# Analytical Solution of the Symmetric Circulant Tridiagonal Linear System 

Sean A. Broughton<br>Rose-Hulman Institute of Technology, brought@rose-hulman.edu<br>Jeffery J. Leader<br>Rose-Hulman Institute of Technology, leader@rose-hulman.edu

Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr
Part of the Numerical Analysis and Computation Commons

## Recommended Citation

Broughton, Sean A. and Leader, Jeffery J., "Analytical Solution of the Symmetric Circulant Tridiagonal Linear System" (2014). Mathematical Sciences Technical Reports (MSTR). 103.
https://scholar.rose-hulman.edu/math_mstr/103

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu.

# Analytical Solution of the Symmetric Circulant Tridiagonal Linear System 

S. Allen Broughton and Jeffery J. Leader<br>\section*{Mathematical Sciences Technical Report Series MSTR 14-02}

August 24, 2014

Department of Mathematics
Rose-Hulman Institute of Technology
http://www.rose-hulman.edu/math.aspx

# Analytical Solution of the Symmetric Circulant Tridiagonal Linear System 

S. Allen Broughton<br>Rose-Hulman Institute of Technology<br>Jeffery J. Leader<br>Rose-Hulman Institute of Technology

August 24, 2014


#### Abstract

A circulant tridiagonal system is a special type of Toeplitz system that appears in a variety of problems in scientific computation. In this paper we give a formula for the inverse of a symmetric circulant tridiagonal matrix as a product of a circulant matrix and its transpose, and discuss the utility of this approach for solving the associated system.


## 1 Introduction

A real $N \times N$ matrix $C$ is said to be Toeplitz if $c_{i, j}=c_{i+1, j+1}$ (the matrix is constant along diagonals). A Toeplitz matrix is circulant if $c_{i, j}=c_{i+1, j+1}$ where are indices are taken $\bmod N$ (the matrix is constant along diagonals, with rowwise wrap-around). We write $C=\operatorname{circ}\left(c_{0}, \ldots, c_{N-1}\right)$ to indicate the circulant matrix with first row $c_{1, j}=c_{j-1}, j=1, \ldots, n$.

Circulant matrices appear in many applications in scientific computing, including computational fluid dynamics [1], numerical solution of integral equations [2], [3], preconditioning Toeplitz matrices [3], and smoothing data [4]. Linear systems involving circulant matrices may be solved efficiently in $O(n \log n)$ operations using three applications of the Fast Fourier Transform (FFT) [3].

Circulant matrices may be banded. The $N \times N$ circulant tridiagonal matrix is the matrix $C=\operatorname{circ}\left(c_{0}, c_{1}, 0, \ldots, 0, c_{N-1}\right)$. If in addition $c_{1}=0$, we say that it is circulant lower bidiagonal; if instead $c_{N-1}=0$, we say that it is circulant upper bidiagonal. The eigenvalues of the circulant tridiagonal matrix $\operatorname{circ}\left(c_{0}, c_{1}, 0, \ldots, 0, c_{1}\right)$ are known to be

$$
\begin{equation*}
\lambda_{i}=c_{0}+2 c_{1} \cos \left(\frac{2 \pi i}{N}\right), i=0, \ldots, N-1 \tag{1}
\end{equation*}
$$

[^0][5]. In this paper we will focus on the symmetric circulant tridiagonal matrix in a normalized form that appears in a number of applications, including computational fluid dynamics [1]:
\[

\Gamma=\left($$
\begin{array}{ccccc}
1 & a & 0 & 0 & a  \tag{2}\\
a & 1 & 0 & 0 & a \\
0 & a & 1 & a & 0 \\
0 & 0 & a & 1 & a \\
a & 0 & 0 & a & 1
\end{array}
$$\right)
\]

(shown for $N=5$ ). In our case,

$$
\begin{equation*}
\lambda_{i}=1+2 a \cos \left(\frac{2 \pi i}{N}\right), i=0, \ldots, N-1 \tag{3}
\end{equation*}
$$

so that $\Gamma$ is singular if $a=-1 / 2(i=0)$ or if $a=1 / 2$ and $N$ is even $(i=N / 2)$. Note that for $-1 / 2<a<1 / 2, \Gamma$ is strictly diagonally dominant and, from (3), positive definite. Hence we expect it to be well-behaved numerically; in fact, we can easily generate its eigenvalues and use $\left|\lambda_{\max }\right| /\left|\lambda_{\min }\right|$ as a check on its conditioning [5].

The inverse of a (symmetric) positive definite Toeplitz matrix such as $\Gamma$ may be computed in $O\left(n^{2}\right)$ operations [6]. Although the general circulant linear system $C x=b$ may be solved in $O(n \log n)$ operations, Chen [5] develops a special LU decomposition for the strictly diagonally dominant symmetric circulant tridiagonal matrix $c_{0} \Gamma$, in the form $c_{0} \Gamma=\alpha \hat{L} \hat{U}$ where $\hat{L}$ is lower bidiagonal and $\hat{U}$ is upper bidiagonal, then solves $c_{0} \Gamma x=b$ as $\alpha \hat{L} \hat{U} x=b$ with the aid of two applications of the Sherman-Morrison formula. The resulting algorithm is $O(n)$ (about $5 n$ operations versus about $12 n \log _{2} n$ for the general FFT-based approach).

We will use a convolution algebra and a $z$-transform [8] idea to develop a formula of the form $\Gamma^{-1}=\gamma M M^{T}$, with $M$ a circulant matrix that is dependent upon a single parameter. Once $M$ and $\gamma$ are known, $\Gamma x=b$ may be solved as $x=\gamma M\left(M^{T} b\right)$.

## 2 The Convolution Algebra

Consider $\mathbb{Z}_{N}$, the cyclic group of integers $\bmod N$, and take the convolution algebra $\mathbb{C}\left(\mathbb{Z}_{N}\right)$ to be the complex vector space of all functions defined on $\mathbb{Z}_{N}$, with convolution product $*$ defined by

$$
f * g(r)=\sum_{k=0}^{N-1} f(k) g(r-k) \bmod N
$$

giving an associative and commutative $\mathbb{C}$-algebra with multiplicative identity. We use the time sample basis

$$
\begin{equation*}
\delta_{0}, \ldots, \delta_{N-1} \tag{4}
\end{equation*}
$$

for $\mathbb{C}\left(\mathbb{Z}_{N}\right)$, where $\delta_{i}(j)=\delta_{i, j}$ (the Kronecker delta function). Given any $f \in$ $\mathbb{C}\left(\mathbb{Z}_{N}\right)$,

$$
f=c_{0} \delta_{0}+\ldots+c_{N-1} \delta_{N-1}
$$

where $c_{j}=f(j)$, and so we may identify $f$ with the column vector $\left[c_{0} c_{1} \cdots\right.$ $\left.c_{N-1}\right]^{T}$. Also noting that $\delta_{i} * \delta_{j}=\delta_{i+j}($ indices $\bmod N)$ convolution products are easily calculated using basis expansion above and we see that $\delta_{0}$ serves as the multiplicative identity $1 \in \mathbb{C}\left(\mathbb{Z}_{N}\right)$.

To relate $\mathbb{C}\left(\mathbb{Z}_{N}\right)$ to circulant matrices, fix an $f \in \mathbb{C}\left(\mathbb{Z}_{N}\right)$ and use it to define a linear transformation

$$
L_{f}: \mathbb{C}\left(\mathbb{Z}_{N}\right) \rightarrow \mathbb{C}\left(\mathbb{Z}_{N}\right)
$$

by $L_{f}(g)=f * g$. The matrix of this linear transformation with respect to the basis (4) is

$$
C=\operatorname{circ}\left(c_{0}, c_{N-1}, c_{N-2}, \ldots, c_{1}\right)
$$

(and so by proper choice of $f$ we may arrange for $C$ to be any desired circulant matrix). By associativity,

$$
L_{f * g}(h)=(f * g) * h=f *(g * h)=L_{f}\left(L_{g}(h)\right)
$$

and hence $f \rightarrow L_{f}$ is an algebra isomorphism onto the subalgebra of circulant matrices. Hence we can find the inverse of the matrix $C$ by finding the inverse of $f$ in the convolution algebra.

## 3 The Symmetric Circulant Tridiagonal Case

We want to invert $(2), \Gamma=\operatorname{circ}(1, a, 0, \ldots, 0, a)$, when it is nonsingular. The representer polynomial [4] for $\Gamma$ would be $p_{\Gamma}(z)=1+a z+a z^{N-1}$ (so that $p_{\Gamma}(1 / z)$ is the corresponding $z$-transform), and similarly, the element of $\mathbb{C}\left(\mathbb{Z}_{N}\right)$ corresponding to $\Gamma$ is

$$
\begin{align*}
f & =1 \delta_{0}+a \delta_{1}+a \delta_{N-1} \\
& =1+a \delta_{1}+a \delta_{N-1} \tag{5}
\end{align*}
$$

which we seek to factor as

$$
\begin{equation*}
f=c\left(1-r \delta_{1}\right)\left(1-r \delta_{N-1}\right) \tag{6}
\end{equation*}
$$

i.e. as $f=c f_{1} f_{-1}$, where $f_{1}=1-r \delta_{1}, f_{-1}=1-r \delta_{N-1}$ (cf. the factorization into a product of circulant bidiagonals in [5]; in particular, $L_{f_{1}}$ is circulant lower bidiagonal and $L_{f_{-1}}$ is circulant upper bidiagonal). If we can find these factors, then we will have $L_{f}^{-1}=\gamma L_{f_{1}}^{-1} L_{f_{-1}}^{-1}$ where $\gamma=1 / c$. Comparing (5) and (6), we see that

$$
\begin{aligned}
c\left(1+r^{2}\right) & =1 \\
c r & =-a
\end{aligned}
$$

is required. If $a=0$ then $\Gamma=I_{N}$; otherwise,

$$
\begin{aligned}
& r_{1,2}=\frac{-1 \pm \sqrt{1-4 a^{2}}}{2 a} \\
& c_{1,2}=\frac{1 \pm \sqrt{1-4 a^{2}}}{2}
\end{aligned}
$$

(which are complex when $|a|$ exceeds $1 / 2$; $c_{1}$ is Chen's $\alpha$ in $\Gamma=\alpha \hat{L} \hat{U}$ ). Choose $(r, c)=\left(r_{i}, c_{i}\right)$ for $i=1$ or $i=2$. Since

$$
\left(1-r \delta_{1}\right)\left(1+r \delta_{1}+r^{2} \delta_{2}+\ldots+r^{N-1} \delta_{N-1}\right)=1-r^{N}
$$

we have

$$
\begin{aligned}
\left(1-r \delta_{1}\right)^{-1} & =\left(1+r \delta_{1}+r^{2} \delta_{2}+\ldots+r^{N-1} \delta_{N-1}\right) /\left(1-r^{N}\right) \\
& =\frac{1}{1-r^{N}} \delta_{0}+\frac{r}{1-r^{N}} \delta_{1}+\frac{r^{2}}{1-r^{N}} \delta_{2}+\ldots+\frac{r^{N-1}}{1-r^{N}} \delta_{N-1}
\end{aligned}
$$

and so $L_{f_{1}}^{-1}$ has the matrix representation

$$
M=\frac{1}{1-r^{N}} \operatorname{circ}\left(1, r^{N-1}, r^{N-2}, \ldots, r\right)
$$

and similarly, the matrix representation of $L_{f_{-1}}^{-1}$ is found to be $M^{T}$. From (6), then,

$$
\begin{equation*}
\Gamma^{-1}=\gamma M M^{T} \tag{7}
\end{equation*}
$$

where $\gamma=1 / c$, and $c$ is nonzero when $|a|<1 / 2$. Because of the factor $1 /(1-$ $r^{N}$ ), the value of $r_{1,2}$ furthest from unity should usually be chosen (unless the corresponding $c$ value is extremely small).

Solving $C x=b$ for the general symmetric circulant tridiagonal case $C=$ $\operatorname{circ}\left(c_{0}, c_{1}, 0, \ldots, 0, c_{1}\right)$ is easily handled. We have

$$
\begin{aligned}
C & =c_{0} \operatorname{circ}\left(1, c_{1} / c_{0}, 0, \ldots, 0, c_{1} / c_{0}\right) \\
& =c_{0} \Gamma
\end{aligned}
$$

if $c_{0}$ is nonzero, and from (1) we see that $C$ must have at least one null eigenvalue if $c_{0}=0$.

## 4 Discussion

The method discussed here advances previous work by giving explict formulas for the inverses of the two circulant bidiagonal factors. In addition, for $N$ odd our formula is valid for the weakly diagonally dominant case $a=1 / 2$. But because $M$ is dense, solution of $\Gamma x=b$ by the use of (7) in the form

$$
\begin{equation*}
x=\gamma M\left(M^{T} b\right) \tag{8}
\end{equation*}
$$

requires two circulant-matrix-by-vector multiplications, each of which requires three FFTs [3]. Hence the method is $O(n \log n)$ once the first row of $M$ is computed. Although we could simplify this somewhat after diagonalizing $M$ by the Fourier matrix [4], it will typically be less efficient than using the the l LU decomposition $\Gamma=\alpha \hat{L} \hat{U}$ in conjunction with the Sherman-Morrison formula, which requires approximately $5 n$ operations, or when $\Gamma$ is not strictly diagonally dominant, directly solving $\Gamma x=b$ as a general circulant system using three FFTs.

Significantly, however, our formula applies whenever $\Gamma$ is nonsingular. It is apparent from (3) that for any fixed $N$ there are up to $N$ values of $a$ that may make $\Gamma$ singular, viz.

$$
a=\frac{-1}{2 \cos \left(\frac{2 \pi i}{N}\right)}
$$

for $i=0, \ldots, N-1$; in fact, there are $1+$ floor $(N / 2)$ such distinct values of $a$. If we are willing to use complex arithmetic in (8) then we may solve $\Gamma x=b$ by this formula whenever $\Gamma$ admits an inverse. (Note that (8) and (7) remain correct as written; the transpose does not become the Hermitian transpose when $|a|>1 / 2$.) Thus, the choices $(r, c)=\left(r_{i}, c_{i}\right)$ for $i=1,2$ give two distinct (if $a \neq 1 / 2)$ decompositions of $\Gamma^{-1}$ whenever it exists.

Acknowledgement. The authors thank Calvin Lui of Rose-Hulman Institute of Technology for suggesting this problem to them.

## Bibliography

## References

[1] Lui, Calvin, private communication
[2] Christiansen, Soren, in Christopher T. H. Baker and Geoffrey Miller (eds.), Treatment of Integral Equations by Numerical Methods, Academic Press, 1982
[3] Tyrtyshnikov, Eugene E., A Brief Introduction to Numerical Analysis, Birkhauser, 1997
[4] Davis, Philip J., Circulant Matrices, John Wiley and Sons, 1979
[5] Chen, Mingkui, On the Solution of Circulant Linear Systems, SIAM J. Numer. Anal. Vol. 24 No. 3, pg. 668-683, 1987
[6] Golub, gene H., and Charles F. Van Loan, Matrix Computations (2nd. ed.), The Johns Hopkins University Press 1989
[7] Leader, Jeffery J., Numerical Analysis and Scientific Computation, AddisonWesley Longman, 2004
[8] LePage, Wilbur R., Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980


[^0]:    Keywords and phrases: circulant matrix, circulant tridiagonal matrix, LU decomposition

