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Triangle Packing on Tripartite Graphs is Hard

By Peter Bradshaw

Abstract. The problem of finding a maximum matching on a bipartite graph is well-
understood and can be solved using the augmenting path algorithm. However, the sim-
ilar problem of finding a large set of vertex-disjoint triangles on tripartite graphs has not
received much attention. In this paper, we define a set of vertex-disjoint triangles as a
“tratching.” The problem of finding a tratching that covers all vertices of a tripartite
graph can be shown to be NP-complete using a reduction from the three-dimensional
matching problem. In this paper, however, we introduce a new construction that allows
us to emulate Boolean circuits using tripartite graphs in order to prove that covering a
given vertex subset of a tripartite graph with a tratching is NP-hard, thereby attacking
the tratching problem from a new angle.

1 Introduction

Imagine that you are organizing a concert, and you need to make a band lineup. You
have a list of guitarists and a list of bassists, and you’d like to pair them up for the show.
However, the rock-and-roll life is filled with drama, and some of these musicians refuse
to work with each other. How many duos can you put together so that the members of
each band are willing to work together?

We can tackle this question with some basic graph theory. Imagine that we have
guitarists John, Janick, and Tony, and we have bassists Flea, Steve, and Geezer. Everyone
is willing to cooperate, except for a few conflicts. John and Geezer don’t want to play
together because their styles don’t match, and Tony and Flea have the same issue. And if
Tony and Steve get anywhere near each other, then suffice it to say that there won’t be a
show anymore.

We can represent this situation with a graph. We include a vertex for each musician,
and we draw an edge between any guitarist-bassist pair that is willing to be in the same
band, as in Figure 1(i).

This graph can be colored with two colors such that no two adjacent vertices—that
is, no two vertices that have an edge between them—have the same color. We call this
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2 Triangle Packing on Tripartite Graphs is Hard

(i)

John Janick Tony

Flea Steve Geezer

(ii)

John

Janick

Tony

Flea

Steve

Geezer

Bill

Nicko

Chad

Figure 1: A bipartite graph (i) and a tripartite graph (ii). Red, blue and yellow vertices
represent bassists, guitarists and drummers respectively. An edge between two vertices
means that the two musicians are willing to work together.

type of graph bipartite. The set of red vertices and the set of blue vertices—here, the
guitarists and bassists— are called the partite sets of the graph.

So our task of finding the greatest number of cooperating duos becomes the task
of finding the largest set of nonadjacent edges on a bipartite graph. We call a set of
nonadjacent edges a matching. That is, a matching is a set of edges that do not touch
each other. It turns out that we have an efficient method for finding the maximum
matching on a bipartite graph, which we will explain later. Therefore, putting together
the greatest number of duo groups is a tractable problem.

Imagine again that you are organizing a concert, but this time you have guitarists,
bassists, and drummers. You’d like to group these musicians into bands consisting of
one guitarist, one bassist, and one drummer. However, again, some of the musicians
cannot be in the same band. How many trios can you put together so that all of the
members of each band are willing to work together?

Again, we can model this problem with graph theory. We’ll use our previous musi-
cians, and we’ll add drummers Chad, Nicko, and Bill. Chad will only play with Flea and
John; Nicko will only play with Steve, Geezer, and Janick; and Bill will only play with
Geezer and Tony. Again, we can represent each musician with a vertex, and we can draw
an edge between any two musicians of different instruments that are willing to work
with each other, as in Figure 1(ii). Notice that this graph can be colored with three colors
such that no two adjacent vertices have the same color; that is, this graph is tripartite.

So our task of finding the greatest number of cooperating trios becomes the task of
finding the largest set of vertex-disjoint triangles on a tripartite graph. This task will be
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the motivation of our paper. Although the problem of finding the greatest number of
cooperating trios is known to be NP-hard [5], we present new constructions that can
potentially be applied to new problems. The paper will be structured as follows. In
Section 2, we show an attempt to extend bipartite matching techniques to tripartite
graphs. In Section 3, we build a framework to show that covering a given vertex subset of
a tripartite graph with vertex-disjoint triangles is intractable. In Section 4, we use this
framework to prove intractibility. Finally, Section 5 discusses remaining open questions.

2 Creating a Band Lineup

When organizing a set of duos with only guitarists and bassists, we can approach the
problem by finding matchings on bipartite graphs. For matchings on bipartite graphs,
we have many theorems and algorithms at our disposal, so we can solve the band lineup
problem if only guitarists and bassists are involved. However, matchings don’t help if we
add drummers to the mix. Instead, we need to extended the definition of matching to
a “three-way matching," or for short a “tratching". When we add drummers, the band
lineup problem becomes much harder.

2.1 Matchings on bipartite graphs

Definition 2.1. A graph is a pair (V,E), where V is a set of vertices and E is a set of edges.
Each edge e ∈ E is given by an unordered pair of vertices v, w ∈ V, called its endpoints.
We say two endpoints of a single edge are adjacent. For a graph G, the vertices of G are
often denoted as V(G), and the edges of G are often denoted as E(G).

Definition 2.2. A graph G can be k-colored if each vertex of G can be assigned one of k
colors such that no two adjacent vertices have the same color.

Definition 2.3. A graph G is bipartite if G can be 2-colored.

Definition 2.4. A graph G is tripartite if G can be 3-colored.

Definition 2.5. Let G and H be graphs such that V(H) ⊆ V(G) and E(H) ⊆ E(G). Then we
say that H is a subgraph of G, and we use the notation H ⊆ G.

Definition 2.6. Let G be a graph, and let H ⊆ G be a subgraph of H. If U ⊆ V(G), then we
say that H covers U if U ⊆ V(H). Furthermore, for each vertex v ∈ V(U), we say that H
covers v .

Definition 2.7. Let G be a graph. A matching M on G is a set of edges in G such that no
vertex in G belongs to two distinct edges in M. A matching M is a maximum matching
if G has no matching larger than M, and M is a perfect matching if every vertex in G
belongs to an edge in M.
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4 Triangle Packing on Tripartite Graphs is Hard

(i)
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(ii)
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Figure 2: (i) A non-maximum matching on a bipartite graph. (ii) Increasing the size of
the matching using the augmenting path algorithm.

If we only have guitarists and bassists, our goal is to create a setlist of duos that uses
every musician exactly once. Reformulating this goal into a graph theory problem, we
ask: if we have a bipartite graph, can we find a perfect matching?

This question can be answered simply by finding a maximum matching and checking
if it covers all vertices. If we have a bipartite graph G, then we can obtain a maximum
matching on G by using an efficient algorithm that increases the size of a bipartite
matching until it is maximum. We demonstrate this algorithm using the bipartite graph
in Figure 2(i). We begin by arbitrarily choosing any matching on the bipartite graph.
We call our matching M, and we draw the edges included in M in bold. Then, after
considering the path f −c−e−b, we see that we can obtain a larger matching by removing
the edge ec from M and adding f c and eb. We show the new matching in Figure 2(ii).
The reason that we can use the edges on the path f −c−e−b to obtain a larger matching
is that f − c −e −b is an augmenting path, which brings us to a definition.

Definition 2.8. Let G = (V,E) be a bipartite graph. A path on G is a sequence of ver-
tices v1v2 . . . vk such that vi is adjacent to vi+1 for 1 ≤ i ≤ k − 1. Let M ⊆ E(G) be
a matching on G. An augmenting path on M is a path v1v2 . . . v2n , n ∈ N, such that
{v2v3, v4v5, . . . , v2n−2v2n−1} ⊆ M and such that v1 and v2n are not covered by M.

It then follows that M \ {v2v3, v4v5, . . . , v2n−2v2n−1} ∪ {v1v2, v3v4, . . . , v2n−1v2n} is a
larger matching on G. (See Figure 3.)

Figure 3: Augmenting Path.

Theorem 2.9. Berge’s Lemma [3]:
Let G be a bipartite graph, and let M be a matching on G. Then M is a maximum matching
if and only if M has no augmenting path.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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Figure 4: Using an “augmenting triangle path” to increase the size of a tratching.

So if we have a bipartite graph G, then we can use this process to find a maximum
matching on G. We start with any matching M, then find all augmenting paths on M
by generating a search tree starting at each vertex not covered by M, and use these
augmenting paths to iteratively increase the size of M. Finally, once we see that M has
no augmenting paths, we know that M is a maximum matching. This algorithm gives us
a tool to efficiently solve the band lineup problem with only guitarists and bassists.

2.2 Tratchings on tripartite graphs

If we have guitarists, bassists, and drummers, our goal now is to create a setlist of trios
that uses every musician exactly once. To formulate this problem using graph theory, we
need to introduce some new definitions.

Definition 2.10. Recall that K3 is the triangle graph, with three vertices and three edges.
Let G be a graph, and let T ⊆ G be a set of K3’s on G. We say that T is a tratching if no pair
of K3’s in T shares a vertex. We say that T is a perfect tratching if T covers all vertices of
G.

Definition 2.11. Let G be a graph, let S ⊆ V(G), and let T be a tratching. We say that T is
an S-tratching if T covers all of the vertices of S.

So in terms of graph theory, our goal is to find a perfect tratching on a tripartite
graph. We could attempt to solve this problem with a similar approach to what we used
for bipartite graphs and look for “augmenting triangle paths," as shown in Figure 4. If
tripartite graphs are similar to bipartite graphs, then it’s possible that the nonexistence
of an “augmenting triangle path" indicates a maximum tratching.

Unfortunately, it isn’t so simple. Consider the example in Figure 5. This graph is
tripartite, and a tratching is shown in bold. If we look at the portion of the graph with
labeled vertices, we can see that there are four triangles not contained in the tratching
{abe, f g i ,dh j ,klm} and three triangles contained in the tratching {be f ,cd g , i j k}. We
can increase the size of the tratching by removing {be f ,cd g , i j k} from our tratching
and adding {abe, f g i ,dh j ,klm}. However, in this case, there is no obvious “augmenting
triangle path" that tells us which triangles to add to our tratching and which triangles to
remove. Thus we see that for tripartite graphs, no clear analogue of augmenting paths
exists. In fact, because finding a maximum tratching is an NP-hard problem, no such
efficient algorithm exists.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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Figure 5: The tratching on this tripartite graph is not maximum. However, the tratching
cannot be improved using an “Augmenting Triangle Path."

3 The Talented Musician Problem

3.1 An introduction to the problem

Imagine again that you are organizing a concert and that you have a set of available
guitarists, bassists, and drummers. Again, some of the musicians are not willing to work
with each other. But imagine your available guitarists are your friend, your loud upstairs
neighbor, that guy who always plays on the street downtown, and John Frusciante from
the Red Hot Chili Peppers. Regardless of how many bands you can put together, you
would just be an irresponsible organizer if you didn’t include John Frusciante in your
lineup. Perhaps Neil Peart and Chad Smith are on your list of drummers. Perhaps there’s
a whole group of fantastic musicians, and you want to include as many of them as
possible, even if some of them have to play with amateur musicians. Can we create
a setlist that uses every talented musician exactly once? We will call the problem of
arranging a setlist of trios that includes every talented musician from a larger set of
musicians the Talented Musician Problem.

As before, we can transform the Talented Musician Problem into a graph theory
problem. We construct a tripartite graph G where we represent each musician with a
vertex and put an edge between each pair of musicians that are willing to work together.
Then we give the name S to the set of vertices that represent talented musicians. We ask
ourselves, can we find an S-tratching on G?

In the bipartite case, with only guitarists and bassists, this problem can be solved effi-
ciently, thanks to the Hungarian Algorithm, which is an algorithm that finds a maximum
weighted matching on a bipartite graph. If we have a bipartite graph G and some set
S ⊆ V(G), then we can first give each edge e a weight equal to the number of vertices in S
adjacent to e. Then we can use the Hungarian Algorithm to find a maximum weighted
matching M on G. If M has weight |S|, then M must cover every vertex in S. Otherwise,
no matching covering S exists.

What about the tripartite case? If we have a tripartite graph G with S ⊆ V(G), can we
efficiently determine if an S-tratching exists? It turns out that we can’t. As we will soon
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see, finding an S-tratching on a tripartite graph is in a special class of problems known
as NP-complete.

Definition 3.1. A decision problem is a problem with possible answers “yes" or “no." A
decision problem is informally defined as NP-complete if it is difficult to solve quickly,
but a “yes" answer can be verified quickly.

For example, the subset sum problem is NP-complete: given a set of integers, is there
a nonempty subset that sums to zero? If we have a set of integers, it is difficult to find
whether such a subset exists without resorting to brute force, but if someone gives us a
subset and claims, “This subset sums to zero," then we can quickly verify whether or not
the claim is correct.

It is beyond the scope of this paper to give a more rigorous definition of NP-completeness,
but it should be enough for the reader to think of NP-complete as meaning “hard to
solve, and quick to check." NP-complete problems appear everywhere in graph theory.
Some NP-complete problems include determining if a graph is tripartite, finding an
independent set of size k, finding a Hamiltonian cycle, and the Traveling Salesperson
Problem. We aim to show that the Talented Musician Problem is also on the long list of
NP-complete problems.

3.2 Building a framework for NP-completeness

How will we prove that the Talented Musician Problem is NP-complete? The way that
we show a new problem is NP-complete is by showing that the problem is at least as
hard as a problem that is already known to be NP-complete, and then by showing that a
“yes" answer can be verified quickly. In this case, we will take a problem called 1-IN-3
SAT, which is known to be NP-complete, and we will show that finding an S-tratching on
a tripartite graph is at least as hard as 1-IN-3 SAT. Then we will show that verifying an
S tratching can be done quickly. By doing so, we will prove that the Talented Musician
Problem is NP-complete.

Definition 3.2. Let x1, . . . , xm be Boolean variables; that is, each can take a value of either
TRUE or FALSE. A clause Ci is a set of up to three literals (a1, ..., ak ), k ≤ 3, where each
literal is either a variable x j or its negation ¬x j . A clause Ci is satisfied if and only if
exactly one literal in Ci is true. An instance of the 1-IN-3 SAT problem is a finite set of
clauses {C1, . . . ,Cn}. A solution to the problem is an assignment of Boolean values to the
variables such that all clauses are satisfied.

We see that 1-IN-3 SAT is a decision problem, because it either “yes," has a solution, or
“no," does not have a solution.
Example: The following is an example of an instance of 1-IN-3 SAT.
We have variables {x1, x2, x3, x4}.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



8 Triangle Packing on Tripartite Graphs is Hard

We have clauses

C1 = (x1, x2, x4), C2 = (¬x1,¬x2), C3 = (x1,¬x2, x3), C4 = (¬x1,¬x2, x4).

We ask if there is a truth assignment to our set of variables that satisfies each clause. In
this instance there is. We set

x1 = FALSE, x2 = TRUE, x3 = TRUE, x4 = FALSE.

The following table shows that each clause contains exactly one true literal and is there-
fore satisfied.

C1 C2 C3 C4

x1 F x1 F ¬x1 T
x2 T ¬x1 T ¬x2 F ¬x2 F
x4 F ¬x2 F x3 T x4 F

Thus in this instance of 1-IN-3 SAT, we have an assignment of variables that satisfies
every clause. So this instance of 1-IN-3 SAT has an answer “yes."

Determining if there is a variable truth assignment that satisfies every clause in an
instance of 1-IN-3 SAT is NP-complete. This is a consequence of Schaefer’s dichotomy
theorem [6, Theorem 2.1].

We will create a logical circuit to model an instance of 1-IN-3 SAT. That is, for any
instance P of 1-IN-3 SAT, we will create a logical circuit that represents the information
contained in P. Consider, for example, the instance of 1-IN-3 SAT that contains two
clauses: (x, y), and (x,¬y, z). This instance has three variables, so we build a circuit with
three literal pairs at the top: (x,¬x), (y,¬y), and (z,¬z), as in Figure 6 (i). This instance
has two clauses, so we put two clauses at the bottom of our circuit. Then we draw a line
from the x literal to every clause that contains the literal x; we draw line from y to every
clause that contains the literal y ; we draw a line from ¬y to every clause that contains
the literal ¬y ; and we repeat this process for each literal that appears in a clause. Finally,
we simulate assigning a truth value to each variable by transmitting a signal from each
true literal to all clauses connected to that literal. We say that our variable assignment
satisfies this instance of 1-IN-3 SAT if and only if each clause receives a signal from
exactly one literal. In Figure 6 (i), we show that the assignment x = FALSE, y = TRUE,
z = TRUE sends exactly one signal to each clause and thereby satisfies this instance of
1-IN-3 SAT.

In Figure 6 (ii), we show another circuit built to represent the instance of 1-IN-3
SAT with clauses (¬x,¬y, z), (¬x, w), and (¬w). We show that an assignment of x =
FALSE, y = TRUE, z = TRUE, w = FALSE does not satisfy this instance, as this assignment
causes the clause (¬x,¬y, z) to receive two signals. Changing the value of z to FALSE,
however, would cause each clause to receive exactly one signal and hence would satisfy
this instance of 1-IN-3 SAT.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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(i)

x ¬x y ¬y z ¬z

(x, y) (x,¬y, z)

(ii)

x ¬x y ¬y z ¬z w ¬w

(¬x,¬y, z) (¬x, w) (¬w)

Figure 6: Two instances of 1-IN-3 SAT, each represented by a circuit. In (i), the assign-
ment x =FALSE, y = TRUE, and z = TRUE satisfies all clauses. In (ii), the assignment
x =FALSE, y = TRUE, and z = FALSE, w = FALSE satisfies all clauses.

We can build a circuit for any such instance of 1-IN-3 SAT using four specific gadgets:
the variable gadget, wire gadget, fork gadget, and clause gadget. These gadgets are
sketched in Figure 7.
Variable gadget

• The variable gadget represents a variable x.

• The variable gadget has exactly two literal gadgets x and ¬x.

• The variable gadget allows us to choose exactly one of its literal gadgets. The literal
gadget that is chosen is positive; the other one is negative.

Wire gadget

• The wire gadget has two ends: a base and a tail.

• The wire gadget connects its base to a literal gadget.

• If we connect the base of a wire gadget to a positive (resp., negative) literal, then
we say that the tail of the wire gadget is positive (resp., negative).

Fork gadget

• The fork gadget has three ends: one base and two children.

• The fork gadget can connect its base to a literal gadget.

• If we connect a fork gadget’s base to a positive (resp., negative) literal gadget, then
we say that each child is positive (resp., negative).

• We can connect the base of one fork gadget to the child of another fork gadget to
emulate a fork gadget with more than two children.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



10 Triangle Packing on Tripartite Graphs is Hard

xi ¬xi

Variable gadget Wire gadget Fork gadget Clause gadget

(xi , x j , xk )

Figure 7: Gadgets.

Clause gadget

• The clause gadget represents a clause with literals x1, ..., xk , where k ≤ 3.

• The clause gadget can connect to both wire gadgets and children of fork gadgets.

• For each literal xi represented by the clause gadget, the clause gadget connects
to exactly one wire gadget or one child of a fork gadget. The gadget to which the
clause gadget connects must carry a value from the literal gadget xi .

• We say that a clause gadget is satisfied if and only if it connects to exactly one
positive gadget.

We can use these gadgets to build a circuit to emulate any instance P of 1-IN-3 SAT.

• For every pair of literals x and ¬x in P, we create a variable gadget with literal
gadgets x ′ and ¬x ′.

• For each clause C in P, we create a clause gadget C′.

• For each literal xi that appears in clause C, we create a wire pathway from the
literal gadget x ′

i to C′. To create pathways from one literal gadget to multiple clause
gadgets, we use fork gadgets.

An instance of 1-IN-3 SAT has a “yes" answer if and only if all of the clause gadgets in
its corresponding circuit can be satisfied. This technique of building a Boolean circuit
out of gadgets in order to prove the complexity of a problem is a standard one. Proving
that our circuits are equivalent to instances of 1-IN-3 SAT is straightforward, because
our gadgets have been specifically engineered to represent the 1-IN-3 SAT problem.

Theorem 3.3. An instance P of 1-IN-3 SAT has a “yes" answer if and only if all of the
clause gadgets in its corresponding circuit can be satisfied.

Proof. Suppose P has an answer of “yes". Then for each clause C in P, C has exactly
one literal whose value is true. Therefore, by construction, the clause gadget C′ that
represents C in the corresponding circuit is connected to exactly one positive gadget is

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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Variable gadget Variable gadget Variable gadget

Fork Fork Fork Fork

Clause gadget Clause gadget Clause gadget Clause gadget

x ¬x y ¬y z ¬z

(x,¬y, z) (x, y,¬y) (¬x,¬y,¬z) (¬x,¬y, z)

Figure 8: An instance of 1-IN-3 SAT with four clauses. Each literal gadget is connected
by wires and forks to all clause gadgets containing that literal.

therefore satisfied. Since all clause gadgets represent a clause in P, all clause gadgets in
the circuit are satisfied.

Suppose on the other hand that each clause gadget C′ representing clause C in the
circuit is satisfied. Then some choice of literal gadgets x ′

a1, ..., x ′
an sends exactly one

positive value to each clause gadget. Since each clause gadget C′ receives values from
literal gadgets x ′

1, ..., x ′
k if and only if clause C contains literals x1, ..., xk , then assigning

the value TRUE to literals xa1, ..., xan should cause each clause C to contain exactly one
true literal and therefore be satisfied. Thus P has an answer of “yes."

4 Reducing 1-IN-3 SAT to the Talented Musician Problem

We now show that finding an S-tratching on a tripartite graph is at least as difficult as
1-IN-3 SAT. To accomplish this, we will show that for any instance P of 1-IN-3 SAT, we
can construct a tripartite graph G with S ⊆ V(G) such that an S-tratching exists on G if
and only if all of the clauses of P can be satisfied. This means that an algorithm that
efficiently finds S-tratchings on tripartite graphs can also efficiently solve 1-IN-3 SAT,
implying that finding an S-tratching on a tripartite graph must be at least as hard as
1-IN-3 SAT.

We construct G and S by using tripartite graphs to emulate each gadget used in the
circuit that models P. In other words, we will realize the gadgets of Figure 7 using small
graphs that can be connected together so that circuits such as that of Figure 8 become
schematics for large tripartite graphs. The end result will be that we can reduce the
Talented Musician Problem from 1-IN-3 SAT.

In the upcoming figures showing the tripartite graph gadgets, vertices in the set S
will be called “starred" and marked with asterisks. The starred vertices represent the
talented guitarists, bassists, and drummers, while the unstarred vertices represent the

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



12 Triangle Packing on Tripartite Graphs is Hard

untalented musicians. In our construction, we will attempt to find an S-tratching on
one of our large constructed tripartite graphs by adding vertex-disjoint triangles to a set
called T with the goal that T should cover all starred vertices.

4.1 Realizing gadgets as explicit graphs

In this section, A, B, and C refer to triangles.

1. The variable gadget. The realization of the variable gadget is shown in Figure 9.

xi ¬xi

*

*

Figure 9: Variable gadget.

Observe that:

• The two literal gadgets in the variable gadget correspond to the triangles marked
xi and ¬xi .

• We choose a literal gadget by adding its corresponding triangle to T.

In order to cover the starred vertices in the variable gadget, we must add at least one
triangle to T. To guarantee that the triangles are disjoint, we must add no more than one
triangle to T. Therefore, the variable gadget forces us to add exactly one triangle to T,
and it therefore forces us to choose exactly one literal gadget. Thus the variable gadget
functions as intended.

2. The wire gadget. The realization of the wire gadget is shown in Figure 10.

A B
* * *

Figure 10: Wire gadget.

Observe that:
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• The blue vertex of A represents the base of the wire gadget, and the blue vertex of
B represents the tail.

• We attach the base of the wire gadget to a literal gadget by identifying the base of
the wire gadget with the blue vertex of the literal gadget.

• If the triangle B is in T, then we say that the wire gadget is positive.

• If the triangle B is not in T, then we say that the wire gadget is negative.

If we attach the base of a wire gadget to a positive literal gadget by identification of blue
vertices, then triangle A cannot be included in T without overlapping the triangle from
the positive literal gadget. To cover the wire’s yellow vertex with a disjoint triangle, we
must then include the triangle B in our set T. In this way, if a wire gadget is connected to
a positive literal gadget, then the wire gadget becomes positive, as in Figure 11.

xi ¬xi
AB A B

*

*

*

* * ***

Figure 11: Two wire gadgets attached to a variable gadget. The wire on the left is positive,
while the wire on the right is negative.

If we attach the base of a wire gadget to a negative literal gadget by identification of
blue vertices, then we must include the triangle A in our set T; otherwise, the base of
the wire gadget would not be covered by T. Thus we cannot include triangle B in our set
T, because then two triangles A,B ∈ T would intersect at the yellow vertex. In this way,
if a wire gadget is attached to a negative literal gadget, then the wire gadget becomes
negative, as in Figure 11.

Thus a wire gadget is positive if and only if its base is attached to a positive literal
gadget as described above, and therefore the wire gadget functions as intended.

3. The fork gadget. The realization of the fork gadget is shown in Figure 12.
Observe that:

• The base of the fork gadget corresponds to the blue vertex of A.

• The children of the fork gadget correspond to the blue vertices of B and C.

• We attach the base of the fork gadget to a literal gadget by identifying the base of
the fork gadget with the blue vertex of the literal gadget.
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A

B

C

*
*

*

*

*

Figure 12: Fork gadget. A,B, and C are the triangles of the gadget.

• If the triangles B and C are in T, then we say that each child is positive; otherwise,
each child is negative.

By reasoning similar to that used in the wire gadget, each child of the fork gadget is
positive if and only if the base of the fork gadget is attached, by identification of blue
vertices, to a literal gadget with a positive value, as in Figure 13. Therefore, the fork
gadget functions as intended.

xi ¬xi

*

*

*
*

*

*

*

*

*

*

*

Figure 13: Two fork gadgets attached to a variable gadget. The children of each fork
gadget carry the same value as the literal gadget to which the base of the fork is attached.

4. The clause gadget. The realization of the clause gadget for the clause xi , x j , xk is
shown in Figure 14. A clause with fewer variables can be realized by deleting one or more
connections from xi , x j , and xk .

Observe that:

• A clause gadget is constructed with a single blue vertex v in S.

• For each literal xi in the clause, we identify with v exactly one wire gadget tail that
carries a positivity value from the literal gadget representing xi .

• If no such wire gadget tail is available, then we identify with v exactly one fork
gadget child that carries a value from the literal gadget representing xi .

• We say that a clause gadget is satisfied if it is covered by T.
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xi x j

xk

* * v* * *

*

*

Figure 14: The clause gadget for the clause (xi , x j , xk ). The clause gadget’s vertex is
labelled v . In this figure, we have assigned xi = TRUE, x j = FALSE, xk = FALSE.

Due to the way we have constructed wire gadgets and fork gadgets, a wire or fork
gadget H that attaches to a clause gadget by identification of blue vertices is positive if
and only if the triangle in H adjacent to the clause gadget is included in T. Therefore, if
a clause gadget represents a clause with two positive literals, then two gadgets H1 and
H2 will both require triangles that cover v to be included in T. However, these triangles
from H1 and H2 intersect at v , so therefore they cannot both be included in T. So if we
are to avoid this contradiction, then a clause gadget cannot be satisfied if it represents a
clause with two positive literals.

On the other hand, if a clause gadget represents no positive literals, then no triangle
adjacent to v can be included in T. Then v is not covered by T, and the clause gadget is
not satisfied.

So a clause gadget is satisfied if and only if it represents a clause with exactly one true
literal, as in Figure 14. Therefore, the clause gadget functions as intended.

4.2 The reduction

Every gadget in a 1-IN-3 SAT circuit for a 1-IN-3 SAT problem P can be recreated using
a tripartite graph with specific vertex subsets that are to be covered by a tratching.
Therefore, by piecing together our gadget graphs, we can create a tripartite graph G and
S ⊆ G such that G has S-tratching if and only if P can be satisfied.

Additionally, such a graph G is tripartite as constructed. To see this, we color each
gadget with three colors such that any vertex that might be identified with another vertex
is colored blue, and thus when we identify gadgets at blue vertices, we do not to disrupt
the coloring of any gadget. Therefore any graph that we create with these gadgets is
tripartite.

Figures 15 and 16 show the circuits and the tripartite graphs corresponding to two
instances of 1-IN-3 SAT, one satisfiable and one unsatisfiable.

Theorem 4.1. The Talented Musician Problem is NP-complete. That is, if G is a tripartite
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graph and S ⊆ V(G), then the problem of determining the existence of an S-tratching on G
is NP-complete.

Proof. Let P be an instance of 1-IN-3 SAT. Then we can represent P using gadgets as
previously described by building a logical circuit. Then we build a tripartite graph G with
S ⊆ V(G) by piecing together graphs that emulate the gadgets in the circuit representing
P. By our construction of these gadget graphs, G has an S-tratching if and only if P has a
variable assignment that satisfies all of its clauses. As such, the problem of finding an
S-tratching on a tripartite graph is at least as hard as 1-IN-3 SAT.

Furthermore, one can quickly verify whether or not a given tratching covers S, so
a “yes" answer to the problem of determining the existence of an S-tratching can be
verified quickly. Therefore, the problem of finding an S-tratching on a tripartite graph is
NP-complete.

This technique of constructing gadgets and building a circuit in order to prove a
problem is NP-complete is extremely common. It can be used to prove NP-completeness
for many other problems, such as Yosenabe [4], Zig-Zag Numberlink [1], Super Mario
Bros., Legend of Zelda, Metroid, and PushPush [2].

So it turns out that the Talented Musician Problem is NP-complete and therefore
likely not a tractable problem. If we had an algorithm that, given any input, could
efficiently create a band lineup that uses all talented musicians, then this algorithm
would have to be able to efficiently solve every instance of 1-IN-3 SAT. Complexity
theorists do not believe that NP-complete problems like 1-IN-3 SAT can be efficiently
solved, so it follows that the Talented Musician Problem is also likely not to have an
efficient solution.

4.3 Generalization with more musicians

One could generalize the Talented Musician Problem by adding more musicians to each
band, such as vocalists or keyboard players. If each band requires r musicians and we
have r types of musicians available, then a cooperative band could be represented not by
a triangle, but by a Kr , the complete graph on r vertices. This generalized problem would
be equivalent to determining the existence a set T of vertex-disjoint Kr ’s on an r -colored
graph such that T covers a given S ⊆ V(G). Even in doing so, however, the problem of
finding a setlist that includes every talented musician would remain NP-complete for all
r ≥ 3.

If each band requires r musicians, we again can make gadgets to represent the parts
of a 1-IN-3 SAT circuit. For each gadget, we can add unstarred vertices and edges to each
triangle to change the triangle into a Kr . In Figure 17, we show how a variable gadget
and fork gadget are modified for the case when r = 5. After adding these new vertices,
each gadget still functions as before, and the gadgets can still be identified at their blue
vertices, so the resulting graph is r -colorable. Thus, for any instance P of 1-IN-3 SAT,
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x ¬x y ¬y z ¬z

(x, y, z) (¬x, y,¬z)

x ¬x y ¬y z ¬z

(x, y, z) (¬x, y,¬z)

*

*

*

*

*

* *

*
*

*

*

*

*

*

*

*

*
*

*

Figure 15: The boolean circuit (top) and tripartite graph (bottom) corresponding to
the 1-IN-3-SAT problem {(x, y, z), (¬x, y,¬z)}. This problem has the solution (x, y, z) =
(TRUE, FALSE, FALSE). Similarly, we can find an S-tratching by choosing literal gadgets
x, ¬y , and ¬z.
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x ¬x

(x) (¬x)

x ¬x

(x) (¬x)

*

*

*

*

*

*

*

*

Figure 16: The boolean circuit (top) and tripartite graph (bottom) corresponding to the
1-IN-3-SAT problem {(x), (¬x)}. This instance of 1-IN-3 SAT is unsatisfiable, and the
tripartite graph has no S-tratching. Just as one cannot choose both x and ¬x, choosing
one literal gadget causes the clause gadget attached to the other literal gadget not to be
covered by T.
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xi ¬xi

*

*

*

*

*

*

*

Figure 17: A 5-colored variable gadget and a 5-colored fork gadget. Each triangle from
the original gadget is changed into a K5.

we can create an r -colorable graph G with S ⊆ V(G) such that S can be covered by a set
of vertex disjoint Kr ’s if and only if P has a solution. Therefore, the Talented Musician
Problem remains NP-complete even when more musicians are added to each band.

5 Conclusion

While the problem of determining the existence of a perfect tratching can be proven
to be NP-complete using a reduction from three-dimensional matchings [5], our proof
shows how to emulate boolean circuits by piecing together tripartite graphs that are
constructed to function like Boolean gadgets. It would be intersting to see what other
results can be proven using similar constructions.
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