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Abstract. Using elementary first order logic we can prove many things about
models and theories, however more can be gleamed if we consider sentences with
countably many conjunctions and disjunctions, yet still have the restriction of using
only finitely many quantifiers. A logic with this feature is Lω1,ω. In 1965 Scott
proved by construction the existence of an Lω1,ω sentence that could describe a
countable model up to isomorphism. This type of infinitary sentence is now known
as a Scott sentence. Given an infinitary cardinal κ, we wish to find a set of condi-
tions such that if a countable model satisfies (or can be expanded to satisfy) these
conditions, a Scott sentence of it will have a model of cardinality κ.
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1 Introduction

When one wishes to prove something about a group, one uses group theory. However if one
wishes to prove something about group theory, or set theory, or algebra in general one can
step to a higher level of abstraction and use model theory. On the first page of their 1990
book, Chang and Keisler [1] explain this branch of mathematics using the equation

universal algebra + logic = model theory.

In more precise terms, model theory is the study of all mathematical structures using math-
ematical logic. A model is a set containing the interpretations of a formal language. One
can create logical sentences that can be evaluated to be true or false in any model. The
type of sentences which a large portion of model theory is devoted to studying, known as
elementary first order sentences, contain finitely many quantifiers (ranging over elements
of the set), conjunctions and disjunctions. The collection of all sentences true in a model
is known as the theory of the model, and the theorems of model theory generally concern
themselves with proving things about models and their theories. Note that that the term
structure is often used in concert with the term model.

If we remove the restriction of using only finitely many conjunctions and disjunctions
in our sentences, and instead restrict ourselves to countably many, more opportunities and
proofs are available to us. In particular, every countable model has an infinitary sentence that
identifies it up to isomorphism. This sentence is known as a Scott sentence. We construct
a particular Scott sentence of a countable model A in Section 3, which we refer to as “the”
Scott sentence for A. At the end of this section we present examples of infinitary sentences
and a Scott sentence of a vector space.

The Upward Löwenheim Skolem Tarski theorem ensures that every theory with a count-
able model has an uncountable one. For Scott sentences, a natural question to ask is, given
a Scott sentence of a countable model, is this sentence satisfied in an uncountable model?
Suppose B is some special countable structure (the nature of ‘special’ we will determine)
and φ is a Scott sentence of B. The goal of this project is to find a set of conditions B must
satisfy in order for φ to have an uncountable model of a specified cardinality.

In Section 2 we introduce the notion of a back-and-forth family, a family of partial iso-
morphisms that is useful in showing two countable structures are isomorphic. In Section 4
we introduce concepts that will be crucial to the rest of the paper; similarly in Section 5 we
define an atomic model and provide proofs that are referenced throughout the paper.

In Section 6 we outline conditions on a countable model A with a Scott sentence ϕ that
will guarantee the existence of a structure of size ℵ1 satisfying ϕ. In Main Theorem I
(Theorem 8.1, Section 8) we prove these conditions are sufficient and necessary in order for
ϕ to have an ℵ1-sized model.

Before this, in Section 7, we outline the proof of Vaught’s Two-Cardinal theorem as the
style of this proof has many similarities as to how we tackle the proof of Theorem 8.1.

The conditions of Theorem 8.1 are further expanded upon in Section 12 to guarantee the
existence of a structure of size ℵ2 satisfying ϕ. This exploration culminates in the proof of
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Main Theorem II (Theorem 12.1, Section 12) which determines the Section 12 conditions
are sufficient for ϕ to have an ℵ2-sized model, drawing on many of the proofs in Sections 6
& 8.

In Section 9 we outline more restrictive conditions involving built-in Skolem functions
and indiscernible sets which guarantee the existence of a structure of any infinite cardinality
satisfying ϕ. In Section 10 we prove there is a countable elementary first order theory Z
(related to A) with added predicates in the language L of A such that another model B will
satisfy the Scott sentence of A if and only if B can be expanded to an atomic model of Z.

Finally in Section 11 we explore examples of structures where a Scott sentence of a
countable model can and cannot have models of size ℵ2.

2 Back-and-forth families

In this section we detail a method used to construct isomorphisms between two countable
structures. Notes on this method were obtained from Simmons’ notes for a model theory
course [3].

Definition 2.1. Let A, B be countable L-structures. A partial isomorphism between A and
B is a bijection f : U → V on subsets U , V of A, B which itself is an isomorphism.

Definition 2.2. A back-and-forth family P on countable L-structures A,B is a nonempty
set of partial isomorphisms f : U → V with the properties that:

(1) For each f ∈ P and x ∈ A there is a y ∈ B and f+ ∈ P such that f+ : U∪{x} → V ∪{y}
and f+(x) = y.

(2) For each f ∈ P and y ∈ B there is an x ∈ A and f+ ∈ P such that f+ : U ∪ {x} →
V ∪ {y} and f+(x) = y.

Theorem 2.3. If there exists a back-and-forth family P on two countable structures A and B,
then A ∼= B.

Proof. We may write A = {ai : i < ω} and B = {bi : i < ω}. Given some f = f0 ∈ P we
create a sequence of functions f0, f1, f2, · · · where fi ∈ P , fi : Ui → Vi, Ui ⊆ Ui+1 and Vi ⊆
Vi+1 and specifically ai ∈ Ui+1 and bi ∈ Vi+1 - that is, a0 ∈ U1, a1 ∈ U2, etc. Then
F =

⋃
i<ω fi is an isomorphism of A and B as required. �

When we make reference to making a ‘back-and-forth argument’ we mean we are con-
structing a back-and-forth family to prove two countable structures are isomorphic.

3 Scott’s Isomorphism Theorem

We begin with the following definitions:
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Definition 3.1. Let A be a countable L-structure. A sentence ϕ of Lω1,ω is called a Scott
sentence if for all countable L-structures B,

B |= ϕ ⇔ B ∼= A.

Definition 3.2. Let A = (A, . . . ) be a countable L-structure, and let a1, ..., an = ~a ∈ A be
some n-tuple. Suppose α < ω1 is some ordinal. Define the formula ϕα~a (~x) inductively:
α = 0 : ϕα~a (~x) is the conjunction of all quantifier free formulae true of ~a.
α = β + 1 :

ϕβ+1
~a (~x) := ϕβ~a(~x) ∧ ∀y

∨
b∈A

ϕβ~a,b(~x, y) ∧
∧
b∈A

∃yϕβ~a,b(~x, y).

If β is a limit ordinal:

ϕβ~a(~x) :=
∧
γ<β

ϕγ~a(~x).

We explain this definition as follows; for α = 0 if for some ~b ∈ A, A |= ϕβ~a(~b) then ~a,~b

satisfy the same quantifier free formulae. From here, if α = β + 1 then similarly ~a and ~b
are ‘β equivalent’ with the added condition that, if we lengthen ~a by one element, there is a
corresponding element to lengthen ~b by for ~a and ~b to remain β equivalent, and vice versa.
This idea extends naturally to limit ordinals as well.

Note that A |= ϕβ~a(~a) and for γ < β < ω1

A |= ∀~x(ϕβ~a(~x)→ ϕγ~a(~x))

by definition. As A is a countable model, for every ~a ∈ A, there exists α < ω1 such that for
all β ≥ α

A |= ∀~x(ϕα~a (~x)↔ ϕβ~a(~x)).

α is known as the Scott rank of ~a. Expanding this idea further:

Definition 3.3. The Scott rank of A is the smallest α < ω1 such that for all β ≥ α, for all
~a ∈ A,

A |= ∀~x(ϕα~a (~x)↔ ϕβ~a(~x)).

Lemma 3.4. In a countable model A, the Scott rank of ~a ∈ A exists.

Proof. As A is countable, there are at most a countable number of tuples ~b the same length
as ~a. Suppose for each ~b there is some β such that A 6|= ϕβ~a(~b) - then there is a smallest β

such that A 6|= ϕβ~a(~b) - call it β~b. (If ~b satisfies ϕβ~a for all β, we do not worry about that ~b).
Let α = sup~b(β~b) - we claim this is the Scott rank of ~a.

Let γ be the Scott rank of ~a as defined originally above. Suppose A |= ϕα~a (~b). Then by

definition, for all δ < α, A |= ϕδ~a(
~b). Suppose A 6|= ϕβ~a(~b) for β > α. Then β~b > α, a

contradiction. Thus for all β, A |= ∀~x(ϕα~a (~x)→ ϕβ~a(~x)) meaning γ ≤ α.
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Fix ~b ∈ A with a corresponding β which is the smallest β such that A 6|= ϕβ~a(~b). Thus if

γ < β then A |= ϕγ~a(
~b) and thus by modus ponens A |= ϕβ~a(~b); a contradiction. Thus γ ≥ β

- taking the supremum over ~b, we get γ ≥ α.
Thus we conclude γ = α; in particular since α can be constructed, γ, the Scott rank of ~a,
exists, as required. �

In the next theorem, Theorem 3.6, we prove every countable structure has a Scott sen-
tence. We show this by proving every countable L-structure satisfies the following sentence,
known as the Scott sentence (for a structure):

Definition 3.5. The Scott sentence ϕ for A is the following sentence:

ϕ := ϕα0 ∧
∧

n<ω,~a∈A

∀~x(ϕα~a (~x)→ ϕα+1
~a (~x)).

Here the conjunction ranges over all n < ω and all tuples ~a ∈ A of length n, and α is the
Scott rank of A.

Note that we have not yet shown the Scott sentence for A is indeed a Scott sentence of
A. The proof of this fact follows in Theorem 3.6.

The following proof originates with Scott [4, pp. 329-341].

Theorem 3.6. If A is a countable L-structure, then it has a Scott sentence.

Proof. Let ϕ be the Scott sentence for A, as defined in Definition 3.5. We shall see A |= ϕ
by definition (note the reason we chose α to be the Scott rank of A was so A |= ∀~x(ϕα~a (~x)→
ϕα+1
~a (~x)) for all ~a ∈ A.

We can prove A |= ϕα0 inductively;
For the base case,0 ≤ α:

ϕ0
0 is the conjunction of all quantifier free sentences, so A |= ϕ0

0

For successor ordinals β + 1 ≤ α:

A |=

(
∀x
∨
b

ϕβb (x)

)
&

(∧
b

∃x ϕβb (x)

)
naturally so A |= ϕβ0 ⇒ A |= ϕβ+1

0

For limit ordinals β ≤ α:

ϕβ0 =
∧
γ<β

ϕγ0 and if for all γ < β, A |= ϕγ0 then A |= ϕβ0

Suppose B = (B, ...) is countable and B |= ϕ. We show A ∼= B by a back-and-forth
argument (thus proving ϕ is indeed a Scott sentence for A).
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Let ~a ∈ A and ~b ∈ B with B |= ϕα~a (~b). Since B |= ϕ, B |= ϕα+1
~a (~b) by modus ponens.

Thus B |= (∃xn+1)ϕ
α
~a,an+1

(~b, xn+1) for all an+1 ∈ A by definition so

(∀an+1 ∈ A)(∃bn+1 ∈ B)B |= ϕα~a,an+1
(~b, bn+1) (1)

Also note since B |= ϕα+1
~a (~b) then B |= (∀xn+1)

∨
an+1∈A ϕ

α
~a,an+1

(~b, xn+1) so for some

an+1 ∈ A, B |= ϕα~a,an+1
(~b, bn+1) which is to say

(∀bn+1 ∈ B)(∃an+1 ∈ A)B |= ϕα~a,an+1
(~b, bn+1) (2)

These two conditions (1), (2) give A ∼= B by induction on the indices n as we can find a
bn ∈ B to map an an ∈ A to, and then find an an+1 ∈ A to map a bn+1 ∈ B to, and so on,
by a back-and-forth argument. Note the base case for this induction is n = 0, i.e. B |= ϕα0
which is immediately true as B |= ϕ.

For the other direction, note that isomorphism of models preserves truth; so if B ∼=
A then B |= ϕ as required.

We conclude by definition ϕ is a Scott sentence, and every countable structure thus has
a Scott sentence, as required. �

Remark 3.7. For a model A, Th(A) is the collection of elementary first order sentences
true in A, which means a Scott sentence ϕ of A is not necessarily in its theory. So if A and
B are two countable structures, A ≡ B 6⇒ A ∼= B. An example of this;
Let A = (ω,+, S, 0) and Γ = Th(A)

⋃
{c 6= 0, c 6= S0, · · · } - using the Compactness Theorem

(we are working with elementary first order sentences here) we can construct a model B
of Γ, which is a nonstandard model of arithmetic. A Scott sentence ϕ of A can include an
infinitary sentence

∀x(x = 0 ∨ x = S0 ∨ x = S20 ∨ · · · )

saying every element of A is some successor of 0; however this will not be true in B as some
element in it will witness the negation of this, by design. So since ϕ 6∈ Th(A), it will still be
true A ≡ B but A 6∼= B. ♦

Lemma 3.8. Let ~a be a tuple in A and suppose α is the Scott rank of A. Then ϕα~a (~x)
defines the orbit of ~a in A; that is, for all elementary first order formulae φ(~x) true of ~a,
A |= ∀~x(ϕα~a (~x)→ φ(~x)).

Proof. Let ~b ∈ A such that A |= ϕα~a (~b). We want to create an automorphism of A taking ~a

to ~b; we will do so by a back-and-forth argument.
Let c ∈ A. From the definition of Scott rank, A |= ϕα+1

~a (~b).

In particular A |= ∀y
∨
d∈A ϕ

α
~a,d(

~b, y), thus if y = c, for some c′ ∈ A, A |= ϕα~a,c′(
~b, c).

Therefore
∀c ∃c′ A |= ϕα~a,c′(

~b, c)
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i.e. condition (2).

Note that as A |=
∧
b∈A ∃yϕα~a,b(~b, y), in particular for some d, A |= ∃yϕα~a,d(~b, y). Let d′

witness this. Therefore
∀d ∃d′ A |= ϕα~a,d(

~b, d′)

i.e. condition (1).
As A is countable, together these give conditions (1) and (2) mean there is an automor-

phism of A taking ~a to ~b by a back-and-forth argument. Thus A |= φ(~b) (as the isomorphism
will preserve truth) so we can conclude ϕα~a (~x) defines the orbit of ~a, as required. �

Example 3.9. A vector space of dimension n. Let A = (V, 0,+,−, (∗)q∈Q) be a struc-
ture. Let φ be a sentence encapsulating the axioms of a vector space (the behaviour of
addition, scalar multiplication, 0, distribution, closure, etc); φ ∈ Th(A).

To say there are n linearly independent vectors;

ψ(x1, . . . , xn) =

 ∧
q1,...,qn∈Q

q1 ∗ x1 + · · ·+ qn ∗ xn = 0↔ (q1 = 0 ∧ · · · ∧ qn = 0)

 .

To say n vectors span the space;

ξ(x1, . . . , xn) =

(
∀y

∨
q1,...,qn∈Q

y = q1 ∗ x1 + · · ·+ qn ∗ xn

)
.

All together,

ϕ = φ ∧ ∃x1, . . . , xn(ψ(x1, . . . , xn) ∧ ξ(x1, . . . , xn))

captures A up to isomorphism. Therefore ϕ is a Scott sentence of A. ♦

We can begin to explore the problem of Scott sentences in larger models with the following
examples:

1 Is it necessary that every Scott sentence has an uncountable model?

1A No. Let ϕ be the sentence ∃x1, x2(x1 6= x2)∧¬∃y(y 6= x1∧ y 6= x2)). If A |= ϕ, it must
be finite and thus its Scott sentence cannot have an uncountable model.

2 Can a Scott sentence have arbitrarily large models?

2A Yes. Let ϕ be the sentence describing a dense linear order. If A |= ϕ then a Scott
sentence of A will have arbitrary large models, as required.

For a sentence φ of Lω1,ω in general we can still place restrictions hampering the size of
models of φ.
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3 Is it necessary for φ to have arbitrarily large models?

3A No - consider the following example of φ ∈ Lω1,ω with a model of size ℵ1 but no larger
model.

Let A = (A,<∗, F, (c)i<ω, <, S,+) be a structure, where A is a set of cardinality ℵ1.
Suppose there is an infinitary sentence giving conditions for the constants (c)i<ω to
form a copy of (ω,<, S,+) - call it U - in A.

Suppose the rest of the elements not named by constants form a dense linear order
under <∗, completely separate to U . Denote this ordered set by V . Let F be a binary
function taking b ∈ V and a predecessor of b to U where F maps distinct predecessors
to distinct elements of U . Note that for any arbitrary b ∈ V there are a countable
number of elements before it in the ordering. Let ϕ be the Lω1,ω sentence describing
U , V and F ; A is a model of ϕ of size ℵ1.
Suppose there is a model of ϕ of size ℵ2; then ‖V ‖ = ℵ2. However this implies
there exists some b ∈ V with ℵ1 many predecessors, so here F cannot map distinct
predecessors to distinct elements of U . Therefore ϕ cannot have a model of size ℵ2, as
required.

Remark 3.10. We will try avoid structures such as this in Main Theorem II (Theo-
rem 12.1) where we construct a model of size ℵ2 for a Scott sentence of a countable
model. ♦

3A Consider the following sentence of Lω1,ω with a model of size 2ℵ0 but no larger model.

Let B = (B,U, (ci)i<ℵ0 ,∈∗) be a structure, with domain B, predicate U , constants
(ci)i<ℵ0 and binary relation ∈∗. We will make U a copy of ω inside B, then consider
all subsets of U . Suppose B is a model of the following sentences:

∧
i

(∧
j 6=i

ci 6= cj

)
(3)

∀x

(
Ux↔

(∨
i

x = ci

))
(4)

∀x, y(x ∈∗ y → Ux ∧ ¬Uy) (5)

∀x, y ((x 6= y ∧ ¬Ux ∧ ¬Uy)→ ∃u(u ∈∗ x↔ u 6∈∗ y)) (6)

where

(3) means “the constants ci are all distinct”.

(4) means “every element of U is given by a constant”.

(5) describes how ∈∗ holds between two elements.
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(6) means “if x, y not in U are nonequal, they disagree on some U -element”.

Let φ be the conjunction of (3)-(6).

Every element of B not in U corresponds to a subset of ω. Since ‖P (ω)‖ = 2ℵ0 , φ has
a model of size 2ℵ0 but no larger, as required.

4 Elementary substructures, homogeneity and types

In this section we give the background information and some definitions used throughout
this paper.

Definition 4.1. Let M and N be L-structures. A map h : |M| → |N| is called elementary
if it preserves the validity of elementary first order formulae ϕ(~x), that is;

∀~a ∈M, M |= ϕ(~a)⇔ N |= ϕ(~a)

Definition 4.2. Let M be a substructure of N. Then M is an elementary substructure of
N (written M � N) if the inclusion map is elementary. Here, N is called an elementary
extension of M.

The following theorem is a criterion for elementary substructures:

Theorem 4.3. Tarski’s Criterion. M � N if and only if for every L-formula ϕ(~u, x) and
for all ~m ∈ M, if there exists a ∈ N such that N |= ϕ(~m, a) then there exists b ∈ M such
that N |= ϕ(~m, b).

Remark 4.4. An elementary substructure is not the same as having a substructure elemen-
tarily equivalent to its superstructure.

For example, take a dense linear ordering with one endpoint, e.g. let A = Q with a point
1∗ smaller than every element, have a substructure B = {a ∈ A : a > 1} ∪ {1}.

B is elementarily equivalent to A (same theory) however B is not an elementary sub-
structure of A as A |= ∃x(x < 1) however B 2 ∃x(x < 1) by definition. ♦

Definition 4.5. Let A be an L-structure. For ~a ∈ A, the type of ~a (denoted tp(~a)) is the
set of all formulae ϕ(~x) with A |= ϕ(~a). Furthermore,

~x ≡ ~y ⇔ tp(~x) = tp(~y).

Definition 4.6. An n-type (of A) is a set of formulae p(x1, . . . , xn), each having free variables
only occurring amongst x1, . . . , xn such that for every finite subset p0(x1, . . . , xn) there exists
~b = (b1, . . . , bn) ∈ A such that A |= p0(~b).

Definition 4.7. A complete type p(~x) in variables ~x = (x1, . . . , xn) contains ϕ(~x) or ¬ϕ(~x)
for every elementary first order formula ϕ(~x) in the variables x1, . . . , xn.
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Definition 4.8. A countable structure A is (ω-)homogeneous if for any ~a, ~b ∈ A such that ~a,~b

satisfy the same elementary first order formulae there is an automorphism of A taking ~a to ~b.

Definition 4.9. Let (A, U) be a pair where A is a countable structure and U is a predicate.

(A, U) is pair -homogeneous if, given ~a,~b, c such that ~a and ~b realise the same type in (A, U),

there exists d ∈ A such that (~a, c) and (~b, d) realise the same type in (A, U).

Remark 4.10. Definition 4.9 is similar to Definition 4.8 as, by a back-and-forth argument
on Definition 4.9 there is an automorphism of (A, U) taking ~a to ~b. ♦

5 Atomic models

In this section we define and prove many useful results about atomic models which will be
key in later parts of this paper. First, we define a principal type:

Definition 5.1. A type p(~x) is principal (with respect to a theory T) if there is a formula
γ(~x) ∈ p(~x) such that

∀α(~x) ∈ p(~x), T ` ∀~x(γ(~x)→ α(~x)).

ϕ(~x) is known as a generating formula for p(~x).

Definition 5.2. An atomic model is one where the complete type of every tuple is principle.

Lemma 5.3. Atomic models are homogeneous.

Proof. Note that as T = Th(A) is complete and has an atomic model, for all formulae ϕ(~x),

T ` ∀~x(γ(~x)→ ϕ(~x)) or T ` ∀~x(γ(~x)→ ¬ϕ(~x))

where γ(~x) is a type generator. Let ~a,~b ∈ A satisfy the same elementary first order formulae;

thus, they satisfy the same types. Suppose the type of ~a and ~b is generated by γ0(~x). Let c
be an element of A.
The type of (~b, c) is principal and generated by γ1(~x, y) (say). As A |= γ0(~b) and A |= γ0(~a)

and T ` ∃y(γ1(~b, y)), then
T ` ∀~x(γ0(~x)→ ∃y(γ1(~x, y)))

so in particular T ` ∃y(γ1(~a, y)) and there exists d ∈ A witnessing this.

We map ~a to ~b, then (~b, c) to (~a, d) and continue. By a back-and-forth argument we can
conclude A is homogeneous, as required. �

Lemma 5.4. Two countable structures that realise the same types and are each homogeneous
are isomorphic.
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Proof. Let A and B be two such structures. We may write A = {ai : i < ω} and B =
{bi : i < ω}. We wish to create a back-and-forth family to prove A and B are isomorphic.
Suppose we are given a partial isomorphism

fm : {a1, . . . , am} → {b1, . . . , bm} m ≥ 1.

Consider am+1 ∈ A. By the hypothesis there exists a tuple (d1, . . . , dm+1) ∈ B realising

the same type as (a1, . . . , am+1). As (d1, . . . , dm) realises the same type as ~b, and B is

homogeneous, there is a (truth preserving) isomorphism h such that h(d1, . . . , dm) = ~b.

Let bm+1 = h(dm+1). We conclude (a1, . . . , am+1) and (b1, . . . , bm+1) realise the same type
thus the partial isomorphism fm can be extended to

f+
m : {a1, . . . , am+1} → {b1, . . . , bm+1}

as desired.

Similarly given bm+1 ∈ B, using the homogeneity of A we can extend

gm : {b1, . . . , bm} → {a1, . . . , am}

to

g+m : {b1, . . . , bm+1} → {a1, . . . , am+1}.

Therefore A ∼= B by Theorem 2.3, as required. �

Theorem 5.5. If T is a complete, elementary first order theory with a countable atomic
model, then that model is unique (up to isomorphism).

Proof. Let A be an atomic model with Th(A) = T . By Lemma 5.3, A is homogeneous.
Let B be another atomic model of T . Then A ≡ B (through T ). If p(~x) is a type realised
by ~a ∈ A, generated by φ(~x), then A |= ∃~x(φ(~x)). Thus B |= ∃~x(φ(~x)) so φ(~x) is realised by

some ~b ∈ B. Therefore ~b realises p(~x). Therefore B realises all the types realised in A.

Note B realises no new types as it is elementarily equivalent to A.

We can conclude B realises the same types as A, and vice versa. Thus A ∼= B, by Lemma
5.4. �

Corollary 5.6. If A, B are countable, atomic and elementary equivalent, they are isomor-
phic. �

We have seen that atomic models have many properties relating to when they are iso-
morphic. We will now introduce Scott sentences into the mix:
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Remark 5.7. Note that if A is a countable atomic model, then it has a Scott sentence ϕ
that is the conjunction of Th(A) and sentences saying

∀~x

(∨
i

γi(~x)

)
(7)

where the γi are the generators for the complete atomic types consistent with T .
(Recall a Scott sentence was an infinitary sentence that could identify a countable struc-

ture up to isomorphism. If B is another countable structure with B |= ϕ, then B ∼= A by
Theorem 5.5. Thus ϕ is indeed a Scott sentence of A.) ♦

Theorem 5.8. Suppose A, B are atomic models for the same countable elementary first
order theory, where A is countable. Then B |= ϕ, where ϕ is a Scott sentence of A.

Proof. Let ϕ be the Scott sentence in Remark 5.7. This is a Scott sentence of A. Since B
is atomic and B |= Th(A), we can conclude B |= ϕ, as required. �

Theorem 5.8 can be used in conjunction with the following theorem to gain a more
complete picture of atomic models:

Theorem 5.9. Let A be a countable atomic model of its theory. If B satisfies some Scott
sentence of A, then B is an atomic model of Th(A).

Proof. Let ψ be the Scott sentence whose models are atomic models of Th(A). Let ϕ be
another Scott sentence of A, with B |= ϕ.

If B is countable, by the definition of a Scott sentence, B ∼= A, meaning B |= ψ. Thus
B is an atomic model of Th(A), as required.

Suppose B is uncountable. Let L be the language of A. Expand B, adding to L predicates
for all (first order) subformulae of ϕ and ψ. Let B∗ be this expansion. By the Downward
Löwenheim Skolem Tarksi Theorem B∗ has a countable, elementary substructure. Call this
substructure B∗0. Note as B∗ |= ϕ, we have B∗0 |= ϕ. The reduct of B∗0 to L, which we call
B0, then satisfies ϕ. As ϕ is a Scott sentence of A, B0

∼= A. Therefore B0 |= ψ, i.e. B0 is
an atomic model of Th(A).

If B∗ failed to satisfy ψ, then B∗0 would fail to satisfy ψ. Thus if B failed to satisfy ψ,
then B0 would fail to satisfy ψ. By the contrapositive, B |= ψ. Therefore B is an atomic
model of Th(A), as required. �

Remark 5.10. If A and B are not atomic, then it is not necessarily true that A ≡ B means
A ∼= B. A counterexample;

Consider Th(ω,<). This has models of the form ω+Z∗ρ, which is ω followed by ρ many
Z chains. Let A = ω + Z ∗ ω and B = ω + Z ∗ ω∗, where ω∗ is ω but in reverse;

· · · < 3∗ < 2∗ < 1∗ < 0∗.

Then A ≡ B and they realise the same types, however they are not isomorphic. ♦
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6 Conditions for Main Theorem I

Let T ∗ be a set of elementary first order sentences in the language of A with an added unary
predicate symbol U , saying the following:

(a) (∃x)¬Ux

(b) For each formula ϕ(~u, x) with parameters ~u = (u1, . . . , un) such that Uui for 1 ≤ i ≤ n,
we have

∃x(ϕ(~u, x))→ ∃x(Ux ∧ ϕ(~u, x)).

Main Theorem I (Theorem 8.1) states if A is a countable model which can be expanded
to a model of T ∗, then a Scott sentence of A will have a model M of size ℵ1.

We will prove this by building a chain of models (Construction 6.3), the union of which
will be the desired M. Theorem 6.1 will provide us with the first step in this proof:

Theorem 6.1. Suppose A is a countable atomic model of its theory in a language L and has
an expansion A∗ = (A, UA∗) satisfying T ∗. The substructure formed by restricting A∗ to UA∗

is isomorphic to A.

Proof. Let B be the substructure with |B| = UA∗ . From condition (b) of T ∗, it is an
elementary substructure of A by Tarski’s Criterion (Theorem 4.3). Therefore B is atomic.
If T = Th(A), then as A and B are countable atomic models of T , they are isomorphic by
Theorem 5.5. Thus B ∼= A as required. �

The following definition will be crucial in our construction:

Definition 6.2. For L-structures C ⊂ B ⊂ A, define (A,B) ∼= (B,C) if and only if there is
an isomorphism f : A→ B such that f �B is an isomorphism from B ⊂ A to C ⊂ B.

We will now outline the process of building the aforementioned chain of models. The
following construction is pivotal to the rest of the paper and will be referenced many times:

Construction 6.3. Let D0 = B and D1 = A. As D1
∼= D0 we wish to construct D2 with

D1 a substructure and (D2, D1) ∼= (D1, D0).
Let f be the isomorphism f : D1 → D0. Let D be a set with ‖D‖ = ‖D1‖ and D1 ( D.

Let D2 be a structure with the same language as D1 and |D2| = D. As f is a bijection from
D1 to D0, we can extend this to a bijection g of D2 to D1. Impose the following on D2; for
all ~a, ~d ∈ D1, for all formulae ϕ,

D2 |= ϕ(g−1(~a), g−1(~d)) ⇔ D1 |= ϕ(~a, ~d)

As relations, functions and constants are now preserved (by defining the interpretation
of constants, relations and functions on D2 to be whatever works under g−1) D2

∼= D1 under
g. Also since g is an extension of f , g �D1= f so (D2, D1) ∼= (D1, D0) as required.
Continuing on like this, we get a chain of structures D0 ⊂ D1 ⊂ D2 ⊂ · · · with Dω =⋃
n<ωDn. ♦
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We want to ensure that the union of our chain still has nice properties, as the following
results show:

Lemma 6.4. The union of a countable elementary chain of countable homogeneous struc-
tures is homogeneous.

Proof. Let (Aα)α<ω be a chain of countable homogeneous structures with union Aω. Note

that Aω is countable. Let ~a,~b be n-tuples in Aω with tp(~a) = tp(~b).

Let c be an element of Aω. There is some k large enough such that ~a,~b, c ∈ Ak and since Ak
is homogeneous, there is a d ∈ Ak ⊂ Aω with tp(~a, c) = tp(~b, d). Thus by a back-and-forth

argument there is an automorphism of Aω taking ~a to ~b. Therefore Aω is homogeneous, as
required. �

Theorem 6.5. Dω
∼= D0.

Proof. Dω is homogeneous immediately from Lemma 6.4. Note that for any tuple ~b ∈ Dω

there is an n < ω with ~b ∈ Dn and Dn
∼= D0. Suppose Dω does not realise the same types

as D0 - it then realises some extra type. But the realisation of this type is in some Dn,
isomorphic to D0 - a contradiction.
Thus by Lemma 5.4, Dω

∼= D0 as required. �

Remark 6.6. Lemma 6.4 and Theorem 6.5 did not use any properties of T ∗ or any properties
of any Dα. ♦

Definition 6.7. Define a chain (Ai)i∈I to be elementary if for some ordering ≤ on I,

i ≤ j ⇒ Ai � Aj.

Lemma 6.8. Suppose (Aα)α<γ is an elementary chain of atomic structures, where γ is a
limit ordinal. Then Aγ =

⋃
α<γ Aα is atomic.

Proof. Assume Aγ is not atomic - then there is some complete type p(~x) not principal.
Then there is some β large enough such that Aβ realises p(~x). However Aβ is atomic, so p(~x)
must be principal - a contradiction. Thus Aγ is atomic, as required. �

Lemma 6.9. If (Ai)i∈I is an elementary chain of structures and A =
⋃
i∈I Ai, then Ai � A

for all i ∈ I.
This implies that Th(A) = Th(Ai) for all i.

Proof. We want to show by induction on formulae ϕ(~x) that for i ∈ I, ~a ∈ Ai,

A |= ϕ(~a) ⇔ Ai |= ϕ(~a). (8)
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Fix i ∈ I and ~a ∈ Ai.
If ϕ(~a) is atomic, then A |= ϕ(~a)⇔ Ai |= ϕ(~a) immediately.
If ϕ(~a) = φ(~a) ∧ ψ(~a), where φ(~a) and ψ(~a) satisfy (8), then

A |= ϕ(~a)⇔ A |= φ(~a) ∧ ψ(~a)⇔ A |= φ(~a) & A |= ψ(~a)

⇔ Ai |= φ(~a) & Ai |= ψ(~a)⇔ Ai |= φ(~a) ∧ ψ(~a)⇔ Ai |= ϕ(~a)

If ϕ(~a) = ¬φ(~a) where φ(~a) satisfies (8), then

A |= ϕ(~a)⇔ A |= ¬φ(~a)⇔ A 6|= φ(~a)

⇔ Ai 6|= φ(~a)⇔ Ai |= ¬φ(~a)⇔ Ai |= ϕ(~a)

If ϕ(~a) = ∃x(φ(~a, x)), suppose Ai |= ∃x(φ(~a, x)). Then there is a b ∈ Ai such that
Ai |= φ(~a, b) - by the induction hypothesis A |= φ(~a, b) so A |= ∃x(φ(~a, x)). Conversely,
if A |= ∃x(φ(~a, x)) then there is some j ∈ I, j ≥ i, b ∈ Aj such that Aj |= φ(~a, b), thus
Ai |= ∃x(φ(~a, x)) since Ai � Aj.

Thus, by induction on the complexity of formulae, we can conclude Ai � A for all i, as
required. �

7 Vaught’s Two-Cardinal theorem

After setting up many crucial ideas in the previous section, in this section we present the
ideas behind and proof of Vaught’s Two-Cardinal theorem. This theorem and its proof will
have many similarities to Main Theorem I in Section 8.

Definition 7.1. A structure A in a language with a unary predicate symbol U is said to
have type (κ, λ) if and only if ||A|| = κ and ||U || = λ.
A set of sentences T is said to admit (κ, λ) if and only if T has a model of type (κ, λ).
T has a Vaughtian pair if T admits (κ, λ) for some κ > λ ≥ ℵ0.

Definition 7.2. A structure A is recursively saturated provided that for any computably
enumerable set Γ(~a, ~x) of formulae φ(~a, ~x) with parameters ~a in A, if every finite subset
Γ′(~a, ~x) is satisfied in A, then some tuple satisfies the whole set Γ(~a, ~x).

We will use the following theorem without proof [1, Theorem 2.4.1];

Theorem 7.3. Given a countable structure A there is a countable recursively saturated
elementary extension A+. �

Theorem 7.4. Vaught’s Two-Cardinal Theorem. If Z is a countable elementary first
order theory in a computable language L which admits (κ, λ) for some κ > λ ≥ ℵ0, then it
admits (ℵ1,ℵ0).
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Proof. Let A be a model of Z of type (κ, λ) where V is the predicate of size λ. Let B be
an elementary substructure of A of size λ with V B = V A. Define A∗ = (A, U) where U is a
predicate such that UA∗ = |B|. By the Downward Löwenheim Skolem Tarski Theorem, there
is a countable elementary substructure A∗0 = (A0, U

A∗0). If UA∗0 = |B0| then the substructure
B0 � A0 and V B0 = V A0 is countable.
Let A∗

+

0 = (A+
0 ,B

+
0 ) be a countable recursively saturated elementary extension of A∗0.

Lemma 7.5. A+
0 ,B

+
0 realise the same types and are homogeneous.

Proof. Let ~a be a tuple in A+
0 . Define

Γ(~a, ~x) = {φ(~a)↔ φ(~x) ∧ U~x : φ is a formula over A+
0 }.

This is computably enumerable. We show it is finitely satisfied;
Let Γ′(~a, ~x) be a finite subset of Γ(~a, ~x) involving φ1, . . . , φk. Let ψ(~x) be the conjunction

of formulae ±φi(~x) true of ~a. Since A+
0 |= ψ(~a) then A+

0 |= ∃~x(ψ(~x)) so B+
0 |= ∃~x(ψ(~x)) (as

B+
0 � A+

0 ) so A+
0 |= ∃~x(ψ(~x) ∧ U~x), as required.

Thus A+
0 satisfies Γ(~a, ~x) meaning there is some ~b ∈ B+

0 satisfying the same type as ~a. As
B+

0 realises no new types, we can conclude A+
0 ,B

+
0 realise the same types.

Let ~a,~b be tuples in A+
0 realising the same type. Let c be an element in A+

0 . In order to

prove homogeneity we need to show there is an element d ∈ A+
0 such that (~a, c) and (~b, d)

satisfy the same types. Define

Γ(~a,~b, c, x) = {φ(~a, c)↔ φ(~b, x) : φ is a formula over A+
0 }.

Let Γ′(~a,~b, c, x) be a finite subset of Γ(~a,~b, c, x) involving φ1, . . . , φk. Let ψ(~u, x) be the
conjunction of formulae ±φi(~u, x) true of (~a, c). Since A+

0 |= ψ(~a, c) then A+
0 |= ∃x(ψ(~a, x))

so A+
0 |= ∃x(ψ(~b, x)), thus Γ(~a,~b, c, x) is finitely satisfied. We can conclude A+

0 satisfies

Γ(~a,~b, c, x) meaning there an element d such that (~a, c) and (~b, d) satisfy the same type.
Therefore A+

0 is homogeneous, as required.

Note that by choosing ~a,~b in B+
0 realising the same type, and c ∈ B+

0 , and defining

Γ(~a,~b, c, x) = {φ(~a, c)↔ φ(~b, x) ∧ Ux : φ is a formula over B+
0 }

by the same proof we can conclude B+
0 is homogeneous.

Therefore A+
0 ,B

+
0 realise the same types and are homogeneous, as required. �

Returning to the proof of Theorem 7.4:
By Lemma 7.5 and Lemma 5.4, we can conclude A+

0
∼= B+

0 . Note that V B+
0 = V A+

0 .
Set D0 = B+

0 , D1 = A+
0 and construct the chain (Dα)α<ω1 as in Construction 6.3; where

at limit ordinals γ, Dγ =
⋃
β<γ Dβ and at successor ordinals, (Dα+1, Dα) ∼= (D1, D0). Note

for all α < ω1, Dα
∼= D0 (Theorem 6.5).

Finally set M =
⋃
α<ω1

Dα which has cardinality ℵ1 and

V M = V Dα = V A+
0 = V B+

0 ,
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making V M countable. Thus Z admits (ℵ1,ℵ0), as required. �

8 Main Theorem I

Recall from Section 6;
Let T ∗ be a set of elementary first order sentences in the language of A with an added

unary predicate symbol U , saying the following:

(a) (∃x)¬Ux

(b) For each formula ϕ(~u, x) with parameters ~u = (u1, . . . , un) such that Uui for 1 ≤ i ≤ n,
we have

∃x(ϕ(~u, x))→ ∃x(Ux ∧ ϕ(~u, x)).

In this section, we will prove that this set of conditions allows us to perform Construction
6.3, which, as in the proof of Vaught’s Two-Cardinal theorem (Theorem 7.4) leads to an ℵ1-
sized model.

Theorem 8.1. Main Theorem I. Let A be a countable atomic model. Then a Scott
sentence of A has a model of cardinality ℵ1 if A can be expanded to a model of T ∗.

Proof. Let ϕ be a Scott sentence of A and suppose A can be expanded to a model of T ∗.
Let B be a substructure of A with |B| = UA. By Theorem 6.1, A and B are isomorphic.

Set D0 = B and D1 = A and construct the chain (Dα)α<ω1 by Construction 6.3, where
at limit ordinals γ, Dγ =

⋃
β<γ Dβ and at successor ordinals, (Dα+1, Dα) ∼= (D1, D0). Note

for all α < ω1, Dα
∼= D0 (Theorem 6.5).

Set M =
⋃
α<ω1

Dα which has cardinality ℵ1. By Lemma 6.8, M is atomic and by Lemma
6.9, M is a model of Th(A). Therefore by Theorem 5.8 & Theorem 5.9, M |= ϕ, as required.

�

We can also prove the converse of Main Theorem I:

Theorem 8.2. Let A be a countable atomic model. If a Scott sentence of A has a model of
cardinality ℵ1 then A can be expanded to a model of T ∗.

Proof. Let ϕ be a Scott sentence of A. Let M be an ℵ1 sized model of ϕ. By Theorem 5.9,
M is an atomic model of Th(A). We will essentially ‘reverse’ Construction 6.3.

We may write M = {mi : i < ω1}. Let M0 be a countable elementary substructure of
M given by the Downward Löwenheim Skolem Tarski Theorem. Define the chain (Mα)α<ω1

inductively; given Mα let Mα+1 be an elementary substructure of M containing Mα and mi,
for the first i with the property that mi 6∈ Mα. As each Mα is countable, we can find such
an mi. At limit ordinals β, let Mβ = ∪α<βMα.

As M is an atomic model of Th(A), each Mα is an atomic model of Th(A). As each Mα

is countable, by Theorem 5.5 they are all isomorphic to A.
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Let f : M1 → A be such an isomorphism. Define a new predicate U by

Ux⇔ x ∈ f(M0).

By construction, this expansion A∗ = (A, U) satisfies (a) of T ∗. By the isomorphism, con-
dition (b) is also satisfied. Therefore A∗ is a model of T ∗, meaning A can be expanded to a
model of T ∗, as required. �

9 Skolem functions & Indiscernible sets

In this section we define Skolem functions and indiscernible sets. We then prove that a Scott
sentence of a countable, atomic model with built-in Skolem functions and an infinite set of
indiscernibles has models of any infinite cardinality. In essence we are generalising Main
Theorems I (and Main Theorem II, to come later) with more restrictive conditions in place.

Definition 9.1. Let A be a model and ϕ(~u, x) be a formula in the language of A. A Skolem
function for ϕ(~u, x) is a function fϕ such that

A |= ∀~u (∃x(ϕ(~u, x)→ ϕ(~u, fϕ(~u))) .

Definition 9.2. A set of indiscernibles in A is a linearly ordered set (X,<) such that
X ⊂ |A| and for any two finite increasing sequences

~x = x1 < · · · < xn, ~y = y1 < · · · < yn in (X,<)

~x and ~y satisfy the same type.

Finally, we define:

Definition 9.3. The Skolem Hull of I∗ in A∗ (denoted Sk(I∗)) is the set of all fϕ(~a) where
~a ∈ I∗ and ϕ is a formula over A∗.

Remark 9.4. In the above definition, I∗ ⊂ Sk(I∗) as there are formulae such as ϕ(u, x) =
“x = u” where fϕ(u) = u. ♦

We now prove the main theorem of this section:

Theorem 9.5. Let A be countable, atomic, have built-in Skolem functions and have an
infinite set of indiscernibles (I,<). For any infinite cardinal κ there is a structure B of size
κ that satisfies a Scott sentence ϕ of A.

Proof. If we add κ many new constants, all in I, by the Compactness Theorem there is a
model (A∗, I∗, <∗) of Th(A, I, <) where I∗ is of size κ. Let B = Sk(I∗). Note ‖B‖ = ‖I∗‖ =
κ. We show B is an elementary substructure of A∗:
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If A∗ |= ϕ(~b, c) with ~b ∈ B = Sk(I∗) and c ∈ A∗, then for some d ∈ B by Skolem

functions A∗ |= ϕ(~b, d). Thus by the Tarski Criterion (Theorem 4.3) B � A∗ ≡ A. Therefore
Th(B) = Th(A). We claim B realises no new types:

Let ~b ∈ B realise some type p(~x). Then there exists a Skolem function ~f such that
~b = ~f(~i) for ~i = i1 <∗ i2 <∗ · · · <∗ in ∈ I∗. Since I∗ is a set of indiscernibles, there
is an increasing sequence ~j = j1 < · · · < jn ∈ I ⊂ I∗ realising the same type as ~i. As
(A, I, <) ≡ (A∗, I∗, <∗), applying ~f to ~j we obtain ~b′ = ~f(~j) ∈ A realising the same type as
~b ∈ B. Thus B realises no new types. Finally, we claim B is atomic:

Let p(~x) be a type realised in B. This structure realises no new types, so this type is
realised in A by some ~a = (a0, . . . , an). Suppose

A |= γ0(a0), γ1(a0, a1), . . . , γn(~a)

where γi(a0, . . . , ai) generates p(a0, . . . , ai). Then

A |= γ0(b0), γ1(b0, b1), . . . , γn(~b)

where b0 = fγ0(), b1 = fγ1(b0), etc. So

B |= γ0(b0), γ1(b0, b1), . . . , γn(~b)

and so ~b = (b0, . . . , bn) realises the generator γn(~x) making p(~x) principal. We can conclude
B is atomic.

Therefore, by Theorem 5.8 & Theorem 5.9, B |= ϕ and ‖B‖ = κ as required. �

10 Conditions involving additional predicates

In this section we outline and prove for a set Z of more restrictive conditions the following
theorem:

Theorem 10.1. Let A be a countable model in a countable language L. There is a countable
elementary first order theory Z in L with added predicates such that for any L-structure B,
B satisfies the Scott sentence for A if and only if B can be expanded to an atomic model of
Z.

Remark 10.2. Note that in this theorem we are proving results about the Scott sentence
of A; that is, the sentence from Definition 3.5. ♦

Proof of Theorem 10.1:
(⇒). Recall from Definitions 3.2 & 3.3 the formulae ϕα~a (~x) for ~a ∈ A and α the Scott rank
of A. For each ~a in A, let P~a be a new predicate symbol, and expand A to A∗ = (A, (P~a)~a∈A)
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such that PA∗

~a = {~b : A |= ϕα~a (~b)}.
Let Z = Th(A∗). We claim A∗ is atomic, where P~a generates tp(~a):

Let ~a ∈ A∗. We know A∗ |= P~a(~a) and we claim for all elementary first order formulae
φ true of ~a, A∗ |= ∀~x(P~a(~x) → φ(~x)). This is equivalent to proving A |= ∀~x(ϕα~a (~x) → φ(~x))
which is true by Lemma 3.8.

Now suppose B satisfies ϕ, the Scott sentence of A. If B is countable, by Theorem 3.6 it
is isomorphic to A, thus set B∗ = (B, (P~a)~a∈A) where PB∗

~a = {~b : B |= ϕα~a (~b)} = ϕα~a . Then
B∗ ∼= A∗ so we can conclude B can be expanded to an atomic model of Z.

Suppose B is uncountable. Define B∗ = (B, (P~a)~a∈A) where PB∗

~a = {~b : B |= ϕα~a (~b)}.
Let F be a countable fragment of Lω1,ω including ϕ and be closed under subformulae of ϕ,
and include all finitary formulae of L and be closed under ∧,∨,¬ (note the language of A
is countable). Using the Infinitary Downward Löwenheim Skolem Tarski Theorem we can
obtain a countable B0 which satisfies ϕ. Thus B0

∼= A and B∗0
∼= A∗ therefore B∗0 is an

atomic model of Z.

Note that the predicates PB∗

~a are defined by ϕα~a which are subformulae of ϕ, thus their

truth is preserved from B to B0 by the fragment F . Therefore PB∗

~a = P
B∗0
~a = ϕα~a and thus

B∗ is an atomic model of Z, as required.
(Note that for any tuple ~a and any formula φ(~x) true of ~a,

B∗ |= ∀x(P~a(~x)→ φ(~x))⇔ B |= ∀x(ϕα~a (~x)→ φ(~x))

⇔ B0 |= ∀x(ϕα~a (~x)→ φ(~x))⇔ B∗0 |= ∀x(P~a(~x)→ φ(~x))

so the predicates PB∗

~a generate the types.)

(⇐). Suppose B is an L-structure that can be expanded to an atomic model B∗ of Z =
Th(A∗).

Suppose B is countable. As B∗ |= Th(A∗), B∗ ≡ A∗ so by Corollary 5.6, B∗ ∼= A∗, and
thus by taking the reduct back to L, B |= ϕ, as required.

Now suppose B is uncountable. Let F be a fragment of Lω1,ω including all finitary
formulae of L ∪ {P~a∈A} and be closed under ∧, ∨, ¬. Note Th(A∗) ⊆ F . Also F should
preserve the truth of ϕ and all its subformulae. Then by applying the Infinitary Downward
Löwenheim Skolem Tarski Theorem to B∗, we obtain a countable model B∗0 �F B∗ (in
particular, B∗0 |= ϕ ⇔ B∗ |= ϕ). As B∗0 |= Th(A∗) still, and since it remains atomic, by
Corollary 5.6 we can conclude B∗0 |= ϕ thus B∗ |= ϕ so B |= ϕ as required. �

11 Examples for Main Theorem II

We now begin building towards Main Theorem II (Theorem 12.1). As we will discover, one
of the conditions required for a Scott sentence ϕ of a countable model to have a model of
size ℵ2 is for ϕ to have one ℵ1-sized model, up to isomorphism.
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Definition 11.1. Let κ be an infinite cardinal and T a theory with models of size κ. T is
κ-categorical if any two models of T of size κ are isomorphic.

We examine examples of structures that are, or are not, ℵ1-categorical.

Examples.

(1) An algebraically closed field of characteristic p.
Marker [2, Proposition 2.2.5] gives an example that the theory of algebraically closed
fields of characteristic p is ℵ1-categorical.

(2) Z chains and equivalence classes.
Let A = (A,∼, <, S) be a countable structure with at least countably many equivalence
classes (under ∼), where each class is a Z chain.

Formally, we can describe this as follows: let ψn(x) be the formula

∃y1, . . . , yn(x ∼ y1 ∧ · · · ∧ x ∼ yn).

Let φn be the sentence

∃x1, . . . , xn

(∧
i 6=j

xi 6∼ xj

)
.

Finally let χ be the sentence

∀x, y

(
x ∼ y →

(∨
n<ω

x = Sn(y) ∨
∨
n<ω

y = Sn(x) ∨ x = y

))
.

This last sentence guarantees that there can only be one Z chain per equivalence class.
< is defined as usual, but only holds between elements of the same equivalence class.
Altogether, the sentence

ϕ = χ ∧
∧
n<ω

φn ∧ ∀x
∧
n<ω

ψn(x)

is a Scott sentence for a structure with at least countably many equivalence classes,
where each class is a Z chain.

Mapping equivalence class to equivalence class and Z chain to Z chain, ϕ will have
ℵ1-categorical models.

(3) Dense linear order.
Let A = η ∗ω1, meaning A is ℵ1 copies of a dense linear order η (obtained by replacing
the points in ω1 by η). Let B = η ∗ (ω1 + 1∗), where ‘+1∗’ symbolises adding a copy of
the dense linear order η after η ∗ ω1. Note that both A and B satisfy a Scott sentence
ϕ of a dense linear order, and both are uncountable.

For any point in A, there are an uncountable number of points bigger than it. If we
choose a point on the ‘+1∗’ copy of the dense linear order in B, this is no longer true.
Thus A 6∼= B so ϕ does not have ℵ1-categorical models.
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Remark 11.2. This example is of a dense linear order without endpoints. If there
were endpoints, the proof is unchanged. ♦

(4) Equivalence classes.
Let A = (A,∼) be a countable structure where ∼ is an equivalence relation with a
unique class of size n for each n ∈ ω, and infinitely many classes of infinite size.

Formally, we can describe this as follows: let φ be the sentence∧
n<ω

∃x0, . . . , xn
(
∧
i,j
xi ∼ xj ∧ ∀z

((
∨
i<n

z ∼ xi

)
→
(
∨
i<n

z = xi

)))
meaning “for each n, there is an equivalence class of size n”. This can be modified to
φ∗ which will say “for each n, there is a unique equivalence class of size n”.

Let χ(x) be the formula∧
n<ω

∃y0, . . . , yn
((
∧
i<n

yi ∼ x

)
∧
(
∧
i 6=j

yi 6= yj

))
and let ψ be the sentence∧

k<ω

∃x0, . . . , xk
((
∧
i 6=j

xi 6= xj

)
∧
(
∧
i<n

χ(xi)

))
meaning “there are infinitely many classes of infinite size”. Then ϕ = φ∗∧ψ is a Scott
sentence of A.

Let M and N be two uncountable models of ϕ. Suppose one of the infinite classes
of M is uncountable in size, and the rest are countable. Suppose all of the infinite
classes of N are uncountable in size. Then clearly M 6∼= N and thus ϕ does not have
ℵ1-categorical models.

12 Main Theorem II

In this section we outline and prove there is a sufficient set of conditions guaranteeing the
existence of an ℵ2 sized model for a Scott sentence of a countable structure. We will build
on the conditions used in the proof of Main Theorem I (Section 8) and use results about
these conditions from Section 6.

Suppose there are unary predicates U, V1, V2 on an L-structure A and conditions such
that:

(a) Ux⇔ V1x ∧ V2x

(b) ∃x(¬V1x ∧ V2x) ∧ ∃y(V1y ∧ ¬V2y)
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(c) (A, V1) ∼= (A, V2) ∼= (V1, U) ∼= (V2, U) ∼= (A, U)

(d) A ∼= V1 ∼= V2 ∼= U

(e) A is a countable, atomic model where Th(A) has a unique atomic model of size ℵ1.

Theorem 12.1. If A is a model of conditions (a)− (e), and ϕ is a Scott sentence of A, then
ϕ has a model of size ℵ2.

Proof. See FIGURE 1 on PAGE 261 for a picture of what we want to construct.
As in Theorem 8.1 (Main Theorem I) we wish to build a chain of models, that, at each

step of the chain preserves some properties of A. We then take a union of all structures in
the chain to obtain a model of ϕ of size ℵ1. While this was enough for Main Theorem I,
here we need to construct a second ℵ1 sized model. Using (E) these two ℵ1 sized models are
isomorphic, which will allow us to run Construction 6.3 a final time. We will obtain a chain
of ℵ1 sized models, the union of which is the desired ℵ2 sized model of ϕ.

Let B0
0 = A. As in Construction 6.3, construct B1

0 such that (B1
0,B0

0) ∼= (B0
0, V1). Contin-

uing like this, build a chain such that

(Bα+1
0 ,Bα0 ) ∼= (B1

0,B0
0) for successor ordinals

Bκ0 =
⋃
α<κ

Bα0 for limit ordinals

Note that by Theorem 6.5, Bω0 ∼= B0
0. By Lemma 6.8, Bω1

0 is atomic and by Lemma 6.9, Bω1
0

is a model of Th(A) = Th(B0
0). Therefore by Theorem 5.8 & Theorem 5.9, Bω1

0 |= ϕ. By
condition (E), this model is unique.

Now construct B0
1 such that (B0

1,B0
0) ∼= (B0

0, V2). Note that

(B0
1,B0

0) ∼= (B0
0, V2)

∼= (B0
0, V1)

∼= (B1
0,B0

0) so B0
1
∼= B1

0

where (B0
0, V2)

∼= (B0
0, V1) from (C). (As V1 and V2 are distinct, B1

0 and B0
1 are distinct too.)

Construct B1
1 such that B1

0,B0
1 ⊂ B1

1 and

(B1
1,B1

0,B0
1,B0

0) ∼= (A, V1, V2, U).

By the way B1
0 and B0

1 were constructed and properties (C) and (D), this is made possible.
Continuing like this, construct Bα+1

1 to contain Bα1 , Bα+1
0 and to have the property

(Bα+1
1 ,Bα+1

0 ,Bα1 ,Bα0 ) ∼= (A, V1, V2, U) for successor ordinals, and for limit ordinals Bκ1 =⋃
α<κ Bα1 .

Lemma 12.2. The following structures are isomorphic;

(1) For α < ω, Bα1 ∼= Bα0 .



Page 260 RHIT Undergrad. Math. J., Vol. 18, No. 1

(2) Bω1 ∼= Bω0 .

(3) Bω1
1
∼= Bω1

0 .

Proof. (1). For α < ω, note that by construction,

Bα1 ∼= B0
1
∼= B1

0
∼= Bα0

Thus Bα1 ∼= Bα0 as required.

(2). By construction Bω0 =
⋃
α<ω Bα0 and Bω1 =

⋃
α<ω Bα1 . Then, by Theorem 6.5,

Bω1 ∼= B0
1
∼= B0

0
∼= Bω0 .

So Bω1 ∼= Bω0 as required.

(3). Note that by taking (1) and (2) in general for successor or limit ordinals γ with ω <
γ < ω1, we obtain

∀α < ω1 Bα1 ∼= B0
1
∼= B0

0

Since B0
0 is atomic, we then conclude for all α < ω1, Bα1 is atomic. Then Bω1

1 is atomic by
Lemma 6.8. Since for all α < ω1 Bα1 |= Th(A), by Lemma 6.9, Bω1

1 |= Th(A).

Thus Bω1
0 , Bω1

1 are both atomic models for Th(A). However Th(A) has a unique atomic
model of size ℵ1, so Bω1

1
∼= Bω1

0 , as required. �

Returning to the proof of Theorem 12.1:
Now we have Bω1

0 ⊂ Bω1
1 and Bω1

0
∼= Bω1

1 . Define C0 = Bω1
0 , C1 = Bω1

1 . Again by Construction
6.3 we can construct C2 such that (C2, C1) ∼= (C1, C0). Form a chain (Cα)α<ω2 , where at
successor ordinals

(Cα+1, Cα) ∼= (C1, C0)

and at limit ordinals γ < ω2, define

Cγ =
⋃
α<γ

Cα.

Cγ is atomic by Lemma 6.8, and by Lemma 6.9, Cγ satisfies Th(A). Thus Cγ ∼= C0.

Define Cω2 =
⋃
α<ω2

Cα. This is atomic and satisfies Th(A) by Lemma 6.8 and Lemma 6.9
respectively. Thus by Theorem 5.8 and Theorem 5.9, Cω2 |= ϕ and ||Cω2|| = ℵ2 (so Cω2 6∼= C0).

Therefore under conditions (a)-(e) on A, there is a structure of size ℵ2 satisfying ϕ, as
required. �
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Figure 1: Structure diagram.
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