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ABSTRACT 

Oh, Minsu 

M.S.O.E 

Rose-Hulman Institute of Technology 

May 2017 

Study of Cu/SiO2/Cu Metamaterials: Design, Simulation, Fabrication, Testing, and Optical 

Applications 

 

Thesis Advisors: Dr. Richard Liptak and Dr. Sergio Granieri (co-advisor) 

 

 In the past few years, “metamaterials” have grabbed attention of researchers in both science 

and engineering. They have revealed great potentials to realize unusual optical applications such 

as flat lenses or frequency-selective performances with their unusual electromagnetic properties. 

In this project, Cu/SiO2/Cu metamaterials of diverse designs and parameters were studied towards 

discovering their unknown optical applications. From simulation work, it was found that some 

metamaterials exhibit a performance of a rectangle-shaped bandpass at optical frequencies. Their 

operational wavelength region can be adjusted by having a different scale of the structure or a 

different thickness of the constituent materials. This indicates that those metamaterials could be 

used instead of traditional optical filters. A few selected metamaterials were fabricated and tested 

for comparison with the simulation results. 

Keywords: metamaterials, subwavelength structures, optical properties of materials, 

electromagnetism, nanofabrication 
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1. INTRODUCTION 

1.1 Metamaterials 

 When the wavelength of electromagnetic waves is much longer than the dimensions of a 

structured material that it propagates through, the material exhibits unusual electromagnetic 

properties compared to when the wavelength is much shorter than the dimensions [1]. With these 

unusual properties, the material behaves as if it were a uniform bulk material [1]. Metamaterials 

are artificial materials with those properties [2]. Although the name ends with ‘material’, it does 

not mean that a metamaterial is a homogeneous material such as SiO2, MgF2, or Cu. A 

metamaterial is a structured object made of a naturally existing material(s). The unusual 

electromagnetic properties of a metamaterial, therefore, originate from both its structure and the 

electromagnetic properties of its constituent natural materials. 

 With their unusual electromagnetic properties, metamaterials have exhibited extraordinary 

phenomena and applications such as negative-index refraction [3], unconventional flat lenses [4] 

at optical frequencies, power-dependent [5] and reconfigurable filters [6] at TV-microwave 

frequencies, and optical bandpass filters as studied in this thesis. 

 

1.2 Diffraction in Sub-wavelength Structures 

 If the spacing and dimensions of a structured material’s elements are much smaller than 

the incident wavelength of light, then high-order diffractions are evanescent and only the zeroth-
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order diffraction survives [4], [7]. Consequently, metamaterials, which are based on sub-

wavelength structures, do not produce high-order diffractions. 
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2. THEORY 

2.1 Electromagnetic Waves 

2.1.1 Maxwell’s Equations in Materials 

  (i) 𝛻 ⋅ �⃑� (𝑟 ) =
𝜌(𝑟 )

𝜀
                            (ⅲ) 𝛻 ⋅ �⃑� (𝑟 ) = 0  

  (ii) 𝛻×�⃑� (𝑟 ) = −
𝑑�⃑� (𝑟 )

𝑑𝑡
                    (ⅳ) 𝛻×�⃑� (𝑟 ) = 𝜇𝐽 (𝑟 ) + 𝜀𝜇

𝑑�⃑� (𝑟 )

𝑑𝑡
 

where    �⃑� (𝑟 ): 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑎𝑡 𝑠𝑝𝑎𝑐𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑟  

�⃑� (𝑟 ):𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑎𝑡 𝑠𝑝𝑎𝑐𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑟  

𝐽 (𝑟 ): 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑠𝑝𝑎𝑐𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑟  

          𝜌(𝑟 ): 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑠𝑝𝑎𝑐𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 �⃑⃑�  

ε: permittivity of the material 

μ: permeability of the material  

  

 The four equations provided above are Maxwell’s equations (differential form) in SI units* 

[8]. According to (i) of Equation 1, the divergence of electric fields at a spatial point equals the 

electric charge density at that point divided by the permittivity of the material. (ii) of Equation 1 

shows that the rotation of electric fields in space induces a time variation of magnetic fields nearby, 

and vice versa. (ⅲ) of Equation 1 indicates there is no magnetic monopole; the N and S poles of 

(1) 

* This thesis is entirely based on SI units. However, some equations such as Maxwell’s 

equations and plasma frequency equation (Equation 55) have a slightly different form in cgs 

units. 
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magnetism always exist together*. (ⅳ) of Equation 1 says that the rotation of magnetic fields in 

space induces an electric current and a time variation of electric fields nearby, and vice versa. 

 

2.1.2 Maxwell’s Equations in Vacuum 

  (i) 𝛻 ⋅ �⃑� (𝑟 ) = 0                                (ⅲ) 𝛻 ⋅ �⃑� (𝑟 ) = 0 

  (ii) 𝛻×�⃑� (𝑟 ) = −
𝑑�⃑� (𝑟 )

𝑑𝑡
                    (ⅳ) 𝛻×�⃑� (𝑟 ) = 𝜀0𝜇0

𝑑�⃑� (𝑟 )

𝑑𝑡
 

 Maxwell’s equations listed in section 2.1.1 reduce to a simpler form in vacuum where the 

electric charge density and current density are zero (ρ = J = 0) as shown in Equation 2. 

 

2.1.3 Propagation of Electromagnetic Waves 

 

            Permittivity and permeability of materials are generally frequency-dependent, and they are 

treated as a tensor when the material is birefringent. Here vacuum is assumed to simply present 

how electromagnetic waves propagate in space.  

 Maxwell’s equations indicate that the time variation of electric fields in space (
dE⃑⃑ (𝑟 )

dt
) 

induces magnetic fields nearby according to (ⅳ) of Equation 2. If the time variation of the electric 

fields is not constant, in other words the electric field (E⃑⃑ (𝑟 )) is not linear with respect to time, then 

the induced magnetic fields also vary with time (where, therefore,
dB⃑⃑ (𝑟 )

dt
≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). In this case, the 

time variation of the induced magnetic fields (
dB⃑⃑ 

dt
) induces new electric fields nearby, and these 

induced electric fields also vary with time because of "∇×E⃑⃑ = −
dB⃑⃑ 

dt
≠ constant" from (ii) of Equation 

(2) 

* If a magnetic monopole is found, then the humanity may have to change (ⅲ) of Equation 1 [10]. 
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2. By (ⅳ) of Equation 2 again, these induced time-dependent electric fields induce new magnetic 

fields nearby that are also time-dependent. These new induced time-dependent magnetic fields 

induce new time-dependent electric fields nearby by (ii) of Equation 2 again. These chain reactions 

occur over and over and the energy propagates in the form of electromagnetic waves. Part of this 

process is illustrated in Figure 2.1. 

  

 

 

 

 

 

 Figure 2.1 shows inter-induction of electric and magnetic fields only on two planes: the 

plane of the paper and the perpendicular plane to the paper. The same principles, however, apply 

to all other three-dimensional planes. One can see that the E and B fields propagate throughout 

space (all 360 solid angles, but not along the x and -x axes at P) when the same principles are 

applied to different planes. Therefore, Maxwell’s equations mathematically explain the 

propagation of electromagnetic waves as well as the Huygens’ principle, which states that every 

point on a wave front acts as a point source. 

 

Figure 2.1 Illustration of electromagnetic wave propagation (reproduced from part of [11]). 

A time-varying electric field �⃑⃑� x applied at a spatial point P induces magnetic fields nearby 

that are rotating on the yz plane (here �⃑⃑� ⊥ �⃑⃑� ). The induced magnetic fields induce new 

rotating electric fields nearby that are also perpendicular to the magnetic fields. These 

induced electric fields induce new rotating magnetic fields nearby and the same reaction 

happens over and over.  

 



6 

 

2.1.4 Electromagnetic Waves in Loss-free Dielectrics (J=0) 

 Here it is assumed that the dielectric medium has zero electrical conductivity and is not 

electrically charged so that  J = ρ = 0. Then Maxwell’s equations of Equation 1 take a simpler 

form as shown in Equation 3 below. 

  (i) 𝛻 ⋅ �⃑� (𝑟 ) = 0                                (ⅲ) 𝛻 ⋅ �⃑� (𝑟 ) = 0  

  (ii) 𝛻×�⃑� (𝑟 ) = −
𝑑�⃑� (𝑟 )

𝑑𝑡
                    (ⅳ) 𝛻×�⃑� (𝑟 ) = 𝜀𝜇

𝑑�⃑� (𝑟 )

𝑑𝑡
 

If we take the curl of (ⅱ) *, then  

𝛻×𝛻×�⃑� = 𝛻×(−
𝑑�⃑� 

𝑑𝑡
) 

Suppose a harmonic plane wave and take the complex plane wave equations of �⃑� (𝑟 , 𝑡) = �⃑� 0 ∙

𝑒𝑖(�⃑� ∙𝑟  − 𝑤𝑡) and �⃑� (𝑟 , 𝑡) = �⃑� 0 ∙ 𝑒𝑖(�⃑� ∙𝑟  − 𝑤𝑡)** so that 

𝛻×�⃑� = −
𝑑�⃑� 

𝑑𝑡
=  𝑖𝑤�⃑�  

and Equation 4 becomes 

𝛻×𝛻×�⃑� = 𝛻×(−
𝑑�⃑� 

𝑑𝑡
) =  𝑖𝑤 ∙ (𝛻×�⃑� ) 

(3) 

(4) 

(5) 

(6) 

* This is an intuitive mathematical method that results in Equation 9. 

 

** The complex wave notation with the Euler’s formula gives an intuition to mathematically 

express loss and propagation of electromagnetic waves in media, which are physical (discussed 

in Chapter 2.2). Moreover, this mathematical notation provides convenience in dealing with 

waves (i.e. easy visualization of the superposition of waves with different amplitudes and phases 

on the complex plane). 

 

** If one rather chooses to use �⃑� (𝑟 , 𝑡) = 𝐸0
⃑⃑⃑⃑ ∙ 𝑒−𝑖(�⃑� ∙𝑟  − 𝑤𝑡) and �⃑� (𝑟 , 𝑡) = �⃑� 0 ∙ 𝑒−𝑖(�⃑� ∙𝑟  − 𝑤𝑡), 

some signs of other derived equations based on them might be flipped, but physical meanings 

are the same as long as one is consistent in using the same form. 
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By (ⅳ) of Equation 3, Equation 6 becomes 

𝛻×𝛻×�⃑� =  𝑖𝑤 ∙ (𝜀𝜇
𝑑�⃑� 

𝑑𝑡
) = 𝑤2𝜀𝜇�⃑�  

The Vector Laplacian (𝛻2) is defined as 

𝛻2�⃑� ≡ ( 𝛻2�⃑� 𝑥, 𝛻
2�⃑� 𝑦,𝛻

2�⃑� 𝑧) ≡  𝛻(𝛻 ∙ �⃑� ) − ∇×(∇×�⃑� ) 

By inserting (i) of Equation 3 into Equation 8, Equation 7 can be represented by 

𝛻2�⃑� = −𝑤2𝜀𝜇�⃑�  

Through the same process, it is obtained 

𝛻2�⃑� = −𝑤2𝜀𝜇�⃑�  

Knowing that the vector operator "𝛻 ∙ " can be replaced by  "𝑖�⃑� ∙ " for the complex plane wave 

form �⃑� (𝑟 , 𝑡) = �⃑� 0 ∙ 𝑒𝑖(�⃑� ∙𝑟  − 𝑤𝑡)*, the Vector Laplacian operator becomes 

𝛻2 = ∇ ∙ ∇= 𝑖�⃑� ∙ 𝑖�⃑� = −�⃑� ∙ �⃑�  

 (note that the vector operator  "𝛻 ∙ " can be replaced by  " − 𝑖�⃑� ∙ " for the complex plane wave 

form of �⃑� (𝑟 , 𝑡) = �⃑� 0 ∙ 𝑒−𝑖(�⃑� ∙𝑟  − 𝑤𝑡)) 

By inserting Equation 11 into Equation 9, it is obtained 

𝛻2�⃑� = −𝑤2𝜀𝜇�⃑� = −�⃑� ∙ �⃑� �⃑�  

 

(8) 

(7) 

(9) 

(10) 

(11) 

(12) 

* ∇ ∙ �⃑� = (
𝑑

𝑑𝑥
[𝐸0𝑥 ∙ 𝑒𝑖(𝑘𝑥∙𝑥 − 𝑤𝑡)],

𝑑

  𝑑𝑦
[𝐸0𝑦 ∙ 𝑒𝑖(𝑘𝑦∙𝑦 − 𝑤𝑡) ,   

𝑑

𝑑𝑧
[𝐸0𝑧 ∙ 𝑒𝑖(𝑘𝑧∙𝑧 − 𝑤𝑡))  

             = (𝑖𝑘𝑥[𝐸0𝑥 ∙ 𝑒𝑖(𝑘𝑥∙𝑥 − 𝑤𝑡)],   𝑖𝑘𝑦[𝐸0𝑦 ∙ 𝑒𝑖(𝑘𝑦∙𝑦 − 𝑤𝑡),   𝑖𝑘𝑧[𝐸0𝑧 ∙ 𝑒𝑖(𝑘𝑧∙𝑧 − 𝑤𝑡)) 

             = 𝑖�⃑� ∙ �⃑�   
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From Equation 12, it is obtained 

𝑘2 = 𝑤2𝜀𝜇 

and therefore 

𝑘 = 𝑤√𝜀𝜇 

Also, by applying 

𝜀𝜇 =
1

𝑣2
= (

𝑛

𝑐
)
2

 

to Equation 13 and 14, it is obtained 

𝑘2 =
𝑤2𝑛2

𝑐2
 

and 

𝑘 =
𝑤𝑛

𝑐
 

(where c is the speed of light in vacuum) 

 

2.1.5 Electromagnetic Waves in Lossy Dielectrics or Conductors (J≠0) 

 Maxwell’s equations in materials are as shown in Equation 18 below.  

  (i) 𝛻 ⋅ �⃑� (𝑟 ) =
𝜌(𝑟 )

𝜀
                            (ⅲ) 𝛻 ⋅ �⃑� (𝑟 ) = 0  

  (ii) 𝛻×�⃑� (𝑟 ) = −
𝑑�⃑� (𝑟 )

𝑑𝑡
                    (ⅳ) 𝛻×�⃑� (𝑟 ) = 𝜇𝐽 (𝑟 ) + 𝜀𝜇

𝑑�⃑� (𝑟 )

𝑑𝑡
 

(13) 

(15) 

(16) 

(17) 

(14) 

(18) 
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 Conductors have free electrons that may produce a non-zero value of the electric charge 

density 𝜌 at a spatial point in an oscillating electromagnetic wave. This makes the left-hand of (ⅰ) 

of Equation 18 non-zero, which results in more complicated math compared to that of Chapter 

2.1.4. It is assumed that, in the incidence of electromagnetic waves, free electrons in conductors 

immediately dissipate to the edges so that the electric charge density (𝜌)  is always zero 

everywhere inside the conductor [12]. For lossy dielectrics, 𝜌 = 0 is assumed, which is reasonable 

because no significant current flows in dielectrics [13]. Thus, for both conductors and dielectrics, 

Maxwell’s equations of Equation 18 can be represented as follows.  

  (i) 𝛻 ⋅ �⃑� (𝑟 ) = 0                                 (ⅲ) 𝛻 ⋅ �⃑� (𝑟 ) = 0  

  (ii) 𝛻×�⃑� (𝑟 ) = −
𝑑�⃑� (𝑟 )

𝑑𝑡
                    (ⅳ) 𝛻×�⃑� (𝑟 ) = 𝜇𝐽 (𝑟 ) + 𝜀𝜇

𝑑�⃑� (𝑟 )

𝑑𝑡
 

Using the same plane wave notations of �⃑� (𝑟 , 𝑡) = �⃑� 0 ∙ 𝑒𝑖(�⃑� ∙𝑟  − 𝑤𝑡) and �⃑� (𝑟 , 𝑡) = �⃑� 0 ∙ 𝑒𝑖(�⃑� ∙𝑟  − 𝑤𝑡) 

as in Chapter 2.1.4 and the frequency-dependent electrical conductivity 𝜎𝑤*, 

∇×∇×�⃑� = ∇×(−
𝑑𝐵

𝑑𝑡
)  

         = 𝑖𝑤(∇×�⃑� ) 

                    = 𝑖𝑤(μJ + 𝜀𝜇
𝑑�⃑� 

𝑑𝑡
) 

                                  = 𝑖𝑤(μ𝜎𝑤 E⃑⃑ + 𝜀𝜇(−𝑖𝑤�⃑� )) 

                     = 𝑖𝑤𝜇(𝜎𝑤 − 𝑖𝑤𝜀)�⃑�  

 

(19) 

(20-1) 

(20-2) 

(20-3) 

(20-4) 

(20-5) 

* Generally, electrical conductivity of materials depends on the frequency of the incident light. 

The subscript ‘w’ represents this property. The frequency-dependent property of electrical 

conductivity is further discussed in Chapter 2.2.4. 
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Define the complex effective permittivity* of lossy/conducting media as 

      𝜀𝑒𝑓𝑓 = 𝜀 + 𝑖
𝜎𝑤

𝑤
   [13] [15] (terms on the right hand were defined previously) 

By inserting Equation 21 into Equation 20-5, Equation 20-5 becomes 

∇×∇×�⃑� = 𝑤2𝜀𝑒𝑓𝑓𝜇�⃑�  

which has the same form as Equation 7.  

By the definition of Vector Laplacian, Equation 22 is given by 

𝛻2�⃑� = −𝑤2𝜀𝑒𝑓𝑓𝜇�⃑�  

which has the same form as Equation 9.  

By applying Equation 11 to Equation 23, it is obtained 

𝑘2 = 𝑤2𝜀𝑒𝑓𝑓𝜇 

and 

𝑘 = 𝑤√𝜀𝑒𝑓𝑓𝜇 

Assuming 𝜇 ≈ 𝜇0, the refractive index of the lossy/conducting medium is represented by 

𝑛 = √(𝜀𝑒𝑓𝑓,𝑟)(𝜇𝑟) ≈ √𝜀𝑒𝑓𝑓,𝑟 = √
𝜀𝑒𝑓𝑓

𝜀0
    [14] 

(22) 

(23) 

(24) 

(25) 

(26) 

* Permittivity values of loss-free and lossy media differ; the permittivity of loss-free media is a 

purely real number while the permittivity of lossy media is a complex number (also called the 

effective permittivity [14]). Here the notation “𝜀𝑒𝑓𝑓” is used to avoid confusion with ‘𝜀’ in 

Chapter 2.1.4 which does not contain an imaginary part. It is inferred that the electric current 

causes loss of electromagnetic waves in matter. Note that the notation ‘effective’ or subscript 

‘eff’ is omitted or replaced by other words in some literature such as [16] and [17]. 

(21) 
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By applying Equation 26 to Equation 24, it is obtained 

𝑘2 =
𝑤2𝑛2

𝑐2
 

           =
𝑤2𝜀𝑒𝑓𝑓,𝑟

𝑐2
 

and by the Equation 21, it is obtained 

                𝑘2 =
𝑤2

𝑐2
 (

𝜀

𝜀0
+ 𝑖

𝜎𝑤

𝜀0𝑤
) 

Therefore, 

𝑘 =
𝑤𝑛

𝑐
 

                    =
𝑤

𝑐
√(

𝜀

𝜀0
+ 𝑖

𝜎𝑤

𝜀0𝑤
) 

From Equations 28-1 and 28-2, the complex refractive index of the lossy dielectric/conducting 

media becomes 

𝑛 = (𝑛𝑅 + 𝑖𝑛𝐼) = √(
𝜀

𝜀0
+ 𝑖

𝜎𝑤

𝜀0𝑤
) 

 

2.2 Optical Properties of Materials 

2.2.1 Overview 

 Generally, permittivity, permeability, and electrical conductivity of a material vary with 

the frequency of the incident electromagnetic wave, which is called the frequency-dependent 

(27-1) 

(28-1) 

(27-2) 

(27-3) 

(28-2) 

(29) 
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property. Hence, by Equation 26, the refractive index also becomes frequency-dependent. This 

leads to different interactions between the material and wave depending on the frequency of the 

wave (such as different loss, speed of light, or reflectance). This frequency-dependent property of 

refractive index is also called “dispersion”. In this section, how the wave frequency and material 

constants relate to dispersion is described. 

 

2.2.2 Dispersion in General Dielectrics (Lorentz model) 

 

Figure 2.2 Lorentz forced and damped oscillation model for dielectric media [9]. 
 

 In this work, the term “general dielectrics” is used to refer to both loss-free and lossy 

dielectrics. In Figure 2.2, �⃑� 𝑛𝑒𝑡 represents the vector sum of the incident electric field from an 

external source and the electric fields due to surrounding dipoles near the electron [9]. That is, 

                        �⃑� 𝑛𝑒𝑡 = �⃑� 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑤𝑎𝑣𝑒 + �⃑� 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑑𝑖𝑝𝑜𝑙𝑒𝑠 

If an electric field is incident on an area of matter, it generates electric dipoles out of neighboring 

atoms. These dipoles produce additional electric fields that affect the area in return. This 

phenomenon is also implied in the polarization equation below 

           (30) 
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P⃑  = ε0𝜒𝑒�⃑� 𝑛𝑒𝑡 

(where 𝜒𝑒 is the electric susceptibility of the material) 

From the Lorentz oscillation model, it is given 

𝐹 𝑛𝑒𝑡 = 𝑚𝑒

𝑑2𝑟 

𝑑𝑡2
= 𝐹 𝐸 + 𝐹 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 + 𝐹 𝑠𝑝𝑟𝑖𝑛𝑔 

which leads to 

𝑚𝑒

𝑑2𝑟 

𝑑𝑡2
= −𝑒�⃑� 𝑛𝑒𝑡 − 𝑚𝑒𝛾

𝑑𝑟 

𝑑𝑡
− 𝑘𝑠𝑝𝑟𝑖𝑛𝑔𝑟  

(where 𝛾 is the damping frequency ([1/s] or [rad/s]) of the oscillation system and 𝑚𝑒 is the mass 

of an electron). The force 𝐹𝑚 = 𝑞𝑣 ×�⃑�  exerting on the electron due to the magnetic fields of the 

wave is ignored in that 𝐵 =
𝐸

𝑐
  , which leads to  |𝐹𝐸| = |𝑞�⃑� | ≫ |𝐹𝑚| = |𝑞𝑣 ×

𝐸

𝑐

 ⃑
| [18]. Assuming 

harmonic fields and oscillation, 

�⃑� 𝑛𝑒𝑡 = �⃑� 0 ∙ 𝑒−𝑖𝜔𝑡 

𝑟 = 𝑟 0 ∙ 𝑒−𝑖𝜔𝑡 

By inserting Equation 34 and 35 into Equation 33, it is obtained 

−𝑒�⃑� 𝑛𝑒𝑡 + 𝑚𝑒𝛾𝑖𝑤𝑟 − 𝑘𝑠𝑝𝑟𝑖𝑛𝑔𝑟 = −𝑤2𝑚𝑒𝑟  

Solving Equation 36 for 𝑟 , 

𝑟 =

𝑒
𝑚𝑒

�⃑� 𝑛𝑒𝑡

𝑤2 −
𝑘𝑠𝑝𝑟𝑖𝑛𝑔

𝑚𝑒
+ 𝑖𝑤𝛾

 

Applying the definition of (electric) resonance frequency of the system 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 
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𝑤0 = √
𝑘𝑠𝑝𝑟𝑖𝑛𝑔

𝑚𝑒
 

to Equation 37, 

𝑟 =

𝑒
𝑚𝑒

�⃑� 𝑛𝑒𝑡

(𝑤2 − 𝑤0
2) + 𝑖𝑤𝛾

 

Polarization per unit volume is written as 

�⃑� = −𝑁𝑒𝑟  

(where N is the number of dipoles per unit volume) 

From the combination of Equation 39 and 40, it is obtained 

�⃑� =

𝑁𝑒2

𝑚𝑒
�⃑� 𝑛𝑒𝑡

(𝑤0
2 − 𝑤2) − 𝑖𝑤𝛾

 

By equating Equation 31 and 41 and defining the plasma frequency 𝑤𝑝 = √
𝑁𝑒2

𝑚𝑒𝜀0
,  

𝜒𝑒 =

𝑁𝑒2

𝑚𝑒𝜀0

(𝑤0
2−𝑤2)−𝑖𝑤𝛾

 

               =
𝑤𝑝

2

(𝑤0
2 − 𝑤2) − 𝑖𝑤𝛾

 

Assuming 𝜀𝑟𝜇𝑟 ≈ 𝜀𝑟  and by the relation 𝜀𝑟 = 1 + 𝜒𝑒 , the refractive index of the dielectric medium 

becomes 

𝑛2 ≈ 𝜀𝑟 = 1 + 𝜒𝑒 

 

(38) 

(39) 

(40) 

(41) 

(42-1) 

(43) 

(42-2) 
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From Equations 42-2 and 43, it is obtained 

∗ 𝑛2 = (𝑛𝑅 + 𝑖𝑛𝐼)
2 = 1 +

𝑤𝑝
2

(𝑤0
2 − 𝑤2) − 𝑖𝑤𝛾

 

    𝑛 = √1 +
𝑤𝑝

2

(𝑤0
2 − 𝑤2) − 𝑖𝑤𝛾

 

By inserting Equation 44 into Equation 27-1, it is obtained 

∗ 𝑘2 = (𝑘𝑅 + 𝑖𝑘𝐼)
2 =

𝑤2

𝑐2 (1 +
𝑤𝑝

2

(𝑤0
2 − 𝑤2) − 𝑖𝑤𝛾

) 

    𝑘 =
𝑤

𝑐
√(1 +

𝑤𝑝
2

(𝑤0
2 − 𝑤2) − 𝑖𝑤𝛾

) 

Using the complex effective permittivity in Chapter 2.1.5, it is obtained 

𝑛2 = 𝜀𝑒𝑓𝑓,𝑟 

Therefore,  

𝑘2 =
𝑤2

𝑐2
(
𝜀

𝜀0
+ 𝑖

𝜎𝑤

𝑤𝜀0
) 

By inserting 
1

𝑐2
= 𝜀0𝜇0 into Equation 49, 

𝑘2 =
𝑤2𝜀𝑟

𝑐2
+ 𝑖𝑤𝜇0𝜎𝑤 

 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

* Here the complex notations of 𝑛 = 𝑛𝑅 + 𝑖𝑛𝐼 and 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 are used. If 𝑛 = 𝑛𝑅 − 𝑖𝑛𝐼 and 

𝑘 = 𝑘𝑅 − 𝑖𝑘𝐼 are used, some signs of derived equations based on them might be flipped, but 

physical meanings remain the same as long as one is consistent in using the same notations. 
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By inserting 𝜀𝑟 = 1 + 𝜒𝑒 into Equation 50, it is obtained 

        𝑘2 =
𝑤2(1 + 𝜒𝑒)

𝑐2
+ 𝑖𝑤𝜇0𝜎𝑤 

 So far, it has been assumed that each atom in dielectric media has only one electron or all 

electrons behave the same way. This resulted in a single value of the resonance frequency and 

damping frequency [9] [18]. Considering that the electrons may have different values of resonance 

and damping frequencies, Equation 39 can be re-written with the fraction term 𝑓𝑗, which ranges 

from 0 to 1, as follows. 

𝑟 =
𝑒

𝑚𝑒
�⃑� 𝑛𝑒𝑡 ∑

𝑓𝑗

(𝑤2 − 𝑤𝑗
2) + 𝑖𝑤𝛾𝑗

𝑗

  [9] [18] 

Thus, Equation 44 changes to 

𝑛2 = 1 +
𝑁𝑒2

𝑚𝑒𝜀0
∑

𝑓𝑗

(𝑤𝑗
2 − 𝑤2) − 𝑖𝑤𝛾𝑗𝑗

 

 

 Figures 2.3 shows some optical properties of silicon dioxide as a function of the wavelength 

-plots were generated by Maple as shown in Appendix A. 

 

(52) 

(53) 

(51) 
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       (a)       (b)  

 

            (c) 

Figure 2.3 Optical properties of SiO2: (a) real part and (b) imaginary part of the refractive 

index, and (c) reflectance. Of the refractive index, the real part meets the inflection point and 

imaginary part peaks at the resonance wavelength 0.103 𝝁𝒎  (here a single resonance 

frequency was employed as shown in Appendix A). 

 

2.2.3 Dispersion in Conductors (Drude model) 

 For conductors, the effects of atomic electrons (those bound to a nucleus) are ignored 

because free electrons dominate their electromagnetic properties [18]. Thus, compared to the 

Lorentz model previously, the spring force of the conductor’s oscillation system is assumed to be 

zero (𝐹 𝑠𝑝𝑟𝑖𝑛𝑔 = 0). Due to this fact, for the Drude model, Equation 44 becomes 

(54) 



18 

 

𝑛2 = 1 −

𝑁𝑒2

𝑚𝑒𝜀0

𝑤2 + 𝑖𝑤𝛾
 

where N is the number of free electrons per unit volume. Define the plasma frequency of the 

medium as 

𝑤𝑝 = √
𝑁𝑒2

𝑚𝑒𝜀0
 

Then we obtain 

𝑛2 = 1 −
𝑤𝑝

2

𝑤2 + 𝑖𝑤𝛾
 

𝑘2 =
𝑤2

𝑐2
(1 −

𝑤𝑝
2

𝑤2 + 𝑖𝑤𝛾
) 

Using the complex effective permittivity in Chapter 2.1.5, Equation 57 is also given by 

𝑘2 =
𝑤2

𝑐2
(
𝜀

𝜀0
+ 𝑖

𝜎𝑤

𝑤𝜀0
) 

By inserting 
1

𝑐2 = 𝜀0𝜇0 into Equation 58, it is obtained 

𝑘2 =
𝑤2𝜀𝑟

𝑐2
+ 𝑖𝑤𝜇0𝜎𝑤 

By inserting 𝜀𝑟 = 1 + 𝜒𝑒 into Equation 59, it is obtained 

𝑘2 =
𝑤2(1 + 𝜒𝑒)

𝑐2
+ 𝑖𝑤𝜇0𝜎𝑤 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 
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which is the same form as Equation 51 of dielectric media. If the electric susceptibility of the 

conductor is ignored (𝜒𝑒 ≈ 0), Equation 60 becomes 

𝑘2 =
𝑤2

𝑐2
+ 𝑖𝑤𝜇0𝜎𝑤 

 Figures 2.4 shows some optical properties of copper as a function of the wavelength -plots 

were generated by Maple as shown in Appendix B. 

 

      (a)                 (b) 

 

(c) 

Figure 2.4 Optical properties of Cu: (a) real part and (b) imaginary part of the refractive 

index, and (c) reflectance. At near the plasma wavelength (0.168 𝝁m), the real part of 

refractive index drops down close to 0 and the reflectance dramatically changes between 

approximately 0 and 1. 

 

 

(61) 
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2.2.4 Frequency-dependent Electrical Conductivity in Conductors (Drude model) [19] 

 The spring force (𝐹 𝑠𝑝𝑟𝑖𝑛𝑔) in the Drude model is ignored as discussed in Chapter 2.2.3. 

Thus, for conductors, Equation 33 becomes 

𝑚𝑒

𝑑2𝑟 

𝑑𝑡2
= −𝑒�⃑� − 𝑚𝑒𝛾

𝑑𝑟 

𝑑𝑡
 

Re-write Equation 62 as 

𝑚𝑒

𝑑𝑣 

𝑑𝑡
+ 𝑚𝑒𝛾𝑣 = −𝑒�⃑�  

(where 𝑣  is the drift velocity of free electrons in the conductor) 

By inserting  

𝑣 =
−𝐽 

𝑁𝑒
 

(where N and 𝐽  are the number density of free electrons and electric current density respectively) 

into Equation 63, it is obtained 

𝑑𝐽 

𝑑𝑡
+ 𝛾𝐽 = (

𝑁𝑒2

𝑚𝑒
)�⃑�  

Assuming �⃑� = �⃑� 0𝑒
−𝑖𝜔𝑡 and 𝐽 = 𝐽 0𝑒

−𝑖𝜔𝑡, Equation 65 becomes 

(−𝑖𝑤 + 𝛾)𝐽 = (
𝑁𝑒2

𝑚𝑒
)�⃑�  

If w = 0, the current density is given by 

𝐽 = (
𝑁𝑒2

𝑚𝑒𝛾
) �⃑� = 𝜎𝐷𝐶�⃑�  

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 
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Accordingly, the static electrical conductivity (when w = 0) is  

𝜎𝐷𝐶 = (
𝑁𝑒2

𝑚𝑒𝛾
) 

and the frequency-dependent current density is represented by 

𝐽 = [
𝜎𝐷𝐶

1 − (
𝑖𝑤
𝛾 )

] �⃑� = 𝜎𝑤�⃑�  

Therefore, the frequency-dependent electrical conductivity is given by 

𝜎𝑤 =
𝜎𝐷𝐶

1 − (
𝑖𝑤
𝛾 )

 

Also, by inserting Equation 68 into Equation 55, another expression of a conductor’s plasma 

frequency 𝑤𝑝 is obtained as 

𝑤𝑝
2 =

𝛾𝜎𝐷𝐶

𝜀0
= 𝛾𝜎𝐷𝐶𝑐

2𝜇0 

 

2.2.5 Values of Plasma and Damping Frequencies of Conductors 

 Plasma frequency and damping frequency (or collision frequency) values of some metals 

are shown in Table 2.1. Strictly speaking, the unit of damping frequency is defined as [1/s] [20]. 

In some literature, however, the unit [1/s] of damping frequency is replaced by [rad/s] without 

conversion of the value by multiplying 2𝜋 [20]. Therefore, both [1/s] and [rad/s] are written in 

Table 2.1 to avoid confusion. However, 2𝜋  must be multiplied when converting a plasma 

frequency value in [1/s] to the value in [rad/s] because 𝑤 = 2𝜋𝑓. 

(68) 

(69) 

(70) 

(71) 
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Table 2.1 Plasma and damping frequencies of some metals [16] 

(note that the reference is based on cgs units). 

 

 
 

 

 

 

 

                            

 

 

Figure 2.5 Plasma frequency vs. damping frequency of some metals (the plot is 

produced based on Table 2.1). 
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3. DESIGNS AND PARAMETERS 

3.1 Design A 

 The fishnet structure [21] [22] was selected as the first design. Figure 3.1 shows parameters 

of the fishnet-structured metamaterials defined throughout this work. 

   (a) (b) (c) 

Figure 3.1 Parameters of Design A metamaterials. (a): Top-view of the unit cell of the 

metamaterial (empty part is air). Coordinate centers of the horizontal and vertical elements 

are the same. (b): Stacking sequence and thicknesses of the constituent materials. (c): 

Oblique-view of the unit cell.  
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3.2 Design B 

 Figure 3.2 shows parameters of the Design B defined throughout this work. 

 

Figure 3.2 Parameters of Design B metamaterials. (a): Top-view of the unit cell of the 

metamaterial (empty part is air and 𝑠 + 𝑑 + 2𝑠 =
𝑎

2
.). (b): Stacking sequence and thicknesses 

of the constituent materials. (c): Oblique-view of the unit cell. 

 

 

3.3 Design C 

 Figure 3.3 shows parameters of the Design C defined throughout this work. 

 

 

 

Figure 3.3 Parameters of Design C metamaterials. (a): Top-view of the unit cell (empty part 

is air). (b): Stacking sequence and thicknesses of the constituent materials. (c): Oblique-view 

of the unit cell.  
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3.4 Design D 

 Figure 3.4 shows parameters of the Design D defined throughout this work. 

 

Figure 3.4 Parameters of Design D metamaterials. (a): Top-view of the unit cell (empty part 

is air). (b): Stacking sequence and thicknesses of the constituent materials. (c): Oblique-view 

of the unit cell.  

  

3.5 Design E 

 Figure 3.5 shows parameters of the Design E defined throughout this work. 

 

 

  

 

 

Figure 3.5 Parameters of Design E metamaterials. (a): Top-view of the unit cell (empty part 

is air). (b): Stacking sequence and thicknesses of the constituent materials. (c): Oblique-view 

of the unit cell.  
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3.6 Design F 

 Figure 3.6 shows parameters of the Design F defined throughout this work. The structure 

of Design F is opposite to that of Design E. 

 

  

 

 The unit cells of the six designs above are all symmetric with respect to x and y axes that 

are originating from the center of the unit cell (note that the z axis is perpendicular to the paper). 

These symmetric designs were chosen not to produce a difference between the TE and TM mode 

of the incident wave. The both top and bottom metallic layers of a unit cell were chosen to be the 

same metal, expecting the same results regardless of which face of the metamaterial the light is 

incident on. Then, copper and silicon dioxide were selected for the constituent materials, 

considering their cheaper price and slower oxidation rate.  

Figure 3.6 Parameters of Design F metamaterials. (a): Top-view of the unit cell (empty part 

is air). (b): Stacking sequence and thicknesses of the constituent materials. (c): Oblique-view 

of the unit cell.  
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4. SIMULATION 

4.1 Computational Electromagnetism: Finite Integration Technique 

 Finite Integration Technique (FIT) is a numerical method for computational 

electromagnetic simulation. The FIT solves electromagnetic problems by discretizing space under 

electromagnetic effects and applying Maxwell’s equations to all those discretized sections [23] as 

described in Figure 4.1. The time domain solver in CST Microwave Studio uses the FIT [23]. 

 

 

 

Figure 4.1 Discretization for FIT with hexahedral meshes [23]. 

 

 

(72)         [23] 
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4.2 Simulation Method 

1) Defining Optical Property Values of Materials 

  

Figure 4.2 Values of optical properties entered in CST Microwave Studio. (Left: Cu, right: 

SiO2) 

 

 Reflectance and transmittance of Cu/SiO2/Cu metamaterials of the designs in Chapter 3 

were studied with their varying parameters to explore their performance variation as a function of 

the parameter. Optical property values of Cu are employed from Table 2.1 to represent its 

dispersion. A single mean value 1.47 is employed for the SiO2’s refractive index over the 

wavelengths of 400 nm ~ 1500 nm [24] for ease of defining values in the software since SiO2 

exhibits little variation of its refractive index over those wavelengths. 
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For dielectric media, from Chapter 2.2.2, the complex-valued relative permittivity is 

𝜀𝑟 = 1 +
𝑤𝑝

2

(𝑤0
2 − 𝑤2) − 𝑖𝑤𝛾

 

Define the relative epsilon static (𝜀𝑠,𝑟)* with the relative epsilon infinity (𝜀∞,𝑟)* as  

𝜀𝑠,𝑟 = 𝜀∞,𝑟 +
𝑤𝑝

2

𝑤0
2    [25] 

(where 𝜀𝑠,𝑟 = 𝜀𝑟(𝑤 → 0) =
𝜀𝑟

𝜀0
,   𝜀∞,𝑟 = 𝜀𝑟(𝑤 → ∞) =

𝜀∞

𝜀0
). 

If 𝜀∞,𝑟 = 1,  Equation 74 becomes 

𝜀𝑠,𝑟 = 1 +
𝑤𝑝

2

𝑤0
2
 

Then Equation 73 can be represented by 

𝜀𝑟 = 𝜀∞,𝑟 +
(𝜀𝑠,𝑟−𝜀∞,𝑟)𝑤0

2

(𝑤0
2−𝑤2)−𝑖𝑤𝛾

    [25] 

For conducting media, from Chapter 2.2.3, the complex-valued relative (effective) permittivity is 

𝜀𝑒𝑓𝑓,𝑟 = 1 −
𝑤𝑝

2

𝑤2 + 𝑖𝑤𝛾
 

If 𝜀∞,𝑟 = 1, Equation 77 becomes 

𝜀𝑒𝑓𝑓,𝑟 = 𝜀∞,𝑟 −
𝑤𝑝

2

𝑤2+𝑖𝑤𝛾
      [20] 

where often 𝜀∞,𝑟 = 1 is assumed [26] and is used for the simulation work. 

(73) 

(74) 

(76)  

(75) 

(77) 

(78)  

* In literature such as [20], [25], and [26], 𝜀𝑠,𝑟 and 𝜀∞,𝑟 are notated without the subscript ‘r’ 

even though they are relative values. However, here the subscript ‘r’ is written to avoid 

confusion. 
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2) Excitation of the metamaterial with electromagnetic waves 

    

Figure 4.3 Incident light and a top-view scheme of a metamaterial. 

 

 Boundary conditions were used for a unit cell to represent the plane wave of Figure 4.3 as 

the excitation signal. The polarization and propagation direction of the incident light are shown in 

Figure 4.3. Although the object in Figure 4.3 is a fishnet-structured metamaterial, all designs in 

Chapter 3 were simulated with the same conditions as in Figure 4.3. Plus, all metamaterials in this 

study are symmetric and at normal incidence, hence the TE or TM mode of the incident wave does 

not affect their simulation results. Also, excitation ports (the planes where the input and output 

waves are evaluated for their magnitude and phase) were defined with a distance from the surface 

of the metamaterial so that the ports exist in the region where the input and output waves act as a 

plane wave. 
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4.3 Parameter Study and Simulation Results 

4.3.1 Design A 

 

1) When a = 300 nm and d = 150 nm 

 

Table 4.1 Thicknesses of dielectric and metallic layers. 

                      tdie [nm] 

tm [nm] 

 

70 

 

75 

 

80 

20 (1) (4) (7) 

25 (2) (5) (8) 

30 (3) (6) (9) 
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(a) 

 

(b) 

 

(c) 

Figure 4.4 Simulated reflectance for Table 4.1. 

 The plots of Figure 4.4 show a bandpass performance in the red-light region. The 

reflectance shifts to the left as the copper’s or silicon dioxide’s thickness increases. 
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(a) 

 

(b) 

 

(c) 

Figure 4.5 Simulated transmittance for Table 4.1. 

 The plots of Figure 4.5 show a bandpass performance in the red-light region. The 

transmittance shifts to the left as the copper’s or silicon dioxide’s thickness increases. 

 



34 

 

2) When a = 400 nm and d = 200 nm 

 

Table 4.2 Thicknesses of dielectric and metallic layers. 

                      tdie [nm] 

tm [nm] 

 

90 

 

100 

 

110 

30 (1) (4) (7) 

40 (2) (5) (8) 

50 (3) (6) (9) 
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(a) 

 

(b) 

 

(c) 

Figure 4.6 Simulated reflectance for Table 4.2. 

 The plots of Figure 4.6 show a bandpass performance. The reflectance shifts to the left as 

the copper’s or silicon dioxide’s thickness increases.  
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(a) 

 

(b) 

 

(c) 

Figure 4.7 Simulated transmittance for Table 4.2. 

 The plots of Figure 4.7 show a bandpass performance. The transmittance shifts to the left 

as the copper’s or silicon dioxide’s thickness increases. 
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3) When a = 500 nm and d = 250 nm 

Table 4.3 Thicknesses of dielectric and metallic layers. 

                      tdie [nm] 

tm [nm] 

 

120 

 

130 

 

140 

30 (1) (4) (7) 

40 (2) (5) (8) 

50 (3) (6) (9) 
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(a) 

 

(b) 

 

(c) 

Figure 4.8 Simulated reflectance for Table 4.3. 

 The plots of Figure 4.8 show a bandpass performance. The reflectance shifts to the left as 

the copper’s or silicon dioxide’s thickness increases. 
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(a) 

 

(b) 

 

(c) 

Figure 4.9 Simulated transmittance for Table 4.3. 

 The plots of Figure 4.9 show a bandpass performance. The transmittance shifts to the left 

as the copper’s or silicon dioxide’s thickness increases. 
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4) When a = 600 nm and d = 300 nm 

Table 4.4 Thicknesses of dielectric and metallic layers. 

                      tdie [nm] 

tm [nm] 

 

150 

 

160 

 

170 

30 (1) (4) (7) 

40 (2) (5) (8) 

50 (3) (6) (9) 
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(a) 

 

(b) 

 

(c) 

Figure 4.10 Simulated reflectance for Table 4.4. 

 The plots of Figure 4.10 show a bandpass performance. The reflectance shifts to the left as 

the copper’s or silicon dioxide’s thickness increases. 
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(a) 

 

(b) 

 

(c) 

Figure 4.11 Simulated transmittance for Table 4.4. 

 The plots of Figure 4.11 show a bandpass performance. The transmittance shifts to the left 

as the copper’s or silicon dioxide’s thickness increases. 
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4.3.2   Design B 

When a = 600 nm and d = 100 nm 

 

Table 4.5 Thicknesses of dielectric and metallic layers. 

                      tdie [nm] 

tm [nm] 

 

60 

 

80 

 

100 

60 (1) (4) (7) 

80 (2) (5) (8) 

100 (3) (6) (9) 
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(a) 

 

(b) 

 

(c) 

Figure 4.12 Simulated reflectance for Table 4.5. 

 For the plots of Figure 4.12, a thicker silicon dioxide layer broadens the well between 

650 nm and 700 nm of wavelength. 
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(a) 

 

(b) 

 

(c) 

Figure 4.13 Simulated transmittance for Table 4.5. 

 For the plots of Figure 4.13, a thicker silicon dioxide layer broadens the plateau between 

650 nm and 700 nm of wavelength. 
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4.3.3   Design C 

When a = 600 nm and d = 100 nm 

 

Table 4.6 Thicknesses of dielectric and metallic layers. 

                      tdie [nm] 

tm [nm] 

 

60 

 

80 

 

100 

60 (1) (4) (7) 

80 (2) (5) (8) 

100 (3) (6) (9) 
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(a) 

 

(b) 

 

(c) 

Figure 4.14 Simulated reflectance for Table 4.6. 

 The two green and blue upward peaks between 575 nm and 725 nm in Figure 4.14 (a) get 

closer to and mix with each other as the silicon dioxide’s thickness increases. 
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(a) 

 

(b) 

 

(c) 

Figure 4.15 Simulated transmittance for Table 4.6. 

 The two green and blue downward peaks between 575 nm and 725 nm in Figure 4.15 (a) 

get closer to and mix with each other as the silicon dioxide’s thickness increases. 
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4.3.4   Design D 

When a = 840 nm, d = 180 nm, and s = 90 nm 

Table 4.7 Thicknesses of dielectric and metallic layers. 

 

 

Figure 4.16 Simulated reflectance for Table 4.7. 

 

Figure 4.17 Simulated transmittance for Table 4.7. 

 No significant effect of a different thickness of the copper layers is found for Figures 4.16 

and 4.17. 
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4.3.5 Design E 

When a = 1000 nm, d = 200 nm, and s = 100 nm 

 

Table 4.8 Thicknesses of dielectric and metallic layers. 

                      tdie [nm] 

tm [nm] 

 

60 

 

80 

 

100 

60 (1) (4) (7) 

80 (2) (5) (8) 

100 (3) (6) (9) 
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(a) 

 

(b) 

 

(c) 

 Figure 4.18 Simulated reflectance for Table 4.8. 

 For Figure 4.18, a thicker copper/silicon dioxide layer heightens/broadens the well between 

1100 and 1200 nm of wavelength respectively. 
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(a) 

 

(b) 

 

(c) 

Figure 4.19 Simulated transmittance for Table 4.8. 

 For Figure 4.19, a thicker copper/silicon dioxide layer lowers/broadens the parabolic area 

between 1100 and 1200 nm of wavelength respectively. 
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4.3.6   Design F 

When a = 1000 nm, d = 200 nm, and s = 100 nm 

 

Table 4.9 Thicknesses of dielectric and metallic layers 

                      tdie [nm] 

tm [nm] 

 

60 

 

80 

 

100 

60 (1) (4) (7) 

80 (2) (5) (8) 

100 (3) (6) (9) 
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(a) 

 

(b) 

 

(c) 

Figure 4.20 Simulated reflectance for Table 4.9. 

 For Figure 4.20, both thicker copper and silicon dioxide layers slightly shift the plots at 

wavelengths greater than 1000 nm to the left. 
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(a) 

 

(b) 

 

(c) 

Figure 4.21 Simulated transmittance for Table 4.9. 

 For Figure 4.21, both thicker copper and silicon dioxide layers slightly shift the plots at 

wavelengths greater than 1000 nm to the left. 
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4.4   Extraction of Effective Properties of Metamaterials 

4.4.1   Effective Thickness of Metamaterial 

 As discussed in Chapter 1, a metamaterial is not a single homogeneous material such as 

SiO2 or Cu, and its unusual electromagnetic properties are from its structure and the properties of 

its constituent materials. Hence, optical properties of a metamaterial such as permittivity, 

permeability, or refractive index should be different from those of its constituent materials. 

However, a metamaterial slab can be treated as if it were a single homogeneous material that 

produces the same S-parameters (scattering parameters) [27]. The thickness of that virtual 

homogenous material slab is understood to be the distance between two planes where the wave 

behaves like a plane wave (when the incident wave was a plane wave). This thickness is called the 

“effective thickness” of a metamaterial [27] (note that the effective thickness of a metamaterial is 

generally not the same as the actual thickness of the metamaterial).  

 

4.4.2   Extraction Method 

 Based on the effective thickness and simulated S-parameters of the metamaterial, its optical 

property values can be extracted. However, the dependency of effective thickness on the incident 

wave’s frequency makes it challenging to efficiently retrieve the effective values. If this 

dependency is too large, then one may have to retrieve the effective parameters for each different 

frequency with the corresponding effective thickness. However, based on simulated electric fields, 

the effective thicknesses of Design A metamaterials in Chapter 4 were found to be barely 

dependent on the frequency over their simulated frequency range. Also, their effective thickness 

was quite similar to their actual thickness. Thus, in this thesis, effective optical values were 
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extracted for Design A metamaterials (their effective thickness was defined same as their actual 

thickness in the simulation). 

 As there have been efforts of researchers to retrieve effective parameters of metamaterials 

such as [27] and [28], CST Microwave Studio extracts the effective parameters based on the 

method suggested in “[27]” [29]. They, in [27], assume a plane wave and S-parameters are derived 

based on the wave’s fields that are at the interfaces of the virtual homogeneous slab (the distance 

between the interfaces of the homogeneous slab is the effective thickness). However, it was 

observed that excitation ports defined at those interfaces (same as the air/material interfaces for 

Design A metamaterials) could produce inaccuracy as compared to literature. For this reason, 

excitation ports were defined with a distance from the air/material interfaces. The phase mismatch 

of S-parameters, compared to [27], due to the introduced distance was compensated by introducing 

phase de-embedding as shown in Figure 4.22. After introducing phase de-embedding, the 

metamaterial was simulated for S-parameters. These S-parameters were employed to extract 

effective parameters of the metamaterial. 

 

Figure 4.22 Ports and ref. planes in CST Microwave Studio. The magnitude and phase of 

waves are evaluated at the locations of ‘ports’ and ‘ref. planes of the port’ respectively for 

the S-parameter calculation. 



58 

 

4.4.3   Extracted Effective Parameters 

 The relative wave impedance and refractive index of a material is given by 𝑧𝑟 = √
𝜇𝑟

𝜀𝑟
  [30] 

and 𝑛 =
𝜇𝑟

𝑧𝑟
= 𝜀𝑟𝑧𝑟 [27] respectively. The same equations can be applied to a metamaterial for its 

effective parameters* (where the notations 𝑧𝑟 , 𝑛, 𝜀𝑟 , 𝑎𝑛𝑑 𝜇𝑟 represent the effective values of the 

metamaterial). Figures 4.23 ~ 4.26 show extracted effective values of some metamaterials of 

Design A. 

  

* In case of metamaterials, compared to natural materials, the equation 𝑛 = √𝜀𝑟𝜇𝑟 can cause 

a sign disagreement in some cases while the equation  𝑛2 = 𝜀𝑟𝜇𝑟 holds true.; when both the 

permittivity and permeability are negative real numbers for example. Details are found in [27] 

and [31]. 
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 Figure 4.23 shows a negative real part of the refractive index (often called just “negative 

refractive index” or “negative index”) over 685 nm ~ 750 nm of wavelength. The metamaterial 

resonates at wavelengths near 580 nm and 720 nm where the magnetic resonance is dominant near 

720 nm. 

Figure 4.23 Extracted effective parameters of Design A-1-(5) of Table 4.1 on page 31. (a) 

relative wave impedance, (b) refractive index, (c) relative permittivity, and (d) relative 

permeability. 
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 Figure 4.24 shows a negative real part of the refractive index over 760 nm ~ 860 nm of 

wavelenth. The metamaterial resonates at wavelengths near 620 nm and 815 nm where the 

magnetic resonance is dominant near 815 nm. 

Figure 4.24 Extracted effective parameters of Design A-2-(5) of Table 4.2 on page 34. (a) 

relative wave impedance, (b) refractive index, (c) relative permittivity, and (d) relative 

permeability. 
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 Figure 4.25 shows a negative real part of the refractive index over 885 nm ~ 1000 nm of 

wavelenth. The metamaterial resonates at wavelengths near 710 nm and 960 nm where the 

magnetic resonance is dominant near 960 nm. 

Figure 4.25 Extracted effective parameters of Design A-3-(5) of Table 4.3 on page 37. (a) 

relative wave impedance, (b) refractive index, (c) relative permittivity, and (d) relative 

permeability. 
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 Figure 4.26 shows a negative real part of the refractive index over 995 nm ~ 1150 nm of 

wavelenth. The metamaterial resonates at wavelengths near 780 nm and 1085 nm where the 

magnetic resonance is dominant near 1085 nm. 

Figure 4.26 Extracted effective parameters of Design A-4-(5) of Table 4.4 on page 40. (a) 

relative wave impedance, (b) refractive index, (c) relative permittivity, and (d) relative 

permeability. 



63 

 

 

 

5. FABRICATION 

5.1 E-beam Evaporator and Profilometer 

∎ E-beam evaporator 

 

Figure 5.1 Illustration of the e-beam evaporator’s operation. 

 

 Figure 5.1 depicts how an e-beam evaporator operates. The electron gun shoots electrons 

that are accelerated to higher kinetic energy levels at the material. These electrons heat the material 

by colliding with the material’s atoms. When the material’s atoms evaporate, they fly straightly 

until they collide with another atom or they settle down on the substrate (the average distance that 

the atoms travel without a collision is called the ‘mean free path’). An e-beam evaporator (PVD 

75, Kurt J Lesker) was used to deposit Cu and SiO2 layers in this work. It was observed that the 
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layers deposited in lower-quality vacuum (~10−5  Torr) tend to be more porous than those 

deposited in higher-quality vacuum (~10−7 Torr). 

 

∎ Profilometer 

 

Figure 5.2 Illustration of the profilometer’s operation. (a) is a side-view of the profilometer’s 

operation. (b) is the measured profile of the thin film of (a). 

 

 Figure 5.2 depicts how a profilometer operates. The profilometer tip scans the specimen 

surface and reads the relative difference in height. In this work, a profilometer (AlphaStep D-500, 

KLA Tencor) was used to measure the thicknesses of Cu and SiO2 layers. 
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5.2 Design A-1-(5) 

 Based on simulation, metamaterials of Design A were found to exhibit the most interesting 

performance (bandpass) among all the six Designs. In addition, the bandpass performance of 

Design A-1 metamaterials of page 32 is in the visible regime. Therefore, regarding this and the 

uncertainty of a deposited material’s thickness, Design A-1-(5) was selected to be fabricated. 

  

5.2.1 Calibration of E-beam Evaporator  

∎ Calibration for tm = 25 nm (Cu) 

 Deposition conditions of the e-beam evaporator for a Cu layer are as follows. The 

deposition rate and final thickness were set 8 Å/s and 250 Å respectively. The substrate was rotated 

in the Forward Direction (rotation directions are defined by default in the machine). The shutter of 

the substrate was set to open when the deposition rate stabilizes at 8 Å/s. 

 

Figure 5.3 A Cu layer deposited on a glass substrate. The left image is the real sample. 

Numbers and arrows in the right image represent the locations and directions of the 

profilometer measurements.  

 

 After deposition, the thickness of the Cu layer was measured by the profilometer at the 

eight different locations shown in Figure 5.3. These thickness values are given in Table 5.1. 
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Table 5.1 Measured thicknesses of the Cu layer at the eight different locations shown in 

Figure 5.3. 

 

 

∎ Calibration for tdie = 75 nm (SiO2)  

 Deposition conditions of the e-beam evaporator for a SiO2 layer are as follows. The 

deposition rate and final thickness were set 4 Å/s and 600 Å respectively. The glass substrate was 

rotated in the Forward Direction. The substrate shutter was set to open when the deposition rate 

stabilizes at 4 Å/s. 

 

Figure 5.4 A SiO2 layer deposited on a glass substrate. The left image is the real sample. 

Numbers and arrows in the right image represent the locations and directions of the 

profilometer measurements.  
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 After deposition, the thickness of the SiO2 layer was measured by the profilometer at the 

eight different locations shown in Figure 5.4. These thickness values are given in Table 5.2. 

 

Table 5.2 Measured thicknesses of the SiO2 layer at the eight different locations shown in 

Figure 5.4. 

 

 

∎ Deposition of Cu/SiO2/Cu layers 

 Deposition conditions for Cu and SiO2 layers were same as above.  

 

Figure 5.5 Cu/SiO2/Cu layers deposited on a glass substrate. The left image is the real sample. 

Numbers and arrows in the right image represent the locations and directions of the 

profilometer measurements.  

  



68 

 

 After deposition, the thickness of the Cu/SiO2/Cu layers was measured by the profilometer 

at the eight different locations shown in Figure 5.5. These thickness values are given in Table 5.3. 

 

Table 5.3 Measured thicknesses of the Cu/SiO2/Cu layers at the eight different locations 

shown in Figure 5.5. 

 

 

 

5.2.2 Metamaterial Fabrication 

 An electron-beam resist was patterned on a 500 μm-thick glass wafer by electron-beam 

lithography (the patterned resist on the wafer looked in color and the color changed depending on 

the observation angle while the rest part of the wafer was just transparent). Then, Cu/SiO2/Cu 

layers were deposited on the wafer, and lift-off was conducted at 40 ~ 60 ℃. This process is 

described in Figure 5.6. 
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Figure 5.6 Schematic diagrams of the fabrication process. 

 

 

 

 

 

Figure 5.7 The fabricated Design A-1-(5) metamaterial on a glass substrate. The bottom left 

side of the metamaterial was slightly removed in a sonicator during lift-off. 

 

 

 

 



70 

 

5.3 Design A-3-(5) 

 Design A-3 metamaterials of page 38 are the largest structure among the Design A 

metamaterials which exhibit a bandpass performance at wavelengths shorter than 1100 nm (this 

wavelength is the longest measurable wavelength of the spectrophotometer used for transmittance 

measurements in this study). Therefore, Design A-3-(5) was selected to be fabricated regarding 

fabrication resolution, performance wavelengths, and the uncertainty of a deposited material’s 

thickness. 

 

5.3.1 Calibration of E-beam Evaporator 

∎ Calibration for tm = 40 nm (Cu) 

 The deposition rate and final thickness were set 8 Å/s and 400 Å respectively, and other 

conditions were the same as in Section 5.1.1. The average value and standard deviation of the 

measured thicknesses of the Cu layer were 41.8 nm and 1.8 nm respectively (the thicknesses were 

measured in the same way as in Section 5.1.1). 

 

 

∎ Calibration for tdie = 130 nm (Cu) 

 The deposition rate and final thickness were set 4 Å/s and 1040 Å respectively, and other 

conditions were the same as in Section 5.1.1. The average value and standard deviation of the 

measured thicknesses of the SiO2 layer were 129.4 nm and 2.3 nm respectively (the thicknesses 

were measured in the same way as in Section 5.1.1). 
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∎ Deposition of Cu/SiO2/Cu layers 

 Deposition conditions for each material were the same as above. The average value and 

standard deviation of the measured thicknesses of the Cu/SiO2/Cu layers were 226.1 nm and 0.4 

nm respectively. 

 

5.3.2 Metamaterial Fabrication 

 An electron-beam resist was patterned on a 500 μm-thick glass wafer by electron-beam 

lithography (the patterned resist on the wafer looked in color and the color changed depending on 

the observation angle while the rest part of the wafer was just transparent). Then, Cu/SiO2/Cu 

layers were deposited on the wafer, and lift-off was conducted at 40 ~ 60 ℃. This process is 

described in Figure 5.6. 
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6. TEST AND MEASUREMENT 

 A spectrophotometer (Evolution™ 300 UV-Vis Spectrophotometer, Thermo Fisher 

Scientific) was used to measure transmittance. The spectrophotometer was calibrated for the 

aperture size of the fabricated metamaterial.  

 

6.1 Design A-1-(5) 

 Figure 6.1 shows simulated and measured transmittances of the Design A-1-(5) 

metamaterial. The two transmittances do not agree and are not even similar. Figure 6.2 shows SEM 

pictures of the fabricated Design A-1-(5) metamaterial. More quantity of Cu (bright part) is 

observed than the designed quantity (refer to Figure 3.1 and Table 4.1). 

 

Figure 6.1 Simulated and measured transmittances of the Design A-1-(5) metamaterial. The 

measured transmittance of the metamaterial is compared with its simulated transmittance 

and with the measured transmittance of unpatterned Cu/SiO2/Cu layers. The metamaterial’s 

Cu/SiO2/Cu layers and unpatterned Cu/SiO2/Cu layers each have the equal thickness and 

were deposited on the same glass substrate. 
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Figure 6.2 SEM images of the fabricated Design A-1-(5) metamaterial (bright part is Cu). 
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6.2 Design A-3-(5) 

 Figure 6.3 shows simulated and measured transmittances of the Design A-3-(5) 

metamaterial. The simulated transmittance exhibits a bandpass area over 708 nm ~ 960 nm of 

wavelength while that of the measured transmittance is over 200 nm ~ 764 nm with lower values 

of transmittance. Figure 6.4 shows SEM pictures of the fabricated Design A-3-(5) metamaterial. 

Measured parameters of the unit cell (a = 539 nm, d = 191 nm) are different from those of the 

simulated design (a = 500 nm, d = 250 nm). 

 

Figure 6.3 simulated (a) and measured (b) transmittances of the Design A-3-(5) 

metamaterial 
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Figure 6.4 SEM images of the fabricated Design A-3-(5) metamaterial (dark part is Cu). 

Measured parameters of the unit cell (a = 539 nm, d = 191 nm) are notated in (b). 
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7.   DISCUSSION 

7.1 Results of Design A-1-(5) Metamaterial 

 There is a possibility that the lifted Cu atoms were re-attached to the Cu strips of the 

metamaterial during the lift-off as there was a large amount of lifted Cu chunks in the lift-off bath 

[32]. This might have caused the results of Fig 6.1 and Fig 6.2. To verify whether the re-attachment 

was enough to produce the results of Figure 6.1, simulations were conducted with varying amounts 

of re-attached Cu. Figure 7.1 shows the conditions and results of the simulation work. Surprisingly, 

Figure 7.1 (c) and (d) show that re-attached Cu with 42 ~ 44 nm thickness (“t_reatta” in Figure 7.1 

(a)) can produce transmittance that is very similar to that of the unpatterned Cu/SiO2/Cu layers, 

which is the case of the two measured transmittances of Figure 6.1.  
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Figure 7.1 Simulation for Cu re-attachment. (a) is the unit cell (tm = 25 nm, tdie = 75 nm) of 

the metamaterial with re-attached Cu. The re-attached Cu is colored in grey to distinguish 

from deposited Cu, and the thickness of re-attached Cu is written as ‘t_reatt”. Here the 

kinetics of atomic re-attachment is considered, but this effect was found to have a minor 

effect on simulated results compared to when there is no chamfer. (b) is simulated 

transmittance of the unit cell (a). (c) is simulated transmittance of unpatterned Cu/SiO2/Cu 

layers with the equal thicknesses as those of the metamaterial without re-attached Cu. 
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7.2 Results of Design A-3-(5) Metamaterial 

 Based on the results of Figure 6.4, two kinds of unit cell were simulated as shown in Figure 

7.2. The shape of Cu strips in Figure 6.4 is not considered in Figure 7.2 (a) and is considered in 

Figure 7.2 (c). In both cases, simulated transmittance is still somewhat different from the measured 

transmittance of Figure 6.3 (b). However, the band area of Figure 7.2 (d) is wider than that of 

Figure 6.3 (a), which is closer to the bandwidth of the measured transmittance. 

 

 

Figure 7.2 Simulation of the Design A-3-(5) metamaterial based on the results of Figure 6.4. 

(a) is the unit cell in which the shape of Cu strips in Figure 6.4 is not considered. (b) is 

simulated transmittance of the unit cell (a). (c) is the unit cell in which the shape of Cu strips 

in Figure 6.4 is considered. (d) is simulated transmittance of the unit cell (c). 
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8. CONCLUSION 

 Simulated and measured results of the metamaterials were a bit different as discussed in 

Chapter 6 and Chapter 7. However, in spite of this, the Design A-3-(5) metamaterial exhibited an 

unusual transmittance that has a wide bandpass area (Fig 6.3 (b)). This performance is not found 

in natural materials, nor is it based on interference between light and thin films (the principle 

traditional optical filters work). Moreover, to the best of knowledge, neither simulation work nor 

measured result that presents the wide bandpass of a metamaterial at visible frequencies has been 

reported yet. Therefore, the results of this study provide a foundation in research in using 

metamaterials as an optical filter instead of traditional filters in the visible spectrum. 
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9. FUTURE WORK 

1) Calibration of e-beam pattern writer (e-beam lithography) 

 The widths of fishnet arms (‘d’ value in Figure 3.1) of the simulated and fabricated Design 

A-3-(5) metamaterials are 250 nm and 191 nm respectively. The value 250 nm, which was 

designed in a mask design software (KLayout), resulted in 191 nm in the fabrication. One of the 

future works would be calibrating the e-beam pattern writer with varying d values in the mask 

design software so that the targeted d value can be obtained. 

 

2) Experiments with larger scales of metamaterials 

 The simulated and measured band regions of the Design A-3-(5) metamaterial are different 

on the wavelength scale (Figure 6.3); the measured band region is over shorter wavelengths than 

that of the simulated band region. Design A metamaterials based on the ratio of a : d = 2 : 1 (Figure 

3.1) with larger scales could be further studied to see the relation between their simulated and 

measured band regions. 
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 APPENDIX A: Maple Coding for the Refractive Index and Reflectance of SiO2 

 

Optical values of silicon dioxide are from [25]. 
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 APPENDIX B: Maple Coding for the Refractive Index and Reflectance of Cu 

 

Optical values of cupper are from [16]. 
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