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Abstract  

Microbial biosensors can be used to provide information about the cells’ environment in large-scale 

fermentations. In this project an oxygen sensitive biosensor is being developed in Escherichia coli to 

determine what kind of conditions cells are growing in: aerobic or anaerobic. This project specifically 

studies expression from the fumarate and nitrate reductase (FNR) promoter (PFNR) under aerobic and 

anaerobic conditions. In fluorescence experiments, the expression levels of green fluorescent protein 

(GFP) were used to quantify the effectiveness of the PFNR in the DH5α, MG1655 and BL21 strains of E. 

coli. The negative control of the experiments, which are the E. coli strains without a GFP plasmid, 

showed very high levels of background fluorescence until the emission and excitation wavelengths of 

the fluorescence plate reader were adjusted. Overall, the PFNR expressed more GFP under anaerobic 

conditions in the DH5α and BL21 strains. The results of the MG1655 strain indicated that the strain has 

the fnr- genotype and did not draw any definite conclusions of PFNR. Another oxygen sensitive promoter 

plasmid, pKVS-vgb-GFP, was constructed using circular polymerase extension cloning (CPEC) to be tested 

in the future. A positive control plasmid, pKVS-J23101-GFP, was also constructed using CPEC that should 

not produce as high of an amount of GFP relative to the current positive control plasmid. Once verified 

as the correct plasmid size, the new positive control can be used in future fluorescence experiments.   
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Introduction 

The fermentation process employs the ability of microorganisms to break down materials and produce a 

desired product such as antibiotics, foods and biofuels. However, when the fermentation process is 

scaled-up, non-homogenous conditions are often created, which lead to side product formation and a 

lower product yield. 1 Components such as oxygen, pH and substrates can be distributed unevenly, so 

microbial biosensors are used to detect what type of conditions the microorganisms are growing under. 

These experiments analyze the development of an oxygen sensitive biosensor in several strains of E. coli 

that utilize the PFNR.  

E. coli use the FNR protein to switch between aerobic and anaerobic respiration. 2 The FNR protein is 

composed of an iron-sulfur cluster that can be oxidized or reduced. Under anaerobic conditions the 

cluster forms a dimer, which is much more effective at binding to DNA so that transcription can occur 

and genes can be expressed. Then, under aerobic conditions the FNR protein transcription factor breaks 

apart into the monomer form and becomes less efficient at binding to DNA. 3 The environment’s oxygen 

levels control whether not the FNR protein binds to the PFNR promoter region and the desired gene is 

expressed. 4 The FNR protein is used in a variety of applications to detect oxygen or dissolved oxygen 

levels that cells are growing in. 5 Also, the FNR protein can be used with other bacteria besides E. coli 

such as cyanobacteria like Synechocystis and still detect oxygen levels because of its ability to switch 

growth metabolism between anaerobic and aerobic conditions. 6  

 

Materials and Methods 

Fluorescence Experiments 

Fluorescent experiments were conducted in the DH5α, MG1655 and the BL21 strains of E. coli (Table 1).  

The FNR-GFP and pTrc-GFP plasmids in the DH5α strain were miniprepped using the New England 

BioLabs (NEB) Monarch Plasmid Miniprep Kit and the BL21 competent cells were transformed with the 

plasmids. The transformed cells were plated on Luria-Bertani-Ampicillin (LB-Amp) plates and incubated 

overnight at 37 °C. The plated colonies were then used to store the new strain in a 15% glycerol stock. 

Unlike the BL21 strain, the DH5α and MG1655 strains were already prepared by another research 

student, so those strains did not require an additional transformation. 

 

Strain Positive Control Experimental Negative Control 

DH5α pTrc-GFP in DH5α FNR-GFP in DH5α DH5α strain 

MG1655 pTrc-GFP in MG1655 FNR-GFP in MG1655 MG1655 strain 

BL21 pTrc-GFP in BL21 FNR-GFP in BL21 BL21 strain 

 

Table 1. Three strains of E. coli, DH5α, MG1655 and BL21, were tested in the fluorescence experiments. 

Within each experiment for a strain there was a positive control, experimental and negative control. The 

positive control contained the pTrc-GFP plasmid in the desired strain, the experimental contained the 

FNR-GFP plasmid in the desired strain and the negative control was the desired strain without a GFP 

plasmid.  



 

For each experiment of a particular strain, a liquid starter culture was made of the negative control that 

does not contain GFP, the positive control with the pTrc-GFP plasmid and the experimental strain with 

the FNR-GFP plasmid. All cultures contained 3 mL of LB medium and the corresponding colony. 3 µL of 

100 mM ampicillin was added to the positive control and experimental cultures. All of the liquid cultures 

were incubated at 37 °C and 250 rotations per minute (rpm) overnight. Next, 300 µL of the starter 

culture was used to inoculate a flask of 30 mL of LB medium. 30 µL of 100 mM ampicillin were added to 

the flasks of the experimental and positive control and 30 µL of the 100 mM IPTG inducer was pipetted 

into the positive control flask. The flasks were plugged with foam and incubated at 37 °C and 250 rpm 

for 2 hours. Then, 1 mL samples were taken from each of the flasks and 15 mL of the culture in the flask 

were pipetted into a Hungate tube. The Hungate tubes were capped and provided the anaerobic 

conditions because there was very little head space in the tube once the culture was added. The 

cultures in the Hungate tubes and flasks continued to grow at 37 °C while 1 mL samples were taken at 2, 

4 and 20 hours after the initial sample was taken. A pipet was used to remove the sample from the 

cultures growing aerobically in the flasks and a 1 mL syringe was used to take the sample from cultures 

growing micro-aerobically in the Hungate tubes.  

Each 1 mL sample was centrifuged for 2 minutes at 13,000 rpm and the supernatant was discarded. 

Then, the cells were suspended in 0.5 mL of phosphate buffered saline (PBS) and this process was 

repeated a second time. At the 0 and 2 hour intervals the cells were resuspended in 0.5 mL of PBS and at 

the 4 and 20 hour intervals the cells were resuspended in 1 mL of PBS. Next, 200 µL of each sample were 

loaded into a well plate, so the fluorescence and absorbance readings could be taken. The fluorescence 

of each sample was measured on the Spectra Gemini plate reader on medium sensitivity at an excitation 

wavelength of 490 nm and an emission wavelength of 510 nm. The fluorescence of the second 

experiment with the DH5α strain was measured using an excitation wavelength of 485 nm and an 

emission wavelength of 520 nm. Finally, the absorbance was measured on the BioTek plate reader at an 

absorption wavelength of 630 nm. The fluorescence measurement of each sample was divided by the 

corresponding absorbance value so that the fluorescence was normalized by number of cells present.    

pKVS-J23101-GFP and pKVS-vgb-GFP Plasmid Construction and Transformations  

DH5α competent cells were made using the standard protocol. The pKVS plasmid backbone and J23101-

GFP construct were amplified and purified under the work of a previous research student. The purified 

DNA was used in a CPEC reaction, with an annealing temperature of 55 °C, to form one complete 

plasmid. Next, the DH5α competent cells were transformed with the CPEC product and plated on LB-

Amp plates to grow at 37 °C overnight. The CPEC colonies that grew were amplified using the standard 

colony PCR method and checked using gel electrophoresis. A 0.7% agarose gel was run for 75 minutes at 

82 volts to verify that the pKVS-J23101-GFP plasmid was accurate. Also, the CPEC colonies were used to 

make a 15% glycerol stock and to store the plasmid long-term. A double digest was done on the pKVS-

J23101-GFP plasmid using the NEB CutSmart buffer, the XbaI restriction enzyme and the PstI–HF 

restriction enzyme.  

The DNA of the pKVS backbone was also previously amplified as part of another student’s work. The vgb 

promoter was amplified by colony PCR that used primers RK2 and RK3 (Attachment 1). The pTrc-GFP 

plasmid was prepared using the NEB Monarch Plasmid Miniprep Kit. Then, 0.5 µL of the miniprepped 

plasmid was used in a PCR reaction to amplify the GFP DNA. The vgb and GFP PCR products were 



checked using gel electrophoresis. A 1.3% agarose gel was run at 82 volts for 75 minutes. Then, the PCR 

product of the vgb and GFP were cleaned with the NEB Monarch PCR and DNA Cleanup Kit. Elution 

buffer was used instead of TE buffer to bring the volume of the reaction up to the recommended 

minimum of 20 µL. Next, the pKVS backbone, vgb, and GFP PCR products were all connected to form 

one plasmid using CPEC with an annealing temperature of 55 °C. After the CPEC reaction, the product 

was digested with the DpnI enzyme. 2 µL of the enzyme was added to the CPEC product and incubated 

for 1.5 hours at 37 °C. Next, the digested DNA was heat inactivated by incubating the product at 65 °C 

for 20 minutes. The DH5α competent cells were then transformed with the digested CPEC product, 

plated on an LB-Amp agar plate and incubated overnight at 37 °C. Then, colony PCR was performed on 

several of the CPEC product colonies and gel electrophoresis was applied to check the size of the pKVS-

vgb-GFP plasmid. A 0.7 % agarose gel was run for 75 minutes at 82 volts.  

fnr Testing in MG1655 Strain  

The E. coli strains DH5α, BL21 and MG1655 were screened for any deletions in the fnr gene. A version of 

each strain without a GFP plasmid and a version with the FNR-GFP plasmid were tested. The standard 

protocol for colony PCR was used for each E. coli strain to amplify a product of 902 base pairs. Gel 

electrophoresis was completed to verify if the fnr gene was amplified correctly and present in each 

strain. The amplified DNA from the PCR reaction was ran on a 0.7% agarose gel at 83 volts for 75 

minutes.  

The MG1655 strain that is fnr+ was ordered from the Coli Genetic Stock Center and stored in a 15% 

glycerol stock to test in the future.   

 

Results  

Fluorescence Experiments  

The reporter protein, GFP, was selected so that the promoter activity of the PFNR could be measured and 

analyzed quantitatively in aerobic and anaerobic conditions. Therefore, the greater the amount of GFP 

that was expressed the more effective the promoter was at operating under the given conditions. The 

first trial of the DH5α, the MG1655 strain trial and BL21 strain trial used an excitation wavelength of 490 

nm and an emission wavelength of 510 nm, but the second trial of the DH5α strain used an excitation 

wavelength of 485 nm and an emission wavelength of 520 nm. An emission scan with a fixed excitation 

wavelength was completed on the pTrc-GFP plasmid, the PKVS-J23101-GFP plasmid, the BL21 strain and 

the DH5α strain. The new emission wavelength of 520 nm was selected because at that value the pTrc-

GFP plasmid was producing a maximum amount of GFP and the DH5α and BL21 strains showed an 

insignificant amount of background fluorescence. If the incorrect emission wavelength is used then the 

negative controls of the fluorescence experiments appear to produce a high amount of background 

fluorescence due to interference of the plate reader (Attachment 2). This occurred in the first trial of the 

DH5α strain and the negative control showed high normalized fluorescence values (Figure 1). The 

adjusted wavelengths decreased the background fluorescence levels in the negative control and the 

relative values between the positive control, promoter, and negative control were more as expected in 

the second trial of the DH5α strain. The normalized fluorescence in the positive control is higher and the 

normalized fluorescence in the negative control is lower when compared to the promoter being tested 



(Figure 2). The BL21 strain experiment shows a high normalized fluorescence in the negative control and 

a higher normalized fluorescence under anaerobic conditions when compared to aerobic conditions of 

the promoter plasmids (Figure 3). The MG1655 strain experiment also shows a high level of background 

fluorescence in the negative control, but inconclusive results on higher normalized fluorescence under 

anaerobic condition (Figure 4).  

 

 

Figure 1. The positive control pTrc-GFP plasmid (green), experimental FNR-GFP plasmid (black) and the 

negative control that does not contain a plasmid (red) were all tested in the DH5α strain and normalized 

fluorescence is shown. The triangular markers represent aerobic conditions and the circular markers 

represent anaerobic conditions. Each error bar represents one standard deviation.  
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Figure 2. The positive control pTrc-GFP plasmid (green), experimental FNR-GFP plasmid (black) and the 

negative control that does not contain a plasmid (red) were all tested in the DH5α strain and normalized 

fluorescence is shown. The triangular markers represent aerobic conditions and the circular markers 

represent anaerobic conditions. The fluorescence expression during this trial was measured using an 

excitation wavelength of 485 nm and an emission wavelength of 520 nm. The data points for the aerobic 

conditions of the positive controls at 4 and 20 hours do not appear on this graph because the plate 

reader reached saturation under the medium sensitivity setting used. The graph on the right (B) shows 

just the FNR-GFP plasmid and the negative control on a smaller scale. Each error bar represents one 

standard deviation.  
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Figure 3. The positive control pTrc-GFP plasmid (green), experimental FNR-GFP plasmid (black) and the 

negative control that does not contain a plasmid (red) were all tested in the MG1655 strain and 

normalized fluorescence is shown. The triangular markers represent aerobic conditions and the circular 

markers represent anaerobic conditions. Each error bar represents one standard deviation.  

 

 

 

Figure 4. The positive control pTrc-GFP plasmid (green), experimental FNR-GFP plasmid (black) and the 

negative control that does not contain a plasmid (red) were all tested in the BL21 strain and normalized 

fluorescence is shown. The triangular markers represent aerobic conditions and the circular markers 

represent anaerobic conditions. Each error bar represents one standard deviation.  
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The first trial of the DH5α strain showed that the PFNR is more fluorescent under anaerobic conditions 

and the positive and negative control have correct relative values by expressing more and less GFP than 

the PFNR, respectively. Then, in the second trial of the DH5α strain new excitation and emission 

wavelengths were used, which lowered the background fluorescence levels of the negative control, but 

cells with the FNR-GFP plasmid did not consistently show a higher normalized fluorescence under 

anaerobic conditions. Next, the MG1655 trial did not show conclusive results because the experimental 

FNR-GFP plasmid showed lower normalized fluorescence values than both the positive and negative 

control. These results lead to the verification of the fnr gene in all three strains. Finally, the BL21 strain 

produced a large amount of GFP with the PFNR under anaerobic conditions, but the positive control 

showed a lower fluorescence than expected.  

pKVS-J23101-GFP and pKVS-vgb-GFP Plasmid Construction 

The pKVS-J23101-GFP and pKVS-vgb-GFP plasmids have been constructed using CPEC, but have not been 

verified as the correct size. Only a miniprepped plasmid of the pKVS-J23101-GFP plasmid shows a strong 

band through gel electrophoresis, but the PCR reaction did not show the correct segment of DNA being 

amplified. Also, the double digest on the pKVS-J23101-GFP plasmid did not yield the correct results. 

Similar results were found for the pKVS-vgb-GFP plasmid and the plasmid has not be verified through gel 

electrophoresis.  

fnr Testing in MG1655 Strain 

The MG1655 strain can have large deletions around the fnr gene and contain either the fnr+ or fnr- 

genotype. The stocks of the MG1655 strain with the fnr- genotype would not be able to grow under 

anaerobic conditions. 7 The amplified PCR product of 902 base pairs of the fnr gene did not show in the 

gel electrophoresis test for the MG1655 strain without GFP or the MG1655 strain with the FNR-GFP 

plasmid. All other strains showed the correct product in the version of the strain without GFP and in the 

version of the strain with the FNR-GFP plasmid (Attachment 3).  

 

Conclusions and Future Work  

The PFNR expresses a larger amount of GFP under anaerobic conditions in the BL21 strain of E. coli, while 

the DH5α and MG1655 strains give inconclusive results. The BL21 strain showed higher normalized 

fluorescence values when the cells with the FNR-GFP plasmid grew under anaerobic conditions. The first 

trial of the DH5α strain also showed that the FNR-GFP plasmid under anaerobic conditions produced 

higher normalized fluorescence levels. However, the second trial of the DH5α strain did not consistently 

show a higher normalized fluorescence under anaerobic conditions. Also, the second trial of the DH5α 

strain showed lower levels of background fluorescence due to the change in excitation and emission 

wavelengths of the plate reader. The DH5α strain should be tested again with the new emission and 

excitation wavelengths since both trials gave different results for the FNR-GFP plasmid. Then, the 

MG1655 strain also gave inconclusive results because the stock used had the fnr- genotype and does not 

grow well under anaerobic conditions.  

The Gemini plate reader’s excitation and emission wavelengths originally selected seemed to have 

caused interference with the fluorescence measurement and abnormally large background fluorescence 

levels in the negative controls. The pKVS-vgb-GFP and pKVS-J23101-GFP plasmids are not the correct 



size or have not been constructed correctly and will need further testing. Finally, the MG1655 strain was 

concluded to be the fnr- version and the fnr+ was purchased to be used in future experiments.  

The fluorescence experiments can be continued using the new excitation and emission wavelengths that 

prevent interference from the excitation wavelength on the plate reader. Additional experiments can be 

performed to test the fnr+ version of the MG1655 strain and to evaluate all of the E. coli strains in Wilms 

media. Other promoters such as the vgb, gadB and pfl can also be tested in a variety of strains and 

media. In the future, the pKVS-vgb-GFP plasmid could be constructed using two CPEC reactions to join 

first the vgb and GFP PCR product and then add on the pKVS backbone. Also, additional colonies of the 

pKVS-J23101-GFP plasmid should be screened for the correct plasmids and diagnostic test such as 

enzyme digestion can be repeated to verify the results.  

 

Attachments 

[1] Reizman – strains and plasmids.xlsx – Tables of all strains, plasmids and primers used  

[2] CM Emissions Scans.docx – Emission scans at excitation wavelength of 485 nm on Gemini plate 

reader 

[3] CM fnr Gene Test Report.docx – Report sent to MIT labs on verifying fnr mutation in MG1655 strain  

[4] CM Protocol for Fluorescence Experiments.docx – Updated protocol for fluorescence experiments  

[5] CM Raw Data of Fluorescence.xlsx – Data from each fluorescence experiment, each Excel sheet is a 

new experiment  
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