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the secret santa problem continues

Daniel Crane Tanner Dye

Abstract. We explore the Secret Santa gift exchange problem. A group of n people
draws names at random, giving a gift to the person drawn. First, we examine the
probabilities of gift exchanges under various scenarios when everyone draws names at
once, similar to Montmort’s matching problem. We then consider the probabilities of
certain gift exchanges when people take turns drawing names and develop a strategy
to maximize the likelihood of receiving a gift from the most generous participant.
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1 Introduction

Secret Santa gift exchanges are a popular Christmas tradition. In a Secret Santa gift ex-
change, a group of n people draws names at random, with the requirement that a person
can not draw him or herself. Then each person gives a gift to the person drawn.

There are several ways to design a Secret Santa gift exchange. Previous work done on
these gift exchanges [2, 5, 6, 9, 10] usually operates under the assumption that everyone is
equally likely to give a gift to any other person in the gift exchange, which is true when
everyone draws a name at once. In Section 2, we summarize some of these results and also
apply results proven in other contexts to Secret Santa. We consider cases where everyone is
single, where all participants are in families of size k, and where participants are in families
of different sizes. The probability of needing to redraw names depends on family size when
we do not allow family members to give gifts to each other. Rook polynomials allow for
calculation of this probability. Other techniques such as the inclusion-exclusion principle
and bounds on permanents of matrices can be used for studying he limiting behavior of
these probabilities when the number of participants in the gift exchange increases.

Next, in Section 3, we examine probabilities of allowed gift exchanges when names are
drawn one at a time as opposed to all at once as in Section 2, and we then determine
which kinds of exchanges are more likely than others. Specifically, we show that the order
of drawing names affects to whom each participant is most likely to give a gift. In this type
of gift exchange, the probability of any one derangement can be written as a product of
terms involving an indicator function, and this allows us to compare the probabilities for
two different giver-recipient pairs. We find that each person is most likely to give to the
person drawing directly before him, with the first person to draw being most likely to give
a gift to the last person to draw. Furthermore, we find that the last person to draw is more
likely to give a gift to the second to last person than any other giver-recipient pair.

2 Drawing Names All at Once

In Secret Santa, nobody is allowed to give a gift to himself or herself. We might add the
additional constraint that if a participant is in a family of k people (for k ≥ 2), he may not
give to himself or to a family member. We will refer to a gift exchange where no one gives
to himself or a family member, as an allowed arrangement. When everyone draws names at
once, there is a chance that nobody will draw his own name or a family member’s name. The
probability of this is equal to the number of allowed arrangements divided by total number
of arrangements, n!. As the number of people approaches infinity, this probability converges
to different values depending on the number of people in various family sizes.

2.1 The Simplest Case

When the only restriction is that nobody can draw his own name, the allowed exchanges
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are called derangements. The number of possible derangements for n people is

dn = n!
n∑
i=0

(−1)i

i!
, (1)

which can be verified using the inclusion-exclusion principle. This allows for a simple proof
of our first result by recognizing the Taylor series for e−1. In the following theorem we see
that the probability of a derangement approaches e−1 as the number of people n increases.

Theorem 2.1. If dn is the number of derangements of length n, then

lim
n→∞

dn
n!

=
1

e
. (2)

This is a well known and easy to prove result known by multiple names, most notably as
Montmort’s Matching Problem [4].

2.2 Families of k people

Now suppose that all of the n people in a gift exchange are partitioned into families of
size k. In that case, the rules require that nobody can give to a member of his own family.
In this case, the number of allowed arrangements can be calculated using rook polynomials
[3] or using permanents of (0,1) matrices. The number of allowed arrangements is

Fk(n) =
n∑
i=1

(−1)iRi ∗ (n− i)!, (3)

where Ri is the ith coefficient of the rook polynomial

R(x) =

(
k∑
j=0

(
k

j

)2

j!xj

)n/k

.

The ith coefficient of a rook polynomial of degree d represents the number of ways to place
i non-attacking rooks, meaning no rooks share a row or column, on an d× d chessboard. In
this case, our problem can be represented as the number of ways to place k non-attacking
rooks each on n/k separate chessboards.

Alternatively, by letting A be a (0, 1) matrix with k × k blocks of 0s along the diagonal
and 1s everywhere else we can calculate the value Fk(n) by taking the permanent of A. This
alternate method is used in the proof of out next theorem, which determines the limiting
behavior of the probability of an allowed arrangement as n increases.

Theorem 2.2. (Penrice [6]) If Fk(n) represents the number of allowed arrangements for a
gift exchange with n people in families of k, then

lim
n→∞

Fk(n)

n!
= e−k. (4)
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Penrice’s proof involves finding upper and lower bounds on the fraction Fk(n)/n! using
inequalities from Minc and Van der Waerden for permanents of (0,1) matrices. Since both
of these bounds go to e−k, then the probability does as well.

2.3 The General Case

Of course, large collections of people are rarely all in families of equal size. More generally,
for n people, let p1 be the proportion of the people who are individuals, p2 be the proportion of
the people who are in families of two, and so on so that pi represents the proportion of people
in a family of i. Once again, we can calculate the number of allowed arrangements using
rook polynomials or permanents. Letting Fn denote the number of allowed arrangements for
this case, we find that

Fn =
n∑
i=1

(−1)iRi ∗ (n− i)!,

where Ri is the ith coefficient of the rook polynomial

R(x) =
M∏
k=1

(
k∑
j=0

(
k

j

)2

j!xj

)npk

,

and M denotes the largest family size in the collection of participants.
We then come to our next result which applies a known theorem to Secret Santa ex-

changes.

Theorem 2.3. If Fx(n) represents the number of allowed arrangements for a gift exchange
with pin people in families of size i for each i ∈ Z+ ∪ 0, then

lim
n→∞

Fx(n)

n!
= e−x (5)

where

x =
M∑
i=1

ipi

and M denotes the largest family size.

We see that this agrees with our previous results in section 2.2 when we let pk = 1 and
pi = 0 for i 6= k.

Proof. The proof follows from a special case of a result by Barton given in Margolius [4]
and proven by Barton [1]. In Barton’s proof, the problem is viewed as two decks of N cards
being matched up pairwise. There are S suits in each deck with ni cards of suit i in deck
one and mi cards of suit i in deck two. A match occurs if a card from deck 1 of suit i is
matched up with a card from deck 2 of the same suit.
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For our purposes, each deck of cards corresponds to the participants in Secret Santa (one
being the givers and one being the receivers). Then ni = mi because the givers and receivers
are the same collection of people. Each of the S suits corresponds to an individual family of
ni people.

Barton proves that the distribution of the number of matching cards, or in our case the
number of people who drew their own name or a family member’s name, is asymptotic to a
Poisson distribution with parameter

λ =
1

N

S∑
i=1

nimi.

For us, the parameter becomes 1
N

∑S
i=1 n

2
i . It can be verified using our previous notation

that this becomes

λ =
M∑
i=1

ipi = x.

So the probability distribution for the number of people j who draw their own or a family
member’s name is given by

xj

j!
e−x.

So the probability that nobody draws his own name or a family member’s name (j = 0)
becomes e−x.

3 Drawing One at a Time

We assumed in section 2 that each derangement was equally likely, but few gift exchanges are
set up so that everyone draws names at the same time. A more common method of drawing
is for everyone to take turns drawing names and for each person to redraw if he gets his own
name. In this section, we will assume that everyone is single. In this case, the only problem
that might arise is if the last person gets his own name. We will assume that if this happens,
then everyone will return the names drawn and they will redraw using the same method.
An interesting consequence of this method of drawing names is that different arrangements
are no longer equally likely. We find that the order in which people draw determines who
each person is most likely to draw.

3.1 Ranking Derangement Classes by Likelihood

First, we will introduce some notation. We use x→ y to indicate that the xth person to
draw gives to the yth person. Similarly, we will let P (x→ y) denote the probability that the
xth person gives to the yth person. Finally, if α is a derangement, we will let α(x) = y mean
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that x→ y for the specific derangement α.

Most of our proofs rely heavily on two ideas. The first is our method for calculating
probabilities. One method of computing probabilities when names are drawn one at a time
is given by White [10]. We will employ simpler, more illustrative notation for these proba-
bilities.

Lemma 3.1. Let Dn denote the set of all derangements (allowed gift exchanges) for n people.
For a given derangement α ∈ Dn, the probability of α is given by

P (α) =
n∏
i=1

1

n− i+ Iα(i)
, (6)

where i runs over all of the n people, and Iα(i) is an indicator function that is equal to 1
if the ith person’s name is drawn before i draws and equal to 0 if his name has not yet been
drawn. To avoid dividing by zero, we define Iα(n) = 1.

Proof. The probability of person i drawing a specific name is 1 divided by the number of
names left in the hat which i could possibly draw. We find that this number of names is
n − i + 1 if i has not been drawn and n − i otherwise. Then the probability associated
i→ α(i) for a specific derangement α is

P (i→ α(i)) =
1

n− i− Iα(i)
.

The probability of the derangement as a whole is the product of such terms,

P (α) =
n∏
i=1

P (i→ α(i)) =
n∏
i=1

1

n− i+ Iα(i)
.

For example, the probability where n = 5 people and the derangement

α = 1→ 5→ 4→ 2→ 3→ 1

(where 1 is first to draw, 2 second, and so on) is (1/4)(1/3)(1/3)(1)(1) = 1/24.
The second idea we employ is the notion of “pairing up” derangements with each other.

We can find a bijection between sets of derangements and compare the probabilities of these
derangements. If we can find a bijection between arrangements where x → y and arrange-
ments where x→ z and every individual arrangement where x→ y is at least as likely as the
corresponding arrangement where x→ z, then we can conclude that P (x→ y) ≥ P (x→ z).

We apply these ideas to prove the next several theorems. The first one involves those
who draw names before the kth person.
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Theorem 3.2. For n ≥ 3 participants, if i < i+ 1 < k then P (k → i) ≤ P (k → i+ 1).

In everyday language, this conjecture states that a participant is more likely to draw the
second person in a pair of consecutive people who had already drawn. A direct consequence
of this is that, of all the people who drew before him, he is most likely to draw the person
who drew right before him, second most likely to draw the person who drew two people
before him, and so on.

Proof. Let A be the set of derangements in Dn where k → i and B be the set of derangements
where k → i+ 1. Note that |A| = |B| by symmetry. We will set up a bijection from A to B
and compare each α ∈ A to its corresponding derangement β ∈ B.

There are three different types of derangements in A (and in B). We will examine each
of these three cases.

Case 1: Suppose that α(y) = i + 1 for some y < i. In other words, i + 1 was drawn
before i’s turn for the derangement α.

In this case, we will map α to the β ∈ B such that α and β are identical except for the
two differences that β(k) = i+ 1 and β(y) = i,. Thus, P (α) and P (β) (which are both just
products of probabilities of the form 1/(n − i + Iα(x))) will agree with each other except
possibly at the terms 1/(n− i+ Iα(i)) and 1/(n− (i+ 1) + Iα(i+ 1)).

These terms will be different for the two derangements. For α, i + 1 drew after he was
drawn so Iα(i+ 1) = 1. Meanwhile i drew before he was drawn, so Iα(i) = 0.

On the other hand, since i drew after he was drawn in β, then Iβ(i) = 1 and Iβ(i+1) = 0
because he drew a name before his name was drawn.

Thus we have (note that Iα(j) = Iβ(j) for j 6= i, i+ 1)

P (α) =
1

(n− i)
1

(n− (i+ 1) + 1)

n∏
j=1,j 6=i,j 6=i+1

1

n− j + Iα(j)
,

whereas

P (β) =
1

(n− i+ 1)

1

(n− (i+ 1))

n∏
j=1,j 6=i,j 6=i+1

1

n− j + Iα(j)
.

Then by inspection, we see that P (β) > P (α).
Case 2: Now suppose α is such that α(i) = i+ 1 and α(i+ 1) = y for some y ∈ {1, ...n}.

Then map this α to a β ∈ B such that α = β except for the following alternations: β(k) =
i+ 1, β(i) = y and β(i+ 1) = i.

For α, i draws before he has been drawn (by k) so Iα(i) = 0 and i+ 1 draws after he has
been drawn (by i). So Iα(i+ 1) = 1. Thus,

P (α) =
1

(n− i)
1

(n− (i+ 1) + 1)

n∏
j=1,j 6=i,j 6=i+1

1

n− j + Iα(j)
.

For β, i + 1 draws before he has been drawn (by k) so Iβ(i + 1) = 0 and i also draws
before his name is drawn (by i+ 1). So Iβ(i) = 0. Thus,
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P (β) =
1

(n− i)
1

(n− (i+ 1))

n∏
j=1,j 6=i,j 6=i+1

1

n− j + Iα(j)
.

Once again, we see that P (β) > P (α).
Case 3: Now suppose that α(k) = i, α(m) = i + 1 where m ∈ {i + 1, ...n}; (i.e i + 1

draws before his name was drawn).
We will map α in this case to the β equal to α except that β(k) = i+ 1 and β(m) = i.
In α, i+1 draws before he was drawn so Iα(i+1) = 0. The same is true for i so Iα(i) = 0.

Thus,

P (α) =
1

(n− i)
1

(n− (i+ 1))

n∏
j=1,j 6=i,j 6=i+1

1

n− j + Iα(j)
.

Now for β, both i and i + 1 drew before they were drawn (by m and k) so Iβ(i) =
Iβ(i+ 1) = 0 Thus,

P (β) =
1

(n− i)
1

(n− (i+ 1))

n∏
j=1,j 6=i,j 6=i+1

1

n− j + Iβ(j)
.

Note that these probabilities are equal so P (α) = P (β) for case 3.
We now show that our mapping is a bijection. For β ∈ B, β will have one of the forms

described by the three cases above. Then our mapping is invertible and must be a bijection.
Then P (α) < P (β) in cases 1 and 2 and P (α) = P (β) in case 3. Therefore P (k → i) =∑
i P (αi) ≤

∑
i P (βi) = P (k → i+ 1).

We find that when this inequality is strict whenever we have at least 3 people in our gift
excange.

Corollary 3.3. The inequality in Theorem 3.2 is a strict inequality for n ≥ 3.

Proof. Consider, n = 3 people and 3→ 1. Then we must have 1→ 2 and 2→ 3. Thus, only
case 2 in Theorem 4 holds for n = 3 people which shows the inequality proved in Theorem 3.2
must be strict for n = 3. For n ≥ 3, there certainly exists a derangement described by case
2. So there will never be a case where only case 3 holds. This completes the proof.

From this we see that person k is more likely to give a gift to the k − 1st person than to
anyone else drawing a name before k.

In the following proof, we consider those who draw names after the kth person. We will
find that person k is more likely to draw the last person’s name than he is to draw the name
of anyone else after k. It is important to note that this is different from our other proofs
in that it compares conditional probabilities in which we know information about previous
draws.

Theorem 3.4. For k < i < n, P (k → n) ≥ P (k → i).
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Proof. Instead of comparing individual derangements, we will compare different ways that
the first k − 1 people could draw and look at who k is most likely to draw. By k’s turn,
there are three possible cases.
Case 1: If both i and n have already been drawn, then P (k → i) = P (k → n) = 0.
Case 2: If neither i nor n have been drawn, then k is equally likely to draw either. But if
k → i, then there is a chance that n → n, causing a redraw. So for this case P (k → n) >
P (k → i).
Case 3: The final case is if only one of the two had been drawn. In this case, we can
define a bijection from the ways i could be drawn first to the ways that n could be drawn
first by switching which one was drawn first and leaving all other draws the same (note that
we are pairing up ways the first k people could draw, not complete derangements). From
equation 6, corresponding ways of the first k people drawing have equal probabilities, so
P (k → i) = P (k → n) for this case.
Therefore, P (k → n) ≥ P (k → i).

The next theorem tells us that the kth person is more likely to draw the first person than
he is to draw the last person. Combined with our previous theorems, this tells us that each
person is most likely to draw the name of the person right before him. The one special case
is the first person, who is most likely to draw the last person’s name.

Theorem 3.5. For 1 < k < n, P (k → 1) ≥ P (k → n).

Proof. By symmetry, there are the same number of derangements where k → n as there
are where k → 1. We will pair these up bijectively by splitting them up into two separate
cases. We will let A be the set of derangements where k → 1 and let B denote the set of
derangements where k → n.

Case 1: Suppose that for some α ∈ A,α(i) = n for some 1 < i < n. We can map this α
to the derangement β ∈ B identical to α except that β(k) = n and β(i) = 1 From equation
(6), we see that P (α) = P (β).

Case 2: Now suppose α(1) = n and α(n) = x for some 1 < x < n. In this case, we can
map this α to the derangement β ∈ B such that the only difference between α and β is that
β(1) = x, β(k) = n, and β(n) = 1. From equation 6, we see that

P (α) =

(
1

n− x

) n∏
j=1,j 6=x

1

n− j + Iα(j)

and

P (β) =

(
1

n− x+ 1

) n∏
j=1,j 6=x

1

n− j + Iα(j)
.

So P (α) > P (β) for this case.
Since every derangement in A has a probability greater than or equal to the corresponding

derangement in B, then the sum of the probabilities for A is greater than or equal to that
of B. Therefore, P (k → 1) ≥ P (k → n).
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The previous three theorems tell us that the kth person to draw is most likely to draw
the k − 1st person (and the first person is most likely to draw the last person). However,
numerical simulations appear to indicate that the nth person is more likely to draw the n−1st

person than any other person is to draw the person before him. We will prove this in the
next two theorems. Theorem 3.7 is the main result and Theorem 3.6 takes care of a special
case. We prove the special case first because it is simpler and involves fewer subcases. The
main result follows from a similar proof.

Theorem 3.6. If there are n participants, then P (n → n − 1) > P (1 → n). This means
that the last person is more likely to give to the second to last person than the first person is
to give to the last person.

Proof. Let A be the set of derangements where n → n − 1 and let B denote the set of
derangements where 1→ n. Now suppose that α ∈ A. We will map α to some β ∈ B based
on which of the following cases describes α.

Case 1: If α(1) = n, then α = β for some β ∈ B. In this case, we map α to this β.
Clearly, P (α) = P (β).

Case 2: Suppose that α(y) = n for some 1 < y < n − 1. Suppose α(1) = x. Then we
can map α to the corresponding derangement β ∈ B where β is identical to α except that
β(1) = n, β(n) = x, and β(y) = n − 1. Then, from equation (6), P (α) and P (β) have the
form (since Iβ(j) = Iα(j) for j 6= x, n− 1)

P (α) =

(
1

1

)(
1

n− x+ 1

) n∏
j=1,j 6=x,n−1

1

n− j + Iα(j)

and

P (β) =

(
1

2

)(
1

n− x

) n∏
j=1,j 6=x,n−1

1

n− j + Iα(j)
.

Since x < n− 1, then algebra gives us

1

2(n− x)
<

1

n− x+ 1
.

Then P (α) > P (β) for this case.
Case 3: Our last case is if α(n− 1) = n. Suppose α(y) = 1 and α(1) = x (note that it

is possible that x = y). In this case, we will map α to the β ∈ B such that β is identical to
α except that β(1) = n, β(y) = n− 1, β(n− 1) = x, and β(n) = 1. Since applying equation
(6) gives us the same equations for P (α) and P (β) as in case 2, then P (α) > P (β) for this
case as well.
Therefore, P (n→ n− 1) ≥ P (1→ n).

Theorem 3.7. For any 1 < k < n, P (n→ n− 1) ≥ P (k → k − 1).
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We already know that the kth person is most likely to give a gift to the k − 1st person.
This proof shows that it is more likely that the last person gives a gift to the next to last
person than it is for any other person k to give to the k − 1st person.

Proof. We will give an outline for the proof of this theorem. The proof is similar to that
for Theorem 7, but with 2 extra cases. Let A = {α ∈ Dn : α(n) = n − 1} and let
B = {β ∈ Dn : β(k) = k − 1}. The five cases for mapping α to a β are:
Case 1: If α(k) = k − 1, then β = α. Then P (α) = P (β).
Case 2: If α(k) 6= n, n− 1, k − 1 and α(y) = k − 1 for some y 6= k − 1, n− 1, then we map
α to the β identical to α except that β(k) = k − 1, β(n) = α(k) and β(y) = n − 1. In this
case we find that P (α) ≥ P (β).
Case 3: This is similar to case 2 except that α(k) = n and β(n) = k. To ensure a one-to-one,
onto map we let β−1(n) = α−1(k). For this case, P (α) ≥ P (β).
Case 4: If α(n − 1) = k − 1 and α(k) 6= n, then we map α to a β such that β(k − 1) =
n− 1, β(n− 1) = α(k − 1), and β(n) = α(k). Once again, P (α) ≥ P (β).
Case 5: This is the same as case 4 except that α(k) = n. We make a similar change in
the mapping as we did to change from case 2 to case 3. As in the previous three cases,
P (α) ≥ P (β).
Using similar reasoning to our previous proofs, we find that P (α) > P (β) or P (α) = P (β)
for each of these cases, so P (n→ n− 1) ≥ P (k → k − 1).

3.2 Summary

To summarize our results, we have shown that for the kth person to draw, the order from
most likely person for him to draw to least likely is the following:

k − 1, k − 2, k − 3, ...3, 2, 1, n, ( then k + 1 to n− 1 in some order).

We also know that the most likely event in a gift exchange is for the last person to draw
the next to last person. As an application, if some (slightly greedy) participant k has a very
generous friend g whom k would like to receive a gift from, k may maximize the probability
of being selected by g by letting g draw a name last and letting himself draw second to last.
We can verify that this is true for the case n = 4.

Derangement Probability Derangement Probability Derangement Probability
2143 1/9 3412 1/12 4321 1/12
2413 1/9 3142 1/12 4312 1/12
2341 1/18 3421 1/12 4123 1/6

In the above table, we have used the notation WXY Z to imply that 1→ W , 2→ X, 3→ Y ,
and 4 → Z. The three most likely derangements all involve the last person giving to the
third person, so this is clearly the most likely giver-recipient pair.
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4 Further Work

More work may be done on the Secret Santa problem, particularly in the instance where
people draw one at a time. We are confident, but have yet to prove that the kth person is
more likely to draw person i than he is to draw person i+1 when i and i+1 draw somewhere
between k + 1 and n− 1 (inclusive). Another interesting problem would be to explore how
probabilities change drawing one at a time when people are in families of various sizes. A
third problem would be to study the value R(n) = P (n→n−1)

1/(n−1) for n people, which represents
how many times more likely the last person is to draw the second to last than you would
expect if all outcomes were equally likely. Calculations of P (n→ n− 1) for up to 11 people
and approximations from simulations for up to 10000 people suggest that R(n) increases as
n increases and that R(n) → 2 as n → ∞. Furthermore, it appears (tentatively) that as

n → ∞, P (n−k→n−k−1)
1/(n−1) → (k + 2)/(k + 1) for any 0 ≤ k ≤ n − 2. But at this point, all we

have are numerical values from computer simulations that support this conjecture.

Finally, it might be possible to find alternative proofs that are simpler than those we have
given for when people draw one at a time. One possible method might be using permanents
of matrices to represent the probabilities. Let

A =



0 1/(n− 1) 1/(n− 2) ... 1/4 1/3 1/2 1
1/(n− 1) 0 1/(n− 2) ... 1/4 1/3 1/2 1
1/(n− 1) 1/(n− 2) 0 ... 1/4 1/3 1/2 1
1/(n− 1) 1/(n− 2) 1/(n− 3) ... 1/4 1/3 1/2 1

...
...

...
...

...
...

...
1/(n− 1) 1/(n− 2) 1/(n− 3) ... 0 1/3 1/2 1
1/(n− 1) 1/(n− 2) 1/(n− 3) ... 1/3 0 1/2 1
1/(n− 1) 1/(n− 2) 1/(n− 3) ... 1/3 1/2 0 1
1/(n− 1) 1/(n− 2) 1/(n− 3) ... 1/3 1/2 1 0


.

Also, we will let Mi,j represent the matrix formed by removing the ith row and the jth

column of A. We will let Ai,j denote the element in the ith row and the jth column of A.
We find that the probability of some derangement α on the first draw (allowing the last

person to draw his own name) is equal to

P (α) =
n∏
i=1

Ai,α(i).

Since permanents are used to calculate the sum of all permutations, it follows that

P (i→ j) =
Ai,j ∗ Per(Mi,j)

Per(A)
.

In addition to allowing easier computation of probabilities, this might allow for cleaner proofs
using known properties of permanents instead of the lengthy proofs using our method.
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