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Scale-Invariant Systems Realize Nonlinear Differential Operators

Moritz Lang1 and Eduardo Sontag2

Abstract— In recent years, several biomolecular systems have
been shown to be scale-invariant (SI), i.e. to show the same
output dynamics when exposed to geometrically scaled input
signals (u 7→ pu, p > 0) after pre-adaptation to accordingly
scaled constant inputs. In this article, we show that SI systems–
as well as systems invariant with respect to other input
transformations–can realize nonlinear differential operators:
when excited by inputs obeying functional forms characteristic
for a given class of invariant systems, the systems’ outputs
converge to constant values directly quantifying the speed of
the input.

I. INTRODUCTION

In this article, we analyze systems of ordinary differential
equations (ODEs) whose outputs converge to constant values
when excited by a class of characteristic inputs, with the
value of the constant outputs directly quantifying the speed
of the input. More precisely, consider a class of inputs given
by uk,t0(t) = g(kt + t0), with g : R → R injective and
k, t0 ∈ R. We are interested in systems having the property
that when excited by such an input, their output y(t) will
converge to a constant value depending on k but not on t0,
i.e. y(t) → ȳ∗ = αg(k), with αg : R → R. Since we can
write αg(k) = αg(Dguk,t0), with Dg = d

dtg
−1, we refer to

such systems as realizing the nonlinear differential operator
Dg . Our focus lies on network architectures which can be
implemented by biomolecular networks in single- or multi-
cellular organisms.

As an introductory example, consider an asymptotically
stable linear time-invariant system with zero DC-gain:

d

dt
z(t) = Az(t) + bu(t), z(0) = z̄ (1a)

y(t) = cT z(t), (1b)

with state vector z(t) ∈ Rn, system matrix A ∈ Rn×n
being Hurwitz, input and output matrices b, c ∈ Rn×1, and
u(t), y(t) ∈ R the input, respectively output of the system.
Zero DC-gain (KDC = −cTA−1b = lims→0G(s) = 0, with
G the transfer function) implies that y → 0 for constant in-
puts, corresponding to adaptation of a biomolecular network.
In the following, we assume cTA−2b 6= 0.

When exciting (1) by a ramp input uk,u0(t) = u0 + kt,
with k, u0 ∈ R, the output of the system converges to a
constant value y → ȳ∗ = −cTA−2bk = −cTA−2b ddtuk,u0

proportional to the slope of the ramp k. In the context
of biomolecular signaling networks, the sign of k can be
interpreted as the type of an environmental change, e.g. if
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conditions are improving or degrading. Then, the value of k
corresponds to the speed in which the environment changes.
Thus, a (hypothetical) single- or multi-cellular organism
implementing the system (1) could deduce from its output the
speed in which the environment changes and orchestrate its
cellular response accordingly, respectively “predict” future
changes in order to pre-adapt and, thus, assure favorable
conditions for survival and proliferation.

Now, consider the similar log-linear system

d

dt
z(t) = Az(t) + b log(u(t)), z(0) = z̄ (2a)

y(t) = cT z(t), (2b)

with u(t) > 0 and all other variables as defined above.
We can directly conclude that when exciting (2) by an
exponential input uk,u0(t) = u0e

kt, with k ∈ R and u0 ∈
R>0, the output of the system converges to a constant value
only depending on k, but not on u0: y → ȳ∗ = −cTA−2bk =
−cTA−2b ddt log(uk,u0

). Thus, the system (2) can detect the
speed of environmanetal changes which can be approximated
by exponential functions. It should be clear by now that
one could replace the logarithm in (2) by other nonlinear
functions to realize systems capable to detect the speed of
other injective inputs.

Based on these two examples, we loosely define the linear
system (1) to realize the “usual” differential operator Dr =
d
dt when excited by ramp inputs and after the decay of the
effect of the initial conditions. Similarly, we loosely define
the log-linear system (2) to realize the nonlinear differential
operator De = d

dt log when excited by exponential inputs.
We might ask if the two systems also perform the same
differential operation for other inputs than ramps, respec-
tively exponential functions. This is in general not the case,
as can be easily verified when exciting the linear system
(1) by sinusoidal inputs with fixed mean and amplitude, but
increasing frequency. Due to the restriction of the differential
operations on specific functional forms of the input, we will
refer to the ramps, respectively exponential functions as the
characteristic inputs for which the respective system realizes
the nonlinear differential operator.

Our (yet only loosely defined) concept of systems realizing
differential operators has notable similarities with the internal
model principle (IMP, [1]) stating that a dynamic system
should have an internal model of a class of environmental
disturbances to be able to reject them, i.e. in order for
the output to converge to a constant value independent of
the specific disturbance. Note, that the linear (1) and the
loglinear (2) systems would reject ramp or exponential inputs
if cTA−2b = 0. The conceptual difference between our



concept and the IMP is that the IMP concerns the question
of how a system can reject inputs having certain functional
forms, while we consider how it can discriminate between
them. One might hypothesize a system should also possess
(a set of) internal models of the environment to fulfill the
latter. Due to subtle differences between the types of inputs
analyzed in the IMP and in this article, this hypothesis will
not be considered in the following.

In this article, we pose the question if there exist structural
properties of (general nonlinear) systems rendering them able
to realize nonlinear differential operators. We demonstrate
that scale-invariant systems (also referred to as fold change
detectors, see [2]) can realize nonlinear differential operators
of the form De = d

dt log, whereas systems being invariant
with respect to different sets of input transformations [3] can
realize other differential operators.

In the following, we briefly review the definition and
known results for systems being invariant with respect to
certain sets of input transformation. Then, we provide two
examples of scale-invariant systems, an incoherent feed-
forward loop and an integral feedback. Based on these
examples, we derive a general mathematical definition of
systems realizing nonlinear differential operators. Then, we
derive the notion of canonical models for systems invariant
with respect to Lie group input transformations and excited
by characteristic inputs. This notion is in one-to-one re-
lationship with the nonlinear differential operator realized
by the invariant system. Finally, we provide an intuitive
topological interpretation of our results. Our analysis shows
that the differential operator an invariant system realizes is
determined by the input invariance, and independent of other
details of the specific system.

II. EQUIVARIANCE

Throughout this article, we consider dynamic systems of
nonlinear ordinary differential equations (ODEs) of the form

d

dt
z(t) = f(z(t), u(t)), z(0) = z̄ (3a)

y(t) = h(z(t)), (3b)

with state vector z(t) ∈ Z ⊆ Rn, piecewise-continuous
inputs u : R≥0 → U ⊆ R, u ∈ U ⊆ PC(R≥0, U), vector
fields f : Z×U → Rn, initial conditions z̄ ∈ Z, and outputs
y(t) ∈ R.

We assume that the functions f and h are differentiable,
and that for each initial condition z̄ ∈ Z and each input
u ∈ U there exists a unique, piecewise differentiable and
continuous solution of Eq. 3, which we denote by

ξ : R≥0 × Z × U → Z, ξ(t, z̄, u) = z(t).

If the system (3) has a globally asymptotically stable
(GAS) steady-state for constant inputs u(t) = ū ∈ U , we
denote this steady-state by σ(ū) ∈ Z, i.e. ξ(t, z̄, ū)→ σ(ū)
for all z̄ ∈ Z. Then, the system (3) is invariant [3] with

respect to a set of continuous and onto input transformations
P = {π : U → U} (in short, is P-invariant), if

h(ξ(t, σ(ū), u)) = h(ξ(t, σ(π(ū)), π ◦ u)),

for all ū ∈ U , u ∈ U , π ∈ P and t ≥ 0, with ◦ the function
composition.

Conversely, the system (3) is equivariant [3] with respect
to P (in short, is P-equivariant), if there exists an indexed
family of differentiable state transformations RP = {ρπ :
Z → Z}π∈P such that

f(ρπ(z), π(ū)) = ρ′π(z)f(z, ū), and
h(ρπ(z)) = h(z)

for all z ∈ Z, ū ∈ U , and π ∈ P , with ρ′π the Jacobian
matrix of ρπ .

In [3], it was shown that an analytic and irreducible system
having a GAS steady-state for each constant input is P-
invariant if and only if it is P-equivariant. Furthermore, it
was shown [3] that if the action is transitive, i.e. ∀ū1, ū2 ∈
U,∃π ∈ P : π(ū1) = ū2, P-invariance implies perfect
adaptation to constant inputs. Note, that–different to P-
invariance–the concept of P-equivariance does not require
the system (3) to possess a GAS steady-state, or any steady-
state at all. We refer to [3] for details of the definitions and
the proofs.

Two important classes of P-invariant systems are scale-
invariant systems, i.e. systems invariant with respect to geo-
metric scaling P = {π : U → U, (π ◦ u)(t) = pu(t), p ≥ 0}
of the input by positive constants, and translational-invariant
systems, i.e. systems invariant with respect to P = {π : U →
U, (π ◦ u)(t) = u(t) + p, p ∈ R}.

A. EXAMPLES OF SCALE-INVARIANT INTEGRAL FEED-
BACKS AND INCOHERENT FEEDFORWARD LOOPS

Before providing a mathematical definition of when a
given nonlinear system (3) realizes a nonlinear differential
operator, we analyze two scale-invariant systems realizing (i)
an integral feedback and (ii) an incoherent feedforward loop
to provide intuition about the details of our definition.

The first system (see [3], Figure 1c) is given by the ODEs

d

dt
x(t) = ax(y(t)− y0) (4a)

d

dt
y(t) = b

u(t)

x(t)
− dy(t), (4b)

with a, b, d, y0 ∈ R>0, x(t) > 0, y(t) ≥ 0, u(t) ≥ 0, and
output h(x(t), y(t)) = y(t). As shown in [3], the system is
asymptotically stable for constant inputs and scale-invariant,
with (πp ◦ u)(t) = pu(t), p > 0, and ρp(x, y) = (px, y)T .

We have not yet given a mathematical definition stating
when we consider a system to realize a (nonlinear) differen-
tial operator, nor provided any framework to determine which
differential operator a system realizes–if any. Nevertheless,
based on the observation that both the integral feedback
(4) as well as the log-linear system (2) are scale-invariant,
we can hypothesize that the output of both systems should
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Fig. 1: Simulation results for the integral feedback system
(4) for the exponential input u(t) = ekt. The black curve
represents the system initialized at (x̄∗, ȳ∗)T , while the blue
curve is initialized at (10, 2)T . The parameters were set to
k = 1, T = 6, a = 2, b = 3, d = 4, and y0 = 1.

somewhat behave similarly when the system is excited by an
exponential input uk,u0(t) = u0e

kt. Specifically, we expect
the output y of (4) also to converge to a constant value ȳ∗

depending on k, but not on u0. To verify this hypothesis, we
directly plug uk,u0

(t), y(t) = ȳ∗ and d
dty(t) = 0 into (4b)

and obtain that x(t) = bu0

dȳ∗ e
kt for ȳ∗ > 0. Plugging x(t)

and its time derivative d
dtx(t) in (4a) results in ȳ∗ = y0 + k

a .
We conclude that the system (4) excited by inputs of the
form uk,u0 and initialized at (x̄∗, ȳ∗)T = ( abu0

dk+ady0
, y0+ k

a )T

has a constant output (see Fig. 1), i.e. y(t) = ȳ∗ = y0 +
1
a
d
dt log(uk,u0) if k > KL, with KL = −ay0.
Since ȳ∗ only depends on the input transformed by the

nonlinear differential operator De = d
dt ◦log, we also loosely

define the integral feedback system (4) to realize De, similar
to the log-linear system (2). Due to the differences between
these two systems (and the analysis we performed on them),
this has important implications for the general mathematical
definition yet to come: (i) the constant output ȳ∗ might
not be proportional to k, but have some other (injective)
dependence; (ii) a system might realize a differential operator
only for a certain range of inputs of a given functional form;
(iii) the existence of an initial condition such that the output
is constant does in general not guarantee that the output for
other initial conditions converges to this constant, and our
definition should account for that.

As a second example, consider an incoherent feed-forward
loop (compare [4], Figure 3) given by the ODEs

d

dt
x(t) = −ax(t) + bu(t) (5a)

d

dt
y(t) = c

u(t)

x(t) + u(t)
− dy(t), (5b)

with parameters a, b, c, d ∈ R>0, states x(t), y(t) ∈ R≥0,
positive inputs u(t) ∈ R>0, and output h(x(t), y(t)) = y(t).
It is easy to verify that the system has a GAS steady-state

σ(ū) =
(
b
a ū,

ac
d(a+b)

)T
for constant inputs u(t) = ū ∈ R>0

and is scale-invariant, with (πp ◦ u)(t) = pu(t), p > 0, and
ρp(x, y) = (px, y).

When performing the same analysis as for the integral
feedback system (4), we find that the output of the system
(5) initialized at (x̄∗, ȳ∗) = ( bu0

a+k ,
c
d

a+k
a+b+k )T and excited

by uk,u0(t) = u0e
kt is constant with y(t) = c

d
a+k
a+b+k =

c
d

a+ d
dt log(uk,u0

)

a+b+ d
dt log(uk,u0

)
, if k > KL = −a. Given that these

results are in agreement with the conclusions obtained for the
integral feedback system (4), we are now confident enough
to give a general mathematical definition of when a nonlinear
system realizes a given nonlinear differential operator.

III. SYSTEMS REALIZING NONLINEAR
DIFFERENTIAL OPERATORS

Definition 1: Consider a general nonlinear system of
the form (3) and an indexed family of inputs Ug =
{uk,t0 : [0,∞)→ R|uk,t0(t) = g(kt+ t0)}k,t0∈R defined by
a non-constant piecewise-continuous “prototype” function
g : R → R. Then, the system realizes the (nonlinear)
differential operator Dg : Ug → R, if there exists a set
KT = K × T ⊆ R2 with non-empty interior, such that
for all inputs uk,t0 ∈ Ug with (k, t0) ∈ KT there exists an
initial condition z̄∗u ∈ Z for which the output is constant and
independent of t0, i.e. ȳ∗u = h(ξ(t, z̄∗u, uk,t0)) = αg(k) =
αg(Dguk,t0) for all t ≥ 0, with αg : K → R a function
which might depend on the specific system.

If a system realizes the differential operator Dg , we denote
the inputs Ug as its characteristic inputs, and the inputs
Ūg = {uk,t0 ∈ Ug|(k, t0) ∈ KT} as its proper characteristic
inputs. For a given characteristic input uk,t0 ∈ Ūg , if there
exists a neighborhood Z̄ ⊆ Z of z̄∗u such that the output of
the system initialized at every z̄ ∈ Z̄ converges to ȳ∗u, we
say that the system is convergent with respect to the input,
and if Z̄ = Z that it is globally convergent. If there does
not exist a set KT for which αg is injective, the system is
a degenerated realization of Dg .

We do not provide an explicit definition of the differential
operator Dg . If there exists an inverse g−1 for g, then
Dg = d

dt ◦ g
−1. However, the definition in principle also

allows for non-injective prototype functions like g(t) =
sin(t) and similar. Note, that in general, g, Dg , and αg are
not unique. Interestingly, an important class of degenerated
realizations of differential operators are systems for which
αg(k) = const, i.e. systems rejecting inputs/disturbances of
class Ūg (compare with the IMP, [1]).

Based on Definition 1, it is easy to validate that all three
examples of scale-invariant systems (2,4,5) discussed so far
are non-degenerate realizations of the differential operator
De = d

dt ◦ log, with the characteristic functions defined by
the prototype e(t) = et. On the other hand, the translational
invariant linear system (1) realizes the differential operator
Dr = d

dt with prototype r(t) = t. For both systems from the
Introduction (1,2), we have shown that Ūg = Ug , and that
the systems are globally convergent with respect to the inputs
in Ug . Conversely, we have not shown this for the integral



feedback (4) and the incoherent feedforward (5), yet, and
will do so later in this article.

IV. LIE GROUP INVARIANCES AND CANONICAL
MODELS

In this section, we analyze the relationship between the
input transformations P a system is invariant to, and the
set of characteristic functions Ug for which it realizes the
nonlinear differential operator Dg .

In the following, we restrict ourselves to input and state
transformations P ×RP forming a one-parameter Lie group
[5] under function composition ◦. This restricts the class
of systems under consideration to the ones invariant with
respect to continuous groups of input transformations (e.g.
scale or translational-invariant systems). Systems having only
discrete invariances, e.g. systems only invariant with respect
to a change of the sign of the input, are not considered. Then,
we can parametrize the input and state transformations by
some parameter p ∈ R, such that the functional composition
is additive in p, i.e. πp1 ◦ πp2 = πp1+p2 and ρp1 ◦ ρp2 =
ρp1+p2 , with ρp shorthand for ρπp

, and π0(ū) = ū and
ρ0(z) = z the trivial input and state transformations.

We now consider the evolution of the states of a P-
equivariant system excited by the input u(t) = πkt+t0(u0),
with k ∈ R and u0 ∈ U , i.e. by an input directly defined
by the additive parametrization of the input transformations.
The system (3) can then be written as

d

dt
z(t) = f(z(t), πkt+t0(u0)), z(0) = z̄ (6a)

y(t) = h(z(t)). (6b)

Since (3) is time-invariant and equivariant with respect to P ,
it directly follows that the solutions of (6) has symmetries
(t, z(t)) 7→ (t+T, ρkT (z(t))), with T ∈ R, i.e. a simultane-
ous transformation of the time and the states maps solutions
of (6) into one another.

This suggests that there exist a change of coordinates
(t, z) 7→ (t̂, ẑ) such that in the canonical coordinates (t̂, ẑ)
the system (6) is separable [5]. Indeed, when setting (t̂, ẑ) =
(t, ρ−kt−t0(z)), we obtain

d

dt
ẑ =

d

dt
ρ−kt−t0(z)

=
∂

∂z
ρ−kt−t0(z)

d

dt
z +

∂

∂t
ρ−kt−t0(z)

=ρ′−kt−t0(z)f(z(t), πkt+t0(u0))

+ k

(
∂

∂p
ρ−p

)
◦ ρp(ẑ)

∣∣∣∣
p=kt+t0

=f(ẑ, u0)− kη(ẑ), (7)

with η(ẑ) := ∂
∂pρp(ẑ)

∣∣∣
p=0

the symbol of the infinitesimal

transformation [5]. By noting that h(z) = h(ρkt+t0(ẑ)) =
h(ẑ), the complete transformed model can be written as

d

dt
ẑ(t) =f(ẑ, u0)− kη(ẑ), ẑ(0) = ρ−t0(z̄) (8a)

y = h(ẑ). (8b)

We refer to (8) as the canonical model of the system (3)
excited by the inputs u(t) = πkt+t0(u0), with k, t0 ∈ R
and u0 ∈ U . The canonical model corresponds to a time-
invariant system of ODEs excited by the constant input u0.
Importantly, its dynamics only depend on the speed k of
the input, whereas the factor t0 only has an influence on
the initial conditions. Based on the canonical model, we can
readily derive the following theorem.

Theorem 1: Consider a P-equivariant system (3) with the
set of input and state transformations forming a Lie group.
If there exists a set KT ⊆ R2 with non-empty interior such
that the canonical model (8) of the system has at least one
steady-state ẑ∗u ∈ ρ−t0(Z) for all (k, t0) ∈ KT , the system
realizes the (nonlinear) differential operator Dπt(u0) with
respect to the characteristic inputs Uπt(u0) defined by the
prototype function πt(u0), with u0 ∈ U and {πp}p∈R an
additive parametrization of the input transformations P .

The characteristic inputs πkt+t0(u0), with (k, t0) ∈ KT
are proper. If for a given (k, t0) ∈ KT the steady-state of the
canonical model is (globally) asymptotic stable, the system
is (globally) convergent with respect to the input πkt+t0(u0).

Proof: The output of the canonical model initialized at
any ẑ ∈ ρ−t0(Z) equals the output of the original model (3)
excited by πkt+t0(u0) and initialized at ρt0(ẑ). If (k, t0) ∈
KT and the canonical model is initialized at its steady-state
ẑ∗u, its output y = h(ẑ) is constant; in consequence also
the output of the original model initialized at z̄∗u = ρt0(ẑ∗u)
is constant. Since this holds for all (k, t0) ∈ KT and KT
has a non-empty interior, the system realizes the differential
operator Dπt(u0), and–by definition–the inputs πkt+t0(u0)
with (k, t0) ∈ KT are proper. Asymptotic stability of ẑ∗u
for a given (k, t0) ∈ KT implies that there exists an
open neighborhood Ẑ around ẑ∗u, such that for all initial
conditions in Ẑ, the output of the canonical model–and,
thus, of the P-equivariant system (3) excited by πkt+t0(u0)–
converges to a constant value. Let Ẑ = ρ−t0(Z̄), then the P-
equivariant system (3) converges to the constant output when
excited by πkt+t0(u0) for all initial conditions z̄ ∈ Z̄. Since
ρ−t0 is continuous and Ẑ is open, Z̄ is open, from which
convergence of the P-equivariant system with respect to the
input πkt+t0(u0) follows. Global asymptotic stability implies
that Ẑ = ρ−t0(Z), and, since Z̄ = ρt0(ρ−t0(Z)) = Z, global
convergence.

We can consider the term kη(ẑ) in (8) as an additive, in
general non-vanishing perturbation of the original system (3)
excited by the constant input u(t) = u0. Then, for |k| � 1,
we can apply methods from perturbation theory (see e.g. [6])
to the canonical model (8) to compare the output dynamics
of the P-equivariant system (3) excited by πkt(u0) with the
dynamics when excited by the constant input u(t) = u0.
Specifically, if for constant inputs the P-equivariant system
(3) has an exponentially stable steady-state in the interior
of Z and f and η are continuously differentiable, we can
apply the implicit function theorem to show that the system
realizes a nonlinear differential operator. However, for a
given equivariant system it is typically simpler to directly
analyze the existence and stability of steady-states of its
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t,
u0 ∈ R>0. Parameters were set to a = 2, b = 3, d = 4, and y0 = 1.

canonical model (8) for different (k, t0) ∈ R2.
Let us quickly revisit the integral feedback (4) and the

feedforward loop (5) examples. For both systems, the addi-
tive parametrizations of the input and state transformations
are given by πp(ū) = epū and ρp(x, y) = (epx, y)T , thus,
η(x̂, ŷ) = ∂

∂pρp(x̂, ŷ)
∣∣∣
p=0

= (x̂, 0)T . The canonical model

of the integral feedback (4) is given by

d

dt
x̂k(t) = ax̂k(t)(ŷk(t)− y0 −

k

a
)

d

dt
ŷk(t) = b

u0

x̂k(t)
− dŷk(t),

with x̂k > 0 and ŷk ≥ 0. For k > KL := −ay0,
the canonical model has a steady-state at (x̂∗k, ŷ

∗
k)T =

( abu0

dk+ady0
, y0 + k

a ). The steady-state is globally asymptotic
stable (see Corollary 5.2 in [3]). We can conclude that the
original model (4) is globally convergent with respect to
exponential inputs with k > KL.

The canonical model of the incoherent feedforward loop
(5) is

d

dt
x̂k(t) = −(a+ k)x̂k(t) + bu0

d

dt
ŷk(t) = c

u0

x̂k(t) + u0
− dŷk(t).

For k > KL := −a, the canonical model has a
globally asymptotically stable steady-state at (x̂∗k, ŷ

∗
k)T =(

bu0

a+k ,
c
d

a+k
a+b+k

)
, such that the feedforward loop (5) is

globally convergent with respect to exponential inputs with
k > KL.

A. TOPOLOGICAL INTERPRETATION
The relationship between a P-equivariant system (3) with

input- and state-transformations being a Lie-group, and its
canonical model (8) has an intuitive interpretation in the
product space ZU = Z×U of the state and the input spaces.
Consider the binary relation ∼, with (z1, u1) ∼ (z2, u2) if
there exists a π ∈ P such that u2 = π(u1) and z2 = ρπ(z2).
Then, ∼ is an equivalence relationship on ZU with the
equivalence classes in ZU/ ∼ representing each a set of
initial conditions and inputs leading to the same output
dynamics. Note, that we could alternatively apply the more
general but less convenient equivalence relationship ≈, with
(z1, u1) ≈ (z2, u2) if h(ξ(t, z1, u1)) = h(ξ(t, z2, u2)) for all
t ≥ 0.

The evolution ξ(t, z, u) of an equivariant system corre-
sponds to an indexed family of mappings from ZU to ZU :

{λt : ZU → ZU|λt((z̄, u)) = (ξ(t, z̄, u), Ttu) ≥ 0}t≥0 ,

with Tt : U → U , Ttu(τ) = u(τ + t) ∀τ ≥ 0, the shift
operator.



Trivially, if two output trajectories are the same, also their
ends have to be the same. Thus,

(z̄1, u1) ∼ (z̄2, u2)⇒ λt((z̄1, u1)) ∼ λt((z̄2, u2)) ∀t ≥ 0.

This implies that each λt maps equivalence classes to equiv-
alence classes:

λt([(z, u)]) ⊆ [λt(z, u)] ∀t ≥ 0.

Given these definitions, a characteristic input uk,t0 ∈ Ug
is proper (i.e. uk,t0 ∈ Ūg) if there exists an initial condition
z̄∗u ∈ Z, such that

λt([(z̄
∗
u, uk,t0)]) ⊆ [(z̄∗u, uk,t0)] ∀t ≥ 0.

The evolution of a P-equivariant system excited by a proper
characteristic input and initialized at a corresponding initial
condition z̄∗u corresponds to a single point, or steady-state,
in ZU/ ∼ (see Fig. 2).

The canonical model is associated with a different indexed
family of mappings {λ̂u,t}t≥0. In the following, we show
that for a given characteristic input uk,t0 , the mapping of the
original model is equivalent to the mapping of its canonical
model, i.e.

λt((z, uk,t0)) ∼ λ̂u,t((z, uk,t0))

for all t ≥ 0 and z ∈ Z. For dt� 1,

[λdt((z, uk,t0))]

=[(ξ(dt, z, uk,t0), πkdt(uk,t0))]

=[(z + f(z, uk,t0(0))dt+O(dt2), πkdt(uk,t0))]

=[(ρ−kdt(z + f(z, uk,t0(0))dt+O(dt2)), uk,t0)]

=[(z + f(z, uk,t0(0))dt− kη(z)dt+O(dt2), uk,t0)]

=[λ̂u,dt((z, uk,t0)) + (O(dt2), 0)].

For dt → 0, [λdt((z, uk,t0))] → [λ̂u,dt((z, uk,t0))], thus,
λt((z, uk,t0)) ∼ λ̂u,t((z, uk,t0)). Specifically, since λ̂u,t
maps the characteristic input to itself (uk,t0 7→ uk,t0 ) instead
of applying a time-shift as the mapping λt of the original
model (uk,t0 7→ πkt◦uk,t0 = Tt◦uk,t0 ), the canonical model
is excited by a constant input.

In summary: we can interpret the evolution of the canon-
ical model in the product space ZU to be the projection of
the evolution of the original model onto a plane defined by
a specific characteristic input, with the projection having the
property that it conserves the equivalence relation ∼ (see
Fig. 3). This interpretation is closely related to the proof
of the relationship between equivariances and invariances,
which appeal to realization theory of nonlinear systems (see
proof and comments in [3]).

V. CONCLUSION

In this article, we showed that–under weak assumptions–
systems invariant to input transformations forming a Lie
group realize nonlinear differential operators, and provided
a first attempt for a mathematical formalization and typifi-
cation. Given our analysis, scale-invariant systems can best
be described to realize the nonlinear differential operator

Fig. 3: Trajectories of the (green) scale-invariant integral
feedback system (4), and (blue) of its canonical model for
different u0 in the product space ZU = Z × U (see legend
of Fig. 2). All initial conditions z̄ and inputs u(t) = u0e

t,
u0 ∈ R>0 were in the same equivalence class. Parameters
were set to a = 2, b = 3, d = 4, and y0 = 1.

d
dt ◦ log, while the “usual” differential operator d

dt can be
realized by translational-invariant systems. As demonstrated
in the introduction, it is trivial to define systems realizing
other nonlinear differential operators. For which of these op-
erators we can find naturally evolved biomolecular networks
(approximately) realizing them, or easily construct synthetic
ones, remains a question for future research.

In the introduction, we provided the simple example of
a sinusoidal input with increasing frequency to show that
an equivariant system does in general not realize a nonlin-
ear differential operator with respect to any input signal,
motivating our notion of characteristic inputs. However, it
seems that systems realizing a differential operator can also
perform the “correct” operation on certain non-characteristic
inputs. Consider e.g. the scale-invariant system (4) excited
by a ramp. Since d

dt log(u0 + kt) → 0 for t → ∞ and
k, u0 > 0, we would expect the output to converge to a
value corresponding to constant inputs, and this is indeed
the behavior we observe in simulations. In this context, it
is interesting that three second-order scale-invariant systems
were recently shown to have similar dynamics as the “log-
differentiator” h(u(t)) = d

dt log(u(t)) for slowly varying
inputs [7]. These results are based on the assumption of a
time-scale separation between the input dynamics (slow) and
the system’s dynamics (fast) justifying to only consider the
first terms in the asymptotic expansion of the system. We
can explain the results in [7] by recalling that differentiable
inputs (slow and fast ones) can be locally approximated by
exponential functions, i.e. the characteristic inputs associated
to scale-invariant systems. If such an approximation stays
valid sufficiently long, the output (approximately) converges



to a function of the slowly varying exponential coefficient,
i.e. the log-derivative of the input. Thus, for a future ex-
tension of our theory to also describe the output dynamics
of invariant systems excited by non-characteristic inputs, it
seems rather important how long such inputs can sufficiently
well be approximated by the proper characteristic functions
of the system, than if the timescales of the system and the
input dynamics are well separated.

Finally, we remark that there exists another class of
interesting inputs for P-equivariant systems to which we
refer to as π-quasiperiodic. These are inputs uπ,T satisfying

uπ,T (t+ T ) = (π ◦ uπ,T )(t),

for some quasiperiod T and π ∈ P . Our preliminary results
indicate that–under weak assumptions–the output of a P-
equivariant system excited by a corresponding quasiperiodic
input is periodic, i.e. y(t + T ) = y(t). These preliminary
results are in agreement with experimental data on bacterial
chemotaxis gathered more than 30 years ago, which were
explained by a log-linear, scale-invariant model [8].
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