prefix of length n. The modular winning strategy problem asks if player 1 has a
modular strategy τ such that for every play ρ consistent with τ we have LimInfAvg(ρ) ≥ 0 (note that
the counter strategy of player 2 is a general strategy), and similarly for other mean-payoff objectives.

Basic properties. We now present some basic properties of recursive game graphs.

Non-decreasing cycles and proper cycles. A non-decreasing cycle in a recursive game graph A =
〈A1, . . . , An〉 is a path segment from a module Ai and vertex vi ∈ Ai to the same module and the
same vertex (possibly at different stack level), such that the first occurrence of module Ai in the path
segment does not return (i.e., does not reach an exit node) during the path segment. A non-decreasing
cycle C is a proper cycle if the stack heights at the beginning and the end of the path segment are
the same.

Proposition 11 Consider a one-player WRG A = 〈A1, . . . , An〉 (i.e., consists of only one-player).
The following assertions hold:

– The WRG A has a path π with LimInfAvg(π) > 0 (resp. LimSupAvg(π) > 0) iff there exists a
non-decreasing cycle with positive weight.

– The WRG A has a path π with LimInfAvg(π) < 0 (resp. LimSupAvg(π) < 0) iff there exists a
non-decreasing cycle with negative weight.

Proof. The first item follows from (i) the isomorphism of one-player WRGs and weighted push-
down systems (WPSs), (ii) the correspondence positive non-decreasing cycles and good cycles for
WPSs, and (iii) the results established in Section 2 showing equivalence of existence of a path π with
LimInfAvg(π) > 0 (resp. LimSupAvg(π) > 0) and existence of good cycles in a WPS. The second item
follows from the duality of LimInfAvg(π) > 0 and LimSupAvg(π) < 0. ⊓⊔

WRG given finite-memory strategies. Given a WRG A, let τ = {τi}n
i=1 be a finite-memory modular

strategy. Let Mi be the set of memory states of strategy τi, i.e., τi is described as a deterministic
transducer with state space Mi. The one-player WRG (player-2 WRG) given τ is the tuple Aτ =
〈Aτ1

1 = A1 × M1, . . . , A
τn
n = An × Mn〉, where each Aτi

i = Ai × Mi is obtained as the synchronous
product of Ai and the deterministic transducer describing the local strategy τi. The weights of the
transitions are specified according to the weight function of A. Note that if τ is a memoryless modular
strategy, then Aτ is obtained as a sub-gamegraph of A.

Proposition 12 Given a WRG A and a modular strategy τ , every (finite or infinite) path in the
one-player WRG Aτ is a (finite or infinite) play in A consistent with τ , and vice versa.

4.1 Decidability of the modular winning strategy problem

In this section we will establish the decidability of the existence of modular winning strategy problem.
In the following section we will establish the NP upper bound, and finally show NP-hardness. We
start with objective LimInfAvg ≥ 0, and then show the result for objective LimSupAvg ≥ 0. The result
for mean-payoff objectives with strict inequality will also easily follow from our results.

Objective LimInfAvg ≥ 0. For the decidability result, we will show the existence of cycle independent
modular winning strategies, and the result will also be useful to establish the complexity results. We
start with the notion of a cycle free path in a graph.

Cycle free path. Let G = (V, E) be a simple (no parallel edges) directed graph. We define the
operator CycleFree : V ∗ → V ∗ in the following way: let π = 〈v1, v2, . . . , vn〉 be a finite path in G.

– CycleFree(π) = π if π is a simple path (i.e., with no cycles).
– Otherwise we define CycleFree inductively as follows. Let CycleFree(v1 . . . vn−1) = u1u2 . . . um.

Let i be the first index such that vn = ui. If such an index does not exist, then CycleFree(π) =
u1u2 . . . umvn. Otherwise CycleFree(π) = u1u2 . . . ui. Intuitively, the CycleFree operator takes a
finite path and returns a simple path by removing simple cycles according to order of appearance.



Cycle independent modular strategy. Given a recursive game graph, a local strategy τi for module
Ai is a cycle independent local strategy, if for every ρ ∈ V ∗

i we have τi(ρ) = τi(CycleFree(ρ)). A modular
strategy τ = {τi}n

i=1 is a cycle independent modular strategy if τi is a cycle independent local strategy
for every i ∈ {1, . . . , n}.

Observation 1 For a recursive game graph A = 〈A1, . . . , An〉, there exists at most |V ||V |2 different
cycle independent modular strategies, where |V | is the number of vertices in A.

The main result of this section is that if there is a modular winning strategy, then there is a cycle
independent modular winning strategy. To establish the result we introduce the notion of manipulated
paths, using rewind, fast forward and simulation operations.

Manipualted paths, rewind, fast forward and simulation operations. Let τ = {τi}n
i=1 be a

modular winning strategy for the objective LimInfAvg ≥ 0, and let ǫ > 0 be an arbitrary constant. Let
πm = πm−1 · ni be a play prefix at round m, that ends at node ni ∈ Ai . The manipulated play prefix
of πm according to τ and ǫ, denoted by Manτ

ǫ (πm), is defined inductively as follows: Let Manτ
ǫ (πm−1)

be the manipulated play prefix at round m − 1. Then Manτ
ǫ (πm) is obtained from Manτ

ǫ (πm−1) and
ni by one of the following operations.

1. Rewind operation: The condition for the rewind operation is CycleFree(Manτ
ǫ (πm−1)) · ni closes a

proper cycle in the top module Ai. If the rewind condition holds, then Manτ
ǫ (πm) is formed from

Manτ
ǫ (πm−1) ·ni by removing the proper cycle suffix from Manτ

ǫ (πm−1) ·ni. Intuitively the rewind
operation rewinds the path by chopping off the cycle in the end.

2. Fast forward operation: Let h0 = Manτ
ǫ (πm−1) · ni. The fast forward condition for history h that

ends at node ni is as follows: there exists a play prefix h ·π′(h) consistent with τ such that ni ·π′(h)
is a proper cycle with average payoff less than −ǫ. In order to be precise, we define π′(h) as the
first such prefix according to lexicographic ordering of the prefixes. If the rewind condition does
not hold, and the fast forward condition holds for h0, then construct h1 = h0 · π′(h0). Continue
the process and build hi = hi−1 · π′(hi−1), as long as hi−1 satisfies the fast forward condition. If
there exists a minimal index i ∈ N such that hi does not satisfy the fast forward condition, then
we define Manτ

ǫ (πm) = hi. Otherwise, Manτ
ǫ (πm) is undefined (not well defined), and we say that

the process is stuck in the fast forward operation.
3. Simulation operation: Else, if the rewind and fast forward conditions do not hold, then we have

Manτ
ǫ (πm) = Manτ

ǫ (πm−1) · ni.

In the following proposition we establish consistency and well-definedness of the manipulated operation
for a winning strategy.

Proposition 13 Let τ be a winning strategy (a general winning strategy, not necessarily modular)
for the objective LimInfAvg ≥ 0. Let ǫ > 0 be an arbitrary constant. We define a strategy σ in the
following way: for a history π we have σ(π) = τ(Manτ

ǫ (π)). Let πm be a play prefix of length m that
is consistent with σ. Then the following assertions hold:

– Manτ
ǫ (πm) is well defined, i.e., the process does not get stuck in the fast forward operation.

– Manτ
ǫ (πm) is consistent with τ .

Proof. We shall prove both the items by induction on m. In the base case when m = 0 (i.e., empty
play prefix), all the claims are trivially satisfied. We now consider the inductive case with m > 0. Let
πm = πm−1 · ni, for some ni ∈ Ai, be a play prefix consistent with σ. By the inductive hypothesis
Manτ

ǫ (πm−1) is well defined and consistent with τ . Then Manτ
ǫ (πm) is computed by performing one of

the following operations

– Rewind operation: In this case clearly Manτ
ǫ (πm) is well defined. In addition Manτ

ǫ (πm) is a prefix
of Manτ

ǫ (πm−1), which is by the inductive hypothesis consistent with τ , hence also Manτ
ǫ (πm) is

consistent with τ .
– Fast forward operation: Towards contradiction, let us assume that the fast forward process enters

infinite loop. We consider the prefix h0 = h0 · ni, where h0 = Manτ
ǫ (πm−1), and let v0 be the last

vertex in h0. The prefix h0 is consistent with τ for the following reason: Manτ
ǫ (πm−1) is consistent

with τ by the inductive hypothesis, and if v0 is under player 1’s control, then τ(Manτ
ǫ (πm−1)) = ni

(as πm consistent with σ), and otherwise v0 is under player 2’s control, and since there is a



transition from v0 to ni (as πm is a play prefix) the consistency of h0 follows. The prefix h0 has
an infinite sequence of extensions π1, π2, . . . such that the infinite play h = h0π

1π2 . . . πjπj+1 . . .
is consistent with τ and Avg(πj) < −ǫ for every j ∈ N (by the infinite loop of the fast forward
operation). Hence, by definition, LimInfAvg(h) ≤ −ǫ < 0.4 Thus we get that there exists a play
consistent with τ that is not winning for the objective LimInfAvg ≥ 0, which contradicts the
assumption that τ is a winning strategy. Hence, the fast forward process always terminates. It
follows that Manτ

ǫ (πm) is well defined and also by definition of the fast forward operation it is
consistent with τ .

– Simulation operation: By definition, Manτ
ǫ (πm) = Manτ

ǫ (πm−1) · ni. Let h0 = Manτ
ǫ (πm−1), and

let v0 be the last vertex in h0. The prefix Manτ
ǫ (πm) is consistent with τ for the following reason:

Manτ
ǫ (πm−1) is consistent with τ by the inductive hypothesis, and if v0 is under player 1’s control,

then τ(Manτ
ǫ (πm−1)) = ni, and otherwise v0 is under player 2’s control, and there is a transition

from v0 to ni. Thus we have the consistency of Manτ
ǫ (πm), and the well-definedness is trivial.

Hence we have that Manτ
ǫ (πm) is both consistent with τ and well defined. ⊓⊔

In the following lemma we obtain a bound of the average of the play prefixes obtained from the
manipulated operation of a winning strategy.

Lemma 10 Let τ be a winning strategy (a general winning strategy, not necessarily modular) for the
objective LimInfAvg ≥ 0. Let ǫ > 0 be an arbitrary constant. We define a strategy σ in the following
way: for a history π we have σ(π) = τ(Manτ

ǫ (π)). Let πm be a play prefix of length m that is consistent
with σ. Then we have w(πm) ≥ w(Manτ

ǫ (πm)) − ǫ · |πm|.

Proof. The following claim is the key for the proof.

Claim. Every time a rewind operation is done, the cycle C, for which Manτ
ǫ (πm) ·C = Manτ

ǫ (πm−1) ·ni,
satisfies that Avg(C) ≥ −ǫ.

We first prove the claim. Towards contradiction, assume that Avg(C) < −ǫ. Let j < m be the
first index for which Manτ

ǫ (πj) = Manτ
ǫ (πm). Note that such index must exist. We first argue that

Manτ
ǫ (πm) · C = Manτ

ǫ (πm−1) · ni is consistent with τ : (i) Manτ
ǫ (πm−1) is consistent with τ (by

Proposition 13) and (ii) let h0 = Manτ
ǫ (πm−1), and let v0 be the last vertex in h0; if v0 is under

player 1’s control, then τ(Manτ
ǫ (πm−1)) = ni, and otherwise v0 is under player 2’s control, and there

is a transition from v0 to ni. Thus we have the consistency of Manτ
ǫ (πm) · C = Manτ

ǫ (πm−1) · ni,
and it follows that Manτ

ǫ (πj) · C is also consistent with τ . Hence, since Avg(C) < −ǫ, a fast forward
operation had occurred in round j (note that it is not possible that Manτ

ǫ (πj) was obtained after a
rewind operation, since j is the first index for which Manτ

ǫ (πj) = Manτ
ǫ (πm)). Hence it is not possible

that Manτ
ǫ (πj) = Manτ

ǫ (πm), since at the very least, Manτ
ǫ (πm) · C is a prefix of Manτ

ǫ (πj). Thus, for
every j < m we have Manτ

ǫ (πj) 6= Manτ
ǫ (πm), and the contradiction is obtained.

We now complete the proof of the lemma using the claim. We note that difference between πm

and Manτ
ǫ (πm) contains only (i) cycles with negative weight that were added to Manτ

ǫ (πm) (by fast
forward operation) or (ii) cycles with average weight at most −ǫ and length at most |πm| that were
chopped from Manτ

ǫ (πm) (by rewind operation). The desired result follows. ⊓⊔

We now show that from a winning strategy for the objective LimInfAvg ≥ 0, the strategy obtained
using manipulated operation is winning for the objective LimSupAvg ≥ −2 · ǫ.

Lemma 11 Let τ be a winning strategy (a general winning strategy, not necessarily modular) for the
objective LimInfAvg ≥ 0. Let ǫ > 0 be an arbitrary constant. We define a strategy σ in the following
way: for a history π we have σ(π) = τ(Manτ

ǫ (π)). Then σ is a winning strategy for the objective
LimSupAvg ≥ −2 · ǫ.

Proof. Let π be a play consistent with σ, and let πm be the play prefix until round m. We consider
two cases to complete the proof.

1. In the first case, there exists a constant n0 ∈ N such that for infinitely many indices m1, m2, . . . ,
we have |Manτ

ǫ (πmi
)| ≤ n0. In this case, due to Lemma 10, in rounds m1, m2, . . . we get that

w(πmi
) ≥ −n0 · W − ǫ · |πmi

|. Hence, by definition, LimSupAvg(π) ≥ −ǫ > −2 · ǫ.

4 only this inequality need not hold for LimSupAvg(h)



2. In the second case, for every i > 0 there exists ℓi ∈ N, such that for every m > ℓi we have
|Manτ

ǫ (πm)| ≥ i. By the definition of the manipulation operations, we get that Manτ
ǫ (πℓi

)[0, i] =
Manτ

ǫ (πℓi+1)[0, i], i.e., the prefix upto length i coincides. Denote ρi = Manτ
ǫ (πℓi

)[i] the i-th po-
sition of Manτ

ǫ (πℓi
). Due to Proposition 13 the infinite play ρ = ρ1ρ2 . . . is consistent with τ .

Since τ is a winning strategy we get that LimInfAvg(ρ) ≥ 0. Hence there exists infinitely many
indices m1, m2, . . . for which Avg(Manτ

ǫ (πmi
)) ≥ −ǫ, and therefore, due to Lemma 10, we get that

Avg(πmi
) ≥ −2 · ǫ. Hence by definition of LimSupAvg, we obtain LimSupAvg(π) ≥ −2 · ǫ.

This concludes the proof of the lemma. ⊓⊔

Proposition 14 Given a WRG A, let τ be a modular winning strategy for the objective LimInfAvg ≥ 0.
Let ǫ > 0 be an arbitrary constant. We define a strategy σ in the following way: for a history π we
have σ(π) = τ(Manτ

ǫ (π)). Then σ is a cycle independent modular strategy.

Proof. In order to verify that σ is a modular strategy, we observe that LocalHistory(Manτ
ǫ (π)) is

computable (maybe not effectively) from LocalHistory(π) and that τ is a modular strategy.
To verify that σ is a cycle independent strategy, we observe that if π and π ·πc are consistent with

σ and πc is a cycle in CycleFree(π) · πc, then Manτ
ǫ (π · πc) = Manτ

ǫ (π) as πc will be chopped by the
rewind operation. ⊓⊔

Lemma 12 Given a WRG A, if there exists a modular winning strategy for the objective LimInfAvg ≥
0 for player 1, then there exists a cycle independent modular winning strategy for the objective for
player 1.

Proof. Let τ be a modular winning strategy for the objective LimInfAvg ≥ 0. For every ǫ > 0, define
the strategy σǫ in the following way: for a history π we have σǫ(π) = τ(Manτ

ǫ (π)). By Lemma 11
and Proposition 14, for every ǫ > 0 we have σǫ is a cycle independent modular winning strategy
for the objective LimSupAvg > −2 · ǫ. Since there are only a bounded number of cycle independent
modular strategies (by Observation 1), it must be the case that one of the modular strategies is a
winning strategy for the LimSupAvg ≥ 0 objective. Let σ be that strategy. Let Aσ be the player-2
WRG obtained given the strategy σ. As σ is a winning strategy for the objective LimSupAvg ≥ 0,
then due to Proposition 12 and Proposition 11, the graph Aσ does not have a negative non-decreasing
cycle. Hence due to Proposition 12 and Proposition 11, the strategy σ is winning also for the objective
LimInfAvg ≥ 0. This completes the proof of the result. ⊓⊔

The next theorem is an immediate consequence of Lemma 12.

Theorem 7 Given a WRG A, the problem of deciding if player 1 has a modular winning strategy for
the objective LimInfAvg ≥ 0 is decidable.

Proof. By Lemma 12 it is enough to check if player 1 has a cycle independent modular strategy. As
the number of such strategies is bounded (by Observation 1), it is enough to construct the graph
Aτ for every cycle independent modular strategy τ and check if in Aτ there exists a path π with
LimInfAvg(π) < 0 (this check is achieved using the algorithms of Section 2). ⊓⊔

Objective LimSupAvg ≥ 0. The proof for the objective LimSupAvg ≥ 0 will reuse many parts of
the proof for the objective LimInfAvg ≥ 0, however, some parts of the proof are different and we
present them below. In fact we will show for modular winning strategies the objective LimSupAvg ≥ 0
coincides with the objective LimInfAvg ≥ 0. For the proof we need the notion of non-negative cycle
free local history, which we define below.

Non-negative cycle free local history operator. Consider a WRG A and let τ be a modular
strategy, and π be a path in A, consistent with τ , that begins at the entry of module Ai and ends at
module Ai (in the same stack height). The non-negative cycle free local history operator is defined as
follows:

1. For |LocalHistory(π)| = 1 we have NonNegCFLocalHistoryτ (π) = LocalHistory(π).
2. For |LocalHistory(π)| > 1, let π = π0vi such that NonNegCFLocalHistoryτ (π0) = u0u1 . . . um. Let

j ∈ {0, . . . , m} be the first index such that uj = vi, and every sub-play π∗ consistent with τ with
local history ujuj+1 . . . umvi is a cycle with non-negative total weight. If such index j exists, then
NonNegCFLocalHistoryτ (π) = u0 . . . uj, otherwise NonNegCFLocalHistoryτ (π) = u0u1 . . . umvi.



Informally, the NonNegCFLocalHistoryτ operator removes cycles that are assured to have non-negative
weight from the local history.

Non-negative cycle independent modular strategy. Given a modular strategy τ , the non-
negative cycle independent modular strategy σ of τ , is defined as follows: For a local history ρ we
have σ(ρ) = τ(NonNegCFLocalHistoryτ (ρ)). We now present some notations required for the proofs.

Sure non-negative cycle and proper simple cycle. Given a modular strategy τ , a path π = v0v1 . . . vm

is a sure non-negative cycle if π is a proper cycle consistent with τ , and every path π′ consistent with
τ such that LocalHistory(π) = LocalHistory(π′) is a proper cycle with non-negative weight. A path π
is a proper simple cycle if π is a proper cycle, and LocalHistory(π) is a simple cycle.

Lemma 13 If τ is a modular winning strategy for the objective LimSupAvg ≥ 0, then the non-negative
cycle independent modular strategy σ of τ is also a winning strategy for the objective LimSupAvg ≥ 0.

Proof. The proof is essentially similar to the proof of the result for the objective LimInfAvg ≥ 0,
and we present a succinct argument (as it is very similar to the previous proofs for LimInfAvg ≥ 0).
As previously, we define manipulated operations on history such that every sure non-negative cycle is
chopped (by the rewind operation) from the history. By definition, the non-negative cycle independent
strategy σ of τ makes choices according to the choices of τ on the manipulated history. The weight of
the manipulated history, in every round, is at most the weight of the original history, since only non-
negative cycles are chopped. By similar arguments to those presented in Lemma 11, we get that the
LimSupAvg of the original history is at most 0, and thus the non-negative cycle independent strategy
σ of τ is a winning strategy. ⊓⊔

In the following lemmas we establish that for modular strategies the objectives LimSupAvg ≥ 0
and LimInfAvg ≥ 0 coincide.

Lemma 14 Given a WRG A, let σ be a non-negative cycle independent modular strategy. Let Ai be
a module in A. Then there exists nσ ∈ N and δσ > 0, such that for every possible non-negative cycle
free local histories h0 and h1 of the module Ai, and for every sub-play ρ, consistent with σ such that

– ρ is a proper cycle with negative weight; and
– the non-negative cycle free local history of Ai before (resp. after) ρ was played is h0 (resp. h1);

there exists a sub-play ρh0,h1 , consistent with σ and satisfies the items above, such that every play-prefix
of ρh0,h1 with length at least nσ has an average weight of at most −δσ.

Proof. Let (b1, n1), . . . , (bm, nm) be the pairs of all boxes and their return nodes that appear in module
Ai. For every pair (bj, nj), let πbj ,nj

be the shortest play, consistent with σ, with minimal weight from
bj to nj . If such path exists we denote w(bj ,nj) = w(πbj ,nj

). Let X be the maximal such weight. W.l.o.g
all the weights of the edges occur in Ai are at most X , and X ≥ 0.

For every bj , nj such that there exists a play from bj to nj consistent with σ, but shortest minimal
play does not exist, we denote by πbj ,nj

the shortest play consistent with σ that leads from bj to nj

with weight at most −20 · |Vi| ·X , (where |Vi| is the size of the vertex set in Ai). Let Π be the longest
path among all πbj ,nj

. Let ρ be a sub-play consistent with σ such that ρ is a proper cycle in module
Ai with negative weight. Let h0 (resp. h1) be the non-negative cycle free history of Ai before (resp.
after) playing ρ.

First, we form ρ′ from ρ by removing all the sure non-negative cycles from ρ. Clearly, (i) ρ′ has
negative weight; and (ii) ρ′ is consistent with σ, because ρ is consistent with σ and σ is a non-negative
cycle independent strategy. Moreover, the non-negative cycle free local history after playing ρ′ is the
same as after playing ρ. Next we form ρ′′ from ρ′ by replacing every sub-play from bj to nj (such that
nj is the first time the sub-play enters Ai) in ρ′ with πbj ,nj

. Again, ρ′′ is consistent with σ, since σ is
a modular strategy. In addition, the local history of Ai was not changed at all.

We claim that ρ′′ does not contain simple proper non-negative cycles in module Ai. Indeed, towards
contradiction let v1v2 . . . vm be the local history of the first such cycle (note that m ≤ |Vi|). Note that
if the cycle contains a sub-play πbj ,nj

such that w(bj ,nj) = −20 · |Vi| · X , then the cycle cannot be
with non-negative weight. Hence it follows that this cycle is the cycle with minimal weight among all
simple cycles with local history v1v2 . . . vm. Hence this cycle is sure non-negative, which contradicts
the fact that v1v2 . . . vm is a local history of sub-play of ρ′′. Thus every simple proper cycle in ρ′′ has
a negative weight. Moreover, the length of every simple proper cycle in ρ′′ is at most |Vi| · |Π |. Hence
every sub-play of ρ′′ with length at least nσ = (|Vi| · |Π | · X)2 will have an average weight of at most
−δσ = − 1

|Vi|·|Π|·X . Note that nσ and δσ do not depend on ρ, hence the desired result follows. ⊓⊔



Lemma 15 Let σ be a non-negative cycle independent modular strategy. If there exists a play ρ
consistent with σ such that the suffix of ρ is an infinite sequence of proper cycles C1, C2, . . . with
negative weights, then σ is not a winning strategy for the objective LimSupAvg ≥ 0.

Proof. Let ρ = ρ0C1C2 . . . Ci . . . , and let Ai and ni be the module and the vertex, respectively, that all
the cycles begin and end in. Let nσ, δσ be the constants from Lemma 14. Let hi

0 be the non-negative
cycle free local history of Ai before cycle Ci is played, and hi

1 be the non-negative cycle free local
history of Ai after cycle Ci is played. By Lemma 14, for every cycle Ci there exists a cycle Chi

0,hi
1

consistent with σ, with negative weight, and the average weight of every sub-play of Chi
0,hi

1
longer

than nσ is at most −δσ. The play ρ′ = ρ0C1C2 . . . Ci−1Chi
0,hi

1
Ci+1 . . . is consistent with σ, since Chi

0,hi
1

is consistent with the initial non-negative cycle free local history hi
0, and the non-negative cycle free

local history after playing Chi
0,hi

1
is hi

1. Since σ is a non-negative cycle independent strategy, the play
ρ∗ = ρ0Ch0

0,h0
1
Ch1

0,h1
1
. . . Chi

0,hi
1
. . . is consistent with σ. On the other hand, it is straight forward to

verify that we have LimSupAvg(ρ∗) ≤ max{− 1
nσ

,−δσ} < 0. Hence σ is not a winning strategy for the
objective LimSupAvg ≥ 0, and the desired result follows. ⊓⊔

Lemma 16 If player 1 has a modular winning strategy for the objective LimSupAvg ≥ 0, then for every
ǫ > 0, player 1 has a cycle independent modular winning strategy σ for the objective LimSupAvg ≥ −ǫ.

Proof. Let τ∗ be a modular winning strategy for the objective LimSupAvg ≥ 0, and let τ be the non-
negative cycle independent strategy of τ∗. For ǫ > 0, consider the cycle independent modular strategy
σ such that for history π we have σ(π) = Manτ

ǫ (π). By Lemma 14 the strategy τ is also a winning
strategy. We note that all the arguments for the objective LimInfAvg ≥ 0 also hold for the objective
LimSupAvg ≥ 0, other than the inequality (mentioned as footnote) in Proposition 13. We replace the
inequality (mentioned as footnote) of Proposition 13 with Lemma 15, and repeat exactly the same
arguments for the objective LimInfAvg ≥ 0 (up to Lemma 12) to obtain the desired result. ⊓⊔

We obtain the following result as a corollary, and all the desired results follow for the objective
LimSupAvg ≥ 0.

Corollary 1 Given a WRG A, there exists a modular winning strategy for the objective LimSupAvg ≥
0 iff there exists a modular winning strategy for the objective LimInfAvg ≥ 0.

4.2 Modular winning strategy problem in NP

In this section we will show that the modular winning strategy problem is in NP. To show the result
we introduce the notion of a signature game.

The signature game. Let G = ((V, E), (V1, V2)) be a finite two-player game graph (on finite directed
graph (V, E)) with vertex set V , edge set E, and partition (V1, V2) of the vertex set into player-1
(resp. player-2) vertex set V1 (resp. V2). Let the game graph be equipped a weight function w : E →
Z ∪ {−ω}. Let the initial vertex be v0 ∈ V . Let ν = (ν1, . . . , ν|V |) be a threshold vector such that
all νi ∈ Z ∪ {+∞,−ω}. The weight of a finite path in G is the sum of the edge weights of the path,
according to the following convention: −ω + z = −ω, for any z ∈ Z∪{−ω}. A signature game consists
of a tuple (G, ν), where G is a two-player game graph, and ν is the threshold vector. For a play
ρ = ρ0ρ1ρ2 . . . ρjρj+1 . . . , player 1 is the winner if both the following two conditions hold:

– The play ρ does not contain a negative cycle, or a cycle that has an edge with weight −ω.
– For every j ∈ N, if ρj = vi (i.e., the j-index of the play is the i-th vertex), then w(ρ0ρ1ρ2 . . . ρj) ≥

νi, according to the convention (i) −ω < z for every z ∈ Z, and (ii) z,−ω < +∞ for every z ∈ Z.
In other words, the sum of the weights upto any index j (with i-th vertex in index j) must be at
least νi, and no −ω-edge must be visited unless νi = −ω.

We will consider signature games such that if νi ∈ Z, then νi ≥ −2 ·W · |V |, where W is the maximum
absolute values of the integer weights in graph G. If for a vertex v, the threshold value is +∞, then
to ensure winning player 1 must ensure that v is never visited. In other words, vertices with +∞
threshold must be avoided (it can be interpreted as a safety objective with +∞ vertices as non-safe
vertices to be avoided). Our first goal is to show that memoryless winning strategies exist in signature
games, and the result will be obtained by a reduction to finite-state mean-payoff games. Given a
signature game (G, ν) we define an auxiliary finite-state mean-payoff game as follows.



From signature game (G, ν) to auxiliary mean-payoff game Gν . Given a signature game
(G, ν) we construct a finite-state auxiliary mean-payoff game Gν = ((V , E), (V 1, V 2)), with an weight
function w as follows: let the signature game graph be G = ((V, E), (V1, V2)) and the weight function
in G be wG. Then we have the following components in the auxiliary game:

– (Vertex set and partition). V = V × {1, 2}; and V 1 = V1 × {1}.
– (Edges). E = {((u, 1), (v, 2)) | (u, v) ∈ E} ∪ {((v, 2), (v, 1)) | v ∈ V } ∪ {((vi, 2), (v0, 1)) | vi ∈

V, νi 6= −ω}.
– (Weight function). If wG(u, v) 6= −ω, then w((u, 1), (v, 2)) = wG(u, v); otherwise (we have

wG(u, v) = −ω) we set w((u, 1), (v, 2)) = −10 · W · |V |. Moreover, w((vi, 2), (v0, 1)) = −νi and all
the other edges are assigned with zero weight. Note that if νi = +∞, then w assigns weight −∞,
and to win player 1 must avoid such edges (can be interpreted as a safety condition).

Informally, the auxiliary mean-payoff game is constructed from the signature game by adding for every
vertex vi a fresh copy (vertex (vi, 2) and the original vertex is represented as (vi, 1)), and an option
for player 2 to return to the initial vertex (v0, 1) “paying” cost −νi (whenever νi 6= −ω). Thus, if at
any round, the play is on vertex (vi, 2), and the sum of the weights since the last visit to (v0, 1) is
less than νi, then player 2 can ensure that a negative cycle is completed. The mean-payoff objective
of player 1 is to ensure non-negative average payoff. Also note that player 1 must avoid the −∞ edge
weights, and equivalently it can be treated as a mean-payoff safety game. In the following proposition
we establish the relation of the signature game and the auxiliary game.

Proposition 15 Let (G, ν) be a signature game such that νi ≥ −2 ·W · |V | for every νi ∈ Z, and let
Gν be the corresponding auxiliary mean-payoff game. Then the following statements are equivalent:

1. Player 1 is the winner in the auxiliary mean-payoff game Gν (i.e., player 1 can ensure non-negative
mean-payoff).

2. Player 1 has a memoryless winning strategy in the signature game (G, ν).
3. Player 1 is the winner in the signature game (G, ν).

Proof. We first prove that item 1 implies item 2.

1. In order to prove that item 1 implies item 2, let us assume that player 1 is the winner in the
auxiliary mean-payoff game. Note that the auxiliary mean-payoff game is equivalently a mean-
payoff safety game, and therefore player 1 has a memoryless winning strategy τ in the auxiliary
mean-payoff game [16] (a mean-payoff safety game is easily transformed to a mean-payoff game
by making the non-safe vertices absorbing with negative weights). Hence the memoryless strategy
τ ensures that edges with weight −∞ are never visited. Towards contradiction, let us assume that
τ is not a winning strategy for the signature game (note that τ is also a well defined player 1
strategy in the signature game choosing edges in copy 1 according to τ). Therefore one of the
following two cases occur.

– Case 1: There exists a finite play prefix ρ that is consistent with τ , which starts from the initial
v0 to some vertex vi ∈ V with sum of weights less than νi. In this case, either ρ goes through
an −ω edge, or wG(ρ) < νi. If ρ goes through an −ω edge in G, then the weight of ρ in Gν is
at most −9 ·W · |V |, since w.l.o.g we can assume that ρ does not have positive cycles (as τ is
memoryless). As −9 · W · |V | < νi, it follows that the path (ρ · ((vi, 2), (v0, 1)))ω is consistent
with τ and has a negative mean-payoff in the auxiliary game. This contradicts the assumption
that τ is a winning strategy. If ρ does not go through an −ω edge, then wG(ρ) < νi and again
(ρ ·((vi, 2), (v0, 1)))ω is consistent with τ and has a negative mean-payoff in the auxiliary game.
This is again a contradiction that τ is a winning strategy, and concludes the proof of the first
case.

– Case 2: There exists a finite play prefix ρ = ρ1 · ρ2 that is consistent with τ , such that ρ2 is a
negative cycle (or a cycle with −ω edge) in the signature game graph. If ρ2 does not contain
an −ω edge e, then by definition, ρ2 is a negative cycle also in the auxiliary game. Otherwise,
ρ2 contains an −ω edge e, and then again ρ2 is a negative cycle in the auxiliary game, as
w.l.o.g we can assume that ρ2 does not contain positive cycles, and since w(e) ≤ −10 ·W · |V |.
Thus the play ρ1 · (ρ2)

ω is consistent with τ and has a negative mean-payoff in the auxiliary
game. This contradicts the assumption that τ is a winning strategy, and completes the proof.

2. Item 2 trivially implies item 3.



3. We now show that item 3 immediately implies item 1. It is straight forward to verify that if player 1
plays according to the signature game winning strategy in every round, then a negative cycle will
not be formed in the auxiliary game (as a negative cycle is not formed in the signature game, and
the threshold vector is always satisfied in the signature game) and a vertex with threshold +∞
will never be reached. Hence the mean-payoff of the play in the auxiliary mean-payoff game will
be non-negative and −∞ edges will never be visited. This shows that item 3 implies item 1.

This completes the proof. ⊓⊔

Lemma 17 Let (G, ν) be a signature game such that νi ≥ −2 · W · |V | for every νi ∈ Z. There is
a winning strategy for player 1 in the signature game (G, ν) iff player 1 has a memoryless winning
strategy.

Proof. Follows from Proposition 15. ⊓⊔

Signature games to memoryless modular strategies. We will now use the existence of cycle
independent modular winning strategies, and memoryless strategies in signature games to show exis-
tence of memoryless modular strategies. For simplicity we will consider recusrive game graphs where
every module has a single entry, and a simple polynomial reduction from multi-entry recursive game
graphs to single entry recursive game graphs is established in [5]. To prove the result of memoryless
modular strategies we define the signature games for modular strategies.

Signature games for modular strategies. Consider a WRG A = 〈A1, A2, . . . , An〉 and let τ =
{τi}n

i=1 be a modular strategy. Consider a module Ai in A. Let b ∈ Bi be a box in module Ai, which
invokes the module Aj , and let ni ∈ Ni be a node in module Ai that is connected to one exit of Aj ,
which is reachable according to the strategy τ . We denote by wτ

b,ni
the minimal weight of all plays

according to τ that begins at the call to box b and ends at ni (in the same stack height), and do not
visit any other vertices in Ai (in the same stack height). If such minimal weight does not exist, then
let wτ

b,ni
= −ω. For every module Ai, we form a finite two-player game graph GAi

, with a weight
function as follows: (i) in the module Ai we add an edge from every box b to every return node ni

with weight wτ
b,ni

, and add a self loop, with weight 0, to every exit node; and (ii) every box is now
interpreted as a player-2 vertex. Note that the local strategy τi is a well defined player-1 strategy in
the game graph GAi

. For a vertex vj ∈ Vi, (i) if vj is visited along a play consistent with τi, then let
ηj denote the maximal value such that in every round of a play according to τi on GAi

, that begins
in the entry node of Ai, and is currently at vertex vj ∈ Vi, the sum of weights from the beginning of
the play is at least ηj ; and (ii) otherwise, vj is never visited along all plays consistent with τi, then
ηj = +∞ (note that this is like a safety condition to ensure vj is not visited). The signature game for
τ on module Ai consists of the game graph GAi

and the threshold vector ν
i ∈ ({−ω, +∞} ∪ Z)|Vi|,

such that νi
j = ηj for all vertices vj ∈ Vi. We denote by (GAi

, νi, τ) the signature game obtained
given the modular strategy τ on module Ai. We first establish some basic properties in the following
proposition, and then in the following lemma we establish properties of the winning strategies in the
signature games from modular strategies.

Proposition 16 Let A be a WRG. If τ is a cycle independent modular winning strategy for the
objective LimInfAvg ≥ 0, then for every module Ai the following assertions hold:

– τi is a winning strategy for the signature game (GAi
, νi, τ); and

– the integer coefficients of ν
i are at least −2 · W · |Vi|.

Proof. The first fact of the proposition follows from the facts that every path according to τi has sum
of weights at least ν

i and does not contain negative cycles (by the definition of signature game given
τ as τ is a winning strategy), The second fact of the proposition follows from the fact that every path
according to τi does not contain negative cycle, as τi is a cycle independent modular winning strategy.

⊓⊔

Lemma 18 Let A be a WRG. Let τ = {τi}n
i=1 be a cycle independent modular winning strategy in

A for the objective LimInfAvg ≥ 0. Let σ = {σi}n
i=1 be a modular strategy such that σi is a winning

strategy for the signature game (GAi
, νi, τ). Then for every play ρσ, consistent with σ, which starts

from the entry node of a module Ai to a node nℓ in the same module (and possibly goes through box
nodes), there exists a play ρτ , consistent with τ , from the same entry node to the same node nℓ, such
that w(ρσ) ≥ w(ρτ ). In addition, the path ρσ does not contain a negative proper cycle.



Proof. The proof is by induction on the additional stack height of ρσ.

– Base case: Additional stack height is 0. In this case the play ρσ have only edges from Ai, and the
weight of the play is identical to the weight of the same play in (GAi

, νi, τ). The play ρσ does not
visit a vertex with threshold +∞, otherwise σi would not be a winning strategy in the signature
game (GAi

, νi, τ). Hence, by definition, there exists a play ρτ , consistent with τ from the entry
node to nℓ with weight at most νi

ℓ. Since σi is a winning strategy in the signature game, and ρσ

is consistent with σi, we get that w(ρσ) ≥ νi
ℓ. Therefore w(ρσ) ≥ w(ρτ ). Since σi is a winning

strategy in the signature game, and the path ρσ is consistent with σi also in graph GAi
, we get

that ρσ does not contain negative cycles.

– Inductive step: Additional stack height > 0. For simplicity, we first assume that ρσ goes only
through one box node in the module Ai (in the first stack level). Let node b be that box, and let
node u ∈ Ai be the return node in that path. Let ρσ

b,u be the sub-play from the entry node of b to
node u. Recall that wτ

b,u is the minimal weight among all plays consistent with τ between b and
u. Let Aj be the module invoked by b, and let u′ be the exit node that leads to the return node
u in Ai. As the additional stack height from the entry node of Aj to u′ is strictly smaller than
the additional stack height of ρσ, it follows from the inductive hypothesis that there exists a path
consistent with τ between these two nodes with weight at most w(ρσ

b,u). Hence wτ
b,u ≤ w(ρσ

b,u).
Thus, the weight of ρσ is bounded from below by the induced path of ρσ over the signature game
(GAi

, νi, τ). Thus, by the definition of the signature game there exists a path ρτ as desired. In
addition, by the inductive hypothesis, the path ρσ

b,u does not contain proper negative cycle, and by
the same arguments as above, there is also no negative proper cycle in module Ai. The case where
ρσ goes through more then one box, is a straight forward extension of the argument presented
above.

Thus we have the desired result. ⊓⊔

Lemma 19 Let A be a WRG. Let τ = {τi}n
i=1 be a cycle independent modular winning strategy in

A for the objective LimInfAvg ≥ 0. Let σ = {σi}
n
i=1 be a memoryless modular strategy such that σi is

a memoryless winning strategy for the signature game (GAi
, νi, τ). Then σ is a memoryless modular

winning strategy in A for the objective LimInfAvg ≥ 0.

Proof. Let Aσ be the player-2 WRG obtained by fixing the memoryless modular strategy σ in A.
Assume towards contradiction that Aσ has a reachable non-decreasing negative cycle C, and let ρ be
a finite path that leads to first vertex of C. By Lemma 18 it follows that C cannot be a proper cycle.

First, we argue that in A there exists a finite path ρτ from the first vertex of ρ to the last vertex
of ρ that is consistent with τ . Indeed, by Lemma 18, between every entry node and box node in ρ
there exists a path consistent with τ , and finally there also exists such a path between the last entry
node and the last node of ρ.

Second, to achieve the contradiction we will show that τ is not a winning strategy. Let e1 be the
first entry node in C (it must exist as C is not a proper cycle), and ni be the last (and first) node in
C (note that C is not a proper cycle, and hence this node is well defined). Note that for every m ∈ N,
the path Cm is a non-decreasing cycle that is consistent with σ (as σ is a memoryless strategy). Let
ρe1,ni

be the path from e1 to ni. Let ρni,e1 be the path from ni to first appearance of e1 in C. We
consider the path ρ∗ = ρe1,ni

· Cm · ρni,e1 , for m = 2 · W · (|ρe1,ni
| + |ρni,e1 |). This is a path that is

(i) consistent with σ, (ii) begins and ends in the entry node e1 of the same module (not necessarily
in the same stack height). Let b1, b2, . . . bℓ be the boxes occur in the path. By Lemma 18, for every
k there exists a path ρτ

bi,bi+1
consistent with τ such that w(ρτ

bi,bi+1
) ≤ w(ρσ

bi,bi+1
). Hence there exists

a path ρτ
∗ that is consistent with τ from e1 to e1 such that the sum of the weights is negative. As

τ is a modular strategy, and e1 is an entry node, it follows that the path (ρτ
∗)ω is also consistent

with τ , and has negative mean-payoff. In conclusion, we obtain that there exists a reachable negative
non-decreasing cycle in A consistent with τ , and this contradicts that τ is a winning strategy.

Hence, every path consistent with σ does not contain a negative non-decreasing cycle. By Propo-
sition 11 it follows that σ is a winning strategy in A for the objective LimInfAvg ≥ 0. ⊓⊔

Lemma 20 Let A be WRG. Player 1 has a modular winning strategy for the objective LimInfAvg ≥ 0
iff there exists a memoryless modular winning strategy for player 1 for the objective.



Proof. The proof for the direction from right to left is trivial. The opposite direction is obtained
as follows: by Lemma 12 it follows that if there is a modular winning strategy, then there is a cycle
independent modular winning strategy; and by Lemma 19 it follows that if there is a cycle independent
modular winning strategy, then there is a memoryless modular winning strategy. The desired result
follows. ⊓⊔

We are now ready to prove the main result of this section.

Theorem 8 The problem of deciding if player 1 has a modular winning strategy in a WRG A for
objective LimInfAvg ≥ 0 is in NP.

Proof. By Lemma 18 it is enough to guess a memoryless modular strategy (the memoryless modular
strategy is the polynomial witness) and verify that it is indeed a winning strategy. The verification
can be achieved in polynomial time using the polynomial time algorithms of Section 2 for WPSs with
mean-payoff objectives. ⊓⊔

Strict inequalities and stack boundedness. Note that by Corollary 1 the results of Lemma 20
and Theorem 8 also hold for objective LimSupAvg ≥ 0. For modular strategies we only presented the
result for mean-payoff objectives with non-strict inequalities. The results for strict inequalities follow
from an adaptation of the proofs for non-strict inequalities (for which we prove memoryless modular
strategies are sufficient). Moreover, the results also follow from mean-payoff objectives with the stack
boundedness condition for the following reason: we observe that the manipulated operations never
increase the stack height. Thus from our results it follow that if there is a modular winning strategy
to ensure mean-payoff objective along with stack boundedness, then there is a memoryless modular
strategy. Hence the NP upper bound follows for strict inequalities as well as for stack boundedness.

4.3 NP-hardness of the modular winning strategy problem

In this section we establish the NP-hardness of the modular winning strategy problem. Our hardness
result will be for one-player WRGs (player-1 WRGs), where every module will have single exit, and
the weights are {−1, 0, +1}. In other words, our hardness result show that even a very simple version
of the problem (single exit one-player WRGs with constant weights) is NP-hard.

Reduction. We present a reduction from the 3-SAT problem (satisfiability of a CNF for-
mula where every clause has exactly three distinct literals). Consider a 3-SAT formula
ϕ(x1, x2, . . . , xn) =

∧m
i=1 cl i, over n variables x1, x2, . . . , xn, and m clauses cl1, cl2, . . . , clm. A

literal is a variable xi or its negation ¬xi. We construct a player-1 WRG as follows: Aϕ =
〈A0, x1,¬x1, x2,¬x2, . . . , xn,¬xn, cl1, cl2, . . . , clm〉 in the following way: there is an initial module
A0, there is a module for every literal and for every clause. We now describe the modules.

Module A0. The module invokes in an infinite loop in sequence the modules cl1, cl2, . . . clm, and all
the transitions in this module have weight zero.

Module for clause cl i. There is an edge from the entry node of module cl i to a box that invokes module
y, for every literal y that appears in the clause cl i. There is also an edge from the return node of y to
the exit node of cl i. All the weights in this module are zero.

Module for literal yi. The entry node of yi has outdegree two (left edge and right edge). The left edge
is the FALSE edge, which leads to the exit node, and has a weight −1. The right edge is the TRUE

edge, which leads to a box that invokes a call for module ¬yi, and its weight is −1. The return of the
box leads to the exit node and the edge weight is +2. The reduction is illustrated pictorially in Fig 5.

Observation 2 Every path from the entry node of the module yi to its exit node, has a weight of at
most 0, hence every path from the entry node of module cl i to its exit node, has a weight of at most 0.

Lemma 21 There exists a modular winning strategy for player 1 in Aϕ for the objective LimInfAvg ≥ 0
iff ϕ is satisfiable.

Proof. We first observe that every modular strategy in Aϕ is memoryless modular strategy. Observe
that modular strategy for player 1 is a selection of a literal for every clause module, and selecting
either the TRUE or FALSE edge for every literal module. We now present both directions of the proof.
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Fig. 5. NP-hardness reduction

– Modular winning strategy implies satisfiable. Let τ be a modular winning strategy for player 1,
such that the literal yτ

i is chosen for clause cl i. First, towards contradiction, let us assume that
there exists i ∈ {1, . . . , m} such that τ selects the FALSE edge for module yτ

i . Hence the weight
of the path inside the module cl i is negative. Thus, due to Observation 2, the mean-payoff value
according to τ is negative. Therefore τ selects the TRUE edge for the module yτ

i . Next, towards
contradiction, let us assume that there exist i, j ∈ {1, . . . , m} such that yτ

i = ¬yτ
j and τ selects the

TRUE edge for both modules. In this case, the play will never exit module yτ
i , and will go forever

through edges with negative weights. Therefore if τ selects the TRUE edge for yτ
i , then it does not

select the TRUE edge for ¬yτ
i . Due to the above, the assignment that assigns a true value to the

literal yτ
i in clause cl i is a valid (non-conflicting) assignment that satisfies ϕ.

– Satisfiable implies modular winning strategy. Let x be a satisfying assignment (a non-conflicting
assignment of truth values to variables) for the formula ϕ. We construct a modular winning
strategy τx as follows. In module cl i, the modular strategy invokes the module yx

i , where yx
i is

a literal for which x assigns a true value (since x is a satisfying assignment such a literal must
exist). In module yi, follow the TRUE edge if x assigns a true value to the literal yi, and follow the
FALSE edge otherwise. It is straight forward to verify that the mean-payoff in a play according to
τx is zero.

This completes the proof. ⊓⊔

Observe that in the hardness reduction we have used positive weight +2 for simplicity, which can be
split into two edges of weight +1 each. Hence we have the following theorem.

Theorem 9 The modular winning strategy problem is NP-hard for one-player WRGs (player-1
WRGs) with single exit for every module and objective LimInfAvg ≥ 0 with edge weights in {−1, 0, +1}.

Strict inequalities and stack boundedness. We first observe that the above reduction also holds
for LimSupAvg ≥ 0 objective. Moreover, whenever the 3-SAT formula ϕ is satisfiable, then the witness
memoryless modular strategy along with mean-payoff objective also ensures stack boundedness. Hence
the hardness result follows from mean-payoff objectives with non-strict inequalities as well as for stack
boundedness. The result for strict inequality is obtained as follows: we modify the above reduction by
changing the weight of the edge back to the entry node of A0 from 0 to 1. Then if the formula ϕ is
satisfiable, then the average payoff for memoryless modular strategies is at least 1

|V | , where |V | is the

number of vertices, and if the formula ϕ is not satisfiable, then the mean-payoff under all memoryless
modular strategies is at most 0. Hence the hardness follows also for mean-payoff objectives with strict
inequalities. We have the following theorem summarizing the results for modular strategies.

Theorem 10 The following assertions hold for WRGs with objectives Φ ⊲⊳ 0, for ⊲⊳∈ {≥, >}, Φ ∈
{LimSupAvg, LimInfAvg}, as well as objectives Φ along with stack boundedness.



1. If there is a modular winning strategy, then there is a memoryless modular winning strategy.
2. The decision problem of whether there is a memoryless modular winning strategy is NP-complete.
3. The decision problem is NP-hard for player-1 WRGs with single exit for every module and edge

weights in {−1, 0, +1}.

5 Conclusion

In this work we study for the first time mean-payoff objectives in pushdown games and present a
complete characterization of computational and strategy complexity. We show that pushdown systems
(one-player pushdown games) with mean-payoff objectives under global strategies can be solved in
polynomial time, whereas pushdown games with mean-payoff objectives under global strategies is
undecidable. For modular strategies both pushdown systems and pushdown games with mean-payoff
objectives are NP-complete. We also show that global strategies for mean-payoff objectives in general
require infinite memory even in pushdown systems; whereas memoryless strategies suffice for modular
strategies for mean-payoff objectives.
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10. T. Brázdil, V. Brozek, A. Kucera, and J. Obdrzálek. Qualitative reachability in stochastic BPA games.

Inf. Comput., 209(8):1160–1183, 2011.
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