Vertical Visibility among Parallel Polygons in Three Dimensions ${ }^{\star}$

Radoslav Fulek ${ }^{1}$ and Rados Radoicic ${ }^{2}$
${ }^{1}$ IST Austria,
Am Campus 1, Klosterneuburg 3400, Austria radoslav.fulek@gmail. com
${ }^{2}$ Baruch College, CUNY, New York City, NY, USA radosrr@gmail. com

Abstract

Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ denote a collection of translates of a regular convex k-gon in the plane with the stacking order. The collection \mathcal{C} forms a visibility clique if for every $i<j$ the intersection C_{i} and C_{j} is not covered by the elements that are stacked between them, i.e., $\left(C_{i} \cap C_{j}\right) \backslash \bigcup_{i<l<j} C_{l} \neq \emptyset$. We show that if \mathcal{C} forms a visibility clique its size is bounded from above by $O\left(k^{4}\right)$ thereby improving the upper bound of $2^{2^{k}}$ from the aforementioned paper. We also obtain an upper bound of $2^{2\binom{k}{2}+2}$ on the size of a visibility clique for homothetes of a convex (not necessarily regular) k-gon.

1 Introduction

In a visibility representation of a graph $G=(V, E)$ we identify the vertices of V with sets in the Euclidean space, and the edge set E is defined according to some visibility rule. Investigation of visibility graphs, driven mainly by applications to VLSI wire routing and computer graphics, goes back to the 1980s [12|14]. This also includes a significant interest in three-dimensional visualizations of graphs [3|4]8|10].

Babilon et al. [1] studied the following three-dimensional visibility representations of complete graphs. The vertices are represented by translates of a regular convex polygon lying in distinct planes parallel to the $x y$-plane and two translates are joined by an edge if they can see each other, which happens if it is possible to connect them by a line segment orthogonal to the $x y$-plane avoiding all the other translates. They showed that the maximal size $f(k)$ of a clique represented by regular k-gons satisfies $\left\lfloor\frac{k+1}{2}\right\rfloor+2 \leq$ $f(k) \leq 2^{2^{k}}$ and that $f(3) \geq 14$. Hence, $\lim _{k \rightarrow \infty} f(k)=\infty$. Fekete et al. [8] proved that $f(4)=7$ thereby showing that $f(k)$ is not monotone in k. Nevertheless, it is plausible that $f(k+2) \geq f(k)$ for every k, and surprisingly enough this is stated as an open problem in [1]. Another interesting open problem from the same paper is to decide if the limit $\lim _{k \rightarrow \infty} \frac{f(k)}{k}$ exists. In the present note we improve the above upper bound on $f(k)$ to $O\left(k^{4}\right)$ and we extend our investigation to families of homothetes of

[^0]general convex polygons. The main tool to obtain the result is Dilworth Theorem [6], which was also used by Babilon et al. to obtain the doubly exponential bound in [1]. Roughly speaking, our improvement is achieved by applying Dilworth Theorem only once whereas Babilon et al. used its k successive applications.

Fekete et al. [8] observed that a clique of arbitrary size can be represented by translates of a disc. Their construction can be adapted to translates of any convex set whose boundary is partially smooth, or to translates of possibly rotated copies of a convex polygon. The same is true for non-convex shapes, see Fig. 1

Fig. 1. A visibility clique formed by translates of a non-convex 4-gon.

An analogous question was extensively studied for arbitrary, i.e. not necessarily translates or homothetes of, axis parallel rectangles [3|8], see also [11]. Bose et al. [3] showed that in this case a clique on 22 vertices can be represented. On the other hand, they showed that a clique of size 57 cannot be represented by rectangles.

For convenience, we restate the problem of Babilon et al. as follows. Let $\mathcal{C}=$ $\left\{C_{1}, \ldots, C_{n}\right\}$ denote a collection of sets in the plane with the stacking order given by the indices of the elements in the collection. By a standard perturbation argument, we assume that the boundaries of no three sets in \mathcal{C} pass through a common point. The collection \mathcal{C} forms a visibility clique if for every i and $j, i<j$, the intersection C_{i} and C_{j} is not covered by the elements that are stacked between them, i.e., $\left(C_{i} \cap C_{j}\right) \backslash \bigcup_{i<k<j} C_{k} \neq \emptyset$. Note that reversing the stacking order of \mathcal{C} does not change the property of \mathcal{C} forming a visibility clique. We are interested in the maximum size of \mathcal{C}, if \mathcal{C} is a collection of translates and homothetes, resp., of a convex k-gon. We prove the following.

Theorem 1. If \mathcal{C} is a collection of translates of a regular convex k-gon forming a visibility clique, the size of \mathcal{C} is bounded from above by $O\left(k^{4}\right)$.

Theorem 2. If \mathcal{C} is a collection of homothetes of a convex k-gon forming a visibility clique, the size of \mathcal{C} is bounded from above by $2^{2\binom{k}{2}+2}$.

The paper is organized as follows. In Section 2 we give a proof of Theorem 1 . In Section 3 we give a proof of Theorem 2 . We conclude with open problems in Section 4 .

2 Proof of Theorem 1

We let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ denote a collection of translates of a regular convex k-gon C in the plane with the stacking order given by the indices of the elements in the collection.

Let $\mathbf{c}_{\mathbf{i}}$ denote the center of gravity of C_{i}. We assume that \mathcal{C} forms a visibility clique. We label the vertices of C by natural numbers starting in the clockwise fashion from the topmost vertex, which gets label 1 . We label in the same way the vertices in the copies of C. The proof is carried out by successively selecting a large and in some sense regular subset of \mathcal{C}. Let W_{i} be the convex wedge with the apex $\mathbf{c}_{\boldsymbol{1}}$ bounded by the rays orthogonal to the sides of C_{1} incident to the vertex with label i. The set \mathcal{C} is homogenous if for every $1 \leq i \leq k$ all the vertices of C_{j} 's with label i are contained in W_{i}. We remark that already in the proof of the following lemma our proof falls apart if C can be arbitrary or only centrally symmetric convex k-gon.

Lemma 1. If C is a regular k-gon then \mathcal{C} contains a homogenous subset of size at least $\Omega\left(\frac{n}{k^{2}}\right)$.

Let $\left(C_{i_{1}}, \ldots, C_{i_{n}}\right)$ be the order in which the ray bounding W_{i} orthogonal to the segment $i[(i-1) \bmod k]$ of C_{1} intersects the boundaries of C_{j} 's. The set \mathcal{C} forms an i-staircase if the order $\left(C_{i_{1}}, \ldots, C_{i_{n}}\right)$ is the stacking order. As a direct consequence of Dilworth Theorem or Erdős-Szekeres Lemma [677] we obtain that if \mathcal{C} is homogenous, it contains a subset of size at least $\sqrt{|\mathcal{C}|}$ forming an i-staircase.

A graph $G=(\{1, \ldots, n\}, E)$ is a permutation graph if there exists a permutation π such that $i j \in E$, where $i<j$, iff $\pi(i)>\pi(j)$. Let $G_{i}=\left(\mathcal{C}^{\prime}, E\right)$ denote a graph such that \mathcal{C}^{\prime} is a homogenous subset of \mathcal{C}, and two vertices C_{j}^{\prime} and C_{k}^{\prime} of G_{i} are joined by an edge if and only if the orders in which the rays bounding W_{i} intersect the boundaries of C_{j}^{\prime} and C_{k}^{\prime} are reverse of each other. In other words, the boundaries of C_{j}^{\prime} and C_{k}^{\prime} intersect inside W_{i}, see Fig. 2(a). Thus, G_{i} 's form a family of permutation graphs sharing the vertex set. Note that every pair of boundaries of elements in \mathcal{C}^{\prime} cross exactly twice.

Since for an even k a regular k-gon is centrally symmetric the graphs G_{i} and $G_{i+k / 2} \bmod k$ are identical. For an odd k, we only have $G_{i} \subseteq G_{i+\lceil k / 2\rceil \bmod k} \cup$ $G_{i+\lfloor k / 2\rfloor \bmod k}$. The notion of the i-staircase and homogenous set is motivated by the following simple observation illustrated by Fig. 2(b)

Fig. 2. (a) The wedge W_{1} containing all the copies of vertex 1. (b) The 1-staircase giving rise to a clique of size three in G_{1} and G_{j} for some j that cannot appear in a visibility clique.

Observation 1 If \mathcal{C}^{\prime} forms an i-staircase then there do not exist two indices i and j, $i \neq j$, such that both G_{i} and G_{j} contain the same clique of size three.

The following lemma lies at the heart of the proof of Theorem 1
Lemma 2. Suppose that \mathcal{C}^{\prime} forms an i-staircase, and that there exists a pair of identical induced subgraphs $G_{i}^{\prime} \subseteq G_{i}$ and $G_{j}^{\prime} \subseteq G_{j}$, where $i \neq j$, containing a matching of size two. Then \mathcal{C}^{\prime} does not form a visibility clique.

Proof. The lemma can be proved by a simple case analysis as follows. There are basically two cases to consider depending on the stacking order of the elements of \mathcal{C}^{\prime} supporting the matching M of size two in G_{i}^{\prime}. Let u_{1}, v_{1} and u_{2}, v_{2}, respectively, denote the vertices (or elements of \mathcal{C}^{\prime}) of the first and the second edge in M, such that u_{1} is the first one in the stacking order. By symmetry and without loss of generality we assume that the ray R bounding W_{i} orthogonal to the segment $i[(i-1) \bmod k]$ of C_{1} intersects the boundary of u_{1} before intersecting the boundaries of u_{2}, v_{1} and v_{2}, and the boundary of u_{2} before v_{2}.

First, we assume that R intersects the boundary of u_{2} before the boundary of v_{1}. In the light of Observation 1, $, u_{1}, v_{1}$ and u_{2} look combinatorially like in the Fig. 3(a), Then all the possibilities for the position of v_{2} cause that the first and last element in the stacking order do not see each other. Otherwise, R intersects the boundary of v_{1} before the boundary of u_{2}. In the light of Observation $1, u_{1}, v_{1}$ and u_{2} look combinatorially like in the Fig. 3(b), but then v_{2} cannot see u_{1}.

Fig. 3. The case analysis of possible combinatorial configurations of the boundaries of u_{1}, v_{1}, u_{2} and v_{2}, after the first three boundaries were fixed. (a) If R intersects the boundary of u_{2} before v_{1} the first and the last element in the stacking order cannot see each other. (b) If R intersects the boundary of v_{1} before u_{2} then u_{1} cannot see v_{2}.

Finally, we are in a position to prove Theorem 1 We consider two cases depending on whether k is even or odd. First, we treat the case when k is even which is easier.

Thus, let C be a regular convex k-gon for an even k. By Lemma 1 and Dilworth Theorem we obtain a homogenous subset \mathcal{C}^{\prime} of \mathcal{C} of size at least $\Omega\left(\sqrt{\frac{n}{k^{2}}}\right)$ forming a 1 -staircase. Note that for \mathcal{C}^{\prime} the hypothesis of Lemma 2 is satisfied with $i=1$ and $j=1+k / 2$. Since \mathcal{C}^{\prime} forms a visibility clique, the graph G_{1} does not contain a matching of size two. Hence, $G_{1}=\left(\mathcal{C}^{\prime}=\mathcal{C}_{1}, E\right)$ contains a dominating set of vertices \mathcal{C}_{1}^{\prime} of size at most two. Let $\mathcal{C}_{2}=\mathcal{C}_{1} \backslash \mathcal{C}_{1}^{\prime}$. Note that \mathcal{C}_{2} forms a 2 -staircase and that the hypothesis of Lemma 2 is satisfied with $\mathcal{C}^{\prime}=\mathcal{C}_{2}, i=2$ and $j=2+k / 2 \bmod k$.

Thus, $G_{2}=\left(\mathcal{C}_{2}, E\right)$ contains a dominating set of vertices \mathcal{C}_{2}^{\prime} of size at most two. Hence, $\mathcal{C}_{3}=\mathcal{C}_{2} \backslash \mathcal{C}_{2}^{\prime}$ forms a 3-staircase. In general, $\mathcal{C}_{i}=\mathcal{C}_{i-1} \backslash \mathcal{C}_{i-1}^{\prime}$ forms an i-staircase and the hypothesis of Lemma 2 is satisfied with $\mathcal{C}^{\prime}=\mathcal{C}_{i}, i=i$ and $j=i+k / 2 \bmod k$. Note that $\left|\mathcal{C}_{k / 2+1}\right| \leq 1$. Thus, $\left|\mathcal{C}^{\prime}\right| \leq k+1$. Consequently, $n=O\left(k^{4}\right)$.

In the case when k is odd we proceed analogously as in the case when k was even except that for \mathcal{C}^{\prime} as defined above the hypothesis of Lemma 2 might not be satisfied, since we cannot guarantee that G_{i} and G_{j} are identical for some $i \neq j$. Nevertheless, since the two tangents between a pair of intersecting translates of a convex k-gon in the plane are parallel we still have $G_{i} \subseteq G_{i+\left\lceil\frac{k}{2}\right\rceil \bmod k} \cup G_{i+\left\lfloor\frac{k}{2}\right\rfloor \bmod k}$ The previous property will help us to find a pair of identical induced subgraphs in G_{i}, and $G_{i+\left\lceil\frac{k}{2}\right\rceil \bmod k}$ or $G_{i+\left\lfloor\frac{k}{2}\right\rfloor \bmod k}$ to which Lemma 2 can be applied, if G_{i} contains a matching M of size c, where c is a sufficiently big constant determined later. It will follow that G_{i} does not contain a matching of size c, and thus, the inductive argument as in the case when k was even applies. (Details will appear in the full version.)

3 Homothetes

The aim of this section is to prove Theorem 2 Let C denote a convex polygon in the plane. Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ denote a finite set of homothetes of C with the stacking order. Unlike as in previous sections, this time we assume that the indices correspond to the order of the centers of gravity of C_{i} 's from left to right. Let $\mathbf{c}_{\mathbf{i}}$ denote the center of gravity of C_{i}. Let $x(\mathbf{p})$ and $y(\mathbf{p})$, resp., denote x and y-coordinate of \mathbf{p}. Thus, we assume that $x\left(\mathbf{c}_{\mathbf{1}}\right)<x\left(\mathbf{c}_{\mathbf{2}}\right)<\ldots<x\left(\mathbf{c}_{\mathbf{n}}\right)$

Suppose that \mathcal{C} forms a visibility clique. Similarly as in the previous sections we label the vertices of C by natural numbers starting in the clockwise fashion from the topmost vertex, which gets label 1 . We label in the same way the vertices in the copies of C. Consider the poset (\mathcal{C}, \subset) and note that it contains no chain of size five. By Dilworth theorem it contains an anti-chain of size at least $\frac{1}{4}|\mathcal{C}|$. Since we are interested only in the order of magnitude of the size of the biggest visibility clique, from now on we assume that no pair of elements in \mathcal{C} is contained one in another.

Every pair of elements in \mathcal{C} has exactly two common tangents, since every pair intersect and no two elements are contained one in another. We color the edges of the clique $G=\left(\mathcal{C},\binom{\mathcal{C}}{2}\right)$ as follows. Each edge $C_{i} C_{j}, i<j$, is colored by an ordered pair, in which the first component is an unordered pair of vertices of G supporting the common tangents of C_{i} and C_{j}, and the second pair is an indicator equal to one if C_{i} is below C_{j} in the stacking order, and zero otherwise.
Lemma 3. The visibility clique G does not contain a monochromatic path of length two of the form $C_{i} C_{j} C_{k}, i<j<k$.
We say that a path $P=C_{1} C_{2} \ldots C_{k}$ in G is monotone if $x\left(\mathbf{c}_{\mathbf{1}}\right)<x\left(\mathbf{c}_{2}\right)<\ldots<x\left(\mathbf{c}_{\mathbf{k}}\right)$. It was recently shown [9, Theorem 2.1] that if we color the edges of an ordered complete graph on $2^{c}+1$ vertices with c colors we obtain a monochromatic monotone path of length two. We remark that this result is tight and generalizes Erdős-Szekeres Lemma [7]. Thus, if G contains more than $2^{2\binom{k}{2}+2}$ vertices it contains a monochromatic path of length two which is a contradiction by Lemma 3 .

4 Open problems

Since we could not improve the lower bound from [1] even in the case of homothetes, we conjecture that the polynomial upper bound in k on the size of the visibility clique holds also for any family of homothetes of an arbitrary convex k-gon. To prove Theorem 2 we used a Ramsey-type theorem [9, Theorem 2.1] for ordered graphs. We wonder if the recent developments in the Ramsey theory for ordered graphs [2|5] could shed more light on our problem.

Acknowledgement We would like to thank Martin Balko for telling us about [9].

References

1. Robert Babilon, Helena Nyklová, Ondrej Pangrác, and Jan Vondrák. Visibility representations of complete graphs. In Jan Kratochvíl, editor, GD '99, pages 333-340, 1999.
2. Martin Balko, Josef Cibulka, Karel Král, and Jan Kynčl. Ramsey numbers of ordered graphs. arXiv:1310.7208v3.
3. Prosenjit Bose, Hazel Everett, Sandor P. Fekete, Michael E. Houle, Anna Lubiw, Henk Meijer, Kathleen Romanik, Günter Rote, Thomas C. Shermer, Sue Whitesides, and Christian Zelle. A visibility representation for graphs in three dimensions. In J. Graph Algorithm and Applications, pages 2-25, 1998.
4. R.F. Cohen, P. Eades, Tao Lin, and F. Ruskey. Three-dimensional graph drawing. Algorithmica, 17(2):199-208, 1997.
5. David Conlon, Jacob Fox, Choongbum Lee, and Benny Sudakov. Ordered Ramsey numbers. arXiv: 1410.5292 v 1 .
6. R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. Math., pages 161-166, 1950.
7. P. Erdős and G. Szekeres. A combinatorial problem in geometry. In Classic Papers in Combinatorics, pages 49-56. Birkhäuser Boston, 1987.
8. Sándor P. Fekete, Michael E. Houle, and Sue Whitesides. New results on a visibility representation of graphs in 3D. In Franz J. Brandenburg, editor, Graph Drawing, volume 1027 of Lecture Notes in Computer Science, pages 234-241. Springer Berlin Heidelberg, 1996.
9. Kevin G. Milans, Derrick Stolee, and Douglas B. West. Ordered Ramsey theory and track representations of graphs. http://www.math.illinois.edu/ stolee/Papers/MSW12OrderedRamsey.pdf.
10. George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone trees: Animated 3d visualizations of hierarchical information. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '91, pages 189-194, New York, NY, USA, 1991. ACM.
11. Kathleen Romanik. Directed VR-representable graphs have unbounded dimension. In Roberto Tamassia and Ioannis G. Tollis, editors, Graph Drawing, volume 894 of Lecture Notes in Computer Science, pages 177-181. Springer Berlin Heidelberg, 1995.
12. Roberto Tamassia and Ioannis G. Tollis. A unified approach to visibility representations of planar graphs. Discrete \& Computational Geometry, 1(1):321-341, 1986.
13. Jan Štola. 3D visibility representations by regular polygons. In David Eppstein and Emden R. Gansner, editors, Graph Drawing, 17th International Symposium, GD 2009, Chicago, IL, USA, September 22-25, 2009. Revised Papers, pages 323-333, 2009.
14. Stephen K. Wismath. Characterizing bar line-of-sight graphs. In Proceedings of the First Annual Symposium on Computational Geometry, SCG '85, pages 147-152, New York, NY, USA, 1985. ACM.

[^0]: * The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no [291734].
 ${ }^{3}$ After acceptance of the paper the authors became aware of the fact that the upper bound of $O\left(k^{4}\right)$ was previously proven by Štola [13].

