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ABSTRACT 

 

Joseph Otto Hubach 

M.S.M.E. 

Rose-Hulman Institute of Technology 

May 2019 

Solar Tracking Using a Parallel Manipulator Mechanism to Achieve Two-Axis Position 

Tracking  

 

Thesis Advisor: Dr. Richard Stamper 

 

A novel solar tracker is presented that uses a parallel manipulator for the tracking mechanism 

instead of a traditional serial manipulator. The motivation is to create a solar tracker that displays 

the advantages of two-axis tracking systems (e.g., increased exposure to incident radiation, and 

enabling the use of efficient concentrating solar cells) while addressing some of the 

disadvantages of current two-axis tracking systems (e.g., the difficulties associated with having 

actuators mounted to moving elements within the mechanism). The mobility of the proposed 

parallel manipulator is examined using Grübler’s Criterion to establish that the manipulator 

displays the required two degrees of freedom.  Additionally, a system of equations is developed 

for the proposed tracker that can be used for the forward or inverse kinematics analysis.  Finally, 

the workspace of the proposed parallel manipulator-based solar tracker is presented.  
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1. INTRODUCTION 

 

Over the past decade, solar power generation has become an increasingly popular 

form of electrical energy production. In 2017, nearly 100 GW of new photovoltaic 

systems were installed globally, and the cost of solar energy reached levels of just under 

3 cents per kWh for some major installations [1]. This increased popularity can be 

attributed to many things, including the recent reductions in the cost of producing solar 

panels, the clean nature of solar power generation, increases in solar cell efficiencies, 

increases in battery storage capacity, government incentives, and the creation of better 

solar tracking systems.  

 

While the production of solar energy has increased recently, there is still a great deal 

of potential for solar power to meet more of the world’s energy needs. According to the 

International Energy Agency, only about 8% of the energy produced in 2016 was done so 

by renewable energies [2].  

 

There are a few key ways to further improve the technology of solar power generation 

and distribution to make it an even more attractive method for producing electrical 

energy. The first technique is to create more efficient solar cells. The technology of solar 

photovoltaic cells continues to evolve and improve. In 2014, a French-German 

cooperation created a multi-junction concentrating solar cell with a 46% efficiency 

conversion rate [3]. To put that in perspective, in 2018, the typical solar installation used 
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crystalline silicon photovoltaic cells that have a conversion rate of 15% to 17% and 

reaches as high as 22.5% according to an article on Energysage [4]. The National 

Renewable Energy Laboratory has a useful chart that shows the various solar cells being 

developed and their efficiencies as shown in Figure 1.1 [5]. A second method is creating 

batteries with higher storage capacity to service the market during hours when little to no 

electricity is being produced such as the nighttime or cloudy days. This is a vital aspect of 

solar technology which could lead to broader adoption of solar energy generation. A third 

way to improve solar energy production, and the one this thesis will focus on, is to 

improve the tracking mechanisms that are used to support and orient the solar panels. 

Aside from simply collecting more radiation, two-axis solar trackers also enable the use 

of advanced high-efficiency multi-junction concentrating solar cells that require accurate 

two-axis tracking to function properly. 
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Figure 1.1: Solar cell efficiencies by National Renewable Energy Laboratory [5] 
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To increase the output of fixed solar panel installations, methods to track the sun and 

increase the exposure of the solar panel to direct sunlight have been developed. This 

technology is commonly referred to as solar tracking. A solar tracker for a photovoltaic 

panel is a frame that allows the photovoltaic panel to change orientations so that the solar 

panel follows the sun as the azimuth (γs) and elevation angles (α) of the sun change as 

shown in Figure 1.2. The goal of a flat panel photovoltaic tracking system is to minimize 

the angle of incidence (i.e, the angle formed by the sunbeam and normal of the panel) 

between the direct sunlight and the panel. The panel consequently tracks the sun to 

increase the amount of energy produced when compared to a fixed flat panel photovoltaic 

device.  

 

 

Figure 1.2: A representation of solar tracking angles, solar azimuth (γs) and 

elevation (α) 
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2. BACKGROUND 

 

2.1 History of solar trackers 

The first mechanical solar tracker was made in 1962 by Finster [6]. Later more solar 

trackers began to appear in the 1970s when several patents were issued for new devices 

that would track the sun in various ways. Among those patents is Amiztur Barak’s US 

Patent 3,982,526, which was assigned to the United States Energy Research and 

Development Administration’s [7]. Barak’s device, Figure 2.1, is a solar panel frame 

with two heat expansive elements and a shaded plate all on a polar axis oriented toward 

the sun to track it throughout the day. In the morning, the first heat expansive element 

would heat the thermal expansion fluid and orient the solar panel toward the sun while 

the second heat expansive element was shaded by the plate. Throughout the day, the 

second heat expansive element would then heat the thermal expansion fluid as the sun 

moved and orient the solar panel toward the sun again while the first heat expansive 

element is shaded. This device was innovative due to its lack of need for power to move 

the device and it increased the output of a solar panel beyond the fixed panel; however, it 

did suffer some problems. The number of positions was limited to two, the amount of 

time to heat initially would vary around an hour, and the fluid would need maintenance 

over time due to leaking. Also, the system falls short on cloudy days or colder weather 

which does not allow it to heat up as effectively. 
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Figure 2.1: The passive solar tracker from US Patent No. 3,982,526 

 

Another patent of interest was US Patent 4,011,854 that was assigned to the National 

Aeronautics and Space Administration by Lott Brantley and Billy Lawson [8]. Brantley 

and Lawson’s device, Figure 2.2, was a rigid, angulated axle with a straight midportion 

to support a collector dish and opposite end portions supported by spaced journals. The 

two opposite end portions have a drive to move the collector for seasonal changes while 

the two spaced journals were driven to account for daily changes. This innovative device 

allowed for continuous tracking of the sun not only throughout the day but also 

accounting for the seasonal rotation of the earth. Despite its innovative approach and 

continuous tracking abilities, the device is still limited in its movements and does not 

achieve the full range of tracking. 
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Figure 2.2: The two-axis tracker from US Patent No. 4,011,854 

 

Moving beyond the first solar trackers, many inventors started building on the idea. 

Through time, a common method to increase the solar panel output became the single-

axis trackers. Single-axis trackers can move one degree of freedom in horizontal, vertical, 

tilted, or polar aligned directions as shown in Figure 2.3, to track the sun throughout the 

day. When compared to a fixed solar mount, single-axis trackers such as Gay’s can 

increase the output of a solar panel by approximately 30% [9]. Two-axis trackers, on the 

other hand, have two degrees of freedom and can move in two directions that are 

generally normal to each other. A common two-axis tracker configuration is the azimuth-

altitude tracker, see Figure 2.3. The two-axis changes allow them to not only track the 

sun throughout the day but also through the seasons as the sun changes its position 

relative to the earth due to the rotation of the earth. A two-axis tracker can follow the sun 

throughout the year. According to Muhammad and Karim in their paper on hybrid 

automatic solar-tracking systems design, an increase of 18% over single-axis trackers can 

be attained using a two-axis tracker in some circumstances [10].  
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Figure 2.3: A diagram of single-axis tracker and two-axis tracker types 
 

Another classification scheme divides solar trackers into categories of continuous 

tracking systems or discrete tracking systems. Continuous trackers are systems that 

continuously track the sun through the entire day using sensors or controls systems that 

constantly adjust the solar panels. In contrast, discrete trackers move through some 

number of predetermined discrete positions throughout the day. Discrete trackers attempt 

to reduce cost and complexity by focusing on just a few positions thus allowing for 

simpler control systems and less expensive actuators.  

 

Many of the large companies that design and fabricate commercial trackers (e.g., 

NEXTracker, Array Technologies, and Soltec) concentrate on continuous single-axis 

trackers. This can primarily be attributed to the attractive ratio of cost relative to 

performance that single-axis trackers currently enjoy. Even though continuous two-axis 
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trackers can increase the output compared to a single-axis tracker by as much as 18%, the 

additional initial capital costs and ongoing maintenance expenses of the two-axis tracking 

systems make them unattractive. 

 

2.2 Current technology – single-axis trackers 

Continuous single-axis trackers have become the most common tracker due to their 

ability to significantly increase the output of a solar panel while being less expensive than 

conventional two-axis trackers.  Also, many panels can be oriented by a single 

mechanism since they can be arranged so that a long row of panels can be driven by a 

single shaft. One of the leaders in solar tracking technology that takes advantage of this is 

Array Technologies. Array Technologies boast a horizontal single-axis tracker called the 

DuraTrack HZ v3. This tracker utilizes a frame that interconnects each solar panel in a 

given row to a torque tube that is supported every few feet. Additionally, multiple 

gearboxes connect each torque tube to a single central drive shaft.  The entire assembly is 

driven by a single motor. This device is patented through US Patent No. 8,459,249 and 

US Patent No. 9,631,840 [11][12]. These patents disclose the device and the method to 

drive a collection of solar panels with a single motor as shown in Figure 2.4. Array 

Technologies is an industry leader due to their robust technology that requires minimal 

maintenance. This creates an attractive package that provides an increased output over 

fixed panels. 
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Figure 2.4: Array Technologies single-axis tracker in US Patent No. 8,459,249 

 

NEXTracker is another industry leader in solar tracking with its NX Horizon solar 

tracker shown in Figure 2.5. The NX Horizon is a self-powered horizontal single-axis 

mass balanced tracker. This device has many patents including US Patent No. 9,543,888, 

US Patent No. 9,905,717, and US Patent No. 10,075,125 [13][14][15]. The NX Horizon 

is made up of torque tubes with an adjustable hanger assembly and clamshell clamps 

assembly, shown in Figure 2.5, to attach the solar panels and ends of the torque tubes. 

The center of mass is aligned with the center of cylindrical torque tubes to create a mass 

balanced solar tracker that reduces torque on the motor. This tracker, unlike the 

DuraTrack HZ v3, does not connect in-between rows. Each row is its own assembly. The 

patents also assert that it is frameless which allows the modules to sit closely together and 

thus waste less space. 
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Figure 2.5: The NEXTracker’s single-axis tracker from US Patent No. 

10,075,125 
 

One company that makes tilted single-axis solar trackers that moves away from the 

traditional single-axis solar tracker is SunPower. SunPower has a US Patent No. 

8,776,781 on the T20 Tracker [16]. The T20 Tracker is a single-axis tilted solar tracker 

that includes a tube that is rotatable on an end-to-end axis. The first support at the lower 

end has a translation mechanism that is coupled with tube and connected to a base. The 

second support is connected to a V-frame or A-frame which is then supported by two 

bases at the end of the frame. This tilted design allows the sun to be tracked in a way that 

is different from other single-axis trackers. Figure 2.6 shows that the solar tracker has a 

pre-determined fixed tilt and the device uses a gear system at the lower end to turn the 

torque tube to track the sun in a single-axis. 
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Figure 2.6: SunPower T20 solar tracker mechanism 

 

An innovative approach to solar tracking is the kirigami method proposed by 

Lamoureux et al [17]. Kirigami has origins in Japan and is the art of cutting paper. 

Lamoureux had the idea to take thin-film gallium arsenide solar cells and cut patterns into 

them to create a lightweight solar tracker without the use of costly and cumbersome 

structural components. The solar cells can move and track the sun through strain put in 

the axial direction perpendicular to cuts as shown in Figure 2.7. The strain creates a 

controlled buckling parallel to the cuts in the traverse direction and a change in the angle 

that is synchronized along its length. The solar cells can also tilt clockwise by lifting or 

lowering one end of the sheet before applying strain. The solar cell sheets would be 

housed in a double pane enclosure for weatherproofing. 
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Figure 2.7: Kirigami solar tracker demonstration of concept [17] 

 

Another way to reduce the cost of solar tracking presented by Huang and Sun is to 

create a single-axis three position discrete solar tracker [18]. The tracker, shown in 

Figure 2.8, moves only three times a day to increase the output when compared to a fixed 

solar panel, but also decrease the power consumption and controls complexity compared 

to a continuous tracker. The goal is to capture some, if not all, of the increased power 

generation of a solar tracker which according to Huang, is 41% for a two-axis and 36% 

for a single-axis tracker when compared to a fixed panel (this difference in the estimated 

increase in solar power generation for solar trackers over fixed trackers can be attributed 

to factors such as the solar cells used, the location, and the climate the solar panel resides 

in). The idea is to have the solar panel stop at three angles using a touch switch mounted 

on a transmission gear of the frame. The three angles are pre-cut into the touch switch 

which allows the mechanism to stop until it’s given the signal at the time of day to move 

again. According to Huang, this resulted in a 23% power generation gain and price 

reduction of around 20% to 30%. 
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Figure 2.8: The 3-position discrete tracker [18] 

 

2.3 Current technology – two-axis trackers 

Two-axis trackers are generally more sophisticated than single-axis trackers because 

not only do they require more components and actuators, but their controls, software, and 

sensors are more complex. The general two-axis tracker operates by using an axis to 

move the solar panel in the azimuth direction and another axis in the altitude direction. A 

simple representation of this motion can be seen in Figure 2.9. The azimuth direction is 

tracking the sun left to right as the vertical axis of rotation is moving in Figure 2.9, 

whereas the altitude axis tracks the sun up and down as demonstrated by the diagonal 

axis of rotation in Figure 2.9. 

 

 
Figure 2.9: Two-axis tracker representation 
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An example of a two-axis tracker is in Figure 2.10, Suncore Photovoltaics’ US Patent 

No. 8,946,608 [19]. The two-axis tracker is powered by two motors that control axes with 

respect to the sun. The first motor controls the inclination angle, or altitude angle, relative 

to the ground. The second motor is used to rotate the solar panel about an axis 

perpendicular to the surface created by the second axis or rotate the azimuth angle. The 

solar tracker also includes an algorithm to predict the future location of the sun and a 

computer model to determine the position the motors need to move to align substantially 

with the sun at a future time.  

 

 

Figure 2.10: Suncore Photovoltaics’ two-axis tracker from US Patent No. 

8,946,608 
 

Another approach to two-axis tracking can be seen in US Patent No. 8,895,836 by 

Amin et al [20]. Figure 2.11 shows the frame of the design, which incorporates an 

azimuth actuator to adjust the azimuth and an elevation actuator to adjust the elevation of 

the panel seat. The panel seat is a method to hold the solar panel with a rotating arm and 

two pins to connect the solar panel. A support, labeled 505 in Figure 2.11, is positioned 
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to hold the panel seat up and serve as an elevation pivot. The device does not use any 

sensors and instead relies on a controller that uses latitude, longitude, time of day, and 

date to adjust the solar panel seat to track the sun. 

 

Figure 2.11: A two-axis tracker frame from US Patent No. 8,895,836 

 

An innovative two-axis tracker is introduced by Jeng et al to simplify the two-axis 

tracker [21]. Jeng et al designed a spatial parallel manipulator two-axis tracker to allow 

for increased motion, but also increase the rigidity of the frame. Jeng accomplishes this 

with the use of dual-glide manipulators that are actuated by servomotors. These glides 

serve as prismatic joints and a central supporting pole is utilized to pivot and move the 

solar panel as seen in Figure 2.12. 
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Figure 2.12: A two-axis spatial parallel manipulator solar tracker [21] 

 

The prismatic joints use a universal joint and a revolute joint to connect to the limbs. 

The limbs and central pivot use spherical joints to connect to the solar panel. A second 

configuration is also created by utilizing a second universal joint in the place of the 

revolute joint. This creates a device with 2 degrees of freedom according to Jeng. No 

efficiency is reported by the paper, but Jeng claims that the device is much faster than the 

traditional two-axis tracker and provides more accuracy.  

 

SolarCity Corporation introduced another alternative approach in US Patent No. 

9,494,341 [22]. The solar tracker is a discrete mechanism that is controlled by a fleet of 

robots that run on tracks and use a modular tool to adjust the solar panels as depicted in 

Figure 2.13. The system is optimized so that the robots will move according to a task 

organizer or central intelligent control to optimize battery life and movements. This 

allows the solar panels to be adjustable without having their own actuators to in theory 

reduce the cost. 
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Figure 2.13: SolarCity Robot Discrete Tracking System from US Patent No. 

9,494,341 
 

2.4 Summary 

Despite the impressive technology available today for solar tracking, there is still 

room for improvement. An obvious drawback for single-axis trackers is the ability to 

only move in one direction. This means that as the seasons change the tracker is losing 

potential sun as it becomes more misaligned. This becomes even more rampant the 

further one moves away from the equator, northward or southward due to the higher 

variance of the solar angle between the summer and winter seasons.  Numerous 

companies produce the single-axis tracker which is a row of solar panels interconnected 

by a torque tube in which the solar panels will rotate to track the sun in one degree of 

freedom. Although this might be the most attractive and cost-effective method at the 

moment, it leaves room for improvement until two-axis tracking can compete. However, 

current two-axis trackers, with the exception of Jeng’s, are still based on serial kinematic 

configurations that require actuators be mounted to moving linkages and large structural 



19 

 

elements to overcome the lack of rigidity that is inherent to serial structures. So there is 

still an opportunity to improve the state of the art for two-axis trackers 
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3. MOTIVATION 

 

The motivation for the work presented in this thesis is to develop a novel solar 

tracking mechanism that provides the advantages of two-axis tracking systems (e.g., 

increased exposure to incident radiation, and enabling the use of efficient concentrating 

solar cells) while having the potential to mitigate the disadvantages of current two-axis 

tracking systems (e.g., the need to use heavy and expensive structural elements to 

compensate for the lack of rigidity inherent to serial manipulators, and the difficulties 

associated with having actuators mounted to moving elements within the mechanism). 

 

Today, nearly all two-axis solar tracking mechanisms commercially sold are serial 

manipulators. A serial manipulator is a term used to describe an actuated mechanism that 

is comprised of a combination of links and joints arranged serially. A traditional 

industrial robot arm is an example of a serial manipulator. Serial manipulators form a 

single open kinematic chain in which the end effector can be moved in open space to 

achieve the desired motions or positions. Figure 3.1 shows a group of solar panels that 

use traditional serial manipulator mechanism to achieve two-axis tracking. These are two-

axis trackers installed at the Sheridan Community Schools north of Indianapolis.  Two-

axis trackers were used in this installation since the school corporation had a limited 

footprint for the solar installation, and they needed to increase the output for the given 

footprint. Had more land been available, they would have used fixed panels. 
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Figure 3.1: An installation of two-axis solar trackers at the Sheridan Community 

School 

 

The two-axis tracker serial mechanism from the Sheridan Community School can be 

seen more closely in Figure 3.2. As Figure 3.2 shows, the traditional two-axis tracker 

utilizes a rotating base to vary the azimuth angle, and a torque tube to vary altitude angle 

to change the solar panel’s position. The actuator used to vary the altitude angle and 

rotate the torque tube needs to be directly mounted to the rotating base.  This rotating 

base member needs to be a large structural tube for stiffness as Figure 3.2 shows. If the 

two-axis tracker supported the panels with multiple legs, the amount of material needed 

to support the panel and resist the loads acting on the solar panel could likely be reduced. 
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Figure 3.2: Two-axis tracker serial manipulator close-up 

 

Trackers that use parallel manipulators as the tracking mechanism provide an 

alternative to serial manipulator trackers. Parallel manipulators are mechanisms 

composed of two or more closed kinematics chains to support a mobile platform. The 

number of actuators associated with a parallel manipulator typically equals the number of 

degrees of freedom. One of the advantages of parallel manipulators is that these actuators 

can be mounted on or near the base. The number of degrees of freedom for a manipulator 

is determined by the number and configuration of links, joints, and joint movements. This 

provides an advantage for parallel mechanism since the moving structure doesn’t need to 

support the weight and inertial effects of the actuators.  An example of a parallel 

manipulator is the mechanism found under 6 degree-of-freedom flight simulators where 

there are six actuators positioned under the mockup of the cockpit.  A serial manipulator 
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that would achieve the same function for a flight simulator would need to be a much 

more massive device than the analogous parallel manipulator. 

 

Some reasons that a serial manipulator is used over a parallel manipulator is that in 

theory, they are much simpler. The mathematics behind serial manipulators is less 

complex. Additionally, serial manipulators generally display a larger workspace for a 

comparably sized mechanism. They are easy to demonstrate and model since they use 

simple motions such as rotating about an axis. And finally, they are also more well-

known and have been used in practice for much longer.  

 

However, the less common alternative, parallel manipulators, may be the key to 

creating a better solar tracker. There are many advantages that parallel manipulators have. 

In general, parallel manipulators have high accuracy, rigidity, speed, and load capacities 

[23]. One of the problems with current solar trackers is the large load which leads to large 

support structures being required for trackers based on serial mechanisms. In turn, these 

large support structures require more material which drives up the cost. Parallel 

manipulators by nature have more rigidity and load carrying capacity due to their 

distributed load over the kinematic chains and actuators being mounted at the base. The 

high accuracy of parallel manipulators also reduces errors that are accumulated by serial 

chains. This could allow less complex controllers and less precise actuators to move the 

mechanism. Parallel manipulators are also becoming more prevalent in other industries 

despite the more complex kinematics and small workspace.  For example, parallel 
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manipulators such as the three degrees of freedom delta robot are increasingly being used 

as pick and place robots where high-speed accurate operation is required.   
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4. DESCRIPTION OF THE PROPOSED TRACKING SYSTEM 

 

4.1 Sun position vector 

The position of the sun can be described using an azimuth angle, γ, and elevation 

angle, α, which is shown in Figure 4.1 with respect to a reference Cartesian coordinate 

system.  

 

Figure 4.1: The sun reference coordinate system 

 

For the tracking system, the Y-axis points toward the south; the X-axis points westward; 

the Z-axis points upward normal to the surface of the earth which is represented as the 

horizontal plane. The horizontal plane is created by the XY-plane and is tangent to the 

surface of the earth. The azimuth angle, γ, is a polar angle in the horizontal plane. The 

azimuth angle is defined relative to the south and is measured positive to the west and 

negative to the east. The elevation angle, α, is measured from the same horizontal plane, 

where positive is above the horizontal plane and negative is below the horizontal plane. 

Equation 4.1 is a unit vector which points toward the sun and is in terms of the reference 

coordinate system. 
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     𝒏 = [cos𝛼sin𝛾    cos𝛼cos𝛾       sin𝛼]𝑇                                      (4.1) 

4.2 Two-axis parallel manipulator tracker 

The proposed mechanism for two-axis tracking is a parallel manipulator with one 

spherical joint, one revolute joint, two prismatic joints, and four universal joints. A 

schematic representation of this parallel manipulator is displayed in Figure 4.2.  

 

 

Figure 4.2: A schematic representation of the 2-PUU/RS parallel manipulator 

tracking mechanism 

 

The mechanism is made up of a base platform or ground, numbered link 1 in the 

schematic. This base platform is then connected to 3 legs or kinematic chains. One of the 

chains is made up of a prismatic joint, P1, connected to the ground, link 1. The prismatic 

joint, P1, is then connected to a universal joint, U1, via link 5. The universal joint, U1, is 

then further connected to another link 4 which serves as an intermediate member to 

another universal joint, U3. The universal joint, U3, then connects to a mobile platform, 

link 3. A second symmetrical kinematic chain is created with identical components 
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(comprising of link 1, P2, link 7, U2, link 6, U4, link 3). A third and final kinematic chain 

uses a revolute joint, R1, that is connected to the base, link 1. This revolute joint, R1, uses 

an intermediate link, link 2, to connect to a spherical joint, S1, which is also connected to 

the mobile platform, link 3. The mobile platform, link 3, is where the solar panel will 

rest. This can be called a 2-PUU/RS parallel manipulator mechanism for short. The 

inputs of the system are the displacement of the two prismatic joints, joint P1 and joint P2. 

The movement of the two joints creates an output of the desired orientation of the mobile 

platform, link 3. This orientation will be directed toward the sun for more effective 

energy production. 

 

An alternative depiction of the parallel manipulator is displayed in Figure 4.3. This 

serves as an illustration of the mechanism in graph representation. 

 

Figure 4.3: Graph representation of the 2-PUU/RS parallel manipulator 

tracking mechanism 

 

Graph representation is an abstraction that uses vertices as links and edges/lines as joints. 

The edge connections correspond to pair connections between links. The edge 

connections can be either labeled or colored in various ways to distinguish the different 
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joint types. Finally, a mechanism with a fixed link can be denoted using two concentric 

circles [24]. The importance of these graph representations is that it can facilitate 

enumeration of other similar mechanism and does not conform to just one configuration. 

However, in Figure 4.3, the graph representation does use the same notation to label each 

joint and link to allow connection to the two schematics to be made. 

 

A SolidWorks model of the parallel manipulator solar tracker was created. In Figure 

4.4, the tracker is seen with the two PUU chains in identical positions with the cylinder 

fully retracted. The prismatic joints, when fully retracted, will be defined as position 1. 

Position 2 is when the prismatic joint is at the end of the slider track. The tracker will 

display at least three different configurations of these positions that create an ideal angle 

of incidence for the sun at various times during the day. Figure 4.5 shows the device in 

the extreme position where the left PUU kinematic chain is in position 2 and displaced 

from the actuator whereas the right one remains in position 1. Finally, Figure 4.6 shows 

the device with the opposite configuration where the right PUU kinematic chain is in the 

displaced position 2. 

 

  
Figure 4.4: The solar tracking parallel manipulator in an example position that 

orients the solar panel to γ = 0º and α = 58.7º 
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Figure 4.5: The solar tracking parallel manipulator in an example position that 

orients the solar panel to γ = 22.4º and α = 38.8º 
 

 

Figure 4.6: The solar tracking parallel manipulator in an example position that 

orients the solar panel to γ = -22.4º and α = 38.8º 

 

4.3 Mobility analysis 

The proposed device, a 2-PUU/RS parallel manipulator, is intended to track the sun in 

two axes. In order to move in two axes, the device must have two degrees of freedom. 

Therefore, it must be demonstrated that this device does have just two degrees of 

freedom. The 2-PUU/RS parallel manipulator means it has two symmetric links each 

with its own prismatic joint and two universal joints and then another link with just a 

revolute joint and a spherical joint. The parallel manipulator mechanism degrees of 

freedom can be calculated using the Grubler Mobility Equation, where F is the number of 

degrees of freedom the mechanism contains, and λ, or motion parameter, is the degrees of 
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freedom which the mechanism is intended to operate in (i.e. λ = 3 for planar and spherical 

mechanisms and λ = 6 for spatial mechanisms).  The parameter n is the number of links 

in the mechanism, which includes fixed links. The parameter j is the number of joints in 

the mechanism. And finally, fi is the relative motion permitted by joint i. 

𝐹 =  𝜆(𝑛 − 𝑗 − 1) +  ∑ (𝑓𝑖)
𝑗
𝑖=1                                         (4.2) 

 

Table 4.1: Parallel Manipulator Mechanism Parameters 

Mechanism Movement Parameters 

Spatial Movement, λ 6 

Number of Link, n 7 

Number of Joints, j 8 

Number of 1 Degree of Freedom Joints 3 

Number of 2 Degree of Freedom Joints 4 

Number of 3 Degree of Freedom Joints 1 

 

Using this information from Table 4.1, the number of degrees of freedom can be 

solved for using the Grubler Mobility Equation, which is presented as Equation 4.2. The 

number of degrees of freedom for the parallel manipulator is F = 2. Therefore, this 

mechanism does, in fact, have two degrees of freedom.  

 

4.4 The kinematics of the proposed 2-PUU/RS solar tracker 

The kinematic analysis of the proposed tracker assumes that a fixed XYZ coordinate 

system is rigidly attached to the corner of the stationary base at point O, which is also 

where the non-displaced point E temporarily resides as shown in Figure 4.7. The Z-axis 

is normal to the base. The Y-axis aligns with the prismatic joints and faces south. The X-

axis is in a common right-hand coordinate position with respect to Z-axis and Y-axis. 

Additionally, the moving reference frame UVW is attached to point B of the mobile 
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platform as shown in Figure 4.7. The W-axis is normal to the mobile platform. The U-

axis is pointing toward point A along a line created by point A and B where the two 

universal joints reside. The V-axis is in the common right-hand coordinate position with 

respect to the W-axis and U-axis. 

 

The kinematic analysis of the proposed general 2-PUU/RS manipulator is also limited 

to a special case of the general 2-PUU/RS.  In particular, the following simplifying 

assumptions and constraints were made for the kinematic analysis: the axes of the 

prismatic joints are parallel to the Y-axis; the universal joints, U1 and U2, have a fixed 

yoke that is always parallel to the X-axis; the universal joints, U3 and U4, have a fixed 

yoke that is always parallel to the mobile platform’s W-axis; the joints at points A, B, and 

C are all in the UV-plane; and the joints at points D, E, and F are all in the XY-plane.  

 

 

Figure 4.7: The Moving Frame UVW attached to the solar panel at Point C 
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The mobile platform of the 2-PUU/RS mechanism is supported by a spherical pivot at 

point C and two universal joints at point A and B. These supports allow two degrees of 

freedom of movement in order rotate to the desired azimuth and elevation angle to track 

the sun. The two universal joints are comprised of two U-shaped yokes which connect 

perpendicular to each other using a cross-shaped member in the middle of the two yokes. 

One yoke is mounted to the mobile platform and the other is mounted to a link that 

connects to another universal joint. These links are link legs 4 and 6. Following the 

connection of universal joints, a prismatic joint is connected to the universal joint to 

complete the chain to the ground.  

 

The spherical joint at point C acts as a passive pivot because the two prismatic joints 

act as the driving mechanism for the mobile platform movement. The input of the two 

prismatic joints moves the connected universal joints and members to transition the 

mobile platform from one position to next. The movement of the prismatic joints 

transitions the mobile platform to different positions by rotating the mobile platform to 

the desired azimuth and elevation angles, which can be described by a series of rotations 

about the W-axis and the U-axis. The orientation of the moving platform can be described 

using a first rotation 𝜑1 about the W-axis, which is related to the azimuth angle. The 

rotation is displayed in Figure 4.8.  
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Figure 4.8: The Rotation about the W-axis of the moving reference frame (𝝋𝟏 )  

 

The moving UVW coordinate system can be described as U’V’W’ after this first rotation. 

A second rotation 𝜑2 about the displaced U-axis (now in the U’ position), which is 

related to the elevation angle. The rotation is visually shown in Figure 4.9 for 𝜑2.  

 

 

Figure 4.9: The Rotation about the U-axis of the moving reference frame (𝝋𝟐 )  

 

The moving U’V’W’ coordinate system then becomes U’’V’’W’’. Finally, a third rotation 

𝜑3 about the displaced W-axis (now in the W’’ position). The rotation is visually shown 

in Figure 4.10 for 𝜑3.  
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Figure 4.10: The rotation about the displaced W-axis of the moving reference 

frame (𝝋𝟑 ) [w represents the original W-axis position] 
 

The orientation of the mobile platform can be expressed in terms of XYZ fixed 

reference frame using a 3x3 orthogonal matrix R, or Equation 4.3. The three unit vectors, 

𝒓𝟏,   𝒓𝟐, and  𝒓𝟑, are mutually orthogonal in the positive u, v, and w-directions, 

respectively. Any position vector in the moving reference frame UVW may be expressed 

in terms of 𝒓𝟏,   𝒓𝟐,   and 𝒓𝟑. 

𝑹(𝜑1, 𝜑2, 𝜑3) = [𝒓𝟏   𝒓𝟐   𝒓𝟑]                                         (4.3) 

Where 

𝒓𝟏 = [
cosφ3cosφ1 − sinφ3cosφ2sinφ1

cosφ3sinφ1 + sinφ3cosφ2cosφ1

sinφ3sinφ2

] 

𝒓𝟐 = [
−sinφ3cosφ1 − cosφ3cosφ2sinφ1

−sinφ3sinφ1 + cosφ3cosφ2cosφ1

cosφ3sinφ2

] 

𝒓𝟑 = [
sinφ2sinφ1

−sinφ2cosφ1

cosφ2

] 
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One way to think about these vectors is exemplified by the relationship between 𝒓𝟏 

and u.  The vector 𝒓𝟏 is the same unit vector as u, but 𝒓𝟏  is expressed in terms of the 

fixed XYZ coordinate system where u is expressed in terms of the UVW moving 

coordinate system.   

 

Using the azimuth angle, γ, and elevation angle, α, of the sun, the two angles of 

rotation of the moving platform that are required to set the orientation of the solar panel 

platform can be calculated.  

φ1 = −𝛾                                                      (4.4) 

φ2 = (𝛼 − 90)                                               (4.5) 

Equation 4.4 simply uses the negative azimuth angle of the sun to rotate about the W-

axis of the mobile platform. Equation 4.5 using the elevation angle minus 90 degrees for 

a rotation about the displaced U-axis to achieve the desired slope of the mobile platform. 

The third rotation angle φ3 becomes an unknown that will need to be determined in 

conjunction with the other parameters. This third rotation is the rotation of the solar panel 

about the axis normal to the solar panel and has no impact on the performance of the 

solar panel. 

 

In order to do the kinematic analysis, a moving coordinate system is also defined for 

each of the joints at B, D, and E. The axes of the moving coordinate systems are aligned 

with objects in the physical model to accurately measure angles used to describe the 

position of various points in the model. 
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The first of these moving coordinate systems is aligned with the crossbars of the u-

joint at B. The unit vector coordinate system is shown in Figure 4.11 and is described by 

an orthogonal 3x3 matrix, B. The unit vector, 𝒃𝟏, is oriented along the universal joint, U4, 

yoke that connected to link 6 of the model. The unit vector, 𝒃𝟐, is oriented along the 

universal joint, U4, yoke that connected to the mobile platform of the model. The unit 

vector, 𝒃𝟑, is orientated in a common right-hand coordinate system with respect to 𝒃𝟏 

and 𝒃𝟐.  

 

 
Figure 4.11: The B unit vector coordinate system 

 

The first rotation is measured from negative 𝑗̂ axis to the  𝒃𝟏 unit vector about the 𝒃𝟑  

unit vector or 𝑖̂ axis by the angular displacement of 𝜃1. The second rotation is measured 

from the YZ-plane and about the displaced 𝒃𝟏 unit vector by the angular displacement of 

𝜃2. The third rotation is measured from 𝒃𝟑 unit vector to the unit vector that follows the 
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line from point B to A about the displaced 𝒃𝟐 unit vector by angular displacement of 𝜃3. 

The angle rotations are demonstrated in Figure 4.12.  

 

 

Figure 4.12: The measurement of 𝜽𝟏, 𝜽𝟐, 𝐚𝐧𝐝 𝜽𝟑 
 

The equation for the matrix B is expressed in Equation 4.6. 

 

𝑩(𝜃1, 𝜃2, 𝜃3) = [𝒃𝟏   𝒃𝟐   𝒃𝟑]                                         (4.6) 

Where 

𝒃𝟏 = [

cosθ2sinθ3

sinθ1sinθ2sinθ3 − cosθ1cosθ3

sinθ1cosθ3 + cosθ1sinθ2sinθ3

] 

𝒃𝟐 = [
−sinθ2

sinθ1cosθ2

cosθ1cosθ2

] 

𝒃𝟑 = [−

−cosθ2cosθ3

cosθ1sinθ3 − sinθ1sinθ2cosθ3

sinθ1sinθ3 − cosθ1sinθ2cosθ3

] 
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The moving coordinate system at D can be described by an orthogonal 3x3 matrix, D. 

The unit vector coordinate system is shown in Figure 4.13. The unit vector, 𝒅𝟏, is 

oriented along the universal joint, U1, yoke that connected to prismatic joint, P1, of the 

model. The unit vector, 𝒅𝟐, is oriented along the universal joint, U1, yoke that connected 

to link 4 of the model. The unit vector, 𝒅𝟑, is orientated in a common right-hand 

coordinate system with respect to 𝒅𝟏 and 𝒅𝟐.  

 

 

Figure 4.13: The D unit vector coordinate system 

 

The 𝜙1 angle is measured from the negative 𝑗̂ axis to the 𝒅𝟐 unit vector about 𝒅𝟏 unit 

vector. The 𝜙2 angle is measured from the 𝒅𝟑 unit vector to link 4 about 𝒅𝟐 unit vector. 

The measurement of these angles is shown in Figure 4.14. 
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Figure 4.14: The measurement of 𝝓𝟏 𝐚𝐧𝐝 𝝓𝟐, which has an orthographic 

projection from the 𝝓𝟏 measurement  
 

The equation for the matrix D is expressed in Equation 4.7. 

𝑫(𝜙1, 𝜙2) = [𝒅𝟏   𝒅𝟐   𝒅𝟑]                                         (4.7) 

Where 

𝒅𝟏 = [
1
0
0

] 

𝒅𝟐 = [
0

−cosϕ1

sinϕ1

] 

𝒅𝟑 = [
0

sinϕ1

cosϕ1

] 

 

Finally, the moving coordinate system at E can be described by an orthogonal 3x3 

matrix, E. The unit vector coordinate system is shown in Figure 4.15. The unit vector, 
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𝒆𝟏, is oriented along the universal joint, U2, yoke that connected to prismatic joint, P2, of 

the model. The unit vector, 𝒆𝟐, is oriented along the universal joint, U2, yoke that 

connected to link 4 of the model. The unit vector, 𝒆𝟑, is orientated in a common right-

hand coordinate system with respect to 𝒆𝟏 and 𝒆𝟐.  

 

 
Figure 4.15: The E unit vector coordinate system 

 

The 𝜃1 angle is measured from the negative 𝑗̂ axis to the 𝒆𝟏 unit vector about 𝒆𝟐 unit 

vector. This 𝜃1 angle is the same 𝜃1 angle from Figure 4.12. The 𝒆𝟏 unit vector is parallel 

to 𝒃𝟏 while 𝒆𝟐 unit vector is parallel to the non-displaced 𝒃𝟑 unit vector indicating that 

the two angle rotations are identical. The 𝜃4 angle is measured from the 𝒆𝟑 unit vector to 

link 6 about 𝒆𝟏 unit vector. The measurement of these angles is shown in Figure 4.16. 
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Figure 4.16: The measurement of 𝜽𝟏 𝐚𝐧𝐝 𝜽𝟒, which has an orthographic 

projection from the 𝜽𝟏 measurement 

 

The equation for the matrix E is expressed in Equation 4.8. 

 

𝑬(𝜃1, 𝜃4) = [𝒆𝟏   𝒆𝟐   𝒆𝟑]                                         (4.8) 

Where 

𝒆𝟏 = [
0

−cosθ1

sinθ1

] 

𝒆𝟐 = [
1
0
0

] 

𝒆𝟑 = [
0

sinθ1

cosθ1

] 
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5. INVERSE KINEMATIC ANALYSIS 

 

5.1 Solution overview  

The objective of a solar tracker is to position the moving platform such that the 

surface of the moving platform is perpendicular to the sun’s beam or direct radiation. 

This beam or direct radiation can be described using the position of sun vector n, or 

Equation 4.1. This means that the parallel manipulator output needs to correspond to the 

position of the sun vector. One way to find the inputs (i.e., the extension of the cylinders 

at D and E) required to orient the panel toward the sun’s direct beam is to solve an 

inverse kinematic analysis. 

 

The input for the 2-PUU/RS mechanism are the positions of the two prismatic slider 

joints, or P1 and P2. The corresponding output is the orientation of the mobile platform or 

the desired azimuth, γ, and elevation angles, α. The mobile platform of the parallel 

manipulator mechanism, where the solar panel is mounted, is connected to the base or 

ground through three kinematic chains. These three chains or legs as described earlier are 

an RS leg and two separate symmetrical PUU legs. These legs create two independent 

loops.  A block diagram of the system solution is included in Figure 5.1. 

 

 

Figure 5.1: A block diagram of the solar tracker 
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The process to find the P1 and P2 dimensions that will create a desired orientation of 

the parallel manipulator begins with looking at the three loops created by the legs. The 

three loops can be described by vectors to and from different points located at the joints 

and corners of the mechanism. The three loops created by the legs can be defined as 

loops BEFC, ADFC, and ABED using the reference Figure 4.7. From these points, vector 

loop equations can be formed. Two of these loops are independent and can form loop 

closure equations that can be used to develop a system of scalar equations that can be 

used to analyze the position of the manipulator and solve the inverse kinematics problem.  

 ` 

5.2 Forming the loop closure equations 

The kinematic analysis to find the input positions begins with choosing a set of loop 

closure equations to analyze. Figure 5.2 highlights one loop closure equation, BEFC. 

BEFC is made up of one of the PUU legs and the RS leg.  

 

 
Figure 5.2: The BEFC loop 
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The parallel manipulator BEFC loop closure equation is described using two different 

expressions for the 𝑹𝑶𝑪 vector. This vector can be further broken into components from 

Figure 5.2. The first 𝑹𝑶𝑪 vector equation is shown in Equation 5.1. 

 

                 𝑹𝑶𝑪 = 𝑹𝑶𝑬 + 𝑹𝑬𝑩 + 𝑹𝑩𝑪                                            (5.1) 

 

The 𝑹𝑶𝑬 vector is simply from the origin, point O, to the position of the second 

prismatic joint in the Y-direction. The P2 term is used to describe the second prismatic 

joint and the position of the second prismatic joint in relation to point O where the 

coordinate system resides. Figure 5.3 shows the measurement of P2 position based on the 

coordinate system residing at the corner.  

 

 

Figure 5.3: The measurement of P2 (Left) starting position coincident with O, 

(Right) displaced position 
 

𝑹𝑶𝑬 is shown as Equation 5.2. 

 

𝑹𝑶𝑬 =  −𝑃2𝑗 ̂                                                       (5.2) 
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The 𝑹𝑬𝑩 vector is made up of link 6 and its orientation. The 𝑙6 term is the length of 

link 6. Link 6 is the intermediate member between the two universal joints, U2 and U4, 

labeled by points E and B. The 𝜃1 term is the angular rotation about the 𝑖̂ unit vector axis 

measured from the negative 𝑗̂ unit vector axis. The 𝜃4 term is the angular rotation about 𝑗̂ 

unit vector axis measured from the 𝑒3 unit vector, which is introduced in Equation 4.8. 

The angles 𝜃1 and 𝜃4 give the orientation of the vector. The 𝜃1 and 𝜃4 angle 

measurements are shown in Figure 4.16. 𝑹𝑬𝑩 is shown in Equation 5.3. 

 

𝑹𝑬𝑩 = 𝑙6[ −sin𝜃4, cos𝜃4sin 𝜃1 , cos𝜃4cos𝜃1]T                 (5.3) 

 

The 𝑹𝑩𝑪 vector goes from the universal joint, U4, to the spherical joint, S1, along with 

the mobile platform. The a and b dimensions define the length of the vector. The a 

dimension is the length of the mobile platform parallel to the V-axis. The b dimension is 

the midpoint of the length of the mobile platform parallel to the U-axis. The 𝒓𝟏 and 𝒓𝟐 

unit vectors define the orientation along the mobile platform. The 𝒓𝟏 and 𝒓𝟐 are just two 

of the three mutually orthogonal the unit vectors from the rotation matrix defined for the 

coordinate system and described in Equation 4.3. The 𝑹𝑩𝑪 vector is shown in Equation 

5.4. 

 

𝑹𝑩𝑪 = 𝑏𝒓𝟏 − 𝑎𝒓𝟐                                                              (5.4) 
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The 𝑹𝑶𝑪 loop closure equation is completed using a second set of vectors to express 

𝑹𝑶𝑪. The second 𝑹𝑶𝑪 vector equation is shown in Equation 5.5. 

 

𝑹𝑶𝑪 = 𝑹𝑶𝑬 + 𝑹𝑬𝑭 + 𝑹𝑭𝑪                                               (5.5) 

 

The 𝑹𝑶𝑬 vector is the same Equation 5.2 from the first set. The 𝑹𝑬𝑭 vector from 

Equation 5.5 starts from the prismatic joint, P2, and continues to the revolute joint, R1, 

along with the base of the tracker. The d and e terms define the length of the vector. The 

d dimension is the length of the base parallel to the Y-axis. The e dimension is the 

midpoint of the length of the base parallel to the X-axis. The base is defined by the 

position of prismatic joint sliders and revolute joint locations and is referred to as link 1. 

The 𝑹𝑬𝑭 vector relationship is defined in Equation 5.6. 

 

𝑹𝑬𝑭 =  𝑒�̂� + (𝑃2 − d)𝒋̂                                            (5.6) 

 

The 𝑹𝑭𝑪 vector is defined by the length of link 2 and its orientation. The 𝑙2 term is the 

length of link 2. Link 2 is the intermediate member between the revolute joint, R1, and 

the spherical joint, S1, labeled by points F and C. The 𝛽 term is the angle of rotation 

about the X-axis measured from the �̂� unit vector projected from the revolute joint, R1. It 

defines the orientation of link 2. Figure 5.4 shows the measurement of the 𝛽 angle. 
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Figure 5.4: The 𝜷 angle measurement [X-axis is going into the page] 

 

The 𝑹𝑭𝑪 vector relationship is defined in Equation 5.7. 

 

𝑹𝑭𝑪 = 𝑙2[0, −sinβ, cosβ]T                                                 (5.7) 

 

The two equations, Equation 5.1 and Equation 5.5, combine to create a loop closure 

equation, Equation 5.8.  

 

𝑹𝑶𝑬 + 𝑹𝑬𝑩 + 𝑹𝑩𝑪 − 𝑹𝑶𝑬 − 𝑹𝑬𝑭 − 𝑹𝑭𝑪 = 𝟎                                      (5.8) 

 

The 𝑹𝑶𝑬 terms cancel each other out which leaves us with a modified Equation 5.8, 

which is shown as Equation 5.9. This provides three scalar equations in five unknowns: 

𝜃1, 𝜃4, 𝛽, 𝜑3, and P2. 

 

𝑹𝑬𝑩 + 𝑹𝑩𝑪 − 𝑹𝑬𝑭 − 𝑹𝑭𝑪 = 𝟎                                                  (5.9) 
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The second loop closure equation can be constructed using the ADFC loop. Figure 

5.5 highlights the loop, ADFC. ADFC is made up of the other PUU leg and the same RS 

leg.  

 

 
Figure 5.5: The ADFC loop  

 

The parallel manipulator ADFC loop closure equation is described using the 𝑹𝑶′𝑪 vector. 

This vector can be further broken into components from Figure 5.5. The first 𝑹𝑶′𝑪 vector 

equation is shown in Equation 5.10. 

 

   𝑹𝑶′𝑪 = 𝑹𝑶′𝑫 + 𝑹𝑫𝑨 + 𝑹𝑨𝑪                                       (5.10) 

 

The 𝑹𝑶′𝑫 vector is simply from the reference origin, point O’, to the position of the 

first prismatic joint in the Y-direction. The P1 term is used to describe the first prismatic 

joint and the position of the first prismatic joint in relation to point O where the 
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coordinate system resides. The measurement of P1 position is identical to the 

measurement of P2 and shown in Figure 5.6.  

 

 
Figure 5.6: The measurement of P1 (Left) starting position coincident with O’, 

(Right) displaced position 

 

 𝑹𝑶′𝑫 is shown as Equation 5.11. 

 

𝑹𝑶′𝑫 =  −𝑃1𝑗̂                                                (5.11) 

 

The 𝑹𝑫𝑨 vector is defined by link 4 and its orientation. The 𝑙4 term is the length of 

link 4. Link 4 is the intermediate member between two points D and A which label the 

two universal joints, U1 and U3. The 𝜙1 term is the angular rotation about the 𝑖̂ unit vector 

axis measured from the negative 𝑗̂ unit vector axis. The 𝜙2 term is the angular rotation 

about 𝑗̂ unit vector axis measured from the 𝑑3 unit vector, which is introduced in 

Equation 4.7. The angles 𝜙1 and 𝜙2 describe the orientation of the vector. The 𝜙1 and 𝜙2 

angle measurements are shown in Figure 4.14. 𝑹𝑫𝑨 is shown in Equation 5.12. 

 

𝑹𝑫𝑨 = 𝑙4[ − sin 𝜙2 , cos𝜙2sin𝜙1, cosϕ2cos𝜙1]T         (5.12) 
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The 𝑹𝑨𝑪 vector goes from the universal joint, U3, to the spherical joint, S1, along with 

the mobile platform. The a dimension, b dimension, 𝒓𝟏, and 𝒓𝟐 are identical to the ones 

defined above for Equation 5.4. The 𝑹𝑨𝑪 vector is shown in Equation 5.13. 

 

𝑹𝑩𝑪 = −𝑏𝒓𝟏 − 𝑎𝒓𝟐                                                   (5.13) 

 

The 𝑹𝑶′𝑪 loop closure equation is completed using another set of vectors which is 

equal to the first set. The second 𝑹𝑶′𝑪 vector equation is shown in Equation 5.14. 

 

 𝑹𝑶′𝑪 = 𝑹𝑶′𝑫 + 𝑹𝑫𝑭 + 𝑹𝑭𝑪                                            (5.14) 

 

The 𝑹𝑶′𝑫 vector is the same as Equation 5.11. The 𝑹𝑫𝑭 vector from Equation 5.14 

starts from the prismatic joint, P1, and continues to the revolute joint, R1, along with the 

base of the parallel manipulator. The d and e terms are the same as the one defined above 

in Equation 5.6. The 𝑹𝑫𝑭 vector relationship is defined in Equation 5.15. 

 

 𝑹𝑫𝑭 =  −𝑒�̂� + (𝑃1 − d)𝒋̂                                                 (5.15) 

 

The 𝑹𝑭𝑪 vector is defined the same as Equation 5.7. The two equations, Equation 

5.10 and Equation 5.14, combine to create a loop closure equation, Equation 5.16.  

 

𝑹𝑶′𝑫 + 𝑹𝑫𝑨 + 𝑹𝑨𝑪 − 𝑹𝑶′𝑫 − 𝑹𝑫𝑭 − 𝑹𝑭𝑪 = 𝟎                                    (5.16) 
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The 𝑹𝑶′𝑫 terms cancel each other out which leaves us with a modified Equation 5.16. 

Equation 5.17 shows the new equation. This provides three scalar equations with five 

unknowns: 𝜙1, 𝜙2, 𝛽, 𝜑3, and P1. 

 

𝑹𝑫𝑨 + 𝑹𝑨𝑪 − 𝑹𝑫𝑭 − 𝑹𝑭𝑪 = 𝟎                                             (5.17) 

 

Now, the combination of Equation 5.9 and Equation 5.17 provides a system of six scalar 

equation with eight unknowns. Accordingly, additional relationships created by the 

constraints of the mechanism must be identified. 

 

5.3 Solving for parallel manipulator parameters 

The loop closure equations create a system of six scalar equations with eight 

unknowns. This means that the system needs more equations or relationships to solve for 

the desired inputs. One such relationship can be found using the characteristics of the 

universal joint at point A. Point A has a universal joint, U3, with two yokes, or cross 

members, that are perpendicular to each other. This is shown in Figure 5.7.  
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Figure 5.7: Point A on the parallel manipulator 

 

One cross member is oriented with the mobile platform parallel to the moving W-axis. 

A similar cross member at point B is positioned parallel to this cross member and part of 

universal joint, U4. This cross member has a pre-defined unit vector from Equation 4.6 

known as 𝒃𝟐. The other cross member at point A is rigidly connected to the link 4. At the 

other end of link 4 is a parallel cross member at point D. This cross member is a part of 

the universal joint, U1, and has a pre-defined unit vector from Equation 4.7 known as 𝒅𝟐. 

The dot product of two perpendicular unit vectors is zero. Therefore, by using the two 

unit vectors 𝒃𝟐 and 𝒅𝟐, an equation can be formed. This is Equation 5.18. 
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𝒃𝟐 ∙ 𝒅𝟐 = 𝟎                                                           (5.18) 

Where 

𝒃𝟐 = − sin 𝜃2 �̂� + cos 𝜃2 sin 𝜃1 𝒋̂ + cos 𝜃2 cos 𝜃1 �̂� 

𝒅𝟐 = 0�̂� − cos 𝜙1 𝒋̂ + sin 𝜙1 �̂� 

Using Equation 5.18, a new relationship between 𝜙1, 𝜃1, and 𝜃2 is formed in Equation 

5.19. 

(cos 𝜃2 sin 𝜃1)(− cos 𝜙1) + (cos 𝜃2 cos 𝜃1)(sin 𝜙1) = 0                  (5.19)      

  

Equation 5.19 can then be rearranged to find the relationship in Equation 5.20. 

tan 𝜃1 = tan 𝜙1                                                       (5.20)      

Equation 5.20 reveals that 𝜃1 and 𝜙1 are equal or 180˚ apart; however, for this parallel 

manipulator special case, they are assumed to be equal because it is consistent with the 

manipulator that was modeled. Therefore, 𝜃1 and 𝜙1in these equations are going to be 

defined as equal, thus eliminating one of the eight unknowns, giving just seven 

unknowns. 

 

While Equation 5.20 eliminates one extra unknown, there are still seven unknowns 

with a system of only six scalar equations. Another relationship can be formed to 

eliminate this final extra unknown. As discussed before, the 𝒃𝟐 unit vector is parallel to 

the moving W-axis of the mobile platform. The orientation of the W-axis of the mobile 

platform can be described by the unit vector 𝒓𝟑. Therefore, the two unit vectors 𝒃𝟐 and 

𝒓𝟑 are parallel and equal to each other. This relationship is defined in Equation 5.21. 
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𝒃𝟐 = 𝒓𝟑                                                       (5.21)      

Where 

𝒃𝟐 = [
−sinθ2

sinθ1cosθ2

cosθ1cosθ2

] 

𝒓𝟑 = [
sinφ2sinφ1

−sinφ2cosφ1

cosφ2

] 

Using Equation 5.21, three scalar equations are created and shown as Equation 5.22, 

Equation 5.23, and Equation 5.24. 

−sinθ2 − sinφ2sinφ1 = 0                                          (5.22)    

   

sinθ1cosθ2 + sinφ2cosφ1 = 0                                     (5.23)  

     

cosθ1cosθ2 − cosφ2 = 0                                           (5.24)      

 

These equations can then be used to find an expression to solve for the two 

unknowns, θ1and θ2. Equation 5.25, Equation 5.26, Equation 5.27, and Equation 5.28 

display the relationship with γ and α substituted in for φ1 and φ2. 

θ2 = sin−1(−sin𝛾sin(α −  90°))                                   (5.25)                                          

   

sinθ1 =
−cosγsin(α − 90°)

cosθ2
                                              (5.26)  
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cosθ1 =
cos (α − 90°)

cosθ2
                                                              (5.27)      

Where  

θ1 = arctan2(sinθ1, cosθ1)                                                     (5.28)      

 

This relationship can be applied to the system of equations created by Equation 5.9 

and Equation 5.17, resulting in a system of eight scalar equations in eight unknowns.  

The eight scalar equations are listed as Equation 5.29 through Equation 5.36.  

 

−e −  l6sinθ4 + a[cosγsinφ3 −  sinγcos(α −  90°)cosφ3]  + 

b[cosγcosφ3 +  sinγcos(α −  90°)sinφ3] = 0                 (5.29)   

                                                                                                                                 

d −  P2  +  l2sinβ +  l6cosθ4sinθ1 − a[sinγsinφ3 +  cosγcosφ3cos(α −  90°)] − 

b[sinγcosφ3 −  cosγcos(α −  90°)sinφ3] = 0                           (5.30)   

 

 l6cosθ4cosθ1 −  l2cosβ −  a[sin(α −  90°)cosφ3] + 

                                            b[sin(α −  90°)sinφ3] = 0                                            (5.31) 

                                                                                           

e  −  l4sinϕ2 + a[cosγsinφ3 −  sinγcos(α −  90°)cosφ3] −          

b[cosγcosφ3 +  sinγcos(α −  90°)sinφ3] = 0                                     (5.32) 

                                               

d −  P1  +  l2sinβ +  l4cosϕ2sinθ1 −  a[sinγsinφ3 +  cosγcos(α −  90°)cosφ3] + 

b[sinγcosφ3 −  cosγcos(α −  90°)sinφ3] = 0                                    (5.33) 
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l4cosθ1cosϕ2 − l2cosβ −  a[sin(α −  90°)cosφ3] − 

b[sin(α −  90°)sinφ3] = 0                                               (5.34)    

 

θ2 = sin−1(−sin𝛾sin(α −  90°))                                           (5.35)  

 

θ1 = arctan2(
−cosγsin(α − 90°)

cosθ2
,

cos (α − 90°)

cosθ2
)                                   (5.36)      

                                         

The eight unknowns are 𝜙2, 𝜃1, 𝜃2, 𝜃4, 𝛽, 𝜑3, 𝑃1, and 𝑃2. 

      

     

     

    

   

 

                                                 



57 

 

6. RESULTS 

 

After an analysis of the mechanism, a system of scalar equations has been found to 

solve the inverse kinematics problem. Using numerical solver in MATLAB, see 

Appendix A and Appendix B for the code, one solution to the set of scalar equations is 

provided below for an arbitrary set of manipulator parameters. The goal was to provide a 

mechanism to achieve various azimuth and elevation angles throughout the day to track 

the sun. A SolidWorks model is used to validate the results and display the various 

positions. This solution shows the parallel manipulator can achieve a range of azimuth 

and elevation angles. The parameters for this specific solar tracker are displayed in Table 

6.1. 

 

Table 6.1: The parameters for an example parallel manipulator solar tracker 

Parameter Description Specification [inches] 

a Length of mobile platform 76 

b Midpoint width of mobile platform 38 

d Length of the base 71.5  

e Midpoint width of base 38  

𝑙2 Length of Link 2 74.5 

𝑙4 Length of Link 4 36 

𝑙6 Length of Link 6 36 

 

This solution can reach a range of positions depending on the specification of the 

inputs, P1 and P2. The first example position displayed is where both P1 and P2 are in the 

retracted position where they align with point O and are equal. The variables are 

displayed in Table 6.2 for example position 1. Example position 1 is displayed in Figure 

6.1.  
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Table 6.2: The variables for example position 1 for solar tracker 

Parameter Description Specification  

γ Azimuth Angle 0o 

α Elevation Angle 58.8o 

𝑃1 Prismatic Joint 1 Extension Length 0 inches 

𝑃2 Prismatic Joint 2 Extension Length 0 inches 

𝜃1 The angular rotation about 𝒃𝟑unit vector 31.2o 

𝜃2 The angular rotation about 𝒃𝟏unit vector 0o 

𝜃3 The angular rotation about 𝒃𝟐unit vector 0o 

𝜃4 The angular rotation about 𝒆𝟏unit vector 0o 

𝜙1 The angular rotation about 𝒅𝟏unit vector 31.2o 

𝜙2 The angular rotation about 𝒅𝟐unit vector 0o 

𝛽 The angular rotation about revolute joint at C -19.6 o 

 

 

Figure 6.1: The parallel manipulator solar tracker in example position 1 [γ = 0º 

and α = 58.8º] 
 

The second example position demonstrated is where P1 is extended fully and P2 

remains retracted to where it aligns with point O. The variables are displayed in Table 6.3 

for example position 2. Example position 2 is displayed in Figure 6.2.  
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Table 6.3: The variables for example position 2 for solar tracker 

Parameter Description Specification  

γ Azimuth Angle 22.2o 

α Elevation Angle 38.8o 

𝑃1 Prismatic Joint 1 Extension Length 47 inches 

𝑃2 Prismatic Joint 2 Extension Length 0 inches 

𝜃1 The angular rotation about 𝒃𝟑unit vector 49.1o 

𝜃2 The angular rotation about 𝒃𝟏unit vector -17.1o 

𝜃3 The angular rotation about 𝒃𝟐unit vector -23.9o 

𝜃4 The angular rotation about 𝒆𝟏unit vector -71.9o 

𝜙1 The angular rotation about 𝒅𝟏unit vector 49.1o 

𝜙2 The angular rotation about 𝒅𝟐unit vector -43.2o 

𝛽 The angular rotation about revolute joint at C -18.4o 

 

  

Figure 6.2: The parallel manipulator solar tracker in example position 2, which 

has P1 fully extended and P2 is retracted [γ = 22.2º and α = 38.8º] 
 

The third example position demonstrated is where P2 is extended fully and P1 

becomes retracted to where it aligns with point O. The variables are displayed in Table 

6.4 for example position 3. Example position 3 is displayed in Figure 6.3.  
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Table 6.4: The variables for example position 3 for solar tracker 

Parameter Description Specification  

γ Azimuth Angle -22.2o 

α Elevation Angle 38.8o 

𝑃1 Prismatic Joint 1 Extension Length 0 inches 

𝑃2 Prismatic Joint 2 Extension Length 47 inches 

𝜃1 The angular rotation about 𝒃𝟑unit vector 49.1o 

𝜃2 The angular rotation about 𝒃𝟏unit vector 17.1o 

𝜃3 The angular rotation about 𝒃𝟐unit vector 23.9o 

𝜃4 The angular rotation about 𝒆𝟏unit vector 43.2o 

𝜙1 The angular rotation about 𝒅𝟏unit vector 49.1o 

𝜙2 The angular rotation about 𝒅𝟐unit vector 71.9o 

𝛽 The angular rotation about revolute joint at C -18.4o 

 

 

Figure 6.3: The parallel manipulator solar tracker in example position 3, which 

has P2 fully extended and P1  is retracted [γ = -22.2º and α = 38.8º] 
 

The mechanism can reach a range of other azimuth and elevation angles besides the 

three example positions demonstrated. For these dimensions, Figure 6.4 shows the 

azimuth and elevation angles possible are overlaid on the sun path for March 21st, 2019. 

March 21st, 2019 is the day after the solar equinox. 
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Figure 6.4: The possible azimuth and elevation angles for the solar tracker overlaid 

on the path of the sun on March 21st, 2019 
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7. LIMITATIONS 

 

The parameters for the example solar tracker presented in the results section were 

selected arbitrarily and do not optimize the workspace of the manipulator for solar 

tracking. As Figure 6.6 shows, it only encompasses a portion of the sun’s path. The plot 

in Figure 6.6 also only shows one day of the year and the path of the sun changes 

throughout the year due to the rotations of the earth. The ideal solar tracker has a 

workspace that encompasses the path of the sun throughout most of each day throughout 

the year - which is not the case for the example solar tracker. 

 

  While the parameters of the presented example manipulator have not been optimized 

for matching the manipulator’s workspace to the path of the sun, there are other factors 

that may also artificially limit the size and shape of the workspace.  These limitations are 

due to a few reasons.  First, the inverse kinematics analysis was developed for a special 

case in which the joints and links were limited to certain orientations and planes. For 

example, the inverse kinematics model is based on the prismatic joints aligning parallel to 

the Y-axis. This doesn’t have to be the case and the prismatic joints can be placed at an 

angle or not be symmetrical at all. This may prove to be a better configuration but was 

not explored. Another possible limitation was forcing A, B, and C into the same UV-

plane. Alternative workspaces could be achieved by tilting the mobile platform so that C 

is placed out of the UV-plane. This could allow for a larger change in elevation angle 

without increasing the length of any of the links. It may also allow for a larger range in 

azimuth angles than is displayed by the example manipulator that was presented. 
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Essentially, creating a more general model could lead to a better configuration to increase 

the workspace. 
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8. FUTURE WORK 

 

This thesis explores creating a novel solar tracking using a parallel manipulator. 

Although the device presented can achieve changing azimuth and elevation angles to try 

and map to the sun’s path, it may not be the most optimal configuration. A more general 

model of the 2-PUU/RS parallel manipulator can be developed. This could lead to more 

optimal joint and link placement in different planes or parallel to certain axes like the 

ideas discussed in the limitations section.  

 

The model parameters were also not optimal for the special case used. Optimization 

of parameters can increase the azimuth and elevation angles that are reachable by the 

manipulator. Workspace optimization is an important step to the design process. 

Workspace optimization finds the parameters that allow it to match the path of the sun as 

closely as possible. It also can create a well-conditioned workspace to provide no toggle 

positions or reduce large output errors.  

 

Ultimately, this is only the first step toward creating solar trackers using parallel 

manipulators. There is more work to be done, but the parallel manipulator model has 

proven to be able to track the sun through a portion of its path. Hopefully, this thesis will 

serve as one of the stepping stones that may allow parallel manipulators to be the future 

of solar tracking. 
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APPENDIX A 

 

Appendix A shows a commented Matlab file that was used to solve the system of 

equations 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Author: Joseph Hubach 

% Date:   2019 February 02 

% Description: Solve System of equations to find the variables of the 

%              Parallel manipulator solar tracker 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 

clear variables 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  define the function that is being solved  

fun = @Solve_Parallel_Manipulator_System_of_Equations; 

  

%  Set Intial Guesses for unknowns 

x0 = [5,5,5,5,20,0]; 

  

% The options for fsolve fucntion 

options = optimoptions('fsolve'); 

options.MaxIterations = 1000000; 

options.MaxFunctionEvaluations = 1000000; 

  

% Execute fsolve to solve for unknowns 

x = fsolve(fun,x0,options) 
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APPENDIX B 

 

Appendix B shows a commented Matlab function file that was used in Appendix A  

to solve the system of equations 

function F=Solve_Parallel_Manipulator_System_of_Equations(x) 

% Function File to Solve System of Equations for Parallel Manipulator 

% Author: Joseph Hubach 

% Date:   2019 February 02 

  

  

% Assigning the parameters for the Parallel Manipulator 

% Mobile Platform Dimensions [inches] 

a = 76; 

b = 76/2; 

  

% An extra mobile platform parameter if C is out of the UV-plane 

c = 0; 

  

% Base Dimensions [inches] 

d = 71.5; 

e = 76/2; 

  

% Link Lengths [inches] 

l4 = 36; 

l6 = 36; 

l2 = 74.5; 

  

% Define Azimuth and Elevation Angles [degrees] 

el = 47.5953; 

az = -19.1446;  

  

% Assign angles p1 and p2 in terms of Azimuth and Elevation [degrees] 

p1 = -az; 

p2 = el-90; 

  

%  Defining the unknown values 

%  *(only 6 equations and 6 unknowns will be solved using fsolve function) 

phi2   = x(1); 

theta4 = x(2); 

beta   = x(3); 

p3     = x(4); 
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P1     = x(5); 

P2     = x(6); 

  

  

%  Defining two of the unknown values (theta1 and theta2)  

%  using B2 = R3 vectors 

  

% Equation 5.35 

theta2 = asind(-sind(-az)*sind(el-90));  

% Equation 5.26 

sint1  = -cosd(az)*sind(el-90)/cosd(theta2); 

% Equation 5.27 

cost1  = cosd(el-90)/cosd(theta2); 

% Equation 5.36 

theta1 = atan2(sint1,cost1)*180/pi; 

 

% The relationship from tan(phi1) = tan (theta1) 

  

% Equation 5.20 

phi1 = theta1; 

  

%  Defining the system of equations (Equations 5.29 through 5.34) 

  

% Equation 5.29 

F(1) = a*(cosd(p1)*sind(p3) + cosd(p2)*cosd(p3)*sind(p1)) - 1.0*e + 

b*(cosd(p1)*cosd(p3) - 1.0*cosd(p2)*sind(p1)*sind(p3)) - 1.0*l6*sind(theta4) - 

1.0*c*sind(p1)*sind(p2); 

% Equation 5.30 

F(2) = d - 1.0*P2 + b*(cosd(p3)*sind(p1) + cosd(p1)*cosd(p2)*sind(p3)) + 

a*(sind(p1)*sind(p3) - 1.0*cosd(p1)*cosd(p2)*cosd(p3)) + l2*sind(beta) + 

c*cosd(p1)*sind(p2) + l6*cosd(theta4)*sind(theta1); 

% Equation 5.31 

F(3) = l6*cosd(theta1)*cosd(theta4) - 1.0*c*cosd(p2) - 1.0*a*cosd(p3)*sind(p2) - 

1.0*l2*cosd(beta) + b*sind(p2)*sind(p3); 

% Equation 5.32 

F(4) = e + a*(cosd(p1)*sind(p3) + cosd(p2)*cosd(p3)*sind(p1)) - 

1.0*b*(cosd(p1)*cosd(p3) - 1.0*cosd(p2)*sind(p1)*sind(p3)) - 1.0*l4*sind(phi2) - 

1.0*c*sind(p1)*sind(p2); 

% Equation 5.33 

F(5) = d - 1.0*P1 - 1.0*b*(cosd(p3)*sind(p1) + cosd(p1)*cosd(p2)*sind(p3)) + 

a*(sind(p1)*sind(p3) - 1.0*cosd(p1)*cosd(p2)*cosd(p3)) + l2*sind(beta) + 

c*cosd(p1)*sind(p2) + l4*cosd(phi2)*sind(phi1); 

% Equation 5.34 

F(6) = l4*cosd(phi1)*cosd(phi2) - 1.0*c*cosd(p2) - 1.0*l2*cosd(beta) - 

1.0*a*cosd(p3)*sind(p2) - 1.0*b*sind(p2)*sind(p3);  

end 
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