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Abstract. We present results related to the determinant spectrum of matrices with
entries restricted to quartic roots of unity. We completely characterize determinant
spectra for small orders and present conjectures on the elements and structures of
higher-order spectra.
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1 Introduction

The study of determinants of matrices whose entries are restricted to the set {1,−1} has a
rich and varied history which begins with the 19th century mathematician James Sylvester
[1]. The determinant values of these ±1 matrices have been found by Sylvester and others
to posses an interesting structure. The problem of determining the range of the determinant
function, when restricted to ±1 matrices of a given size, is known as the determinant spec-
trum problem. An obvious generalization of this problem can be obtained by enlarging the
set which matrix entries are allowed to be chosen from. One such generalization is explored
in this paper.

Some progress has been made classifying the determinant spectrum for matrices with
entries restricted to the set {1,−1}. For all orders up to and including n = 7, the {1,−1}
spectra have been shown to consist of bounded sets of consecutive entries in arithmetic
progressions. The determinant spectra for small order matrices appear in Table 1. The
left column denotes matrix order; the right column lists the absolute values of all possible
determinants. To better illustrate the pattern, Table 2 shows the determinant values scaled
by powers of 2.

Table 1: {1,−1} spectra for small orders
1 {1}
2 {0,2}
3 {0,4}
4 {0,8,16}
5 {0,16,32,48}
6 {0,32,64,96,128,160}
7 {0,64,128,192,256,320,384,448,512,576}

Table 2: The nature of the nth order spectra is evident when values are scaled by 2n−1.
1 {1}
2 {0,1}
3 {0,1}
4 {0,1,2}
5 {0,1,2,3}
6 {0,1,2,3,4,5}
7 {0,1,2,3,4,5,6,7,8,9}

There was a short-lived conjecture that all {1,−1} determinant spectra shared this com-
mon structure of consecutive entries in arithmetic progressions. However, it was shown by
Metropolis et. al. [2] that gaps appear in the spectra beginning with n = 8. Ironically, it is
now conjectured that all spectra with orders 8 and larger possess gaps. To date, the {1,−1}
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determinant spectra are completely classified for all orders up to n = 11 as well as for n = 13,
and the elements of several larger spectra have been conjectured. The interested reader may
consult the website of Orrick [4] for more information.

In this paper we generalize the classical determinant spectrum problem by expanding the
allowed set of matrix entries to include ±i in addition to ±1. We find that the resulting
spectra, which contains the original ±1 spectra as a subset, posseses a richer structure and
interesting symmetries. We investigate the additional structure of this enlarged spectra,
classify the spectra for small orders, and conjecture about larger order spectra.

The rest of this paper is structured as follows. In Section 2, we will formally define
determinants and discuss some of their applications. In Section 3, we will present Hadamard’s
bound on matrix determinants and the role it plays in providing extreme values of matrix
determinants, notably those of Hadamard matrices. Finally, in Section 4, we will present
new results and conjectures on a generalization of the determinant spectrum problem.

2 Matrix Determinants

Given a square matrix A we can compute a number, denoted |A| or det(A), called the deter-
minant of A. Matrix determinants are used in many areas of pure and applied mathematics,
including solving systems of linear equations, finding volumes of parallelepipeds, and com-
puting Jacobians of coordinate transformations. In the special case of a 2-by-2 matrix, the
determinant can be computed using the simple formula:∣∣∣∣a b

c d

∣∣∣∣ = ad− bc. (1)

A minor is the determinant of the matrix obtained by deleting a row and column from some
larger square matrix. The determinant of an n-by-n matrix can then be defined recursively
as follows.

Definition 1. Let Mij denote the minor formed by deleting the ith row and jth column of
the n-by-n matrix A. The determinant of A is then

det(A) =
n∑

j=1

(−1)i+jMij (2)

for any value of i between 1 and n.

Note that any minor which is the determinant of a matrix larger than 2-by-2 can be further
decomposed using the above definition. This formula allows us to express the determinant
of any square matrix as the sum of 2-by-2 determinants, which we know how to compute.

Example 1. The determinant of a 3-by-3 matrix is a sum of three 2-by-2 determinants.∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣
= a(ei− fh)− b(di− fg) + c(dh− eg).

(3)
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3 Hadamard’s Inequality and Hadamard Matrices

The problem of classifying all possible values taken on by the determinant function applied
to matrices of order n whose entries are restricted to the set {1,−1} dates back to James
Sylvester’s investigations in the 19th century. This set of values, now referred to as a deter-
minant spectrum, was given an upper bound by Jacques Hadamard in 1893 [1]. His result
is actually more general, as it bounds the determinants of matrices of order n with entries
in the complex unit disk.

Proposition 1. (Hadamard, 1893) If M is a matrix of order n with entries in the complex
unit disk, then

| det(M)| ≤ nn/2.

The bound in Hadamard’s inequality is sharp; it is easy to show that Hadamard’s upper
bound can be achieved, but only by matrices whose entries lie on the boundary of the unit disk
in the complex plane C. It then follows that for matrices whose entries are restricted to the
real numbers R, Hadamard’s upper bound yields an upper bound on Sylvester’s determinant
spectrum problem, since these matrices have entries restricted to the set {1,−1}.

A necessary (but not sufficient) condition for the determinant of a {1,−1} matrix to meet
Hadamard’s upper bound is that the matrix have order 1, order 2, or order 4n for any positive
integer n. Matrices whose determinants achieve this upper bound are known as Hadamard
matrices. It was first suggested by Paley in 1933 [1] that a Hadamard matrix might exist for
every such value 4n. Before 2005 this open question, known as the Hadamard Conjecture,
was shown to be true for all orders less than n = 428. Following the ingeneous construction
of an order 428 Hadamard matrix by Hadi Kharaghani and Behruz Tayfeh-Rezaie in 2005
[5], the conjecture has been verified up to and including n = 667.

It is well known that an equivalent definition of a Hadamard matrix of order n is a matrix
H with entries in the set {1,−1} that satisfies the equation

H ·HT = n · In,

where HT denotes the transpose of H. It then follows that the columns of a Hadamard
matrix are pairwise orthogonal. For additional information about Hadamard matrices and
their applications the reader may consult the text by Horadam [1].

Example 2. The 4-by-4 matrix

A =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (4)
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is an example of a Hadamard matrix. Note that its det(A) = 16 satisfies the upper bound of
44/2 = 16 given by Hadamard’s inequality. The columns of A are also pairwise orthogonal.
For example, columns 2 and 3 satisfy

1
−1
1
−1


T

·


1
1
−1
−1

 = 0. (5)

Of course, the determinants of Hadamard matrices, being maximal, only describe the
extreme values of the corresponding determinant spectra. The focus of this paper involves
determining entire determinant spectra in a context that is more general than the setting
investigated by Sylvester.

4 A Generalized Determinant Spectrum Problem

One generalization of the classic determinant spectrum problem is found by relaxing the
restriction on possible matrix entries. Specifically, rather than requiring matrix entries to
belong to the set {1,−1} (that is, real quadratic roots of unity), we allow matrix entries
to take on any value in the set {1,−1, i,−i}. The elements of this set are known as the
complex quartic roots of unity, since they are roots of the polynomial x4 − 1, and all lie on
the boundary of the unit disk in C.

Definition 2. For a positive integer n, letMn denotes the set of all matrices of order n whose
entries are quartic roots of unity; that is, Mn = {[aij], 1 ≤ i, j ≤ n|aij ∈ {1,−1, i,−i}}.

Definition 3. For a positive integer n, let Dn denotes the determinant spectrum for all
order n matrices whose entries are quartic roots of unity; that is, Dn = {det(A)|A ∈Mn}.

The Gaussian integers Z[i] are complex numbers whose real and imaginary parts are
integers. It follows immediately from the preceding definitions that for any positive integer
n, the corresponding Dn is a subset of the Gaussian integers. In this paper we characterize
D2, D3, and D4 and describe several important properties of Dn for any positive integer n.
Verifications of the common structures of these generalized spectra are relatively straight-
forward, and follow using basic facts from linear algebra. Perhaps the most fundamental
property of the spectra is the following result.

Lemma 1. The determinant spectrum Dn is closed under multiplication by quartic roots of
unity.

Proof. Let A ∈Mn. We can then always construct another matrix B ∈Mn by multiplying
any row or column of A by ik for some positive integer k – that is, an arbitrary quartic root
of unity. Then det(B) = ik det(A), and the result follows.
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As indicated in the previous proof, any element A ∈Mn remains inMn when multiplying
a row or column of A by a quartic root of unity. Thus, any matrix A ∈ Mn can be
manipulated so that all leading row and column entries of the resulting matrix are 1. A
square matrix whose leading column and row entries are 1’s is said to be normalized. The
following is an immediate consequence of the previous lemma.

Lemma 2. If x ∈ Dn, then there is a normalized matrix B ∈ Mn such that x = ik det(B)
for some k ∈ {0, 1, 2, 3}.

Proof. If x ∈ Dn then there is some A ∈ Mn whose determinant is x. We can obtain a
normalized matrix B ∈Mn by multiplying the rows and columns of A by powers of i. Then
x = ik det(B) for some k ∈ {0, 1, 2, 3}.

Another important property of Dn is presented in the following lemma.

Lemma 3. The determinant spectrum Dn is closed under complex conjugation.

Proof. For a complex number z, let z̄ denote its complex conjugate and for a matrix A,
let A be the matrix obtained by replacing each entry of A with its complex conjugate. If
det(A) ∈ Dn then A ∈Mn since ik is a quartic root of unity for any positive integer k. Thus
det(A) = det(A) ∈ Dn.

Initial attempts at analyzing our generalized determinant spectra using the traditional
definition of a determinant were limited. But Chió’s determinant formula, an alternative
and underappreciated method for computing matrix determinants, proved to be much more
useful.

Proposition 2. (Chió, 1853) Let A = [aij] be a matrix of order n with a11 6= 0. Then

detA =
1

an−2
11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣ · · · ∣∣∣∣a11 a1n
a21 a2n

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣ · · · ∣∣∣∣a11 a1n
a31 a3n

∣∣∣∣
...

...
. . .

...∣∣∣∣a11 a12
an1 an2

∣∣∣∣ ∣∣∣∣a11 a13
an1 an3

∣∣∣∣ · · · ∣∣∣∣a11 a1n
an1 ann

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The key role played by Chió’s determinant formula is apparent in the proof of the next
result. A more detailed analysis of Chió’s determinant formula can be found in the article
by Fuller and Logan [3].

Lemma 4. If x ∈ D4, the real and imaginary parts of x are congruent modulo 4.

Proof. Let x ∈ D4. Then there is a normalized matrix A ∈ M4 such that x = ik det(A) for
some k ∈ {0, 1, 2, 3}. By Chió’s determinant formula,
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det(A) =

∣∣∣∣∣∣∣∣
1 1 1 1
1 ik1 ik2 ik3

1 ik4 ik5 ik6

1 ik7 ik8 ik9

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
z1 z2 z3
z4 z5 z6
z7 z8 z9

∣∣∣∣∣∣,
where each zn =

∣∣∣∣1 1
1 ikn

∣∣∣∣ = ikn − 1. Using the more common determinant formula, we

have that

det(A) = z1z5z9 − z1z6z8 − z2z4z9 + z2z6z7 + z3z4z8 − z3z5z7.

We will now show that the real and imaginary parts of each product zpzqzr are congruent
modulo 4. To begin, note that since zn = ikn − 1, each product zpzqzr is of the form

inp+nq+nr − inp+nq − inq+nr − inp+nr + inp + inq + inr − 1.

Observe that because i has order 4 in C, we may assume without loss of generality that
np, nq, nr ∈ {0, 1, 2, 3}. It must be the case that either all three of the exponents np, nq, and
nr are congruent modulo 2 or exactly two are congruent modulo 2. If all three exponents
are congruent modulo 2 then they are either all even or all odd. Suppose they are all odd.
Then each of the expressions −inp+nq ,−inq+nr ,−inp+nr ,−1 is real and each of the expressions
inp+nq+nr , inp , inq , inr is imaginary. We now have four cases to consider.

Case 1: If np = nq = nr = 1, then the real component is −inp+nq − inq+nr − inp+nr − 1 =
1+1+1−1 = 2 and the imaginary component is inp+nq+nr +inp +inq +inr = −i+i+i+i = 2i.

Case 2: If np = 1, nq = nr = 3, then the real component is −inp+nq−inq+nr−inp+nr−1 =
−1+1−1−1 = −2 and the imaginary component is inp+nq+nr +inp +inq +inr = −i+i−i−i =
−2i.

Case 3: If np = nq = nr = 3, then the real component is −inp+nq − inq+nr − inp+nr − 1 =
1+1+1−1 = 2 and the imaginary component is inp+nq+nr +inp +inq +inr = i−i−i−i = −2i.

Case 4: If np = nq = 1, nr = 3, then the real component is −inp+nq−inq+nr−inp+nr−1 =
1−1−1−1 = −2 and the imaginary component is inp+nq+nr+inp+inq+inr = i+i+i−iki = 2i.

In all four cases the real and imaginary components of zpzqzr are congruent to 2 modulo
4. Thus the real and imaginary parts of the sum or difference of any pair of products of the
form zpzqzr must be congruent to 0 modulo 4. Therefore, since they are both even, the real
and imaginary components of the determinant of A, and hence x = ik det (A), are congruent
modulo 4. The remaining cases concerning the parity of the exponents np, nq, and nr are
similar and left to the reader.

These results allow us to draw several conclusions about the visual structure of our
generalized spectra. They include:
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Figure 1: D2 = {0, (1 + i)ik, 2ik|k ∈ {0, 1, 2, 3}}

• Since Dn ⊆ Z[i] for every positive integer n, each Dn should be a bounded, two-
dimensional lattice-like structure.

• Since each Dn is closed under multiplication by quartic roots of unity and complex
conjugation, the spectra should be highly symmetric with respect both the real and
imaginary axes and with respect to the origin.

• Since the real and imaginary parts of every element in D4 are congruent modulo 4, the
lattice-like structure associated with D4 should have a fundamental region larger than
that of the unit square in the Gaussian integers.

A brute force search using MATLAB yielded complete images of Dn for small values of
n. Note that the spectra D2 and D3, which appear in Figure 1 and Figure 2, respectively,
form complete, highly symmetric, bounded subsets of the lattice of Gaussian integers. Thus,
the structure of D2 and D3 is, not surprisingly, the two-dimensional complex analogue of the
structure of the one-dimensional {1,−1} spectra for smaller orders.

The Gaussian integer lattice-like structure formed by the order 4 spectrum contains gaps,
and appears in Figure 3. The appearance of gaps in D4 is somewhat surprising, since as
previously noted, gaps do not appear in the one-dimensional {1,−1} spectra until the order
8 case.

As seen in Figure 3, D4 is bounded by the lines x+y = 16, −x+y = 16, −x−y = 16, and
x−y = 16 in the complex plane. More precisely, D4 contains all points in the aforementioned
restricted region of C whose real and imaginary parts are pairs of even integers that are
congruent modulo 4, with the exception of ik(14 ± 2i) for k ∈ {0, 1, 2, 3}. These are the 8
points that appear, in pairs, as gaps near the corners of D4. We summarize these observations
in the following result.
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Figure 2: D3 = {0, 2ik, 4ik, (2± 4i)ik|k ∈ {0, 1, 2, 3}

Figure 3: D4
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Theorem 1. The D4 spectrum is {0, (2 + 2i)ik, 4ik, (4 + 4i)ik, (2± 6i)ik, 8ik, (6 + 6i)ik, (4±
8i)ik, (2± 10i)ik, (8 + 8i)ik, (6± 10i)ik, 12ik, (4± 12i)ik, 16ik|k ∈ {0, 1, 2, 3}}.

The spectra depicted in Figures 1, 2, and 3 show two distinct lattice-like structures.
The fundamental domain of D3 is a square whose sides are parallel to the coordinate axes,
whereas the fundamental domain of both D2 and D4 is a rhombus. These observations,
together with the above results, as well as an extensive search using randomly generated
matrices in MATLAB, point toward the following conjecture.

Conjecture 1. For any positive integer k, D2k−1 ⊆ {a + bi|a, b ∈ 2k−1Z}, and D2k ⊆
{a + bi|a, b ∈ 2k−1Z, a ≡ b (mod 2k)}.

That is, the bounded lattice-like structures of these generalized spectra feature funda-
mental domains, with the fundamental domains associated with the D2k−1 spectra being a
sequence of squares whose sizes are strictly increasing as k increases, whereas the fundamen-
tal domains associated with the D2k spectra comprise a sequence of rhombai whose sizes are
likewise strictly increasing.

We also conjecture that for all k ≥ 4, the lattice-like structures of the corresponding Dk

contain gaps.
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