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generalization of pascal’s rule and
leibniz’s rule for differentiation

Rajeshwari Majumdar

Abstract. We generalize the combinatorial identity for binomial coefficients un-
derlying the construction of Pascal’s Triangle to multinomial coefficients underlying
the construction of Pascal’s Simplex. Using this identity, we present a new proof
of the formula for calculating the nth derivative of the product of k functions, a
generalization of Leibniz’s Rule for differentiation.
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1 Introduction

For a real-valued function y defined on an open interval I ⊆ <, and any nonnegative integer
k, let y(k) denote the kth derivative of y with the convention that y(0) = y. Let f, g be two
real-valued functions defined on an open interval I ⊆ < such that f (n) and g(n) exist for
some nonnegative integer n. For h (x) = f (x) g (x), Leibniz’s Rule asserts

h(n) (x) =
n∑
k=0

(
n

k

)
f (k) (x) g(n−k) (x) . (1)

See, for example, Exercise 5.11.4 of Apostol’s Calculus, Volume 1 [1]. For n = 1, (1) reduces
to the product rule for differentiation. The formula in (1) is proved by induction on n using
Pascal’s Rule (

q

j − 1

)
+

(
q

j

)
=

(
q + 1

j

)
, (2)

where q and j are non-negative integers, 0 ≤ j ≤ q. Note that(
q

−1

)
= 0

under the convention that (r!)−1 = 0 if r is a negative integer.

A formula for calculating the derivative of the product of k differentiable functions is outlined
in Exercise 4.6.24 of Apostol’s Calculus, Volume 1 [1]. Let {f1, . . . , fk} be k real-valued
differentiable functions on an open interval I ⊆ < and let

g =
k∏
i=1

fi; (3)

then

g(1) =
k∑
i=1

f
(1)
i

∏
{j 6=i}

fj. (4)

The equality in (4) is vacuously true for k = 1, is the product rule for k = 2, and follows
easily by induction on k using the product rule.

Theorem 1 of this paper presents a generalization of the formula in (4) for higher order
derivatives. We need to define a multi-index to state the theorem.

Definition 1. A k-dimensional multi-index

α = (α1, . . . , αk)

is a k-tuple of non-negative integers, with∣∣α∣∣ =
k∑
i=1

αi and α! =
k∏
i=1

αi!.
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Theorem 1. For n ≥ 1, let {f1, . . . , fk} be real-valued functions on an open interval I ⊆ <
such that f

(n)
i exists for all 1 ≤ i ≤ k. Let g be as in (3); then

g(n) =
∑

{α:|α|=n}

n!

α!

k∏
i=1

f
(αi)
i , (5)

where α is a k-dimensional multi-index.

Remark 1. It should be noted here that the coefficient of the product in the right-hand
side of (5),

n!

α!
=

n!

α1! . . . αk!
=

(
n

α1 . . . αk

)
,

is nothing but the multinomial coefficient.

Remark 2. The generalized Leibniz’s Rule presented in (5) is not a new result. As pointed
out by Thaheem and Laradji [2], this generalization is overlooked by most calculus textbooks,
and those that mention it typically do so without a proof. Thaheem and Laradji [2] presented
this generalization in their Theorem 2; they proved the formula in (5) by fixing the order
of the derivative, which is n in our notation, and using induction on the number of factors,
which is k in our notation. They assumed Leibniz’s Rule stated in (1). Also see Mazkewitsch
[3]. In the next section, we establish the formula in (5) by fixing k and using induction on n.
The key ingredients of our proof are the equalities in (4) and (9) of Lemma 1 below. Note
that (9) is a generalization of Pascal’s Rule stated in (2).

2 Proof of Theorem 1

To prove Theorem 1, we first need to state and prove Lemma 1. The formulation of Lemma
1 requires the following definition.

Definition 2. Given a k-dimensional multi-index α and i ∈ {1, 2, . . . k}, let +α(i) be the
k-dimensional multi-index with the jth component given by

+α
(i)
j =

{
αj if j 6= i

αi + 1 if j = i;
(6)

if αi > 0, let −α
(i) be the k-dimensional multi-index with the jth component given by

−α
(i)
j =

{
αj if j 6= i

αi − 1 if j = i.
(7)

Given a k-dimensional multi-index α, for 1 ≤ i ≤ k, let

γi (α) =

{
0 if αi = 0
(|α|−1)!
−α(i)!

if αi > 0.
(8)
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Remark 3. Note that the definition of γi is an extension of the convention that (r!)−1 = 0
if r is a negative integer. Before proceeding further, let us explicitly compute for a couple of
multi-indices the quantities defined in (6), (7), and (8). Let k = 3 and α = (1, 4, 2). Then

+α(1) = (2, 4, 2) , +α(2) = (1, 5, 2) , +α(3) = (1, 4, 3)

−α
(1) = (0, 4, 2) , −α

(2) = (1, 3, 2) , −α
(3) = (1, 4, 1)

γ1 (α) = 15, γ2 (α) = 60, γ3 (α) = 30.

Let k = 3 and α = (3, 0, 5). Then

+α(1) = (4, 0, 5) , +α(2) = (3, 1, 5) , +α(3) = (3, 0, 6)

−α
(1) = (2, 0, 5) , −α

(2) is undefined, −α
(3) = (3, 0, 4)

γ1 (α) = 21, γ2 (α) = 0, γ3 (α) = 35.

In both examples

γ1 (α) + γ2 (α) + γ3 (α) =

∣∣α∣∣!
α!

,

a fact that is true in general and is the assertion of Lemma 1.

Lemma 1. Given a k-dimensional multi-index β,∣∣β∣∣!
β!

=
k∑
i=1

γi (β) . (9)

Proof. Since by definition

γi (β) =

∣∣β∣∣!
β!
× βi∣∣β∣∣ and

k∑
i=1

βi =
∣∣β∣∣,

the algebraic proof of (9) follows.

Remark 4. The identity in (9) can (and should) be interpreted in terms of a selection
problem. To get there, let us recall the following interpretation of (2). Clearly, the right-
hand side of (2) is the number of samples of size j that can be chosen from a population
of size q + 1. Let us mark an element of the population as E. The collection of samples of
size j can be partitioned into two subcollections, where one subcollection consists of all the
samples of size j that include E and the other subcollection consists of all the samples of size
j that exclude E. This partition is mutually exclusive and exhaustive. Since the first term
in the left-hand side of (2) is equal to the number of samples of size j that include E and
the second term is equal to the number of samples of size j that exclude E, the assertion of
(2) is immediate.
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Now consider a population of size q + 1, elements of which are to be partitioned into k
mutually exclusive and exhaustive subsets of the population, say {G1, . . . , Gk}, where the
size of Gi is βi, 1 ≤ i ≤ k; that is, β = (β1, . . . , βk) is a k-dimensional multi-index with

∣∣β∣∣ =
k∑
i=1

βi = q + 1.

Let P be the collection of all such partitions. Note that the left-hand side of (9) is the
cardinality of P . Let us once again mark an element of the population as E. For i ∈
{1, . . . , k}, let Pi be the subcollection of all partitions that place E in Gi. The fact that the
subsets Gi are mutually exclusive and exhaustive implies that {P1, . . . ,Pk} is a mutually
exclusive and exhaustive partition of P , so that

left-hand side of (9) =
k∑
i=1

cardinality of Pi.

Note that

cardinality of Pi =

{
0 if βi = 0

q!

(
∏

j 6=i βj !)(βi−1)!
if βi > 0;

(10)

since right-hand side of (10) = γi (β), (9) follows.

Proof of Theorem 1. We first observe that for n = 1, the formula in (5) reduces to the
formula in (4); that is, the formula in (5) holds for n = 1. The number of k-dimensional
multi-indices α such that

∣∣α∣∣ = 1 is k; they can be enumerated as {ei : 1 ≤ i ≤ k}, where

ei has 1 in the ith coordinate and 0 elsewhere. Since ei! = 1 and by convention f
(0)
j = fj,

the formula in (5) reduces to

g(1) =
k∑
i=1

f
(1)
i

∏
{j 6=i}

fj,

which is precisely the formula in (4).

To prove the formula in (5) by induction on n, let us assume that (5) holds for n = m, that
is,

g(m) =
∑

{α:|α|=m}

m!

α!

(
k∏
i=1

f
(αi)
i

)
. (11)

From (11), by linearity of the operation of differentiation,

g(m+1) =
∑

{α:|α|=m}

m!

α!
D

(
k∏
i=1

f
(αi)
i

)
, (12)
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where D denotes the differential operator. Using the formula for calculating the first deriva-
tive of the product of k functions, that is, the equality in (4), we obtain via (6)

D

(
k∏
i=1

f
(αi)
i

)
=

k∑
i=1

f
(αi+1)
i

∏
{j 6=i}

f
(αj)
j =

k∑
i=1

(
k∏
j=1

f

(
+α

(i)
j

)
j

)
. (13)

Substituting (13) in (12),

g(m+1) =
∑

{α:|α|=m}

m!

α!

k∑
i=1

(
k∏
j=1

f

(
+α

(i)
j

)
j

)
. (14)

Interchanging the orders of (finite) summation over i and α in (14),

g(m+1) =
k∑
i=1

∑
{α:|α|=m}

m!

α!

(
k∏
j=1

f

(
+α

(i)
j

)
j

)
=

k∑
i=1

Ti, (15)

where

Ti =
∑

{α:|α|=m}

m!

α!

(
k∏
j=1

f

(
+α

(i)
j

)
j

)
. (16)

Now let us fix i ∈ {1, 2, . . . k}. Note that for every k-dimensional multi-index α such that
|α| = m, +α(i) is a k-dimensional multi-index such that

∣∣+α(i)
∣∣ = m + 1. Conversely,

for every k-dimensional multi-index β such that
∣∣β∣∣ = m + 1 and βi > 0, there exists a

k-dimensional multi-index α
(

= −β
(i)
)

such that |α| = m and β = +α(i). Therefore, by a

change of variable in the summation in the right-hand side of (16),

Ti =
∑

{β:|β|=m+1, βi>0}

m!

−β
(i)!

(
k∏
j=1

f
(βj)
j

)

=
∑

{β:|β|=m+1}

γi (β)

(
k∏
j=1

f
(βj)
j

)
,

(17)

where the second equality follows from the definition of γi in (8). Substituting in (15) the
expression for Ti obtained in (17),

g(m+1) =
k∑
i=1

∑
{β:|β|=m+1}

γi (β)

(
k∏
j=1

f
(βj)
j

)
. (18)

Interchanging the orders of (finite) summation over β and i in (18),

g(m+1) =
∑

{β:|β|=m+1}

k∑
i=1

γi (β)

(
k∏
j=1

f
(βj)
j

)
. (19)
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Since
∏k

j=1 f
(βj)
j does not depend on i, it follows from (19) and (9) that

g(m+1) =
∑

{β:|β|=m+1}

(
k∏
j=1

f
(βj)
j

)
k∑
i=1

γi (β) =
∑

{β:|β|=m+1}

(m+ 1)!

β!

(
k∏
j=1

f
(βj)
j

)
,

thereby completing the proof of the theorem.
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