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Abstract  

  

Hamather, Hazen J. 

M.S.M.E.   

Rose-Hulman Institute of Technology   

May 2018 

Gait Modeling Using Genetic Algorithm Optimized Four-Bar Linkages 

Thesis Advisor:  Dr. Bradley T. Burchett  

 

 Important in diagnosing gait abnormalities and pathologies is knowing the position of 

the leg at various points throughout the gait cycle.  This is currently done with motion capture 

technology but the demand for Inertial Measurement Unit (IMU) based navigation and position 

tracking has been on the rise. A required component of this alternative is a gait model that can 

accurately predict the position of points of interest. 

 In this thesis, a Kalman Filter is constructed using a contrived model to test if, given an 

accurate gait model, the filter can converge to an accurate and true position solution. Also 

presented is a Genetic Algorithm approach to dynamic system modeling. The dynamic system is 

made up of a four-bar linkage and has the ability to adapt to different gaits, both healthy and 

pathological.  

 Results for the Kalman Filter are illustrated through convergence plots, and final 

position solutions and results for the Genetic Algorithm are given by position solutions of the 

four-bar linkage. These results show that a genetic approach is robust and has application in gait 

analysis.  
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1. INTRODUCTION 

 Humans have perfected the art of bipedal locomotion in its many forms. Competitions 

exist to test who can run the fastest, run the furthest, jump the highest, and jump the longest. 

Each day, the majority of humans are able to walk upright and unassisted on their two lower 

limbs. In order for this phenomenon to be possible, a sophisticated and finely tuned controller, as 

well as a complex and versatile skeletomuscular system, must exist. The finely tuned controller 

is obviously the brain, and the skeletomuscular system includes each bone and muscle of the leg 

distal to the hip. Other components aid in bipedalism, such as the spinal cord, nerves, tendons, 

and ligaments, but these elements are not included in this research.  

1.1 Bipedal locomotive definitions, structure, and components 

 The system responsible for the ability to walk is complex for a good reason. For a single 

body to be capable of not only walking, but jogging, sprinting, jumping, and more, joints and 

other structures must be suited for multiple use cases. To add another level of sophistication, the 

human body has the capacity to alter its structure and composition when influenced by outside 

stimuli. An example of this occurs when athletes are injured. An athlete who experiences a 

broken ankle will be unable to play for at least 6 weeks while the injury heals. During the healing 

period, mobility is limited, and other structures such as the Medial Collateral Ligament (MCL) 

may become more fragile and susceptible to injury, unless properly reconditioned. Structure 

alteration also occurs in the other direction. Lifting weights and exercising encourages muscle 

growth due to self-induced stress.  

 Fundamental to understanding the gait cycle and joint dynamics, the anatomical axes 

describe movements of structures in a defined way. Figure 1 [1] displays these axes. 
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Figure 1: Anatomical axes 

 The plane cutting the body in half in the vertical direction is the transverse plane. 

Cranial (superior) to the transverse plane is the head, and caudal (inferior) to the same plane are 

the feet. The plane running through the center of the chest is the sagittal plane which cuts the 

body into left and right, referred to as lateral left and lateral right. The final plane is the frontal 

(coronal) plane, which cuts the body into front and back. Ventral (anterior) refers to the front, 

and dorsal (posterior) refers to the back. Figure 2 [2] better describes movements of structures 

and joints [3]. 
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Figure 2: Anatomical directional terms 

 A healthy gait begins with the coxofemoral joint, otherwise known as the hip. This joint 

includes a socket called the acetabulum allowing the femur and its femoral head to join the torso 

[3]. A diagram of this is located in Figure 3 [4]. 
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Figure 3: Diagram of the coxofemoral joint including pelvis and femur 

 Throughout the gait cycle, the coxofemoral joint will experience a range of motion from 

approximately 25° flexion to 20° extension [5]. These values may vary slightly but should 

remain consistent for healthy gait patterns. 

 Next is the knee. Seen in Figure 4 [6], this joint is actually comprised up of two 

symbiotic joints, the knee has a constantly changing center of rotation, resulting in an 

architecture that has proven itself difficult to model accurately [3]. The two joints making up the 

knee are the tibiofemoral joint and the patellofemoral joint. The tibiofemoral joint functions as 

the joint between the distal femur and proximal tibia while the patellofemoral joint serves to 

connect the posterior patella and the femur [3].  



5 

 

 

Figure 4: Diagram of the knee joint showing entering femur and exiting tibia and fibula 

 The knee serves to provide mobility yet stability between the femur, tibia, and fibula. 

Aiding the two joints are the four ligaments of the knee commonly known as the LCL, ACL, 

PCL, and MCL. Good range of motion for this joint is approximately 5° flexion through 60° 

flexion [5]. Note that healthy knees should not exceed 5° flexion due to the risk of 

hyperextension, resulting in injury. The aforementioned ligaments aid in restraining the knee to 

safe ranges of motion. 

 The connector between knee and ankle is the tibia and fibula. The models used in this 

research assume there is a single link, the tibia, joining the knee and ankle together. Both bones 

have fixed ends, allowing for the simplification. If the position of one is known, the position of 

the other can be calculated using basic anatomy.  

 The ankle and foot consists of 28 bones combining to create 25 joints which can be seen 

in Figure 5 [7]. With this complexity, the ankle is capable of dorsiflexion and plantarflexion in 

the sagittal plane, inversion and eversion in the frontal plane, and abduction and adduction in the 

transverse plane.  
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Figure 5: Simple ankle and foot complex 

 The major joints in the ankle are the ankle joint itself, the tibiotalar, the subtalar joint, 

and the talonavicular joint. These joints provide stability and agility for the gait cycle but add a 

modeling complexity that is not necessary for a two-dimensional model. Therefore, the ankle is 

modeled as a pin joint. 

1.2 Gait Analysis and Dynamics 

 Similar to each person having a different fingerprint, individual gait is unique, but, in 

most cases, the same characteristics identify healthiness of gait. Those characteristics are range 

of motion, torque demand, and muscle action. For the purposes of this research, all of the focus 

has been on range of motion, but it is understood that torque demand and muscle action give 

large amounts of insight that is being overlooked. 
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 Before delving into analysis and dynamics, the following explanation of the gait cycle 

assumes the right leg is the subject of analysis. For reference, refer to Figure 6 [8] for the 

following paragraphs. 

 

Figure 6: Diagram of the gait cycle with specific events labeled 

 The cycle begins with the initial contact. Initial contact occurs when the right heel 

makes its first contact with the ground. The next event to take place is the load response followed 

by heel off. At this instant, the right heel begins to rise off the ground, and the opposite (left) leg 

becomes the leading leg. After the leading leg makes contact and accepts the weight, the right leg 

experiences toe off, beginning its terminal swing to end at the original starting point, initial 

contact of the right heel.  

 At the opening of the cycle, the subject is in the stance phase, labeled as such to signify 

the right leg is bearing the weight of the body. The swing phase exists from right foot toe off to 

initial contact for the next gait cycle. Appropriately named, the swing phase earned its name 

from the observation that the right leg is no longer weight bearing but rather swinging through 

the hips’ range of motion to return to a stance phase position [5]. To analyze the left leg, simply 

1) offset the beginning of the gait cycle such that the opposite initial contact becomes initial 

contact or 2) say initial contact is the left leg instead of the right leg. Much like setting a 

coordinate system, defining which foot signals initial contact is semantics. 

1.3 Introduction to this work 

 Researchers have heavily studied the healthy gait cycle, but recently scientists, doctors, 

and engineers have been devoting more time and energy to gait pathologies. Defined to be 
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diseases and abnormalities in gait, these pathologies take many different forms. A few simple 

gait pathologies include internal rotation of the hip, extension thrust of the knee, foot slap of the 

ankle, and clawed toes [5]. With so many pathologies to study, this research focuses on two 

common gait abnormalities: foot drag and drop foot.  

 Patients who have suffered a stroke will often exhibit symptoms of foot drag. Strokes 

have a tendency to paralyze (or at least severely inhibit mobility in) half of the patient’s body 

along the sagittal plane, and the paralyzed side will typically show signs of a dragging foot. 

Referring to Figure 6, a dragging foot involves sustained contact of the right foot during the 

swing phase [5]. Dragging is not just hard on shoes and socks, it presents a fall hazard to the 

geriatric community already plagued with decreasing bone density.  

 Patients diagnosed with Parkinson’s disease commonly show signs of another gait 

pathology known as drop foot or foot-flat contact. Occurring during the loading response period, 

foot-flat contact, in essence, removes the first 10% of the gait cycle by substituting initial contact 

of the heel for initial contact of the entire foot. Weight acceptance occurs in an instant resulting 

in momentary instability of the subject [5]. 

 BlackTop Labs LLC seeks to be the future standard of care in gait diagnostics and 

rehabilitation. With this in mind, their focus is on wearable technologies that can give specific 

insights on patients who suffer from either foot drag or drop foot. BlackTop Labs LLC has 

collaborated with Hamather to make this happen. The wearable technologies are inertial 

measurement units (IMU) capable of measure angular rates in the three different planes and these 

sensors have Gaussian noise, allowing for the use of a Kalman Filter when a correct gait model is 

present. The results of this research will demonstrate that it is possible to create two-dimensional, 

patient-specific gait models by use of a Genetic Algorithm to be implemented within a Kalman 

Filter. While not explicitly focusing on Kalman filtering, this research will cover basic filtering 

techniques and illustrate the power and versatility of the Genetic Algorithm. 

1.4 Current technologies 

 In its current state, gait analysis technologies leverage either a doctor with specialized 

training or a motion capture technology. Not to diminish the ability to spot gait pathologies, but 

doctors and physical therapists are great at telling a patient what is wrong, not exactly the 

severity of the problem. The benefit of this procedure, since it involves just a doctor, is 
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affordability. Most insurance companies will pay for this treatment, but in exchange for 

affordability, the patient loses a high degree of accuracy.  

 A process not directly involving doctors is motion capture technology as seen in Figure 

7. Cameras surround the patient who wears reflective spheres. These cameras both emit and 

detect infrared light not seen by the human eye. The software is then able to detect the reflective 

spheres and piece together a three-dimensional picture of the gait cycle for analysis. These 

software and camera packages are accurate to within a few millimeters, but they are expensive 

and not covered by most insurance companies, resulting in a new market opportunity for 

BlackTop Labs. This is where the company seeks to make a beachhead in the medical device 

market. If motion capture can be replaced with a cheaper option that offers the same accuracy, 

then BlackTop labs will become the standard of diagnosis and standard of care in gait 

rehabilitation and ultimately improve patient outcomes. 

 

 

Figure 7: Motion capture with reflective spheres at initial contact 
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2. ACQUIRING GAIT DATA 

 This section deals with gathering reasonable data for an Extended Kalman Filter (EKF) 

and a Genetic Algorithm (GA). A model was created in order to generate known data that could 

then be corrupted to test the capabilities and sophistication of both an EKF and a GA. 

2.1 Simulated gait data via pull toy model 

 The first model stemmed from an old pull behind toy. Originally built by the Amish and 

used by children, the legs move up, down, and sideways, giving the look of a trotting horse. The 

idea for this model comes from Figure 8.  

 

Figure 8: Pull toy simulating a double jointed model 

Figure 9 gives the two-link equivalent system used in the kinematics derivation. 
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Figure 9: Two link dynamic model of femur and tibia 

 The model begins with a few assumptions. The first assumption is constant velocity. 

The horse will move forward at a constant velocity of  

 v = 1
m

s
 (2.1) 

to make the calculations minutely simpler. The length of the lower link connecting to the input 

crank to link LBC is  

 rC = 0.17 m. (2.2) 

Calculating the angular velocity of the wheel is simple, 

 ωQ =
v

rC
 (2.3) 

and the length of the first link is chosen to be similar to that of the average human femur 

 LAB = 0.48 m. (2.4) 

The second link in the model has a length similar to that of the average tibia 
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 LBC = 0.36 m. (2.5) 

 With a designed system, it is now possible to perform the kinematic analysis required to 

gather angular rate data. With constant ωQ, it is possible to calculate the angle at which the 

wheel has rotated at each instant in time 

 θQ(t) =  ωt.  (2.6) 

Using θQ(t), the position of point 𝐶 can be calculated for all time t. From here on, θQ is used 

instead of θQ(t) for simplicity.  

 rCx = rC cos(θQ) (2.7) 

 rCy = rCsin (θQ) (2.8) 

as well as the velocity 

 vCx =  −ωQrCsin (θQ) (2.9) 

 vCy = ωQrC cos(θQ). (2.10) 

Initial conditions are  

 θ10 = 200° (2.11) 

 θ20 = 110° (2.12) 

and the pivot acting as the hip joint for the toy is assumed to have no vertical displacement 

placing  

 𝑟𝐴𝑥 = 𝑟𝐶𝑥 + 𝐿𝐵𝐶 𝑐𝑜𝑠(𝜃20) + 𝐿𝐴𝐵𝑐𝑜𝑠 (𝜃10 − 𝜋) (2.13) 

 rAy = rCy +  LBC sin(θ20) + LAB sin(θ10 − π)) (2.14) 

for all time t.  

With no vertical displacement, the velocity of A is 

 vAX = ωQrQ (2.15) 

 vAy = 0. (2.16) 
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The position and velocity of link joint B is computed from both directions A and C. This places a 

constraint on the solution of B. Beginning with the definition of position 

 rB⃗⃗  ⃗ =  r A + r BA (2.17) 

the position of B is represented as 

 r B = r A + LAB(sin (θ1)i + cos(θ1) j). (2.18) 

Breaking this vector into its components gives 

 𝑟𝐵𝑥 = 𝑟𝐴𝑥 + 𝐿𝐴𝐵𝑐𝑜𝑠 (𝜃1) (2.19) 

 rBy = rAy + LAB sin(θ1). (2.20) 

From the other direction, the position of B is 

 r B = r C + r BC  (2.21) 

yielding  

 𝑟 𝐵 = 𝑟 𝐶 + 𝐿𝐵𝐶(𝑐𝑜𝑠(𝜃2) 𝑖̂ + 𝑠𝑖𝑛(𝜃2) 𝑗̂). (2.22) 

Simplifying this system into its components gives 

 rBx = rCx + LABcos (θ2) (2.23) 

 rBy = rCy + LAB sin(θ2). (2.24) 

The velocity components of B starting with point C gives  

 v⃗ B = v⃗ C + ω⃗⃗ BC × r BC . (2.25) 

Expanding (2.26) shows  

 v⃗ B = v⃗ C + ωBCk̂  × LBC(cos(θ2) î + sin(θ2) j)̂ (2.26) 

and breaking this into its components gives 

 vBx =  −ωQrCsin (θQ) − ωBCLBCsin (θ2) (2.27) 

 vBy = ωQrC cos(θQ) +  ωBCLBC cos(θ2). (2.28) 

Representing the velocity of B from point A yields 
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 v⃗ B = v⃗ A + ω⃗⃗ AB × r BA . (2.29) 

Expanding the cross product gives 

 v⃗ B = v⃗ A + ωABk̂ × LAB(cos(θ1) î + sin(θ1) j)̂. (2.30) 

Finally, simplifying (2.31) into the principle components shows that 

 vBx = −ωABLABsin (θ1) (2.31) 

 vBy = ωABLAB cos(θ1). (2.32) 

The state vector of the system [9] turns out to be  

 

x = [

θ1
θ2
ωAB
ωBC

] (2.33) 

and here arises a problem. After taking the derivative of the state vector, angular acceleration 

terms appear. The current kinematics equations provide no way of estimating these parameters, 

as angular accelerations never appear in any of the equations. 

 

ẋ = [

ωAB
ωBC
αAB
αBC

] (2.34) 

 If angular accelerations are assumed to be zero, an observability issue arises. This issue 

was discovered in the first system design. In the linear case, the observability matrix is created 

with combinations of the state and measurement vectors.  

 

S =

[
 
 
 
 
 
 
C
CA
CA2

.

.

.
CAn−1]

 
 
 
 
 
 

 (2.35) 

 The rank of S must be equal to the number of states in the system, where C and A are 

output and state matrices, respectively. When angular accelerations are assumed to be zero, the 
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rank becomes two resulting in an unobservable system which derails the Kalman filter. This was 

a sticking point early in the research that proved to be a valuable learning experience. 

 The same process used for velocity kinematics governs the angular acceleration 

kinematics, and the finer details are omitted here. Angular acceleration kinematics say  

 aB⃗⃗⃗⃗ = a⃗ A + α⃗⃗ AB × r BA + ω⃗⃗ AB × (ω⃗⃗ AB × r BA) (2.36) 

 and 

 aB⃗⃗⃗⃗ = a⃗ C + α⃗⃗ BC × r BC + ω⃗⃗ BC × (ω⃗⃗ BC × r BC). (2.37) 

After expanding each term and taking the correct cross products, breaking everything down into 

x and y components yields 

 −αABLAB sin(θ1) − ωAB
2 LAB cos(θ1) = −ωQ

2 rC cos(θQ) − αBCLBC sin(θ2) − ωBC
2 LBCcos (θ2) (2.38) 

 in the x-direction and  

 αABLAB cos(θ1) − ωAB
2 LAB sin(θ1) = −ωQ

2 rC sin(θQ) + αBCLBC cos(θ2) − ωBC
2 LBCsin (θ2) (2.39) 

in the y-direction. The system is now observable for this setup and ready for Kalman Filter 

implementation. 

2.2 Four-bar linkage model 

 Instead of using a two-link system with a constant angular rate to drive the model 

forward, a more realistic model is desired. Simple pedestrian observation shows that ankle path 

does not look like the circle from the two-link model seen in Figure 10. But, this does not negate 

the previous model. Using contrived data for the EKF will tell whether a Kalman Filter is 

suitable for this type of problem.  
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Figure 10: Ankle path from two-link kinematic model with constant driving angular rate 

 Using a four-bar linkage is the way to accomplish a more realistic representation of 

driving healthy gait. A four-bar linkage is precisely what it sounds like, but this gait model will 

use a special type of four-bar system, the Hoeken linkage, named after Karl Hoeken.  

 A traditional four-bar linkage system uses four links with one of the links acting as the 

crank. Figure 11 shows a basic four-bar system with link 𝑎 acting as the crank where all links are 

connected with a pin joint. Varying the length of the other links produces different system 

behaviors. Small changes in length lengths can have drastic effects and Karl Hoeken discovered 

a special case that has interesting characteristics.  
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Figure 11: Four-bar linkage 

The Hoeken system also has labeled joint connections such as those found in Figure 12. 

 

Figure 12: Four-bar linkage revolute joints 

The Hoeken system uses link 𝑎 as the driving link, and it must be the shortest link. For a given 

value of a, other link lengths are as follows: 

 b = 2.5a 
(2.41) 
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 c = 2.5a (2.42) 

 d = 2a. (2.43) 

These dimensions yield the path seen in Figure 13 when a = 2.  

 

Figure 13: Hoeken link revolute joint paths 

 This may not resemble any form of recognizable gait, but something happens when the 

length of b is doubled and referred to as e. Doing this results in a system that looks like Figure 

14. 
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Figure 14: Complete Hoeken system 

 The connection between link b and c is still allowed to pivot, but the path made by the 

end of link e is very interesting. Seeing a snapshot of the entire system with the path of the end 

effector gives Figure 15. 
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Figure 15: Path of end effector e with Hoeken link system 

Although this system may not exactly model healthy gait ankle path, this system properly models 

heel-strike through toe-off, which is more accurate than the previous two-link model. 

 Because each person’s gait is unique, a Genetic Algorithm (GA) is explored here for 

parameter estimation. Allowing a GA to optimize four-bar parameters to model human gait is a 

novel solution. Unique gait models tailored to patients will give the Kalman filter a good 

nonlinear model and improve its accuracy. 

 It may seem as if the two-link model is being thrown away, but the two-link model 

dynamics are still relevant. The femur and tibia are still modeled as single links connected by a 

pin, where the only difference is the way the model is driven. The end effector of link 𝑒 acts as 

the ankle joint with a known path.   

2.3 Motion capture with Qualisys and strap down IMU 

 Real data was captured using Qualisys software and accompanying cameras. Three 

stationary cameras point at a treadmill where the test subject would be performing different gait 

a 

b 

d 

c 

e 
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cycles. These cycles were healthy gait, drop foot, and drag foot, and the system setup can be seen 

in Figure 16. 

 

Figure 16: Motion capture equipment setup for real data collection 

The data collection process yielded a frame-by-frame animation of each gait cycle where a single 

frame looks like Figure 17. 

 

 

Figure 17: Single frame of Qualisys data 
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 Although data were collected in three dimensions, it was projected into two dimensions 

(XZ plane) for simplicity, as the majority of gait is two dimensional. After some data smoothing, 

the angular rates of the femur and tibia can be found in Figure 18, Figure 19, and Figure 20 

below. Note, the individual demonstrating the gait pathologies in this research does not suffer 

from any kind of gait pathology. An individual with a healthy gait simulated drop foot and drag 

foot.   

 

Figure 18: Healthy gait femur and tibia angular rates from motion capture 
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Figure 19: Drop foot femur and tibia angular rates from motion capture 

 

Figure 20: Drag foot femur and tibia angular rates from motion capture 

 Each of these gait cycles were performed at 1.5mph on a treadmill to achieve 

consistency. The position data for multiple points of interest was obtained, and this position data 

will be important later. The ankle path for each type of gait can be found in Figure 21. Although 
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each set of data does not line up and since all optimizations on this data were performed using 

position, it is not necessary to be aligned. 

 

Figure 21: Ankle path for one gait cycle for all gaits 

 As previously mentioned, these ankle paths do not closely follow the assumption of a 

Hoeken path. The ankle path for all shapes have a tear-drop shape which is not indicative of a 

Hoeken system. But after reviewing motion capture data, it was discovered that the mid-tibia 

path promises a more traditional Hoeken path. For this reason, ankle path and mid-tibia path 

were used in optimizations. Figure 22 shows the mid-tibia path for the three different gait cycles. 

Note, both ankle and mid-tibia paths were considered in this research although the mid-tibia path 

showed more promise at the initial observation. 
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Figure 22: Mid-tibia path for one gait cycle for all gaits 
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3. GAIT KINEMATICS 

 Multiple iterations of kinematic approaches were necessary for the formulation of the 

working model. Gait kinematics are unique to individuals, creating a difficult problem to solve 

with a general solution. This system will have known kinematics, making it easy to model, but 

will be nonlinear, allowing for the use of an Extended Kalman Filter. 

3.1 Model to state space 

 The Kalman Filter both relies on and requires a system dynamics model to perform 

correctly. This system model is represented in the form of state space equations and the 

following section deals with their derivation. 

 As mentioned in section 2.1, four components comprise the state vector for the two-link 

model. Listed again for convenience is the vector from (2.34). 

 

x = [

θ1
θ2
ωAB
ωBC

] (3.1) 

To use state space convection properly, ẋ is required. 

 

ẋ = [

ωAB
ωBC
αAB
αBC

] (3.2) 

Knowing that each of the equations that make up the derivative of the state vector are nonlinear, 

a nonlinear filter is required.  

Angular rates can be found with a simple matrix inversion of the form 

 
{
ωAB
ωBC

} = [
−LAB sin(θ1) LBCsin (θ2)
LABcos (θ1) −LBCcos (θ2)

]
−1

{
−ωQrC sin(θQ)

ωQrC cos(θQ)
} (3.3) 

where, for readability, the matrix to be inverted is herein referred to as Ξ, and the right side 

vector is G.  

 
Ξ = [

−LAB sin(θ1) LBCsin (θ2)
LABcos (θ1) −LBCcos (θ2)

] (3.4) 
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In the same way, the angular accelerations can be written in the form  

 
{
αAB
αBC

} =  [
−LAB sin(θ1) LBCsin (θ2)
LABcos (θ1) −LBCcos (θ2)

]
−1

{
ωAB
2 LAB cos(θ1) − ωBC

2 LBC cos(θ2) − ωQ
2 rC cos(θQ)

ωAB
2 LAB sin(θ1) − ωBC

2 LBC sin(θ2) − ωQ
2 rC sin(θQ)

}. (3.5) 

Another note, Ξ appears in both systems in the same place. In this set of equations, the right side 

vector is herein referred to as F. These equations leverage the simplicity of the model. The input 

link drives link LBC, and the input link has a known angular rate, ωQ.  
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4. EXTENDED KALMAN FILTER 

4.1 Brief history of the Kalman Filter 

 In 1960, Rudolf Kalman published a paper titled A New Approach to Linear Filtering 

and Prediction Problems and, unbeknownst to him at the time; this paper forever changed the 

way engineers do filtering, prediction, and estimation. The Kalman filter excels at making sense 

of noisy measurements when combined with a dynamic model.  It is a set of recursive equations 

to estimate the state of a process in such a way as to minimize the mean of the squared error [10]. 

With advancing technology, anyone with a modern computer can utilize the power of the 

Kalman filter. The following sections utilize the notation found in [11]. 

4.2 Introduction to the Discrete-Time Kalman Filter 

 For the Discrete-Time Kalman filter (DKF) to work properly, the system and 

measurement model should be of the form 

 xk+1 = Akxk + Bkuk + Gkwk 
(4.1) 

 zk = Hkxk + vk 
(4.2) 

where xk is the estimated value of the state from the previous time step, and zk is the 

measurement from the current time step. For this research, there is no control vector which 

results in (4.1) becoming 

 xk+1 = Akxk + Gkwk. 
(4.3) 

 One of the key assumptions of the DKF is that white noise processes operate on both the 

system and measurement model, but they are uncorrelated. These white noise processes are zero 

mean and covariance Qk and Rk represented by 

 wk~ (0, Qk) 
(4.4) 

 vk~ (0, Rk). 
(4.5) 

Note, each term is k subscripted, denoting that it is possible and certainly valid that each term in 

the filter is time-varying. Due to the nature of this work, (4.3) can be simplified to be 

 xk+1 = Akxk + Gw 
(4.6) 

since G and w will not be changing with time. In the same way, (4.2) can also be simplified to be  
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 zk = Hkxk + v 
(4.7) 

since v is not time-varying.  

 There are two components of the Discrete-Time Kalman filter, and they are the time 

update and measurement update equations. The time update equations are the propagation of the 

system model given by 

 x̂k
− = Akxk−1 + Gw 

(4.8) 

 Pk
− = AkPk−1Ak

T + Q 
(4.9) 

where the superscript minus denotes an a priori estimate meaning it is an uninformed guess at 

where the system is currently at given the previous state and the system dynamics model. P is the 

error covariance matrix detailing how each of the variables influences each other. 

 The measurement update equation informs the time update equation of the current 

measurement and seeks to accurately combine the two, using a Kalman gain found with the a 

priori error covariance matrix and noise R. 

 K = Pk
−HT(HPk

−HT + R)−1 
(4.10) 

This gain weights the measurements and predictions in the form of 

 x̂k = x̂k
− + K(zk − Hx̂k

−) (4.11) 

and now it is necessary to propagate the error covariance using the Kalman gain 

 Pk = (I − KH)Pk
−. 

(4.12) 

 One of the powerful properties of the Kalman filter is the information contained in a 

single Kalman gain. Rather than needing to iterate over previous gains, each propagation embeds 

the state error history into a single Kalman gain requiring less computational load.  

 The DKF is an excellent state estimator but has a fatal flaw in its current form. Systems 

that cannot be written in the form found in (4.1) will not fit this model, and this filter will not 

suffice. For a more advanced model that includes nonlinearities, a more sophisticated filter is 

required. 
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4.3 Introduction to the Extended Kalman Filter 

 The Extended Kalman filter (EKF) is simply an extension of the DKF but rather than 

having a linear combination of terms; the EKF is a nonlinear combination that takes the form 

 ẋ = a(x, u, t) + G(t)w. 
(4.13) 

Keeping in mind this research does not deal with control input, (4.13) becomes 

 ẋ = a(x, t) + G(t)w 
(4.14) 

and the measurement model is given by 

 z = h(x, t) + v 
(4.15) 

where w and v are still white noise processes.  

The system model equations are written in continuous time and for simplicity of implementation, 

the EKF is implemented in continuous time, resulting in a Continuous – Continuous EKF. 

Analogous to the time and measurement update, this filter has estimate update and an error 

covariance update.  

The estimate update is  

 ẋ̂ = a(x̂, t) + K[z − h(x̂)] 
(4.16) 

where a(x̂, t) are the nonlinear model equations and h(x̂) are the measurement estimates. 

Propagating the error covariance is given by 

 Ṗ = AP + PAT + GQGT − PHTR−1HP 
(4.17) 

and the Kalman gain is calculated by 

 K = PHT(x̂, t)R−1. (4.18) 

What makes the EKF unique and accurate for nonlinear systems is the presence of Jacobians in 

the error covariance update.  

 
A(x, t) =

∂a(x, t)

∂x
 (4.19) 

 
H(x, t) =

∂h(x, t)

∂x
 (4.20) 
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 The easiest way to move the filter forward is using the built-in MATLAB differential 

equation solver ode45. The Kalman filter is placed into a state space function and, when 

necessary, called by ode45 during the iterative process. 

 An interesting thing to note here is that an RK4 method was in the original design. After 

implementation, the Kalman filter consistently diverged, and this is due to the invariant time step 

used by the solver.  

4.4 EKF Implementation with two-link model 

 MATLAB’s built-in ode45() function was the differential equation solver for this case. 

Its varying time step proved to be the best way to solve this system. All components are simple 

to implement except for the Jacobians in the error covariance update that account for the 

nonlinearities.  

The nonlinear equations governing this system are buried inside a(x̂, t) of (4.16).  

 

a(x̂, t) =

{
 

 
θ̇1
θ̇2
ω̇1
ω̇2}
 

 

= {

ω1
ω2
α1
α2

} (4.21) 

A complete Jacobian A(x, t) is created by  

 

A(x, t) =

[
 
 
 
 
 ∂ {

ω1
ω2
}

∂θ1

∂ {
ω1
ω2
}

∂θ2

∂ {
ω1
ω2
}

∂ω1

∂ {
ω1
ω2
}

∂ω2

∂ {
α1
α2
}

∂θ1

∂ {
α1
α2
}

∂θ2

∂ {
α1
α2
}

∂ω1

∂ {
α1
α2
}

∂ω2 ]
 
 
 
 
 

 (4.22) 

which is quickly simplified to yield 

 

A(x, t) =

[
 
 
 
 
0 0 1 0
0 0 0 1

∂ {
α1
α2
}

∂θ1

∂ {
α1
α2
}

∂θ2

∂ {
α1
α2
}

∂ω1

∂ {
α1
α2
}

∂ω2 ]
 
 
 
 

. (4.23) 

A complete Jacobian H(x, t) is given by 
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H(x, t) = [0 0

∂ {
ω1
ω2
}

∂θ1

∂ {
ω1
ω2
}

∂θ2

]. (4.24) 

where the first two columns are zeros. Recall Ξ, from Section 3.1.1, as 

 
Ξ = [

−LAB sin(θ1) LBCsin (θ2)
LABcos (θ1) −LBCcos (θ2)

]
−1

. (4.25) 

Finding the partials from (4.23) and (4.24) will require the derivative of both angular rate and 

angular acceleration. Redefining angular rate gives 

 {
ωAB
ωBC

} = Ξ−1G (4.26) 

where 

 
G = {

−ωQrC sin(θQ)

ωQrC cos(θQ)
} (4.27) 

from Section 3.1.1. 

Taking a derivate of a matrix inverse numerically is rather challenging, but it is possible to 

exploit an algebra rule stating 

 ∂𝐙−1

∂x
=  −𝐙−1

∂𝐙

∂x
𝐙−1.  (4.28) 

The product rule is still applicable meaning 

 ∂ {
ωAB
ωBC

}

∂x
=  −Ξ−1

∂Ξ

∂θi
Ξ−1G + Ξ−1

∂G

∂θi
  (4.29) 

where G is a constant value resulting in a derivative of zero for all states allowing (4.29) to 

become 

 ∂ {
ωAB
ωBC

}

∂x
=  −Ξ−1

∂Ξ

∂θi
Ξ−1G. (4.30) 

Recall that Ξ appears in the angular acceleration equations as well. Although not as simple as 

angular rate, the partials of the angular acceleration are found in the same way.  
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 {
αAB
αBC

} = Ξ−1F (4.31) 

where 𝐹 is the right side of the angular rate equations. 

 
F =  {

ωAB
2 LAB cos(θ1) − ωBC

2 LBC cos(θ2) − ωQ
2 rC cos(θQ)

ωAB
2 LAB sin(θ1) − ωBC

2 LBC sin(θ2) − ωQ
2 rC sin(θQ)

}. (4.32) 

Employing the same method from (4.28), the partials of angular accelerations become 

 ∂ {
αAB
αBC

}

∂x
=  −Ξ−1

∂Ξ

∂x
Ξ−1F + Ξ−1

∂F

∂x
  (4.33) 

and unlike (4.29), this equation will not simplify due to F being a function of all four states. 
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5. GENETIC ALGORITHM 

 The following sections deal with gait parameter analysis in the form of a genetic 

algorithm (GA). The premise is using a four-bar Hoeken linkage system to generate a more 

realistic gait path but with variable parameters identifiable with a GA. This allows a personalized 

gait model to be implemented inside a Kalman Filter. Similar things have been done by Dutch 

artist, Theo Jansen, who used a GA to identify gait parameters for his Strandbeest [12]. Waldron 

also worked on making machines walk and was interested in walking kinematics similar to this 

research [13]. 

5.1 Introduction to Genetic Algorithms 

 Known as a type of evolutionary algorithm, GAs employ the idea of survival of the 

fittest. Robert King says it well with: 

The techniques emulate natural evolution of individual structures through 

processes inspired by natural selection and reproduction. These processes 

depend on the fitness of the individuals to survive and reproduce in a hostile 

environment. Evolution can be viewed as an optimization process that can be 

emulated by a computer. Evolutionary Computation is essentially a stochastic 

search technique with remarkable abilities for searching for global solutions. 

[14] 

 Even Robert King had to rely on another metaphor to get his point across. He uses the 

words of Zbigniew Michalewicz from his 1992 book Genetic Algorithms + Data Structures = 

Evolution Programs. Michalewicz says: 

Do what nature does. Let us take rabbits as an example: at any given time 

there is a population of rabbits. These faster, smarter rabbits are less likely to 

be eaten by foxes, and therefore more of them survive to do what rabbits do 

best: make more rabbits. Of course, some of the slower, dumber rabbits will 

survive just because they are lucky. This surviving population of rabbits starts 

breeding. The breeding results in a good mixture of rabbit genetic material: 

some slow rabbits breed with fast rabbits, some fast with fast, some smart 



35 

 

rabbits with dumb rabbits, and so on. And on the top of that, nature throws in a 

‘wild hare’ every once in a while by mutating some of the rabbit genetic 

material. The resulting baby rabbits will (on average) be faster and smarter 

than those in the original population because more faster, smarter parents 

survived the foxes… [15] 

5.2 GA Considerations 

Five big issues should be considered with a GA: 

1. What is the range of candidate solutions? 

2. What is the cost function? 

3. How large is the initial population? 

4. How will the population be encoded and decoded at each iteration? 

5. How many generations are needed to satisfy the problem? 

 When creating a GA, the range of candidate solutions is important. Candidate solutions 

are the range of values the algorithm can explore. If the problem to be optimized deals with 

human height, perhaps a range of 0-5m is not exactly giving the GA the best chance at the 

optimal solution. Using a range of 1-2.35m would allow exploration of more possible solutions.  

 The cost function is perhaps the most important piece of the entire genetic algorithm. 

GAs are not intelligent, as they will attempt to exploit any loophole in the cost function. If the 

cost function is not well defined, the answer will most likely not be optimal. A cost function 

provides a way to assign a fitness to each individual in the population. The cost function in this 

GA is Euclidean distance, and fitness is the inverse of the cost so that low cost is equated to high 

fitness and high cost translates to a low fitness. 

 cost = (x − xi)
2 + (y − yi)

2  (5.1) 

 The size of the initial population will depend on the available computing power. These 

algorithms tend to be on the heavier side of the computational scale. Typically, a population size 

of 30-50 will suffice, but if plenty of power is available, population sizes upwards of 100 are 

feasible. Note, always use an even number, so each member will have a mate. 

 Population encoding and decoding are very important. Populations are initialized as 

binary vectors or strings. MATLAB has nice built-in functions to handle both binary vectors 
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strings, so either is fine. An example of how everything fits together will be at the end of this 

section. The inner workings of GAs are not completely obvious.  

 The final issue to consider is the number of generations needed to solve the problem. 

This is another case of how much computational power is available. Pushing generations into the 

thousands tends to get time-consuming, and solutions begin to become asymptotic. Keeping a 

record of the fittest individual ever encountered through all populations is one method of 

checking if higher generations yield better results. The device used in this research had an Intel 

Core i7 and took approximately 5 minutes to run one simulation with a population of 100 for 800 

generations. The problem of long run-times can be avoided if there is adequate stopping criteria. 

If the acceptable error in the result meets the criteria, the GA can be terminated. 

5.3 GA Example 

 Here is a simple example. Suppose, instead of doing a minimization optimization, the 

problem is to maximize a specific function. This is no problem. The GA can handle 

maximization and minimization. The cost function is 

 cost = f = x2. (5.2) 

The population size is deemed to be 4 (could be 6, 8, 100, etc.). Random binary sequences are 

generated to give the initial starting population. A length of 5 bits is chosen. 

 Each member of the population has their binary value decoded to be a decimal value. 

This is where scaling happens to account for the range of candidate solutions. If the search space 

was between 0 and 2, simply normalize all decimal values to be within that range. At this point, 

the members are ready to go through the cost function. Each member gets their chance at the 

function, and their values are recorded. 

Next, each member needs to be assigned a fitness as a percentage of the population’s total 

fitness. This is found with 

 
fitness =

costi
∑cost

 (5.3) 

where each member’s cost is divided by the total population cost. Fitness can now be recorded. 
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It is important to notice that if the sum of fitness is taken, it will be equal to 1. If the population is 

sorted by fitness and the cumulative sum is taken, the sum look like Figure 23.  

 

Figure 23: GA example – mating votes 

 The values at the top of the figure are the cumulative sum of the fitness after being 

sorted in ascending order. A random function generates a list of numbers between 0 and 1, the 

length of the number of individuals in the population, and those numbers get sorted into bins. 

The number of values in each is the number of mating votes for a specific member. This process 

does not explicitly remove unfit members from the population but it does make it much harder to 

enter the mating pool. The less fit individuals have a smaller bin size while the fittest individuals 

have larger bins. The chances of a randomly generated number falling between 0.569 and 1 is 

greater than the chances of a randomly generated number falling between 0 and 0.144. In this 

way, the GA gives the best chances to the fittest individuals. A completed GA is shown in Table 

1. 

Table 1: GA example – mating votes 

Member ID Binary Value Dec. Value Cost Fitness Mating Votes 

1 01111 15 225 0.144 0 

2 11010 26 676 0.431 3 

3 10101 21 441 0.281 1 

4 01111 15 225 0.144 0 

The Genetic algorithm has done its job this iteration. It has randomly selected the fittest members 

of the population to reproduce.  
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 Reproduction is actually the simplest operation of the entire algorithm. The mating 

order is randomly selected. In this case, the order is [4 3 2 1]. The 4th member of the mating pool 

will mate with the 3rd member of the mating pool. Likewise, the 2nd member of the mating pool 

will mate with the 1st member of the mating pool. To create the mating pool, each member of the 

population gets into the pool n times, where n is the number of mating votes received. For this 

iteration, the mating pool is 

10101 

11010 

11010 

11010. 

The order of the initial pool does not matter since all mates are randomly selected after 

establishing the pool. The mating pool sorted in mating order becomes 

11010 

11010 

11010 

10101. 

 To reproduce, a random crossover point is selected (the value is between zero and the 

number of bits), and the genes are swapped at that point. For the first pair, the crossover point is 

three. Both members are split after the third gene and are swapped with one another. The first 

pair become 

11010 

11010 

and the second pair become 

11001 

10110. 

 Similar to biologic mutations, Genetic Algorithms should also experience mutations. 

Prior to beginning a GA optimization, a mutation probability is chosen, a value typically between 



39 

 

0.002 and 0.02. This probability applies to each bit in the population, meaning during the 

mutation phase, each bit has between a 0.2% and 2% chance of mutation. The idea is mutations 

can significantly increase or decrease member fitness which can be both helpful and detrimental, 

but it is still recommended. Bad mutations resulting in unhealthy member fitness will usually 

prevent that member from mating, but good mutations can discover more fit individuals. 

Implementing a mutation means a bit is switched to be the opposite value (0 becomes 1 or 1 

becomes 0).  

 After crossover and mutation, the new members enter the next iteration of the GA as the 

new population. Table 2 shows the new population.  

 

 

 

Table 2: GA example – new population 

Member ID Binary Value Dec. Value Cost Fitness Mating Votes 

1 11010 26    

2 11010 26    

3 11001 25    

4 10110 22    

The algorithm is now ready to use the new members to maximize the cost function. The 

members with lower fitness have a lower likelihood of reproducing, giving a higher population 

fitness in subsequent generations. This continues until the stopping criteria are satisfied, resulting 

in an optimized solution. 
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6. RESULTS & DISCUSSION 

6.1 Two-Link model EKF 

 This iteration of the Kalman Filter used the dynamics from the Kinematics model, 

which made validating the filter simple. The initial conditions of the system placed  

 θ1 = 200° (6.1) 

and 

 θ2 = 110°. (6.2) 

The kinematic model provides true values to act as a baseline for judging the Kalman filter. True 

angles and true angular rates using the above initial conditions are found in Figure 24 and Figure 

25, respectively.  

 

Figure 24: True values of joint angles for the two-link model 
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Figure 25: True values of joint angular rates for the two-link model 

 The data from Figure 25 was then corrupted with a Gaussian noise with a standard 

deviation of 0.08 radians per second and is seen in Figure 26. This equates to adding an 

uncertainty of roughly 4.5
𝑑𝑒𝑔

𝑠
 to the angular rates. The addition of uncertainty simulates noisy 

IMU measurements, adding to the difficulty of the problem.  
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Figure 26: Noisy joint angular rates with noise with a SD of 0.08 rad/s 

 Due to the Kalman filter using the same model as found in the kinematic model, the 

process noise covariance, Q, will be known. In practice, this will most likely not be the case 

since the model cannot predict everything but in this case,  

 

Q = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]. (6.3) 

The error covariance is initialized to be  

 

P = 1000 [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] (6.4) 

and the measurement noise covariance was tuned to be 

 R = 0.5. (6.5) 

To be sure the Kalman filter is capable of converging, the initial joint angles were set incorrectly.  

 θ1 = 171° (6.6) 

 θ2 = 81° 
(6.7) 
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 The percent difference for θ1 is over 15%, and θ2 is just over 30%. These values were 

chosen because it is unlikely a doctor or clinician would ever miss an initial angle by this much, 

given the number of tools available to them. Estimating initial angle this poorly would most 

likely never happen, but this shows the power of the Kalman filter.  

 Running the Kalman filter over the noisy data yields the convergence plot found in 

Figure 27. Convergence is the difference between the known states from the test data and the 

Kalman states produced by the Kalman Filter. 

 

Figure 27: Kalman filter convergence error with angular rate noise of SD 0.08 rad/s and 

initial angle guess incorrect by 0.5 rad 

 The filter eventually converges, but it does take about 3.5 seconds, which is certainly 

not ideal, especially if working with limited space. The filtered angular rates also converge but in 

a shorter amount of time, about 2 seconds. This is seen in Figure 28.  
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Figure 28: Kalman filter angular rates with input noise of SD 0.08 rad/s 

 The best way to show convergence is by looking at the estimated joint angles found in 

Figure 29. A convergence time of approximately 3.5 seconds is seen when the Kalman filter’s θ2 

converges to the true value.  
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Figure 29: Kalman filter joint angle with angular rate noise of SD 0.08 rad/s and initial 

angle guess incorrect by 0.5 rad 

 Interesting to note here is that although the filter took a long time to converge for θ2, 

convergence for θ1 was achieved rather quickly, around the 1-second mark. Simply improving 

the initial guess of the joint angles at the beginning proves to be a powerful solution to that 

problem. Figure 30 shows the result. 
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Figure 30: Kalman filter convergence error with noise of SD 0.08 rad/s and initial guess 

incorrect by 0.25 rad 

 Reducing the initial joint estimate error by a factor of 2 significantly improves the 

convergence time. Rather than 3.5 seconds, both joint angles converge around 1 second, which is 

three times as fast. This was achieved by being within 15 degrees of the actual starting angle.  

 Kalman angular rates also look much better in Figure 31 than in Figure 28. 

Convergence here is seen around the 1.5-second mark. 
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Figure 31: Kalman filter angular rates with noise of 0.08 rad/s and initial guess incorrect 

by 0.25 rad 

 The Kalman estimate joint angles convergence is shown in Figure 32. Similar to the 

angular rates, the joint angle estimations are much tighter than previously. Convergence is 

achieved in approximately 1 second.  
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Figure 32: Kalman filter joint angle with noise of SD 0.08 rad/s and initial guess incorrect 

by 0.25 rad 

 Great convergence is achieved here, but the filter needs to be pushed a bit more. 

Simulating poor IMU performance, the noise is increased from 0.08 
𝑟𝑎𝑑

𝑠
 to 0.3 

𝑟𝑎𝑑

𝑠
. This increase 

simulates IMUs that have a measurement standard deviation of 17 degrees per second which is a 

good representation of an inexpensive, off-the-shelf IMU. The convergence error is shown in 

Figure 33. 
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Figure 33: Kalman filter convergence error with noise of SD 0.3 rad/s and initial guess 

incorrect by 0.25 rad 

 Although not as past iterations, this shows that convergence is still possible even with 

inaccurate gyroscopes. Convergence here is achieved in roughly 6 seconds, which could suffice 

in certain scenarios. Estimated angular rates are found in Figure 34 while estimated joint angles 

are seen in Figure 35. 
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Figure 34: Kalman filter angular rates with noise of 0.3 rad/s and initial guess incorrect by 

0.25 rad 

 

Figure 35: Kalman filter joint angle with noise of SD 0.3 rad/s and initial guess incorrect by 

0.25 rad 

 The EKF confirms that, when combined with a good model, moderately inaccurate 

wearable gyroscopes can compete with traditional motion captures. The drawback with these 
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inaccurate wearables is the convergence time. Having a convergence time of 6-7 seconds could 

prove to be troublesome for patients with severe gait troubles, but that issue can be curbed with 

the use of more accurate, and expensive, gyroscopes.  

6.2 Genetic Algorithm using Hoeken ankle path 

 This section deals with generating a useable gait model for a Kalman Filter based on the 

known positions given the pull toy model. The genetic algorithm approach to estimating the 

four-bar Hoeken system for generated data has proved to be fruitful. The method for testing the 

GA has consisted of gradually increasing the number of parameters to estimate. The data was 

generated with  

 a = 0.2 m (6.8) 

resulting in 

 b = 0.5 m (6.9) 

 c = 0.5 m 
(6.10) 

 d = 0.4 m 
(6.11) 

 e = 1 m. (6.12) 

 The first test for the GA is attempting to estimate the length of link e, given the length 

of all other links. The performance is measured by the average cost of the population. The 

solution quickly becomes asymptotic around generation 20 as seen in Figure 36. In these position 

based solutions, the cost function is Euclidean distance between motion capture position data and 

GA position data. 
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Figure 36: GA optimization searching for link e 

 In this search, the fittest member of the population occurred in generation 385 and had a 

value of  

 e = 1.00293 m. (6.13) 

The solution fully converged at generation 385, and subsequent generations were never as good. 

The resultant path from this link length is given in Figure 37. 

(m
2
) 
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Figure 37: GA optimized path for Hoeken system searching for link e 

 This path is not noticeably different than the path seen in Figure 15 from Section 2. 

Progressively expanding the number of variables the GA searched for resulted in a complete 

Hoeken system estimation. The progressive expansion was to explore how the addition of more 

optimization variables affected the accuracy. As expected, more optimization variables resulted 

in reduced accuracy when population sizes and generations were held relatively constant due to 

computation power and time. This result of an entire system optimization is found in Figure 38. 

Intermediate optimizations can be found in 9.1. 
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Figure 38: GA Optimization for Hoeken searching for all links 

 Considering the algorithm started with random values and converged to something that 

closely resembles the real path was a great start to using the GA for gait parameter estimation. 

This shows that given position data, the GA is a powerful tool to create patient-specific gait 

models that can be used in the time update equations of the Kalman Filter.  

6.3 Unconstrained GA using motion capture ankle paths 

 Herein, the terms constrained and unconstrained will frequently be used. These ideas go 

back to the original Hoeken idea. An unconstrained system is a system whose geometry is not 

constrained to be that of a Hoeken system. This gives the GA an opportunity to seek out different 

variations of four bar systems. Opposite the unconstrained system is the constrained system, 

which forces the algorithm to search for Hoeken systems explicitly. This reduces the freedom of 

the optimization but gives a more focused search.  

 Figure 39 and Figure 40 show the unconstrained results of the GA using healthy gait 

ankle paths. The fit is clearly not great, and the cost of the system is relatively high compared to 

the next section. 9.2 shows the optimized paths and associated costs for the two gait pathologies 

drop foot and drag foot. For legend brevity, motion capture has been shortened to “Mo-cap.” 
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Figure 39: Unconstrained GA optimization using healthy gait ankle path 

 

 

Figure 40: Unconstrained GA optimization cost using healthy gait ankle path 

(m
2
) 
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6.4 Constrained Hoeken GA using motion capture ankle paths 

 Next, the true ankle path from motion capture was used to train the GA. Like before, the 

gait pathologies drop foot and drag foot were simulated in addition to a healthy gait cycle. The 

models generated in this section were forced to be Hoeken, conforming to the required 

geometries. Figure 41 and Figure 42 show the optimized Hoeken system path for a healthy gait 

cycle and the associated cost, respectively. 

 

Figure 41: Constrained Hoeken GA optimization using healthy gait ankle path 
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Figure 42: Constrained Hoeken GA optimization cost using healthy gait ankle path 

 From looking at both the fit and the cost of the two approaches, the constrained system 

gave a model with half the cost of the unconstrained system. 9.3 shows the optimized paths and 

associated costs for the two gait pathologies drop foot and drag foot. The constrained GA offered 

better results for the pathologies when compared to unconstrained.  

6.5 Unconstrained GA using motion capture mid-tibia paths 

 During motion capture, a marker was placed around the midpoint of the tibia to help 

capture angular rate, but this marker position showed an interesting phenomenon. All three gait 

cycles more closely resemble a Hoeken system than data collected at the ankle. Similar to 6.3, 

Figure 43 and Figure 44 show the optimized system path for a healthy gait cycle as well as the 

associated cost. 9.4 contains the optimized paths and associated costs for the two gait pathologies 

drop foot and drag foot. 

(m
2
) 
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Figure 43: Unconstrained GA optimization using healthy gait mid-tibia path 

 

Figure 44: Unconstrained GA optimization cost using healthy gait mid-tibia path 

6.6 Constrained Hoeken GA using motion capture mid-tibia paths 

 Similar to 6.4, the algorithm was constrained to Hoeken geometries only, and the results 

are found in Figure 45 and Figure 46. 

(m
2
) 
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Figure 45: Constrained GA optimization using healthy gait mid-tibia path 

 

 

Figure 46: Constrained GA optimization cost using healthy gait mid-tibia path 

 Visually, the fit of the constrained model is better, but the cost functions tell a different 

story. There exists approximately a 70% decrease in performance with the constrained model. 

(m
2
) 
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This is most likely attributed to unconstrained system’s flexibility. 9.5 contains the optimized 

paths and associated costs for the two gait pathologies drop foot and drag foot. 

6.7 Unconstrained GA using contrived four-bar angular rates 

 The following sections deal with a genetic algorithm optimized using contrived data. 

The data came from a known four-bar system with a crank operating at a known, constant 

angular rate. This information was then used to compute contrived femur and tibia angular rates 

to use in the cost function of the genetic algorithm. Figure 47 and Figure 49 show the fit of the 

optimizations while Figure 48 and Figure 50 show the associated costs.  

 

Figure 47: Contrived unconstrained GA Optimization using four-bar system 
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Figure 48: Contrived unconstrained GA optimization cost using four-bar system 

 

 

 

 

 

 

 

 

 

 

 

6.8 Constrained Hoeken GA using contrived four-bar angular rates 
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Figure 49: Contrived Hoeken constrained GA optimization using four-bar system 

 

Figure 50: Contrived Hoeken constrained GA optimization cost using four-bar system 

6.9 Unconstrained GA using motion capture angular rates 

 Following the same process as in previous sections, here the unconstrained GA was 

actually trained on the motion capture angular rates of the femur and tibia. Running for 800 

generations and a population size of 1000, the results of the optimization are found in Figure 51 
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and Figure 52. 9.6 contains the optimized paths and associated costs for the two gait pathologies 

drop foot and drag foot.  

 

Figure 51: Unconstrained GA optimization using healthy gait mid-tibia angular rates 

 

Figure 52: Unconstrained GA optimization cost using healthy gait mid-tibia angular rates 
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 The optimizations of the angular rates do not fit the real data with a low cost. Each 

member of the population in the unconstrained optimization had 11 variables to be optimized. 

This causes the “noisy” cost function. If this work is to be improved, using a larger population 

size with more generations and more computing power would be necessary. 

6.10 Constrained Hoeken GA using motion capture angular rates 

 The last GA optimization was performed on the same set of femur and tibia angular 

rates but constrained to satisfy Hoeken geometries. The results of the optimization are found in 

Figure 53 and Figure 54. Appendix 9.7 depicts the optimized paths and associated costs for the 

two gait pathologies drop foot and drag foot. Similar to the unconstrained case, the constrained 

case had 7 variables to be optimized, many of which depend on each other and cause the shaky 

cost plot.  

 

Figure 53: Constrained Hoeken GA optimization using healthy gait angular rates 
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Figure 54: Constrained Hoeken GA optimization cost using healthy gait angular rates 

 The GA trained on the angular rates of the femur and tibia did not offer as low of a cost 

function as desired. Both unconstrained and constrained optimizations offered about the same 

cost function when looking at the fittest individual in the population. Note that for all these trials, 

a different type of four-bar system was attempted. Rather than having the end effector of the 

Hoeken system, point e, be on the same line as point b, an angular offset was simulated in hopes 

of achieving a better cost by giving the algorithm more freedom. This method proved to be 

unsuccessful.  

6.11 GA four-bar system link lengths 

 Optimized four-bar system link lengths were also documented. In the case of the motion 

capture ankle paths, Table 3 and Table 4 show how both the unconstrained and constrained 

systems compare.  

Table 3: Unconstrained GA optimized four-bar lengths using ankle path 

Link (m) Healthy Drop Foot Drag Foot 

a 0.118 0.0593 0.1129 

b 0.5287 0.4855 0.5260 
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c 0.4599 0.3648 0.4848 

d 0.2043 0.1827 0.3553 

e 0.354 0.2413 0.6137 

 

 

 

 

 

 

Table 4: Constrained GA optimized four-bar lengths using ankle path 

Link (m) Healthy Drop Foot Drag Foot 

a 0.1489 0.0690 0.0916 

b 0.3723 0.1724 0.2291 

c 0.3723 0.1724 0.2291 

d 0.2978 0.1379 0.1833 

e 0.7445 0.3448 0.4582 

 

 If healthy gait is assumed to be the correct mode of walking, the percent difference in 

GA optimized link lengths are found in Table 5 and Table 6. 

Table 5: Percent difference in unconstrained GA optimized length lengths using ankle path 

Link (m) Healthy Drop Foot Drag Foot 

a 0.118 -66% -4.4% 

b 0.5287 -8.5% < -1 % 

c 0.4599 -23% 5.3% 
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d 0.2043 -11% 54% 

e 0.354 -38% 54% 

 

 

 

 

 

Table 6: Percent difference in constrained GA optimized length lengths using ankle path 

Link (m) Healthy Drop Foot Drag Foot 

a 0.1489 

-73% -48% 

b 0.3723 

c 0.3723 

d 0.2978 

e 0.7445 

 

 Illustrated in Table 7 is the ratio of all components relative to link 𝑎 for the 

unconstrained optimization.  

Table 7: Relative lengths of system compared to link a using ankle path 

Link (m) Healthy Drop Foot Drag Foot 

a 1.00 1.00 1.00 

b 4.48 8.19 4.66 

c 3,90 6.15 4.29 

d 1.73 3.08 3.15 

e 3.00 4.07 5.44 
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 When using the mid-tibia path to train the GA, Table 8 and Table 9 show the results 

when the system is unconstrained and constrained, respectively. 

 

 

 

Table 8: Unconstrained GA optimized four-bar lengths using mid-tibia path 

Link (m) Healthy Drop Foot Drag Foot 

a 0.1186 0.0656 0.0477 

b 0.6433 0.5246 0.6521 

c 0.4295 0.4343 0.6346 

d 0.3552 0.1827 0.0963 

e 0.1793 0.1820 0.2299 

Table 9: Constrained GA optimized four-bar lengths using mid-tibia path 

Link (m) Healthy Drop Foot Drag Foot 

a 0.0795 0.0548 0.0460 

b 0.1986 0.1370 0.1150 

c 0.1986 0.1370 0.1150 

d 0.1589 0.1096 0.0920 

e 0.3973 0.2739 0.2300 

 

 If, again, healthy gait is assumed to be the correct method of walking, the percent 

difference in GA optimized length lengths is found in Table 10 and Table 11. 
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Table 10: Percent difference in unconstrained GA optimized length using mid-tibia path 

Link (m) Healthy Drop Foot Drag Foot 

a 0.1186 -58% -85% 

b 0.6433 -20% 1.4% 

c 0.4295 1.1% 39% 

d 0.3552 -64% -115% 

e 0.1793 1.5% 25% 

Table 11: Percent difference in constrained GA optimized length using mid-tibia path 

Link (m) Healthy Drop Foot Drag Foot 

a 0.0795 

-37% -54% 

b 0.1986 

c 0.1986 

d 0.1589 

e 0.3973 

 

 Similar to the ankle path method, Table 12 shows the ratio of all components relative to 

link 𝑎 for the unconstrained optimization case. 
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Table 12: Relative lengths of system compared to a using mid-tibia path 

Link (m) Healthy Drop Foot Drag Foot 

a 1.00 1.00 1.00 

b 5.42 8.00 13.7 

c 3.62 6.62 13.3 

d 2.99 2.79 2.02 

e 1.51 2.77 4.82 
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7. CONCLUSION 

 The next three sections deal with the future of this work and the final section concludes 

the research.  

7.1 Implement GA models alongside Kalman Filter 

 The ideal use case for this system is implemented with a Kalman Filter. When training 

the GA on strictly path data, the model knows nothing about the angular rate at which the input 

crank (link a) rotates. One of the assumptions made earlier may not hold true: the input crank 

spins at a constant angular rate. Given the complexity of the human body, the likelihood of 

anything rotating at a constant rate is small which may result in an even more complex model 

that is presented here. To place this model inside a Kalman Filter, a good estimate of the crank 

input would need to be known, but this can be explored with more data collection.  

7.2 Build IMU system to collect real angular rate data 

 The initial goal of this research was to use angular rate and acceleration data from 

gyroscopes and accelerometers to create a wearable device that could replace current motion 

capture technology. After it was discovered the Kalman filter needed a better gait model, the 

scope shifted to prove whether or not a Genetic Algorithm could recreate a subject’s gait given 

only position information of landmark features. Although the motion capture angular rate data 

was good, moving away from motion capture completely is the best direction to proceed so as to 

train the GA on IMU data rather than motion capture in hopes of different results. An Arduino 

with off-the-shelf IMUs would allow a GA to be trained on true IMU data and give another 

depth to the research.  

7.3 Collect more real gait data to test GA on a larger sample size 

 More data is always better and using the data of one individual gives a great starting 

point for future research. More data for the GA to be trained and tested on will determine the 

overall reliability of the system as a dynamic and flexible model generator.  
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7.4 Train a neural network to automatically classify gait 

 Building upon Section 7.3 is collecting enough data to train a neural network (NN) on 

the GA output. The GA can output as many parameters as need be estimated and those 

parameters can then act as inputs to a NN. With enough data, NNs have the power to “see” and 

understand trends in data in a way humans have yet to perfect. Constructing a NN would be 

adding depth to what is found with both motion capture and GAs. Knowledge of the ratios of 

lengths and percent differences in the links described in Table 11 would be a great start to 

training a model, especially if more data was collected. 

7.5 Conclusion 

 Contrived data and kinematics that resemble human gait have been implemented within 

an Extended Kalman Filter. The filter, even with noisy data, converged to the true value of the 

states and showed that, given a reasonably accurate gait model, convergence is possible with off 

the shelf Inertial Measurement Units. The problem was realized to be the lack of a real gait 

model suitable for Kalman Filter implementation. The goal of this research was to create a real 

model capable of accurately predicting the states in real time using real data. 

 Gait data, both healthy and pathological, has been collected and used to train an 

intelligent model by a Genetic Algorithm. The use of a constrained Hoeken system for the ankle 

path was a better path assumption than an unconstrained model. For the mid-tibia, the opposite 

was true. If using mid-tibia position data, the unconstrained system had a lower final cost. 

Finally, when using angular rate data in the optimization cost function, the unconstrained model 

proved to be better here too. Although mediocre, the cost does show the algorithm was 

approaching a lower cost.      

 For the first time, a human gait model has been driven by an underlying four-bar 

mechanism optimized by a genetic algorithm. The potential impact of these findings are limitless 

and the idea that patients can have a tailor fit model is within reach. BlackTop Labs can use these 

findings to move forward with assurance that a Kalman Filter can converge for cyclic cycles 

resembling gait and a Genetic Algorithm can be used as a starting point for generating a 

nonlinear kinematic model for the filter. 
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9. APPENDIX 

9.1 Pull toy GA 

 Average cost stabilized around generation 20 but stumbled upon a better solution 

around generation 250. Since the solution was stable from generation 20 until generation 250, a 

mutation most likely occurred around the 250 mark that gave a better solution to the problem. 

This is a case where mutation helped the algorithm. 

 Although the average cost of the population remained relatively constant after 

generation 20, the fittest member of the species actually lived in generation 440. This ankle path 

for this individual is found in Figure 55. 

 

Figure 55: GA optimization path for Hoeken system searching for links a and e 

 This again shows the GA can handle two parameters. Loosening yet another parameter, 

link 𝑐 is also unknown. The convergence achieved for this search is shown in Figure 56. 
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Figure 56: GA optimization searching for links a, c, and e 

 Average cost stabilized within the first 10 generations. Members are still getting 

increasingly fit until generation 375 which held the fittest member of the population. The fittest 

member gave the ankle trajectory shown in Figure 57. 

 

Figure 57: GA optimization path for Hoeken searching for links a, c, and e 
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 This ankle trajectory looks to be slightly different than the ideal case, but three of the 

five parameters have been successfully estimated. The next search added more generations and 

increased the population size as well as added another parameter to search for. As more 

parameters are optimized, the problem gets more difficult at a nonlinear rate. The addition of 

more generations and a large population size takes care of the increasing difficulty. 

 The convergence achieved with estimating four parameters is shown in Figure 58. The 

convergence was not spectacular, but the solution did become asymptotic around 10 generations. 

 

Figure 58: GA optimization searching for links a, c, d, and e 

 The fittest member of the population lived in generation 435, so increasing the 

maximum number of generations proved to be unnecessary in this case. The ankle trajectory 

created by this search is given by Figure 59. 
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Figure 59: GA optimization of Hoeken while searching for links a, c, d, and e 

 This trajectory is clearly not perfect, but it still does resemble the ideal case. The idea is 

that a Kalman filter will be able to use this as a model and correct itself.  
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9.2 Unconstrained GA using motion capture ankle paths 

 

Figure 60: Unconstrained GA optimization using drop foot ankle path 

 

Figure 61: Unconstrained GA optimization cost using drop foot ankle path 
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Figure 62: Unconstrained GA optimization using drag foot ankle path 

 

Figure 63: Unconstrained GA optimization cost using drag foot ankle path 
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9.3 Constrained Hoeken GA using motion capture ankle paths 

 

Figure 64: Constrained Hoeken GA optimization using drop foot ankle path 

 

Figure 65: Constrained Hoeken GA optimization cost using drop foot ankle path 
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Figure 66: Constrained Hoeken GA optimization using drag foot ankle path 

 

Figure 67: Constrained Hoeken GA optimization cost using drag foot ankle path 

 

(m
2
) 



83 

 

9.4 Unconstrained GA using motion capture mid-tibia paths 

 

Figure 68: Unconstrained GA optimization using drop foot mid-tibia path 

 

Figure 69: Unconstrained GA optimization cost using drop foot mid-tibia path 
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Figure 70: Unconstrained GA optimization using drag foot mid-tibia path 

 

Figure 71: Unconstrained GA optimization cost using drag foot mid-tibia path 
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9.5 Constrained Hoeken GA using motion capture mid-tibia paths 

 

Figure 72: Constrained GA optimization using drop foot mid-tibia path 

 

Figure 73: Constrained GA optimization cost using drop foot mid-tibia path 
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Figure 74: Constrained GA optimization using drag foot mid-tibia path 

 

Figure 75: Constrained GA optimization cost using drag foot mid-tibia path 
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9.6 Unconstrained GA using motion capture angular rates 

 

Figure 76: Unconstrained GA optimization using drop foot motion capture angular rates 

 

Figure 77: Unconstrained GA optimization cost using drop foot motion capture angular 

rates 
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Figure 78: Unconstrained GA optimization using drag foot motion capture angular rates 

 

Figure 79: Unconstrained GA optimization cost using drag foot motion capture angular 

rates 
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9.7 Constrained Hoeken GA using motion capture angular rates 

 

Figure 80: Constrained Hoeken GA optimization using drop foot angular rates 

 

Figure 81: Constrained Hoeken GA optimization cost using drop foot angular rates 
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Figure 82: Constrained Hoeken GA optimization using drag foot angular rates 

 

Figure 83: Constrained Hoeken GA optimization cost using drag foot angular rates 
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