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Effect of Protein Kinase C Inhibitors and Activators
on Corneal Re-epithelialization in the Rat

Akito Hirakata,* Amit G. Gupta,-f and Alan D. Proia

Purpose. To examine the ability of protein kinase C (PKC) inhibitors and activators to influence
the rate of corneal re-epithelialization in the rat.

Method. Rat corneas with 3 mm diameter central epithelial abrasions were organ-cultured in
control medium or in medium with inhibitors or activators of PKC.

Results. In control corneas, the defect was completely re-epithelialized by 25 hr. In the pres-
ence of the PKC inhibitors staurosporine (100 nM), sphinganine (50 /imol/1), or H-7 (100
/imol/1) there were significantly larger epithelial defects than in controls after 5-25 hr of
incubation. Re-epithelialization rates were similar to control corneas when the incubation
medium contained HA1004 (100 /umol/1), an analogue of H-7 that is a potent inhibitor of
cyclic adenosine monophosphate- and cyclic guanosine monophosphate-dependent protein
kinases and a weak inhibitor of PKC. Two PKC activators, l-oleoyl-2-acetyl-sn-glycerol (OAG)
and phorbol 1 2-myristate 1 3-acetate (PMA), were unable to enhance the rate of epithelial
wound healing.

Conclusions. Our results suggest that PKC activity is an important factor in regulating corneal
epithelial wound healing, presumably by influencing cell migration. Moreover, the results with
OAG and PMA suggest that PKC is maximally activated during re-epithelialization in this
organ-culture assay. Invest Ophthalmol Vis Sci. 1993; 34:216-221.

A rotein kinase C (PKC) is a family of enzymes initially
described in 1977.1 PKC activity is calcium and phos-
pholipid dependent, and the enzyme is activated by
1,2-diacylglycerol (DAG), one of the initial products of
inositol phospholipid hydrolysis.2 The role of PKC ac-
tivation in signal transduction was first demonstrated
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for the release of serotonin from platelets.3 Since
then, the importance of this enzyme has been shown
for the release and exocytosis of cellular constituents
from a variety of endocrine, exocrine, and neuronal
tissues, as well as for the modulation of membrane
functions such as arachidonic acid release from plate-
lets and enzyme release from lysosomes.4 The discov-
ery that tumor-promoting phorbol esters stimulate
cellular responses by fulfilling the DAG requirement
for activation of PKC indicated that cell proliferation
may be linked to the activity of this enzyme.5'6

PKC activity has been demonstrated in the cor-
nea,7 but its role is uncertain. There have been no
reports, to our knowledge, regarding a function of this
enzyme in corneal wound healing. After corneal abra-
sion, epithelial healing involves a complex series of
cellular changes that lead to the sliding of a sheet of
epithelial cells to resurface the defect.8 During move-
ment of these epithelial cells, there is redistribution of
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Protein Kinase C and Corneal Re-epithelialization 217

actin filaments,910 and interference with actin poly-
merization prevents re-epithelialization.n In other
cell types, activation of PKC by phorbol esters dimin-
ishes contractility of the actin cytoskeleton;1213 en-
hances spreading;14 stimulates actin polymeriza-
tion;15"17 provokes18 or inhibits19 membrane ruffling,
depending on cell type; and alters adherence of cells to
extracellular matrix20-21 and other cells.22 To implicate
PKC activity as a regulator of corneal epithelial wound
healing, we tested the ability of PKC inhibitors and
activators to influence the healing rate of epithelial
defects of organ-cultured corneas.

MATERIALS AND METHODS

Chemicals
Sphinganine, phorbol 12-myristate 13-acetate (PMA),
and bovine serum albumin (BSA; essentially fatty-acid
free; Cohn fraction V) were purchased from Sigma
Chemical Co., St. Louis, Missouri. Staurosporine, H-7
(l-[5-isoquinolinesulfonyl]-2-methylpiperazine), and
l-oleoyl-2-acetyl-sn-glycerol (OAG) were from Biomol
Research Laboratories, Inc., Plymouth Meeting,
Penna., and HA1004 was from Seikagaku America,
Inc., St. Petersberg, Florida.

To avoid cellular lysis, 100 mmol/1 sphinganine in
absolute ethanol was diluted slowly into a solution of
2.5 mmol/1 BSA in Dulbecco's phosphate buffered sa-
line (D-5773; Sigma Chemical Co.) to a final concen-
tration of 2 mmol/1.23 This then was added to the or-
gan culture medium to achieve the final sphinganine
concentration. Staurosporine and PMA were dis-
solved in dimethyl sulfoxide (DMSO) and diluted into
the medium so the final concentration of DMSO was
0.05%. H-7 and HA1004 were prepared as concen-
trated stock solutions in distilled water and diluted
100-fold with medium. OAG initially was dissolved in
chloroform/methanol (2:1, volume/volume), and
after evaporation of the organic solvent, it was dis-
solved in medium.

Animals/Epithelial Abrasion

All studies adhered to the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research.
Sprague-Dawley male rats that weighed 300-350 g
were purchased from Dominion Laboratories, Dublin,
Virginia and were given food (Rodent Laboratory
Chow, Ralston Purina Co., St. Louis, MO) and water
ad libitum. Rats were rapidly asphyxiated in a carbon
dioxide chamber, and corneal epithelial abrasions
were made as described by Gipson and Anderson.24

Briefly, a 3 mm diameter area was outlined on the
central cornea using a 3 mm diameter Baker's biopsy
punch (Holliday Surgical Supply, Winston-Salem,
NC), and the epithelium within this area was abraded

with a Beaver Mini-Blade 6400 (R. Beaver, Inc.,
Waltham, MA). Eyes were enucleated, corneas with
scleral rims were excised, and the irides were removed.
Preliminary studies using light microscopy of sections
stained with hematoxylin-eosin and periodic acid-
Schiff reagent after diastase digestion of glycogen
showed that this procedure removed the full thickness
of epithelium, but left the epithelial basement mem-
brane largely intact.

Organ Culture

Organ culture of corneas was performed by the
method of Gipson et al.2425 In brief, excised corneas
were dip-rinsed in 10 changes of Eagle's minimum es-
sential medium (MEM) with Earle's balanced salt solu-
tion, L-glutamine, and nonessential amino acids (M-
0643; Sigma Chemical Co.). Corneas with scleral rims
were cultured on paraffin posts26 at 35°C with 5%
CO2, four per 60 X 15 mm plastic tissue culture dish,
with or without inhibitors or activators in 10 ml MEM
supplemented with trace elements and antibiotics.25

Quantitation of Epithelial Defects

Epithelial defects were stained with Richardson's stain
made by mixing an equal volume of 1% azure II in
distilled water and 1% methylene blue in 1% borax
solution.27 The area of the defects was measured by
computerized image analysis with JAVA video analysis
software (Jandel Scientific, Corte Madera, CA). Cor-
neas with stained defects were left on their paraffin
posts and transilluminated by placing them on a fluo-
rescent light box (Ladd Research Industries, Inc.,
Burlington, VT). A magnified image (approximately
X20) was obtained using a television camera attached
to a Zeiss (Hanover, MD) dissecting microscope. The
actual magnification was determined by calibration
with a stage micrometer (Buehler Scientific, Lake
Bluff, IL). In preliminary studies with corneas 0, 5, 10,
and 15 hr after epithelial abrasion (n = 4-8 for each
time), we determined that defect areas measured with
flattened corneas were 14.9 ± 1.4% (mean ± 1 stan-
dard error of the mean) less than areas measured when
the corneas were left on posts (P = 0.02 [15 hr] to P
< 0.001 [5 hr]; paired Student's t-test). Because the
difference in defect area measurements was consistent
for all incubation lengths, we measured defect areas
using corneas on paraffin posts for the remainder of
the studies.

Statistics

The ability of PKC inhibitors and HA-1004 to influ-
ence epithelial defect size at different incubation
lengths was analyzed by logistic regression. The com-
parisons versus control corneas determined whether
any shift in the epithelial defect healing curves to the
right or left was significant (P < 0.05). For the dose-re-
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sponse curves with PKC inhibitors, the concentration
of drug that resulted in 50% inhibition (IC50) of re-
epithelialization was calculated by fitting the data to
asymptotic regression curves. In all figures and tables,
data are expressed as the mean ± 1 SEM.

RESULTS

Although the same procedure was used to create abra-
sions of the corneal epithelium, moderate variation in
the areas of epithelial defects was observed. The coeffi-
cient of variation for defect areas of control corneas
cultured on the same day or on different days was
similar (10.6 ± 1.6% and 8.4 ± 2.5%, respectively). In
control corneas, without or with 0.05% DMSO, the
defects were re-epithelialized by 25 hr of incubation.

Initial experiments used concentrations of inhibi-
tors reported to abolish PKC activity in other tissues
(Fig. 1). In the presence of 100 nM staurosporine,
re-epithelialization was markedly retarded {P < 0.001);
defects persisted even after 40 hr of culture. The inhi-
bition of re-epithelialization by 100 nM staurosporine
was reversible, as demonstrated by incubation in me-
dium with 100 nM staurosporine for 10 hr, rinsing of
the corneas with fresh medium, and incubation for 20
hr in medium with or without 100 nM inhibitor. Epi-
thelial defect size was 5.4 ± 0.2 mm2 (n = 4) when the
first and second incubations contained 100 nM stau-
rosporine, whereas the defect size was only 1.6 ± 0.3
mm2 (n = 4) when the second incubation was in me-
dium without inhibitor (P < 0.0001 using Student's

• Staurosporine (100 nM)
A Sphinganine (50 /JM)
• H-7 (100
• HA1004 (100 fiU)
O Control

50 100 150

Concentration (nM)
200

FIGURE 2. Effect of staurosporine concentration on epithe-
lial defect size after 20 hr of organ culture. In the presence
of 100 or 200 nM staurosporine, the original epithelial de-
fect decreased in size only about 14%, whereas in control
corneas the defect decreased in size by 94%. Results are the
mean ± 1 SEM for four corneas at each concentration.

t-test). Corneas cultured with 50 /umol/1 sphinganine
or 100 /xmo\/l H-7 also had significantly delayed re-
surfacing of the epithelial defects (P < 0.001 for both
agents). The re-epithelialization rate was similar
to control corneas when the medium contained
HA1004, an analogue of H-7 that is a potent inhibitor
of cyclic adenosine monophosphate (cAMP)- and cy-
clic guanosine monophosphate (cGMP)-dependent
protein kinases and a weak inhibitor of PKC.

Dose-response studies were performed for the
PKC inhibitors staurosporine, sphinganine, and H-7
using corneas cultured for 20 hr (Figs. 2 and 3). There
was almost total inhibition of epithelial wound healing

Time (hours)

FIGURE 1. Effect of incubation length on epithelial defect
size in the absence or presence of protein kinase inhibitors.
The protein kinase C inhibitors staurosporine, sphinganine,
and H-7 significantly delayed re-epithelialization (P < 0.001
for each inhibitor when compared to the control corneas).
HA 1004, a potent inhibitor of cAMP- and cGMP-dependent
protein kinases and a weak inhibitor of PKC, did not affect
the rate of epithelial wound healing. Results are the mean
± I SEM for eight corneas from 0-25 hr and four corneas
for 32.5 and 40 hours.

50 100 150

Concentration (fuM)
200

FIGURE 3. Effect of sphinganine and H-7 concentration on
epithelial defect size after 20 hr of organ culture. In the
presence of 200 /^mol/l sphinganine, there was no signifi-
cant healing of the epithelial defect, whereas in the presence
of 100 or 200 ixmo\/\ H-7, the original epithelial defect de-
creased in size by about 62%. In control corneas, the defect
decreased in size by 96-98%. Results are the mean ± 1 SEM
for four corneas at each concentration.
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TABLE i. Effect of Protein Kinase C
Activators on Epithelial Defect Size

Length of Incubation

Treatment* 10 hr 15 hr 20 hr

Control 4.7 ±0.2 1.9 ± 0.1 0.3 ± 0.
Phorbol 12-myristate

13-acetate (100 nM) 4.5 ± 0.1 1.8 ± 0.1 0.3 ± 0.

Treatment^ 10.5 hr 15 hr 20 hr

Control
1 -Oleoyl-2-acetyl-sn-

glycerol (100 jim.ol/1)

3

3

.8±

.8±

0.

0.

1

2

2

1

.0

.9

±0 .

±0 .

1

1

0

0

.3±

.3±

0.1

0.1

* Corneas were incubated with phorbol ] 2-myristate acetate (PMA)
or 0.05% dimethylsulfoxide (DMSO; vehicle) for 2.5 hr and trans-
ferred to fresh medium that did not contain PMA or DMSO.
Transfer to fresh medium was done to minimize the possibility of
down regulation of PKC. Values are the mean ± 1 standard error of
the mean for epithelial defect areas (mm2) of eight corneas. There
were no statistically significant (P < 0.05) differences between con-
trols and PMA-treated corneas at any of the time points.
f Corneas were cultured in medium containing l-oleoyl-2-acetyl-sn-
glycerol (OAG) for 10.5, 15, or 20 hr. Values are the mean ± 1 SEM
for epithelial defect areas (mm2) of six to eight corneas. There were
no statistically significant differences between controls and OAC-
treated corneas at any of the time points.

in the presence of 100 nM or more staurosporine (Fig.
2) or 200 jumol/1 sphinganine (Fig. 3). H-7 was maxi-
mally effective at 100 /umol/1, but the inhibition of
re-epithelialization was only about half that observed
with the two other inhibitors (Fig. 3). The concentra-
tion of each compound that gave 50% inhibition of
re-epithelialization (IC50) was 38.7 nM for staurospor-
ine and 62.4 ^mol/1 and 40.5 jumol/1 for sphinganine
and H-7, respectively.

We also attempted to enhance the rate of wound
healing using the PKC activators PMA and OAG. Ta-
ble 1 shows that when corneas were incubated with
100 nM PMA for 2.5 hr to activate PKC and then
transferred to fresh medium devoid of PMA to pre-
vent down-regulation, there was no significant effect
on the re-epithelialization rate compared to controls.
Similarly, incubation with 100 ^mol/1 OAG did not
increase the rate of epithelial wound healing (Table 1).
Because OAG may be rapidly metabolized, we per-
formed a control experiment in which corneas were
cultured with 100 jumol/1 OAG for a total of 10 hr but
with fresh OAG added at 3.3 and 6.7 hr. There was no
difference in epithelial defect size in the presence (4.7
± 0.1 mm2; n = 8) or absence (4.8 ± 0.2 mm2; n = 8)
of OAG.

DISCUSSION

In this study, we demonstrated that three PKC inhibi-
tors prevent normal epithelial wound healing in the rat

cornea. Structurally unrelated inhibitors with two dif-
ferent mechanisms of action were used in an attempt
to circumvent the limitations inherent in studies that
employ protein kinase inhibitors.28

H-7, an isoquinolinesulfonamide derivative,29'30

binds at or near the adenosine triphosphate
(ATP)-binding site of PKC and reversibly inhibits en-
zyme activity.31 H-7 is a potent inhibitor of PKC, but it
also inhibits cAMP- and cGMP-dependent protein ki-
nases.29 In our study, H-7 significantly delayed re-
epithelialization at concentrations higher than neces-
sary for inhibiting growth factor-induced cytosketetal
reorganization in human epidermoid carcinoma
cells,19 but lower than required to retard locomotion
of human polymorphonuclear leukocytes.32 HA1004,
a structural relative of H-7, served as control for H-7
specificity because it is a potent inhibitor of cyclic nu-
cleotide-dependent protein kinases but a weak inhibi-
tor of PKC activity.29 HA1004 had no effect on cor-
neal epithelial wound healing, thus implicating PKC
inhibition as the manner by which H-7 exerted its ef-
fect.

Staurosporine33 and sphinganine34 are PKC inhibi-
tors developed more recently than H-7. Staurosporine
reversibly inhibits PKC by competing with ATP for its
binding site35 and typically exerts effects at nanomolar
concentrations.173336The IC50 we observed for inhibi-
tion of corneal re-epithelialization by staurosporine
(38.7 nM) is similar to that for blockade of antigen-in-
duced increased F-actin in rat basophilic leukemic
cells (60 nM),17 suggesting a similar mechanism. How-
ever, our results do not exclude the possibility that
part of the inhibition of epithelial wound healing by
staurosporine may have been the result of disruption
of actin filaments by a PKC-independent mecha-
nism.37 It is unlikely that the inhibition of re-epithelial-
ization by staurosporine was the result of diminished
cell viability, because the inhibitory effect was revers-
ible when medium without inhibitor was added to the
organ cultures.

The inhibition of PKC by sphinganine is competi-
tive with diacylglycerol and phorbol ester and non-
competitive with calcium.38-39 In addition to inhibiting
PKC, sphingolipids such as sphinganine may exert a
variety of PKC-independent effects, including inhibi-
tion of calmodulin-dependent enzymes.39'40 If sphin-
ganine inhibited calmodulin-dependent enzymes in
the epithelium of our organ cultured corneas, this un-
doubtedly would have contributed to the delay in re-
epithelialization.4142 We suspect that the sphinganine
inhibition of corneal re-epithelialization was the result
of multiple mechanisms, not just inhibition of PKC,
because the dose-response curve deviated from the
classical sigmoidal shape expected for inhibitors with a
single mode of action.

In contrast to our ability to delay or prevent cor-
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neal re-epithelialization using PKC inhibitors, we were
unable to increase the rate of healing using the PKC
activators OAG and PMA. The lack of effect of these
PKC activators is unlikely to have been a methodologic
problem, because PMA was left in the media for only
2.5 hr to minimize down-regulation of PKC,43 and mul-
tiple applications of OAG were tested to reduce the
possibility that rapid metabolism of this compound
was negating a possible effect.44 We hypothesize that
rapid and maximal activation of PKC occurs in the
cells surrounding an epithelial abrasion and is neces-
sary for normal rates of re-epithelialization. Such a
scenario would explain the ability to delay wound heal-
ing using PKC inhibitors and the inability to speed
healing using PKC activators. Further experiments
that measure PKC activity or assess PKC immunohisto-
chemically will be needed to validate or refute this
theory.

Re-epithelialization in organ-cultured rat corneas
after a 3 mm diameter abrasion depends on migration,
but not division, of the remaining epithelial cells.11

Protein and glycoprotein synthesis are markedly in-
creased in the migrating epithelial cells,26>45-46 and inhi-
bition of glycoprotein synthesis prevents complete
closure of the epithelial defect.45 Other factors crucial
for normal rates of epithelial migration are actin poly-
merization101 M I and proper interaction of the migrat-
ing cells with the extracellular matrix.24 Our results do
not help distinguish which of these events may be mod-
ulated by PKC, but they should provide a useful frame-
work for future studies to clarify the cellular mecha-
nisms requisite for epithelial wound healing in the rat
cornea.

Key Words

cornea, cytoskeleton, epithelium, phorbol esters, protein ki-
nase C, sphinganine, staurosporine, wound healing, l-(5-
isoc]uinolinesulfonyl)-2-methylpiperazine (H-7), l-oleoyl-2-
acetyl-sn-glycerol.

Acknowledgments

We thank Mr. David Chandler for assistance with computer-
ized image analysis, and Mr. Michael J. Helms for biostatis-
tical consultation.

References

1. Inoue M, Kishimoto A, Takai Y, Nishizuka Y. Studies
on a cyclic nucleotide-independent protein kinase and
its proenzyme in mammalian tissues. II. Proenzyme
and its activation by calcium-dependent protease from
a brain. J Biol Chem. 1977;252:7610-7616.

2. Nishizuka Y. The role of protein kinase C in cell sur-
face signal transduction and tumour promotion. Na-
ture. 1984; 308:693-698.

3. Kaibuchi K, Takai Y, Sawamura M, Hoshijima M, Fuji-
kura T, Nishizuka Y: Synergistic functions of protein

phosphorylation and calcium mobilization in platelet
activation. J Biol Chem. 1983; 258:6701-6704.

4. Nishizuka Y. Studies and prospectives of the protein
kinase C family for cellular regulation. Cancer.
1989;63:1892-1903.

5. Ashendel CL. The phorbol ester receptor: A phospho-
lipid-regulated protein kinase. Biochim Biophys Ada.
1985;822:219-242.

6. Blumberg PM. Protein kinase C as the receptor for
the phorbol ester tumor promoters: Sixth Rhoads me-
morial award lecture. Cancer Res. 1988;48:l-8.

7. Bazan HEP, Dobard P, Reddy STK. Calcium- and
phospholipid-dependent protein kinase C and phos-
phatidylinositol kinase: Two major phosphorylation
systems in the cornea. Curr Eye Res. 1987;6:667-673.

8. Arey LB, Covode WM. The method of repair in epithe-
lial wounds of the cornea. Anat Rec. 1943;86:75-86.

9. Gipson IK, Anderson RA: Actin filaments in normal
and migrating corneal epithelial cells. Invest Ophthal-
mol VisSci. 1977; 16:161-166.

10. Jester JV, Rodrigues MM. Actin filament localization
in normal and migrating rabbit corneal epithelium.
Curr Eye Res. 1984; 3:955-960.

11. Gipson IK, Westcott MJ, Brooksby NG. Effects of cy-
tochalasins B and D and colchicine on migration of
the corneal epithelium. Invest Ophthalmol Vis Sci.
1982;22:633-642.

12. Danowski BA, Harris AK. Changes in fibroblast con-
tractility, morphology, and adhesion in response to
phorbol ester tumor promoter. Exp Cell Res.
1988; 177:47-59.

13. Lyass LA, Bershadsky AD, Vasiliev JM, Gelfand IM.
Microtuble-dependent effect of phorbol ester on the
contractility of cytoskeleton of cultured fibroblasts.
ProcNatl Acad Sci USA. 1988;85:9538-9541.

14. Petty HR. Regulation of RAW264 macrophage mor-
phology and spreading: Studies with protein kinase C
activators, inhibitors and a cyclic AMP analog. Biochim
Biophys Ada. 1989; 1012:284-290.

15. Hartwig JH, Janmey PA. Stimulation of a calcium-de-
pendent actin nucleation activity by phorbol 12-myris-
tate 13-acetate in rabbit macrophage cytoskeletons.
Biochim Biophys Ada. 1989; 1010:64-71.

] 6. Danilov YN, Juliano RL. Phorbol ester modulation of
integrin-mediated cell adhesion: A postreceptor
event. J Cell Biol. 1989; 108:1925-1933.

17. Apgar JR. Regulation of the antigen-induced F-actin
response in rat basophilic leukemia cells by protein
kinase C. J Cell Biol. 1991; 112:1157-1163.

18. Grant NJ, Aunis D. Effects of phorbol esters on cyto-
skeletal proteins in cultured bovine chromaffin cells:
Induction of neurofilament phosphorylation and reor-
ganization of actin. EurJ Cell Biol. 1990;52:36-46.

19. Miyata Y, Nishida E, Koyasu S, Yahara I, Sakai H. Pro-
tein kinase C-dependent and -independent pathways
in the growth factor-induced cytoskeletal reorganiza-
tion. J Biol Chem. 1989; 264:15565-15568.

20. Kato S, Ben TL, de Luca LM. Phorbol esters enhance
attachment of NIH/3T3 cells to laminin and type IV
collagen substrates. Exp Cell Res. 1988; 179:31-41.

21. Symington BE, Symington FW, Rohrschneider LR.

Downloaded from iovs.arvojournals.org on 09/21/2019



Protein Kinase C and Corneal Re-epithelialization 221

Phorbol ester induces increased expression, altered
glycosylation, and reduced adhesion of K562 erythro-
leukemia cell fibronectin receptors. J Biol Chem.
1989; 264:13258-13266.

22. Herbert J-M, Maffrand J-P. Tumor cell adherence to
cultured capillary endothelial cells is promoted by ac-
tivators of protein kinase C. Biochem Pharmacol.
1991; 42:163-170.

23. Lambeth JD, Burnham DN, Tyagi SR. Sphinganine
effects on chemoattractant-induced diacylglycerol
generation, calcium fluxes, superoxide production,
and on cell viability in the human neutrophil. Delivery
of sphinganine with bovine serum albumin minimizes
cytotoxicity without affecting inhibition of the respira-
tory burst./ Biol Chem. 1988;263:3818-3822.

24. Cipson IK, Anderson RA. Effect of lectins on migra-
tion of the corneal epithelium. Invest Ophthalmol Vis
Sci. 1980; 19:341-349.

25. Gipson IK, Grill SM, Spurr SJ, Brennan SJ. Hemides-
mosome formation in vitro./ Cell Biol. 1983; 97:849-
857.

26. Gipson IK, Kiorpes TC. Epithelial sheet movement:
Protein and glycoprotein synthesis. Dev Biol.
1982;92:259-262.

27. Richardson KC, Jarett L, Finke EH. Embedding in
epoxy resins for ultrathin sectioning in electron mi-
croscopy. Stain Technology. 1960;35:313-323.

28. Blackshear PJ. Approaches to the study of protein ki-
nase C involvement in signal transduction. Am J Med
Sci. 1988; 296:231-240.

29. Hidaka H, Inagaki M, Kawamoto S, Sasaki Y. Isoqui-
nolinesulfonamides, novel and potent inhibitors of cy-
clic nucleotide dependent protein kinase and protein
kinase C. Biochemistry. 1984;23:5036-5041.

30. Kawamoto S, Hidaka H. l-(5-isoquinolinesulfonyl)-2-
methylpiperazine (H-7) is a selective inhibitor of pro-
tein kinase C in rabbit platelets. Biochem Biophys Res
Commun. 1984; 125:258-264.

31. Ohta H, Tanaka T, Hidaka H. Putative binding site(s)
of 1 -(5-isoquinolinesulfonyl)-2-methylpiperazine (H-
7) on protein kinase C. Biochem Pharmacol. 1988; 37:
2704-2706.

32. Gaudry M, Perianin A, Marquetty C, Hakim J. Nega-
tive effect of a protein kinase C inhibitor (H-7) on
human polymorphonuclear neutrophil locomotion.
Immunology 1988; 63:715-719.

33. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Mori-
moto M, Tomita F. Staurosporine, a potent inhibitor
of phospholipid/Ca++ dependent protein kinase. Bio-
chem Biophys Res Commun. 1986; 135:397-402.

34. Merrill AH Jr, Sereni AM, Stevens VL, Hannun YA,
Bell RM, KinkadeJM Jr. Inhibition of phorbol ester-
dependent differentiation of human promyelocytic
leukemic (HL-60) cells by sphinganine and other long-
chain bases. / Biol Chem. 1986; 261:12610-12615.

35. Nakadate T, Jeng AY, Blumberg PM. Comparison of
protein kinase C functional assays to clarify mecha-
nisms of inhibitor action. Biochem Pharmacol. 1988; 37:
1541-1545.

36. Daviet I, HerbertJM, MaifrandJP. Tumor-promoting
phorbol esters stimulate bovine cerebral cortex capil-
lary endothelial cell growth in vitro. Biochem Biophys
Res Commun. 1989; 158:584-589.

37. Hedberg KK, Birrell GB, Habliston DL, Griffith OH.
Staurosporine induces dissolution of microfilament
bundles by a protein kinase C-independent pathway.
Exp Cell Res. 1990; 188:199-208.

38. Merrill AH Jr, Stevens VL. Modulation of protein ki-
nase C and diverse cell functions by sphingosine—a
pharmacologically interesting compound linking
sphingolipids and signal transduction. Biochim Biophys
Ada. 1989;1010:131-139.

39. Hannun YA, Bell RM. Functions of sphingolipids and
sphingolipid breakdown products in cellular regula-
tion. Science. 1989; 243:500-507.

40. Jefferson AB, Schulman H. Sphingosine inhibits cal-
modulin-dependent enzymes./ Biol Chem. 1988;263:
15241-15244.

41. Soong H K, Citron C. Different corneal epithelial heal-
ing mechanisms in rat and rabbit: Role of actin and
calmodulin. Invest Ophthalmol Vis Sci. 1985; 26:838-
848.

42. Soong HK, Citron C. Disparate effects of calmodulin
inhibitors on corneal epithelial migration in rabbit
and rat. Ophthalmic Res. 1985; 17:27-33.

43. Rodriguez-Pena A, Rozengurt E. Disappearance of
Ca'2+-sensitive, phospholipid-dependent protein ki-
nase activity in phorbol ester-treated 3T3 cells. Bio-
chem Biophys Res Commun. 1984; 120:1053-1059.

44. Welsh CJ, Cabot MC. sn-1,2-Diacylglycerols and phor-
bol diesters: Uptake, metabolism, and subsequent as-
similation of the diacylglycerol metabolites into com-
plex lipids of cultured cells. / Cell Biochem.
1987;35:231-245.

45. Gipson IK, Kiorpes TC, Brennan SJ. Epithelial sheet
movement: Effects of tunicamycin on migration and
glycoprotein synthesis. Dev Biol. 1984; 101:212-220.

46. Zieske JD, Gipson IK. Protein synthesis during cor-
neal epithelial wound healing. Invest Ophthalmol Vis
Sci. 1986; 27:1-7.

Downloaded from iovs.arvojournals.org on 09/21/2019


	Effect of protein kinase C inhibitors and activators on corneal re-epithelialization in the rat
	Recommended Citation

	tmp.1569097014.pdf.GIuY6

