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Abstract. We present a full step feasible interior-point algorithm for circular cone optimization us-
ing Euclidean Jordan algebras. The specificity of our method is to use a transformation similar to
that introduced by Darvay and Takács for the centering equations of the central path of the linear
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1. Introduction

Interior-point methods (IPMs) that initiated by the landmark paper of Karmarkar [9] play a
fundamental role in moder optimization. They attracted the attention of many researchers
due to the polynomial complexity and their practical effect. For instance, Illés and Ter-
laky [8] presented a comparison between the IPMs and pivot methods from the practical
and theoretical point of view. Monteiro [13] introduced primal-dual path-following algorithms
for solving semidefinite optimization (SDO). Alizadeh and Goldfarb [2] proposed primal-dual
path-following algorithms for second-order cone optimization (SOCO). The primal-dual path-
following algorithms have been extended by Schmieta and Alizadeh [15] to symmetric cone
optimization (SCO) using Euclidean Jordan algebras.

The full-Newton step primal-dual path-following IPM was first introduced by Roos et al.
[14]. Later on, De Klerk [6], Wang et al. [20], Wang and Lesaja [16] and Kheirfam [11] extended
the results for LO to SDO and P∗(κ)-linear complementarity problem, shortly P∗(κ)-LCP,
the Cartesian P∗(κ)-LCP over symmetric cone P∗(κ)-SCLCP and circular cone optimization
CCO. Based on a new proximity measure, Zhang et al. [22] and Kheirfam [10] respectively
generalized Roos et al.’s algorithm to SDO and P∗(κ)-HLCP. In the 2003s, Darvay [4] introduces
a modification in the centering equations xs = µe of the central path by considering ϕ(xsµ ) =

ϕ(e), where ϕ : Rn+ → Rn+ is assumed to be a smooth function such that ϕ(0) = 0. This

direction has become an active area in the past few years for the case ϕ(t) =
√
t. For example,

the Darvay’s results for LO is extended to convex quadratic optimization (CQO) [1], SDO
[18], P∗(κ)-LCP [21], SOCO [17] and SCO [19]. Very recently, Darvay and Takács [5] introduce
another method for characterizing search directions for LO. They replace the centering equations
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xs = µe by ϕ(xsµ ) = ϕ(
√

xs
µ ), and then apply Newton’s method in order to get the new search

directions for the case ϕ(t) = t2.
As mentioned above, the extension of the algorithms proposed for LO to more general

optimization problems such as LCP, P∗(κ)-LCP, SDO, SOCO, SCO is a very active area of
research during the past years. The applications of the circular cone appear in many real-
world engineering problems such as grasp optimizationand the optimal grasping manipulation
problems for multi-fingered robots [12]. However, there is little work on the algorithms for
solving the CCO. These motivate us to generalize Darvay and Takács’s technique [5] for LO to
CCO. We prove that the proposed algorithm is well-defined and derive worst-case complexity
bound for our algorithm.

The paper is organized as follows. In Section 2, we present the state of the art of CCO and
related Euclidean Jordan algebra. In Section 3, we study the central path and the new search
directions for CCO. Then we present a feasible full-NT step algorithm for CCO. In Section 4,
we show the polynomial complexity of our algorithm. Finally, some conclusions are given in
Section 5.

The following notations are used throughout this paper. Let Rn denotes the space of n-
dimensional real column vectors. We use x = (x0; x̄) for the column vector x = (x0, x̄

T )T ∈
R×Rn−1, and use (x; y; s) for adjoining vectors x, y, s in a column (xT , yT , sT )T . The symbols
‖ · ‖ and ‖ · ‖θ,F respectively denote the standard Euclidean norm and the Frobenius norm. If
A ⊆ Rk and B ⊆ Rl, then

A×B = {(x; y) : x ∈ A, y ∈ B}

is their Cartesian product. The intA denotes the interior of A.

2. CCO and related Jordan algebra

Consider the CCO in the standard form

min
{ N∑
j=1

〈
cj , xj

〉
θj

:

N∑
j=1

(
Ajx

j
)
θj

= b, xj ∈ Qnjθj
}
, (P )

where b ∈ Rm, Aj ∈ Rm×nj , cj ∈ Rnj , and Qnjθj is the circular cone of dimension nj defined by

Qnjθj :=
{

(xj0; x̄j) : xj0 ≥ cot(θj)‖x̄j‖
}

for θj ∈ (0, π2 ), j = 1, . . . , N, and ‖ · ‖ refers to the Euclidean norm. Moreover, 〈cj , xj〉θj :=
(cj)T I2

θj ,nj
xj , (Ajx

j)θj := AjI
2
θj ,nj

xj with

Iθj ,nj :=

[
1 0T

0 cot(θj)Inj−1

]
∈ Rnj×nj , j = 1, . . . , N,

which respectively denote the circular inner product between cj and xj and the circular matrix-
vector product between Aj and xj with the circular identity matrix Iθj ,nj . Let us consider

A = [A1, A2, . . . , AN ] ∈ Rm×n, c = (c1; c2; . . . ; cN ) ∈ Rn1 × · · · ×RnN = Rn,

Iθ,n =

Iθ1,n1

. . .

IθN ,nN


n×n

and x = (x1;x2; . . . ;xN ) ∈ Qn1

θ1
× · · · × QnNθN := Qnθ ,
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where n =
∑N
j=1 nj . Then, the problem (P) can be simply written as

min
{
〈c, x〉θ : (Ax)θ = b, x ∈ Qnθ

}
. (P )

The dual of (P) is defined by

max
{
bT y : AT y + s = c, y ∈ Rm, s ∈ Qnθ

}
. (D)

We assume that A has full row rank; i.e., rank(A) = m, and both primal and dual problems
satisfy the interior-point condition (IPC); i.e., there exists a primal-feasible vector x with x ∈
intQnθ and a dual-feasible y and s such that s ∈ intQnθ . It is also worth noting that CCO includes
second-order cone optimization as a special case. Here, for the sake of simplicity, we assume
that N = 1, hence Qn1

θ1
= Qnθ . Let En denote the n dimensional real vector space R × Rn−1

whose elements x are indexed with 0. Note that for two vectors x, y ∈ En, we can rewrite their
circular inner product as follows

〈x, y〉θ = xT I2
θ,ny = x0y0 + cot2(θ) x̄T ȳ.

Let x ∈ En. The circular spectral decomposition of x with respect to the angle θ ∈ (0, π2 ) is
defined as follows [3]

x = λθ,max(x)cθ,1(x) + λθ,min(x)cθ,2(x),

where λθ,max = x0 + cot(θ)‖x̄‖, λθ,min = x0 − cot(θ)‖x̄‖ are the eigenvalues of x and their
associated eigenvectors given by

cθ,1(x) =
1

2

(
1;

tan(θ)x̄

‖x̄‖

)
, cθ,2(x) =

1

2

(
1;
− tan(θ)x̄

‖x̄‖

)
.

Under Spectral Decomposition, we have

tr(x) = λθ,min(x) + λθ,max(x) = 2x0, detθ(x) = λθ,min(x)λθ,max(x) = x2
0 − cot2(θ)‖x̄‖2.

As a result it can be easily seen that cθ,1(x)+cθ,2(x) = e := (1; 0), which is the identity element
of En, trace(e) = 2 and det(x) = 1. For any real-valued continuous function f , we define the
image of x under f with respect to θ as

f(x) := f(λθ,max(x))cθ,1(x) + f(λθ,min(x))cθ,2(x),

in particular, we get x−1 = λ−1
θ,max(x)cθ,1(x)+λ−1

θ,min(x)cθ,2(x). The Frobenius norm with respect

to θ of x is defined as ‖x‖θ,F :=
√
λ2
θ,min(x) + λ2

θ,max(x). The arrow-shaped matrix Arwθ(x)

associated with x in En is defined as [3]

Arwθ(x) :=

[
x0 cot2(θ)x̄T

x̄ x0In−1

]
. (1)

Observe that x ∈ Qnθ , (x ∈ intQnθ ) if and only if Arwθ(x) is positive semidefinite (positive
definite); i.e., Arwθ(x) < 0(Arwθ(x) � 0). For any x, s ∈ En, the Jordan multiplication with
respect to θ is defined as

(x ◦ s)θ = (〈x, s〉θ;x0s̄+ s0x̄) = Arwθ(x)s = Arwθ(x)Arwθ(s)e. (2)

One can easily verify that (En, θ, ◦) is a Euclidean Jordan algebra under the circular inner
product 〈·, ·〉θ with e = (1; 0) ∈ En; i.e., for x, s, y ∈ En, (x ◦ s)θ = (s ◦ x)θ, (x ◦ (x2 ◦ s)θ)θ =
(x2 ◦ (x ◦ s)θ)θ where x2 = (x ◦x)θ, and 〈(x ◦ s)θ, y〉θ = 〈x, (s ◦ y)θ〉θ and (x ◦ e)θ = (e ◦x)θ = x.
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Moreover, we have c2θ,1 = (cθ,1 ◦cθ,1)θ = cθ,1 and c2θ,2 = (cθ,2 ◦cθ,2)θ = cθ,2 and (cθ,1 ◦cθ,2)θ = 0.
Therefore, {cθ,1, cθ,2} is a Jordan frame. We say that two vectors x and s in En are similar,
denoted by x ∼ s, if they share a Jordan frame. The cone of squares of the Euclidean Jordan
algebra (En, θ, ◦) is the circular cone Qnθ [3, Theorem 4]. The quadratic representation Pθ(x)
associated with x ∈ En with respect to θ is given as Pθ(x) = 2Arw2

θ(x) − Arwθ(x
2). In

particular, one has Pθ(x)e = x2, Pθ(x)x−1 = x and Pθ(x
−1)Pθ(x) = Pθ(x)Pθ(x

−1) = In, i.e.,
Pθ(x

−1) = Pθ(x)−1 [11]. In the sequel, we generalize the above notions and concepts to the case
where N > 1, when En = En1 × · · · × EnN and the circular cone underlying Qnθ is the Cartesian
product on N circular cones; i.e., Qnθ = Qn1

θ1
× · · · × QnNθN . The Jordan algebra associated with

the circular cone Qnθ is given by

(x ◦ s)θ =
(
(x1 ◦ s1)θ1 ; . . . ; (xN ◦ sN )θN

)
,

with e = (e1; . . . ; eN ) being its identity element. Note that tr(e) = 2N . The arrow-shaped
matrix Arwθ(x) and the quadratic representation Pθ(x) of the Jordan algebra (En, θ, ◦) with
respect to θ can be respectively adjusted to

Arwθ(x) := diag(Arwθ1(x1), . . . ,ArwθN (xN )), Pθ(x) := diag(Pθ1(x1), . . . , PθN (xN )).

Furthermore

λθ,max(x) = max
1≤j≤N

λθj ,max(xj), λθ,min(x) = min
1≤j≤N

λθj ,min(xj),

and

‖x‖2θ,F =

N∑
j=1

‖xj‖2θj ,F , tr(x) =

N∑
j=1

tr(xj).

3. Feasible full-NT step IPM

In this section, we first introduce the concept of the central path for CCO, and then generalize
Darvay and Takács’s technique [5] for LO to CCO.

3.1. Central path

The Karush-Kuhn-Tucker (KKT) optimality conditions for problems (P) and (D) is stated as
follows:

(Ax)θ = b, x ∈ Qnθ ,
AT y + s = c, s ∈ Qnθ ,
(x ◦ s)θ = 0.

(3)

The first two equations represent primal and dual feasibility and the third equation is called
the complementarity condition for (P) and (D). According to the key idea of IPMs, we replace
the complementarity condition (x ◦ s)θ = 0 by the parameterized equation (x ◦ s)θ = µθe with
µθ > 0. This leads to the following system

(Ax)θ = b, x ∈ intQnθ ,
AT y + s = c, s ∈ intQnθ ,
(x ◦ s)θ = µθe.

(4)

Since the IPC holds and A has full rank, the system (4) has a unique solution, denoted by
(x(µθ), y(µθ), s(µθ)) for each µθ > 0. We call x(µθ) the µθ-center of (P) and (y(µθ), s(µθ)) the
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µθ-center of (D). The set of all µθ-centers is called the central path. It is worth noting that at
the µθ-center, due to the definition of the trace function, together with (2), we get

〈x(µθ), s(µθ)〉θ =
1

2
tr
(
(x(µθ) ◦ s(µθ))θ

)
=

1

2
µθtr(e) = Nµθ.

It is clear to see that if µθ goes to zero, then the limit points satisfy the complementarity
condition (x◦s)θ = 0, and yields an optimal solution for (P) and (D). Let us consider u ∈ intQnθ .
It is a well known fact that (x◦s)θ = µθe if and only if

(
Pθ(u)x◦Pθ(u−1)s

)
θ

= µθe [15, cf.Lemma
28]. In this way, we see that system (4) can be rewritten in the following equivalent form:

(Ax)θ = b, x ∈ intQnθ ,
AT y + s = c, s ∈ intQnθ ,(

Pθ(u)x ◦ Pθ(u−1)s
)
θ

= µθe.
(5)

For each choice of u and applying Newton’s method to system (5) one gets a different direction.
In this article, we will pay particular attention to the case of Nesterov-Todd (NT) direction;

i.e., u = w−
1
2 with

w = Pθ(x
1
2 )
(
Pθ(x

1
2 )s
)− 1

2
[

= Pθ(s
− 1

2 )
(
Pθ(s

1
2 )x
) 1

2
]
,

which is called the scaling point of x and s. Let us define

vθ =
Pθ(w

− 1
2 )x

√
µθ

[
=
Pθ(w

1
2 )s

√
µθ

]
.

Then, by using the third equation of (5), we have

v2
θ = e⇔ vθ = e⇔ v2

θ = vθ. (6)

3.2. Search directions

Here, we present a class of search directions for CCO based on Darvay and Takács’s technique
for LO [5]. Consider the univariate function ϕ continuously differentiable on (σ2,∞) with
0 ≤ σ < 1, such that 2tϕ

′
(t2)− ϕ′(t) > 0 for each t > σ2. Due to (6), we replace the standard

centering equation
(
Pθ(w

− 1
2 )x ◦ Pθ(w

1
2 )s
)
θ

= µθe by

ϕ

(((Pθ(w− 1
2 )x

√
µθ

)
◦
(Pθ(w 1

2 )s
√
µθ

))
θ

)
= ϕ

(((Pθ(w− 1
2 )x

√
µθ

)
◦
(Pθ(w 1

2 )s
√
µθ

)) 1
2

θ

)
.

Therefore, the system (5) can be rewritten in the following scaled form:

AI2
θ,nPθ(w

1
2 )Pθ(w

− 1
2 )x = b,

I2
θ,nPθ(w

1
2 )AT y + I2

θ,nPθ(w
1
2 )s = I2

θ,nPθ(w
1
2 )c,

ϕ

(((
Pθ(w−

1
2 )x√

µθ

)
◦
(
Pθ(w

1
2 )s√
µθ

))
θ

)
= ϕ

(((
Pθ(w−

1
2 )x√

µθ

)
◦
(
Pθ(w

1
2 )s√
µθ

)) 1
2

θ

)
,

(7)

or simplicity,

Ãx̃ = b,

ÃT y + I2
θ,ns̃ = c̃,

ϕ
(((

x̃√
µθ

)
◦
(

s̃√
µθ

))
θ

)
= ϕ

(((
x̃√
µθ

)
◦
(

s̃√
µθ

)) 1
2

θ

)
,

(8)
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where Ã = AI2
θ,nPθ(w

1
2 ), x̃ = Pθ(w

− 1
2 )x, s̃ = Pθ(w

1
2 )s, c̃ = I2

θ,nPθ(w
1
2 )c. If we define

f(x̃, y, s̃) :=


Ãx̃− b

ÃT y + I2
θ,ns̃− c̃

ϕ
(((

x̃√
µθ

)
◦
(

s̃√
µθ

))
θ

)
− ϕ

(((
x̃√
µθ

)
◦
(

s̃√
µθ

)) 1
2

θ

)
 ,

then system (8) can be written as follows: f(x̃, y, s̃) = 0. A Newton method applied to this
system leads to the following linear system:

Ã∆x̃ = b− Ãx̃
ÃT∆y + I2

θ,n∆s̃ = c̃− ÃT y − I2
θ,ns̃

ϕ
(((

x̃+∆x̃√
µθ

)
◦
(
s̃+∆s̃√
µθ

))
θ

)
− ϕ

(((
x̃+∆x̃√
µθ

)
◦
(
s̃+∆s̃√
µθ

)) 1
2

θ

)
= 0,

(9)

where ∆x̃ = Pθ(w
− 1

2 )∆x and ∆s̃ = Pθ(w
1
2 )∆s. From Corollary 2.14 in [17] and the fact that

x̃ and (y, s̃) are feasible, we get

Ã∆x̃ = 0

ÃT∆y + I2
θ,n∆s̃ = 0

1
µθ

(
(x̃ ◦∆s̃)θ + (∆x̃ ◦ s̃)θ

)
=
(
z̃ ◦ z

)
θ
,

(10)

where

z̃ =
[
ϕ
′
(((

x̃√
µθ

)
◦
(

s̃√
µθ

))
θ

)
− 1

2

(((
x̃√
µθ

)
◦
(

s̃√
µθ

))− 1
2

θ
◦ ϕ′

(((
x̃√
µθ

)
◦
(

s̃√
µθ

)) 1
2

θ

))
θ

]−1

,

and

z = ϕ
(((

x̃√
µθ

)
◦
(

s̃√
µθ

)) 1
2

θ

)
− ϕ

(((
x̃√
µθ

)
◦
(

s̃√
µθ

))
θ

)
.

If we define

dx =
∆x̃
√
µθ

=
Pθ(w

− 1
2 )∆x

√
µθ

, ds =
∆s̃
√
µθ

=
Pθ(w

1
2 )∆s

√
µθ

, (11)

then system (9) can be simply written in the following form:

√
µθÃdx = 0√

µθÃ
T∆y + I2

θ,nds = 0

dx + ds = pvθ ,

(12)

where

pvθ =
(
v−1
θ ◦

([
ϕ
′
(v2
θ)− 1

2

(
v−1
θ ◦ ϕ

′
(vθ)

)
θ

]−1

◦
(
ϕ(vθ)− ϕ(v2

θ)
))
θ

)
θ
.

Here, we restrict our attention to the case where ϕ(t) = t2 based on Darvay and Takács’s
method for LO [5], so we have

pvθ =
(

(2v2
θ − e)−1 ◦

(
vθ − (v2

θ ◦ vθ)θ
))
θ
.

We obtain the search directions dx and ds by solving (12) and then compute ∆x and ∆s via
(11). The new iterates are obtained by taking a full-NT step as follows:

x+ := x+ ∆x, y+ := y + ∆y, s+ := s+ ∆s. (13)
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3.3. The generic primal-dual algorithm for CCO

In this section, we will show that the algorithm can solve the CCO in polynomial time. In order
to we need to a quantity that measure the distance between the given triple (x, y, s) and the
µθ-center (x(µθ), y(µθ), s(µθ). We use a norm-based proximity measure as follows:

δ(x, s;µθ) := δ(vθ) :=
1

2
‖pvθ‖θ,F =

1

2

∥∥∥((2v2
θ − e)−1 ◦

(
vθ − (v2

θ ◦ vθ)θ
))
θ

∥∥∥
θ,F

. (14)

From the first two equations of the system (12) it follows that

dxI
2
θ,nds = 〈dx, ds〉θ = 0,

that is dx and ds with respect to θ are orthogonal. Let qvθ = dx − ds. Then, we have

(dx ◦ ds)θ =
(pvθ ◦ pvθ )θ − (qvθ ◦ qvθ )θ

4
. (15)

Noting that dx and ds are orthogonal, we get ‖qvθ‖θ,F = ‖pvθ‖θ,F = 2δ(vθ). The full-NT step
algorithm is given in Figure 1.

Algorithm 1 : primal− dual algorithm for CCO
Input : accuracy parameter ε > 0;

barrier update parameter γ, 0 < γ < 1( default γ = 1
12
√

2N
);

initial feasible point (x0, y0, s0), µ0
θ = 〈x0,s0〉θ

N and v0
θ − 1√

2
e ∈ intQnθ ,

such that δ(x0, s0;µ0
θ) <

1
10 .

begin
x := x0; y := y0; s := s0; µθ := µ0

θ;
while 〈x, s〉θ > ε do
begin

(x, y, s) := (x, y, s) + (∆x,∆y,∆s);
µθ := (1− γ)µθ;

end
end

Figure 1: Primal–dual algorithm

4. Analysis of the algorithm

Let x, s ∈ intQnθ , µθ > 0 and w be the NT-scaling point of x and s. Then, by the definition of
vθ, (11) and (13) we get

x+ =
√
µθPθ(w

1
2 )(vθ + dx), s+ =

√
µθPθ(w

− 1
2 )(vθ + ds). (16)

Due to [2, Theorem 9] and the above relations, x+ and s+ belong to intQnθ if and only if vθ+dx
and vθ + ds belong to intQnθ . From now on, we denote x− y ∈ intQnθ by x �Qnθ y(x− y ∈ Qnθ
by x <Qnθ y). Moreover, we have

v2
θ + (vθ ◦ pvθ )θ = v2

θ +
(
vθ ◦

(
(2v2

θ − e)−1 ◦
(
vθ − (v2

θ ◦ vθ)θ
))
θ

)
θ

=
(

(2v2
θ − e)−1 ◦

((
(2v2

θ − e) ◦ v2
θ

)
θ

+
(
vθ ◦

(
vθ − (v2

θ ◦ vθ)θ
))
θ

))
θ

=
(

(2v2
θ − e)−1 ◦

(
v2
θ ◦ v2

θ

)
θ

)
θ
−
(

(2v2
θ − e)−1 ◦ (2v2

θ − e)
)
θ

+ e

=
(

(2v2
θ − e)−1 ◦

(
v2
θ − e

)2)
θ

+ e. (17)
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The following lemma states that, under some mild conditions on the proximity measure, the
full-NT steps lie in intQnθ .

Lemma 1. Let δθ := δ(vθ) < 1 and vθ �Qnθ
1√
2
e. Then the full-NT step is strictly feasible.

Proof. Let 0 ≤ α ≤ 1. Define vx(α) = vθ + αdx and vs(α) = vθ + αds. Then, using (15) and
(17), we obtain(

vx(α) ◦ vs(α)
)
θ

=
(
(vθ + αdx) ◦ (vθ + αds)

)
θ

= v2
θ + α

(
vθ ◦ (dx + ds)

)
θ

+ α2(dx ◦ ds)θ
= (1− α)v2

θ + α
(
v2
θ + (vθ ◦ pvθ )θ

)
+ α2(dx ◦ ds)θ

<Qnθ (1− α)v2
θ + αe+ α2(dx ◦ ds)θ

<Qnθ (1− α)v2
θ + α

(
e− (1− α)

(pvθ ◦ pvθ )θ
4

− α (qvθ ◦ qvθ )θ
4

)
.

Furthermore, since 0 ≤ α ≤ 1, we have∥∥∥(1− α)
(pvθ ◦ pvθ )θ

4
+ α

(qvθ ◦ qvθ )θ
4

∥∥∥
θ,F
≤ (1− α)

∥∥∥ (pvθ ◦ pvθ )θ
4

∥∥∥
θ,F

+α
∥∥∥ (qvθ ◦ qvθ )θ

4

∥∥∥
θ,F

≤ (1− α)
‖pvθ‖2θ,F

4
+ α
‖qvθ‖2θ,F

4

= δ2
θ < 1.

From the last inequality, we deduce that

e− (1− α)
(pvθ ◦ pvθ )θ

4
− α (qvθ ◦ qvθ )θ

4
�Qnθ 0.

Therefore, since v2
θ �Qnθ 0, we have

(
vx(α) ◦ vs(α)

)
θ
�Qnθ 0. Hence,

0 < detθ

((
vx(α) ◦ vs(α)

)
θ

)
≤ detθ(vx(α))detθ(vs(α)), ( see Lemma 6 in [11]).

From this inequality, it follows that detθ(vx(α)) 6= 0 and detθ(vs(α)) 6= 0. From an argument
similar to the proof of [11, Lemma 9], it follows that vθ+dx �Qnθ 0 and vθ+ds �Qnθ 0. Therefore,
the proof is complete.

Let us define

v+
θ =

Pθ(w
− 1

2
+ )x+√
µθ

[
=
Pθ(w

1
2
+)s+√
µθ

]
,

where w+ is the NT-scaling point of x+ and s+. Then, we have (v+
θ )2 ∼ Pθ

(
(vθ+dx)

1
2

)
(vθ+ds)

([11, Lemma 11]).

Lemma 2. Let δθ := δ(x, s, µθ). Then, we have

λθ,min(v+
θ ) ≥

√
1− δ2

θ .
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Proof. We have

λθ,min(v+
θ )2 = λθ,min

(
Pθ
(
(vθ + dx)

1
2

)
(vθ + ds)

)
≥ λθ,min

((
(vθ + dx) ◦ (vθ + ds)

)
θ

)
≥ λθ,min

(
e− (qvθ ◦ qvθ )θ

4

)
≥ 1− λθ,max

( (qvθ ◦ qvθ )θ
4

)
≥ 1− ‖(qvθ ◦ qvθ )θ‖θ,F

4
≥ 1−

‖qvθ‖2θ,F
4

= 1− δ2
θ ,

where the first inequality is due to Lemma 4.58 [7], the second inequality follows from the proof
of Lemma 1 with α = 1 and the fourth inequality follows from the fact that λmax(x) ≤ ‖x‖F .
The proof of the lemma is complete.

We will often use the following inequality on the circular inner product of two elements of Qnθ .

‖(x ◦ y)θ‖2θ,F = λ2
max,θ(x)λ2

max,θ(y) + λ2
min,θ(x)λ2

min,θ(y)

≤ λ2
max,θ(x)

(
λ2

max,θ(y) + λ2
min,θ(y)

)
= λ2

max,θ(x)‖y‖2θ,F .

Lemma 3. Let δθ := δ(x, s, µθ) <
1√
2
and vθ �Qnθ

1√
2
e. Then v+

θ �Qnθ
1√
2
e and

δ(v+
θ ) := δ(x+, s+;µθ) ≤

5δ2
θ

1− 2δ2
θ

√
1− δ2

θ .

Proof. In view of Lemma 2, we deduce that

λθ,min(v+
θ ) ≥

√
1− δ2

θ >

√
1− 1

2
=

1√
2
.

From this inequality, it follows that v+
θ �Qnθ

1√
2
e. To prove the second claim, by the definition

of δθ, we have

2δ(v+
θ ) = ‖pv+θ ‖θ,F =

∥∥∥((2(v+
θ )2 − e)−1 ◦

(
v+
θ − (v+

θ ◦ (v+
θ )2)θ

))
θ

∥∥∥
θ,F

=
∥∥∥(((2(v+

θ )2 − e)−1 ◦ v+
θ

)
θ
◦
(
e− (v+

θ )2
))
θ

∥∥∥
θ,F

≤ λmax,θ

((
(2(v+

θ )2 − e)−1 ◦ v+
θ

)
θ

)∥∥e− (v+
θ )2
∥∥
θ,F

.

Let us consider the function f(t) = t
2t2−1 on t > 1√

2
. It is easy to see that f

′
(t) < 0, so the

function f(t) is decreasing. Thus, using Lemma 2, we get

2δ(v+
θ ) ≤

λmin,θ(v
+
θ )

2λ2
min,θ(v

+
θ )− 1

∥∥e− (v+
θ )2
∥∥
θ,F
≤
√

1− δ2
θ

1− 2δ2
θ

∥∥e− (v+
θ )2
∥∥
θ,F

. (18)
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On the other hand, using [15, Lemma 30], we get∥∥(v+
θ )2 − e

∥∥
θ,F

=
∥∥Pθ((vθ + dx)

1
2

)
(vθ + ds)− e

∥∥
θ,F

≤
∥∥((vθ + dx) ◦ (vθ + ds)

)
θ
− e
∥∥
θ,F

=
∥∥v2
θ + (vθ ◦ pvθ )θ + (dx ◦ ds)θ − e

∥∥
θ,F

=
∥∥∥((2v2

θ − e)−1 ◦
(
v2
θ − e

)2)
θ

+
(pvθ ◦ pvθ )θ − (qvθ ◦ qvθ )θ

4

∥∥∥
θ,F

=
∥∥∥((v−2

θ ◦ (9v2
θ − 4e)

)
θ
◦
( (pvθ ◦ pvθ )θ

4

))
θ
− (qvθ ◦ qvθ )θ

4

∥∥∥
θ,F

≤ λmax,θ

((
v−2
θ ◦ (9v2

θ − 4e)
)
θ

)∥∥∥ (pvθ ◦ pvθ )θ
4

∥∥∥
θ,F

+
∥∥∥ (qvθ ◦ qvθ )θ

4

∥∥∥
θ,F

≤ 9
‖pvθ‖2θ,F

4
+
‖qvθ‖2θ,F

4
= 10δ2

θ ,

where the second equality is due to the proof of Lemma 1 with α = 1, the third equality follows
from (15) and (17). Substituting this bound into (19) yields the inequality in lemma, and the
proof is complete.

The next lemma gives an upper bound of the duality gap after taking a full-NT step.

Lemma 4. Let δθ := δ(x, s;µθ). Then, we have

〈x+, s+〉θ ≤ µθ(N + 4δ2
θ).

Proof. By the circular inner product and (16) it follows that

〈x+, s+〉θ = xT+I
2
θ,ns+ = µθ

(
Pθ(w

1
2 )(vθ + dx)

)T
I2
θ,nPθ(w

− 1
2 )(vθ + ds)

= µθ(vθ + dx)TPθ(w
1
2 )T I2

θ,nPθ(w
− 1

2 )(vθ + ds)

= µθ(vθ + dx)T I2
θ,nPθ(w

1
2 )Pθ(w

− 1
2 )(vθ + ds)

= µθ〈vθ + dx, vθ + ds〉θ
= µθ

(
〈vθ, vθ〉θ + 〈vθ, dx + ds〉θ + 〈dx, ds〉θ

)
= µθ

(
〈vθ, vθ〉θ + 〈vθ, pvθ 〉θ

)
=
µθ
2

tr
(
v2
θ + (vθ ◦ pvθ )θ

)
=
µθ
2

tr
((

(2v2
θ − e)−1 ◦

(
v2
θ − e

)2)
θ

+ e
)

=
µθ
2

tr
(((

v−2
θ ◦ (2v2

θ − e)
)
θ
◦
(
pvθ ◦ pvθ

)
θ

)
θ

+ e
)

≤ µθ
2

(
λmax,θ

((
v−2
θ ◦ (2v2

θ − e)
)
θ

)
tr
((
pvθ ◦ pvθ

)
θ

)
+ 2N

)
≤ µθ

2

(8‖pvθ‖2θ,F
4

+ 2N
)

= µθ
(
N + 4δ2

θ

)
,

where the third equality follows from (I2
θ,nPθ(w

1
2 ))T = I2

θ,nPθ(w
1
2 ) (see [11]), the sixth equality

is due to the third equation of (12) and the fact that dx and ds are orthogonal. The proof of
the lemma is complete.

Lemma 5. Let δθ := δ(x, s, µθ) <
1√
2
, vθ �Qnθ

1√
2
e and µ+

θ := (1 − γ)µθ with 0 < γ < 1.

Furthermore, let v]θ =
v+θ√
1−γ . Then, v]θ �Qnθ

1√
2
e and

δ(x+, s+;µ+
θ ) ≤

√
1− δ2

θ

2
√

1− γ(1− 2δ2
θ + γ)

(
γ
√

2N + 10δ2
θ

)
.
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Proof. Under the assumptions given in lemma, we conclude from Lemma 3 that v+
θ �Qnθ

1√
2
e.

This, together with 1√
1−γ > 1, implies that v]θ �Qnθ

1√
2
e, and we have proved the first statement.

To prove the second claim, by the definition of δθ, we have

δ(x+, s+;µ+
θ ) =

1

2

∥∥∥((2(v]θ)
2 − e

)−1 ◦
(
v]θ −

(
v]θ ◦ (v]θ)

2
)
θ

))
θ

∥∥∥
θ,F

=
1

2
√

1− γ

∥∥∥((2(v+
θ )2 − e(1− γ)

)−1 ◦
(
v+
θ ◦

(
(1− γ)e− (v+

θ )2
))
θ

)
θ

∥∥∥
θ,F

≤ 1

2
√

1− γ
λmax,θ

(((
2(v+

θ )2 − e(1− γ)
)−1 ◦ v+

θ

)
θ

)∥∥(1− γ)e− (v+
θ )2
∥∥
θ,F

≤
√

1− δ2
θ

2
√

1− γ(1− 2δ2
θ + γ)

(
γ
√

2N +
∥∥e− (v+

θ )2
∥∥
θ,F

)
≤

√
1− δ2

θ

2
√

1− γ(1− 2δ2
θ + γ)

(
γ
√

2N + 10δ2
θ

)
,

which concludes the proof of lemma.

Corollary 1. Let δθ := δ(x, s, µθ) <
1
10 and γ = 1

12
√

2N
. Then δ(x+, s+;µ+

θ ) < 1
10 .

The following lemma gives an upper bound for the number of iterations produced by Algo-
rithm.

Lemma 6. Suppose that x0 and s0 are strictly feasible, µ0
θ = 〈x0,s0〉θ

N and δ(x0, s0;µ0
θ) <

1
10 .

Let xk and sk be the iterates obtained after k iterations. Then, 〈xk, sk〉θ ≤ ε for any

k ≥
⌈ 1

γ
log

µ0
θ

(
N + 1

25

)
ε

⌉
.

Proof. From Lemma 4 and the assumption δ(x, s;µθ) <
1
10 , we conclude that

〈xk, sk〉θ ≤ µkθ
(
N +

1

25

)
= (1− γ)kµ0

θ

(
N +

1

25

)
.

Then, the inequality 〈xk, sk〉θ ≤ ε holds if

(1− γ)kµ0
θ

(
N +

1

25

)
≤ ε. (19)

By taking the natural logarithm of both sides of (19), we get

k log(1− γ) + log µ0
θ

(
N +

1

25

)
≤ log ε.

Using the inequality − log(1− γ) > γ, we conclude that the above inequality is satisfied if

−kγ + logµ0
θ

(
N +

1

25

)
≤ log ε,

which implies the desired result.

We are now in a position to state the main result of this paper.

Theorem 1. Let γ = 1
12
√

2N
. Then the algorithm requires at most

O
(√

N log
µ0
θ

(
N + 1

25

)
ε

)
iterations. The output gives an ε-approximate solution (x, s) satisfying 〈x, s〉θ ≤ ε.

Proof. The proof is trivial by Lemma 6.
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5. Conclusion

In this paper, we proposed an IPM for circular cone optimization based on Darvay and Takács’s
techique for LO [5] and using the Nesterov-Todd (NT) symmetrization scheme. We used New-
ton’s method to get the search directions and showed that the obtained complexity coincides
with the now best-known iteration bound for small-update methods. As a further research one
can consider the possible extension of the proposed method to the elliptic cone optimization.
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