
Parametric Identification of Temporal Properties

Eugene Asarin1, Alexandre Donzé2, Oded Maler2, and Dejan Nickovic3

1 LIAFA, Université Paris Diderot / CNRS, Paris, France
2 Verimag, Université Joseph Fourier /CNRS, Gières, France

3 IST Austria, Klosterneuburg, Austria

Abstract. Given a dense-time real-valued signal and a parameterized temporal
logic formula with both magnitude and timing parameters, we compute the sub-
set of the parameter space that renders the formula satisfied by the trace. We
provide two preliminary implementations, one which follows the exact semantics
and attempts to compute the validity domain by quantifier elimination in linear
arithmetics and one which conducts adaptive search in the parameter space.

1 Introduction

Much of discrete verification is concerned with evaluating behaviors (traces) generated
by a system model against specifications that classify behaviors as good or bad. A simi-
lar approach is used in other engineering domains, where the system model is described
using some modeling and numerical simulation framework. Such models, which seman-
tically correspond to continuous or hybrid systems, generate finite traces (trajectories,
waveforms, signals). The simulation traces are then evaluated according to some per-
formance measures, which are typically quantitative in nature. Such trace evaluation
procedures are integrated in the development cycle of the system, where each time a
specification violation is found or a behavior of a poor performance is observed, the
systems is modified or fine-tuned to achieve its correctness or improve its performance.

The above description fits well the development of engineered systems constructed
from components with known input-output behavior. Simulation and verification are
required only because the outcome of the interaction between these components is hard
to predict beyond a certain complexity. The specifications describe at a high-level the
intended functionality that we want the system to achieve.

In this work we tackle the inverse problem, namely, given a trace or a set of traces,
find a specification that it satisfies. The procedure used to resolve this problem consists
in learning from examples (system identification, inductive inference, parameter esti-
mation), and can be very useful in the context of experimental science such as Biology
where one wants to come up with a succinct and human intelligible description of ex-
perimentally observed data. This approach can also help in the design of systems that
admit physical parts whose properties are characterized experimentally, for example,
analog components in digital circuits, and be integrated in a framework for composi-
tional reasoning based on assume-guarantee principles.

As a specification formalism, we adopt signal temporal logic (STL) introduced in
[17] to express and monitor temporal properties of dense-time real-valued signals. We
introduce PSTL, a parametric extension of STL, where threshold constants in numerical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268224723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

inequalities as well as delay bounds in temporal operators can be replaced by param-
eters. Then, we solve the following problem: Given a PSTL formula, find the range of
parameters that render the formula satisfied by a given set of traces. This work ex-
tends the pioneering work of Fages and Rizk [10] who identify parameter ranges for
numerical predicates on top of a the discrete-time temporal logic LTL [22]. Our use of
a dense-time logic, where time is handled arithmetically, rather than as a sequence of
“ticks”, makes the whole framework more robust to changes in sampling rates or inte-
gration steps. More importantly, it allows us to use parameters in the temporal operators
and compute trade-offs between timing and magnitude parameters.

The rest of the paper is organized as follows. In Sect. 2 we present PSTL and its se-
mantics in terms of validity domains. In Sect. 3 we show that validity domains for PSTL
formulae relative to (interpolated) piecewise-linear signals are semilinear and show that
they can be computed, in principle, by quantifier elimination. In Sect. 4 we move to
an approximate computation based on adaptive sampling of the parameter space using
recently-developed techniques for approximating Pareto fronts. We demonstrate the vi-
ability of the approach by computing the validity domains on a non-trivial example of a
stabilization property with 3 parameters relative to a signal with 1024 sampling points.
We conclude with a discussion of past and future work.

2 Parametric Signal Temporal Logic

Parametric signal temporal logic (PSTL) is based on the logic STL introduced in [17,
21, 18] for specifying and monitoring properties of real-valued continuous time signals,
in particular those produced by analog circuits [13]. In the rest of the paper, we assume
a time domain T = [0,∞) (or a finite prefix of it) and traces (signals) of the form
x : T→ Rn. We use x[t] to denote the value of x at time t and xi[t] for the value of its
ith coordinate.

We abuse the same variables {x1, . . . , xn} to speak of the value of the signal in the
logical formulae. In addition we use two types of parameters, magnitude parameters
{p1, . . . , pg} and timing parameters {s1, . . . , sh}, ranging over their respective domains
P and S, say hyper-rectangles in Rg and Rh, respectively.We use p and s for the vectors
of all parameters. A numerical predicate µ is an inequality of the form f(x) < θ or
f(x) > θ where f is a function from Rn to R and θ is a threshold which is either a
constant c or a magnitude parameter pi. We use I to denote an interval of the form (a, b),
(a, b], [a, b), [a, b], (a,∞) or [a,∞)where each of a, b can be either a non-negative
constant or a timing parameter si. When both bounds are constants we require 0 ≤ a <
b. A PSTL formula is then defined by the grammar

ϕ := µ|¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UIϕ2

The usual always and eventually operators are defined as: ♦Iϕ , true UIϕ and�Iϕ ,
¬♦I¬ϕ.

A parameter valuation (u, v) ∈ Rg ×Rh transforms a PSTL formula ϕ into an STL
formula ϕu,v obtained by substituting the values (u, v) in the parameters (p, s). We use
the notation θu,v to denote the threshold obtained from θ by such a substitution and Iu,v
for the similar operation on the interval I .

The polarity π(p, ϕ) of a parameter p with respect to a formula ϕ is positive if it is
easier to satisfy ϕ as we increase the value of p and is negative if it is harder. Intuitively,
magnitude parameters satisfy

π(p, f(x) < p) = + π(p, f(x) > p) = −

and timing parameters satisfy

π(s, ϕ U[b,s]ψ) = + π(s, ϕ U[s,b]ψ) = −

We assume henceforth that each parameter has either a positive or negative polarity and
without loss of generality, that it is positive.

The semantics of a PSTL formula ϕ with respect to a signal x is given, following
[10], in terms of a validity domain D(x, ϕ) ⊆ P×S consisting of all tuples (u, v) such
that x satisfies ϕu,v in the usual sense of STL satisfaction. To compute it we will need
at intermediate stages extended validity domains of the form d(x, ϕ) ⊆ T × P × S
consisting of all tuples (t, u, v) such that (x, t) |= ϕu,v . Then D(x, ϕ) = {(u, v) :
(0, u, v) ∈ d(x, ϕ)} consists of all parameter values that yield satisfaction at time zero.

Definition 1 (Validity Domain). The validity domain of a formula ϕ with respect to a
signal x is defined inductively as follows.

d(x, f(x) < θ) = {(t, u, v) : f(x(t)) < θu,v}
d(x, ϕ ∧ ψ) = d(x, ϕ) ∩ d(x, ψ)
d(x,¬ϕ) = d(x, ϕ)
d(x, ϕ UIψ) = {(t, u, v) : ∃t′ ∈ t⊕ Iu,v s.t. (t′, u, v) ∈ d(x, ψ)∧

∀t′′ ∈ [t, t′](t′′, u, v) ∈ d(x, ϕ)}

d(x, f(x) < p) = {(t, u, v) :
k−1∨
j=0

(tj < t < tj+1) ∧ (αjt+ βj < u)}

which is semilinear. For the inductive case, closure under Boolean operations is imme-
diate. For the until operator observe that d(x, ϕ U[s1,s2]ψ) can be written as

{(t, u, v) : ∃t′ (t+ v1 ≤ t′ ≤ t+ v2) ∧ (t′, u, v) ∈ d(x, ψ)∧
∀t′′(t ≤ t′′ ≤ t′)⇒ (t′′, u, v) ∈ d(x, ϕ)}

Note that in the terminology of machine learning and inductive inference, our whole
setting is that of learning from positive examples: we observe traces that occur but
nobody gives us impossible traces. Hence it is natural to look for the minimal elements
of the validity domain that yield the tightest (strongest) formulae satisfied by the traces.

3 Computing Validity Domains

In this section, we present a procedure for exact computation of validity domains for
a given trace and PSTL formula, and illustrate it with a simple example. Finally, we
present experimental results that indicate how this exact technique scales both with
respect to the size of the input traces and the size of the PSTL formula.

3.1 Semilinear Validity Domains

To start with, observe that the semantics of STL formulae is defined in terms of dense-
time real-valued signals, but in reality the signals that one can observe, either experi-
mentally or via numerical simulators, are sampled signals consisting of sequences of
time stamped values of the form

(t0, x[t0]), (t1, x[t1]), . . . , (tk, x[tk]). (1)

for an increasing sequence of time stamps with t0 = 0. We interpret these sampled
signals as continuous-time signals using linear interpolation as in [18]. In each interval
of the form [tj , tj+1] we consider the value of x[t] to be

x[t] = x[tj] +
x[tj+1]− x[tj]
tj+1 − tj

· t = βj + αjt.

Definition 2 (Semilinear Validity Domains). A subset of the parameter space is semi-
linear if it can be written as a Boolean combination of linear inequalities on the corre-
sponding variables.

Proposition 1. For every PSTL formula ϕ and piecewise-linear signal x, the validity
domain D(x, ϕ) is semilinear.

Proof. We first prove that d(x, ϕ) is semilinear for every ϕ by a simple induction on
the structure of the formula. For the base case of a predicate f(x) < p we first construct
from x a derived sampled signal y = (t0, y[t0]), (t1, y[t1]), . . . with y[tj] = f(x[tj])
that by interpolation is extended to the real time axis to obtain y[t] = αjt+βj whenever
t ∈ [tj , tj+1]. Then the validity domain can be written as

d(x, f(x) < p) = {(t, u, v) :
k−1∨
j=0

(tj < t < tj+1) ∧ (αjt+ βj < u)}

which is semilinear. For the inductive case, closure under Boolean operations is imme-
diate. For the until operator observe that d(x, ϕ U[s1,s2]ψ) can be written as

{(t, u, v) : ∃t′ (t+ v1 ≤ t′ ≤ t+ v2) ∧ (t′, u, v) ∈ d(x, ψ)∧
∀t′′(t ≤ t′′ ≤ t′)⇒ (t′′, u, v) ∈ d(x, ϕ)}

and since semilinear sets are closed under universal and existential projection (quantifier
elimination) and d(x, ϕ) and d(x, ψ) are semilinear by the inductive hypothesis, the
result follows. Finally, transforming d to D by projecting on t = 0 also preserves
semilinearity.

Note that a function f appearing in a predicate need not be necessarily linear. The
result also holds when each f is linear and parameters are allowed as coefficients. In
the discrete time logic used in [10], the restriction of parameters to threshold will lead
to rectangular validity domains. The extension of Proposition 1 to validity domains
associated with several signals is trivial: D({x, x′}, ϕ) = D(x, ϕ) ∩D(x′, ϕ).

3.2 Example

Let us illustrate the computation of validity domains on the formulaϕ = ♦[0,s2]�[0,s1](x <
p) and some of its variants and subformulae relative to the signal x of Fig. 3.2-(a). The
formula admits two temporal parameters s1 and s2 and a magnitude parameter p. The
validity domain V1 = d(x, x < p), depicted in Fig. 3.2-(b), is

V1 = (t ≥ 0 ∧ t < 2 ∧ 2p > 4t) ∨
(t ≥ 2 ∧ t < 4 ∧ 2p+ 4t > 16) ∨
(t ≥ 4 ∧ t < 5 ∧ p > 2t− 8) ∨
(t ≥ 5 ∧ t < 6 ∧ p+ 2t > 12)

The validity domain V2 = d(x,�[0,s1](x < p)), which by definition is the set {(t, p, s1) | ∀t′ ∈
[t, t + s2] ∩ [0, 6), (t′, p, s1) ∈ d(x, x < p)}, is obtained by eliminating the universal
quantifier, yielding a validity domain expressed by:

V2 = (p+ 2s1 + 2t < 12 ∨ p+ 2t > 12 ∨ p > 0 ∨ p ≤ 0)∧
(p+ 2s1 + 2t < 8 ∨ p+ 2t > 8 ∨ p+ 4 ≤ 0 ∨ p > 4)∧
(s1 + t ≥ 6 ∨ (p− 2s1 − 2t > 0 ∧ s1 + t < 2)∨
(p+ 2s1 + 2t > 8 ∧ s1 + t ≥ 2 ∧ s1 + t < 4)∨
(p− 2s1 − 2t+ 8 > 0 ∧ s1 + t ≥ 4 ∧ s1 + t < 5)∨
(p+ 2s1 + 2t > 12 ∧ s1 + t ≥ 5)) ∧ (p ≥ 2 ∨ s1 + t < 5 ∨ t ≥ 5)∧
(p > 0 ∨ s1 + t < 4 ∨ t ≥ 4) ∧ (p ≥ 4 ∨ s1 + t < 2 ∨ t1 ≥ 2)∧
(p > 0 ∨ s1 + t < 6 ∨ t ≥ 6)

Figures 3.2-(c,d) depict the projections of V2 on p = 1 and p = 2, respectively. Finally
the validity domain of the top-level formula, V3 = d(x,♦[0,s2]�[0,s1](x < p)), which
is the set {(t, p, s1, s2) | ∃t′ ∈ [t, t+ s2]∩ [0, 6) s.t. (t′, p, s1, s2) ∈ V2}, is obtained by
eliminating the existential quantifier. The projection of V3 on t = 0 and p = 2 yields
the domain expressed by the following quantifier-free formula:

V3 = (s1 + s2 ≥ 5 ∧ 0 ≤ s1 < 2 ∧ s2 ≥ 0)∨
(s1 + s2 > 5 ∧ s1 ≥ 0 ∧ s2 > 5)∨
(s1 + s2 ≥ 4 ∧ s1 + s2 < 5 ∧ s1 ≥ 0 ∧ s2 > 3)∨
(s1 + s2 > 3 ∧ s1 + s2 < 4 ∧ s1 ≥ 0 ∧ s2 > 3)∨
(s1 ≥ 0 ∧ s2 ≥ 6) ∨ (s1 < 1 ∧ s1 ≥ 0 ∧ s2 ≥ 0)∨
(s1 + s2 < 1 ∧ s1 ≥ 0 ∧ s2 ≥ 0)

The projections of V3 on (s1 = 1.5 ∧ p = 2) and on (t = 0 ∧ p = 2) are shown
Figures 3.2-(e) and 3.2-(f), respectively.

Fig. 1. (a) Signal x; (b) d(x, x < p); (c) d(x,�[0,s1](x < 1)); (d) d(x,�[0,s1](x < 2)); (e)
d(x,♦[0,s2]�[0,1.5](x < 2)); and (f) D(x,♦[0,s2]�[0,s1](x < 2))

3.3 Experimental Results

We have implemented the above semantics using the linear quantifier elimination pro-
cedure of the tool Redlog [14]. It should be noted that our implementation consists of
a straightforward invocation of the elimination procedure with no attempt to tailor and
tune the procedure to the specificity of our problem (see further discussion on Sect. 5).
As a benchmark we use the following very typical stabilization (disturbance rejection)
property:

ϕst : �((x ≥ p)→ ♦[0,s2]�[0,s1](x < p)). (2)

The property speaks of a controlled signal which is required in normal conditions to
stay below a threshold p. If due to some disturbance the signal is driven above p, than
the control system should stabilize it with s1 time, that is, drive it again below p, and
moreover, stay below p for at least s2 time. Characterizing the parameters (delays and
amplitudes) of such a behavior is relevant for many systems ranging from heart pace-
makers to cooling systems in nuclear power plants.

We find validity domains for this formula relative to the signal xst of Fig. 2 repre-
sented by k = 1024 sampling points. Since the complexity of the validity domain and
quantifier elimination depends on k we apply our procedure to various under-samplings
of xst, see Fig. 2. Of course, below some sampling resolution, the signal loses its char-
acteristics and the results become less meaningful.

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

15

20

Fig. 2. The signal xst against which the stability property is tested: 1024 sampling points (con-
tinuous blue) and 16 sampling points (dashed red).

Table 3.3 shows some statistics on computation time and description size of the
validity domain for the formula ϕst and its subformulae

ϕ1 : �[0,s1](x < p)
ϕ2 : ♦[0,s2]�[0,s1](x < p)
ϕ3 : (x ≥ p)→ ♦[0,s2]�[0,s1](x < p)

against various sampled versions of xst. The size of the solution corresponds to the
number of linear inequalities used for its representation (no redundancy elimination
applied at this point) and the symbol ∗ denotes a time-out after 10 minutes.

formula ϕ1 ϕ2 ϕ3 ϕst

k time(s) size time(s) size time(s) size time(s) size
8 0.02 38 0.11 197 0.17 207 3 4219
16 0.10 66 0.81 855 0.74 375 83.79 37709
32 0.26 86 19.07 6553 18.27 2885 ∗ ∗
64 4.16 144 341.95 23103 308.93 10258 ∗ ∗
128 68.29 895 ∗ ∗ ∗ ∗ ∗ ∗
256 386.72 3098 ∗ ∗ ∗ ∗ ∗ ∗

Table 1. Computation time and description size for the stabilization formula ϕst and its subfor-
mulae for different sampling of signal xst.

Note that in the worst case, the Fourier-Motzkin quantifier elimination procedure
may square the number of constraints which gives a description size of k2

m

where m is
the number of nested simple (� or ♦) temporal operators, not counting the normaliza-
tion of the formula after each iteration.

4 Approximating Validity Domains

The limitations of the exact method motivate us to apply an alternative approximation
technique based on intelligent search in the parameter space. For every point (u, v) in
the parameter space we can pose a query concerning its membership in D(x, ϕ) by
constructing the STL formula ϕu,v and checking whether x |= ϕu,v . This approach to
parameter space exploration has been implemented in a tool [5] and applied to embed-
ded [7] and biological [6] case studies. To conduct this exploration efficiently we will
take advantage of an additional property of our validity domains due to the use of a
fixed polarity for each parameter.

Definition 3 (Monotonic Validity Domains). A subset V ⊆ P × S is monotonic if
for every i, whenever a parameter valuation (v1, . . . , vi, . . . , vg+h) is in V so is any
(v1, . . . , v

′
i, . . . , vg+h) ∈ P × S satisfying v′i > vi (when π(pi, ϕ) = +) or v′i < vi

(when π(pi, ϕ) = −).

To facilitate the discussion we apply a coordinate transformation to the parameter space
and replace every negative polarity parameter p by its complement −p and thus deal
with validity domains which are upward closed relative to the parameter space, namely
v ∈ V implies v′ ∈ V for every v′ > v . The set of minimal parameter values that render
the formula satisfied is the boundary between the validity domain and its complement
relative to the parameter space. Such sets are known in the context of multi-criteria
optimization [9] as Pareto surfaces or Pareto fronts, see Fig. 3-(a). An ε-approximation
of the surface is a set of points S ⊆ V such that that each point on the surface admits
an ε-close point in S. In other words, the set S consists of a representative sample of
the optimal trade-offs available in the problem. In the following we describe briefly the
exploration technique developed in [15] for efficient approximation of Pareto fronts,
which constitutes a multi-dimensional generalization of binary search.

D(x, ϕ)

p1

p2

p1

p2

D+

D−

(a) (b)

Fig. 3. (a) An upward-closed validity domain in 2 dimensions and its lower boundary (thick line);
(b) state of knowledge after 3 positive and 3 negative queries in the parameter space.

Figure 3-(b) depicts our state of knowledge after performing 3 positive and 3 neg-
ative queries in the parameter space. Since the set is upward closed, we know that the
upward closure of the positive points (the set D+) is included in D(x, ϕ) while the
downward closure of the negative points (the set D−) is included in the the comple-
ment of D(x, ϕ). The frontier that we look for is situated between these two sets, and
the distance between their boundaries gives and upper bound the quality of the approxi-
mation (ε) provided by the set of positive points. Orienting subsequent queries to points
in the parameter space that reduce this distance provides for focusing the queries on the
boundary, see more details in [15]. Exponentionality in the dimension of the parameter
space cannot be, of course, avoided but the time for each query is linear in k. We have
implemented a search based approach to the example, and Fig. 4 depicts the surface
obtained for ϕst and the 1024-points version of xst.

Fig. 4. Approximate boundary of the validity domain D(xst, ϕst) for the stabilization formula
ϕst with parameters s1, s2 and p, for signal xst of Fig. 2 with k = 1024.

5 Discussion

We have shown how to synthesize magnitude and timing parameters in a quantitative
temporal logic formula so that it fits observed data. The only similar work we are aware
of is that of [10] that we extend by making the temporal dimension quantitative and
hence parameterizable. This line of work should not be confused with other types of
“temporal queries”, e.g. [4] where a parametric temporal formula contains a “place-
holder” that needs to be replaced by a proposition resulting in a formula that satis-
fies a given model. In the context of real-time model checking, the decision problems
for parametric timed automata and parametric extension of a real-time temporal logic
MITL were studied in [12, 3].

We consider the following extensions of this work in order to enlarge its scope both
in terms of problem size and richer settings. We are investigating specialized ways to
organize the quantifier elimination process so as to proceed along the time axis, in the
same manner as qualitative [18] and quantitative [8] satisfaction is computed. A par-
ticular difficulty here is that validity domains do not decompose naturally into time
segments, that is, a disjunction where each disjuncts admits a distinct term of the form
a < t < b, but rather segments of the from a < t + s < b for a temporal parameters
s. Another technical problem to solve is the efficient derivation of the semilinear for-
mula characterizing the minimal facets of a non-convex validity domain. To this end we
intend to employ the novel quantifier elimination techniques of [19, 20].

Although the restriction to parameters of fixed polarity is justified in many cases
and simplifies life, one can imagine situations where it should be dropped, for example
in a predicate of the form p + a < x < p + b where the value of x is constrained to
be in an interval of a fixed size but a parameterized displacement. Likewise we may
have parameterized temporal intervals of the form [s + a, s + b]. In such situations,
semilinearity is preserved but not monotonicity. Other relaxation of fixed polarity may
be required in the context of parameters in nonlinear functions. In the absence of mono-
tonicity, finding the minimal set of parameters is not the only natural choice. In fact,
one my argue on the contrary, that it is safer to pick parameters which are deep inside
the validity domain as they provide for more robust [23, 11, 8] satisfaction. Since tight-
ness and robustness are conflicting goals perhaps the best solution would be to provide
trade-offs (Pareto points) between the two.

The work presented in this paper was fully parametric in the sense that the template
formula ϕ is given and only parameters were sought. A more ambitious goal would be
to combine it with a search in the space of formula templates. While such a solution
will bring us closer to the science fiction scenario of automatic derivation of theories
from experiments, it is clear that it is very easy to face a combinatorial explosion if the
search space is not restricted to some small class of property templates. For for example
one may consider response properties of the form �(ϕ ⇒ ♦Iψ) where both ϕ and ψ
are Boolean combinations of a small number of simple predicates.

In the more general context, the technique presented here may occupy an interest-
ing niche in all domains that deal with this kind of reverse engineering, e.g. system
identification [16], machine learning [2] or inductive inference [1]. In all these areas
one wants to generalize from observations and find a mathematical model compatible
with them. In the context of signals, one can think of two extreme classes of target
models: detailed models of dynamical systems that produce traces which are close to
the observed ones or more abstract logical theories that define logical dependencies
between observations. Temporal logic [22], which is a logic tailored for describing dy-
namic behaviors, augmented with quantitative constructs in time and space as in STL,
can offer an interesting tradeoff between the over determination of dynamic models and
the quantitative vagueness of too abstract logical statements such as A causes B that are
sometimes used to summarize experimental findings in the life sciences. A temporal
formula expressing the quantitative temporal constraints between the evolution of real-
valued observed quantities might provide an optimal level of detail in some application
domains.

References

1. D. Angluin and C. H. Smith. Inductive inference: Theory and methods. ACM Comput. Surv.,
15(3):237–269, 1983.

2. C. M. Bishop. Pattern Recognition and Machine Learning. Springer Verlag, 2006.
3. L. Bozzelli and S. La Torre. Decision problems for lower/upper bound parametric timed

automata. In ICALP, pages 925–936, 2007.
4. W. Chan. Temporal-locig queries. In CAV, pages 450–463, 2000.
5. A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems. In

CAV, pages 167–170, 2010.

6. A. Donzé, G. Clermont, and C. J. Langmead. Parameter synthesis in nonlinear dynamical
systems: Application to systems biology. Journal of Computational Biology, 17(3):325–336,
2010.

7. A. Donzé, B. H. Krogh, and A. Rajhans. Parameter synthesis for hybrid systems with an
application to simulink models. In HSCC’09, LNCS. Springer-Verlag, April 2009.

8. A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued signals. In
FORMATS 2010, volume 6246 of LNCS, pages 92–106. Springer, 2010.

9. M. Ehrgott. Multicriteria optimization. Springer Verlag, 2005.
10. F. Fages and A. Rizk. From model-checking to temporal logic constraint solving. In CP,

pages 319–334, 2009.
11. G. E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications for continuous-

time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.
12. B. Di Giampaolo, S. La Torre, and M. Napoli. Parametric metric interval temporal logic. In

LATA, pages 249–260, 2010.
13. K. D. Jones, V. Konrad, and D. Nickovic. Analog property checkers: a ddr2 case study.

Formal Methods in System Design, 36(2):114–130, 2010.
14. A. Lasaruk and T. Sturm. Effective quantifier elimination for presburger arithmetic with

infinity. In CASC, pages 195–212, 2009.
15. J. Legriel, C. Le Guernic, S. Cotton, and O. Maler. Approximating the Pareto front of

multi-criteria optimization problems. In TACAS 2010, volume 6015 of LNCS, pages 69–
83. Springer, 2010.

16. L. Ljung. System Identification - Theory For the User. Prentice Hall, 1999.
17. O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In FOR-

MATS/FTRTFT, pages 152–166, 2004.
18. O. Maler, D. Nickovic, and A. Pnueli. Checking temporal properties of discrete, timed and

continuous behaviors. In Pillars of Computer Science, pages 475–505, 2008.
19. D. Monniaux. A quantifier elimination algorithm for linear real arithmetic. In LPAR’08,

number 5330 in LNCS, pages 243–257. Springer Verlag, 2008.
20. D. Monniaux. Automatic modular abstractions for linear constraints. In POPL’09, pages

140–151. ACM, 2009.
21. D. Nickovic and O. Maler. AMT: A property-based monitoring tool for analog systems. In

FORMATS, pages 304–319, 2007.
22. A. Pnueli. The Temporal Semantics of Concurrent Programs. Theoretical Computer Science,

13:45–60, 1981.
23. A. Rizk, G. Batt, F. Fages, and S. Soliman. On a continuous degree of satisfaction of temporal

logic formulae with applications to systems biology. In CMSB, pages 251–268, 2008.

Appendix: Parameter Polarity

Let >, +, − and ⊥ indicate, respectively, undefined, positive, negative and mixed po-
larities. The polarity of a magnitude parameter p in a formula ϕ is defined inductively
as follows.

π(p, f(x) < c) = π(p, f(x) > c) = >
π(p, f(x) < p) = + π(p, f(x) > p) = −

π(p,¬ϕ) =∼ π(p, ϕ)
π(p, ϕ UIψ = π(p, ϕ ∧ ψ) = π(p, ϕ) ◦ π(p, ψ)

For a timing parameter s we have

π(s, µ) = >
π(s, ϕ UIψ) = u ◦ (π(p, ϕ) ◦ π(p, ψ))

where

u =

+ when I = [a, s]
− when I = [s, b]
> otherwise

The rules for negation and conjunction are identical to the rules for magnitude parame-
ters. Operations ∼ and ◦ are defined as

◦ > + − ⊥
> > + − ⊥
+ + + ⊥ ⊥
− − ⊥ − ⊥
⊥ ⊥ ⊥ ⊥ ⊥

∼
> >
+ −
− +
⊥ ⊥

A formula is fine if the polarity of every parameter is either + or −. We consider only
fine formulae.

