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Dual Complexes of Cubical Subdivisionsif *

Herbert Edelsbrunnéand Michael Kerber

Abstract the persistent homology ef-dimensional images, thus gen-
eralizing the work of [2]. Using the dual complex of a cubi-
We use a distortion to define the dual complex of a cubical cal subdivision, we get an approximation of the image’s per-
subdivision ofR" as ann-dimensional subcomplex of the  sjstent homology using a standard algorithm processing the
nerve of the set ofi-cubes. Motivated by the topological simplices in the order of the lower star filtration [6]. To eon
analysis of high-dimensional digital image data, we coaisid  struct this complex, we build on Freudenthal’s early work on

such subdivisions defined by generalizations of quad- andtriangulations of the:-dimensional cube [7]; see also Kuhn
oct-trees taw dimensions. Assuming the subdivision is bal- [11]. The main results of this paper are as follows:

anced, we show that mapping each vertex to the center of the
correspondingi-cube gives a geometric realization of the I. We introduce a distortion of the integer grid Rf* to
dual complex inR™. generalize the Freudenthal triangulation of theube

to the dual complex of a cubical subdivision®¥.
Keywords. Simplicial complexes, (hierarchical) cubical subdivi-

sions, counting, distortion, Freudenthal triangulatmpeometric re- II. We analyze the ,dual ComP'e,X* glw,ng tight bounds on its
alization. size and a detailed description of its local structure.

[ll. We show that using the cube centers as the vertices of
the dual complex of a balanced hierarchical cubical sub-
1 Introduction division gives a geometric realization R*.

We are interested in cubical subdivisions®f as a gen- Most directly related to our work are the cubical homology
eralization of the quad-tree and oct-tree data structwoes ¢~ algorithms for dynamical systems described in Kaczinski,
monly used foR- and3-dimensionalimages [13, 14]. Think-  Mischaikow and Mrozek [10]. The regular structure of cubi-
ing of an image as a discrete representation of a real-valuedcal complexes permits implementations that are an order of
function, we view these trees as hierarchical represemsti  magnitude faster than their counterparts for simpliciaheo
and approximations of the same. The extension to 4 di- plexes of similar size [4]. It is yet unclear to what extent
mensions is motivated by the availability of high-resaati  this computational advantage generalizes if we consider hi
time-series of3-dimensional images (eg. Stock [15] observ- erarchical cubical subdivisions. In this context, it is onp

ing the breaking of bone structure under pressure) and by thetant to distinguish between theecewise constargpproxi-
general quest to analyze multi-variate scientific data [8, 9 mations of a function furnished by cubical and hierarchical
Our particular interest is in fast algorithms for computing cubical complexes, and tigecewise lineaapproximations
provided by their dual complexes. The number of elements
“This research is partially supported by the Defense AdvRmsearch  needed to achieve the same degree of approximation is gen-

Projects Agency (DARPA) under grants HR0011-05-1-0057 HR6011- e A
09-0065 as well as the National Science Foundation (NSFEnmmnt DBI- eraIIy smaller for the latter. We see this difference as dne o

0820624, the ramification for replacing a hierarchical cubical coexpl
TIST Austria (Institute of Science and Technology Austrik)oster- by its dual complex. Alternative triangulations of a hierar
neuburg, Austria, Departments of Computer Science and dhénaatics, chical cubical complex have been described by Weiss and

Duke University, Durham, North Carolina, and Geomagic,eResh Trian- De Floriani [16] but their triangulations are differentcan
gle Park, North Carolina. ! . . .
1ST Austria (Institute of Science and Technology Austriépsterneu- generally larger than the dual complexes introduced in this

burg, Austria. paper.
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Outline. Section 2 reviews the Freudenthal triangulation
of the n-cube and counts its simplices. Section 3 explains
the distortion and uses it to define the dual of a subdivision
into unit cubes. Section 4 generalizes the constructiono ¢
bical subdivisions of nonuniform size. Section 5 introdsice
dual complexes and proves the geometric realization for hie
archical cubical subdivisions. Section 6 concludes thepap

2 Freudenthal’s Triangulation

In this section, we review the Freudenthal triangulation
[7], also known as the Kuhn subdivision [11] of the
dimensional cube.

The n-cube. Theunitn-cubeis then-fold Cartesian prod-
uct of the unit intervallU” = [0, 1]™ C R™. Pickingk < n
of the intervals and either or 1 from each of the remain-
ing n — k intervals, we get &-faceof U™, which is itself a
k-dimensional cube. The numberoffaces is therefore

n
2n—k
()7

forall 0 < k < n. To distinguish between different classes
of faces, we writé® = (0,0,...,0)and1 = (1,1,...,1) for
the extreme vertices in the diagonal direction, callingaefa
of U™ anchoredatO (or 1) if it contains0 (or 1) as one of its
vertices. Some faces are anchore@,atome are anchored at
1, and some are anchored at neither. Only one fadé'as
anchored at both, namely thecube itself, which is its only
n-face. For each choice d@f unit intervals, the only:-face
anchored ab is the one for which the other— k coordinates
are0. Hence, the number df-faces anchored #is

(&)

forall 0 < k& < n. We are also interested in the silhouette
of then-cube when viewed along the diagonal direction. For
this reason, we introducé : R — R defined by mapping
apointz = (z1,x2,...,2,) 0 A(zx) = >0, z;. We refer

to A as thediagonal height functionnoting thatA=1(0) is
the (n — 1)-dimensional plane normal to the diagonal direc-
tion that pass through the origin, arqz) is \/n times the
signed Euclidean distance from that — 1)-plane. The or-
thogonal projection of the-cube ontaA =1 (0) is an(n—1)-
dimensional convex polytope. This polytope has two decom-
positions into projections gfx — 1)-cubes, generated by the
(n — 1)-faces ofU™ anchored a0 and by the(n — 1)-faces
anchored atl. The silhouetteof U™ consists of all points
whose projection belongs to the boundary of that- 1)-
polytope. A face belongs to the silhouette iff it is neither
anchored a0 nor atl. Indeed, each such face is shared by

(1)

Ck

(@)

aj

an(n — 1)-face anchored @ and another anchored &t It
is therefore easy to count them. Specifically, the number of
k-faces in the silhouette @f” is

(7).

forall 0 < k& < n — 1. Since the silhouette & — 2)-
dimensional, the number df-faces vanishes fok = n —
1,n. In Table 1, we give the number of faces, anchored faces,
and faces in the silhouette for a few small values @indk.

®3)

5k

| k=0 1 2 3 4
n=1 2,1 11
2 41,1 4,2 1,1
3 81,6 1236 63 11
4| 161,14 324,24 24612 84 11

Table 1: From left to right in each entry: the numberkefaces of
the n-cube, the number of-faces anchored & or at1, and the
number ofk-faces in the silhouette. Zeros are omitted.

Chains. We triangulate the:-cube using increasing se-
quences in a partial order of its vertices. Writihg=
(1,12, .. .,in) @ndj = (j1,Jo, - -, Jn), With ig, 55 € {0,1}
for all k&, we sayi precedeg if i, < ji for all k. A chainis

a sequence of distinct vertices in which each vertex precede
the next one in the partial order. lsngthis the number of
vertices. A chain ignaximalif its length isn 4+ 1. Each
chain of lengtht + 1 defines &-simplex, namely the convex
hull of its k& + 1 vertices.Freudenthal’s triangulatiorof the
n-cube, denoted by™ = F(U™), is the set of all simplices
defined by chains [7]; see Figure 1.

7

/

Figure 1: The Freudenthal triangulation of theube consists of six
tetrahedra arranged cyclically around the space diagomalecting
0 with 1.

A maximal chain corresponds to a schedule of changing
0’'ston 1's, one coordinate at a time. It follows that there are
n! maximal chains, and similarly there atén-simplices in
F™. To count thek-simplices, we partition the set afcoor-
dinate directions inté+2 color classes, which we label from



0to k + 1. Here we require that each color class between [

. o k=0 1 2 3 4
andk contain at least one direction; the clas8endk + 1 = 51 1
may or may not contain directions. A maximal chaicgsn- "= a1 ’2 5’ 3 29

19,7,6 18,12 6,6

that connect the vertices in sequence are ordered by color, 16.1.14 651536 110.50.24 84.60 2424

from0 to £ + 1. Note that any two maximal chains compati-

ble with the samék + 2)-coloring agree on the vertices that  Table 2: From left to right in each entry: the numbetkeimplices
transition from one color to the next. We can therefore use in the Freudenthal triangulation of thecube, the number anchored
the (k + 2)-coloring to identify a uniquék + 1)-simplex, at0, and the number in the silhouette. Zeros are omitted.
namely the convex hull of the transition vertices, from the
beginning of colon to the end of colok:.

The number of k + 2)-colorings of then coordinate di-
rections is(k + 2)". Of these(k + 2 — )" do not use some
fixed subset of colors. We can thus use inclusion-exclusion proor We use straightforward algebraic manipulations to
to compute the number éfsimplices in the Freudenthal tri-  prove both relations. USindj) — (kjl) — (ifl), we get
angulation of thex-cube as

1
patible with a (k 4+ 2)-coloring if the coordinate directions 3 81 6
4

ANCHOR FORMULAS. We havea} = sp_; + si_, and
ap = sZi'% (k+1),forall0 <k <n.

k

= zk:(—l)i<l_€)(l<:+2—i)", (4) % = Z(l)i<kz+'1>(k+1i)n

2 =0
i=0 b
forall0 < k£ < n. Itis easy to see that this formula gives - Z(l)i<, ¥ >(l<: +1—0)"
¢y = 2™ but not quite as easy that it give’s = n!. i=1 i—1

Adding the vanishing term far= k+-1, we note that the first
sum isdy., ;. Adding the vanishing term for = £ + 1 and
then transforming the index, we note that the second sum is
—d;;. The first relation now follows froms;;_, = d;’, ; and

sp_, =dp. Using (¥) = =L (M) we get

Anchors and silhouettes. A simplex is anchored ab iff
color0 is not used. We can therefore drop cadlcand com-
pute the number of-simplices in the Freudenthal triangula-
tion of then-cube that are anchored@by counting(k+1)-

colorings as EFL \ i
k .k

[k n k+1—1 (k+1 n

ap = Z(—l)z(i)(kz—i-l—i)", (5) = T Z(l)< . )(k+lz).
i=0 =0

forall 0 < k& < n. If we now subtract the number of Moving the factork + 1 — 4 into the sum and adding the
simplices anchored 4t or at1 from ¢}, we get the num-  vanishing term foi = k + 1, we note that the sum i .
ber of k-simplices that triangulate the silhouette of the The second relation follows frogﬁi‘% = dZLl-
cube. We still need the number &fsimplices anchored
at both,0 and 1, which we get by counting:-colorings:
dip = Zf:_o(*_l)l(lf) (k—i)" forall0 < k <n.Thenum-  garcentric subdivision of a simplex. Let 5"~ denote
ber ofk-simplices that triangulate the silhouette is therefore e standardn — 1)-dimensional simplex. It is instructive to
st = ¢ — 20 +d, (6) compare 'Fhe Frel_JQe_nthaI triiingulation oftheube Wit{h the
barycentric subdivision o£”~!. To see the connection, we
forall 0 < k < n. Similar to the number of faces, we get note that thel-skeleton ofU” can be interpreted as the face
sp = 0fork =n — 1,n. We note thas} = d}!,, because lattice of X" ~!. However, it is important to realize that this
the (k + 2)-colorings count thék + 2)-simplices anchored interpretation fails fo0 since we do not consider the empty
at both0 and1, and each sucfk + 2)-simplex has a unique  simplex to be a face aE”~!. To extend this interpretation
k-face that is anchored at neither. In Table 2, we give the to higher-dimensional simplices, we establish a bijeckien
number of simplices, anchored simplices, and simplices in tween then coordinate directions and thevertices of the
the silhouette for a few small valuesofandk. simplex. Then, for every selection 6f< 1 coordinatesyJ”
We note relations between the number of anchored sim-has a vertex with’s in the chosen positions ards in the
plices and the number of simplices in the silhouette, in the other positions. Correspondingly™~—! has an(¢ — 1)-face
same and in one higher dimension. To express the relationghat is the convex hull of thé vertices. A chain of length
without special cases, we sét; = 1 ands™, = 0 for all k + 1 in the partial order of the vertices thus corresponds
dimensions. to aflag of ¥*!, that is, a sequence of simplices in which



each simplex is a proper face of the next one. Replacing each

simplex in the flag by its barycenter, we can take the convex

hull of these points and get/asimplex in the barycentric
subdivision of:"~!. Remembering the exception for we
thus get an isomorphism between the simplicesF6fnot

anchored ab and the simplices in the barycentric subdivi-

sion of X»~!. Similarly, the subcomplex triangulating the
silhouette ofU” is isomorphic to the barycentric subdivision
of the boundary o®3"~!. This implies the following inter-
pretations of the above simplex counts:

e ¢} — ay is the number ok-simplices in the barycentric
subdivision of thgn — 1)-simplex;

e s} is the number of:-simplices in the barycentric sub-
division of the boundary of the: — 1)-simplex.

3 Uniform Cubical Subdivisions

The circumscribedn — 1)-sphere of everyu-simplex in
F™ passes through th&* vertices of the uniti-cube. The
Freudenthal triangulation is therefore a degenerate Dalau
triangulation. In this section, we study a distortion thet s
lectsF" among all degenerate Delaunay triangulations.

Distortion in diagonal direction. Write Z™ for the set of
integer points inR™, and recall that th&oronoi diagramas-
signs to each poinit € Z™ the cell of pointst € R for
which i is a closest integer point. For= (i1, i2,...,i,),
this cell is the Cartesian product of the intervials— %, i+
1], for 1 < k < n, which is a unitn-cube. To remove
common intersections of more thant 1 cells, we move the
integer points by slightly compressifidf along the diagonal
direction. Choosin@ < ¢ < 1, we mapi to

T.i = i—s%l
= (i A:),zg—a%i),...,zn—g%i)).

Here, T is the linear transformation defined by mapping the

k-th unit coordinate vectok, to e, — =1. Itis the iden-
tify for ¢ = 0 and the orthogonal projection ontd=1(0)
for e = 1. With this, we get Voronoi cells that are simple

Figure 2: Sketch of the Voronoi cell of an integer point affés-
tortion in R3. It has the combinatorial structure of a cube after
truncating two vertices and six edges.

this complex inR™ by using the (undistorted) integer points
as vertices. In other words, we draw the complex as a degen-
erate Delaunay triangulation of the integer points, dewpti

it by D" (e) = D.(Z").

Triangulation. We now formally prove that the nerve of
the set of Voronoi cells gives an-dimensional simplicial
complex. More than that, we show thBt'(¢) triangulates
every integer translate of the unitcube by a copy of its
Freudenthal triangulation.

TRIANGULATION THEOREM. D" (g) = F"+7Z", for ev-
ery0 <e < 1.

PROOF We give the proof in two steps, simplifying by fixing

¢ and dropping it from the notation. The first step is geomet-
ric and shows that the claimed identity holds for thekeleta

of D" andF". The second step is combinatorial and shows
that if we have the same edges, ¥ and 7" + Z", then

we must also have the same higher-dimensional simplices.
To prepare the two steps, we note that all Voronoi cells are
integer translates of each other. HenB&, is invariant un-

der integer translation. It therefore suffices to prove 1at
containsF".

In the first step, we show that an edge connecting two in-
teger points belongs tB™ iff it is an integer translate of an
edge inF". Itis not difficult to see that every edge "
connects two vertices of an integer translate of the unit
cube, so we may as well assume that both endpoints are ver-

convex polyhedra, all of the same shape, namely combina-tices ofU”. Writing V' for its set of vertices, we observe that

torially the same as a truncateecube; see Figure 2 for the

U™ is the convex hull of’. Since the distortion is a linear

3-dimensional case. As we will see shortly, the intersection transformation, and linear transformations preserve eonv

of any k& + 1 Voronoi cells is either empty or afn — k)-

ity, 7U™ is the convex hull off V. Let S be the(n — 1)-

dimensional convex polytope, and which case it is does not sphere that circumscrib&g'. Its center is(%, %, ...,+)and

depend on the particular value ofc (0,1). The intersec-

)
its radius is1/n. Recall thatA=!(2) is the(n — 1)-plane

tion of n 4 2 or more Voronoi cells is necessarily empty. We orthogonal to the diagonal that passes through the center of
can therefore take the nerve of the set of Voronoi cells and S. It intersectsS in an (n — 2)-sphereF = S N A~ (%),

get ann-dimensional simplicial complex: the Delaunay tri-

which we refer to as thequatorof S. The image ofS un-

angulation of the distorted set of integer points. We draw der the linear transformatioff;S, is an(n — 1)-dimensional



ellipsoid. It has one axis of leng{fi — ¢)+/n, in the direc-
tion of the diagonal, and — 1 axes of length/n, all axes

of TE, which is just a translate of the equator. Consider now
a k-dimensional plane® and the image of its intersection
with the (n — 1)-sphere:T(P N S) = TP N TS. Assume
first that P passes through the center®f ThenP N S'is a
(k—1)-sphere, and unled3is orthogonal to the diagonal di-
rection,P N E is a(k — 2)-sphere, both with radiub,/n. It
follows thatl’P N T'S is a(k—1)-dimensional ellipsoid with
one axis of length betweéi — ¢)./n and/n andk — 1 axes

of lengthy/n. Indeed, the latter are axesBfP N E), which

is a translate o N E. The first axis is strictly shorter than
v/n unlessP C A~*(%). To understand the case in which
P does not pass through the centerhfwe note that par-
allel k-planes give rise to homothetic ellipsoids. The short
axis of such an ellipsoid is always in the direction closest t
the diagonal oR™, connecting the points with minimum and
maximum diagonal height.

Consider now two vertices df” and letk be the small-
est dimension such that both belong to a comrhdace of
U, which we denote a&*. It has2*~! antipodal pairs of
vertices, the chosen pair being one. The vertices of each pai
differ from each other in precisely coordinates. Hence,

there is only one antipodal pair whose vertices are related

to each other by the partial order, namely the pairu; in
which uy has0’s andu, hasl’s where they differ. This pair
forms an edge iF". To show that is also forms an edge in
D", we let P be thek-plane spanned by* and note that,
andu; are the orthogonal projections@fand1 onto P. For
reasons of symmetry, this implies that among the points of
P NS, uy minimizes and:; maximizes the diagonal height.
It follows that among the points @iP N T'S, Tuy minimizes
andTwu; maximizes the diagonal height. Heneg, andu;
are the endpoints of an edge®?. In summary, we proved
in this first step that two vertices @f"" are connected by an
edge inD™ iff they are related to each other in the partial
order. Hence, thé-skeleton ofD™ is equal to the union of
integer translates of thieskeleton ofF™.

in the open unit interval. It is therefore convenient to drop
the parameter from the notation and to w8 = D" (¢)
throughout the remainder of this paper.

Ratios of limits of ratios. Now we know enough about
D™ to count its simplices. Since there are infinitely many,
we form unions of vertex stars and consider the ratio of the
number ofk-simplices over the number of vertices. Finally,
we take the limit, letting the number of vertices go to infinit
Recall that each simplex i®™ has a unique lowest vertex
and that it belongs to the Freudenthal triangulation ofithe
cube with the same lowest vertex. Hence, the limit of the
ratio is the same as the number/etimplices anchored at
0, counted in (5). Summing this over &) we get the limit
ratio for the total number of simplices over the number of
verticesas ;_, a}.

It is instructive to compare these numbers with the cor-
responding ratio limits for the subdivision & into unit
cubes, which we denote By*. Eachk-dimensional cube in
V™ has a unigue lowest vertex, at which it is anchored. The
limit of the number ofk-cubes over the number afcubes
is thereforeu} (Z) see (2). In Table 3, we show the ratios
of the ratio limits for small values of andk.

| k= 1 2 3 4 5 |
n=1 10 1.0 1.0
2 10 15 20 15
3 10 23 40 60 3.2
4 10 37 83 150 240 9.3
5 1.0 62 180 39.0 720 120.0338

Table 3: The ratio of the number @fsimplices inD™ over the
number ofk-cubes inV™, up to one decimal position. The last
column gives the ratio of the sums overlly", a; />, ay.

Levels. We gain further insight into the structure Bf* by
studying its relationship wittD™*!. For this purpose, we

In the second step, we extend the result from edges toconsider the collection ai-faces of integer translates of the

higher-dimensional simplices. Of course, a simplex can be-

long to D™ only if all its edges belong t®™. Restricting
ourselves to the unit-cube,U™, the vertices of a simplex

in D™ thus form a chain in the partial order. Siné& con-
tains all such simplices, we just need to show thétalso
contains all such simplices. But if it does not then it would
be missing at least one of thesimplices of 7", leaving

a hole in the covering oR™ by the simplices irD™. This
contradicts the Nerve Theorem, which states thiathas the
same homotopy type as the union of Voronoi cells, namely
the homotopy type aR™.

Implicit in the statement of the above theorem is that the
triangulation does not depend on the particular choice of

unit (n + 1)-cube inR"*1. Each such-face has a unique
lowest vertex in the diagonal height direction®f*!. We
definelevel/ as the faces whose lowest vertices have diago-
nal height/. Projecting the level n-faces orthogonally onto
A~1(0), we get a subdivision oR™ by distortedn-cubes,
which we denote ag}; see Figure 3. LeD} be the further
subdivision of£} into the simplices we get by projecting the
Freudenthal triangulations of thefaces. Forn > 2, we
havel} # L7, ; unlessj is a multiple ofn + 1. In contrast,
the triangulations are all the same.

LEVEL LEMMA. Dy

Dy, , for all integers/ andj.

PrROOF It suffices to showDj = D7. Since a level con-
sists ofn-cubes inR™*!, its vertices come on + 1 different



PROOF The n-dimensional simplicial complexe®} in
A~1(0) and D" in R" are geometrically different but
combinatorially the same. Specificallp™ is the (non-
orthogonal) diagonal projection of a level ! onto the
n-dimensional plane spanned by the fitsstoordinate axes.
Hence, we geDy as the image oP” under the linear trans-
formationT;, withe = 1 —1/4/n + 1. This implies thaD"
andDj are isomorphic, so the links of their vertices are iso-
morphic. The second part of the claim follows because the
vertex links inDj are isomorphic to the triangulated silhou-
ette of U1, by construction.

Figure 3: The projection of a level B to the planeA " (0), and Since all vertex links irD™ are isomorphic to the triangu-
its triangulation. lated silhouette of thén + 1)-cube, we can use the results

of Section 2 to count their simplices. Specifically, the lofk

a vertex inD™ has(s}f1 k-simplices, for0 < k <n —1. It
diagonal heights, namely, 1, ..., n for level 0. Removing follows that the star of a vertex iR™ has,szf} k-simplices.
the integer points at heiglitand adding the ones at height Since eaclk-simplex belongs t@& + 1 vertex stars, the ratio
n + 1, we get the vertices for level But the integer points  of the number of-simplices over the number of vertices is
at height®) andn + 1 have the same projectionsix(0). sit1/(k+1). By the second Anchor Formula, this is indeed
This implies thatD{ andD} have the same vertices. It re- equal toa}.
mains to show that they also have the same simplices of di-

mension larger than zero. . . ..
Consider a simplex ofD?, and assume without loss 4 Non-uniform Cubical Subdivisions

of generality that it is the projection of a simpllex in the |n this section, we extend the results from uniform to non-
Freudenthal triangulation of a lower-face of U"*'. The  yniform cubical subdivisions, focusing on generalizasion

vertices of that simplex have diagonal heights betweand  quad- and oct-trees to hierarchical subdivisionBbf
n and they form a chain in the partial order®%*!. If none

of its vertices has height, this is also a chain in level,
hence its projection also belongsiy. However, if0 is one
one of the vertices of the simplex then we need to replace
it by 1. The remaining vertices in the chain all succeed
and they all precede in the partial order. Hence, we get a
chain on levell, which implies again that the projection of
the simplex also belongs ®7, as required.

Cubical subdivisions. Recall the setting in Section 3,
where we begin with the subdivision Bf* into unitn-cubes
centered at the integer points. We relax the size requiremen
and consider subdivisions &" into n-cubes that are unions

of these unitn-cubes. To avoid the otherwise easy confu-
sion betweem-cubes and unit-cubes, we will refer to the
former ascells

DEFINITION. A cubical subdivisiorof R" is a collection
_ ) o C of n-dimensional cubical cells with disjoint interiors that
Links.  Suppose now thai is the orthogonal projection  coverRr”, with the property that each unit-cube centered
onto A~%(0) of the integer point at height/ = A(i) in at a point inZ" is contained in a cell ig.
R"*1, Hencej’ is a vertex of£?, and the distorted-cubes
that shard’ are the projections of the + 1 lower n-faces See Figure 4 for &-dimensional example. By definition,
of U"™! +1i. The link ofi’ in D7 is therefore the projection  each cellC' € C with edges of lengt? is the union of
of the triangulated silhouette of th&t + 1)-cube. Every ¢ unit n-cubes,C' = U; UUz U ... U Up. EachUj is
vertex inD} is combinatorially the same as every other ver- the Voronoi cell of an integer point € Z", and corre-
tex, which implies that all links are integer translatesaxde sponds to a distorted truncated cubdge), the Voronoi cell
other and of the projection of the triangulated silhouefte o of the integer point after distortiori;.i € T.Z". We call
U™+, Itis now not difficult to prove that a similar statement C(s) = Uj(e) UUz(e) U ... U U (e) a fractually dis-
holds for the degenerate Delaunay triangulatithin R™. torted cell Note thatC(e) is different from7.C, as can
be seen in Figure 4. Since tli&(¢) depend orx, we get a
LINK LEMMA. The links of the vertices i®" are integer 1-parameter family of fractually distorted cell§¢) for each
translates of each other, and they are all isomorphic to theC' € C. Assuming¢ > 2, C () is not convex for any positive
triangulated silhouette of the ur{it + 1)-cube. e but has a convex limit, at = 0.
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Figure 4: Left: a piece of a cubical subdivision of the plarnighw
overlaid piece of the dual complex. Right: the fractuallgtdited
images of the squares.

Distorted intersections. Let nowCy, C1,...,Cy be cells
in a cubical subdivision}’ = ﬂf:o C; their common inter-
section, andF'(s) = ﬂfzo C;(g) the common intersection
after distortion. Since th€’; are convex[' is either empty
or convex. In contrastf’(¢) is not necessarily convex. Fur-
thermore,F’ = () implies F'(¢) = (), but not the other way

for eachl < 5 < n, whereu; is the center of the unit n-
cubeU;, u;; is its j-th coordinate, and similar far;, v;; and
w;, w;;. Clearly, alllW; in the rectangular hull o¥; andU;
belong toC;. LetV; be the unit.-cube whose centew;, is
the orthogonal projection af; onto N. In other words,

r_
UU_{

SinceV; belongs to the rectangular hull 8f andU;, it also
belongs taC;. It follows that theV arek + 1 distinct unitn-
cubes. But then thel inherit the property of forming a chain
from thev;. We havey € N_, V/, since thev/ all lie in
N, which contradicts the assumption thedloes not belong
to the limit of F'(¢). Hence, thev, cannot form a chain,
and neither can the;. It follows thatlim.,o F'(¢) = F
wheneverF'(¢) # (), as claimed.

forl1<j<n-—{¢
forn—¢<j<n.

Vij
Uij

The contrapositive form of the Limit Lemma is perhaps a
more vivid description of how a cubical subdivision relates
to its fractually distorted image: if" # lim._o F'(¢) then

round. To describe the relationship between a face beforeF(¢) = 0 for e > 0. In particular, if the dimension of’

and after distortion, we consider the limit <), for € go-
ing to 0. It consists of all points: for which there are points
x(e) € F(e) such thatt = lim._,¢ z(¢). If the C; are unit
n-cubes, then the limit of'(¢) is equal toF’. More gener-
ally, z € F but there can be poings€ F' that are not in the
limit of F'(). We now prove that such poingsexist only if
F(e) = 0.

LIMIT LEMMA. If F(e) # 0 thenlim._,, F'(e) = F.

PROOF We assumé’(¢) # () and note thalim._.¢ F'(¢) C

F. We prove equality indirectly, assuming there is a point
y € F notin the limit of F(¢). The interiors of the unit
n-cubes and of their faces partition ea€h and therefore
also F'. Hence, there is a unique unit cube that contains

exceeds: — k thenF(g) = 0.

Face structure. After distortion, the unitz-cubes form a
simple cell complex. It follows that the non-empty intersec
tion of & + 1 distorted unitz-cubes is necessarily: — k)-
dimensional. HenceF'(e) = ﬂfzo C;(g) is either empty
or (n — k)-dimensional. In the latter case, it is not difficult
to show thatF’(¢) is an(n — k)-dimensional manifold with
boundary, for= > 0. In the limit, fore = 0, the common
intersection is convex and therefore contractible. It ex¢h
fore plausible tha#'(¢) is contractible also fog > 0. This

is implied by the following resuilt.

FRACTUAL DISTORTIONLEMMA. The common inter-

and we suppose its dimension is maximal, that is, equal to section of the fractually distorted images /of+ 1 cells in

¢ = dim F. Let L be the/-plane that contains this unit
cube, and let/y, Uy, ..., U, be a selection of unit-cubes
with y € U; C C; for eachi. Let N be the(n — ¢)-plane
orthogonal tal. that passes through the centers oftheWe
may assume thaY is definedbye,, ¢ 1 =z, _p10=...=
x, = 0. The centers of th&; do not form a chain, elsg
would be in the limit ofﬂfzo Ui(e) C F(e). It follows that
N'_, Ui(e) = 0, fore > 0. We need to prove that the same is
true for every other selection of unitcubesVy, V1, ..., Vi
with V; C C; for eachi. Note that we do not require that
y belongs to the common intersection of the To get a
contradiction, we assume the centers ofthéorm a chain.
Define therectangular hullof V; andU; as the collection of
unit cubes¥; such that

min{uij,vij} S Wiy S max{uij,vij}

a cubical subdivision oR™ is either empty or arin — k)-
ball.

PROOF. We give an explicit construction df (). Supposing
F(e) # 0, we can find unite-cubesUy, Uy, . .., Uy, with

U, C C; for eachi, whose centers form a chain of length
k + 1. Here, we choose the indices so their ordering is con-
sistent with the ordering of the centers along the chain. For
each pail0 < i < i’ < k, there is at least one coordinate
direction,j, for which a normaln — 1)-plane separates;
from C;. We callj a separatingcoordinate direction fo€;

and C;,. The separating directions f@r, andC; are dif-
ferent from those foC; andCs, and so on. Lettings' be

the collection of separating coordinate directions, wedhe
fore have|S| > k. LetT be the complementary collec-
tion of non-separating coordinate directions, and noté tha



dim F' = n—|S| = |T|. Writing £ = |T'|, we know thatF" is
an/-dimensional rectangular box. For each uh@ube in its

the unitn-cubes centered at the integer poifits io, . . . , i,,)
with 2my, + 1 < ip < 2%(my, + 1), foreachl < k < n. We

subdivision, we have a chain in which the first vertex and the call 2 thesizeof B. Taking all cubes of siz‘ gives a uni-

last vertex differ inn — ¢ coordinates. Equivalently, their unit
n-cubes have — ¢ separating directions. The corresponding
k + 1 distortedn-cubes intersect in afn — k)-dimensional
face whose limit, forr = 0, is ¢-dimensional. We project
these(n — k)-dimensional faces into gm — k)-plane, which
we choose so that the images of {he- k)-faces are disjoint,
as in Figure 5. To construct this — k)-plane, we seledt
coordinate directions, one each separatifg; andC;, for

1 < i < k. Finally, we take the distorted images of these
directions and get thg: — k)-plane as the intersection of the
(n — 1)-planes normal to the distorted directions.

Figure 5: Left: the regular subdivision @f into unit ¢-cubes, for
¢ = 2. Right: the corresponding distortéetubes with filled gaps
between them.

form cubical subdivision oR™. Hence, we can think df as
a hierarchy of uniform subdivisions in which the number of
cubes grows exponentially from one level to the next.

DEFINITION. A hierarchical cubical su_bdivisioof R™is
a cubical subdivisio C B. lIts closure C, consists of all
cubes inB that contain cubes i@, and itsinterior is the

closure minus the subdivision itsetf® = C — C.

Every hierarchical cubical subdivision has a unique clesur
and a unique interior. Conversely, the closure determines
the subdivision, and so does the interior.réfinemenbf C

is a hierarchical cubical subdivision whose closure castai
C. While hierarchical cubical subdivisions are necessarily
infinite, we can extract finite pieces. Specifically, for eaeh
cubeB € C, we define?(B) = {C € C | C C B}, referring

to it as afinite hierarchical cubical subdivision. See Figure
4 for an example in the plane. Accordingly, the closure and
interior of C(B) are the subsets of cells (handC® that are
contained inB. In the finite case, the sizes of a subdivision,
its closure, and its interior are tightly coupled:

C(B)| CB)+c*(B)] = 2"[c*(B)| + 1.

It should be clear that we can think 6fB) as a tree in the
computer science sense. lIts cells arertbdes distinguish-

In the last step of our proof, we construct the faces that ing between thénternal nodesin C°(B) and theexternal

fill the gaps between the projections of the — k)-faces
whose limits are the unif-cubes decomposing. These

nodesin C(B). Thechildrenof a node are the cells of half
the size contained in it, and tiparentis the cell of twice the

faces can be enumerated by moving the vertices in a chainsize that contains it. Other than theot of the tree, which
one by one in a non-separating coordinate direction in suchis B, every node has exactly one parent, every internal node
a way that the chain remains a chain. In other words, we usehas2" children, and every external node has no child.

chains in which some of the directionsihseparate the cor-
responding unit:-cubes. Letting the number of additional
separating directions be < /, the chain corresponds to an
(n — k)-face whose limit ig¢ — m)-dimensional. Using all
subsets off" and, for each subset, all chains for which the
directions in the subset separate, we fill all gaps betwesn th
distorted/-cubes. We may even get more, namely an incom-
plete extra layer of faces around the configuratiofrof & )-
faces whose limits are the urfitcubes decomposing. In
any case, the collection ¢f — k)-faces forms arin — k)-
dimensional ball whose limit, far = 0, is an/-dimensional
rectangular box.

Hierarchical cubical subdivisions. We are interested in
cubical subdivisions that arise from a hierarchical decom-
position of R™, generalizing quad-trees iR? and oct-trees
in R3. To define them, we limit the set of available cells to a
basisBB of n-dimensional cube® for which there are inte-
gers? > 0 andmy, ms, ..., m, such thatB is the union of

Balancing. We refer to cells whose fractually distorted im-
ages have a non-empty intersectiomagghbors General-
izing [3], we call a hierarchical cubical subdivision Bf*
balancedf any two neighboring cells are either of the same
size or one is twice the size of the other. For example, the
quad-tree subdivision in Figure 4 is not balanced as it has
neighboring squares whose sizes differ by a factor of fdur. |
is however easy to make it balanced, namely by subdividing
the upper left square into four. Itis not difficult to see tbat

ery hierarchical cubical subdivision has a smallest badenc
refinement. Indeed, & is not balanced, we can find a pair of
neighboring cells such that one is at least four times the siz
of the other. We then replace the larger of the two byfts
children. This construction gives the smallest refinement i
the limit. To compar& with this refinement, we generalize
aresult on quad trees in [5, Chapter 14].

BALANCING LEMMA. Let C be a hierarchical cubical
subdivision of R™ and R, its smallest balanced_refine-
ment. TherRumin(B)| < 2"|C(B)| for every cellB € C.



ProoF Call two cells in a subdivisioadjacentif they have

We extend this notion by calling the full subcomplex@(C)

a non-empty intersection, and note that any two neighboring defined by a subset éfthe dual complexof the subset. Ob-
cells are adjacent but not the other way round. We call the serve that the definition of the dual complex is independent

subdivisionstrongly balancedf any two adjacent cells dif-
fer in size by at most a factor of two. L& be the small-
est strongly balanced refinement ©f Since strong bal-
ance implies balancéy refinesR ;.. We will show that
|R(B)| < 2"|C(B)] for everyB € C. The claim will then
follow becauséR iy (B)| < |R(B)|.

To construciR, we traverse the cells i@° in the order of
non-increasing size. The fact that there is no largest oelsd

of the particular choice of the parametee (0,1). We put

K™ into R™ by mapping each cell to its center and drawing
each subset of cells as the convex hull of their centers. This
does not necessarily give a simplicial complex, in which any
two simplices are either disjoint or intersect in a common
face. However, we will identify an important class of cubi-
cal subdivisions for which this drawing &f" is a geometric
realization inR™.

not cause trouble because we are always only interested in a

finite portion of the construction. In parallel, we construc
the interior of R, as we now describe. Ordering the cells in
C°, we can index them in reverse order.as, Co, Cy. For
eachi, we letC; be the hierarchical cubical subdivision con-
sisting of the cells traversed so far, thatd$,is C° with the
lasti cells in the sequence removed. 72t be the smallest
strongly balanced refinement 6f. To make the step from
C; to C;_1, we add(C}; to the interior. Letr be the corner
shared byC; and its parent. Finally, lety, uo, ..., 1, be
them = 2" cells in3 that sharer and all have the same size
as the parent of’;. Of course, the parent @f; is one of the
;. Note thatC; is an exterior node of; and thus also be-
longs toRR,;. By definition of strong balance, this implies that
all the ; belong toR;. Similarly, all parents of the; be-
long toR¢, and their children all belong t&;, including the
4™ —2m cells that form a layer around the block of the We
now addC; together with theu; to the interior ofR;. The
result is a strongly balanced refineméyt | of C;_;. Also
note that at least one of the; was already irR7, namely
the parent of”;. Hence, whenever we add one celCtg we
add at mosR™ cells toR°. By the same token, whenever we
add2™ — 1 cells toC, we add at mosg™ (2" — 1) cells to
R. The same relation holds betwe@fB) andR (B), which
implies the claim.

5 Dual Complexes

In this section, we introduce the main new concept of this
paper, namely the dual complex of a non-uniform cubical
subdivision. It is not necessarily a Delaunay triangulatio
so we have to worry about embedding it.

Triangulation.  Similar to the uniform case, we need the
distortion to control the explosion in dimension we othessvi
get by taking the nerve of a collection of cubes.

DEFINITION. Thedual complexof a cubical subdivision
C of R™ is the system of subsets” = K(C) that contains
a C Cifthe fractually distorted images of the cellsdrhave
a non-empty common intersection.

Ratio bounds. Before addressing the question of geomet-
ric realization, we give an upper bound on the number of
simplices in a dual complex. Recall that* = D™ if all
n-cubes are of unit size. As shown at the end of Section 3,
in this case the ratio of the number kfsimplices over the
number of vertices ig}’. We now show that this is the largest
ratio we can get.

Size LEMMA. The number ok-simplices over the num-
ber of vertices in the dual complex of a hierarchical cubical
subdivision ofR™ is at mostu};.

PrROOF Our argument works by stepwise refinement of the
subdivisionC until we arrive ad”, in which all cells are unit
n-cubes. We already have a good understandinf’of=
K(V™). Specifically, the ratio of the number éfsimplices
over the number of vertices iP" is a}}; see Section 3. We
express this by saying that the average numbgrsimplices
per vertexisi;. We will prove that each refinement step adds
one vertex and at leasf} k-simplices. Since the average
is a} at the end, fon’”, it cannot be more than; at the
beginning, forC.
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Figure 6: Cutting the middle square into two creates one rextex
and three new edges.

We refineC by subdividing its cells in the order of non-
increasing size. We u€¥ —1 straight cuts to subdivide a cell
into 2™ cells of half the size. We do these cuts in sequence
but not consecutively, as we now explain. When we cut a
cell, we get two rectangular boxes, each withg sides of
the same length as the edges of the cell, asdat side of
half the length. In general, we get boxes with- & long



and k£ short sides, wheré is anywhere betweef andn.
We order the cuts such that the short sides are parallel to the
first k& coordinate directions and the long sides are parallel N
to the lastn — k coordinate directions. To compare boxes
(which includes cubical cells), we say a bBxs larger than
another box if the long sides dB are longer, or the long
sides of the two boxes have equal length Buhas more o
long sides. Finally, we refin€ by cutting the boxes in the
order of non-increasing size.

Let now B be a largest box ané its number of short
edges. Because of the order of the cuts, the neighbals of B
are smaller than or of the same sizelasWe cutB in half,
with an (n — 1)-plane normal to thék + 1)-st coordinate  rigyre 7: Three cubes iR* whose centers span a triangle that is
direction. Cutting the box corresponds to splitting thereor ot contained in the union of the three cubes.
sponding vertex in the dual complex; see Figure 6. A new
edge connecting the two copies of the split vertex appears.
The link of this edge is a triangulation of tiie — 2)-sphere. touches bottd andB. Its center lies on the triangle and thus
We denote this link by, observing that it is a subcomplex forms an improper intersection.

of the link of the vertex before the split. If all neighbors of e configuration in Figure 7 is part of a hierarchical cubi-
B are of thens_alme size ds, thenL is isomorphic to aver- ¢4 sybdivision ofR*. Note, however, that this subdivision is
tex link in D"~ see the remark after the Link Lemma in 6t pajlanced. In the remainder of this section, we show that

Section 3. In this casd, hassj; k-simplices. If some ofthe  pajance prohibits improper intersections between siraplic
neighbors ofB are smaller, then the number bfsimplices in the dual complex in all positive dimensions.

in the link exceeds}. The split doubles the set of simplices
connecting the vertex with simplices I and it triangulates

the space in between. In other words, for eaesimplex in  geeq configurations. Let nowC be a hierarchical cubical
L, we get an additionglk + 1)-simplex by doublingand an  g,qivision ofR™, and letCy, Cy, . . . , C,, be cells inC form-
additional(k 4 2)-simplex by filling. Hence, the number of ing ann-simplex inkK™ = K(C). By the Fractual Distortion
newk-simplices that appear as a result of the splitis atleast| eqma the corresponding fractually distorted cells meet i
sp_q +52_?. The result follows _becaus_e this sumis equalto , single common point, which we denoteBs:. The co-
ay. by the first Anchor Formula in Section 2. ordinates of the corresponding undistorted pairgre inte-
ger multiples ofl. The pointZ.z is also common to the
distorted images of. + 1 unit n-cubes, one in eacti(¢).

Counterexample to geometric realization. We are now | other words, there is a unique collection of unitubes
ready to address the question of geometric realization. Forg;, c ¢, for0 < k < n, such that

dimensiom = 2, itis fairly easy to prove that the dual com-

plex of a cubical subdivision is geometrically realized®ifu n n
The key insight is that every edge &F is contained in the Tex = ﬂ Crle) = ﬂ Ui (e);
union of the two squares that define it; compare with Figure k=0 k=0

4. While this property generalizesi®, it no longer implies ) -
the geometric realization of the dual complex. Followin[2 ~ S€€ Figure 8. Writing,. for the center otJj,, for eachk, we
we now describe a counterexample in three dimensions. €@l wo, u1, ..., u, theseed configurationf the n-simplex.
We begin with two cubes4 and B, that share a common To §tudy this conflguratlor?,.we may assume thatu}g_«are
edge of lengtls. To this, we add a cub@ of size2 suchthat ~ vertices ofU™ = [0, 1]". Writing uy; for the j-th coordinate
one of its edges overlaps with the last quarter of the shared®f ux» We can make this more specific by assuming = 1
edge ofA and B; see Figure 7. The line segment connecting T 7 < ¥ a”difkjlz 0 |f1k: < j. The common point of thé
the centers oft and B passes through the midpoint of the 1S thenz = (3,3,..., 3), the center oJ".
shared edge. This midpoint lies outsi@e and the center Two orderings of the vertices of amrsimplex belong to
of C lies outsideA U B. The line segment connecting the the sameorientationif they differ by an even number of
midpoint and this center belongs to the triangle spanned bytranspositions. Writing the vertices as the rows of a matrix
the three centers but it is not contained4dru B U C. This in the sequence of their ordering, and adding a colunirsof
implies that the triangle lies partially outside the threbes. on the left, we can use the sign of the determinant to dis-
Now we just need to place a unit cube on topfso it tinguish between the two orientations. For example, for the
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len; — ukj| = % for all j. Assumingk # / are indices with

cr # ug andey # uy, the difference between the coordinates
of their centers is

€ {727 Oa 2}7 (8)
foreachl < j < n. The difference is a multiple &because
Cj andCy are part of a hierarchical subdivision, and it can-

not be larger tha@ because they are corners of neighboring
unit n-cubes.

A particular choice for the center 6 is ¢, = 2uy — z;
see the black dots in Figure 8. Here, the coordinate vector
of ¢, consists of; leading3's andn — k trailing —3's. We
consider the case in which, = 2u;, — = for some indices
k andc;, = uy, for others. We claim that the orientation of
then-simplex is still positive. To see this, we consider again
the matrix of vertex coordinates. Tleth row is either the

Ck]’ — Czj

7!

Figure 8: Seed configuration of a tetrahedron in the dual ¢exnp
of a cubical subdivision oR3. The white dots are the centers of
the unit cubes in the seed configuration, and the black detthar
centers of the corresponding cubes of twice the size.

orderinguo, us, - ., tn We get same as in (7) or different in the way described above. Let
10 0 0 m be the smallest index for which,, # u,,. We subtract
110 0 row m from each rowk > m with ¢, # u. This way we
et | 111 0 _ 1 7 g’et2 in the d|agonal position of_ rovk followed byn — k _
’ 0’s. Rowm < n is the only remaining reason for the matrix
i 1 1 1 not to be lower triangular. To fix this, we use rawwhich

is either alll’s or consists ofn + 1 0's followed byn — m

2’s. Adding half or one quarter of row to row m, we get

the matrix in lower triangular form. The row operations do
not affect the determinant, which is now the product of the
diagonal elements, which are all2, or2. This implies that

the determinant is positive and therefore has the same sign

Mas for the seed configuration, as claimed.

In the last step of the proof, we consider other choices for
the centers of th€’;,, reducing them to the above configura-
tion which we already know has positive orientation. Fix the
set of indices: with ¢, # u, and letm be the smallest such
index, as before. We have,; equal tol or 2 if j < m and
equal to—% or% if m < j. Fixingc,, leaves only one choice
for eachey, # uy, elsec, ande,, would contradict (8). In the
case we already studied, we hagl; # % forall j. The re-
maining cases us§ at least once as a coordinate. We claim
that doing so does not change the determinant. We prove this
by induction over the number &fs in the coordinate vector
of ¢,,,. Each step decreases this number while preserving the
set of rows for whiche, # uy. Letj be such that,,; = %
Changing this coordinate te% or 2, whichever is possible
considering the value af,,;, decreases the number@‘s,
so it suffices to show that making that change does not affect
let Uy, Uy, ..., U, be the corresponding sequence of unit the determinant. Indeed, the matrix before differs from the
cubes in the seed configuration. We writefor the centerof ~ matrix after the change only in theth column. Under the
C, andcy,; for its j-th coordinate. It is convenientto assume current assumptions, we hawg ; = wu;_; elsec;_; must
that the seed configuration has the special form describedbe a vertex ofJ;, contradicting the construction of the seed
above. Since th€’;, come in at most two sizes, we may as configuration. Symmetrically, we ge} = u;. It follows

and we say this orderedsimplex hagositive orientation
The determinant is alsa! times the signed.-dimensional
volume of then-simplex. Since the volume is a continu-
ous function of then 4+ 1 points, we can move the points
around and be sure the determinant does not change its sig
unless the points pass through a configuration in which they
are affinely dependent. Because of this property, it is possi
ble to compare the orientations of differensimplices, as

we will do extensively below.

Orientation. In a geometrically realized dual complex, all
n-simplices have the same orientation as their seed config-
urations. We now prove that dual complexes of balanced
subdivisions have this property.

ORIENTATION LEMMA. Every n-simplex in the dual
complex of a balanced hierarchical cubical subdivisioR'®f
has the same orientation as its seed configuration.

PrROOF LetCy, C1, ..., C, be a sequence afdimensional
cubical cells in the balanced hierarchical cubical sulsitivi,
assume they define ansimplex in the dual complex, and

well assume that eithat, = U, or C}. is twice the size
of U.. In the latter case;; is a vertex ofU;, and we have
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that subtracting row — 1 from row j leaves only one non-
zero element in row, namely thel in columnj. Using this



row, we can now transform one matrix into the other by row n-simplex. This prohibits improper intersections between
operations, implying that the determinant does not change.simplices iNfC(Rmax). Since/C(C(B)) € K(Rmax), this

Hence, the orientation of thesimplex is the same as that of implies the claim.
its seed configuration in all cases.

It is convenient to order the vertices of the simplices such . )
that all n-simplices inD" have positive orientation. Two 6 DISCUSSION

neighboringn-simplices then induce opposite orientations ) o )
on the shared — 1)-simplex. The main new concept in this paper is the dual complex of a

cubical subdivision oR™. Important examples of the latter
are quad-tree subdivisions & and oct-tree subdivisions
of R3. We count the number of simplices and prove that
dual complexes of balanced hierarchical cubical subdiuisi
are geometrically realized iR™. We predict applications of
these results in the analysis of four- and higher-dimeradion

Geometric realization. We are now ready to prove that
dual complexes of balanced hierarchical subdivisions are
simplicial complexes. To cope with the infinite size, we
again consider finite subsets.

GEOMETRIC REALIZATION THEOREM. Let C be a bal- images, and in particular in the computation of their persis
anced hierarchical cubical subdivision®f. Then the dual  tent homology.
complexK(C(B)) is geometrically realized ifR", for each The detailed analysis of cubical subdivisions raises a num-
cellBeC. ber of technical questions. For example, the Geometric Re-

alization Theorem applies only to balanced hierarchical cu
bical subdivisions. We know it does not necessarily hold for
unbalanced such subdivisions®f, for n > 3. How about
balanced cubical subdivisions that are not hierarchical?

PROOF We add cubical cells on the outside@B), choos-
ing the smallest size possible without violating balance.
More formally, we letR .. be the largest refinement 6f
with C(B) C Rumax- The layers of cells arounfl get smaller
toward the outside until they shrink to unit size. Leavingtw
full layers of unitn-cubes, we remove all cubes outside those References
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