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Abstract. Let C = {C1, . . . , Cn} denote a collection of translates of a regular
convex k-gon in the plane with the stacking order. The collection C forms a
visibility clique if for every i < j the intersection Ci and Cj is not covered by the
elements that are stacked between them, i.e., (Ci ∩ Cj) \

⋃
i<l<j Cl 6= ∅.

We show that if C forms a visibility clique its size is bounded from above by
O(k4) thereby improving the upper bound of 22

k

from the aforementioned paper.

We also obtain an upper bound of 22(
k
2)+2 on the size of a visibility clique for

homothetes of a convex (not necessarily regular) k-gon.

1 Introduction

In a visibility representation of a graph G = (V,E) we identify the vertices of V with
sets in the Euclidean space, and the edge set E is defined according to some visibility
rule. Investigation of visibility graphs, driven mainly by applications to VLSI wire
routing and computer graphics, goes back to the 1980s [12,14]. This also includes a
significant interest in three-dimensional visualizations of graphs [3,4,8,10].

Babilon et al. [1] studied the following three-dimensional visibility representations of
complete graphs. The vertices are represented by translates of a regular convex polygon
lying in distinct planes parallel to the xy-plane and two translates are joined by an edge
if they can see each other, which happens if it is possible to connect them by a line
segment orthogonal to the xy-plane avoiding all the other translates. They showed that
the maximal size f(k) of a clique represented by regular k-gons satisfies

⌊
k+1
2

⌋
+ 2 ≤

f(k) ≤ 22
k

and that f(3) ≥ 14. Hence, limk→∞ f(k) = ∞. Fekete et al. [8] proved
that f(4) = 7 thereby showing that f(k) is not monotone in k. Nevertheless, it is
plausible that f(k + 2) ≥ f(k) for every k, and surprisingly enough this is stated as
an open problem in [1]. Another interesting open problem from the same paper is to
decide if the limit limk→∞

f(k)
k exists. In the present note we improve the above upper

bound on f(k) to O(k4) 3 and we extend our investigation to families of homothetes of

? The research leading to these results has received funding from the People Programme (Marie
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under REA grant agreement no [291734].

3 After acceptance of the paper the authors became aware of the fact that the upper bound of
O(k4) was previously proven by Štola [13].
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general convex polygons. The main tool to obtain the result is Dilworth Theorem [6],
which was also used by Babilon et al. to obtain the doubly exponential bound in [1].
Roughly speaking, our improvement is achieved by applying Dilworth Theorem only
once whereas Babilon et al. used its k successive applications.

Fekete et al. [8] observed that a clique of arbitrary size can be represented by
translates of a disc. Their construction can be adapted to translates of any convex set
whose boundary is partially smooth, or to translates of possibly rotated copies of a
convex polygon. The same is true for non-convex shapes, see Fig. 1.

Fig. 1. A visibility clique formed by translates of a non-convex 4-gon.

An analogous question was extensively studied for arbitrary, i.e. not necessarily
translates or homothetes of, axis parallel rectangles [3,8], see also [11]. Bose et al. [3]
showed that in this case a clique on 22 vertices can be represented. On the other hand,
they showed that a clique of size 57 cannot be represented by rectangles.

For convenience, we restate the problem of Babilon et al. as follows. Let C =
{C1, . . . , Cn} denote a collection of sets in the plane with the stacking order given by the
indices of the elements in the collection. By a standard perturbation argument, we assume
that the boundaries of no three sets in C pass through a common point. The collection
C forms a visibility clique if for every i and j, i < j, the intersection Ci and Cj is not
covered by the elements that are stacked between them, i.e., (Ci∩Cj)\

⋃
i<k<j Ck 6= ∅.

Note that reversing the stacking order of C does not change the property of C forming
a visibility clique. We are interested in the maximum size of C, if C is a collection of
translates and homothetes, resp., of a convex k-gon. We prove the following.

Theorem 1. If C is a collection of translates of a regular convex k-gon forming a
visibility clique, the size of C is bounded from above by O(k4).

Theorem 2. If C is a collection of homothetes of a convex k-gon forming a visibility
clique, the size of C is bounded from above by 22(

k
2)+2.

The paper is organized as follows. In Section 2 we give a proof of Theorem 1. In
Section 3 we give a proof of Theorem 2. We conclude with open problems in Section 4.

2 Proof of Theorem 1

We let C = {C1, . . . , Cn} denote a collection of translates of a regular convex k-gon C
in the plane with the stacking order given by the indices of the elements in the collection.



Let ci denote the center of gravity of Ci. We assume that C forms a visibility clique.
We label the vertices of C by natural numbers starting in the clockwise fashion from
the topmost vertex, which gets label 1. We label in the same way the vertices in the
copies of C. The proof is carried out by successively selecting a large and in some sense
regular subset of C. Let Wi be the convex wedge with the apex c1 bounded by the rays
orthogonal to the sides of C1 incident to the vertex with label i. The set C is homogenous
if for every 1 ≤ i ≤ k all the vertices of Cj’s with label i are contained in Wi. We
remark that already in the proof of the following lemma our proof falls apart if C can be
arbitrary or only centrally symmetric convex k-gon.

Lemma 1. If C is a regular k-gon then C contains a homogenous subset of size at least
Ω
(

n
k2

)
.

Let (Ci1 , . . . , Cin) be the order in which the ray bounding Wi orthogonal to the
segment i[(i− 1) mod k] of C1 intersects the boundaries of Cj’s. The set C forms an
i-staircase if the order (Ci1 , . . . , Cin) is the stacking order. As a direct consequence of
Dilworth Theorem or Erdős–Szekeres Lemma [6,7] we obtain that if C is homogenous,
it contains a subset of size at least

√
|C| forming an i-staircase.

A graph G = ({1, . . . , n}, E) is a permutation graph if there exists a permutation π
such that ij ∈ E, where i < j, iff π(i) > π(j). Let Gi = (C′, E) denote a graph such
that C′ is a homogenous subset of C, and two vertices C ′j and C ′k of Gi are joined by an
edge if and only if the orders in which the rays bounding Wi intersect the boundaries
of C ′j and C ′k are reverse of each other. In other words, the boundaries of C ′j and C ′k
intersect insideWi, see Fig. 2(a). Thus,Gi’s form a family of permutation graphs sharing
the vertex set. Note that every pair of boundaries of elements in C′ cross exactly twice.

Since for an even k a regular k-gon is centrally symmetric the graphs Gi and
Gi+k/2 mod k are identical. For an odd k, we only have Gi ⊆ Gi+dk/2e mod k ∪
Gi+bk/2c mod k. The notion of the i-staircase and homogenous set is motivated by the
following simple observation illustrated by Fig. 2(b).
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Fig. 2. (a) The wedge W1 containing all the copies of vertex 1. (b) The 1-staircase giving rise to a
clique of size three in G1 and Gj for some j that cannot appear in a visibility clique.

Observation 1 If C′ forms an i-staircase then there do not exist two indices i and j,
i 6= j, such that both Gi and Gj contain the same clique of size three.



The following lemma lies at the heart of the proof of Theorem 1.

Lemma 2. Suppose that C′ forms an i-staircase, and that there exists a pair of identical
induced subgraphs G′i ⊆ Gi and G′j ⊆ Gj , where i 6= j, containing a matching of size
two. Then C′ does not form a visibility clique.

Proof. The lemma can be proved by a simple case analysis as follows. There are basically
two cases to consider depending on the stacking order of the elements of C′ supporting
the matching M of size two in G′i. Let u1, v1 and u2, v2, respectively, denote the vertices
(or elements of C′) of the first and the second edge in M , such that u1 is the first one
in the stacking order. By symmetry and without loss of generality we assume that the
ray R bounding Wi orthogonal to the segment i[(i − 1) mod k] of C1 intersects the
boundary of u1 before intersecting the boundaries of u2, v1 and v2, and the boundary of
u2 before v2.

First, we assume that R intersects the boundary of u2 before the boundary of v1.
In the light of Observation 1, u1, v1 and u2 look combinatorially like in the Fig. 3(a).
Then all the possibilities for the position of v2 cause that the first and last element in the
stacking order do not see each other. Otherwise, R intersects the boundary of v1 before
the boundary of u2. In the light of Observation 1, u1, v1 and u2 look combinatorially
like in the Fig. 3(b), but then v2 cannot see u1.
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Fig. 3. The case analysis of possible combinatorial configurations of the boundaries of u1, v1, u2

and v2, after the first three boundaries were fixed. (a) If R intersects the boundary of u2 before v1
the first and the last element in the stacking order cannot see each other. (b) If R intersects the
boundary of v1 before u2 then u1 cannot see v2.

Finally, we are in a position to prove Theorem 1. We consider two cases depending
on whether k is even or odd. First, we treat the case when k is even which is easier.

Thus, let C be a regular convex k-gon for an even k. By Lemma 1 and Dilworth
Theorem we obtain a homogenous subset C′ of C of size at least Ω(

√
n
k2 ) forming a

1-staircase. Note that for C′ the hypothesis of Lemma 2 is satisfied with i = 1 and
j = 1 + k/2. Since C′ forms a visibility clique, the graph G1 does not contain a
matching of size two. Hence, G1 = (C′ = C1, E) contains a dominating set of vertices
C′1 of size at most two. Let C2 = C1 \ C′1. Note that C2 forms a 2-staircase and that
the hypothesis of Lemma 2 is satisfied with C′ = C2, i = 2 and j = 2 + k/2 mod k.



Thus, G2 = (C2, E) contains a dominating set of vertices C′2 of size at most two. Hence,
C3 = C2 \ C′2 forms a 3-staircase. In general, Ci = Ci−1 \ C′i−1 forms an i-staircase and
the hypothesis of Lemma 2 is satisfied with C′ = Ci, i = i and j = i + k/2 mod k.
Note that |Ck/2+1| ≤ 1. Thus, |C′| ≤ k + 1. Consequently, n = O(k4).

In the case when k is odd we proceed analogously as in the case when k was even
except that for C′ as defined above the hypothesis of Lemma 2 might not be satisfied, since
we cannot guarantee that Gi and Gj are identical for some i 6= j. Nevertheless, since
the two tangents between a pair of intersecting translates of a convex k-gon in the plane
are parallel we still have Gi ⊆ Gi+d k

2 e mod k ∪Gi+b k
2 c mod k The previous property

will help us to find a pair of identical induced subgraphs in Gi, and Gi+d k
2 e mod k or

Gi+b k
2 c mod k to which Lemma 2 can be applied, if Gi contains a matching M of size

c, where c is a sufficiently big constant determined later. It will follow that Gi does not
contain a matching of size c, and thus, the inductive argument as in the case when k was
even applies. (Details will appear in the full version.)

3 Homothetes

The aim of this section is to prove Theorem 2. Let C denote a convex polygon in
the plane. Let C = {C1, C2, . . . , Cn} denote a finite set of homothetes of C with the
stacking order. Unlike as in previous sections, this time we assume that the indices
correspond to the order of the centers of gravity of Ci’s from left to right. Let ci denote
the center of gravity of Ci. Let x(p) and y(p), resp., denote x and y-coordinate of p.
Thus, we assume that x(c1) < x(c2) < . . . < x(cn)

Suppose that C forms a visibility clique. Similarly as in the previous sections we
label the vertices of C by natural numbers starting in the clockwise fashion from the
topmost vertex, which gets label 1. We label in the same way the vertices in the copies of
C. Consider the poset (C,⊂) and note that it contains no chain of size five. By Dilworth
theorem it contains an anti-chain of size at least 1

4 |C|. Since we are interested only in the
order of magnitude of the size of the biggest visibility clique, from now on we assume
that no pair of elements in C is contained one in another.

Every pair of elements in C has exactly two common tangents, since every pair
intersect and no two elements are contained one in another. We color the edges of the
clique G = (C,

(C
2

)
) as follows. Each edge CiCj , i < j, is colored by an ordered pair, in

which the first component is an unordered pair of vertices of G supporting the common
tangents of Ci and Cj , and the second pair is an indicator equal to one if Ci is below Cj

in the stacking order, and zero otherwise.

Lemma 3. The visibility clique G does not contain a monochromatic path of length two
of the form CiCjCk, i < j < k.

We say that a path P = C1C2 . . . Ck inG is monotone if x(c1) < x(c2) < . . . < x(ck).
It was recently shown [9, Theorem 2.1] that if we color the edges of an ordered complete
graph on 2c + 1 vertices with c colors we obtain a monochromatic monotone path of
length two. We remark that this result is tight and generalizes Erdős–Szekeres Lemma [7].
Thus, if G contains more than 22(

k
2)+2 vertices it contains a monochromatic path of

length two which is a contradiction by Lemma 3.



4 Open problems

Since we could not improve the lower bound from [1] even in the case of homothetes, we
conjecture that the polynomial upper bound in k on the size of the visibility clique holds
also for any family of homothetes of an arbitrary convex k-gon. To prove Theorem 2
we used a Ramsey-type theorem [9, Theorem 2.1] for ordered graphs. We wonder if the
recent developments in the Ramsey theory for ordered graphs [2,5] could shed more
light on our problem.

Acknowledgement We would like to thank Martin Balko for telling us about [9].
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