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ABSTRACT

James Dilts

M.S. O.E.

Rose-Hulman Institute of Technology

May 2019

Design, Fabrication, and Characterization of Multilayer Hyperbolic Metamaterials

Thesis Advisor: Dr. Hossein Alisafaee

Hyperbolic metamaterials (HMMs) show extreme anisotropy, acting as metals and dielectrics along

orthogonal directions. They are designed using the effective medium theory (EMT) and can be

fabricated using standard semiconductor processing techniques. Current techniques used to char-

acterize the optical behavior of HMMs have a high complexity or are unable to robustly deter-

mine the complex permittivity tensor. We describe the details of a procedure to obtain a very

low mean-squared-error (MSE) for extraction of permittivity from hyperbolic metamaterials using

spectroscopic ellipsometry. We have verified our procedure by fabricating three different samples

of various materials and fill factors designed to have a response in the visible spectrum with an

epsilon-near-zero (ENZ) region near the Helium-Neon (He-Ne) wavelength of 633 nm. The MSE

obtained in each case has been less than 1.00. Our procedure eliminates the need for complicated

ellipsometric measurements and modeling techniques, as well as the need for the addition of extra

parts such as prisms. Therefore, the process can be easily adopted.

Keywords: Optical Engineering, Metamaterials, Hyperbolic Dispersion, Physical Vapor Deposi-

tion, Variable Angle Spectroscopic Ellipsometry
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1. INTRODUCTION

Metamaterials are subwavelength engineered media that produce optical responses beyond conven-

tional media, such as a negative index of refraction [1], subwavelength imaging [2], and perfect

absorption [3]. These responses occur due to effects such as the excitation of surface plasmon

polaritons (SPPs) [4]. They have a wide range of applications such as photovoltaics [5], optical

cloaking, achromatic flat lenses [6], superresolution [7], Purcell enhancement of spontaneous ra-

diation [8, 9], and the development of planar optics [10] due to their ability to manipulate the near

field of light [11].

Hyperbolic metamaterials (HMMs) exhibit a further interesting property with the hyperbolic

shape of their isofrequency surfaces (Figure 1.1) — extreme anisotropy where they act like a

metal and a dielectric in orthogonal directions [12]. HMMs can be realized as either an array

of nanowires [13] or as alternating layers of dielectrics and metals [14] (Fig. 1.1) as long as the

observer is not in the near field [15]. The coupling of the SPPs on each of the metal-dielectric

boundaries leads to an effective response [16] as modeled in Section 2.7.
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Figure 1.1: A schematic of an HMM device and its dispersion relations. The HMM is based

on subwavelength gratings (middle). At shorter wavelengths, it has the same dispersion rela-

tion as conventional media (left), and at longer wavelengths the device will have a hyperbolic

dispersion relation (right).
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When it comes to practical aspects, it has unfortunately been a challenge to characterize the

properties of HMMs with minimal error. This is especially important when the application is a

sensor where any material error could translate into larger errors in the output, producing possible

false positives. The Effective Medium Theory (EMT) values provide a reasonable approximation

of the HMM behavior but do not take into account factors such as variations in deposited permit-

tivities, layer thickness, surface roughness, and mechanical strain. These variations have led to the

use of spectroscopic ellipsometry to measure the permittivities of as-fabricated HMMs, for which

there have been numerous attempts for accurate characterization [17–19]. However, non-negligible

discrepancies have been reported [20] with spectroscopic ellipsometry. Alternative ellipsometric

techniques include interference enhancement (IE) ellipsometry, where the substrate is coated to

increase light-HMM interactions [21]. In addition, transmission mode measurement to the reflec-

tion mode ellipsometry (SE+T) has been employed [22], but it still does not have the ability to

characterize the out-of-plane behavior of extremely anisotropic HMMs accurately.

Another technique known as total internal reflection (TIR) ellipsometry uses a prism to couple

light into the sample after it undergoes total internal reflection [23], which improves the character-

ization of thin semitransparent films [24] and has previously been used to successfully characterize

HMMs [20].

We describe the details of a technique which is able to extract the out-of-plane permittivity

through the use of EMT approximations which are much simpler to implement than the TIR mod-

els. It does not require any additional equipment or sample preparation and is able to be used with

in-line processing. It can therefore be easily adopted to characterize metamaterial behavior.

For comparison purposes, we treat HMMs as uniaxial, homogeneous materials in the ellipso-

metric modeling [25]. We expect the in-plane results of spectroscopic ellipsometry to match well
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with the EMT calculations. In addition, we attempt to eliminate the non-negligible discrepancy

between the EMT values and the out-of-plane z direction caused by the anisotropic behavior of

the HMM. This discrepancy is attributed to the incident light being inhibited from crossing the

surface beyond evanescent penetration for any angle [20]. Overall, our goal is to obtain low-Mean

Squared Error (MSE) values for characterizations of HMMs using spectroscopic ellipsometry. The

intention of the thesis is to model, simulate, fabricate, and successfully characterize a hyperbolic

metamaterial. Its organization is as follows:

Chapter 2 discusses the background theory necessary to design, fabricate, and characterize

HMMs including the effective medium theory as well as the dispersion relation derived from first

principals. Additional information is provided about the propagation of light in several kinds of

media.

Chapter 3 presents the expected behavior of the HMM based on the effective medium theory.

The design process used to achieve the desired permittivity behavior is explained.

Chapter 4 discusses the fabrication procedure for HMMs using standard semiconductor fabri-

cation processes. Additionally, the methods of spectroscopic ellipsometry used to characterize the

fabricated samples are explained, including the material models used.

Chapter 5 discusses results from the measurements in Chapter 4. The ellipsometric results are

presented and compared to expected values. It is shown that the results from the EMT ellipsometric

modeling procedure are in good agreement with the theoretical model and have a low MSE.

Chapter 6 concludes the thesis and provides suggestions for future work.
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2. THEORY AND BACKGROUND

2.1. Maxwell’s Equations

There are several ways to model the propagation of light. In this thesis, the vector electromagnetic

model will be used based on Maxwell’s Equations. The electromagnetic state of matter can be

described using the four quantities

1. The volume density of electric charge ρ

2. The volume density of electric dipoles, also called polarization ~P

3. The volume density of magnetic dipoles or magnetization ~M

4. The electric current per unit density, know as the current density ~J

These values are related to the electric field ~E and magnetic field ~H by Maxwell’s equations [26]

~∇×~E =−µ0
∂ ~H
∂ t
−µ0

∂ ~M
∂ t

, (2.1)

~∇× ~H = ε0
∂~E
∂ t

+
∂~P
∂ t

+ ~J, (2.2)

~∇ ·~E =− 1
ε0
~∇ ·~P+

ρ

ε0
, (2.3)

~∇ · ~H =−~∇ · ~M, (2.4)

By substituting the electric displacement ~D = ε0~E+~P and the magnetic induction ~B = µ0(~H+ ~M),

Maxwell’s equations assume the familiar form

~∇×~E +
∂~B
∂ t

= 0, (2.5)

~∇× ~H− ∂~D
∂ t

= ~J, (2.6)
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~∇ ·~D = ρ, (2.7)

~∇ ·~B = 0, (2.8)

Each of these equations represents empirical observations—Equation 2.5 Faraday’s law of elec-

tromagnetic induction, Equation 2.6 the modified Ampere’s law, Equation 2.7 Gauss’s law, and

Equation 2.8 the absence of magnetic monopoles [27]. They predict the speed of light to be

~E
~B
=

1
√

ε0µ0
= c, (2.9)

where c = 2.9979246×108 m/s is the speed of light in a vacuum [28].

The response of the conduction electrons to the electric field is given by Ohm’s Law

~J = σ~E, (2.10)

where σ is the electric conductivity. The constitutive relations

~D = ε~E, (2.11)

and

~B = µ~H, (2.12)

can be used to describe the responses of the bound charges to the electric and magnetic fields,

respectively. An alternative way to describe this response is

~P = (ε− ε0)~E =~χε0~E, (2.13)

where the proportionality factor

~χ =
ε

ε0
−1, (2.14)

is known as the electric susceptibility [29].
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2.2. The Wave Equation

In nonmagnetic, electrically neutral media, Maxwell’s Equations reduce to

~∇ ~×E =−µ0
∂~B
∂ t

, (2.15)

~∇× ~H = ε0
∂~E
∂ t

+
∂~P
∂ t

+ ~J, (2.16)

~∇ ·~E =− 1
ε0
~∇ ·~P, (2.17)

~∇ · ~H = 0. (2.18)

By taking the curl of Equation 2.15, the time derivative of Equation 2.16, and eliminating ~H, the

general wave equation becomes

~∇× (~∇×~E)+
1
c2

∂ 2~E
∂ t2 =−µ0

∂ 2~P
∂ t2 −µ0

∂~J
∂ t

, (2.19)

with the two terms on the right-hand side of the equation known as source terms. The source terms

model the material polarization and conduction current density, respectively. In nonconducting

media, the current density is neglected and the polarization source term −µ0∂ 2~P/∂ t2 explains

the optical behavior of the material. This term can be used to explain several optical properties

of a dielectric including dispersion, absorption, and double refraction in addition to others. The

conduction term −µ0∂~J/∂ t becomes dominant in conducting media and can be used to explain

the high reflectivity (or ”shininess”) and large opacity of good conductors. Although it will not be

covered here, both terms must be taken into account in semiconductors [29].

2.3. Negative Index Media

First theorized by V. G. Veselago [30], media with a negative index of refraction can be fabricated

through the use of periodic resonant structures. A negative refractive index will be obtained when



8

both the electric permittivity and magnetic permeability have negative values. A flat slab of a

doubly-negative material will focus light to a point, acting as a lens [30]. Such materials were

initially met with skepticism until the first emperical demonstration of a negative index material [1].

Interest has continued to grow as fabrication techniques improve.

The index of refraction can be found using the following relation:

n =
√

εrµr. (2.20)

Assuming that both the permittivity and permeability have a value of negative one, the equation

then becomes

n =
√

(−1)(−1). (2.21)

Using Euler’s identity eiπ +1 = 0, the refractive index can be expressed as

n =
√

e2iπ , (2.22)

which is equivalent to

n = eiπ =−1. (2.23)

Additionally, materials with a hyperbolic dispersion relation can have negative refraction; how-

ever, this is a result of dispersion and not of a doubly negative material [13].

2.4. Propagation of Light in Various Materials

This section describes the propagation of light in various types of media based on Maxwell’s

equations.
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2.4.1. Isotropic Dielectrics

A nonconducting, isotropic medium consists of a material where the electrons are permanently

bound to their atoms with no preferential direction. The material polarization ~P can be found by

assuming that each electron with a charge−e is displaced by a position~r from its equilibrium, and

is given by

~P =−Ne~r, (2.24)

where N is the amount of electrons per volume. Assuming an elastically bound force constant K

as a result of an applied electric field ~E, the force equation is

− e~E = K~r. (2.25)

Therefore, the static material polarization is expressed as

~P =
Ne2

K
~E (2.26)

It should be noted that this equation does not applied to a time varying electric field.

To represent the motion of the electrons, a classical damped harmonic oscillator is used, with

an equation of motion

m
d2~r
dt2 +mγ

d~r
dt

+K~r =−e~E, (2.27)

where mγ(d~r/dt) represents a damping force with a proportionality constant mγ . The magnetic

force is neglected in this equation because it is much smaller than the electric force in electromag-

netic fields [29]. If the applied electric field and resulting motion of the electrons vary harmonically

with time as e−iωt , Equation 2.27 becomes

(−mω
2− iωmγ +K)~r =−e~E, (2.28)
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with the polarization

~P =
Ne2

−mω2− iωmγ +K
~E. (2.29)

Equation 2.29 can be rewritten as

~P =
Ne2/m

ω2
0 −ω− iωγ

~E, (2.30)

in which ω0 is defined as

ω0 =

√
K
m
, (2.31)

and is known as the effective resonance frequency of the bound electrons. Equation 2.30 shows

that there will be an optical resonance near the frequency ω0.

Next, the effect of polarization on the the propagation of light will be examined. The general

wave equation (Equation 2.19) is used, with a conduction term of zero. Substituting Equation 2.30

into the polarization term gives the wave equation as

~∇× (~∇×~E)+
1
c2

∂ 2~E
∂ t2 =

−µ0Ne2

m
(

1
ω2

0 −ω− iωγ
)
∂ 2~E
∂ t2 . (2.32)

Since there is a linear relationship between ~P and ~E, it follows that ~∇ ·~E = 0 and therefore

~∇× (~∇×~E) =−~∇2~E. This reduces the above wave equation to

~∇2~E =
1
c2 (1+

Ne2

mε0
· 1

ω2
0 −ω− iωγ

)
∂ 2~E
∂ t2 , (2.33)

after using the relation 1/c2 = µ0ε0 and rearranging terms.

To solve the differential equation, it is assumed that the final solution will be a homogeneous

plane harmonic wave of the form

~E = ~E0ei(K z−ωt), (2.34)

where K is the complex wavenumber expressed as

K = k+ iα. (2.35)
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The index of refraction will also be complex as

N = n+ ik. (2.36)

The complex index of refraction and wavenumber are related to each other as

K =
ω

c
N . (2.37)

By substituting Equation 2.34 into Equation 2.33, it can be found that a solution exists provided

that

K 2 =
ω2

c2 (1+
Ne2

mε0
· 1

ω2
0 −ω− iωγ

). (2.38)

Equation 2.34 can then be written as

~E = ~E0e−αzei(kz−ωt). (2.39)

The absorption term e−αz shows that the wave amplitude decays exponentially with distance as the

energy of the wave is absorbed by the propagating medium. Since the energy of the wave will be

proportional to |~E|2, the energy with vary with distance as e−2αz. Therefore, the property 2α is

known as the absorption coefficient, and the imaginary part of the complex index of refraction k is

known as the absorption index. The two variables α and k are related by

α =
ω

c
k. (2.40)

The phase factor in Equation 2.39 ei(kz−ωt) shows that there is a harmonic wave with phase

velocity u

u =
ω

k
=

c
n
. (2.41)

Combining Equations 2.37 and 2.38 indicates

N 2 = (n+ ik)2 = 1+
Ne2

mε0
(

1
ω2

0 −ω− iωγ
). (2.42)



12

Equating the real and imaginary parts gives the equations

n2− k2 = 1+
Ne2

mε0
(

ω2
0 −ω2

(ω2
0 −ω2)2 +ω2γ2 ), (2.43a)

2nk =
Ne2

mε0
(

γω

(ω2
0 −ω2)2 +ω2γ2 ), (2.43b)

from which the optical constants n and k can be found.

A graph of these optical constants are shown in Figure 2.1 which assumes a general case of

the frequency dependence of n and k. The absorption is strongest around the resonance frequency

ω0 and is close to zero at all other frequencies. The index of refraction is close to 1 for small fre-

quencies and increases as the resonant frequency is approached. Around ω0, anomalous dispersion

where the index of refraction decreases with increasing frequency occurs. Normal dispersion oc-

curs at all other frequencies where the index of refraction increases as the frequency increases [29].

0

1

n

0

0

k

Figure 2.1: Graphs of the index of refraction (top) and the extinction coefficient (bottom)

near a resonance at ω0.
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2.4.2. Conducting Media

The effects of conduction on a propagating electromagnetic wave can be treated similarly to how

the effects of polarization were modeled in Section 2.4.1. In a conducting medium, the electrons

are no longer bound to their atoms, eliminating the elastic restoring force, and resulting in an

equation of motion

m
d~v
dt

+mτ
−1~v =−e~E, (2.44)

where ~v is the velocity of the electron, and mτ−1 is the frictional dissipation constant. Using the

equation for current density

~J =−Ne~v, (2.45)

where N is the number of electrons per unit volume, Equation 2.44 can be rewritten as

d~J
dt

+ τ
−1~J =

Ne2

m
~E. (2.46)

Additionally, the decay of a transient current can be described as a homogeneous equation

d~J
dt

+ τ
−1~J = 0, (2.47)

whose solution is ~J = ~J0e−t/τ . After a time of 5τ , the current can be considered to have decayed

to a negligible value. For a static electric field, Equation 2.46 becomes

τ
−1~J =

Ne2

m
~E, (2.48)

and the static conductivity σ will be given by

σ =
Ne2

m
τ. (2.49)

Assume a harmonic time dependence for the electric field ~E and the current density ~J that varies

as e−iωt . The equation of motion will then become

(−iω + τ
−1)~J =

Ne2

m
~E = τ

−1
σ~E. (2.50)
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When Equation 2.50 is solved for ~J, it yields

~J =
σ

1− iωτ
~E. (2.51)

When ω = 0, the equation reduces to the static case ~J = σ~E.

Substituting the expression for ~J into the wave equation (Equation 2.19) gives

~∇2~E =
1
c2

∂ 2~E
∂ t2 +

µ0σ

1− iωt
∂~E
∂ t

. (2.52)

A simple homogeneous plane wave solution of the form

~E = ~E0ei(K z−ωt) (2.53)

is taken as the trial solution with K complex as described in Equation 2.35. Therefore, it can be

found that K must satisfy the relation

K 2 =
ω2

c2 +
iωµ0σ

1− iωτ
. (2.54)

which at low frequencies reduces to

K 2 ≈ iωµ0σ (2.55)

so that K ≈
√

iωµ0σ = (1+ i)
√

ωµ0σ/2. The real and imaginary parts of K are approximately

equal and are given by

k ≈ α ≈
√

ωσ µ0

2
. (2.56)

The real and imaginary parts of the complex index of refraction N are similarly equal and can be

described by

n≈ k ≈
√

σ

2ωε0
. (2.57)

The distance at which the amplitude of the wave decays to e−1 is known as the skin depth δ and is

given by

δ =
1
α

=

√
2

ωσ µ0
=

√
λ0

cπσ µ0
, (2.58)
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where λ0 is the vacuum wavelength. Equation 2.54 can be rewritten in terms of the complex index

of refraction as

N 2 = 1−
ω2

p

ω2 + iωτ−1 , (2.59)

where ωp is the plasma frequency defined as

ωp =

√
Ne2

mε0
=

√
µ0σc2

τ
. (2.60)

Equation 2.59 is known as the Drude model. It assumes that the electrons are free within

the metal and models them as a classical gas. The Drude model does not account for quantum

behavior and is therefore unable to explain all properties of a metal such as the thermoelectric

effect. However, it does provide a reasonable approximation of the optical constants n and k. By

equating the real and imaginary parts of Equation 2.59, the following equations can be found as

n2− k2 = 1−
ω2

p

ω2 + τ−2 , (2.61a)

2nk =
ω2

p

ω2 + τ−2 (
1

ωτ
), (2.61b)

from which n and k can be extracted. It is difficult to solve for n and k analytically, and so numerical

methods are typically used.

Figure 2.2 shows n and k with respect to ω . As can be seen from this graph, the refractive index

n becomes less than one in the region around the plasma frequency. The extinction coefficient k

has relatively high values at low frequencies and decreases monotonically as frequency increases.

This results in a material that is opaque roughly below the plasma frequency and transparent above

it. Good agreement is obtained for this model and empirical measurements of the alkali metals,

coinage metals, in addition to several other good conductors [29].
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Figure 2.2: Index of refraction plotted versus frequency for a metal. Reproduced from [29]

.
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2.4.3. Anisotropic Media

Materials which have different optical properties in different propagation directions and optical

polarizations are called anisotropic media. All optical materials can be described as one of the

following types:

Single crystalline: Materials whose molecules exhibit perfect periodicity along the entire dielec-

tric and are orientated in a same direction are called single crystalline. They have the lowest energy

state and are mainly anisotropic.

Polycrystalline (Non-Crystalline): These solids have long-range order, but there are boundaries

that impede continuity along the long-range ordering. Polycrystalline materials can be thought of

as a collection of randomly assorted grains. In general, each of the grains is anisotropic, but their

averaged macroscopic behavior is isotropic.

Amorphous: These solids do not have any long-range order, and their molecules are randomly

oriented. As a result, their energy state is higher than for a crystalline solid. In general, amorphous

solids are anisotropic with an isotropic averaged macroscopic behavior [31, 32].

The induced polarization in an isotropic medium is related to the electric field by a parallel

scalar factor, which does not have any relation to the direction of the applied electric field. How-

ever, for anisotropic media, the magnitude and direction of polarization depends on the direction

of ~E. In the case of linear anisotropic media with a dielectric permittivity tensor εi j the electric

flux density is given by

Dx = ε11Ex + ε12Ey + ε13Ez,

Dy = ε21Ex + ε22Ey + ε23Ez,

Dz = ε31Ex + ε32Ey + ε33Ez,

(2.62)

where i, j = 1,2,3 denote the x,y,z component of coordinate system, respectively. This equation
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can be rewritten using tensor notation as

Di = εi jE j. (2.63)

If the coordinate system is chosen so that the off-diagonal elements of the tensor εi j are zero,

then Equation 2.62 becomes

Dx = εxEx, Dy = εyEy, Dz = εzEz, (2.64)

where the 11, 22, and 33 subscripts are rewritten as x, y, and z, respectively. The index of refraction

is related to the dielectric and magnetic constants as

n2 = εrµr =


εx 0 0

0 εy 0

0 0 εz




µx 0 0

0 µy 0

0 0 µz

=


n2

x 0 0

0 n2
y 0

0 0 n2
z

 . (2.65)

Assuming non-magnetic media (µr = 1), the relation between these permittivities and correspond-

ing refractive indices can be rewritten as

ni
2 = εi/ε0. (2.66)

If the dielectric permittivity tensor εi j
−1 is inverted and multiplied with ε0, the electric field

then becomes

ε0~E = ε0(εi j
−1)~D, (2.67)

which can also be written as

ε0~E = ηi j~D, (2.68)

where~η = ε0(εi j
−1) is the impermeability tensor. Due to the symmetry of ε , this tensor is diagonal

with Equation 2.66 valid. If~η is rewritten in quadratic form, the index ellipsoid can be obtained as

ηi jxix j = 1, i, j = 1,2,3. (2.69)
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If the principle axes x, y, and z are chosen to be the coordinate system, the index ellipsoid can

then be written

x2

nx2 +
y2

ny2 +
z2

nz2 = 1, (2.70)

where nx, ny, and nz are the principal refractive indices.

Based on the index ellipsoid equation Equation 2.70, there are three cases for the optical sym-

metry of a material:

1. Isotropic—All three principal refractive indices are equal (nx = ny = nz)

2. Uniaxial —Two of the principal indices are equal (nx = ny 6= nz)

3. Biaxial —None of the principal indices are equal (nx 6= ny 6= nz)

2.5. The Mueller Matrix

The Mueller matrix is a 4x4 matrix that completely specifies the interaction of light with a specular

sample, and can describe polarized, partially polarized, and unpolarized light [33]. Incoming and

outgoing beams are specified by their Stokes vectors. For an isotropic sample, the Mueller matrix

is given by

Misotropic =



1 −N 0 0

−N 1 0 0

0 0 C S

0 0 −S C


, (2.71)
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where

N = cos(2Ψ), (2.72a)

C = sin(2Ψ)cos(∆), (2.72b)

S = sin(2Ψ)sin(∆), (2.72c)

and Ψ and ∆ are the standard ellipsometer angles. For an anisotropic sample, the matrix becomes

Manisotropic =



1 −N−αps Csp +ζ1 Ssp +ζ2

−N−αsp 1−αsp−αps −Csp +ζ1 Ssp +ζ2

Cps +ξ1 −Cps +ξ1 C+β1 S+β2

−Sps +ξ2 Sps +ξ2 −S+β2 C−β1


, (2.73)

where

D =
2

1+N
, (2.74a)

ζ1 = (D/2)(CCps +SSps), (2.74b)

ζ2 = (D/2)(CSps +SCps), (2.74c)

ξ2 = (D/2)(CCsp +SSsp), (2.74d)

ξ2 = (D/2)(CSsp +SCsp), (2.74e)

the α and β terms are second order, off-diagonal elements of the Jones matrix that can be neglected

and the subscripts, p and s refer to the two polarization modes [34]. The normalization condition

is given by

N2 +S2 +C2 +S2
sp +C2

sp +S2
ps +C2

ps = 1. (2.75)

Depolarization can be introduced by variation of film thickness over the incident beam size [35],

quasi-monochromatic light, and back reflections [36]. For this case, the Mueller matrix is charac-
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terized by a general normalized Mueller matrix added to a total depolarizer

Manisotropic,depolarizing =



1 m01 m02 m02

m10 m11 m12 m12

m20 m21 m22 m22

m30 m31 m32 m32


+(1− p)



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, (2.76)

where mi, j are the matrix elements in Equation 2.73 and p is the fraction of polarized light. The

normalization condition is now

N2 +S2 +C2 +S2
sp +C2

sp +S2
ps +C2

ps = p2. (2.77)

2.6. The Hyperbolic Dispersion Relation

As obtained in crystal optics [37], the relative permittivity of a material can be described in Carte-

sian coordinates using the diagonalized tensor:

εr =


εxx 0 0

0 εyy 0

0 0 εzz

 . (2.78)

For an isotropic material,

εxx = εyy = εzz, (2.79)

and for a uniaxial material,

εxx = εyy 6= εzz. (2.80)

Most hyperbolic metamaterials are uniaxial [38]. For a type-I hyperbolic metamaterial, εxx > 0

and εzz < 0 whereas a type-II HMM has εxx < 0 and εzz > 0 [4].
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The constitutive relations connecting the electric displacement ~D and the magnetic induction ~B

to the electric and magnetic fields ~E and ~H can be written as

~D = ε0εr~E, (2.81)

~B = µ0µr~H. (2.82)

The dispersion relation for a uniaxial HMM can be calculated from the following versions of

Faraday’s Law and the Ampère-Maxwell Law:

∂~B
∂ t

=−~∇×~E. (2.83)

∂~D
∂ t

= ~∇× ~H, (2.84)

Assuming a plane wave with the expressions ~E = ~E0ei(ωt−k·r) and ~H = ~H0ei(ωt−k·r), the above

equations simplify to

k×~E = ωµ0~H, (2.85)

k× ~H =−ωε0εr~E. (2.86)

Substitution of the above equations into the wave equation (Equation 2.19) leads to the eigenvalue

equation for the electric field ~E

k× (k×~E)+ω
2
µ0ε0ε~E = 0, (2.87)

which can be developed in matrix form as
k2

0εxx− k2
y − k2

z kxky kxkz

kykx k2
0εyy− k2

x − k2
z kykz

kzkx kzky k2
0εzz− k2

x − k2
y




~Ex

~Ey

~Ez

= 0, (2.88)
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where kx, ky, and kz are the respective x, y, and z components of the wave vector, k0 = ω

c is the

vacuum wave number, and c = 1/
√

ε0µ0 is the speed of light in vacuum. Assuming uniaxial

hyperbolic media, and ignoring trivial solutions, the final dispersion relation is given as

k2
x + k2

y

εzz
+

k2
z

εxx
=

ω2

c2 , (2.89)

which is found by solving the eigenvalue problem [39].

2.7. Effective Medium Theory (EMT)

Consider media that is periodically stratified (Figure 2.3) normal to the direction of propagation. If

the wavelength of light is much larger than the period of stratification, it can be approximated that

either the electric field ~E or the electric field displacement ~D are continuous across the interfaces

of the media and that

εe f f ≈
~Dav

~Eav
. (2.90)

The field that is constant depends on the polarization of the incident light. This means that the

stratified medium can be treated as two different effective bulk media for both the x/y and z di-

rections. From Maxwell’s boundary conditions, the tangential component of the ~E is constant at

the interface between two dielectrics. For the x and y directions, an average ~D can be assumed,

leading to the equation for ~Dav as

~Dav = f ~D1 +(1− f )~D2, (2.91)

where f is the fill factor of metal to dielectric. By contrast, the normal component of ~D is contin-

uous at material boundaries. Therefore, for the z direction, by considering an average ~E, the same
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constitutive relation yields a different expression for the bulk dielectric of the same structure as

~Eav = f ~E1 +(1− f )~E2,

= f ~D0/ε1 +(1− f )~D0/ε2.

(2.92)

This kind of birefringence that occurs with subwavelength-scale structuring of isotropic material

is called form birefringence [40].

This is known as zero-order EMT where the effective permittivities do not have any dependence

on period [41]. Higher-order effective medium theories exist but are much more complicated

without giving much more physical insight [42].

Figure 2.3: Periodically stratified media (left) can be approximated as a single, homogeneous

material (right) if the period of stratification is much less than the wavelength of incident

light.

Sub-wavelength inclusion of metals in a dielectric can be represented as

f
εm− εe f f

εm +κεe f f
+(1− f )

εd− εe f f

εd +κεe f f
= 0, (2.93)

where εM is the permittivity of the metal, and εD is the permittivity of the dielectric, and κ is

the screening factor related to the Lorentz polarization factor q as κ = (1− q)/q. The Lorentz

polarization factor for an ellipsoid of semiaxis ai, a j, and ak is given by

qi =

ˆ
∞

0

aia jakds
2(s+a2

a)
3/2(s+a2

j)
1/2(s+a2

k)
1/2 , (2.94)
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where s is the surface of integration [43]. Equation 2.93 can be simplified by approximating κ� 1

for the in-plane direction and κ ≈ 0 for the out-of-plane direction (Figure 2.4). This yields the

Maxwell-Garnett EMT, resulting in the components of permittivity as follows: [44, 45]

εxx = εyy = f εM +(1− f )εD, (2.95a)

1
εzz

=
f

εM
+

1− f
εD

. (2.95b)

Figure 2.4: Screening factor κ for several different arrangements of binary composites. The

arrow indicates the direction of incident light. Taken from [46].
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3. DESIGN AND EFFECTIVE OPTICAL BEHAVIOR

3.1. HMM with ENZ near 633 nm

The first designed device was an HMM with the ENZ region near the He-Ne wavelength of 633

nm. This wavelength was chosen as the ENZ region because of the wide availability of components

for that wavelength and the resulting ease of characterization. The first step in the design was

to determine the materials and the desired optical behavior. Copper and titanium dioxide were

chosen due to the low cost and ease of fabrication of both materials. The values of the optical

constants for the materials were obtained from the relevant literature [47, 48] for the initial design.

Figure 3.1 shows a log plot of the magnitude of the real part of permittivity in the z direction based

on EMT calculations. The ENZ lines [49] are marked with the red arrows in Figure 3.1. As the fill

factor increases, the magnitude of the resonant response in the imaginary part of permittivity also

increases. A fill factor of 67% where the Cu thickness is double the TiO2 thickness was determined

to have the ENZ closest to 633 nm. The 67% fill factor is marked with a red arrow on the y axes

of the surface plots. The red ellipse shows the ENZ for this fill factor. The HMM designed in this

paper shows a type-II uniaxial response. Figure 3.2 shows the permittivity response for this design

in all directions. The z direction acts like a dielectric, with an antiresonant response in the real part

of permittivity and a resonant response around the ENZ region in the imaginary part. In contrast,

the x and y directions act like a metal (see Section 2.4.2), having a negative real part of permittivity

and a small positive imaginary part. Finally, the isofrequency curve at 633 nm, calculated with the

EMT values inserted in Equation 2.89, is shown in Figure 3.3.
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Figure 3.1: The response in the z direction of the HMM with respect to wavelength and fill

factor. The red arrows show the ENZ region, and the ellipses show the ENZ region occurring

near the He-Ne wavelength at a fill factor of 67%.
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Figure 3.2: The expected electrical permittivity of the designed HMM. The solid line repre-

sents the z direction whereas the dotted line represents the x and y directions. The ENZ is

intentionally placed near the He-Ne wavelength of 633 nm. The He-Ne line is shown as the

red vertical line.
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Figure 3.3: The isofrequency curve for the Cu/TiO2 at 633 nm calculated with EMT permit-

tivity values.
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Figure 3.4: Cross-section of the final 15 nm Cu/TiO2 design. Devices with periods of 20

nm were also made with the same fill factor. This device produces an ENZ line at, and is

hyperbolic above, the He-Ne wavelength of 633 nm.
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3.2. Al/TiO2 HMM

In order to verify the ellipsometric measurement process (Section 4.2.1), a second HMM design

was made using Al and TiO2. The device was designed to have hyperbolic dispersion at wave-

lengths above the He-Ne wavelength of 633 nm. Experimentally measured values from the rele-

vant literature were again used for the optical constants [48, 50]. Figure 3.6 shows a log plot of

magnitude of the real part of permittivity in the z direction based on EMT calculations. As the

fill factor increases, the antiresonant response in the real part of permittivity also increases. A fill

factor of 90% where the Cu thickness is ninefold greater than the TiO2 thickness was determined to

have material polarization resonance in the visible wavelengths. The HMM designed again shows

a type-II uniaxial response. Figures 3.5 and 3.7 show the complete permittivity response for this

design. The z direction acts like a dielectric, with an antiresonant response in the real part of per-

mittivity and a resonant response around the ENZ region in the imaginary part. In contrast, the x

and y directions act like a metal, having a negative real part of permittivity and a small positive

imaginary part.
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Figure 3.5: The expected permittivity for a Al/TiO2 HMM
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Figure 3.6: The ε ′z response of the Al/TiO2 HMM with respect to wavelength and fill factor.
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Figure 3.7: The εz” response of the Al/TiO2 HMM with respect to wavelength and fill factor.
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3.3. Biaxial HMM
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Figure 3.8: The indices of refraction for OAD deposited TiO2

As described in Section 2.6, most of the HMMs produced have been uniaxial, with the x and y

directions having the same optical behavior. Producing a biaxial HMM would allow for all three

Cartesian directions to be engineered, enabling several promising research applications [38]. It

would be possible to produce a biaxial HMM by either patterning the isotropic multilayers to be

different in the x and y directions or by depositing optically biaxial films.

Thin films with an optically biaxial response can be produced using a technique know as oblique

angle deposition (OAD). In conventional depositions, the substrate is oriented parallel to the base

of the source crucible. As long as the distance is less than the mean free path of the chamber, the
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evaporated material will condense on the surface to form a flat, even layer. The condensation of

the material shadowing occurs as microscopic nuclei. However, in the case of OAD, the substrate

is intentionally tilted with respect to the source crucible. The ballistic shadowing that occurs due

to the small nuclei causes nano-wires to grow on the surface. The nano-wires are tilted towards the

deposition source, and have a biaxial orientation [51–54]. The Cauchy values for TiO2 deposited

using the MiNDS facility were obtained from [55] and are shown in Figure 3.8. In this design, the

tilt angle α was set to be 70◦.
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Figure 3.9: The surface plot for a biaxial Cu/TiO2 metamaterial. The color bar represents

the base-ten logarithm of the real part of the out-of-plane permittivity ε ′zz.

Again, this device was designed to have its ENZ response near the He-Ne wavelength of 633

nm. Copper and titanium dioxide were again chosen to be the respective metal and dielectric due
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to their low cost, ease of fabrication, and familiarity. For more information on how the EMT

calculations were performed for a biaxial material, see Appendices A.2 and A.4.

Figure 3.9 shows a log plot of magnitude of the real part of permittivity in the z direction based

on EMT calculations. As the fill factor increases, the magnitude of the antiresonant response in the

real part of permittivity also increases. A fill factor of 80% where the Cu thickness is quadruple the

TiO2 thickness was determined to have the ENZ closest to 633 nm. The HMM designed shows a

type-II biaxial response. Figure 3.10 shows the complete permittivity response for this design. The

z direction acts like a dielectric, with an antiresonant response in the real part of permittivity and a

resonant response around the ENZ region in the imaginary part. In contrast, the x and y directions

act like a metal, having a negative real part of permittivity and a small positive imaginary part.

Figure 3.11 shows a magnified view of the region where all three permittivities meet, showing the

biaxial response. While there is not a large change in index between nx and ny, this is similar

to other anisotropic materials. For example, quartz has a birefringence of 0.005 at 633 nm [56].

The biaxial response could be increased by decreasing the fill factor so there would be a larger

proportion of TiO2. However, this would shift the ENZ region so it would no longer be around 633

nm. This device was not fabricated due to time constraints.
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Figure 3.10: The expected electrical permittivity of the designed biaxial HMM. The real part

of permittivity is shown on the left whereas the imaginary part is shown on the right.
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Figure 3.11: A zoomed-in view of the biaxial HMM around the point where the three permit-

tivities meet showing the biaxial behavior of the device.
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3.4. Cu/Air HMM

Using OAD, it is possible to fabricate nanowires of copper [57, 58]. The combination of Cu and

the dielectric air surrounding these nanowires should act like an HMM.

Calculations using EMT were performed to determine the expected behavior of this subwave-

length combination of air and Cu. It was assumed that the fill factor of Cu and air would be around

50% and that the device would have a uniaxial response. While the fabricated device was actually

be biaxial, the small difference between the x and y directions allowed this assumption to be made.

The results from the EMT calculations are shown in Figure 3.12. The z direction acts like a

dielectric with a positive permittivity. In contrast, the x and y directions act like a metal, having a

negative real part of permittivity and a small positive imaginary part. It should be noted that this

device has a hyperbolic response across the entire visible spectrum.
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Figure 3.12: The expected electrical permittivity of the OAD deposited Cu. The permittivity

for the x and y directions is shown on the left whereas the permittivity for the z direction

is shown on the right. Notice that the this device is showing hyperbolic dispersion with a

positive ε ′z and a negative ε ′x.
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4. FABRICATION AND CHARACTERIZATION

4.1. Fabrication

A PVD 75 electron beam deposition system from Kurt J. Lesker was used to deposit the thin films

onto the substrate after it was thoroughly cleaned using hydrofluoric acid (HF) and a three solvent

rinse of acetone, methanol, and isopropanol. The Cu deposition was performed at 2 Å/s, the Al

deposition was performed at 5 Å/s, and the TiO2 deposition was performed at 0.1 Å/s. The de-

position rates were measured using crystal monitors to ensure that the proper ratio of materials

was obtained. The tooling factor was kept the same at 90.5% for both the metal and the dielec-

tric to ensure approximately the same error for the two materials, keeping the proper fill factors.

The sample was kept under a vacuum pressure less than 2.5×10−5 Torr for the entire deposition

process, including switching between materials.

Two different HMM implementations were used: one consisting of Cu/TiO2 multilayers and

the other consisting of Al/TiO2 multilayers. The Cu/TiO2 multilayers had a fill factor of 67%,

meaning the Cu layers were twice as thick as the TiO2 layers. The fabrication process was based

on previous subwavelength layers deposited with PVD used to fabricate one-dimensional photonic

crystals [59]. The top layer was always a dielectric to prevent oxidation. Devices had consistent

ellipsometric measurements six months apart, suggesting that they are not oxidizing. The Al/TiO2

multilayers had a period of 50 nm, and a fill factor of 90%. Additionally, copper nanowires were

deposited which were expected to have a hyperbolic response. Since the periods were around

λ/10, the devices could be approximated as homogeneous effective media [60].
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4.1.1. Thin Film Deposition Using EB-PVD

Thin films of titanium dioxide, copper, and aluminum were used to make HMMs. Titanium (Ti) has

an atomic number of 22 and makes up 0.63% of the earth’s crust, making it the ninth most abundant

element [61]. The naturally forming oxide of titanium is titanium dioxide, which is also called

Titanium(IV) oxide or titania. Titanium dioxide exists mainly in three crystalline polymorphs:

rutile (tetragonal), anatase (tetragonal), and brookite (orthorhombic). All of these three crystalline

polymorphs (phases) occur naturally, with rutile being the most common [61–63]. All of the

naturally occurring crystals are birefringent, with the tetragonal crystal system having a uniaxial

optical symmetry and the orthorhombic crystal system having a biaxial optical symmetry [28].

Copper (Cu) has an atomic number of 29 and is one of the few metals that occurs in nature as

a directly usable metal. It is malleable, ductile, and has a high thermal and electrical conductivity.

It can be used as a building material, in coins, and as an alloy component [64]. Copper is low cost,

but unfortunately has a higher reactivity than silver and gold.

Aluminum (Al) is considered to be the best plasmonic material for the ultraviolet (UV), but

can also be used for visible applications. It has an atomic number of 13 and is widely used in

the aerospace and transportation industries. Like copper, aluminum forms a passivation layer by

reacting with airborne oxygen. Unfortunately, this affects the optical properties of the material,

meaning that steps must be taken to prevent it from oxidizing [50]. Copper and aluminum are

becoming more widely used in optics because of their plasmonic effects in the UV and visible

range, and because of their compatibility in CMOS processing [65–67].

Several ways to deposit thin films exist, including chemical vapor deposition (CVD), sol-gel dip

coating process, atomic layer deposition (ALD), pulsed laser deposition (PLD), and DC reactive

magnetron sputtering [68–73]. Another technique for depositing optical thin films is e-beam PVD,
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which produces amorphous thin films such as TiO2 [74]. This technique was used to fabricate the

HMMs in this work.

In e-beam PVD, the material is held in a crucible at the base of the chamber. A filament is used

to create a source of electrons. An electric potential difference on the order of a few kilovolts is

held between the e-beam source and the crucible, causing the electrons to be accelerated into the

source material. This intense beam of electrons with high-energy is able to vaporize the source

material, causing it to sublime onto the substrate to form a thin film. The deposition chamber

should have a small enough pressure so that the mean free path of the material is greater than the

distance between the crucible and the substrate [75]. For the PVD system at the MiNDS facility,

this is around 7.5×10−5 Torr. In order to keep the beam of electrons away from the cathode source,

and to guide the evaporated beam to melt the source fully, electric and magnetic fields are applied

to direct the beam. In the case of TiO2, the material needs to be melted to release oxygen since

titanium includes multiple stable oxides which need to be reduced before the main deposition [76].

For the materials used in this research, a reinfiltrated graphite crucible as shown in Figures 4.1

and 4.2 was used. The e-beam PVD model that is used for the fabrication of the device is a PVD

75 from Kurt J. Lesker Company as shown in Figure 4.3. The fill volume is important to prevent

damage to the crucible liner. By overfilling the crucible, the material may wick over the side of

the crucible, causing a thermal short circuit between the liner and the hearth. This will result in

a higher power necessary to melt the material, eventually causing the crucible to crack. Some

materials, such as aluminum, are much worse at wicking over the side of the crucible than others.

It can also cause damage to have too little material inside the crucible (less than 2/3 of crucible),

either by initially not using enough material or by not refilling after a deposition. If there is not

enough material in the crucible, the beam of electrons will strike the crucible instead of the source
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material, causing sparking. Eventually, the e-beam will crack or even melt the crucible and will

cause damage to the PVD system. To avoid this damage, the amount of material was kept between

2/3 and 3/4 of the crucible during evaporations, and the material levels were regularly checked [76].

(a)
(b)

Figure 4.1: Crucible filled with Cu: (a) before deposition; and (b) after deposition when the

Cu is melted
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(a) (b)

Figure 4.2: Crucible with TiO2: (a) before deposition; and (b) after deposition showing the

melted TiO2 [55].

Figure 4.3: The PVD 75 used for HMM fabrication [55].
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Difficulties were encountered during the TiO2 deposition. The highest deposition rate of TiO2

is around 3 to 5 Å/second, which makes fabrication of relatively thick layers time consuming [76].

The main problem encountered was that if the initial deposition rate was set to be high, an interlock

would be triggered, and the deposition would end. Originally, it was thought that this was caused

by the increased e-beam power causing electrical arcing in the chamber. However, it is more likely

that this is caused by water vapor from the material surface causing a large spike in the chamber

pressure. TiO2 has 90% surface coverage at 3× 10−8 mbar of water at a pressure of 2.25× 10−8

Torr. At typical deposition pressures, the surface is highly likely to be fully coated with water that

is then boiled off during deposition. At a higher vacuum of around 1×10−8 Torr, the water would

dissipate in around half of an hour. The more the chamber is used to deposit TiO2, the bigger this

problem becomes as the porous film collects water, and then releases it as it is hit from the e-beam

radiation [77].

This issue was avoided by raising the power slowly as the deposition continued, allowing the

material time to warm up. Deposition of TiO2 was started at a deposition rate of 0.2 Å/second

and gradually increased to the maximum rate (the highest rate achieved in the MiNDS facility is

around 1.2 Å/second). However, a better way to prevent this, according to Dr. Scott Kirkpatrick,

would be to perform more sample heating and to try to maintain vacuum as much as possible by

performing loading and unloading quickly. The recipe should be optimized to achieve this. To

perform more heating, the shutter should be kept closed, and the ramp function should be used

to raise and hold the deposition power. The e-beam power should be increased with a slow ramp

over two minutes to a percentage that will deposit, keeping the shutter closed. Next, the power

should be held for 60 seconds. Finally, there should be a ramp over two to five minutes to a higher

rate than with all shutters still kept closed, with a soak time of 60 seconds. For the deposition, the
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shutters should be opened with the SQS-242 software given total control.

Another problem is that the temperature inside the chamber increased as the deposition time

increased. To alleviate this issue, there was a few minute delay in between different layer deposi-

tions to allow for the chamber to cool down and for the pumps to remove the airborne deposition

material.

4.1.2. Device Fabrication

Sample Preparation

The substrates were chosen to be 4” diameter, 500± 25 µm thickness, single side polished, n-type

{111} test quality silicon wafers.

Before starting the initial depositions, the silicon wafers were dipped for 15 seconds in dilute

HF to remove the native silicon dioxide from the silicon wafer’s surface. Since the native oxide

grows back within a relatively short amount of time (around a day), this was done immediately

before the deposition [78]. After rinsing the wafer with DI water, it was baked at 90°C for three

minutes to remove any water absorbed in the crystal lattice [79]. Following this, the wafer was

placed on the chuck and then fixed using three clips. Then the sample was placed inside the e-

beam PVD (Figure 4.4) which was already vented. After that, the e-beam PVD was pumped down

to a vacuum pressure less than 2.5×10−5 Torr. During these steps, care was taken so that the wafer

was kept as clean as possible and that there were no opportunities for contamination.
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Figure 4.4: The PVD fabrication chamber used in the MiNDS facility [55]. The important
machine components are labeled.
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Device Fabrication

The fabrications took place over the period of several months. The first round of depositions were

used to determine the optical properties of the deposited Cu and TiO2. The first sample had ten

nm of Cu deposited on a blank Si wafer, and the second sample had five nm of TiO2 deposited on

another blank Si wafer. In the next round, a Cu/TiO2 HMM was fabricated. It had four periods

of 15 nm each, for a total nominal thickness of 60 nm. This was followed by the OAD deposited

Cu, where one micron of Cu was deposited at α = 70◦. Then, more HMMs were made in the next

round of fabrication in order to demonstrate the EMA technique for spectroscopic ellipsometry. In

this round, additional samples were made with a 15 nm period, and devices with a 20 nm period

were fabricated. Finally, HMMs made from Al/TiO2 were fabricated with three periods of 50 nm

thickness for a total thickness of 150 nm.
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4.2. Characterization

4.2.1. Spectroscopic Ellipsometry

Figure 4.5: Spectroscopic ellipsometry configuration used in this work. Three different val-

ues of θi were used: 65◦, 70◦, and 75◦. The visible spectrum of light was measured from 380

to 890 nm.

Spectroscopic ellipsometric measurements have previously been used to characterize HMMs [20].

Reflection mode spectroscopic ellipsometry sends a polarized beam of light and then measures the

change in polarization of the reflected light (Figure 4.5). This change in polarization state is defined

by the relation

tanΨ · ei∆ =
rp

rs
= ρ, (4.1)

where rs is the complex amplitude reflectance for s polarization (in-plane), rp is the complex

amplitude reflectance for p polarization (out-of-plane), Ψ is the magnitude of the ellipsometric
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reflectivity ratio, and ∆ is the ellipsometric phase term [80]. All of the values are dependent on the

incident angle of the polarized light θ . By using multiple wavelengths, spectroscopic ellipsometry

is able to provide unique answers for material parameters, have an improved sensitivity to material

properties, and give data at desired wavelengths compared to monochromatic measurements. An

α-SE Ellipsometer from J.A. Wollam (Figure. 4.6) running CompleteEase software was used for

measurements of the fabricated device. The anisotropic Mueller-matrix (MM) was used to specify

the interaction of light with the HMM sample. Three measurements were taken at 65◦, 70◦, and

75◦, respectively. Ellipsometry measurements are typically taken near the Brewster angle, but this

is less important with ellipsometers that include compensators such as the α-SE. As the complex-

ity of the sample increases, more incident angles of measurement should be used to produce good

data. A rotating compensator was also used to manipulate the polarization state to improve results

further. The compensator was spun continuosly to adjust the retardance and allow the measured

SE data to be calculated from many simultaneous polarizations; this was handled by the Comple-

teEASE software and did not have to be done by the user. A silicon substrate was used to eliminate

back-reflection from the sample.

By themselves, Ψ and ∆ are not informative, and so various equations and algorithms must

be used to model the interaction of light with the sample, enabling the model parameters to be

extracted. The shape of the oscillations of Ψ and ∆ depends on the film index of refraction, allowing

for the complex index of refraction to be extracted.

If the measurement system and sample are ideal, the incoming and received light would be

fully polarized. However, in real-world conditions, some of the light becomes depolarized. This

depolarization was also measured to help quantify the effects of the thin films [81].
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Figure 4.6: The α-SE Ellipsometer used for characterization of HMM samples [82].

4.2.2. TIR Ellipsometry

Another technique known as TIR ellipsometry, previously mentioned in Chapter 1, uses a prism

to couple light into the sample after it undergoes total internal reflection [23], which improves

the characterization of thin semitransparent films [24] and has previously been used to success-

fully characterize HMMs [20]. In TIR ellipsometry, the prism, optical matching gel, and fused

silica substrate are represented as a single layer in the ellipsometric model. This more complicated

model, in addition to the presence of back reflections, means that the TIR ellipsometric modeling

procedure is inherently more complex than the procedure used in standard spectroscopic ellipsom-

etry. Additionally, the prism makes it difficult to do measurements in an in-line process as is widely

used to characterize thin films in industrial settings [83].

Zhang et al. used an iterative modeling process based on transfer-matrix-method (TMM) cal-



49

culations for the TIR ellipsometric process. A homogenous, uniaxial model was used with the

imaginary part of the in-plane direction modeled as with a B-spline curve, and the imaginary

part of the out of plane direction modeled with a two-oscillator model ℑ{ε⊥} = ℑ{εLorentz}+

ℑ{εTauc−Lorentz}. The real part of both permittivities was determined through the Kramers-Kronig

rule. In the first stage of an iteration, the B-spline and oscillator parameters were set. Next, Ψ and

∆ values were computed using TMM based on the values from the first stage. Finally, a regression

analysis was used to compare the Ψ and ∆ values and obtain the MSE. The process was iterated

until a minimized MSE was obtained [20].

4.2.3. Our Spectroscopic Ellipsometry Technique

The in-plane direction was represented with a B-spline curve, whereas the out-of-plane direction

was modeled using the Maxwell-Garnett EMA model. The EMA model in the CompleteEASE

software is normally used to represent mixed-constituent layers caused by inter-layer roughness,

surface roughness, and poly-crystalline materials [84]. The initial values of the EMA model were

set to be the nominal fill factors with a depolarization of 1. The expected deposition values were

used for the initial layer thicknesses. Additionally, angle offset was taken into account in the final

model.

Initially, surface roughness was modeled; however, the MSE was minimized when the surface

roughness was close to zero. Most likely, the software is accounting for the physical surface rough-

ness in the EMA layer and angle offset. When the physical roughness was measured and used as

a seed value, the extracted permittivity values did not change, demonstrating that successfully ex-

tracting the permittivity tensor does not depend on the software accounting for surface roughness.

In order to correctly model the measured surface roughness, a dielectric layer with a thickness
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of zero was added on the model. This caused the software to model the roughness in the top

dielectric layer instead of in the effective material. The final process is shown as a flowchart in

Figure. 4.7.

HMM/Si

Spectroscopic

ellipsometer

Measure Ψ, ∆

using Mueller matrix

Uniaxial model

B-Spline
EMA with

constituent materials

Fit to roughness, thickness, angle offset

Extract n and κ

Assume µr = 1 and use ε = (n + iκ)2

Extract ε = εr + iεi

70◦ 75◦65◦

x, y-directions z-direction

Figure 4.7: The spectroscopic ellipsometric process developed in this work for extracting the

permittivity of HMMs.
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5. DISCUSSION OF RESULTS

5.1. Summary

The results of all of the fabricated devices are shown in this chapter. The measured optical con-

stants of as-deposited materials are shown in Figures 5.1 and 5.2, and the first HMM results are

shown in Figures 5.5 and 5.6. Most importantly, the comparison of the extracted permittivities

with the predictions provided by the initial EMT designs is shown in Figures 5.7. and 5.11. Ad-

ditionally, We expected to observe a close correspondence between the calculated and measured

values. In all cases, the dashed lines show the expected results based on the EMT calculations.

The agreement obtained between all of the permittivities and their EMT-calculated values is satis-

factory, since the procedure was able to accurately represent the out-of-plane permittivities in all

cases where the samples were not contaminated. The type-II hyperbolic dispersion can be seen

from these graphs, with a negative permittivity in the in-plane direction and a positive permittivity

in the out-of-plane direction.

5.2. Material Constants

Ellipsometric measurements showed good agreement between the expected and obtained thick-

nesses for both TiO2 and Cu. The titanium dioxide was modeled using the Cauchy equation as

n = 1.750+
0.04135

λ 2 +
0.00796

λ 4 . (5.1)

This had an MSE of 1.794. Figure 5.1 shows the modeled index of refraction. The thin film

copper was modeled using a B-Spline curve. Figure 5.2 shows the measured thin-film values of

the deposited copper which resulted in an MSE of 1.246.
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Figure 5.1: The index of refraction of the deposited TiO2 determined by spectroscopic ellip-

sometry.

400 450 500 550 600 650 700 750 800 850 900

Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

1.2

n

1.5

2

2.5

3

3.5

4

4.5

k

Figure 5.2: The optical constants of the deposited Cu determined by spectroscopic ellipsom-

etry.
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5.3. MSE Values

Figure 5.3 shows the model-fit Ψ and ∆ compared to the measured values. It can be observed that

the model is in very good agreement with the measurements, which promises low MSE values.

The MSE is defined as

MSE =

√
1

3n−m

n

∑
i=1

[(Nmeas,i−Nmodel,i)2 +(Cmeas,i−Cmodel,i)2 +(Smeas,i−Smodel,i)2]

×1000,

(5.2)

where n is the number of wavelengths, m is the number of free parameters, and

N = cos(2Ψ), (5.3a)

C = sin(2Ψ)cos(∆), (5.3b)

S = sin(2Ψ)sin(∆). (5.3c)

Zhang et al. reported a best MSE of 11.72 [20], showing an improvement over current methods.

Several measurements were also made at different locations on each HMM sample to produce

an estimate of the repeatability and reproducibility of the procedure. Remarkably, the MSE value

obtained for each sample is achieved to be lower than 1.00. The MSE values for the ellipsometric

modeling are shown in Table 5.1. Table 5.2 lists the best MSE values reported elsewhere for HMMs

or plasmonic structures. The significance of the procedure described in Section 4.2.3 may now be

more apparent.
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Table 5.1: MSE Values for SE procedure described here.

HMM Structure Period Fill Factor MSE

Cu/TiO2 15 nm 67% 0.72±0.09

Cu/TiO2 20 nm 67% 0.63±0.12

Al/TiO2 50 nm 90% 0.69±0.10

Table 5.2: MSE Values reported elsewhere.

Structure MSE Ref. Year

TiN 2-3 [85] 2019

Ag/Ta2O5 24.96 [20] 2018

Ag/Ta2O5 19.82 [20] 2018

Ag/Ta2O5 11.72 [20] 2018

Ag/PVP 4.6 [17] 2017

Ag/PVP/PMMA 7.21 [17] 2017
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Figure 5.3: The Ψ and ∆ model compared to the measured values. Included are results for

both a Al/TiO2 device (bottom three lines) and two Cu/TiO2 devices (top six lines).
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5.4. Surface Roughness

The surface roughnesses for both Cu/TiO2 and Al/TiO2 HMM samples were measured using the

AFM. The results are shown in Figure 5.4 and Table 5.3.

(a) (b)

Figure 5.4: AFM measurements of surface roughness for the Al/TiO2 sample (left) and the

15 nm period Cu/TiO2 sample (right). The insets show profilometer data used to determine

the total deposition thickness.

Table 5.3: Surface roughness as measured by AFM

Structure Period # of Periods Sa Sq

Cu/TiO2 15 nm 4 6.01 nm 7.59 nm

Cu/TiO2 20 nm 1 3.3 nm 4.1 nm

Al/TiO2 50 nm 3 5.92 nm 7.5 nm
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5.5. Cu/TiO2 HMM

5.5.1. EMA Model Spectroscopic Ellipsometry

The measured index of refraction of the first fabricated 15 nm Cu/TiO2 multilayer HMM compared

to the expected values is shown in Figure 5.5. The EMT calculation was based on the values

measured with spectroscopic ellipsometry. Overall, there is good agreement between the two plots.

The difference between the different values can be explained by differences in deposited materials

such as layer thickness, roughness, strain, and electrical permittivities.
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Figure 5.5: The expected index of refraction based on EMT with in-house measured permit-

tivity values compared to the fabricated device as measured by spectroscopic ellipsometry.

Figure 5.6 shows the measured permittivities compared to the EMT calculations. Above a

wavelength of around 633 nm, the device acts hyperbolic, having a negative permittivity in the x

direction, and a positive permittivity in the z direction. The negative imaginary permittivity in the x

and y directions is nonphysical and most likely due to a fitting error in the ellipsometric modeling,

although metamaterials with negative imaginary parts of permittivity have been discussed. [86, 87]
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Figure 5.6: The permittivities based on EMT with in-house measured permittivity values

compared to the fabricated device as measured by spectroscopic ellipsometry.
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Additional Devices

The results for the 15 nm and 20 nm period Cu/TiO2 devices are shown in Figure. 5.7. It should

be noted that there is no longer a negative imaginary permittivity as was observed in the previous

sample. Overall, there is good agreement between the EMT predicted values, the 15 nm period

device, and the 20 nm period device. The small differences in permittivity are explainable by a

difference in fill factors due to fabrication errors.
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Figure 5.7: Results from the Cu/TiO2 multilayers. Above the red line, the device acts hyper-

bolic. Two different periods were used: 15 nm and 20 nm. The EMT calculated permittivities

(dotted lines) are compared to the fabricated values: 5.7(a) The real part of the out-of-plane

permittivity; 5.7(b) The imaginary part of the out-of-plane permittivity; 5.7(c) The real part

of the in-plane permittivity; 5.7(d) The imaginary part of the in-plane permittivity
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5.5.2. TIR Ellipsometry

For our TIR ellipsometric measurements, a fused silica prism was placed in optical contact with the

silica substrate through the use of index matching gel, which provides optical matching over the

entire visible spectrum. Unfortunately, accurate permittivities were unable to be extracted using

TIR ellipsometry. The z-direction permittivities had a smaller resonant response than what was

predicted through EMT. The x and y directions showed a response more consistent with dielectric

than with a metal, with a positive real part of permittivity. These results are shown in Figures 5.8

and 5.9.

Our conclusions are that the process involving the prism, gel, fused silica substrate as well

as the iterative modeling process using transfer matrix method calculations is unnecessarily com-

plex. While this procedure can work in a research setting, it would be difficult to implement in an

industrial process, meaning that a simpler procedure should be developed and tested.
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Figure 5.8: The indices of refraction based on EMT with in-house measured values com-

pared to the fabricated device as measured by TIR ellipsometry.
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Figure 5.9: The permittivities based on EMT with in-house measured permittivity values

compared to the fabricated device as measured by TIR ellipsometry.
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5.6. Cu/Air HMM

The device simulated in Section 3.4 was fabricated, with a deposition thickness of one micron.

Unfortunately, the measured optical constants of this material do not match their expected values.

Moreover, they are most likely physically impossible since they show a negative imaginary part

of electric permittivity [88] since the HMM would be adding energy to the system in violation of

the Second Law of Thermodynamics [89]. SEM images of the sample were obtained to try and

understand the device structure. However, the SEM in the MiNDS facility did not have a high

enough magnification to resolve the features on the sample.

It is believed that the issues with these ellipsometric measurements are due to sample contam-

ination, as the samples are visibly dirty. During fabrication, the sample shutter is not able to be

used with the OAD deposition substrate holder, increasing the contamination that occurs during

the e-beam ramping steps. These issues could be solved through optimization of the Cu deposition

recipe or modification of the sample shutter so that it is able to be used during OAD depositions.
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Figure 5.10: The measured of refraction for the Cu/Air HMM.
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5.7. Al/TiO2 HMM

As a part of demonstrating our technique for spectroscopic ellipsometry, HMMs consisting of Al

and TiO2 multilayers were also measured. The permittivity results compared to the EMT calcula-

tions are shown in Figures 5.7 and 3.5. In Figures 5.7(a) and 5.11(a), the real part of the out-of-

plane permittivity is shown, in Figures 5.7(b) and 5.11(b) the imaginary part of the out-of-plane

permittivity is shown, Figures 5.7(c) and 5.11(c) show the real part of the in-plane permittivity,

and Figures 5.7(d) and 5.11(d) show the imaginary part of the in-plane permittivity. In all cases,

the dashed line shows the expected results based on the EMT calculations.

By using an EMA ellipsometric model, accurate permittivities were able to be extracted. The

HMMs were modeled as a uniaxial, homogenous material. The in-plane direction was represented

with a B-spline curve whereas the out-of-plane direction was modeled using the Maxwell-Garnett

EMA model. The EMA model in the CompleteEASE software is normally used to represent

mixed-constituent layers caused by inter-layer roughness, surface roughness, and poly-crystalline

materials [84]. The initial values of the EMA model were set to be the nominal fill factors with

a depolarization of 1. The expected deposition values were used for the initial layer thicknesses.

Surface roughness and angle offset were taken into account in the final model.

Excellent agreement is obtained between all of the permittivities and their EMT-calculated val-

ues. The ellipsometric EMA model was able to accurately represent the out-of-plane permittivities

in all cases.

The type-II hyperbolic dispersion can be seen from these graphs, with a negative permittivity in

the in-plane direction, and a positive permittivity in the out-of-plane direction. As the wavelength

decreases, the material’s real in-plane permittivity increases and real out-of-plane permittivity de-

creases, and it eventually loses its hyperbolicity at wavelengths less than the ENZ line.
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Figure 5.11: Results from the Al/TiO2 multilayers. Above the red line, the device acts hy-

perbolic. The period for this device was 50 nm. The EMT calculated permittivities (dotted

lines) are compared to the fabricated values (solid line).
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6. CONCLUSION

The design, fabrication, and measurement of several hyperbolic metamaterials fabricated from

multilayers of both Cu/TiO2 and Al/TiO2 with ENZ regions around the He-Ne wavelength was

shown. The HMMs demonstrated extremely anisotropic behavior above the region around 633 nm,

acting as metals in the x and y directions and as dielectrics in the z direction. When characterized

by spectroscopic ellipsometry, the devices showed good agreement with theory. Additionally, the

design of an HMM based on Cu nanowires and the design of a biaxial HMM based on Cu and

OAD-deposited TiO2 were presented, although neither of them were successfully fabricated.

Most importantly, a procedure for characterization of HMMs was described and demonstrated,

which accurately retrieves the complex permittivity tensor in a time efficient, cost effective, and

low-MSE approach. By using an EMA model for the out-of-plane permittivity, accurate results

have been achieved, eliminating the need for more complicated measurement techniques such

as TIR ellipsometry. Since the procedure was only dependent on software, it can be easily and

widely adopted. Furthermore, the procedure would have a potential application in in-line CMOS

processing due to its versatility and independence from additional optical elements or equipment,

which in turn expands its utility. Three samples of varying fill factors and materials were fabricated,

and all were successfully characterized using the procedure. All of the MSE values obtained were

all below the desired value of 1.00, while at the same time meaningful and reasonable permittivities

were extracted from HMMs.
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6.1. Future Work

There are several steps that could be taken to further complete this work. First, the exact theoretical

behavior of the HMMs should be determined using TMM simulations. This will provide a better

idea of how the device should behave and would help explain some of the differences between

EMT calculations and measured behavior. Next, the fabrication and characterization techniques

developed here should be applied to produce one of the many HMM applications. A good applica-

tion would be using HMMs to couple light into waveguides. In order to successfully couple light,

there must be matching between the k-vectors of the free space and waveguide. Since HMMs

are indefinite and can support unbounded k-states, it would be possible to use an HMM for k-

matching, enabling HMM waveguide coupling. A significant amount of research in the MiNDs

facility is in the field of silicon photonics and waveguide coupling, making this a good fit for

Rose-Hulman. Further fabrication and testing of biaxial metamaterials should also be conducted

to obtain a HMM where the behavior in all three Cartesian coordinates is separately engineered.

Additionally, it should be possible to successfully fabricate a Cu/Air HMM, including capturing

pictures of the nanopillars with a more powerful SEM. This could be done by optimizing the cur-

rent fabrication recipe and equipment or by outsourcing fabrication to another cleanroom facility.

Finally, our fabrication and characterization method can be extended to other wavelengths of in-

terest such as 1.55 µm for fiber optics telecommunications.
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APPENDIX A - MATLAB CODES

A.1. Surface Plots of Permittivity vs. Wavelength and Fill Factor

1 %S u r f a c e p l o t f o r f from 0 t o 1 − use 20 samples and c o n t o u r f

2

3 c l e a r ;

4 c l c ;

5

6 %l o a d p e r m i t t i v i t y d a t a

7 l o a d ( ’Cu . mat ’ ) ;

8 l o a d ( ’ TiO2 . mat ’ ) ;

9 m e t a l = Cu ;

10 d i e l = TiO2 ;

11

12 e1 = h o r z c a t ( m e t a l ( : , 1 ) , ( m e t a l ( : , 2 ) +1 i * m e t a l ( : , 3 ) ) . ˆ 2 ) ; %from

h t t p s : / / d o i . o rg / 1 0 . 1 1 0 3 / PhysRevB . 6 . 4 3 7 0\

13 e2 = h o r z c a t ( d i e l ( : , 1 ) , ( d i e l ( : , 2 ) +1 i * d i e l ( : , 3 ) ) . ˆ 2 ) ; %from

h t t p s : / / d o i . o rg / 1 0 . 1 3 6 4 /OE. 2 0 . 0 1 5 7 3 4

14

15 %i n t e r p o l a t e d a t a

16 wl = l i n s p a c e ( 0 . 2 , 2 , 1 0 0 0 ) ;

17
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18 r e 1 = i n t e r p 1 ( e1 ( : , 1 ) , r e a l ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

19 r e 2 = i n t e r p 1 ( e2 ( : , 1 ) , r e a l ( e2 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

20 i e 1 = i n t e r p 1 ( e1 ( : , 1 ) , imag ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

21 i e 2 = i n t e r p 1 ( e2 ( : , 1 ) , imag ( e2 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

22

23 e11 = complex ( re1 , i e 1 ) ;

24 e22 = complex ( re2 , i e 2 ) ;

25

26 %use EMT t o f i n d new p e r m i t t i v i t i e s

27 c = 1 ;

28 f o r f = 0 : 0 . 0 5 : 1

29 e TM = 1 . / ( f . / e11 +(1− f ) . / e22 ) ;

30 e TE = f . * e11 +(1− f ) . * e22 ;

31

32 e TM1 = r e a l ( e TM ) ;

33 e TM2 = imag ( e TM ) ;

34 e TE1 = r e a l ( e TE ) ;

35 e TE2 = imag ( e TE ) ;

36

37 x ( c , : ) = e TM1 ;

38 y ( c , : ) = e TM ;

39 c = c +1;

40
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41 end

42

43 imagesc ( wl , [ 0 1 ] , r e a l ( l o g ( x ) ) ) ;

44 c = c o l o r b a r ;

45 c . Labe l . S t r i n g = ”Log of Rea l P a r t o f P e r m i t t i v i t y \ e p s i l o n ’ { zz

} ” ;

46 x l a b e l ( ’ Wavelength (\mum) ’ )

47 y l a b e l ( ’ F i l l F a c t o r ’ )

48

49 % f i g u r e ;

50 % imagesc ( wl , [ 0 1 ] , imag ( y ) ) ;

51 % c = c o l o r b a r ;

52 % c . Labe l . S t r i n g = ” I m a g i n a r y P a r t o f P e r m i t t i v i t y \ e p s i l o n ’ ’ { zz

} ” ;

53 % x l a b e l ( ’ Wavelength (\mum) ’ )

54 % y l a b e l ( ’ F i l l F a c t o r ’ )
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A.2. Surface Plots for Biaxial Metamaterials

1 c l e a r ;

2 c l c ;

3

4 %i n s e r t Ehsan ’ s v a l u e s

5 %Note : Ehsan measured z e r o l o s s i n t h e TiO2

6 Ax = 1 . 5 6 2 ;

7 Bx = −0.009;

8 Cx = 0 . 0 0 4 4 3 ;

9

10 Ay = 1 . 5 0 6 ;

11 By = −0.00219;

12 Cy = 0 . 0 0 2 9 9 ;

13

14 Az = 1 . 5 9 1 ;

15 Bz = 0 . 0 1 3 3 7 ;

16 Cz = 0 . 0 0 0 8 2 ;

17

18 %We a r e u s i n g t h e Cauchy model : n ( lambda ) = A + B / lambda ˆ2+C /

lambda ˆ 4 ;

19 wl = l i n s p a c e ( 0 . 4 , 0 . 9 , 1 0 0 0 ) ;

20 nx = Ax+Bx . / wl . ˆ 2 + Cx . / wl . ˆ 4 ;

21 ny = Ay+By . / wl . ˆ 2 + Cy . / wl . ˆ 4 ;
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22 nz = Az+Bz . / wl . ˆ 2 + Cz . / wl . ˆ 4 ;

23

24 l o a d ( ’Cu . mat ’ ) ;

25 m e t a l = Cu ;

26

27 e1 = h o r z c a t ( m e t a l ( : , 1 ) , ( m e t a l ( : , 2 ) +1 i * m e t a l ( : , 3 ) ) . ˆ 2 ) ; %from

h t t p s : / / d o i . o rg / 1 0 . 1 1 0 3 / PhysRevB . 6 . 4 3 7 0\

28 r e 1 = i n t e r p 1 ( e1 ( : , 1 ) , r e a l ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

29 i e 1 = i n t e r p 1 ( e1 ( : , 1 ) , imag ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

30

31 e11 = complex ( re1 , i e 1 ) ;

32 e22x = nx . ˆ 2 ;

33 e22y = ny . ˆ 2 ;

34 e22z = nz . ˆ 2 ;

35

36 c = 1 ;

37 f o r f = 0 : 0 . 0 5 : 1

38

39 exx = f . * e11 +(1− f ) . * e22x ;

40 eyy = f . * e11 +(1− f ) . * e22y ;

41 ezz = 1 . / ( f . / e11 +(1− f ) . / e22z ) ;

42

43 ezz1 = r e a l ( ezz ) ;
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44

45 x ( c , : ) = ezz1 ;

46 c = c +1;

47

48 end

49

50 imagesc ( wl , [ 0 1 ] , r e a l ( l o g ( x ) ) ) ;

51 c o l o r b a r

52 x l a b e l ( ’ Wavelength (\mum) ’ )

53 y l a b e l ( ’ F i l l F a c t o r ’ )
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A.3. Effective Medium Theory Calculations

1 c l e a r ;

2 c l c ;

3

4 %l o a d p e r m i t t i v i t y d a t a

5 l o a d ( ’Cu . mat ’ ) ;

6 l o a d ( ’ TiO2 . mat ’ ) ;

7 m e t a l = Cu ;

8 d i e l = TiO2 ;

9

10 e1 = h o r z c a t ( m e t a l ( : , 1 ) , ( m e t a l ( : , 2 ) +1 i * m e t a l ( : , 3 ) ) . ˆ 2 ) ; %from

h t t p s : / / d o i . o rg / 1 0 . 1 1 0 3 / PhysRevB . 6 . 4 3 7 0\

11 e2 = h o r z c a t ( d i e l ( : , 1 ) , ( d i e l ( : , 2 ) +1 i * d i e l ( : , 3 ) ) . ˆ 2 ) ; %from

h t t p s : / / d o i . o rg / 1 0 . 1 3 6 4 /OE. 2 0 . 0 1 5 7 3 4

12

13 %i n t e r p o l a t e d a t a

14 wl = l i n s p a c e ( 0 . 3 8 , 0 . 9 , 1 0 0 0 ) ;

15 % wl = l i n s p a c e ( 0 . 3 8 , 1 . 8 , 1 0 0 0 ) ;

16

17 r e 1 = i n t e r p 1 ( e1 ( : , 1 ) , r e a l ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

18 r e 2 = i n t e r p 1 ( e2 ( : , 1 ) , r e a l ( e2 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

19 i e 1 = i n t e r p 1 ( e1 ( : , 1 ) , imag ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

20 i e 2 = i n t e r p 1 ( e2 ( : , 1 ) , imag ( e2 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;
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21

22 e11 = complex ( re1 , i e 1 ) ;

23 e22 = complex ( re2 , i e 2 ) ;

24

25 %use EMT t o f i n d new p e r m i t t i v i t i e s

26 f = 0 . 6 7 ;

27 e TM = 1 . / ( f . / e11 +(1− f ) . / e22 ) ; %Ezz

28 e TE = f . * e11 +(1− f ) . * e22 ; %Exx , Eyy

29

30 n TM = s q r t ( e TM ) ;

31 n TE = s q r t ( e TE ) ;

32

33 e TM1 = r e a l ( e TM ) ;

34 e TM2 = imag ( e TM ) ;

35 e TE1 = r e a l ( e TE ) ;

36 e TE2 = imag ( e TE ) ;

37

38 % e TE2 = −imag ( h i l b e r t ( e TE1 ) ) ;

39 % e TM2 = −imag ( h i l b e r t ( e TM1 ) ) ;

40

41 %p l o t i n d e x of r e f r a c t i o n

42 f i g u r e ;

43 ho ld on ;



84

44 y y a x i s l e f t ;

45 p l o t ( wl , r e a l ( n TM ) )

46 p l o t ( wl , r e a l ( n TE ) )

47 y l a b e l ( ’ n ’ )

48

49 y y a x i s r i g h t ;

50 p l o t ( wl , imag ( n TM ) )

51 p l o t ( wl , imag ( n TE ) )

52 ho ld o f f ;

53

54 x l a b e l ( ’ Wavelength (nm) ’ )

55 y l a b e l ( ’ k ’ )

56 g r i d on

57 g r i d minor

58 t i t l e ( ’ O p t i c a l C o n s t a n t s o f H y p e r b o l i c M e t a m a t e r i a l ’ )

59 l e g e n d ( ’ n {x} ’ , ’ n {y} ’ , ’ k {x} ’ , ’ k {y} ’ )

60 xl im ( [ . 3 7 0 . 9 0 0 ] ) ;

61

62

63 %p l o t p e r m i t t i v i t i e s

64 f i g u r e ( ’ name ’ , ’TM Mode ’ ) ;

65 ho ld on ;

66 p l o t ( wl , e TM1 )



85

67 p l o t ( wl , e TE1 , ’−− ’ )

68 y = yl im ;

69 l i n e ( [ 0 . 6 3 3 0 . 6 3 3 ] , [ y ( 1 ) y ( 2 ) ] , ’ c o l o r ’ , ’ r ’ )

70 ho ld o f f ;

71 % t i t l e ( ” Rea l P a r t o f \ e p s i l o n ” ) ;

72 l e g e n d ( ’\ e p s i l o n { zz } ’ , ’\ e p s i l o n {xx } , \ e p s i l o n {yy} ’ ) ;

73 x l a b e l ( ’ Wavelength (\mum) ’ )

74 xl im ( [ . 3 7 0 . 9 0 0 ] ) ;

75 y l a b e l ( ”\ e p s i l o n ’ ” )

76 g r i d on

77 g r i d minor

78

79 f i g u r e ( ’ name ’ , ’ I m a g i n a r y ’ ) ;

80 ho ld on ;

81 p l o t ( wl , e TM2 ) ;

82 p l o t ( wl , e TE2 , ’−− ’ )

83 y = yl im ;

84 l i n e ( [ 0 . 6 3 3 0 . 6 3 3 ] , [ y ( 1 ) y ( 2 ) ] , ’ Co lo r ’ , ’ r ’ )

85 ho ld o f f ;

86 l e g e n d ( ’\ e p s i l o n { zz } ’ , ’\ e p s i l o n {xx } , \ e p s i l o n {yy} ’ ) ;

87 % t i t l e ( ’ I m a g i n a r y P a r t o f \ e p s i l o n ’ ) ;

88 x l a b e l ( ’ Wavelength (\mum) ’ )

89 xl im ( [ . 3 7 0 . 9 0 0 ] ) ;
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90 y l a b e l ( ’\ e p s i l o n ” ’ )

91 g r i d on

92 g r i d minor
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A.4. Effective Medium Theory Calculations for Biaxial Metamaterials

1 c l e a r ;

2 c l c ;

3

4 %i n s e r t Ehsan ’ s v a l u e s

5 %Note : Ehsan measured z e r o l o s s i n t h e TiO2

6 Ax = 1 . 5 6 2 ;

7 Bx = −0.009;

8 Cx = 0 . 0 0 4 4 3 ;

9

10 Ay = 1 . 5 0 6 ;

11 By = −0.00219;

12 Cy = 0 . 0 0 2 9 9 ;

13

14 Az = 1 . 5 9 1 ;

15 Bz = 0 . 0 1 3 3 7 ;

16 Cz = 0 . 0 0 0 8 2 ;

17

18 %We a r e u s i n g t h e Cauchy model : n ( lambda ) = A + B / lambda ˆ2+C /

lambda ˆ 4 ;

19 wl = l i n s p a c e ( 0 . 4 , 0 . 9 , 1 0 0 0 ) ;

20 nx = Ax+Bx . / wl . ˆ 2 + Cx . / wl . ˆ 4 ;

21 ny = Ay+By . / wl . ˆ 2 + Cy . / wl . ˆ 4 ;
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22 nz = Az+Bz . / wl . ˆ 2 + Cz . / wl . ˆ 4 ;

23

24 l o a d ( ’Cu . mat ’ ) ;

25 m e t a l = Cu ;

26

27 e1 = h o r z c a t ( m e t a l ( : , 1 ) , ( m e t a l ( : , 2 ) +1 i * m e t a l ( : , 3 ) ) . ˆ 2 ) ; %from

h t t p s : / / d o i . o rg / 1 0 . 1 1 0 3 / PhysRevB . 6 . 4 3 7 0\

28 r e 1 = i n t e r p 1 ( e1 ( : , 1 ) , r e a l ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

29 i e 1 = i n t e r p 1 ( e1 ( : , 1 ) , imag ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

30

31 e11 = complex ( re1 , i e 1 ) ;

32 e22x = h i l b e r t ( nx . ˆ 2 ) ;

33 e22y = h i l b e r t ( ny . ˆ 2 ) ;

34 e22z = h i l b e r t ( nz . ˆ 2 ) ;

35

36 f = 0 . 8 ;

37 exx = f . * e11 +(1− f ) . * e22x ;

38 eyy = f . * e11 +(1− f ) . * e22y ;

39 ezz = 1 . / ( f . / e11 +(1− f ) . / e22z ) ;

40

41 exx1 = r e a l ( exx ) ;

42 exx2 = imag ( exx ) ;

43 eyy1 = r e a l ( eyy ) ;
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44 eyy2 = imag ( eyy ) ;

45 ezz1 = r e a l ( ezz ) ;

46 ezz2 = imag ( ezz ) ;

47

48 %p l o t p e r m i t t i v i t i e s

49 f i g u r e ( ’ name ’ , ’ Rea l p a r t o f p e r m i t t i v i t y ’ ) ;

50 ho ld on ;

51 p l o t ( wl , exx1 , ’ b ’ )

52 p l o t ( wl , eyy1 , ’k−−’ )

53 p l o t ( wl , ezz1 , ’ r −. ’ )

54 ho ld o f f ;

55 t i t l e ( ” Rea l P a r t o f \ e p s i l o n ” ) ;

56 l e g e n d ( ’\ e p s i l o n {xx} ’ , ’\ e p s i l o n {yy} ’ , ’\ e p s i l o n { zz } ’ ) ;

57 x l a b e l ( ’ Wavelength (\mum) ’ )

58 y l a b e l ( ”\ e p s i l o n ’ ” )

59 g r i d on

60 g r i d minor

61

62 f i g u r e ( ’ name ’ , ’ I m a g i n a r y p a r t o f p e r m i t t i v i t y ’ ) ;

63 ho ld on ;

64 p l o t ( wl , exx2 , ’ b ’ )

65 p l o t ( wl , eyy2 , ’k−−’ )

66 p l o t ( wl , ezz2 , ’ r −. ’ )
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67 ho ld o f f ;

68 t i t l e ( ’ I m a g i n a r y P a r t o f \ e p s i l o n ’ ) ;

69 l e g e n d ( ’\ e p s i l o n {xx} ’ , ’\ e p s i l o n {yy} ’ , ’\ e p s i l o n { zz } ’ ) ;

70 x l a b e l ( ’ Wavelength (\mum) ’ )

71 y l a b e l ( ’\ e p s i l o n ” ’ )

72 g r i d on

73 g r i d minor
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A.5. Compare Effective Medium Theory Calculations to Measured Values

1 c l e a r ;

2 c l c ;

3

4 co = [ 2 3 0 / 2 5 5 97 /255 1 /255

5 253/255 184/255 99 /255

6 %178/255 171/255 210/255

7 94 /255 60 /255 1 5 3 / 2 5 5 ] ; %from Colo r Brewer 2 . 0

8 s e t ( g r o o t , ’ d e f a u l t A x e s C o l o r O r d e r ’ , co )

9

10 %l o a d p e r m i t t i v i t y d a t a

11 l o a d ( ’Cu . mat ’ ) ;

12 l o a d ( ’ TiO2 . mat ’ ) ;

13 m e t a l = Cu ;

14 d i e l = TiO2 ;

15

16 e1 = h o r z c a t ( m e t a l ( : , 1 ) , ( m e t a l ( : , 2 ) +1 i * m e t a l ( : , 3 ) ) . ˆ 2 ) ;

17 e2 = h o r z c a t ( d i e l ( : , 1 ) , ( d i e l ( : , 2 ) +1 i * d i e l ( : , 3 ) ) . ˆ 2 ) ;

18

19 %i n t e r p o l a t e d a t a

20 wl = l i n s p a c e ( 0 . 3 8 , 0 . 9 , 1 0 0 0 ) ;

21

22 r e 1 = i n t e r p 1 ( e1 ( : , 1 ) , r e a l ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;
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23 r e 2 = i n t e r p 1 ( e2 ( : , 1 ) , r e a l ( e2 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

24 i e 1 = i n t e r p 1 ( e1 ( : , 1 ) , imag ( e1 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

25 i e 2 = i n t e r p 1 ( e2 ( : , 1 ) , imag ( e2 ( : , 2 ) ) , wl , ’ p c h i p ’ ) ;

26

27 e11 = complex ( re1 , i e 1 ) ;

28 e22 = complex ( re2 , i e 2 ) ;

29

30 %use EMT t o f i n d new p e r m i t t i v i t i e s

31 f = 0 . 6 9 ;

32 e TM = 1 . / ( f . / e11 +(1− f ) . / e22 ) ; %Ezz

33 e TE = f . * e11 +(1− f ) . * e22 ; %Exx , Eyy

34

35 n TM = s q r t ( e TM ) ;

36 n TE = s q r t ( e TE ) ;

37

38 e TM1 = r e a l ( e TM ) ;

39 e TM2 = imag ( e TM ) ;

40 e TE1 = r e a l ( e TE ) ;

41 e TE2 = imag ( e TE ) ;

42

43 %p l o t p e r m i t t i v i t i e s

44 f i g u r e ( ’ name ’ , ’TM Mode ’ ) ;

45 ho ld on ;
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46 p l o t ( wl , e TM1 )

47 p l o t ( wl , e TE1 , ’−− ’ )

48 % y = yl im ;

49 % l i n e ( [ 0 . 6 3 3 0 . 6 3 3 ] , [ y ( 1 ) y ( 2 ) ] , ’ c o l o r ’ , ’ r ’ )

50 ho ld o f f ;

51 l e g e n d ( ’\ e p s i l o n { zz } ’ , ’\ e p s i l o n {xx } , \ e p s i l o n {yy} ’ ) ;

52 x l a b e l ( ’ Wavelength (\mum) ’ )

53 xl im ( [ . 3 7 0 . 9 0 0 ] ) ;

54 y l a b e l ( ”\ e p s i l o n ’ ” )

55

56 f i g u r e ( ’ name ’ , ’ I m a g i n a r y ’ ) ;

57 ho ld on ;

58 p l o t ( wl , e TM2 ) ;

59 p l o t ( wl , e TE2 , ’−− ’ )

60 % y = yl im ;

61 % l i n e ( [ 0 . 6 3 3 0 . 6 3 3 ] , [ y ( 1 ) y ( 2 ) ] , ’ Color ’ , ’ r ’ )

62 ho ld o f f ;

63 l e g e n d ( ’\ e p s i l o n { zz } ’ , ’\ e p s i l o n {xx } , \ e p s i l o n {yy} ’ ) ;

64 x l a b e l ( ’ Wavelength (\mum) ’ )

65 xl im ( [ . 3 7 0 . 9 0 0 ] ) ;

66 y l a b e l ( ’\ e p s i l o n ” ’ )

67

68 %P l o t Measured Values Next t o O b t a i n e d
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69 l o a d ( ’ HMM 91018 evenBetter . mat ’ ) ;

70 l o a d ( ’ HMM 13119 21nm better . mat ’ ) ;

71 l o a d ( ’ HMM 30nm mightBeBetter . mat ’ ) ;

72 dev1 = HMM 91018 evenBetter ;

73 dev2 = HMM 13119 21nm better ;

74 dev3 = HMM 30nm mightBeBetter ;

75

76 %c o n v e r t t o p e r m i t t i v i t y

77 e11 = h o r z c a t ( dev1 ( : , 1 ) , ( dev1 ( : , 2 ) +1 i * dev1 ( : , 3 ) ) . ˆ 2 ) ;

78 e21 = h o r z c a t ( dev1 ( : , 1 ) , ( dev1 ( : , 4 ) +1 i * dev1 ( : , 5 ) ) . ˆ 2 ) ;

79 e12 = h o r z c a t ( dev2 ( : , 1 ) , ( dev2 ( : , 2 ) +1 i * dev2 ( : , 3 ) ) . ˆ 2 ) ;

80 e22 = h o r z c a t ( dev2 ( : , 1 ) , ( dev2 ( : , 4 ) +1 i * dev2 ( : , 5 ) ) . ˆ 2 ) ;

81 e13 = h o r z c a t ( dev3 ( : , 1 ) , ( dev3 ( : , 2 ) +1 i * dev3 ( : , 3 ) ) . ˆ 2 ) ;

82 e23 = h o r z c a t ( dev3 ( : , 1 ) , ( dev3 ( : , 4 ) +1 i * dev3 ( : , 5 ) ) . ˆ 2 ) ;

83

84 r e11 = r e a l ( e11 ) ;

85 r e21 = r e a l ( e21 ) ;

86 i e 1 1 = imag ( e11 ) ;

87 i e 2 1 = imag ( e21 ) ;

88 r e12 = r e a l ( e12 ) ;

89 r e22 = r e a l ( e22 ) ;

90 i e 1 2 = imag ( e12 ) ;

91 i e 2 2 = imag ( e22 ) ;
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92 r e13 = r e a l ( e13 ) ;

93 r e23 = r e a l ( e23 ) ;

94 i e 1 3 = imag ( e13 ) ;

95 i e 2 3 = imag ( e23 ) ;

96

97 f i g u r e ( ’ name ’ , ’TM Mode ’ ) ;

98 ho ld on ;

99 p l o t ( r e21 ( : , 1 ) / 1 0 0 0 , r e21 ( : , 2 ) , ’− ’ , ’ LineWidth ’ , 4 )

100 p l o t ( r e22 ( : , 1 ) / 1 0 0 0 , r e22 ( : , 2 ) , ’−. ’ , ’ LineWidth ’ , 4 )

101 p l o t ( r e23 ( : , 1 ) / 1 0 0 0 , r e23 ( : , 2 ) , ’ : ’ , ’ LineWidth ’ , 4 . 8 )

102 p l o t ( wl , e TM1 , ’−− ’ , ’ LineWidth ’ , 4 )

103 y = yl im ;

104 l i n e ( [ 0 . 6 4 0 . 6 4 ] , [ y ( 1 ) y ( 2 ) ] , ’ c o l o r ’ , ’ r ’ , ’ LineWidth ’ , 4 )

105 ho ld o f f ;

106 x l a b e l ( ’ Wavelength (\mum) ’ )

107 xl im ( [ . 3 7 0 . 9 0 0 ] ) ;

108 y l a b e l ( ”\ e p s i l o n {z } ’ ” )

109 box on ;

110 l e g e n d ( ’ 15 nm ’ , ’ 20 nm ’ , ’EMT’ , ’ L o c a t i o n ’ , ’ n o r t h w e s t ’ )

111 l e g e n d b o x o f f

112 s e t ( f i n d a l l ( gcf , ’−p r o p e r t y ’ , ’ F o n t S i z e ’ ) , ’ F o n t S i z e ’ , 2 5 )

113 s e t ( f i n d a l l ( gcf , ’−p r o p e r t y ’ , ’ FontName ’ ) , ’ FontName ’ , ’ Times New

Roman ’ )
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114 s a v e a s ( gcf , ’ r e z ’ , ’ ep sc ’ )

115

116 f i g u r e ( ’ name ’ , ’TM Mode ’ ) ;

117 ho ld on ;

118 p l o t ( r e21 ( : , 1 ) / 1 0 0 0 , i e 2 1 ( : , 2 ) , ’− ’ , ’ LineWidth ’ , 4 ) ;

119 p l o t ( r e22 ( : , 1 ) / 1 0 0 0 , i e 2 2 ( : , 2 ) , ’−. ’ , ’ LineWidth ’ , 4 ) ;

120 p l o t ( r e23 ( : , 1 ) / 1 0 0 0 , i e 2 3 ( : , 2 ) , ’ : ’ , ’ LineWidth ’ , 4 . 8 ) ;

121 p l o t ( wl , e TM2 , ’−− ’ , ’ LineWidth ’ , 4 )

122 ho ld o f f ;

123 x l a b e l ( ’ Wavelength (\mum) ’ )

124 xl im ( [ . 3 7 0 . 9 0 0 ] ) ;

125 y l a b e l ( ’\ e p s i l o n {z }” ’ )

126 box on ;

127 y = yl im ;

128 l i n e ( [ 0 . 6 4 0 . 6 4 ] , [ y ( 1 ) 1 5 0 ] , ’ c o l o r ’ , ’ r ’ , ’ LineWidth ’ , 4 )

129 s e t ( f i n d a l l ( gcf , ’−p r o p e r t y ’ , ’ F o n t S i z e ’ ) , ’ F o n t S i z e ’ , 2 5 )

130 s e t ( f i n d a l l ( gcf , ’−p r o p e r t y ’ , ’ FontName ’ ) , ’ FontName ’ , ’ Times New

Roman ’ )

131 s a v e a s ( gcf , ’ im z ’ , ’ ep sc ’ )

132

133 f i g u r e ( ’ name ’ , ’TE Mode ’ ) ;

134 ho ld on ;

135 p l o t ( r e11 ( : , 1 ) / 1 0 0 0 , r e11 ( : , 2 ) , ’− ’ , ’ LineWidth ’ , 4 )
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136 p l o t ( r e12 ( : , 1 ) / 1 0 0 0 , r e12 ( : , 2 ) , ’−. ’ , ’ LineWidth ’ , 4 )

137 p l o t ( r e13 ( : , 1 ) / 1 0 0 0 , r e13 ( : , 2 ) , ’ : ’ , ’ LineWidth ’ , 4 . 8 )

138 p l o t ( wl , e TE1 , ’−− ’ , ’ LineWidth ’ , 4 )

139 l i n e ( [ 0 . 6 4 0 .64 ] , [ −15 5 ] , ’ c o l o r ’ , ’ r ’ , ’ LineWidth ’ , 4 )

140 ho ld o f f ;

141 x l a b e l ( ’ Wavelength (\mum) ’ )

142 xl im ( [ . 3 7 0 . 9 0 0 ] ) ;

143 y l a b e l ( ”\ e p s i l o n {x } ’ ” )

144 box on ;

145 s e t ( f i n d a l l ( gcf , ’−p r o p e r t y ’ , ’ F o n t S i z e ’ ) , ’ F o n t S i z e ’ , 2 5 )

146 s e t ( f i n d a l l ( gcf , ’−p r o p e r t y ’ , ’ FontName ’ ) , ’ FontName ’ , ’ Times New

Roman ’ )

147 s a v e a s ( gcf , ’ r e x ’ , ’ epsc ’ )

148

149 f i g u r e ( ’ name ’ , ’TE Mode ’ ) ;

150 ho ld on ;

151 p l o t ( r e11 ( : , 1 ) / 1 0 0 0 , i e 1 1 ( : , 2 ) , ’− ’ , ’ LineWidth ’ , 4 )

152 p l o t ( r e12 ( : , 1 ) / 1 0 0 0 , i e 1 2 ( : , 2 ) , ’−. ’ , ’ LineWidth ’ , 4 )

153 p l o t ( r e13 ( : , 1 ) / 1 0 0 0 , i e 1 3 ( : , 2 ) , ’ : ’ , ’ LineWidth ’ , 4 . 8 )

154 p l o t ( wl , e TE2 , ’−− ’ , ’ LineWidth ’ , 4 )

155 y = yl im ;

156 l i n e ( [ 0 . 6 4 0 . 6 4 ] , [ y ( 1 ) y ( 2 ) ] , ’ c o l o r ’ , ’ r ’ , ’ LineWidth ’ , 4 )

157 ho ld o f f ;
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158 x l a b e l ( ’ Wavelength (\mum) ’ )

159 xl im ( [ . 3 7 0 . 9 0 0 ] ) ;

160 yl im ( [ y ( 1 ) y ( 2 ) ] ) ;

161 x t i c k s ( [ 0 . 4 0 . 6 0 . 8 ] ) ;

162 y l a b e l ( ’\ e p s i l o n {x}” ’ )

163 box on ;

164 s e t ( f i n d a l l ( gcf , ’−p r o p e r t y ’ , ’ F o n t S i z e ’ ) , ’ F o n t S i z e ’ , 2 5 )

165 s e t ( f i n d a l l ( gcf , ’−p r o p e r t y ’ , ’ FontName ’ ) , ’ FontName ’ , ’ Times New

Roman ’ )

166 s a v e a s ( gcf , ’ im x ’ , ’ epsc ’ )
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A.6. Plotting the Hyperbolic Isofrequency Curve

1 % Next : Add t h e s p h e r e f o r t h e S i i n t e r f a c e

2 % I can a l s o c o n v e r t t o p o l a r c o o r d i n a t e s

3

4 c l e a r ;

5 c l c ;

6 %From EMT:

7 wl = 633 ;

8 k0 = 2 * 3 . 1 4 / wl ;

9 ezz = 2 2 . 3 3 ;

10 exx = −5.934;

11

12 %Solve D i s p e r s i o n R e l a t i o n f o r kz :

13 % k0 ˆ2 = ( kx . ˆ 2 + ky . ˆ 2 ) / ezz +kz . ˆ 2 / exx ;

14 % k0 ˆ2 − kz . ˆ 2 / exx = ( kx . ˆ 2 + ky . ˆ 2 ) / ezz ;

15 % kz . ˆ 2 / exx = −(kx . ˆ 2 + ky . ˆ 2 ) / ezz + k0

16 % kz = s q r t (−exx . * ( kx . ˆ 2 + ky . ˆ 2 ) . / ezz + k0 ) ;

17

18 syms kz ( kx , ky )

19 kz ( kx , ky ) = s q r t (−exx * ( kx ˆ2+ ky ˆ 2 ) / ezz + k0 ˆ 2 ) ;

20 f s u r f ( kz , [− .1 . 1 −.1 . 1 ] , ’ MeshDensi ty ’ , 4 0 , ’ L i n e S t y l e ’ , ’ none ’ )

21 % a x i s o f f

22 ho ld on
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23 f s u r f (−kz , [− .1 . 1 −.1 . 1 ] , ’ MeshDensi ty ’ , 4 0 , ’ L i n e S t y l e ’ , ’ none ’ )

24 ho ld o f f

25

26 c a m l i g h t ( 1 1 0 , 7 0 )

27 b r i g h t e n ( 0 . 6 )

28 x l a b e l ( ’ k {x} ’ )

29 y l a b e l ( ’ k {y} ’ )

30 z l a b e l ( ’ k {z} ’ )

31 s e t ( gca , ’ x t i c k ’ , [ ] )

32 s e t ( gca , ’ y t i c k ’ , [ ] )

33 s e t ( gca , ’ z t i c k ’ , [ ] )
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