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Abstract. Using Eulers theorem, geometric sums and Chebyshev polyno-
mials, we prove trigonometric identities involving sums and multiplications of
cosine.



Partial Sum Trigonometric Identities and Chebychev
Polynomials

Sarah Weller

Introduction

In [5] the authors proved a generalization of the identity cos
(
π
3

)
= 1

2
, namely

n∑

k=1

cos
( kπ

2n+ 1

)
(−1)k+1 =

1

2
.

It’s an obvious question whether there there exists an equation of a similar form that gener-
alizes cos (π

4
) =

√
2
2

. We determined that this was not the case so instead we looked towards
cos2 (π

4
) = 1

2
. We found that

cos2
(π

6

)
− cos2

(2π

6

)
=

1

2
,

cos2
(π

8

)
− cos2

(2π

8

)
+ cos2

(3π

8

)
=

1

2
,

cos2
( π

10

)
− cos2

(2π

10

)
+ cos2

(3π

10

)
− cos2

(4π

10

)
=

1

2
,

and so forth. This led us to a generalization of cos2(π
4
) = 1

2
and, by extension, a series of

other identities. In this paper we will discuss different methods for proving these identities,
primarily focusing on the use of Chebyshev polynomials.

Elementary Proofs

Theorem 1. Let n be a natural number. Then

n∑

k=1

cos2
( kπ

2n+ 2

)
(−1)k+1 =

1

2
.

Proof. Our proof will use the following fact:

(1) If x+ y = π then cos x = − cos y.



First, applying the power reducing formula for cos2 θ gives us:

n∑

k=1

cos2
( kπ

2n+ 2

)
(−1)k+1 =

1

2

n∑

k=1

(
1 + cos

( kπ

n+ 1

))
(−1)k+1

=
1

2

n∑

k=1

(−1)k+1 +
1

2

n∑

k=1

cos
( kπ

n+ 1

)
(−1)k+1.

At this point it is important to note two important details:

1. If n is even,
∑n

k=1(−1)k+1 = 0. Then we must show that
∑n

k=1 cos( kπ
n+1

)(−1)k+1 = 1.

2. If n is odd,
∑n

k=1(−1)k+1 = 1. Then we must show that
∑n

k=1 cos( kπ
n+1

)(−1)k+1 = 0.

Case 1. Let n be even.

We will write n = 2m.

By splitting the sum
∑2m

k=1 cos
(

kπ
2m+1

)
(−1)k+1 and letting the summation of the terms for

k ≥ m+ 1 run backwards we get:

m∑

k=1

cos
( kπ

2m+ 1

)
(−1)k+1 +

m∑

k=1

cos
((2m+ 1 − k)π

2m+ 1

)
(−1)2m+2−k.

In [5] it was shown that
m∑

k=1

cos
( kπ

2m+ 1

)
(−1)k+1 =

1

2
,

leaving us to show that

m∑

k=1

cos
((2m+ 1 − k)π

2m+ 1

)
(−1)2m+2−k =

1

2
.

By equation (1) we have cos ( kπ
2m+1

) = − cos
(

(2m+1−k)π
2m+1

)
. But (−1)k+1 and (−1)2m+2−k are

also negatives of each other. Therefore

m∑

k=1

cos
((2m+ 1 − k)π

2m+ 1

)
(−1)2m+2−k =

m∑

k=1

cos
( kπ

2m+ 1

)
(−1)k+1 =

1

2

as desired.

Case 2 can be shown by the same argument and therefore has been omitted. X



A similar proof can be used to show that for n ≥ 2,

n∑

k=1

sin2
( kπ

2n+ 2

)
(−1)k+1 =

(−1)n+1

2
.

Another way to look at this theorem is by observing that the difference between the sum
of terms with odd values in the numerator and the the sum of terms with even values in the
numerator is equal to 1

2
. Interestingly enough, the values of these two separate sums have

their own distinct values. This led to the observation that by taking their sum instead of
their difference we also get a distinct value. This led to the following theorem.

Theorem 2. Let n ≥ 2 be a natural number. Then

n∑

k=1

cos2
(kπ
n

)
=
n

2
.

Proof. First, applying the power reducing formula for cos2 θ gives us:

n∑

k=1

cos2
(kπ
n

)
=

1

2

[ n∑

k=1

1 +
n∑

k=1

cos
(2kπ

n

)]
=
n

2
+

1

2

n∑

k=1

cos
(2kπ

n

)

So, we must show that
∑n

k=1 cos
(

2kπ
n

)
= 0. To do so, we will also show

∑n
k=1 sin

(
2kπ
n

)
= 0.

Looking towards [1] we can use Euler’s formula (cosx+ i sinx = eix):

n∑

k=1

(
cos
(2kπ

n

)
+ i sin

(2kπ

n

))
=

n∑

k=1

(e
i2π
n )k

=
n−1∑

k=0

(e
i2π
n )k =

e(
i2π
n

)
(

1 −
(
e
i2π
n

)n)

1 − e
i2π
n

=
e(

i2π
n

)
(

1 − 1
)

1 − e
i2π
n

= 0.

Therefore,
∑n

k=1 cos
(

2kπ
n

)
= 0 and

∑n
k=1 sin

(
2kπ
n

)
= 0.

X

A similar proof can be used to show that for n ≥ 2,

n∑

k=1

sin2
(kπ
n

)
=
n

2
,

or you can prove this using Theorem 2 and sin2 θ + cos2 θ = 1.



Background

The first author in [5] initially proved specific cases of cos(π
3
) = 1

2
with the use of Chebyshev

polynomials. This work was unpublished [4] but the proofs used in the remainder of this
paper were inspired by his work. Before we go into the proofs involving Chebyshev polyno-
mials, it is first important to develop an understanding of what Chebyshev polynomials are
and how they work. The following definition can be found in [3].

Definition 1. The Chebyshev polynomial, Tn(x), of the first kind is a polynomial in x of
degree n, defined by the relation

Tn(x) = cos(nθ) when x = cos(θ).

For example:

T0(x) = cos(0θ) = 1

T1(x) = cos(θ) = x

T2(x) = cos(2θ) = 2 cos2(θ) − 1 = 2x2 − 1

T3(x) = cos(3θ) = cos(3θ)+cos(θ)−cos(θ) = 2 cos(θ) cos(2θ)−cos(θ) = 4 cos3(θ)−3 cos(θ) = 4x3−3x

It doesn’t take long for these calculations to become too complicated to do by hand.
Fortunately the following is a recursion formula that makes finding these polynomials much
more simple.

Recursion Formula Tn+1(x) = 2xTn(x) − Tn−1(x) for n ≥ 1 and where T0(x) = 1 and
T1(x) = x.

Proof. Let T0(x) = 1 and T1(x) = x and let n ≥ 1. Then

Tn+1(x) = cos((n+ 1)θ).

= 2
(cos((n+ 1)θ) + cos((n− 1)θ)

2

)
− cos((n− 1)θ

= 2 cos(θ) cos(nθ) − cos((n− 1)θ)

2xTn(x) − Tn−1(x)

X

It then becomes easier to continue computing polynomials:

T4(x) = 8x4 − 6x2 − 2x2 + 1 = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 16x3 + x− 4x3 + 3x = 16x5 − 20x3 + 4x,

and so on. The first five examples can be seen in the graph below. Note that each polynomial
with even degree pass through the points (-1,1) and (1,1) while each polynomial with odd
degree pass through the points (-1,-1) and (1,1). These will be defined in Properties of
Chebyshev Polynomials (a) and (b).

Properties of Chebyshev Polynomials



Figure 1: Chebyshev Polynomial of the First Kind

(a) Let n be a natural number. Then Tn(−1) = (−1)n.

(b) Let n be a natural number. Then Tn(1) = 1.

(c) The leading term of Tn(x) equals 2n−1xn.

(d) If n is odd (even) then Tn(x) involves only odd (even) powers of n.

(e) If n is odd then the constant term is equal to zero.

(f) If n = 2m then the constant term of Tn(x) is equal to (−1)m.

(g) If n = 2m+ 1 the last term of Tn(x) is equal to (−1)mnx.

(h) If n is even the second to last term of Tn(x) is equal to n2

2
x2.

(i) The extrema of Tn(x) occur at

x = cos
(kπ
n

)
, (k = 0, 1, 2, . . . , n).

Tn(x) is equal to 1 when k is even and −1 when k is odd.

Proof of (a)

Proof. Let n = 0. Then T0(−1) = 1.
Let n = 1. Then T1(−1) = −1.
Let n = 2. Then T2(−1) = −2(−1) − 1 = 1.
Assume Tn(−1) = −1 for even n and Tn(−1) = 1 for odd n. Consider n+ 1. Then

Tn+1(−1) = 2(−1)Tn(−1) − Tn−1(−1)

= 2(−1)(−1)n − (−1)−1

= (−1)n−1[2(−1)2 − 1]

= (−1)n−1

= (−1)n+1

X



Properties (b)-(h) are proven similarly to (a) through the recursion formula.

Proof of (i)

Proof. The extrema of Tn(x) correspond to the extrema of cos(nθ). Since

d

dx
Tn(x) =

d

dx
cos(nθ) =

d
dθ

cos(nθ)
dx
dθ

=
n sin(nθ)

sin(θ)
,

the extrema of Tn(x) occur at the zeros of sin(nθ), namely at

x = cos
(kπ
n

)
, (k = 0, 1, 2, . . . , n).

Then, since Tn(x) = cos(nθ), when we plug in θ = kπ
n

we are left with cos(kπ). Hence we
get the value of 1 for even k and −1 for odd k. X

The remaining facts will be needed in order to set up our proofs:

1. If a zero x0 of a polynomial f(x) is also a local extremum, then the zero is a repeated
root of even multiplicity.

2. If x+ y = π then cos x = − cos y.

3. If x+ y = 2π then cos x = cos y.

Chebyshev Polynomial Proofs

The theorem below was first proven in [2], therefore the Chebyshev polynomial proof of
this identity is an alternative method.

Theorem 3. Let m be a non-negative integer. Then

m∏

k=0

cos
( kπ

2m+ 1

)
=

1

2m

Proof. Let n = 2m+ 1 where m is a non-negative integer. By property (i), Tn(x) = −1 at

x = cos
(
kπ
n

)
for odd k. Note that there are n zeros of Tn(x) + 1. By property (a), x = −1

is a root of Tn(x) + 1, so Tn(x) + 1 is divisible by x+ 1. By property (c), Tn(x)+1
x+1

has a
leading term of 2n−1xn where there are n− 1 zeros remaining. By fact 1, each root must
have a multiplicity of two for Tn(x)+1

x+1
. Using this information we can factor Tn(x) + 1 as

follows:

Tn(x) + 1 = 2n−1(x+ 1)

n−1
2∏

k=1

(
x− cos

((2k − 1)π

n

))2



Note that by property (c) the last term of Tn(x) + 1 is the constant 1. Now, setting this
equal to the last term derived from the previous equation:

1 = 2n−1
n−1
2∏

k=1

cos2
((2k − 1)π

n

)

Since n is odd we will re-write it as n = 2m+ 1 where m ≥ 1 giving us

1 = 22m

m∏

k=1

cos2
((2k − 1)π

2m+ 1

)

Note that the numerators of the equation on the right run through all odd values less than
or equal to 2m+ 1. Using fact 2 when the numerator is greater than m the equation can be
written as

1

22m
=

m∏

k=1

cos2
( kπ

2m+ 1

)
.

Then, taking the square root:

1

2m
=

m∏

k=1

cos
( kπ

2m+ 1

)
=

m∏

k=0

cos
( kπ

2m+ 1

)

for m ≥ 0.
X

This equation of course implies that

n∏

k=0

cos2
( kπ

2n+ 1

)
=

1

22n

which implies
m
2∏

k=0

cos2
( 2kπ

2m+ 2

)
=

1

2m

where m = 2n. This observation led to the following theorem.

Theorem 4. Let m be a non-negative integer. Then

m∏

k=0

cos2
( kπ

2m+ 2

)
=

2m+ 2

22m+1

Proof. Case 1.
Part 1.

From our previous observation of
∏n

k=0 cos2
(

kπ
2n+1

)
= 1

22n
we can then say

m
2∏

k=0

cos2
( 2kπ

2m+ 2

)
=

1

2m



where m = 2n. Note that this covers the even terms in the numerator leaving us to show
that when m is even:

m
2∏

k=1

cos2
((2k − 1)π

2m+ 2

)
=

2m+ 2

2m+1
.

Part 2. Let n = 2m where m is odd.
Using methods similar to the ones in the previous proof we can use properties (c) and (i) to
derive the following:

Tn(x) + 1 = 2n−1
n
2∏

k=1

(
x− cos

((2k − 1)π

n

))2

Tn(x) + 1 = 22m−1
m∏

k=1

(
x− cos

((2k − 1)π

2m

))2
.

Since m is odd, the last term of Tn(x) + 1 is equal to zero. Now observe that an x2 can be
factored out of the equation on the left and on the right since we get a x = 0 when
k = m+1

2
. Then:

Tn(x) + 1 = 22m−1x2
m−1

2∏

k=1

(
x− cos

((2k − 1)π

2m

))2(
x− cos

((2m− 2k + 1)π

2m

))2

Dividing both sides by x2 and by taking the last term (i.e. the second to last term of
Tn(x)):

n2

2
=

4m2

2
= 22m−1

m−1
2∏

k=1

(
cos2

((2k − 1)π

2m

)
cos2

((2m− 2k + 1)π

2m

))

4m2

2m
=

m−1
2∏

k=1

(
cos2

((2k − 1)π

2m

)
cos2

((2m− 2k + 1)π

2m

))
.

Then by using fact 2 and by noting that the terms are squared:

4m2

22m
=

m−1
2∏

k=1

(
cos4

((2k − 1)π

2m

))
.

Taking the square root:

2m

2m
=

m−1
2∏

k=1

(
cos2

((2k − 1)π

2m

))

Then by replacing m with m+ 1:

2m+ 2

2m+1
=

m
2∏

k=1

cos2
((2k − 1)π

2m+ 2

)



when m is even, as desired. Then, by taking the results from part 1 and multiplying it by

the results in part two we get:

n∏

k=0

cos2
( kπ

2n+ 2

)
=

2n+ 2

22n+1

For even m.

Case 2.
Part 1. Let n = 2m, where m is even. Using properties (a)-(c) and (i) we can derive the
following:

Tn(x) − 1 = 2n−1
(
x− 1

)(
x+ 1

) n−2
2∏

k=1

(
x− cos

(2kπ

n

))2

Replacing n with 2m:

= 22m−1
(
x− 1

)(
x+ 1

)m−1∏

k=1

(
x− cos

(2kπ

2m

))2

Since m is even, the last term of Tn(x) − 1 is equal to zero. Now observe that an x2 can be
factored out of the equation on the left and on the right when k = m

2
. Hence the equation

can be re-written as follows:

Tn(x) − 1 = 22m−1x2
(
x2 − 1

) m−2
2∏

k=1

[(
x− cos

(2kπ

2m

))2(
x− cos

((2m− 2k)π

2m

))2]

Dividing out a x2 from both sides and taking the last term:

n2

2
=

4m2

2
= 22m−1

m−2
2∏

k=1

cos2
(2kπ

2m

)
cos2

((2m− 2k)π

2m

)

We then divide 2m−1 and take the square root of both sides:

2m

2m
=

m−2
2∏

k=1

cos
(2kπ

2m

)
cos
((2m− 2k)π

2m

)

When then use fact 2 to get:

2m

2m
=

m−2∏

k=1

cos
(2kπ

2m

)

Replacong m with m+ 1:

2m+ 2

2m+1
=

m−1∏

k=0

cos
( 2kπ

2m+ 2

)



When m is odd.

Part 2.
Let n be an even number such that when n = 2m, m is even.

Tn(x) + 1 = 2n−1
n
2∏

k=1

(
x− cos

((2k − 1)π

n

))2

Since m is even the last term of Tn(x) is 2. Then, taking the the last term:

2 = 2n−1
n
2∏

k=1

cos2
((2k − 1)π

n

)

Re-writing it in terms of m:

1

22m−2 =
m∏

k=1

cos2
((2k − 1)π

2m

)

We can replace m with m+ 1 to get:

1

22m
=

m+1∏

k=1

cos2
((2k − 1)π

2m+ 2

)
.

Taking the quare root:

1

2m
=

m+1∏

k=1

cos
((2k − 1)π

2m+ 2

)

Then, using fact 2:

1

2m
=

m+1∏

k=1

cos2
((2k − 1)π

2m+ 2

)

when m is odd.

Then by taking the results from part 1 and multiplying them by the results of part 2 we get:

m∏

k=0

cos2
( kπ

2m+ 2

)
=

2m+ 2

22m+1

for odd m.
Thus, by case 1 and case 2, we get

n∏

k=0

cos2
( kπ

2n+ 2

)
=

2n+ 2

22n+1

for all n. X



Optional Reading

Although Theorem 1 and Theorem 2 have already been proven, it’s important to highlight
that these theorems can also be proven with Chebyshev polynomials and in more than one
way. Since this section adds no new information than what has previously been given, this
section is left to readers who wish to further familiarize themselves with Chebyshev
polynomials and their relations to trigonometric identities.

Theorem 1. Let n be a natural number. Then
n∑

k=1

cos2
( kπ

2n+ 2

)
(−1)k+1 =

1

2
.

Proof. Case 1. Let n be an odd integer where n ≥ 1. Looking towards the proof given for
Theorem 3, we can derive the following equation:

Tn(x) + 1

x+ 1
= 2n−1

n−1
2∏

k=1

(
x− cos

((2k − 1)π

n

))2

Then separating the square and applying fact 2:

= 2n−1
n−1
2∏

k=1

(
x− cos

((2k − 1)π

n

))(
x+ cos

((n− (2k − 1))π

n

))

= 2n−1
n−1
2∏

k=1

(
x− 2 cos2

((2k − 1)π

2n

)
+ 1
)(
x+ 2 cos2

((n− (2k − 1))π

2n

)
− 1
)
.

Then, the x term with the second highest power can be concluded to have the following
coefficient:

−2n−1xn−2
n−1
2∑

k=1

(
2 cos2

((2k + 1)π

2n

)
− 2 cos2

((n− (2k + 1))π

2n

))
.

Then, using fact 2 once more:

= −2nxn−2
n−1∑

k=1

cos2
(kπ

2n

)
(−1)k+1.

It can then be shown by long division that the coefficient for the second term of Tn(x)+1
x+1

is
−2n−1.
Setting the two sides equal to each other, you get:

2nxn−2
n−1∑

k=1

cos2
(kπ

2n

)
(−1)k+1 = 2n−1xn−2



n−1∑

k=1

cos2
(kπ

2n

)
(−1)k+1 =

1

2
.

Then replace n with n+ 1 to get:

n∑

k=1

cos2
( kπ

2n+ 2

)
(−1)k+1 =

1

2
,

For even n.

Case 2. Let n be even. By property (i), Tn(x) = −1 at x = cos
(
kπ
n

)
for odd k and

Tn(x) = 1 at x = cos
(
kπ
n

)
for even k.

Part 1: Using methods found in the proof of Theorem 3 we can derive the following
equation:

Tn(x) + 1 = 2n−1
n
2∏

k=1

(
x− cos

((2k − 1)π

n

))2

= 2n−1
n
2∏

k=1

(
x− 2 cos2

((2k − 1)π

2n

)
+ 1
)2
.

By property (d), there are no odd powers, so the coefficient for xn−1 is equal to zero. Then,
using the above equation, we can conclude the coefficient of xn−1 to be following:

0 = 2n

n
2∑

k=1

(
− 2 cos2

((2k − 1)π

2n

)
+ 1
)

0 = 2

n
2∑

k=1

cos2
((2k − 1)π

2n

)
− n

2

n

4
=

n
2∑

k=1

cos2
((2k − 1)π

2n

)
.

Then, by replacing n with n+ 1:

n+ 1

4
=

n+1
2∑

k=1

cos2
((2k − 1)π

2n+ 2

)

For odd n ≥ 1.

Part 2: Consider Tn(x) − 1. The zeros of Tn(x) − 1 occur at x = cos
(
kπ
n

)
for even k. Note

that this then means that there are n
2

zeros of Tn(x) − 1 and recall that x = 1 and x = −1



are endpoints. Then, all other zeros of Tn(x) − 1 have a multiplicity of 2 giving us the
following:

Tn(x) − 1 = 2n−1
(
x− cos

(0π

n

))(
x− cos

(nπ
n

)) n−2
2∏

k=1

(
x− cos

(2kπ

n

))2

By separating the square and by using fact 2,

= 2n−1
(
x− 1

)(
x+ 1

) n−2
2∏

k=1

(
x− cos

(2kπ

n

))(
x− cos

(2(n− k)π

n

))

= 2n−1
(
x− 1

)(
x+ 1

) n−2
2∏

k=1

(
x− 2 cos2

(kπ
n

)
+ 1
)(
x− 2 cos2

((n− k)π

n

)
+ 1
)
.

Finding coefficient for second term:

0xn−1 = 2nxn−1
n−2
2∑

k=1

(
− 2 cos2

(2kπ

2n

)
− 2 cos2

(2(n− k)π

2n

)
+ 2
)

We can divide out 2nxn−1. Note that cos(π
2
) = 0 so the previous term can be re-written as:

0 =
n−1∑

k=1

(
− 2 cos2

(2kπ

2n

)
+ 1
)
− 1

1 =
n−1∑

k=1

(
− 2 cos2

(2kπ

2n

)
+ 1
)

Then by replacing n with n+ 1:

1 =
n∑

k=1

(
− 2 cos2

( 2kπ

2n+ 2

)
+ 1
)

1 = −2
n∑

k=1

cos2
( 2kπ

2n+ 2

)
+ n

n− 1

2
=

n∑

k=1

cos2
( 2kπ

2n+ 2

)

Note that cos(π
2
) = 0 (i.e. at k = n+1

2
) allowing us to take out the middle term. Then,

using fact 2 for k terms greater than n+1
2

we get:

n− 1

2
= 2

n−1
2∑

k=1

cos2
( 2kπ

2n+ 2

)



n− 1

4
=

n−1
2∑

k=1

cos2
( 2kπ

2n+ 2

)

For odd n > 1.

We then can subtract the results of part 2 from the results of part 1 to get:

n+ 1

4
− n− 1

4
=

n∑

k=1

(
cos2

((2k − 1)π

2n+ 2

)
− cos2

( 2kπ

2n+ 2

))

Which can be simplified to:

1

2
=

n∑

k=1

cos2
( kπ

2n+ 2

)
(−1)k+1

for odd n.
Therefore, by case 1 and case 2,

∑n
k=1 cos2

(
kπ

2n+2

)
(−1)k+1 = 1

2
for all natural numbers

n. X

Note that if you instead add together the two results from part one and two in Case 2 of
our proof, you instead get

n∑

k=1

cos2
(kπ
n

)
=
n

2

for odd n ≥ 3. This leads us into our second theorem.

Theorem 2. Let n ≥ 2 be a natural number. Then

n∑

k=1

cos2
(kπ
n

)
=
n

2
.

Proof. We already know by our observation from the previous proof that out theorem
holds true for n ≥ 3 where n is odd. Then only have to show it holds true for even n. So,
let n ≥ 2 be an even integer. Using methods similar to the ones in the previous proof we
can derive the following:

Tn(x) − 1 = 2n−1
(
x− cos

(0π

n

))(
x− cos

(nπ
n

)) n−2
2∏

k=1

(
x− cos

(2kπ

n

))2

By separating the square and using fact 2:

= 2n−1(x− 1)(x+ 1)

n−2
2∏

k=1

[(
x− cos

(2kπ

n

))(
x− cos

(2(n− k)π

n

))]



= 2n−1(x− 1)(x+ 1)

n−2
2∏

k=1

[(
x− 2 cos2

(kπ
n

)
+ 1
)(
x− 2 cos2

((n− k)π

n

)
+ 1
)]

Taking the second term:

0xn−1 = 2n−1xn−1
n−2
2∑

k=1

(
− 2 cos2

(kπ
n

)
− 2 cos2

((n− k)π

n

)
+ 2
)

Note that cos π
2

= 0 so the above equation can be written as:

0xn−1 = 2n−1xn−1
n−1∑

k=1

(
− 2 cos2

(kπ
n

)
+ 1
)
− 1

0 =
n∑

k=1

(
− 2 cos2

(kπ
n

)
+ 1
)

0 = −2
n∑

k=1

cos2
(kπ
n

)
+ n

n

2
=

n∑

k=1

cos2
(kπ
n

)

For even n.
X
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