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COMPUTING THE AUTOCORRELATION FUNCTION FOR 
THE AUTOREGRESSIVE PROCESS 

   Omar Talib        Souleimane Cheikh Sidi Mohamed 

Abstract. In this document, we explain how complex integration theory can be used to compute 
the autocorrelation function for the autoregressive process. In particular, we use the deformation 
invariance theorem, and Cauchy’s residue theorem to reduce the problem of computing the 
autocorrelation function to the problem of computing residues of a particular function. The 
purpose of this paper is not only to illustrate a method by which one can derive the 
autocorrelation function of the autoregressive process, but also to demonstrate the applicability 
of complex analysis in statistical theory through simple examples. 
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1 Introduction 

A stochastic process is defined as a sequence !! !∈ℤ of random variables. Different values of 
the variable ! represent different points of time; hence a stochastic process serves a model for 
time-varying random phenomena. To understand and study a stochastic process we associate 
with it various functions such as the mean function !! = ![!!], the autocovariance function 
!!,! = !"#(!! ,!!) and the autocorrelation function !!,! = !"## !! ,!! . Our concern in what 
follows will be employing complex analytic techniques to compute the autocorrelation function 
for the autoregressive stochastic process defined below.  

A very simple, though important, example of a stochastic process that we shall need later is a 
sequence !! !∈ℕ of independent and identically distributed random variables. Such a stochastic 
process is called a white noise process. For this process, the mean function !! is constant and the 
autocovariance function !!,! is equal to zero when ! ≠ ! and is equal to the variance of !! when 
! = !. We may assume that the mean of the white noise process has been subtracted out to 
produce a white noise process !! = !! − !! with zero mean and let !!! denote the variance of this 
process.  

A stochastic process that satisfies the two conditions: The mean function !! is constant for all 
the values of !, and the autocovariance function ! satisfies !!,!!! = !!,! for all ! and !, is said to 
be a weakly-stationary process. In other words, a weakly-stationary process is a process for 
which the autocorrelation and autocovariance functions depend only on the time-lag ! and not on 
the particular points of time ! and ! − !.  Accordingly, for such a process we shall denote !!,!!! 
and !!,!!! by !! and !! respectively, omitting the unnecessary information from the notation. 
Observe that the white noise process is an example of a weakly-stationary process. Observe 
further that for a weakly-stationary process !! !∈ℤ if we set !! = ! − ! then !! = !!,!!! =
!"## !! ,!!!! = !"## !!!!(!!),!!! = !!!. We shall use this property frequently in this 
paper. Moreover, since weak stationarity is the only form of stationarity that will appear in this 
paper, we shall omit the word “weak” and simply refer to weak stationarity as stationarity.  

In many cases, the current state of a random process depends on the previous states and so, a 
very natural stochastic process would be one in which this dependence is linear. A !th-order 
autoregressive process, abbreviated as !" !  process,  is a stochastic process in which the 
current value !! is a linear combination of the ! most recent values !!!!,!!!!,… ,!!!! plus a 
stochastic term !! that  includes the portion of variability in !! which cannot be explained by the 
past values. More precisely, an !"(!) process satisfies 

 

!! = !!!!!!
!

!!!
+ !! ,      

 
where !!,!!,… ,!! are the model parameters and !! is a white noise process, independent of the 
random variables !!!!,!!!!,… ,!!!!. We shall not be interested in the stationarity conditions for 
the !"(!) process (the conditions under which the process is stationary) in what follows and will 
work exclusively with stationary autoregressive processes. In other words, throughout this paper, 
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whenever we are working with an autoregressive process, we shall implicitly assume that it is 
stationary.  For such a process, the mean function is constant and we may assume that the 
process mean is subtracted out to produce a process with zero mean. 

To measure the linear dependence between the random variables !! and !!!! in an 
autoregressive process, we may use either the autocovariance function !! or the autocorrelation 
function !!. The latter is usually preferred since it is unitless. Our major concern in this paper 
will accordingly be the computation of the autocorrelation function !! for the !" !  process. In 
computing this autocorrelation function, we will be using tools from complex analysis that we 
shall briefly review in the next section. In the third section, we begin our investigation by 
considering the special cases of the  !" 1   and  !"(2) models. Then, in the fourth section we 
study the autocorrelation function of the general !"(!) model. Our work in Section 3 and 
Section 4 will be based on the assumptions and notations introduced above. 

 

2 Preliminary Considerations 

We assume that the reader is familiar with the basic notions of complex analysis such as 
Cauchy’s theorem, Laurent series, computing residues, and Cauchy’s residue theorem, and will 
simply review the tools that will be necessary in our subsequent work. This section will contain a 
brief review of the deformation invariance theorem, Taylor and Laurent series, and Cauchy’s 
residue theorem. If desired, the reader may skip this section and start reading from Section 3 
where our discussion of the main topic begins. 

2.1 Homotopic Loops 

Recall that two oriented, simple, closed contours !! and !! in a domain ! ⊆ ℂ are said to be 
homotopic in ! if there exists a continuous function !: 0,1 ×[0,1] → ! such that ! !, 0  ; 0 ≤
! ≤ 1 is a parametrization of !!, ! !, 1  ; 0 ≤ ! ≤ 1 is a parametrization of  !! , and for every  
! ∈ 0,1  , ! !, !  ; 0 ≤ ! ≤ 1 is a parametrization of a loop lying in !. The function ! is called 
a homotopic deformation from !! to !!. In other words, two simple loops in a domain of the 
complex plain are homotopic in that domain if one of them can be continuously deformed into 
the other within the domain (see Figure 2.1.1).  

 
Example 2.1.1 Let us fix a domain, say the punctured complex plane ℂ− {!!}, where !! is some 
complex number, and an analytic function in that domain, say ! ! = 1/(! − !!). If we 
integrate this function over the positively oriented simple closed contour !! which is a circle of 
radius ! > 0 centered at !!, then we obtain the following 

 

!! =
!"

! − !!!!

= 2!"#!!!"#
!!!!"# !"

!

!
= 2!". 
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Thus, the integral !! is in fact independent of the radius !. Moreover, it is intuitively clear (and 
not difficult to prove) that any two contours in the family !! !∈ℝ! of contours are homotopic ∎ 

 
Example 2.1.1 suggests that the integral of an analytic function is invariant under continuous 

deformations. It turns out that this is true and this result, which we state next, is known as the 
deformation invariance theorem. 

 
Theorem 2.1.1 (Deformation Invariance Theorem) If ! is analytic in a domain ! in which the 
two loops !! and  !! are homotopic, then  

 

! ! !"
!!

= ! ! !"
!!

. 

 
For a proof of this theorem, see Conway [1].  

   As an example to this theorem, consider a function ! analytic inside a simply connected 
domain !, and a loop ! inside !. Then, by Theorem 2.1.1 above, the integral of ! over the 
contour ! is equal to the integral of ! over a point !! inside ! since the two are homotopic in ! 
(see Figure 2.1.2), but the latter integral is zero. Thus, it follows from Theorem 2.1.1 that the 
integral of a function ! that is analytic in a simply connected domain over a loop inside that 
domain is zero. This result is sometimes referred to as Cauchy’s integral theorem.  

The continuous deformation theorem is a very powerful tool in complex integration theory 
since it allows us to compute integrals over complicated contours by computing the same 
integrals over much simpler (homotopic) contours. Indeed, this theorem, together with Cauchy’s 
residue theorem (discussed below), will be at the heart of the method described in the next 
section, which will enable us to compute the autocorrelation function of the autoregressive 
process. 

!! 

!! 

!! 

Figure 2.1.1 In the domain ℂ− {0}, !! and !! are homotopic but !! and !! are not homotopic. 
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2.2 Taylor and Laurent Series 

There are various ways to characterize analytic functions, one of which involves the Cauchy-
Riemann Equations. We begin this subsection by describing another characterization of analytic 
functions which is the local representation of functions by Taylor series. We shall not prove the 
theorems stated here since the proofs are relatively lengthy and our goal is simply to review these 
concepts and refer to them later in the paper. The proofs can be found in fifth chapter of the 
textbook: Fundamentals of Complex Analysis with Applications to Engineering, Science, and 
Mathematics by Edward B. Saff and Arthur David Snider [3].  

 
Theorem 2.2.1 A power series !! ! − !! !!

!!!  that converges to a function !(!) for all ! in 
the disk ! − !! < !, converges uniformly in any closed subdisk ! − !! ≤ !! < !. 
Furthermore, the function ! to which the series converges is analytic at every point inside the 
circle of convergence. 

 
Observe that because of uniform convergence of power series, we can integrate and 

differentiate them term-by-term. This fact together with the generalized Cauchy integral formula 
(which does not appear in this document) can be used to prove the next corollary which states 
that a convergent power series is necessarily the Taylor series of the analytic function to which it 
converges. Before stating the corollary however, we would like to remind the reader that analytic 
functions have Taylor series representations at their points of analyticity so that a complex 
function is analytic at a point if and only if it has a Taylor series representation at that point.  

 
Corollary 2.2.1 If the series !! ! − !! !!

!!!  converges to !(!) in some circular neighborhood 
of !! then  

 

!! =
! ! !!
!! = 1

2!"
! !

! − !! !!! !"
!

,   ! = 0, 1, 2,…  

 

!! 

! 

Figure 2.1.2 In a simply connected domain a loop ! is homotopic to a point !!. 
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where ! is a positively oriented circle centered at !! and lying inside the circle of convergence of 
the series. 
   Next, we discuss Laurent series. Recall first that a point !! where ! is not analytic is called a 
singularity of !. Furthermore, !! is called an isolated singularity of ! if ! is analytic in the 
domain 0 < ! − !! < !, for some positive !, but not analytic at the point !! itself. For 
example, a rational function has isolated singularities at the roots of its denominator polynomial. 
Obviously, a function ! with an isolated singularity at !! cannot have a Taylor series 
representation at !! (otherwise ! will be analytic at !! by the discussion above) but it can be 
expressed as a sum of two series as stated in the next result. 

 
Theorem 2.2.2 Let ! be analytic in the domain 0 < ! − !! < !. Then ! can be expressed in 
this domain as the sum of two series  

 

!! ! − !! !
!

!!!
+ !!! ! − !! !!

!

!!!
 

 
both of which converge in that domain. Furthermore, this convergence is uniform in any closed 
set of the form 0 < !! ≤ ! − !! ≤ !! < !. 
 
The sum of the two series in Theorem 2.2.2 is often denoted by 
 

!! ! − !! !
!

!!!!
, 

 
 and is called the Laurent series of ! at !!.  
   If ! has an isolated singularity at !! and if the Laurent series of ! takes the form 
 

!!!
! − !! ! +

!!(!!!)
! − !! !!! +⋯+ !! + !! ! − !! +⋯, 

 
where !!! ≠ 0 then ! is said to have a pole of order ! at !!.  It is not difficult to show that a 
function ! has a pole of order ! at !! if and only if in some neighborhood of !!, that excludes !!, 
we can express ! as 
 

! ! = !(!)
! − !! ! , 

 
where the function ! is analytic at !! and !(!!) ≠ 0. In particular, the singularities of rational 
functions are poles. 
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2.3 Cauchy’s Residue Theorem 

Let !! be an isolated singularity of the function ! that is analytic in ! − {!!}, for some domain ! 
containing !!, and let  

 

!! ! − !! !
!

!!!!
 

 
be the Laurent series of ! at !!. If ! is a positively oriented loop in ! that does not contain !! in 
its interior then by the deformation invariance theorem (Theorem 2.1.1)  

 

! ! !"
!

= 0. 

 
However, if ! contains the isolated singularity !! in its interior then it cannot be continuously 
deformed to a point in ! so we cannot conclude that the contour integral of ! over such a 
contour is zero. To compute this integral, we use Theorem 2.2.2 and the fact that a uniformly 
convergent series can be integrated term-by-term: 
 

! ! !"
!

= !! ! − !! !
!

!!!!
!"

!
 

 

= !! ! − !! !!"
!

!

!!!!
= 2!"!!!. 

 
The last equality follows from the deformation invariance theorem and a trivial computation 
which shows that 

 

! − !! !!"
!

= 2!";      !"# ! = −1
0;      !"# ! ≠ −1,  

 
where ! is a positively oriented loop containing !! in its interior. The case ! = −1 was 
considered earlier in Example 2.1.1. 
   The computation above indicates the importance of the coefficient !!! in evaluating an 
integral of !. This coefficient is called the residue of ! at !! and is denoted by !"#[! ! ; !!].  

If the simple closed positively oriented contour ! contains in its interior a finite number of 
isolated singularities of !, say !!, !!,… , !!, then by Theorem 2.1.1, the integral of ! over ! can 
be written as a sum of ! integrals of ! each being over a circular loop !! centered at !! and  
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containing no singularity other than !! (see Figure 2.3.1). Combining this observation with the 
discussion in the previous paragraph we get the following result known as Cauchy’s residue 
theorem. 
 
Theorem 2.3.1 (Cauchy’s Residue Theorem) Let ! be analytic in a domain ! except at the 
isolated singularities !!, !!,… !! ∈ !. If the simple closed positively oriented contour ! contains 
in its interior these singularities of ! and is itself contained in ! then  

 

! ! !"
!

= 2!" !"#[! ! ; !!]
!

!!!
. 

 
To put Cauchy’s residue theorem to use, it remains to discuss the topic of computing the 

residues at the isolated singularities of a given function !. One obvious method is to find the 
Laurent series of ! at each one of the isolated singularities and then read the coefficient !!! from 
the series. However, this method is not always the most efficient one, especially when the 
isolated singularity is a pole of ! which, in fact, is the only case in which we shall be interested. 
Let us suppose that ! has a pole of order 2  at !! then the Laurent series of ! at !! takes the form 

 
! ! = !!!

! − !! ! +
!!!
! − !!

+ !! + !! ! − !! +⋯ ;   !!! ≠ 0. 
 

A simple computation shows that 
 

!! !! 

!! 

! 

!! 

!! 

!! 

Figure 2.3.1 The contour ! is homotopic to the contour containing the circles !!,!!,!! and the 
lines connecting them. 
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!"# ! ! ; !! = !!! = lim
!→!!

!
!" ! − !! !! ! . 

 
A similar argument shows that if ! has a pole of order ! at !!, then  
 

!"# ! ! ; !! = 1
! − 1 ! lim!→!!

!!!!
!!!!! ! − !! !!(!) . 

    

3 The !"(!) and !"(!) Processes 
We begin this section by considering the simple case of the !"(1) process and derive its 
autocorrelation function using elementary methods. Then we use the various complex analytic 
tools described in Section 2 of this document to derive the autocorrelation function for the !" 2  
process. Although the same techniques that will be used here to derive the autocorrelation 
function for the !"(2) process can be applied to the general case of the !"(!) process, we delay 
the discussion of the general case to the next section and focus now on the second-order 
autoregressive process. This is because the deformation of contours arguments are easily 
illustrated with figures in this special case. We shall work with the notation provided in the 
introduction and under the several assumptions stated there. In particular, we assume that the 
processes are stationary with zero mean. 

 

3.1 The !"(!) Process 

To begin with, let us consider the case of a first-order autoregressive model 
 

!! = !!!!!! + !! .     (3.1) 
 

Taking variance of both sides of this equation gives !! = !!!!! + !!! so that 
 

!! = !!!/(1− !!!).     (3.2) 
 

For this expression of the variance to be valid (the variance should be nonnegative), we must 
restrict the possible values of !! so that !! < 1. Next, to compute the autocorrelation function 
we multiply both sides of Equation 3.1 by !!!!, take expectations, use the fact that ! !! = 0 
and that !! and !!!! are independent to obtain !! = !!!!!!. Combining this with Equation 3.2 
we get !! = !!![!!!/(1− !!!)] or 

 

!! =
!!
!!
= !!!  ;  ! ∈ {0,1,2,… }.     (3.3) 
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Equation 3.3 is an explicit formula for the autocorrelation function of the !"(1) model. We 
can conclude from Equation 3.3 and the fact that !! < 1, that the autocorrelation function !! 
approaches zero (exponentially) as the time-lag ! increases without bound. This is just a precise 
mathematical way of describing the intuitive idea that the (linear) relation between two outcomes 
of the variable ! becomes weaker as the time interval between them becomes wider. 

3.2 The !" !  Process 

 
Next, let us consider the second-order autoregressive process 

 
 

!! = !!!!!! ++!!!!!! + !! .     (3.4) 
 

Taking variance of both sides of Equation 3.4 gives the equation !! = !!!!! + !!!!! + !!! which 
upon solving for !! yields 

 

!! =
!!!

1− !!! − !!!
.     3.5  

 
   Multiplying both sides of Equation 3.4 by !!!! and then taking expectation of both sides gives 
!! = !!!!!! + !!!!!! . Dividing through by !! yields the recursive formula 

 
!!!! = !!!!!! + !!!!;  ! ≥ 0,     (3.6) 

 
with which the initial conditions !! = 1 and !! = !!/(1− !!) are associated. The first initial 
condition is true since the correlation between a random variable and itself is always 1 and the 
second follows from the Equation 3.6 by setting ! = −1 and using the fact that !! = !!!. 

Although Equation 3.6 together with the initial conditions can be used to compute the 
autocorrelation function !!, for a given value of !, recursively, an explicit formula is desirable in 
certain situations. To find an explicit expression for !! we define the (generating) function 

 

! ! = !!!!
!

!!!
,     (3.7) 

 
which by Theorem 2.2.1 is analytic inside its radius of convergence (see Section 5 below). Our 
goal is to find an explicit expression of the coefficients !! appearing in Equation 3.7 and to 
achieve this goal we will use the various tools described in Section 2. First it follows from 
Corollary 2.2.1 that  
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!! =
1
2!"

! !
!!!! !"

!!

,     (3.8) 

 
where the integral is taken over a sufficiently small positively oriented circular contour !! (we 
specify below exactly how small must the radius of this circular contour be) centered at the 
origin. Equation 3.8 can be useful if a closed form of the function ! is available, and such a form 
is what we shall seek next. 

If we multiply both sides of Equation 3.6 by !! and then sum over ! ∈ {0, 1, 2,… }  we get 
 

!!!!!!
!

!!!
= !! !!!!!!

!

!!!
+ !! !!!!

!

!!!
. 

 
If we now multiply and divide the left hand side and the first term in the right hand side of this 
equation by !! and ! respectively, we get 

 
1
!! !!!!!!!!

!

!!!
= !!

! !!!!!!!!
!

!!!
+ !! !!!!

!

!!!
, 

or 
1
!! ! ! − !! − !!! = !!

! ! ! − !! + !!! ! . 
 

Solving this equation for !(!) and substituting  !! = 1 gives us the desired closed form  
 

! ! = (!! − !!)! − 1
!! !! + !!!! ! −

1
!!

 .    (3.9) 

 
It follows from Corollary 2.2.1 that !! = ! ! 0 /!! and now that we have an expression for 

the function !, we might compute the values of !! by differentiating the expression in Equation 
3.9. However, computing higher derivatives of this expression is a very tedious task, and 
accordingly, we shall avoid this method. Instead, we shall use both Cauchy’s residue theorem 
(Theorem 2.3.1) and the deformation invariance theorem (Theorem 2.1.1) to compute !!. Let us 
first rewrite Equation 3.9 after factoring the polynomial in the denominator: 

 

! ! = (!! − !!)! − 1
!! ! − !! ! − !!

,     (3.9∗) 
where  !!, !! = (−!! ± !!! + 4!!)/2!!. Observe from Equation 3.9 that both !! and !! are 
different from zero. Also  !! ≠ 0, otherwise this case will reduce to the !"(1) process discussed 
earlier. These two observations imply that the rational function ! given by Equation 3.9 is well 
defined, and analytic at ! = 0. 
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From Equation 3.8 we have 
 

!! =
1
2!"

! !
!!!! !"

!!

= 1
2!"

(!! − !!)! − 1
!!!!!! ! − !! ! − !!

!",     (3.10)
!!

 

 
where !! is a circular contour centered at the origin with a radius ! less than min { ! !, ! !} 
(see Figure 3.2.1).  

Cauchy’s residue theorem alone will not be very useful in evaluating the integral in Equation 
3.10 since the integrand has a pole of order ! + 1 at the origin. However, using the deformation 
invariance theorem we can conclude that  

 
  

!(!)
!!!! !" =

!!

!(!)
!!!! !" 

!!!

+ !(!)
!!!! !" 

!!!!

+ !(!)
!!!! !"

!!!!

,     (3.11) 

where !!! , !!!! ,  and !!!! are circular contours of radii !!, !′! and !′! and centers ! = 0, ! = !! 
and ! = !! respectively, as shown in Figure 3.2.2. (Observe the orientations carefully.) 
 
 
 
 
 
 

!! !! 

!! 

Figure 3.2.1 The radius ! of the circle !! is less than the minimum of the distances from the 
two roots !!and !! to the origin.  
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  However, there is no contribution from the integral over the contour !!!. Indeed,   

 

! !
!!!! !" 

!!!

≤ ! !
!!!! !"  

!!!

 

= ! !
!!!!! 2!!! !"

!

!
 

≤ !! − !! !! + 1
!! !!!!! !! − !! !! − !!

2!!! !" → 0
!

!
, 

 
as !! → ∞, and by the deformation invariance theorem  
 

!(!)
!!!! !"

!!!

= lim
!!→!

!(!)
!!!! !"

!!!

= 0. 

 

!! 

!! 

!!! 

!! 
!!!! 

!!!! 

Figure 3.2.2 The integral over the contour !!  is equal to the sum of integrals over the contours 
!!! ,!!!! and !!!! by the deformation invariance theorem.  
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   Thus, we may rewrite Equation 3.11 as  
 

! !
!!!! !" = ! !

!!!! !" 
!!!!

+ ! !
!!!! !" 

!!!!!!

 

 

= −2!" !"# ! !
!!!! ; !!

!
,     3.12  

 
where the last equality follows from Cauchy’s residue theorem. Combining Equation 3.10, 
Equation 3.11 and Equation 3.12 gives us  
 

!! = − !"# ! !
!!!! ; !!

!

!!!
,     (3.13) 

 
where ! is the number of distinct complex roots of the polynomial ℎ ! = !! + (!!/!!)! −
1/!!. 
   Since the computation of residues will depend on the order of the nonzero pole(s) of the 
function !(!)/!!!!,  we will have two different formulas of !! for the !" 2  process depending 
on the value of ! which is either 1 or 2. Before we consider the two possible cases, we would 
like to emphasize that Equation 3.13 is a general expression for !! and the summation index ! 
will run over the values 1 and 2 when the polynomial ℎ has two distinct roots, and will take on a 
single value, ! = 1,  when ℎ has a single complex root of multiplicity 2. This will be particularly 
useful when we consider the general !"(!) process in the next section, where many different 
cases regarding the orders of the poles will be possible. Now we consider the two possible cases 
for the !"(2) process. 

 
Case I (!! ≠ !!)  
 
If the complex roots of the polynomial !! + (!!/!!)! − 1/!! are distinct, the value of ! 

will be 2 and the rational function !(!)/!!!! will have a simple pole at ! = !! and another 
simple pole at ! = !!. By Equation 3.13 

 

!! = − !"# ! !
!!!! ; !!

!

!!!
 

 

= − lim
!→!!

! − !! ! !
!!!! + lim

!→!!

! − !! ! !
!!!!  
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= 1+ (!! − !!)!!
!!!!!!! !! − !!

+ 1+ (!! − !!)!!
!!!!!!! !! − !!

.     (3.14) 
 

Substituting the expressions of !!, !! and !! in terms of the parameters !! and !! in Equation 
3.14 gives us the desired explicit formula for the autocorrelation function !! in terms of the 
parameters !! and !!. 

 
Case II (!! = !! = !)  
 

   If the polynomial !! + (!!/!!)! − 1/!! has a single complex root ! of multiplicity 2 then the 
rational function !(!)/!!!! will have a pole of order 2 at ! = ! and by Equation 3.13 
 

!! = − !"# ! !
!!!! ; !!

!

!!!
 

 

= − lim
!→!

!
!"

! − ! !! !
!!!!  

 

= ! !! − !! ! − 1 − 1
!!!!!!

.     (3.15) 
 
Again, substituting the expressions of !! and ! in terms of the parameters !! and !! in Equation 
3.15 gives us the desired explicit formula for the autocorrelation function !! in terms of the 
parameters !! and !!. 
   Now that explicit expressions for the autocorrelation function !! for the two cases discussed 
above are available, proofs of them can be given using mathematical induction. We leave this 
task to the reader and consider the general case of the !"(!) process next.  

4 The !"(!) Process 
 
Our work in this section will be parallel to that in the previous section. The same ideas and 
techniques that were applied there in the special case of the !" 2  process can be applied here in 
the general case to verify the statements that we shall not verify.  
   The !th-order autoregressive process takes the form 
 

!! = !!!!!!
!

!!!
+ !! .     (4.1) 
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Taking the variance of both side of Equation 4.1 gives !! = !! !!!!
!!! + !!!, which upon 

solving for !! gives 
 

!! =
!!!

1− !!!!
!!!

.     (4.2) 
 
Multiplying both sides of Equation 4.1 by !!!! and then taking expectation of both sides gives 
!! = !!!!!!!

!!! . Dividing through by !! yields the recursive formula 
 

!!!! = !!!!!!!!
!

!!!
 ; ! ≥ 0.     (4.3) 

 
   As we did earlier in the previous section, the next step is to define the (generating) function 
 

! ! = !!!!
!

!!!
.     (4.4) 

 
An argument similar to the one given in the previous section (the details are left to the reader) 
yields a closed form of !: 
 

! ! = ! ! − 1 − !!! ! − 2 ! + !!! ! − 3 !! +⋯+ !!!!! 0 !!!!
1− !!! + !!!! +⋯+ !!!!

  
 

= ! ! − 1 − !!! ! − 2 ! + !!! ! − 3 !! +⋯+ !!!!! 0 !!!!
−!! ! − !! ! − !! ⋯ ! − !!

,    4.5  

 
where ! ! = !!!!!

!!!  ; ! ≥ 0, and  !! , !!,… , !! are the complex roots of the polynomial 
 

ℎ ! = !! + !!!!/!! !!!! +⋯+ !!/!! ! − 1/!!.      (4.6) 
 

Notice that ! = 0 is not a root of the polynomial ℎ and that !! ≠ 0 otherwise this process will 
reduce to an !"(! − 1) process. Thus, the function ! given by Equation 4.5 is well defined, and 
analytic at ! = 0. 
   Next, we follow the same arguments that led to Equation 3.13 in the previous section (the 
details are omitted) to obtain 
 

!! = − !"# ! !
!!!! ; !!

!

!!!
,     (4.7) 
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where ! is the function given by Equation 4.5, and ! is the number of distinct roots of the 
polynomial ℎ defined by Equation 4.6  
   Notice that the expression of ! in Equation 4.5 includes the sums ! ! = !!!!!

!!!  ; 0 ≤ ! ≤
! − 1. Accordingly, the expression of !! given by Equation 4.7 above depends on the initial 
conditions  !!; 0 ≤ ! ≤ ! − 1 of the recurrence relation given by Equation 4.3. To remove this 
dependence and have an explicit expression of !!, we must express these initial values in terms 
of the model parameters !!,!!,… ,!!. This is easily done using the facts that !! = 1 and 
!! = !!! once the parameters of the model are specified. We illustrate this procedure in 
Example 4.1 below. 
 
Example 4.1 Let us consider the !"(3) process with !! = 3, !! = −4 and !! = 12: 
 

!! = 3!!!! − 4!!!! + 12!!!! + !! 
 
First, we note that the roots of the polynomial ℎ ! = !! − (1/3)!! + (1/4)! − 1/12 are 
!! = !/2, !! = −!/2 and !! =  1/3. From Equation 4.7 above we have 
 

!! = !"# ! !
!!!! ; !! ,

!

!!!
 

where  

! ! = 3! 1 ! − ! 2 − 4! 0 !!
12 ! − !! ! − !! ! − !!

 

 

= 3 !! + !! ! − (!! + !!! + !!!!)− 4!!
12 ! − 1/3 ! − !/2 ! + !/2 . 

 
So we need to express !! and !! in terms of !! = 3, !! = −4 and !! = 12 to get an explicit 
formula for !!. From Equation 4.3 we have the relation !!!! − 3!!!! + 4!!!! − 12!! = 0.  
Substituting ! = −1 and ! = −2 in this relation and using the facts that !! = 1 and !! = !!! 
we get the equations 5!! − 12!! =  3 and −15!! + !! = −4. Solving these two equations gives 
!! = 9/35 and !! = −1/7 ∎ 
 
   As we remarked earlier in the previous section, the formula for !! will depend on the number 
of distinct roots of the polynomial ℎ defined by Equation 4.6 because the roots of this 
polynomial are poles of the function !(!)/!!!! appearing in Equation 4.7. However, Equation 
4.7 is a general expression of the function !! that takes into consideration the number of distinct 
roots of ℎ. In other words, Equation 4.7 reduces the computation of the autocorrelation function 
to the computation of the residues of the function   !(!)/!!!! at the roots of ℎ. For instance, if 
we want to find an expression for !! when the polynomial ℎ has ! distinct complex roots (the 
function !(!)/!!!! has simple poles at  !!, !!,… , !!) then we can use Equation 4.7 to get 
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!! = − lim
!→!!

! − !! ! !
!!!!

!

!!!
, 

 
where ! is given by Equation 4.5.  
    

5    Conclusion and Remarks 

Given a zero-mean stationary autoregressive process of order !, we have shown that the 
autocorrelation function !! for this process is given by 

 

!! = − !"# ! !
!!!! ; !!

!

!!!
,      

 
where !(!) is given by Equation 4.5, !! is a root of the polynomial ℎ defined in Equation 4.6 and 
! is the number of distinct roots of this polynomial. Thereby, reducing the computation of the 
autocorrelation function to a computation of residues. In the process of doing so, we have used 
the generating function 
 

! ! = !!!!
!

!!!
, 

 
the radius of convergence of which we have not yet discussed. Such discussion is necessary for if 
this generating function converges only when ! = 0 then the function ! !  is nowhere analytic. 
We claim however, that this series converges uniformly in the open unit disk centered at the 
origin of the complex plane. Indeed, the autocorrelation function !! is, in magnitude, less than or 
equal to 1. Thus, !!!! ≤ ! ! for all !, and the series ! !!

!!! converges in the open unit disk 
centered at the origin. Our claim now follows from the Weierstrass !-test.  
   Finally, we would like to remark that the method described in this paper for computing the 
autocorrelation function is most efficient when the roots of the polynomial defined in Equation 
4.6 are distinct. When this polynomial has a root of high multiplicity, the computation of 
residues in Equation 4.6 becomes tedious. 
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