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Abstract

Carbon dioxide is one of the most important greenhouse gas contributing to global warming [10] and the
dramatic increase of carbon dioxide in recent year has been recorded. This paper mainly analyzes the
carbon dioxide data from 2011 to 2017 collected by Atmospheric Infrared Sounder (AIRS) on NASA Aqua
satellite. We concentrate on the area in Caribbean ocean and northeastern state of Amazonas in Brazil. The
statistical models including multiple linear regression, autoregressive–moving-average models, and discrete
wavelet transform are employed to study the trends and patterns in the carbon dioxide time series. This
results in a partial linear model to find the time dependency, seasonal signals, and significant environmental-
factor predictors.
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1 Introduction

Global warming has drew wide attention from both academic and government institutes, such as Na-
tional Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration
(NASA), and University Corporation for Atmospheric Research (UCAR). It can lead to rising sea-level [22]
and more extreme weather events [20]. Carbon dioxide, CO2, is one of the most important greenhouse gas
which leads to global temperature rise [8]: a concurrent increasing atmospheric CO2 and global temperature
in the global environment [18] demonstrates a strong correspondence between them [9, 12]. A previous study
demonstrated that global warming speeds up the soil organic matter to decay in which process it releases
CO2 [7] and another study predicted the serious consequences of the surging CO2 to the ecosystem [18],
which motivate us to study the relationship between the concentration of atmospheric carbon dioxide and
environmental factors, like surface temperature, precipitation, and so on. We are also interested in the
temporal dependency within the concentration of carbon dioxide. In this study, we will analyze the patterns
and trends of the recent-year concentration of carbon dioxide with statistical methodologies. We selected a
natural area without large human-effect in the northeastern state of Amazonas, Brazil, and in the Caribbean
ocean to study the changes of concentration of carbon dioxide on both lands and oceans.

The global concentration of carbon dioxide data that we analyze is collected by Atmospheric Infrared Sounder
(AIRS) on a NASA satellite [1]. AIRS has been launched aboard the NASA Aqua satellite since 2002 and
analyzes the 3.74 µm to 15.4 µm spectral range with 2378 channels to create a fine-grained global maps
of various environmental factors [1, 11]. The AIRS mid-tropospheric CO2 Level 3 daily Gridded Retrieval
Product (AIRS version 5 L3 CO2 daily product) [1] provides 2ppm-accuracy satellite carbon dioxide con-
centration data in 2◦ latitude × 2.5◦ longitude grid boxes with longitudes from -180◦ to 177.5◦ and latitudes
from -90◦ to 89.5◦.

We have also obtained environmental factors like temperature, precipitation as potential predictor variables
from Global Historical Climatology Network - Daily (GHCN-Daily) dataset [14, 15]. This combines daily
climate observations from over 100,000 land-based stations worldwide measuring daily environmental factors
such as precipitation and temperature (max, min, and average). However, the GHCN-Daily dataset only
includes daily land surface observations so modeling the concentration of carbon dioxide in the Caribbean
ocean area with exterior predictors would be left for future research.

2 Statistical Models

In this section, we will introduce the major statistical models: multiple linear regression, autoregressive–moving-
average, and wavelets models, employed in this report.

2.1 Multiple Linear Regression

Multiple linear regression [25] is a statistical model explaining the relationship between a response variable
and predictors, X1,X2, ...,Xp and a response variable Y . p is the number of predictors, and any of the
predictor variables or response variable is a vector with n observations. The multiple linear regression model
can be written as

Yi = β0 + β1X1,i + ...+ βpXp,i + εi, ∀i ∈ {1, 2, ..., n}, (1)

where εi is the error term. In a matrix notation, we can rewrite the multiple linear regression in Equation
(1) as

y = Xβ + ε, (2)

where y is a vector with yi in the i-th entry, β is a vector with βj in the j-th entry, ε is a vector with εi in
the i-th entry, and X is a matrix that can be written as,
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X =




1 x1,1 x1,2 . . . x1,p
1 x2,1 x2,2 . . . x2,p
...

...
...

. . .
...

1 xn,1 xn,2 . . . xn,p

.

Our model employs the method of least-squares to estimate β:

β̂ = (XTX)−1XTy.

2.2 Autoregressive–moving-average models

Classical regression models usually can’t explain the time dependency existing in a time series [21]. We
employ autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) models to
describe those lagged dependencies.

An autoregressive model of order p, usually denoted as AR(p), has a form of

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt, (3)

where Xt is a stationary time series, φ1, φ2, ..., φp are parameters, and εt follows a normal distribution with
zero mean and constant variance σ2

ε .

A moving average model of order q, usually denoted as MA(q), can be written as

Xt = c+ θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt, (4)

where Xt is a stationary time series, θ1, θ2, ..., θp are parameters, and εt follows a normal distribution with
zero mean and constant variance σ2

ε .

A time series {Xt : t = 0,±1,±2, ...} is ARMA(p, q) [21] if it is stationary and

Xt = α+ φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt, (5)

where φ1, φ2, ..., φp are coefficients in AR(p) model described in Equation (3), θ1, θ2, ..., θp are coefficients in
MA(q) model described in Equation (4).

2.3 Discrete Wavelet Transform

There are two types of wavelet transformation: continuous wavelet transform and discrete wavelet transform.
However, since the time series datasets used in this project are discrete, it is more appropriate to use the
discrete wavelet transform (DWT) in the statistical analysis [23]. Given a n × 1 time series vector x, the
coefficients of DWT: d, a n× 1 vector, can be written as [17]

d = Wx, (6)

where n = 2k, W is an n × n orthonormal matrix. It means that WWT = I, where I is a n × n identity
matrix. Therefore, WT = W−1 and the discrete wavelet transform is inverted by

x = WT d.
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The coefficients of W depend on the wavelet function selected. The vector, d, can be written as [23]

d =



c0,0
d0,0

d1,0

d1,1

...
dk−1,0

...
dk−1,2k−1


,

where c0,0 is used to describe the average in the time series x, d0,0 is the coefficient of mother wavelet, and
di,j is the coefficient for the j-th wavelet in the i-th level. The computational effort to perform the above
calculation of Wx in Equation (6) is O(n2) (quadratic computational time) but it only takes O(n) (linear
computational time) if pyramidal algorithm [13] is employed. This is faster than the fast Fourier transform.

There are many different wavelet functions available to perform a discrete wavelet transform, such as Haar
wavelets, Meyer’s wavelets, and Daubechies’ wavelets [23]. The Haar wavelet is the first and simplest or-
thonormal wavelet basis requiring less computational power, but it is not a desirable basis for smooth
functions [23]. Because of the remarkable properties: compactly supported, and orthogonal wavelet bases
of L2(R), Daubechies’ wavelets are the most popular wavelet family with various applications in signal pro-
cessing [24]. Thus, all the wavelet transformations in this report are employed with the least asymmetric
Daubechies’ wavelets. The mother wavelet can be written as [23],

(
1 + e−iω

2

)N L∑
l=1

(
e−iω − zl

) (
e−iω − z̄l

)
·
J∑
j=1

(e−iω − rj), (7)

where i =
√
−1 and we have freedoms to select the values of zl and rj .
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Figure 1: Different wavelet functions

3 A Bootstrapping Method for Discrete Wavelet Transform

A main challenge in applying discrete wavelet transform is performing a proper inference in statistical anal-
ysis. Which coefficients of the wavelet are statistically significant? There are several threshold technique
available to determine how many levels of coefficients are significant, such as universal threshold [23]. How-
ever, a systematic method for each wavelet coefficient is still a opening question. In order to better perform
a statistical inference, we have employed a technique combining both bootstrapping and threshold to do
statistical inference on the coefficients. Potentially, it might also be helpful for us to select a better wavelet
model during statistical analysis.

The procedure of our method is described as follows. First, we need to select a wavelet model with certain
levels. Then, use this wavelet model to extract the signal from the time series data so as to obtain the
residuals. If it is reasonable for us to assume the independence, mean of 0, and constant variance of those
residuals, we could use residual bootstrapping to obtain bootstrapped time series data and corresponding
coefficients of wavelets. We could use those coefficients to construct confidence intervals or obtain p-values.

3.1 Simulation

We have also construct a simulation study to examine the performance the method in Section 3. In the
simulation, we have used first three levels of the coefficients of “DaubLeAsymm” wavelet with 10 filters to
generate the truth time-series data and then added some noise from different distributions with different
signal-to-noise ratio to generate simulated data. We have studied the effects of signal-to-noise ratio, noise
distributions, and the selection of wavelets family and the number filters on the performance of the discrete
wavelet transform. In all of the simulations, true coefficients are captured by the bootstrapped distribution
constructed by our new method. The results are attached in the appendix B.
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4 Data Cleaning

The daily carbon dioxide data from AIRS version 5 L3 CO2 daily product is stored in a large matrix, where
each row represents different longitudes from -180◦ to 177.5◦ and each column represents different latitudes
from -90◦ to 89.5◦ from Jan. 1, 2010 to Feb. 28, 2017. Measured from Google Maps [4], the latitude of
Caribbean Sea is approximately from 12 to 17, and the longitude is from about -70 to -80. The latitude of
the green area of interest around the northeastern state of Amazonas in Brazil is approximately from -10 to
-2, and the longitude is from about -53 to -62. We take the average of daily carbon dioxide concentration
over the grids in those areas to obtain the daily CO2 concentration time series in the northeastern state of
Amazonas, Brazil, and the Caribbean shown in Figure 3 (b) and (c).

(a) (b)

(c) (d)

Figure 2: The visualization of CO2 concentration (parts per millions) from 2012 to 2017. There aren’t any
CO2 concentration data in the grids without any colors.

The carbon dioxide concentration appears to increase globally from 2011 to 2017 as shown in Figure 2. We
can better visualize the overall increasing trends in Figure 3 (a). Our data matches the previous study [18]
and we have also noticed the clear seasonal patterns in the global average CO2 concentration and Caribbean
average CO2 concentration. It is difficult to accurately measure the CO2 concentration from the satellite at
every single location on Earth every day so NASA only keeps the stable and trustworthy data in AIRS L3
CO2 daily product [1]. There are some missing values in the CO2 concentration, which we can also see in
Figure 2. Furthermore, we can see in Figure 2 that there tends to be more missing CO2 concentration data
over land than oceans and more missing data over time.
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(a) (b) (c)

Figure 3: The changes of average carbon dioxide concentration in the World, Brazil, and Caribbean over
time.

In the Caribbean CO2 concentration data, there are 34 missing values out of 2048, and there are 172 missing
values out of 2048 in the Brazil CO2 concentration data. The actual missing dates are provided in Table 1
and 2 in the Appendix. Bennett maintained that statistical analysis is likely to be biased when more than
10% of data are missing [2]. Both of the missing values take up less than 10 % in total data. Therefore, it
is still reasonable to employ statistical models to analyze the current dataset to produce reliable results.

Since the ARMA models and discrete wavelet transformation, which are employed in the Section 5, re-
quire no missing values in the time series data, we need to figure out a way to impute those missing values
[19]. In order to impute the missing values, we need to check whether the data is missing at random. There
are 7 missing CO2 values everywhere globally. Thus, I checked the online archive of AIRS L3 CO2 daily
product and realized that there are no data files on those dates. There are no obvious document recording
the reasons for those missing data files. There could be several potential reasons, such as the maintenance of
the satellite. Furthermore, the rest of the values seem not to be randomly missing as well, because there are
some missing data points in rows both in the northeastern state of Amazonas, Brazil, and the Caribbean. Al-
though it isn’t fully reasonable to believe the missing values are random, we need to make that assumption to
impute the missing values in order to do further study and leave the effects of this assumption for future work.

There are several common imputation methods: missing value imputation by last observation carried for-
ward, weighted moving average, mean value, random samples, interpolation, or Kalman smoothing and state
space models [16]. The previous study [3] has done simulations to test the performance of those imputa-
tion methods and the results show that structural models using Kalman smoothing and linear interpolation
handle missing data in univariate time series with the best performance. According to the results [3], the
imputation method using Kalman Smoothing on structural time series models has the best performance at
the missing rate of 0.1. Hence, we employ Kalman Smoothing on structural time series models to impute
the missing data. After we impute the data, we attain the data with a length of 2616. As we mentioned
in Section 2.3, the discrete wavelet transform requires the length of time series to be a power of 2. There-
fore, we have kept the last 2048 elements in the CO2 time series, which is from July 23, 2011, to Feb. 28, 2017.

Additionally, we also obtain daily data of minimum, average, and maximum temperature, and precipita-
tion from GHCN-Daily dataset. Since the data is collected by station-based measurements, it only contains
land area data. Furthermore, there are too many missing values (over 20%) of minimum, maximum tem-
perature, or precipitation data in the northeastern state of Amazonas, Brazil. Thus, we could use those
predictor variables in our models. However, the average temperature could be used if 56 missing values are
imputed properly. When we investigate more on those missing values, most of them are missing because of
no data are collected during those days. But, there are no evidences that there are some extreme weather
happening in those days. It is reasonable for us to assume that those values can be imputed or predicted
by the values collected in a similar time. Similarly as we do for CO2 data, we use Kalman Smoothing on
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structural time series models to impute the missing data.

5 Data Analysis

In this section, we will analyze the carbon dioxide time series data in the northeastern state of Amazonas,
Brazil, and the Caribbean area mentioned in Section 4 with statistical models.

5.1 Brazil

In Figure 4 (a), we can still see a positive linear trend so we can’t fit the discrete wavelet transform to this
time series. Hence, we fit a linear regression model with a predictor variable, time, to remove the linear
trend,

CO2,Brazil = β0 + β1 · Time + ε. (8)

(a) (b)

Figure 4: The carbon dioxide time series data in the northeastern state of Amazonas, Brazil after imputation
(Figure (a)) and the residuals after fitting a linear regression in Equation (8) (Figure (b)).

The time series after removing the linear trend is shown in Figure 4 (b). However, without any increasing or
decreasing overall trends, there might be some moderate seasonal patterns. Therefore, we employ a discrete
wavelet transform to detect and extract the seasonal trends. As demonstrated in Figure 5, there are the
signals found by DWT by levels from 0 to n of coefficients, ∀n ∈ {0, 1, ..., 11}, since 2048 = 211. In the first
5 plots of Figure 5, the fitted curves are too smooth so that the discrete wavelet transform doesn’t extract
enough information of the seasonal patterns. Figure 5 is made by functions in WiSEBoot package [5]. In the
last 4 plots of Figure 5, the fitted curves might overfit and the discrete wavelet transforms extract not only
the signals but also the noise in the time series. J0 + 1 = 5 and J0 + 1 = 6 might be the best two options.
J0 + 1 = 5 captures the signals with a minimum unit of 64 days and J0 + 1 = 6 captures the signals with
that of 32 days, which is approximately one month. Therefore, I use the fitted curved by keeping the levels
from 0 to 6 of the coefficients in DWT.
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Figure 5: The signals in carbon dioxide time series data of Brazil found via discrete wavelet transform by
keeping levels from 0 to n of coefficients, ∀n ∈ {0, 1, ..., 11} [5].

After the detrending of discrete wavelet transforms, we can see the time series in Figure 11 has no clear
overall increasing or decreasing trends, and there are only very small and ignorable seasonal patterns. Then,
we check the assumptions for statistical inference as shown in Figure 15 in Section A: Appendix and notice
that the errors are not independent. We might want to fit an ARMA model to explain the time dependency
within the time series. Additionally, we make ACF and PACF plots to determine the parameters of the
orders of AR and MA in ARMA model.

8



Figure 6: The carbon dioxide time series data in the northeastern state of Amazonas, Brazil after imputation,
linear detrending, and wavelet detrending.

There are no significant lag-values in ACF plot of Figure 7 but some lag-values might be significant in PACF
plot of Figure 7. Thus, we might expect an ARMA model with more than one autoregressive terms and
moving average terms. For now, we still don’t have any predictor variables processed and cleaned, which
have the high priority to do in the next term. We can only fit an ARMA model with time and the coefficients
of a discrete wavelet transform without predictor variables of environmental factors, like precipitation, and
temperature.

Figure 7: The autocorrelation function (left) and partial autocorrelation function (right) of carbon dioxide
time series data in the northeastern state of Amazonas, Brazil.
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The final statistical model for Brazil is

Xt =β0 + β1 · T1,t + β2 · T2,t + (WT dB)t + φ1X
′
t−1

+ φ2X
′
t−2 + θ1εt−1 + θ2εt−2 + εt, (9)

where T1 represents the date, T2 represents the temperature, W is a matrix using the least asymmetric
Daubechies’ wavelets, dB are the truncated wavelet coefficients for Brazil by keeping the levels from 0 to 6
of the coefficients in DWT, X ′t = Xt − (β0 + β1 · T1,t + β2 · T2,t + (WT dB)t), and ε are error terms.

Figure 8: The signal captured by final model in Equation (9)

5.2 Caribbean

In Figure 9 (a), we can still see an overall positive linear trend so we can’t fit the discrete wavelet transform
to this time series. Hence, similarly as the Equation (8), we fit a linear regression model with a predictor
variable, time, to remove the linear trend,

CO2,Caribbean = β0 + β1 · Time + ε. (10)

10



(a) (b)

Figure 9: The carbon dioxide time series data in the Caribbean after imputation (Figure (a)) and the
residuals after fitting a linear regression in Equation (10) (Figure (b)).

The time series after removing the linear trend is shown in Figure 9 (b). However, since linear regression
model in Equation (10) can not explain the seasonal patterns within the time series, there are still a clear
oscillating seasonal trend as shown in Figure 9 (b). Therefore, we can similarly employ a discrete wavelet
transform to detect and extract the seasonal trends. As demonstrated in Figure 10, there are the signals
found by DWT by levels from 0 to n of coefficients, ∀n ∈ {0, 1, ..., 11}, since 2048 = 211. Figure 10 is made
by functions in WiSEBoot package [5]. Similarly as Section 5.1, in the first 6 plots of Figure 10, the fitted
curves don’t contain enough information of the seasonal patterns and in the last 4 plots, there might be too
much noise rather than signals. Therefore, I use the fitted curved by keeping the levels from 0 to 6 of the
coefficients in DWT, which has minimum unit of 32 days (approximately one month).
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Figure 10: The signals in carbon dioxide time series data of Caribbean found via discrete wavelet transform
by keeping levels from 0 to n of coefficients, ∀n ∈ {0, 1, ..., 11} [5].

After the detrending of discrete wavelet transforms, we can see the time series in Figure 11 has no clear
overall increasing or decreasing trends, and there are still some clear seasonal trends (a fan pattern). Then,
we check the assumptions for statistical inference as shown in Figure 14 in Section A: Appendix, and we can
notice that the errors are not independent. Although there are still some seasonal patterns, we might still
want to fit an ARMA model to explain the time dependency within the time series. Furthermore, we make
ACF and PACF plots to determine the parameters of the orders of AR and MA in ARMA model.

12



Figure 11: The carbon dioxide time series data in the Caribbean after imputation, linear detrending, and
wavelet detrending.

There might be only one significant lag-value (lag-1) in ACF plot of Figure 12 and one lag-value (lag-1) might
be significant in PACF plot of Figure 12. Thus, we might expect an ARMA model with one autoregressive
term and moving-average term. Since GHCN-Daily dataset only contains land-based stations measurement,
we need to investigate more about whether this dataset is appropriate to provide predictor variables in the
Caribbean Ocean, and we might want to seek another dataset. For now, we can only fit an ARMA model
with time and the coefficients of a discrete wavelet transform without predictor variables of environmental
factors, like precipitation, and temperature.
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Figure 12: The autocorrelation function (left) and partial autocorrelation function (right) of carbon dioxide
time series data in the Caribbean.

The final statistical model for Caribbean is

Xt = β0 + β1 · T1,t + (WT dC)t + φ1X
′
t−1 + θ1εt−1 + εt (11)

where T1 represents the date, W is a matrix using the least asymmetric Daubechies’ wavelets, dC are the
truncated wavelet coefficients for Caribbean by keeping the levels from 0 to 6 of the coefficients in DWT,
X ′t = Xt − (β0 + β1 · T1,t + (WT dC)t), and ε are error terms.

Figure 13: The signal captured by final model in Equation (11)
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6 Conclusion

First, the carbon dioxide concentration in the northeastern state of Amazonas, Brazil, Caribbean, and the
global is increasing dramatically from 2010 to 2017. We also confirm the known result of a linear increasing
trend of CO2 concentration over time. Second, the discrete wavelet transform detects monthly signals of
carbon dioxide concentration in the chosen areas of both Brazil and the Caribbean. We also find that there
isn’t any significant correlation between temperature and carbon dioxide concentration.

7 Future Work

In the future, we can figure out a more systematic method to do statistical inference for the final models
in Equations (9) and (11). Besides statistical inference and explanations on the coefficients, prediction of
carbon dioxide concentration in the future can be a potential research direction. Furthermore, there is only
one predictor variables available for Brazil and no predictors available for Caribbean up to now. We should
look for additional datasets so as to find out better predictors for CO2.
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A Appendix

The Date of Missing Values

9/27/2011 11/7/2011 1/4/2012 2/15/2012 10/4/2012 10/31/2012 11/26/2012
12/14/2012 1/13/2013 1/28/2013 2/9/2013 3/6/2013 3/16/2013 3/23/2013
4/21/2013 11/1/2013 11/27/2013 1/20/2014 2/14/2014 3/5/2014 3/22/2014
3/26/2014 4/10/2014 11/22/2014 2/1/2015 2/20/2015 3/17/2015 3/24/2015
10/29/2015 12/25/2015 2/25/2016 3/6/2016 3/25/2016 4/11/2016 5/31/2016
9/25/2016 10/21/2016 11/14/2016 11/25/2016 12/4/2016 12/16/2016 12/25/2016
1/26/2017 10/11/2011 11/10/2011 1/20/2012 2/16/2012 10/9/2012 11/12/2012
11/28/2012 12/15/2012 1/15/2013 1/29/2013 2/11/2013 3/7/2013 3/17/2013
4/3/2013 5/7/2013 11/4/2013 12/1/2013 1/25/2014 2/15/2014 3/7/2014
3/23/2014 3/27/2014 4/11/2014 11/25/2014 2/4/2015 2/22/2015 3/18/2015
4/2/2015 11/6/2015 1/13/2016 2/26/2016 3/14/2016 3/26/2016 4/12/2016
8/21/2016 9/26/2016 10/23/2016 11/16/2016 11/27/2016 12/12/2016 12/20/2016
1/3/2017 2/9/2017 10/18/2011 12/16/2011 1/26/2012 4/11/2012 10/14/2012

11/21/2012 12/2/2012 12/23/2012 1/20/2013 2/7/2013 2/14/2013 3/14/2013
3/18/2013 4/4/2013 10/9/2013 11/5/2013 12/24/2013 2/3/2014 2/21/2014
3/8/2014 3/24/2014 3/28/2014 6/19/2014 11/27/2014 2/6/2015 2/27/2015
3/19/2015 4/27/2015 11/27/2015 1/31/2016 3/3/2016 3/21/2016 4/1/2016
4/23/2016 8/28/2016 9/27/2016 11/3/2016 11/23/2016 11/30/2016 12/13/2016
12/21/2016 1/13/2017 2/15/2017 10/30/2011 12/19/2011 1/30/2012 4/12/2012
10/27/2012 11/23/2012 12/11/2012 1/12/2013 1/24/2013 2/8/2013 3/4/2013
3/15/2013 3/22/2013 4/6/2013 10/31/2013 11/17/2013 1/11/2014 2/12/2014
3/2/2014 3/11/2014 3/25/2014 4/8/2014 11/11/2014 1/19/2015 2/17/2015
3/5/2015 3/21/2015 10/28/2015 11/28/2015 2/14/2016 3/5/2016 3/22/2016
4/10/2016 5/17/2016 9/2/2016 10/20/2016 11/12/2016 11/24/2016 12/2/2016
12/14/2016 12/22/2016 1/17/2017 2/20/2017

Table 1: The missing Dates in the northeastern state of Amazonas, Brazil CO2 Time Series Data

The Date of Missing Values

10/24/2012 4/6/2013 3/23/2014 3/25/2014 3/27/2014 6/19/2014 3/30/2015
7/8/2015 10/1/2015 4/23/2016 5/27/2016 6/6/2016 6/10/2016 9/25/2016
9/27/2016 10/10/2016 11/21/2016 2/9/2013 3/22/2014 3/24/2014 3/26/2014
3/28/2014 6/22/2014 5/16/2015 9/6/2015 11/17/2015 5/17/2016 6/1/2016
6/8/2016 8/27/2016 9/26/2016 10/3/2016 11/12/2016 11/24/2016

Table 2: The missing Dates in the Caribbean CO2 Time Series Data
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Figure 14: Checking the assumptions of Caribbean CO2 residuals for statistical inference.

By looking at the Residuals vs. Order of observations plot, we can see a increasing variance over time.
Thus, we can’t reasonably assume that the error terms are independent. Since the assumption that errors
are independent isn’t reasonably met, we don’t have any methods for statistical inference.

Figure 15: Checking the assumptions of Brazil CO2 residuals for statistical inference.

By looking at the Residuals vs. Order of observations plot, we can see a increasing variance over time.
Thus, we can’t reasonably assume that the error terms are independent. Since the assumption that errors
are independent isn’t reasonably met, we don’t have any methods for statistical inference.
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B Appendix

B.1 Tuning the Signal-to-noise (Error) Ratio

Figure 16: Signal-to-noise Ratio is 2.
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Figure 17: Signal-to-noise Ratio is 1.
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Figure 18: Signal-to-noise Ratio is 0.5.

In the Figures 16, 17, and 18, we can see all distributions are bell-shaped, symmetric, and centered at the
wavelet coefficients of the simulated data. All the bootstrap coefficients capture the truth wavelet coefficients.
As the signal-to-noise ratio becomes smaller and smaller, the standard deviation of the bootstrap coefficients
becomes larger and larger, but the changes in the standard deviation of the bootstrap coefficients are not very
dramatically. Furthermore, the differences between the truth coefficient and simulated data coefficient trend
to become larger as the signal-to-noise ratio becomes smaller. Based on the results of the bootstrapping, there
might not be sufficient evidence, by constructing a confidence interval, to support that the coefficients in the
first, third and fourth positions of level 3 are statistically significant if the signal-to-noise ratio is very small.
However, there is sufficient evidence to support that all the other coefficients are statistically significant with
different signal-to-noise ratio in this simulation. Thus, based on the simulation results, residual bootstrap
works very well on the wavelets if the noise comes from normal distribution and we selected the correct
wavelet family and filter.
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B.2 Tuning the Error (Noise) Distributions

Figure 19: The errors come from normal distribution.
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Figure 20: The errors come from uniform distribution.
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Figure 21: The errors come from lognormal distribution.
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Figure 22: The errors come from T Distribution with Degree of Freedom: 2.

In the Figures 19, 20, 21, and 22, we can see all distributions are bell-shaped, symmetric, and centered
at the wavelet coefficients of the simulated data. All the bootstrap coefficients capture the truth wavelet
coefficients. With each noise distribution, the differences between the truth coefficients and the simulated
data coefficients trends to get larger in the higher levels. In this simulation, the differences between the
truth coefficients and the simulated data coefficients seem to be the smallest with uniform noise distribution
among four distributions. The signal-to-noise ratios are set to 2 for all four distributions. With normal or
uniform noise distributions, there is sufficient evidence, by constructing a confidence interval, to support
that all the coefficients are statistically significant. However, there isn’t sufficient evidence to support that
the coefficients in the position 1 of level 3 are statistically significant if the noise is lognormal distribution
or t-distribution with 3 degrees of freedom. Thus, based on the simulation results, residual bootstrap works
very well on the wavelets if the noise comes from normal or uniform distributions, the signal-to-noise ratio
is larger than 1, and we selected the correct family of wavelet and the number of filters. However, if the
noise comes from t-distribution with 3 degrees of freedom or lognormal distribution, the ranges of bootstrap
coefficients are larger than the normal or uniform distributions. It might fail to recognize the coefficients
with small values.
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B.3 Employing the Wrong Family of Wavelets/Filter Numbers

Figure 23: The bootstrap distribution of mean squared errors between true signal and signal captured by
DWT

In the Figure 23, we can see all distributions of mean squared errors between true signal and wavelet signal
with different wavelet family and the number of filters are bell-shaped and right-skewed. The spread and the
shape of all the distributions above are almost the same. Wrong wavelet family or the number of filters only
shift the curves to the right. The centers of the mean squared errors get larger as the difference between the
true filter number and the utilized filter number gets larger or wrong wavelet family is employed. The wrong
filter numbers only slightly increase the mean squared errors, but the wrong wavelet family will boost the
mean squared errors dramatically.
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