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Abstract. In this paper we investigate a bilevel optimization problem by using the optimistic ap-
proach. Under a non smooth generalized Guignard constraint qualification, due the optimal value re-
formulation, the necessary optimality conditions in terms of convexificators and Karush-Kuhn-Tucker
(KKT) multipliers are given.
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1. Introduction

Using the optimistic approach in bilevel optimization, where we assume that the leader pre-
supposes cooperation of the follower in the sense that the latter will choose in each time that
solution in the solution set of the follower’s parametric optimization problem which is best suited
with respect to the leader’s objective function, we investigate the following bilevel optimization
problem

(P ) min
x,y

F (x, y) s.t. Gj(x, y) ≤ 0, j ∈ J, y ∈ ψ(x), (1)

where, for each x ∈ Rn1 , ψ(x) is the set of optimal solutions of the following parametric
optimization problem

min
y

f(x, y) s.t. gi(x, y) ≤ 0, i ∈ I, (2)

where F : Rn1 × Rn2 → R and gi : Rn1 × Rn2 → R, i ∈ I = {1, · · · , q} are locally Lipchitz
functions, f, Gj : Rn1 × Rn2 → R, j ∈ J = {1, · · · , p} are convex continuous functions and
n1 ≥ 1, n2 ≥ 1, p ≥ 1, q ≥ 1 are integers. The point u = (x, y) is said to be a local optimal
solution of (P ) if it is an optimal solution of the problem{

Minimize F (x, y)
subject to : (x, y) ∈ E,

where

E =

{
(x, y) ∈ Rn1 × Rn2 :

Gj(x, y) ≤ 0, gi(x, y) ≤ 0, i ∈ I, j ∈ J, y ∈ ψ(x)

}
.
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A lot of research has been carried out in bilevel optimization problems [1, 3, 4, 5, 6, 8, 17, 18,
19, 20]. Ye and Zhu [19] give optimality conditions without convexity assumption on the lower
level problem and without the assumption that the solution set ψ (x) is a singleton. Under semi-
Lipschitz property, Zhang [20] extends the classical approach to allow the nonsmooth problem
data; he derives existence and optimality conditions for problems in terms of a graph set of the
solution multifunction to the lower-level problem.

In this paper, our approach consists of reformulating our problem using the optimal value
function of the lower level problem and after investigating necessary optimality conditions of
(P ) . Our results are obtained, under a non smooth generalized Guignard constraint qualifica-
tion, in terms of convexificators and Karush-Kuhn-Tucker multipliers.

The rest of the paper is organized in this way: Section 2 contains basic definitions and
preliminary material from nonsmooth variational analysis, Section 3 addresses main results
(optimality conditions), while main conclusion is given in Section 4.

2. Preliminaries

In this section, we recall some basic constructions and results from nonsmooth analysis. For a
subset D of Rn, the sets cl D, conv D, conv D(= cl conv D), cone D, cone D(= cl cone D) and
D− stand for the closure of D, the convex hull of D, the closed convex hull of D, the convex
cone generated by D, the closed convex cone generated by D and the negative polar cone of D,
repectively.

Let D be a subset of Rn and x ∈ cl D. The contingent cone T (D,x) to D at x is defined by

T (D,x) = {v ∈ Rn : ∃tn ↓ 0 and ∃vn → v such that x+ tnvn ∈ D}.

A set-valued mapping H : Rn ⇒ Rm will be said to be inner semicompact at a point x̄ with
H(x̄) 6= ∅, if for every sequence xk → x̄ with H(xk) 6= ∅, there is a sequence of yk ∈ H(xk) that
contains a convergent subsequence. The mapping H is inner semicontinuous at (x̄, ȳ) ∈ gr (H)
if for every sequence xk → x̄ there is a sequence of yk ∈ H(xk) that converges to ȳ.

Proposition 1. Let f be Lipschitz around (x̄, ȳ) for every ȳ ∈ ψ(x̄) [14]

• If ψ is inner semicompact at x̄, one gets the Lipschitz continuity of the value function V
defined by

V (x) = min
y
{f(x, y) : gi(x, y) ≤ 0, i ∈ I, y ∈ Rn2}. (3)

• If ψ is inner semicontinuous at (x̄, ȳ), one gets the Lipschitz continuity of the value
function V .

Now, we recall the definitions related to convexificators given by Jeyakumar and Luc [10]
and Dutta and Chandra [8]. Let f : Rn → R∪{+∞} be a given function and let x ∈ Rn where
f(x) is finite. The expressions

f−d (x, v) = lim inf
t↘0

[f(x+ tv)− f(x)]/t

f+
d (x, v) = lim sup

t↘0
[f(x+ tv)− f(x)]/t

signify the lower and upper Dini directional derivatives of f at x in the direction v, respectively.

Definition 1. The function f : Rn → R∪{+∞} is said to have an upper convexificator (UCF)
∂∗f(x) at x if ∂∗f(x) ⊆ Rn is closed and, for each v ∈ Rn,

f−d (x, v) ≤ sup
x∗∈∂∗f(x)

〈x∗, v〉.
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Definition 2. The function f : Rn → R ∪ {+∞} is said to have a lower convexificator (LCF)
∂∗f(x) at x if ∂∗f(x) ⊆ Rn is closed and, for each v ∈ Rn,

f+
d (x, v) ≥ inf

x∗∈∂∗f(x)
〈x∗, v〉.

A closed set ∂∗f(x) ⊆ Rn is said to be a convexificator of f at x if it is both an upper and
lower convexificator of f at x.

Remark 1. The convexificators are neither necessarily compact nor convex [7]. These relax-
ations allow applications to a large class of nonsmooth continuous functions. For instance,
the function f : R → R defined by f(x) = − | x |, admits a non convex convexificator
∂∗f(0) = {−1, 1} at 0.

The following definition has been proposed by Dutta and Chandra. For more details [8].

Definition 3. The function f : Rn → R∪{+∞} is said to have an upper semi-regular convex-
ificator (USRCF) ∂∗f(x) at x if ∂∗f(x) is an upper convexificator at x and, for each v ∈ Rn,

f+
d (x, v) ≤ sup

x∗∈∂∗f(x)

〈x∗, v〉.

Remark 2. The Clarke [2], Michel-Penot [13] and Murdokhovich [16] subdifferentials are upper
semi-regular convexificators of f when f is a locally Lipschitz function. However, the convex hull
of an upper semi-regular convexificator of a locally Lipschitz function may be strictly contained
in both the Clarke and the Michel-Penot subdifferentials.

Definition 4. Let f : Rn → R be a locally Lipschitz function on Rn. The Clarke subdifferential
of f at x̄ is defined by

∂cf(x̄) := {η ∈ Rn : f◦(x̄, v) ≥ 〈η, v〉 ∀v ∈ Rn}.

where, for each v ∈ Rn,

f◦(x̄, v) = lim sup
x→x̄,t↘0

f(x+ tv)− f(x̄)

t

is known as the Clarke generalized derivative of f at x̄ with respect to v.

Remark 3. For a locally Lipschitz function F , ∂cf(x̄) is a convexificator of f at x [10].

Let

ΩL = {(x, y) ∈ Rn1 × Rn2 : gi(x, y) ≤ 0, i ∈ I}, I(x, y) = {i ∈ I : gi(x, y) = 0},

and

Ω = {(x, y) ∈ Rn1 × Rn2 : f(x, y)− V (x) ≤ 0, gi(x, y) ≤ 0, i ∈ I,Gj(x, y) ≤ 0, j ∈ J}.

To proceed further, we shall need the following regularity conditions.

• We say that (x̄, ȳ) ∈ ΩL is lower-level regular if[ ∑
i∈I(x̄,ȳ)

λivi = 0, λi ≥ 0

]
⇒ [λi = 0 for all i ∈ I(x̄, ȳ)]

whenever (ui, vi) ∈ ∂cgi(x̄, ȳ) with some ui ∈ Rn1 as i ∈ I(x̄, ȳ).
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• We say that the nonsmooth Abadie constraint qualification holds at (x̄, ȳ) if

(∂∗ −ACQ)( ⋃
i∈I(x̄,ȳ)

conv∂∗gi(x̄, ȳ)∪
⋃

j∈J(x̄,ȳ)

conv∂∗Gj(x̄, ȳ)∪∂f(x̄, ȳ)−∂V (x̄)×{0}
)−
⊆ T (Ω, (x̄, ȳ)).

• We say that nonsmooth generalized Guignard constraint qualification holds at (x̄, ȳ) if

(∂∗ −GGCQ)

[ T (Ω, (x̄, ȳ)) ]
− ⊆ cone

( ⋃
i∈I(x̄,ȳ)

∂∗gi(x̄, ȳ)

∪
 ⋃
j∈J(x̄,ȳ)

∂∗Gj(x̄, ȳ)

∪(∂f(x̄, ȳ)− ∂V (x̄)× {0})
)

Here, ∂ stand for the subdifferential of convex analysis.

Remark 4. The nonsmooth Abadie constraint qualification implies the nonsmooth generalized
Guignard constraint qualification. The converse is not always true.

3. Necessary optimality conditions

For all the sequel, it is assumed that the leader presuppose cooperation of the follower in the
sense that the latter will choose in each time that solution in ψ (x) which is best suited with
respect to the leader’s objective function.
In this case, (P ) can be replaced by

(P ∗) :

{
Minimize F (x, y)

subject to : (x, y) ∈ Ω

provided that (P ∗) has an optimal solution [12], where for all (x, y) ∈ Rn1 × Rn2 ,

V (x) := min
y
{f (x, y) : gi(x, y) ≤ 0, i ∈ I, y ∈ Rn2} .

Note that, since data are all convex, the optimal value function V is also convex.

Remark 5. Under the following hypotheses (H1) , (H2) , (H3) and (H4) , the optimization
problem (P ) has at least one optimal solution [9].
(H1) : F (., .) is lower semicontinuous ( l.s.c. ) on Rn1 × Rn2 ;
(H2) : f (., .) is lower continuous, V (.) is upper semicontinuous ( u.s.c. ) on Rn1 ;
(H3) : gj (., .) and Gi (., .) are lower continuous on Rn1 × Rn2 ;
(H4) : The problem (P ∗) has at least one feasible solution and its feasible set is bounded.
Especially, under these conditions, Ω is a nonempty compact set and F is a lower semicontin-
uous function.

Theorem 1. Let u = (x, y) ∈ C be a local optimal solution of (P ). Assume that F admits
a bounded (USRCF) ∂∗F (ū) at u, that Gj , j ∈ J, gi, i ∈ I, admit (UCFs) ∂∗Gj(ū), ∂∗gi(ū),
respectively at ū. Suppose that the nonsmooth generalized Guignard constraint qualification holds
at (x, y) , that the solution-set-mapping of S is inner semicompact at x, and that for each vector
y ∈ ψ (x) , (x, y) is lower-level regular. Then, there exist y∗ ∈ ψ (x) , π ≥ 0, ξ ≥ 0, µ ≥ 0 and(
λ∗1, · · · , λ∗q

)
∈ Rq+ such that

0 ∈ conv ∂∗xF (x, y) +
∑

j∈J(x,y)

πj ∂
∗
xGj (x, y) +

∑
i∈I(x,y)

ξi ∂
∗
xgi (x, y) (4)

+µ

(
∂xf (x, y)− ∂xf (x, y∗)−

∑
i∈I

λ∗i ∂xgi (x, y∗)

)
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0 ∈ conv ∂∗yF (x, y) +
∑

j∈J(x,y)

πj∂
∗
yGj (x, y) +

∑
i∈I(x,y)

ξi ∂
∗
ygi (x, y) + µ∂yf (x, y) (5)

and
0 ∈ ∂yf (x, y∗) +

∑
i∈I

λ∗i ∂ygi (x, y∗) , λ∗i gi (x, y∗) = 0. (6)

Proof. Since (x̄, ȳ) is an optimal solution of (P ) , it is an optimal solution of (P ∗) . Let (v1, v2) ∈
T (Ω, (x̄, ȳ)). Then, there exist tn ↓ 0 and (vn1 , vn2)→ (v1, v2) such that (x̄, ȳ)+tn(vn1 , vn2) ∈ Ω
for all n. Since (x̄, ȳ) is a minimum of F over Ω, one has

F ((x̄, ȳ) + tn(vn1 , vn2))− F (x̄, ȳ)

tn
≥ 0, for sufficiently large n.

Remarking that

F ((x̄, ȳ) + tn(vn1
, vn2

))− F (x̄, ȳ)

tn

=
F ((x̄, ȳ) + tn(vn1 , vn2))− F ((x̄, ȳ) + tn(v1, v2))

tn
+
F ((x̄, ȳ) + tn(v1, v2))− F (x̄, ȳ)

tn

and that F is locally Lipschitz, one deduces that

F+
d ((x̄, ȳ), (v1, v2))

= lim sup
n

F ((x̄, ȳ) + tn(v1, v2))− F (x̄, ȳ)

tn

= lim sup
n

F ((x̄, ȳ) + tn(vn1 , vn2))− F (x̄, ȳ)

tn
≥ 0

Thus,
F+
d ((x̄, ȳ), (v1, v2)) ≥ 0, for all (v1, v2) ∈ T (Ω, (x̄, ȳ)) .

• On the one hand, using the upper semiregularity of ∂∗F (x̄, ȳ) at (x̄, ȳ), we get

sup
η∈∂∗F (x̄,ȳ)

〈η, (v1, v2)〉 ≥ 0, for all (v1, v2) ∈ T (Ω, (x̄, ȳ)) .

From this, we can conclude easily from the calculus of the support functions that

0 ∈ co ( ∂∗F (x̄, ȳ) ) + [T (Ω, (x̄, ȳ))]−.

• On the other hand, the nonsmooth generalized Guignard constraint qualification implies
that

(0, 0) ∈ cl

 clconv ( ∂∗F (x̄, ȳ) )

+cl cone

{ ⋃
i∈I(x̄,ȳ)

conv ∂∗gi(x̄, ȳ) ∪
⋃

j∈J(x̄,ȳ)

conv ∂∗Gj(x̄, ȳ) ∪ (∂f(x̄, ȳ)− ∂V (x̄)× {0})
}

which implies that

(0, 0) ∈ conv ∂∗F (x̄, ȳ)+cl

{ ∑
i∈I(x̄,ȳ)

cone ∂∗gi(x̄, ȳ)+
∑

j∈J(x̄,ȳ)

cone ∂∗Gj(x̄, ȳ)+cone (∂f(x̄, ȳ)−∂V (x̄)×{0})
}

(7)
By Proposition 2.3.15 [2], one has :

∂f(x, y) ⊂ ∂xf(x, y)× ∂yf(x, y). (8)



334 Nazih Abderrazzak Gadhi, Lahoussine Lafhim

• Applying Theorem 8 [15] (its inner semicompact counterpart), we get

∂V (x̄) :=

[ ⋃
y∈ψ(x̄)

{ ⋃
(λ1,··· ,λm1

)∈Λ(x̄,y)

∂xf(x̄, y) +
∑
i∈I

λi ∂xgi(x̄, y)

)}]
(9)

where

Λ(x̄, y) =

{
(λ1, · · · , λm1

) ∈ Rm1 : 0 ∈ ∂yf(x̄, y)+
∑
i∈I

λi ∂ygi(x̄, y), λi ≥ 0, λi gi(x̄, y) = 0, i ∈ I
}
.

(10)
Necessary optimality conditions (4), (5) and (6) follow from (7), (9) and (10).

Theorem 2. Let u = (x, y) ∈ C be a local weak efficient solution of (P ). Assume that F admits
a bounded (USRCF) ∂∗F (ū) at u, that Gj , j ∈ J, gi, i ∈ I, admit (UCFs) ∂∗Gj(ū), ∂∗gi(ū),
respectively at ū. Suppose that the nonsmooth generalized Guignard constraint qualification holds
at u, that the solution-set-mapping of ψ is inner semicontinuous at (x, y) and that (x, y) is
lower-level regular. Then, there exist π ≥ 0, ξ ≥ 0, µ ≥ 0 and

(
λ∗1, · · · , λ∗q

)
∈ Rq+ such that

0 ∈ conv ∂∗xF (x, y) +
∑

j∈J(x,y)

πj ∂
∗
xGj (x, y) +

∑
i∈I(x,y)

ξi ∂
∗
xgi (x, y) (11)

+µ

(
∂xf (x, y)− ∂xf (x, y)−

∑
i∈I

λ∗i ∂xgi (x, y)

)

0 ∈ conv ∂∗yF (x, y) +
∑

j∈J(x,y)

πj ∂
∗
yGj (x, y) +

∑
i∈I(x,y)

ξi ∂
∗
ygi (x, y) + µ∂yf (x, y) (12)

and
0 ∈ ∂yf (x, y) +

∑
i∈I

λ∗i ∂ygi (x, y) , λ∗i gi (x, y) = 0. (13)

Proof. Under the inner semicontinuity assumption on S, instead of (9), one gets

∂V (x̄) :=
⋃

(λ1,··· ,λm1
)∈Λ(x̄,y)

(
∂xf(x̄, ȳ) +

∑
i∈I

λi ∂xgi(x̄, ȳ)

)
where

Λ(x̄, ȳ) =

{
(λ1, · · · , λm1

) ∈ Rm1 : 0 ∈ ∂yf(x̄, ȳ)+
∑
i∈I

λi ∂ygi(x̄, ȳ), λi ≥ 0, λigi(x̄, ȳ) = 0, i ∈ I
}
.

Using the same argument as in Theorem (1), one gets (11), (12) and (13).

Remark 6. The necessary optimality conditions we found are in fact generalized corrections
of those given in [11]. Since Lemma 5.2 in [11] is wrong (setting A = R+ and B = {−1}
yields a simple counterexample) and since it is an integral part of the proof of Theorem 5.1, the
necessary optimality conditions obtained by Kohli [11], as well as their proofs, are false.

4. Conclusion

In this note, we investigate a bilevel optimization problem (P ) . Our approach consists of re-
formulating the problem using the optimal value function of the lower level problem and after
investigating necessary optimality conditions of (P ) . Using a nonsmooth generalized Guignard
constraint qualification, one gives necessary optimality conditions in terms of convexificators
and Karush-Kuhn-Tucker multipliers.
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