
Rose-Hulman Institute of Technology Rose-Hulman Institute of Technology 

Rose-Hulman Scholar Rose-Hulman Scholar 

Mathematical Sciences Technical Reports 
(MSTR) Mathematics 

9-30-2013 

A Numerical Analysis of PSM with Applications to DDEs A Numerical Analysis of PSM with Applications to DDEs 

Dustin Lehmkuhl 
Rose-Hulman Institute of Technology, lehmkudc@rose-hulman.edu 

Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr 

Recommended Citation Recommended Citation 
Lehmkuhl, Dustin, "A Numerical Analysis of PSM with Applications to DDEs" (2013). Mathematical 
Sciences Technical Reports (MSTR). 161. 
https://scholar.rose-hulman.edu/math_mstr/161 

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been 
accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of 
Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Rose-Hulman Institute of Technology: Rose-Hulman Scholar

https://core.ac.uk/display/268182476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.rose-hulman.edu/
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math
https://scholar.rose-hulman.edu/math_mstr?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/math_mstr/161?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:weir1@rose-hulman.edu


A Numerical Analysis of PSM with Applications to DDEs
 

1 
 

The Modified Picard method (PSM) for approximating IVPs (in a non-standard numerical fashion) 
involving ODEs or PDEs has been established as a viable option (see Sochacki and Parker et al.). The 
form of the approximating method allows itself to be used without much labor on delay differential 
equations (where the vector field at the current time relies on the state of the system at some earlier time 
as well as the current time). The properties of the solutions to the DDEs can be different depending on 
how the delay shows up, hence there are a myriad of subclasses (see Baker, Paul and Wille) and as a 
consequence, their numerical simulation can be delicate. This jump to DDEs via PSM appears to be 
possible without worrying about which subclass is involved.

I. INTRODUCTION

The Picard Iteration is a method of approximating simple differential equations easily, but is 
normally incapable of handling complicated operations without clever integration tricks. PSM is a method 
of preparing a system of equations for a Modified Picard method that has shown much promise in 
approximating complicated systems. Delay Differential Equations are a class of Differential Equations 
that normally involve much more complicated means of determining solutions, but the use of PSM 
appears show promise for modeling these Delay problems without much effort. For more information on 
PSM and the Modified Picard Method, see Sochacki and Parker et al. and information on Delay 
Differential Equations and their subclasses see Baker, Paul  and Wille.

II. BRIEF DESCRIPTION OF PICARD ITERATION

The Picard iteration is a method of determining solutions of differential equations through the form

= + , ( ) ;           = ( , )
In order to carry out the Picard iteration, an initial value and an expression for are required.

Example 2.1

= = ; (0) = = 1
( ) = +  ( ) = 1 + 1 = 1 + 2  
( ) = +  ( ) = 1 + 1 + 2 = 1 + 2 + 8

( ) = +  ( ) = 1 + 1 + 2 + 8 = 1 + 2 + 8 + 48
Like Taylor expansions, Picard iterations provide a local approximation about a specified time and 
therefore incur some error the farther from that the procedure is carried out. Also like Taylor 
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expansions, this approximation becomes more precise with more iterations. Once this th iteration is 
carried out, a working solution can be used or a large number of IVPs.

Picard Iterations can also be used for systems of Differential Equations.

Example 2.2 = ; (0) = 1= ; (0) = 2
( ) = + = 1 + (1) (2) = 1 + 2

( ) = + = 2 + 2 = 2
( ) = + = 1 + (1 + 2 ) (2 ) = 1 + 2 2

( ) = + = 2 + (2 ) = 2 +
( ) = + = 1 + 2 + 2 + +

( ) = + = 2 +
( ) = 1 + 2 + 2 + + 0 +( ) = 2 + +

Unfortunately the Picard Iteration becomes difficult once more complicated terms are involved.

Example 2.3: = cos( ) + sin( ) ; (1) = 0( ) = 0
( ) = cos ( ) + sin( ) = cos( ) (1 cos(1))



A Numerical Analysis of PSM with Applications to DDEs
 

3 
 

( ) = cos ( ) + sin( ) = cos cos( ) (1 cos(1)) + sin( )
As integration is used at every iteration, systems that involve difficult or impossible to close integrals are 
even more difficult to solve using computational software. However, a Modified Picard Method can be 
used instead by PSM.

III. BRIEF DESCRIPTION OF PARKER-SOCHACKI METHOD

The Parker-Sochacki method, PSM for Short, is a process of converting the series of differential 
equations to a polynomial form. Polynomials are remarkably well-behaved in addition, multiplication, 
and most importantly integration. The way this process work is by adding a new IVP to the system by 
replacing offending terms with variables.

Example 3.1 = + cos( ) ; (0) == ; (0) =(0) = 0
A few “renaming” of certain objectionable segments makes the iteration much more manageable. The 
derivative and initial values are determined manually to add these equations to the vector field.= cos( ) ; = sin( ) ; u(0) = cos(0) = 1= sin( ) ; = cos( ) ; (0) = sin(0) = 0= ; = ; (0) = = 1
With the correct terms replaced, the final system looks like this:= + ; (0) == ; (0) == ; (0) = 1= ; (0) = 0= ; (0) = 1
Ideally, this method can be used for most systems of ODE’s

IV. APPLYING PSM TO COMPUTATIONAL METHODS
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As the Modified Picard method involves numerous iterations and involves simple operations, it naturally 
lends itself towards computational methods. However, a few simplifications and processes must be made 
to adapt this method to programming.

As stated earlier, Picard iterations only approximate around a certain point, causing error the further the 
approximation is taken. To remedy this, a reset r can be applied at some time where a whole new Picard 
iteration can be applied. , ( = ) =

, =
, ( ) = + ( , )

These reset points can be determined by any myriad of methods, including an even spacing across the 
time span of calculation. The method used in the following examples was by evaluating an iteration at a 
set of times until an error reaches a certain predefined tolerance. This error is approximated as the 
difference between evaluations at iterations 1 and . For solutions with alternating terms like solution 
y in Example 2.1, iterations 2 and are used otherwise there would be no calculated error for some 
iterations.  | ( + ) ( + )| < ,  = + | ( + ) ( + )| > ,  =
While polynomials are relatively simple to multiply with an iterative computation, the exponentially 
increasing power and number of terms becomes unwieldy after only a few iterations as shown in example 
2.1. For the following examples, all products of polynomials are truncated after the term with the th 
power, where is the iteration number.

For the th iteration of Picard: ( ) = + + +( ) = + +( ) ( ) + +
Where c, d, and k are constants.

For the numerical analysis examples below, periodic functions are used for a few reasons. For one, error 
scales with the magnitude of a function, so a monotonic function would produce a misleading error the 
farther along an approximation would be taken. Also, models of periodic functions have a tendency to fail 
in both amplitude and phase, so a method that can be accurate in both ways is preferred.

Example 4.1 = ; (0) = 1
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= ; (0) = 0
This system of differential equations yields:= cos( ) ; = sin ( )
By utilizing an 15 degree approximation and allowing 50 resets with a reset tolerance of 10 a cosine 
graph up to t=50 is created. Data 1 is the calculated approximation through PSM and the red circles are 
the actual solution of y=cos(t).

Figure 4.1

To further illustrate the effectiveness of this process, below is the same solution with the same degree of 
approximation and tolerance but taken with many more resets to make the solution reach a time of 5000.

Figure 4.2

Time Reached Resets Required CPU Time Integrated Error Maximum Error
50 50 0.0624 s 3.7007 e-11 2.2861 e-12
5000 5000 6.5676 s 3.7976 e-7 2.3781 e-10

The CPU time reported was from the MATLAB (v.R2011a) program with a student laptop, and when 
repeated will yield different results. The Integrated error reported is a simple Riemann sum of the errors 
across all calculated points. The Maximum Error is the highest calculated error at any point. Notice that 
there was no delay in phase with this process even after a large time span.

Example 4.2 = + 1 2 ; (0) = 1
= + 1 + 2 ; (0) = 0

After PSM:
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= 0.5 2 ; (0) = 1 = 0.5 + 2 ; (0) = 0= 1; (0) = 0= ; (0) = 0
With the Exact Solution: ( ) = + 1 cos( ) ; ( ) = + 1 sin( )
For these plots, the degree of approximation and the tolerance are still the same.

Figure 4.3

Figure 4.4

Time Reached Resets Required CPU Time Integrated Error Maximum Error
6.85 50 1.9344 s 1.4356 e-8 5.5689 e-9
60.38 5000 205.4533 s 5.9641 e-7 2.5032 e-8

This System of Differential equation is notably difficult to model due to its changes in amplitude and 
frequency, causing many modeling methods to fail incredibly quickly. 

The error on this method is still significantly higher than that of a normal cosine graph, but as shown in 
the second plot there doesn’t appear to be any appreciable shift in phase or altitude at large values of time.
The time taken to perform this calculation was significantly higher than that of example 4.1

V. APPLICATION OF PSM TO DDE’s
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