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Abstract

Received June 14, 2001; Revised and Accepted July 24, 2001.

INTRODUCTION

Ribonuclease P (RNase P) is an essential bacterial enzyme which functions to produce mature transfer RNAs (mat-tRNAs)

by cleaving 5′ sequences of precursor tRNAs (pre-tRNAs). The RNase P holoenzyme from Escherichia coli consists of a

large RNA subunit of 377 nt (140 kDa) and a small protein subunit of 119 amino acids (14 kDa). The RNA is the catalytic

component of the holoenzyme and can produce mature tRNAs in vitro under high salt conditions, in the absence of

protein. However, the protein subunit is required for catalytic activity in vitro under physiological conditions (1,2) and is

essential in vivo for viability (3,4). The protein subunit increases the catalytic efficiency of the reaction by specifically

enhancing affinity for substrate (5) and by speeding up the rate-limiting step of product release (6). The protein subunit

also increases the affinity of RNase P RNA for substrates other than pre-tRNA, such as 4.5S RNA (2).

In recent years, structural data on the RNase P protein subunit has become available. The crystal structure of the protein

from Bacillus subtilis (7) revealed a mixed α–β protein with an unusual left-handed β–α–β turn, similar to two other RNA

binding protein’s domains, domain II of ribosomal protein S5 and domain IV of elongation factor EF-G. A three-

dimensional NMR structure of the RNase P protein from Staphylococcus aureus revealed architecture similar to the

RNase P protein from B.subtilis (8). The RNase P RNA subunit has eluded crystallization, but has proven amenable to

crosslinking; three-dimensional models of the RNA subunit from both E.coli and B.subtilis were created based on the

phylogenetically derived secondary structure. Intramolecular and intermolecular crosslinking between the RNA subunit

and the pre-tRNA substrate provided distance constraints for modeling (9–11).
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The structure of the Escherichia coli ribonuclease P (RNase P) holoenzyme was investigated by site-
directed attachment of an aryl azide crosslink reagent to specific sites in the protein subunit of the
enzyme. The sites of crosslinking to the RNase P RNA subunit were mapped by primer extension to
several conserved residues and structural features throughout the RNA. The results suggest
rearrangement of current tertiary models of the RNA subunit, particularly in regions poorly constrained by
earlier data. Crosslinks to the substrate precursor-tRNA were also detected, consistent with previous
crosslinking results in the Bacillus subtilis RNase P holoenzyme.
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Even with the structure of the protein subunit known and a working model of the RNA subunit constructed, the specific

binding surface between subunits remains ill defined. Hydroxyl radical and nuclease footprinting experiments using the

holoenzyme from B.subtilis showed three regions of the P RNA sequence protected in the presence of the protein subunit

(12). Footprinting studies have also been conducted on the E.coli holoenzyme using enzymatic probes ( 13,14). More

recently, the protein-binding site on the RNA has been probed by tethering a Fe–EDTA cleavage compound to the protein

subunit (15). However, there is no clear consensus among these studies. The nature of the interaction between the RNase P

protein and the substrate pre-tRNA has been investigated by crosslinking as well. Site-directed crosslinks from the

B.subtilis protein subunit to pre-tRNAs with varying 5′ leader lengths showed that the precursor sequence lies across the

central cleft of the RNase P protein β-sheet (16) (Fig. 1).

The purpose of the present study was to determine the protein interaction sites on the RNA subunit. To address this

question, a thiol-specific, photoactive crosslinking reagent, azidophenacyl bromide (APB), was conjugated to a cysteine

residue introduced at specific sites within the RNase P protein. The modified protein could then be incubated with RNase

P RNA and crosslinked by UV irradiation. The sites of crosslinking on the RNA were mapped by primer extension to

reveal regions of the RNA that interact with the protein.

MATERIALS AND METHODS

Mutagenesis

Site-directed mutagenesis was performed according to the QuickChange protocol, using Pfu DNA polymerase

(Stratagene). The native cysteine was mutated to alanine (C113A). The C113A mutant was then used to construct second-

site mutations F18C/C113A, H78C/C113A or R99C/C113A.

Primers

F18Cfor: 5′-CTCCCAGTCAATGCACATTCGTTTTCCAGCAGC-3′; F18Crev: 5′-

GCTGCTGGAAAACGAATGTGCATTGACTGGGAG-3′; H78Cfor: 5′-CGTCTGCGCCAATGTGAACTCCCGG-3′;

H78Crev: 5′-CCGGGAGTTCACATTGGCGCAGACG-3′; R99Cfor: 5′-GACCTCGATAACTGTGCTCTCTCGGAA-3′;

R99Crev: 5′-CTTCCGAGAGTGCACAGTTATCGAGGTC-3′; C113A/BglIfor: 5′-

CGCCGCCACGCCCGCCTGGCTCGCG-3′; C113A/BglIrev: 5′-CGCGAGCCAGGCGGGCGTGGCGGCG-3′; KS: 5′-

TCGAGGTCGACGGTATC-3′; Ec225rev: 5′-GGGTGGAGTTTACCGTGC-3′.

Preparation of RNA

All RNAs were transcribed from linearized plasmid templates using T7 RNA polymerase. The template for RNase P RNA

transcription for analytical crosslink studies was plasmid p98SX linearized with XhoI. p98SX was constructed from

pDW27 (17) by digestion with SnaBI and XhoI, filled in with Klenow fragment of DNA polymerase I and dNTPs and

religated to produce p98SX. To make P RNA for primer extensions, RNase P was transcribed from XhoI-digested pecKS,

which yields RNA with a 26 nt 3′ extension complementary to the pBluescript KS primer (18). Substrate pre-tRNA Asp
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from B.subtilis containing a 33 nt 5′ leader sequence was transcribed from plasmid pDW152 (17) digested with BstNI.

Bacillus subtilis pre-tRNA  containing a 2, 3 and 4 base 5′ leader was transcribed from plasmids ptR2D, ptR3D and

ptR4D, respectively, each digested with BstNI (16) (plasmids ptR2D, ptR3D and ptR4D were graciously provided by Dr

Carol Fierke, University of Michigan). All transcriptions contained 2.5 U/µl of T7 RNA polymerase, 2 mM each GTP,

ATP, UTP and CTP, except reactions with [α- P]GTP (Amersham) for which [GTP] was 0.5 mM. RNA transcripts were

gel purified (P RNA on a 4% acrylamide/8 M urea/TBE gel, pre-tRNA on an 8% acrylamide/8 M urea/TBE gel), detected

by UV shadow, excised, eluted passively with 0.5 M ammonium acetate, 0.1% sodium dodecyl sulfate (SDS) in 1× TE

and ethanol precipitated. RNA concentrations were calculated by using either the absorbance at 260 nm (32 µg/OD), or by

specific activity for labeled RNA samples.

Protein purification

RNase P protein from E.coli was expressed from plasmid pQE30EcoPprotein ( 19) as an N-terminal 6-his fusion. A  

culture of DH5α (20) cells containing pQE30EcoPprotein was grown to an OD600 of 0.7 and then induced with 0.5 mM

isopropyl-β-D-thiogalactopyranoside for 3 h at room temperature. Cells were centrifuged at 3800 g for 15 min at 4°C.

Protein was purified under denaturing conditions using Ni -NTA spin columns (Qiagen) according to the manufacturer’s

directions using 6 M GuHCl, 10 mM Tris–HCl and 10 mM NaH(PO4) pH 8.0 (Buffer A) for lysis. Columns were washed

with Buffer C [8 M urea, 10 mM Tris–HCl and 10 mM NaH(PO4), pH 6.3]. P protein was eluted in two fractions of 0.2

ml each of Buffer E [8 M urea, 10 mM Tris–HCl and 10 mM NaH(PO4), pH 4.5], analyzed by Tris–tricine SDS–

polyacrylamide gel electrophoresis (PAGE) (21) and pooled. RNase P protein was renatured by serial dialysis using micro

dialysis cassettes (Pierce) from protein buffer [50 mM N-[hydroxyethyl]piperazine- N′-[2-ethanesulfonic acid] (HEPES)

pH 8.0, 50 mM NaCl, 0.05% IGEPAL] containing 4 M urea, followed by protein buffer plus 2 M urea and two changes in

protein buffer without urea plus 20% glycerol. Protein was quantitated by the Coomassie dye-binding method (22), using

bovine serum albumin as a standard.

Protein modification

Proteins were modified with the heterobifunctional crosslinking reagent APB (Fluka). Modification reactions contained

100 µM protein, 3 mM APB, in protein buffer plus 20% glycerol and 0.5 mM Tris[2-carboxyethylphosphine] HCl, a

non-thiol reducing reagent (Pierce). An equal volume of 8 M urea was added and the reaction was incubated on ice in the

dark for 4 h. The excess APB was quenched by the addition of 4 mM β-mercaptoethanol and incubated on ice for 30 min.

Modified proteins were then renatured and unconjugated APB removed by dialysis as described above.

Activity assays

RNase P RNA was annealed by heating to 80°C for 2 min in 25 mM HEPES pH 8.0, 50 mM NH4Cl, 0.025% IGEPAL,

room temperature for 2 min, followed by 50°C for 10 min (23). RNase P RNA was diluted into 1× reaction buffer (50 mM

HEPES pH 8.0, 100 mM NH4Cl, 10 mM MgCl 2, 0.05% IGEPAL) then mixed with RNase P protein in reaction buffer

and incubated at 37°C for 5 min. Substrate pre-tRNA was incubated separately in reaction buffer at 37°C for 5 min, then

Asp

32

2+
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added to enzyme to start reactions. Final reactants were 0.5 nM RNA, 1 nM protein, 20 nM pre-tRNA. Reactions (10 µl)

were stopped after 15 min at 37°C by addition of an equal volume of 1× TBE, 50 mM EDTA, 8 M urea, 0.01%

bromophenol blue, 0.01% xylene cyanol; reactions were then heated to 80°C, quick chilled on ice, then resolved on 8%

polyacrylamide/8 M urea/TBE gels and quantitated using a Fuji phosphorimager.

Preparative and analytical protein crosslinking to RNase P RNA

RNase P RNA was annealed by heating to 80°C for 2 min, room temperature for 2 min, 50°C for 10 min and then placed

on ice until use (23). RNase P RNA and modified protein were incubated in 400 mM NH4Cl, 50 mM HEPES pH 8.0, 10

mM MgCl2 and 0.05% IGEPAL (v/v) at 37°C for 5 min, then irradiated in open Eppendorf tubes for 15 min at room

temperature with a 302 nm hand held lamp (UVP) at 4 cm using a polystyrene filter. For analytical crosslinks 20 nM RNA

was reacted with 40 or 80 nM protein in 10 µl. Protease K treatments were performed by addition of 1 µl of 20 µg/ml

protease K and incubation at 37°C for 20 min. Reactions were stopped by the addition of an equal volume of stop solution

(1× TBE, 8 M urea, 50 mM EDTA, 0.01% bromophenol blue, 0.01% xylene cyanol and 0.2% SDS). For preparative

reactions, 400 nM P RNA was incubated with 400 or 800 nM modified protein and reacted in 200 µl; preparative reactions

were made 0.2% in SDS, precipitated with EtOH, resuspended in 10 µl TE followed by addition of 10 µl of stop solution.

The crosslinks were resolved on a 4% acrylamide/8 M urea/TBE gel. Analytical crosslink gels were fixed, dried and

quantitated by phosphorimager (Fuji). Preparative gels were visualized by staining with Sypro Green RNA stain

(Molecular Probes); crosslinked and uncrosslinked RNAs were passively eluted and precipitated as above.

Primer extension analysis

Gel purified protein–RNA crosslinked species were analyzed by primer extension using primers that cover the entire P

RNA sequence. Primers were 5′ end-labeled with [γ- P]ATP (Amersham) using T4 polynucleotide kinase (Gibco BRL).

End-labeled primer ( 5 pmol) was annealed to RNA samples ( 0.2 pmol) in 50 mM Tris–HCl (pH 8.3 at 42°C) and 25

mM KCl at 90°C for 2 min then slowly cooled to 30°C. Extension reactions were carried out in 50 mM Tris–HCl (pH

8.3 at 42°C), 50 mM KCl, 10 mM dithiothreitol, 10 mM MgCl2 and 200 µM of each dNTP plus 1 U avian myeloblastosis

virus reverse transcriptase (Seikagaku)/7.5 µl reaction at 42°C for 1 h. Reactions were terminated by the addition of 0.8

vol of stop solution containing 85% formamide, 20 mM EDTA, 0.1% bromophenol blue and 0.1% xylene cyanol. The

labeled extension products were resolved on 6% acrylamide/8 M urea/TBE gels, fixed, dried and visualized by

autoradiography. Sequencing reactions were as described above, using non-irradiated RNA and a final concentration of 10

µM of the appropriate ddNTP.

Crosslinking of P protein mutants to pre-tRNAs with varying 5′ leader
lengths

Reactions were similar to protein–P RNA crosslinks, but buffer pH was 6.0 and calcium was substituted for magnesium to

minimize cleavage of pre-tRNA (24,25). RNase P RNA was annealed prior to use as described above. Samples (400 nM)

of RNase P RNA and (400 nM) APB-modified F18C/C113A or H78C/C113A P protein mutant were incubated at 37°C

for 10 min in 400 mM NH4Cl, 50 mM HEPES pH 6.0, 10 mM CaCl2 and 0.05% IGEPAL (v/v). Pre-tRNA was pre-

32
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incubated separately in the same buffer at 37°C for 10 min then mixed with holoenzyme and incubated for an additional

10 min at 37°C. The reactions were irradiated with 302 nm UV light using a polystyrene filter for 15 min at room

temperature. Protease K treatments were performed as above. An equal volume of SDS sample buffer (100 mM Tris pH

6.8, 0.02% SDS, 0.2 M β-mercaptoethanol, 20% glycerol and 50 mM EDTA) was added; the samples were then resolved

on a 15% acrylamide Tris–glycine SDS–PAGE gel (26), fixed, dried and visualized on a Fuji phosphorimager.

Homology modeling

The crystal structure coordinates of the RNase P protein from B.subtilis were obtained from the RCSB

[http://www.rcsb.org/pdb /, accession no. 1A6F ( 7)] and used as a template for modeling the E.coli RNase P protein

using SwissPdbViewer version 3.5 (http://www.expasy.ch/spdbv/mainpage.ht m).

RESULTS

Confirmation of P protein mutants and modifications

Residues on the P protein to be replaced with cysteine and modified with crosslinker were chosen using a homology model

of the E.coli P protein based on the crystal structure of the B.subtilis P protein ( 7). Amino acids H78 and R99 were also

chosen due to their close proximity to highly conserved regions in the bacterial P proteins, their high probability of being

surface exposed based on the homology model, and their distribution over the surface of the P protein. Amino acid F18

was chosen based on the observation that the homologous residue in the B.subtilis P protein, F16, crosslinks to precursor

sequences ≥4 nt in pre-tRNA (16), thus it was expected to form the homologous crosslink in the E.coli holoenzyme. The

thiol-specific aryl azide crosslinking reagent, APB, was utilized for attachment of photoagent at the desired sites. The

natural protein sequence has a single cysteine, C113. For introduction of a unique thiol at F18, H78 or R99, the natural

cysteine was mutated to alanine by site-directed mutagenesis (C113A), then individual second-site mutations,

F18C/C113A, H78C/C113A and R99C/C113A, were generated in the C113A background. The activity of protein mutants

was assessed to determine if the newly introduced cysteine or subsequent modification with APB perturbed the native

structure of the P protein. Mutant proteins were tested for their ability to promote cleavage of substrate in the holoenzyme

under multiple turnover conditions in buffer containing 100 mM NH4Cl, 10 mM MgCl 2 and 20 nM pre-tRNA substrate,

in which P RNA alone is enzymatically inactive. All mutants, both unmodified and modified with APB, promoted

cleavage of pre-tRNA by RNase P RNA at near wild-type levels (Table 1).

Crosslinking of mutant P proteins to pre-tRNAs with varying 5′ leader
lengths

A previous study demonstrated that residue F16 of B.subtilis, when changed to cysteine and modified with APB,

crosslinks to pre-tRNA substrates with ≥4 nt leader sequences (16). The homologous residue in the E.coli P protein, F1

was tested for the ability to crosslink to pre-tRNAs with 5′ leaders of 2, 3 or 4 bases in length. In addition to F18, H78 was

also used as a negative control, as it is located on the opposite face of the P protein from F18 and the proposed substrate-

binding site. Figure 2 shows the crosslinking results for the mutant holoenzymes F18C/C113A and H78C/C113A,

http://www.rcsb.org/pdb/
http://www.expasy.ch/spdbv/mainpage.htm
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modified with APB, to pre-tRNAs. Reactions contained 400 nM each P RNA and modified protein, except for control

reactions. A small amount of non-specific crosslinking of protein to pre-tRNA in the absence of P RNA was seen as a faint

smear (Fig. 2, lanes 2 and 3). Specific crosslinks were detected between F18C/C113A and both 3 and 4 nt leader pre-

tRNA (Fig. 2, lanes 11 and 15, respectively, compare with lane 6, pre-tRNA with leader of 2 bases). The bands are

protein–RNA crosslinks as evidenced by sensitivity to protease K treatment (Fig. 2, compare lanes 11 and 12, 15 and 16).

F18C/C113A crosslinked to a pre-tRNA with either 3 or 4 base leader with an efficiency of 0.5%, crosslinking to the 2

base leader tRNA was only 0.1%. The specificity of the reaction agrees well with previous results, although the efficiency

of crosslinking differs greatly. The B.subtilis F16C protein crosslinked to pre-tRNA at 15% efficiency (16). H78C/C113A

did not crosslink to any of the pre-tRNAs tested (Fig. 2, lanes 9, 13 and 17). This agrees with the B.subtilis system, as

H78 lies outside the proposed substrate-binding cleft.

Analytical crosslinking to RNase P RNA

The ability of the P protein variants to crosslink to P RNA and their relative crosslinking efficiencies were tested.

Crosslink reactions were carried out in 400 mM NH4Cl reaction buffer, the optimal monovalent salt concentration for

protein-binding specificity to P RNA (27). RNA (20 nM) was incubated with 40 or 80 nM modified protein and irradiated

at 302 nm for 15 min. Protein–P RNA crosslinks run as a smear just below the well in the 4% acrylamide/8 M urea/TBE

gel system (Fig. 3). The protein–RNA crosslink bands were confirmed by sensitivity to protease K treatment (compare

lanes 3 and 4 for F18C/C113A, lanes 7 and 8 for H78C/C113A, lanes 11 and 12 for R99C/C113A), and UV dependence

(Fig. 3, compare lanes 2 and 3, 6 and 7, or 10 and 11). Crosslinking efficiency was dependent upon protein concentration.

When reactions were performed using 20 nM each of protein and RNA, crosslinking efficiencies were 2.9% for

F18C/C113A, and 1.0% each for H78C/C113A and R99C/C113A (Table 1). The native RNase P protein, C113, was also

modified and crosslinked, but the efficiency was <0.1%, even using 4-fold excess protein (Table 1 and data not shown).

Primer extension analysis of P protein to native P RNA crosslinks

Preparative crosslinking reactions contained 400 nM P RNA and 400 or 800 nM protein. Reconstituted holoenzyme was

irradiated with 302 nm UV light to activate the aryl azide, causing a crosslink to nucleotides of the RNA subunit that are in

close proximity. Protein–P RNA crosslinked species were then isolated by gel purification, eluted and subjected to primer

extension analysis. The two primers used for primer extensions were KS, which is complementary to the extended 3′ end

of pecKS P RNA, and Ec225r, which is complementary to bases 242–225 of P RNA. The primers chosen allowed analysis

of the entire sequence of P RNA. Reverse transcriptase extends the labeled primer up to the nucleotide 3′ to the crosslink

site (28). Examples of crosslinks seen for the three mutants are illustrated in Figure 4A and B. Crosslinks can be se  

stops in the primer extensions not seen in the control lanes (C). Primer extension stop sites were screened by several

criteria: (i) the relative intensity of the crosslink stop compared with stops seen for control uncrosslinked RNA from the

same crosslink reaction in the adjacent lane. This control distinguishes crosslinks from reverse transcriptase pause sites,

which are presumed to be caused by secondary structure. (ii) Crosslinks were also evaluated for dependence on protein

concentration. Sites of crosslinking detected at equimolar protein:RNA ratios are more likely to represent a high-affinity

binding site compared to those that require excess protein for maximal detection. (iii) Crosslinks were also assessed for

reproducibility; those sites noted were detected in at least three separate experiments. Consequently, the sites noted are a
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conservatively chosen set of strong crosslink sites. Weaker crosslinks, such as those requiring excess protein for maximal

detection, are also apparent. The weaker sites may also represent valid crosslinks, but we are most confident of the

strongest sites. The position of the crosslinks in RNase P RNA was determined by the sequencing ladder in adjacent lanes.

All three modified protein mutants crosslinked to bases C228 in helix P11 and U231 in J14/11. [In E.coli RNase P RNA,

base-paired helices are numbered P1–P18 in 5′–3′ order. Unpaired ‘joining’ regions are denoted with J and the number of

flanking helices in 5′–3′ order (29).] H78C also crosslinked to G246 and C247 at the junction of helix P5 and J5/15, to

C131 in J11/12 and to U167–C168 in helix P12. The sites of crosslinking for each of the three protein mutants, F18C,

H78C and R99C, are compiled in Table 1. The crosslink sites are also mapped onto the revised secondary structure of

E.coli RNase P RNA ( 11,30) and the Type A RNase P RNA minimum consensus sequence (31) in Figure 5. The

crosslink sites cluster in three regions of the secondary structure of E.coli RNase P RNA.

DISCUSSION

We determined regions of RNase P RNA that interact with the protein subunit utilizing site-specific protein–P RNA

crosslinking. The results of our analytical crosslink studies of holoenzyme containing modified F18C/C113A protein to

pre‐tRNA substrate are in general agreement with similar studies performed with the homologous residue of B.subtilis
P protein, F16C. The B.subtilis F16C crosslinked to substrate tRNAs with 5′ precursor sequences ≥4 nt, but not to 2 or 3

nt precursors. Crosslinkers outside the central binding cleft determined in B.subtilis did not crosslink to pre-tRNA.

We saw similar results for E.coli F18C/C113A, although crosslinking was detected to both 3 and 4 nt precursors. In

addition, E.coli H78C/C113A, which is predicted to be located outside the corresponding binding cleft in E.coli, did not

crosslink to pre-tRNA as expected. The most striking difference between the two systems is a difference in crosslink

efficiency. The differences in efficiency between the two systems are likely due to inherent differences in reactivity or

solubility of the protein from the two species.

Given that the protein–tRNA crosslinks agreed well with  those seen in B.subtilis, the relative efficiency of the protein–P

RNA reactions compared with the specific reaction seen for F18C/C113A with pre-tRNA suggests that the protein–P RNA

crosslinks also represent specific P RNA–protein interactions. Most of the crosslinks that we observed from the P protein

mutants to P RNA were in or adjacent to highly conserved regions and near the active site of RNase P RNA. The

crosslinks are mapped onto the secondary structure consensus of Type A RNase P RNAs (Fig. 5B). We observed that

F18C, H78C and R99C crosslinked to bases C228 and U231, which are conserved positions in J14/11 and P11 of all

bacterial P RNAs. H78C also crosslinked to positions C131, U167, C168, G246 and C247 of the P RNA. The G246

crosslink site observed for H78C in P5 is 100% conserved in all Type A bacterial RNase P RNAs (31) and is believed to

be near the active site (32). C131 is >98% conserved in all Type A bacterial RNase P RNAs; nucleotide 231 is conserved

as a pyrimidine in 98% of Type A RNAs. Nucleotides 167 and 168 are part of a highly variable region of P12 directly

adjacent to the more conserved base of the highly conserved P12 helix.

The bacterial RNase P protein is predicted to lie near the active site of the RNA subunit, based upon the ability of the

protein to crosslink to precursor sequences of the substrate near the cleavage site. In the model of pre-tRNA binding to

P protein, conserved residues near H78 are closest to the site of cleavage of the pre-tRNA substrate (16). Our data are
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consistent with this model and the large body of tRNA–P RNA crosslink data that identify residues at or near the active

site of the ribozyme. Specifically, an aryl azide attached to the 5′ end of mat-tRNA, the site of action of RNase P,

crosslinked to nucleotides 231 and 248 (32). Our crosslinks to nucleotides 228, 231, 246 and 247 are in close agreement

with these sites. These regions have also been shown to interact with tRNA in nuclease (33) and chemical cleavage ( 34)

protection assays.

The degree of overlap in our RNA crosslinks among the different protein mutants was somewhat surprising. However,

distances between the different sites on the protein to which the aryl azide was attached are relatively small: the Cα of

F18C is 23 Å from H78 and 27 Å from R99. H78C is 18 Å from R99. These distances are less than twice the distance

between the Cα of cysteine and the reactive nitrene (14 Å), thus the crosslinker attached at any chosen residue could attack

the same point in space. Our results illustrate the relatively small size of the P protein compared with RNase P RNA. The

conserved regions of the protein likely to interact with RNase P RNA are clustered in a small region of this already small

protein (β strand 3 and helix 2, see Fig. 1). The natural cysteine, C113 failed to crosslink to P RNA and lies on the

opposite side of the protein with fewer conserved residues.

The RNA target for the crosslink is likely to have contributed to the clustering of crosslinks sites observed. All of the

crosslinked nucleotides are unpaired or adjacent to unpaired residues in the secondary structure. None are in the middle of

helices. A similar trend can be seen in the wealth of RNA–RNA crosslink data available using APB. Of the RNA–RNA

crosslinks characterized, <10% are in helices, compared with the expected 35% (compiled from 9,10,18,32,35,36). Thus,

APB may not efficiently crosslink to A-form helical regions in close proximity, but instead reacts with adjacent unpaired

residues. The size of the nucleotide target may also lead to clustering of crosslinks. Nucleotides range in size from 10 to 14

Å so modified proteins crosslinking to the same nucleotide need not react with the same atom at a particular point in space.

The protein–RNA crosslink sites detected do not appear to be intrinsically reactive nucleotides, as excess APB-cysteine in

solution did not have enhanced reactivity to the RNA crosslink sites (data not shown).

One test of the validity of detected crosslinks is to demonstrate that the crosslinked species are active. This is a technical

challenge, as current gel systems do not allow us to resolve different protein–RNA crosslinks from each other. However,

we were able to detect active crosslinks using a self-cleaving P RNA–tRNA chimera, TPT118. This RNA consists of a

pre‐tRNA mini helix tethered to a circularly permuted P RNA at nucleotide 118 (37). TPT118 is able to self-cleave the

5′ precursor sequence, but activity is stimulated 30-fold in the presence of protein (J.M.Nolan, unpublished data).

Modified protein was incubated with TPT118 in the presence of calcium to allow interaction of subunits with minimal

cleavage of the RNAs, the protein was crosslinked to RNA with UV light, and uncrosslinked protein was removed by

extensive washing with buffer lacking calcium. Addition of magnesium allowed RNA self-cleavage. The self-cleaved,

crosslinked RNAs were purified by gel electrophoresis and mapped by primer extension. Crosslinks to residues 246 and

247 by F18C and H78C were confirmed in this manner (data not shown).

Our results are in partial agreement with previous observations of regions of the P RNA, which interact with the protein.

Chemical cleavage footprinting (12) of the B.subtilis holoenzyme showed that the P protein protected three main regions

on the RNA subunit. The corresponding regions in E.coli P RNA are shown shaded in Figure 5B. The previous results and

ours indicate P12 as part of the protein-binding site, although we were not able to confirm other regions protected in the



Bacterial ribonuclease P holoenzyme crosslinking analysis reveals protein interaction sites on the RNA subunit | Nucleic Acids Research | Oxford Academic

https://academic.oup.com/nar/article/29/18/3848/1058129[10/1/2019 3:39:12 PM]

previous study, such as P2 and P8–P9. More recently, the site of E.coli P RNA that interacts with the protein subunit was

investigated by tethering an Fe–EDTA cleavage compound to specific sites on the P protein. Again, our results are in

partial agreement with this study. Crosslinks we detected for H78C to nucleotides 246 and 247 are directly adjacent in the

secondary structure to sites in helix P4, which were cleaved by Fe–EDTA attached to residue 54. Residue K54 is predicted

to lie between H78 and F18 in the three-dimensional structure of the P protein. However, none of our other crosslink sites

coincide with Fe–EDTA cleavage sites from the previous study.

The B.subtilis RNase P holoenzyme has recently been shown to form a (protein)2(RNA)2 tetramer in vitro, while the

RNA subunit alone exists as a monomer (38). The E.coli RNA did not form a heterotetramer with the B.subtilis protei

but instead formed a higher order aggregate. The E.coli RNA was able to compete efficiently with the B.subtilis RNA for

binding to the B.subtilis protein, inhibiting formation of the B.subtilis tetramer ( 38). It is possible that the E.coli RNase 

RNA can form a similar tetramer in the presence of the E.coli protein. Alternatively, the difference in the behavior of the

E.coli versus B.subtilis RNAs could result from differences in the secondary structure of the RNAs, which in turn could

affect their ability to form a stable, symmetrical tetramer. It is thus unclear how our results should be interpreted with

respect to the B.subtilis tetramer.

There are presently two different models of the E.coli RNase P RNA structure ( 9,11). Many of the crosslink sites detecte

in the present study were not modeled by Chen et al. (9), due to lack of sufficient structural constraints. In the Massire

model (11), our crosslink sites cluster in two to three areas (Fig. 6). This may be due to uncertain placement of poorly

constrained regions such as P12, or may in fact reflect two distinct binding sites necessary for tetramer formation. Our

results suggest that several regions of the RNA subunit, previously not well defined by crosslinking to a specific region,

need to be reoriented. The arrow in Figure 6 shows the proposed reorientation of helix P12. While the loop of P12 is likely

peripheral, given its variable length, the base of this helix is well conserved and should be placed nearer the core of the

enzyme. Similarly, P11 appears to interact with both protein and substrate and should be positioned near the core. The

RNA–protein crosslink sites detected here will provide additional constraints for further modeling of the structure of

RNase P RNA and help to determine the protein-binding site on the RNA.
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Figure 1. A homology model of E.coli RNase P protein created using SwissPdbViewer and the crystal structure of the
RNase P protein from B.subtilis. β strands are colored yellow, α helices are red. Two views are shown rotated 180° about
the y-axis. The residues changed to cysteine in this study and the native cysteine, C113, are shown in green wireframe and
labeled. Below is a sequence alignment of the E.coli and B.subtilis P protein sequences generated using SeqApp (D.
Gilbert, Indiana University) from the WIT alignment of bacterial RNase P proteins
(http://wit.integratedgenomics.com/IGwit/). The sites of mutation are highlighted in green, identical residues between
proteins are highlighted in gray. The alignment is numbered below according to the E.coli sequence. The secondary
structure elements that correspond to the sequence are indicated above the sequence with the same color coding for
secondary elements as the tertiary model.
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Figure 2. Crosslinking analysis of P protein mutants F18C/C113A and H78C/C113A to pre-tRNAs with varying 5′ leader
lengths. Modified P protein and P RNA (400 nM each) were incubated prior to the addition of pre-tRNA (10 nM).
Samples were separated on a Tris–glycine 15% SDS–PAGE gel. Protein–RNA crosslinks and uncrosslinked RNA are
labeled. The length of the pre-tRNAs 5′ leader used is denoted as –2, –3 or –4 from the site of cleavage.
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Figure 3. Analytical crosslinking gel of modified P protein mutants to RNase P RNA. RNA and protein were
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pre-incubated at 37°C for 10 min in 400 mM NH4Cl, 50 mM HEPES pH 8.0, 10 mM MgCl2 and 0.05% IGEPAL

(v/v) followed by a 15 min irradiation with 302 nm UV light and separated on a 4% acrylamide/8 M urea/TBE
gel. Protein–RNA crosslinks and uncrosslinked RNA bands are labeled.
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Figure 4. Primer extension analysis of mutant P protein crosslink sites on E.coli RNase P RNA. Gel purified,
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crosslinked species were extended with reverse transcriptase using the KS primer (A) and primer Ec225r (B).
Extension products were analyzed on 6% acrylamide/8 M urea/TBE gels and visualized by autoradiography.
Control lanes contain uncrosslinked, irradiated RNA as template and are labeled ‘(C)’. Ratios of protein:RNA of
1:1 and 2:1 were used in the crosslinking reactions and denoted as 1X and 2X, respectively, along with the P
protein mutant used. The sequencing ladder reactions were generated by addition of ddNTPs to reverse
transcriptase reactions and are labeled with the corresponding template nucleotide in the RNA. Sites of
crosslinking are labeled as deduced from the sequencing reactions.

Open in new tab Download slide

Figure 5. Sites of crosslinking mapped onto (A) the refined secondary structure of E.coli RNase P RNA (30),
(B) the minimum consensus for Type A bacterial RNase P RNAs. Sites of crosslinking are denoted by arrows
and color coded: green, F18C; red, H78C; blue, R99C. (B) Shaded regions are the sites in E.coli P RNA
homologous to sites of B.subtilis P RNA protected from hydroxyl radical and nuclease cleavage by B.subtilis P
protein (12). The results of Fe–EDTA protein tether experiments (15) are shown as color circles: green, S16C;
orange, K54C; gray, K66C.
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Table 1.

RNase P protein activity and crosslink data

Protein Percent wt
activity (%) 

 Percent RNase P RNA
crosslinked (%) 

RNase P RNA site crosslinked 

 Unmodified Azido   

F18C/C113A 30 60 2.9 C228, U231 

H78C/C113A 90 179 1.0 C131, U167, C168, C228, U231,
G246, C247 

R99C/C113A 174 242 1.0 C228, U231 

C113 (wt) 100 134 0.05 n.d.  

Activity measurements: initial velocity measurements of protein holoenzyme pre-tRNA cleavage activity for
wild-type P protein (C113, wt) and mutants F18C/C113A, H78C/C113A and R99C/C113A are shown.
Maximum percent cleaved was 26%. Percent crosslinking efficiencies: efficiencies were calculated from
duplicate experiments using 20 nM each RNase P protein and RNA. Protein–RNA crosslinks were resolved on
4% acrylamide/8 M urea/ TBE gels similar to that in Figure 3. RNA site crosslinked: crosslink sites for
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Figure 6. Stereo view of sites of crosslinking for F18C, H78C and R99C mapped onto a model of E.coli RNase
P RNA (11). The backbone of the RNase P RNA is shown in blue, bases involved in crosslinks with F18C,
H78C and R99C P proteins are displayed in yellow spacefill. tRNA substrate is shown in gray. The RNase P
protein is shown for scale in green. The arrow indicates direction of proposed reorientation of helix P12. Helices
which crosslink to protein are denoted P5, P11 and P12. Other helices are also noted by numerals only.
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F18C/C113A, H78C/C113A and R99C/C113A to RNase P RNA.

The crosslink site for C113 was not determined due to low efficiency of crosslinking.
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