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Abstract

A circulant tridiagonal system is a special type of Toeplitz system that
appears in a variety of problems in scientific computation. In this paper
we give a formula for the inverse of a symmetric circulant tridiagonal
matrix as a product of a circulant matrix and its transpose, and discuss
the utility of this approach for solving the associated system.

1 Introduction

A real N × N matrix C is said to be Toeplitz if ci,j = ci+1,j+1 (the matrix is
constant along diagonals). A Toeplitz matrix is circulant if ci,j = ci+1,j+1 where
are indices are taken modN (the matrix is constant along diagonals, with row-
wise wrap-around). We write C = circ(c0, ..., cN−1) to indicate the circulant
matrix with first row c1,j = cj−1, j = 1, ..., n.

Circulant matrices appear in many applications in scientific computing, in-
cluding computational fluid dynamics [1], numerical solution of integral equa-
tions [2], [3], preconditioning Toeplitz matrices [3], and smoothing data [4]. Lin-
ear systems involving circulant matrices may be solved efficiently in O(n log n)
operations using three applications of the Fast Fourier Transform (FFT) [3].

Circulant matrices may be banded. The N × N circulant tridiagonal ma-
trix is the matrix C = circ(c0, c1, 0, ..., 0, cN−1). If in addition c1 = 0, we say
that it is circulant lower bidiagonal ; if instead cN−1 = 0, we say that it is
circulant upper bidiagonal. The eigenvalues of the circulant tridiagonal matrix
circ(c0, c1, 0, ..., 0, c1) are known to be

λi = c0 + 2c1 cos

(
2πi

N

)
, i = 0, ..., N − 1 (1)
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[5]. In this paper we will focus on the symmetric circulant tridiagonal ma-
trix in a normalized form that appears in a number of applications, including
computational fluid dynamics [1]:

Γ =


1 a 0 0 a
a 1 0 0 a
0 a 1 a 0
0 0 a 1 a
a 0 0 a 1

 (2)

(shown for N = 5). In our case,

λi = 1 + 2a cos

(
2πi

N

)
, i = 0, ..., N − 1 (3)

so that Γ is singular if a = −1/2 (i = 0) or if a = 1/2 and N is even (i = N/2).
Note that for −1/2 < a < 1/2, Γ is strictly diagonally dominant and, from (3),
positive definite. Hence we expect it to be well-behaved numerically; in fact,
we can easily generate its eigenvalues and use |λmax| / |λmin| as a check on its
conditioning [5].

The inverse of a (symmetric) positive definite Toeplitz matrix such as Γ may
be computed in O(n2) operations [6]. Although the general circulant linear
system Cx = b may be solved in O(n log n) operations, Chen [5] develops a spe-
cial LU decomposition for the strictly diagonally dominant symmetric circulant
tridiagonal matrix c0Γ, in the form c0Γ = αL̂Û where L̂ is lower bidiagonal
and Û is upper bidiagonal, then solves c0Γx = b as αL̂Ûx = b with the aid of
two applications of the Sherman-Morrison formula. The resulting algorithm is
O(n) (about 5n operations versus about 12n log2 n for the general FFT-based
approach).

We will use a convolution algebra and a z-transform [8] idea to develop a
formula of the form Γ−1 = γMMT , with M a circulant matrix that is dependent
upon a single parameter. Once M and γ are known, Γx = b may be solved as
x = γM(MT b).

2 The Convolution Algebra

Consider ZN , the cyclic group of integers mod N , and take the convolution
algebra C(ZN ) to be the complex vector space of all functions defined on ZN ,
with convolution product ∗ defined by

f ∗ g(r) =

N−1∑
k=0

f(k)g(r − k) mod N

giving an associative and commutative C-algebra with multiplicative identity.
We use the time sample basis

δ0, ..., δN−1 (4)
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for C(ZN ), where δi(j) = δi,j (the Kronecker delta function). Given any f ∈
C(ZN ),

f = c0δ0 + ...+ cN−1δN−1

where cj = f(j), and so we may identify f with the column vector [c0 c1 · · ·
cN−1]T . Also noting that δi ∗ δj = δi+j (indices modN) convolution products
are easily calculated using basis expansion above and we see that δ0 serves as
the multiplicative identity 1 ∈ C(ZN ).

To relate C(ZN ) to circulant matrices, fix an f ∈ C(ZN ) and use it to define
a linear transformation

Lf : C(ZN )→ C(ZN )

by Lf (g) = f ∗ g. The matrix of this linear transformation with respect to the
basis (4) is

C = circ(c0, cN−1, cN−2, ..., c1)

(and so by proper choice of f we may arrange for C to be any desired circulant
matrix). By associativity,

Lf∗g(h) = (f ∗ g) ∗ h = f ∗ (g ∗ h) = Lf (Lg(h))

and hence f → Lf is an algebra isomorphism onto the subalgebra of circulant
matrices. Hence we can find the inverse of the matrix C by finding the inverse
of f in the convolution algebra.

3 The Symmetric Circulant Tridiagonal Case

We want to invert (2), Γ = circ(1, a, 0, ..., 0, a), when it is nonsingular. The
representer polynomial [4] for Γ would be pΓ(z) = 1 + az + azN−1 (so that
pΓ(1/z) is the corresponding z-transform), and similarly, the element of C(ZN )
corresponding to Γ is

f = 1δ0 + aδ1 + aδN−1

= 1 + aδ1 + aδN−1 (5)

which we seek to factor as

f = c(1− rδ1)(1− rδN−1) (6)

i.e. as f = cf1f−1, where f1 = 1 − rδ1, f−1 = 1 − rδN−1 (cf. the factorization
into a product of circulant bidiagonals in [5]; in particular, Lf1 is circulant lower
bidiagonal and Lf−1

is circulant upper bidiagonal). If we can find these factors,

then we will have L−1
f = γL−1

f1
L−1
f−1

where γ = 1/c. Comparing (5) and (6), we
see that
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c(1 + r2) = 1

cr = −a

is required. If a = 0 then Γ = IN ; otherwise,

r1,2 =
−1±

√
1− 4a2

2a

c1,2 =
1±
√

1− 4a2

2

(which are complex when |a| exceeds 1/2; c1 is Chen’s α in Γ = αL̂Û). Choose
(r, c) = (ri, ci) for i = 1 or i = 2. Since

(1− rδ1)(1 + rδ1 + r2δ2 + ...+ rN−1δN−1) = 1− rN

we have

(1− rδ1)−1 = (1 + rδ1 + r2δ2 + ...+ rN−1δN−1)/(1− rN )

=
1

1− rN
δ0 +

r

1− rN
δ1 +

r2

1− rN
δ2 + ...+

rN−1

1− rN
δN−1

and so L−1
f1

has the matrix representation

M =
1

1− rN
circ(1, rN−1, rN−2, ..., r)

and similarly, the matrix representation of L−1
f−1

is found to be MT . From (6),
then,

Γ−1 = γMMT (7)

where γ = 1/c, and c is nonzero when |a| < 1/2. Because of the factor 1/(1 −
rN ), the value of r1,2 furthest from unity should usually be chosen (unless the
corresponding c value is extremely small).

Solving Cx = b for the general symmetric circulant tridiagonal case C =
circ(c0, c1, 0, ..., 0, c1) is easily handled. We have

C = c0 circ(1, c1/c0, 0, ..., 0, c1/c0)

= c0Γ

if c0 is nonzero, and from (1) we see that C must have at least one null eigenvalue
if c0 = 0.
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4 Discussion

The method discussed here advances previous work by giving explict formulas
for the inverses of the two circulant bidiagonal factors. In addition, for N odd
our formula is valid for the weakly diagonally dominant case a = 1/2. But
because M is dense, solution of Γx = b by the use of (7) in the form

x = γM(MT b) (8)

requires two circulant-matrix-by-vector multiplications, each of which requires
three FFTs [3]. Hence the method is O(n log n) once the first row of M is
computed. Although we could simplify this somewhat after diagonalizing M
by the Fourier matrix [4], it will typically be less efficient than using the the l
LU decomposition Γ = αL̂Û in conjunction with the Sherman-Morrison formula,
which requires approximately 5n operations, or when Γ is not strictly diagonally
dominant, directly solving Γx = b as a general circulant system using three
FFTs.

Significantly, however, our formula applies whenever Γ is nonsingular. It is
apparent from (3) that for any fixed N there are up to N values of a that may
make Γ singular, viz.

a =
−1

2 cos
(

2πi
N

)
for i = 0, ..., N − 1; in fact, there are 1 + floor(N/2) such distinct values of a.
If we are willing to use complex arithmetic in (8) then we may solve Γx = b
by this formula whenever Γ admits an inverse. (Note that (8) and (7) remain
correct as written; the transpose does not become the Hermitian transpose when
|a| > 1/2.) Thus, the choices (r, c) = (ri, ci) for i = 1, 2 give two distinct (if
a 6= 1/2) decompositions of Γ−1 whenever it exists.
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